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High-order finite element methods

= |n the last decade there has been a great interest in
evaluating the performance of high-order methods
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High-order finite element methods

= High-order elements provide
* A better representation of the geometry with curved elements




High-order finite element methods

= A high-order polynomial basis are
defined within the reference element

. nFor triangles & & & &

Quadratic (p=2)
6 nodes

Cubic (p=3)
10 nodes

Linear (p=1)
3 nodes

* A polynomial basis of order p is build with (p+1)(p+2)/2 nodes

- Lagrange polynomials are usually considered although other basis
are common (Legendre, hierarchical basis, etc)
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High-order finite element methods

= The mapping between the reference element and the
physical element becomes nonlinear

= For a generic element with nodes = = {(zi,yi) }i_y ... , the
mapping between local and global coordinates can be
expressed in terms of the .
shape functions (isoparametric) 1“ e $5.ZE2
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= Numerical integration is required to compute the integrals of
the weak form
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High-order finite element methods

= High-order elements provide
- Exponential convergence for smooth solutions
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2.
APPLICATIONS

Computational electromagnetics




Motivation

= Finite differences are still the predominant technique In
research and industry.
= There is a need to improve numerical capabilities in order to

« Simulate the interaction of electromagnetic waves with thin wires
(multi-scale phenomena)

« Study the effect of lighting strike in an aircraft
* Reduce the design cycles of several optical and photonic devices




High-order discontinuous Galerkin (DG) formulation

= Maxwell’s equations
= |n dimensionless conservative form

= Linear system of hyperbolic equations
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High-order discontinuous Galerkin (DG) formulation

= Weak formulation
= The solution is sought in a broken space (i.e., discontinuous
across elements). The weak form in an element is

/ . oU ., . oW - Fp (U,)dQ) + W.F,U,)dl = / W - S(U.)d
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= The continuity of the fluxes across the
element boundaries is weakly imposed
by introducing a numerical flux
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= The numerical flux in an exact or
approximate Riemman solver



High-order discontinuous Galerkin (DG) formulation
= System of ODEs
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« The global matrix is never stored

= A high-order Runge-Kutta explicit time marching algorithm is
suitable for
- EXxplicit time marching because in many CEM applications a

uniform mesh spacing is required (dictated by the frequency of the
waves)



High-order discontinuous Galerkin (DG) formulation

= Advantages of a DG formulation

« Easy to parallelise when explicit time
marching is used (block diagonal matrix)

+ Ability to use non-uniform degree of
approximation (p-adaptivity and
singularities)

- Efficient for very high-order
approximations

= Disadvantages of a DG formulation

* For the same spatial resolution it uses
more degrees of freedom than the
standard continuous Galerkin formulation
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Electromagnetic scattering

= With high-order approximations simulations
can be performed with 4-6 nodes per
wavelength opening the door to the
simulation of higher frequency problems
and more complex geometries
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Photonics and optics
Physical problem
= Nano-lasers, resonators and photonic crystals

Silica toroid \

A

Optical wave :
N @

Silica post

\ Fiber-taper

waveguide

Y.K. Chembo and N. Yu, 2010

= Applications
« Communications
* Filtering, energy transfer,...
* Medical
- Surgical treatment, eye treatment,... ‘\),;,,’ o2
« Nano-photonic devices

Optical filters
or switches

. FrIe
Light source ’) ""

{Nanolaser)
4 )



Wave Propataion 1

Photonics and optics
Resonances In cavities
= Excite the fields using an initial PEC

Tomorrow morning

condition or source
= Monitor the fields at certain point/s

= Transform the fields to the frequency Monitor
domain to obtain the resonant
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2.
APPLICATIONS

Computational fluid dynamics




Motivation

= Europe needs to advance in the
numerical simulation capabilities of
aeronautical flows. This is partially
motivated by the FlightPath 2050
vision

= Finite volumes are still today the
predominant tool in industrial
aerodynamic applications

* TAU (DLR), FUN3D (NAsA), FLITE (sv)

= Huge investment in developing
high-order methods for the simulation
of high Reynolds number flows in
iIndustry but... we are not quite there yet!



High-order stabilised FE formulation
= Compressible Navier-Stokes equations
= |n dimensionless conservative form
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= The standard Galerkin formulation introduces negative
diffusion that needs to be balanced
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SUPG - CFD - Examples
NACAO0012, Mach 0.63, angle=2°

= Spurious entropy production substantially reduced by using
high-order elements in coarse meshes
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SUPG - CFD - Examples
NACAQ0012, Mach 0.8, angle=1.25°

= Good performance of high-order elements in coarse meshes
with the shock-capturing term
VA
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SUPG - CFD - Examples

Performance

= For a given accuracy, an important reduction of CPU time
and number of dofs by usmg hlgh -order apprOX|mat|ons

NACAOQ0012,
Mach 0.63, AoA=2°

ent
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Friday morning

Moving domains

Fluid Dynamics 4

Validation

= Euler vortex — Given mapping
« Optimal convergence for different orders of approximation

log,, (L, Error)
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J.
CHALLENGES

High-order mesh generation




Tomorrow morning

Elastic analogy

Mesh generation

Rationale

= Starting from a standard linear mesh, build a high-order
nodal distribution on each element with straight edges

............ N~

on the true

| AL
= “Project” boundary nodes
= Solve a linear elastic problem

 Dirichlet boundary conditions
are applied in curved
boundaries corresponding to
the displacement given by
the projection




3D examples
Falcon
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Electromagnetic scattering

= High-order DG
= Hybrid meshes
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J.
CHALLENGES

Geometry representation




The importance of the geometrical model

= The higher the order the better, but a poor geometric
approximation can prevent to exploit the full potential of high-
order methods

* |nviscid subsonic flow around a circle at free-stream Mach 0.3
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The importance of the geometrical model

= Small geometric features

= Drastically refined meshes and supercomputers are needed to
simulate problems involving complex geometries. However,
some small geometric features of the real model are neglected
In the simulation (defeaturing)




NEFEM — Rationale

= A domain is considered, whose boundary (or a portion of its
boundary) is described by NURBS

y

= [nterior elements (straight edges/faces): treated as standard
finite elements (FES)

= Curved elements (NURBS edges/faces): interpolation and
Integration with exact geometry description (overhead reduced

to boundary elements)



NEFEM — Rationale

= Curved elements are defined using the NURBS boundary

T

A 3
- 2D “91
o0
 Curved element: " T
R /
A y $1
S A

- 3D ! ] A .
« Curved NURBS face: image of a straight-sided triangle in the parametric
space
« Curved face with a NURBS edge: convex linear combination of the edge
and the interior node

. In}erior edges are straight edges




Heat transfer — Comparison

= 3D example

= Numerical solution
with FEM and
NEFEM on the
sphere surface

8- [soparametric FEM
¢ Cartesian FEM

--NEFEM
| -4~ (Geometry error

(@)

I
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= Geometry errors
Introduced by the
ISoparametric
formulation are
clearly observed
for quadratic and . | , 1
cubic interpolation 2 4 6 8 10 12
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CFD — Comparison

= Low-order comparison
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Small geometric features

= Engineering quantities of interest on the boundary, or near it
(scattering, aerodynamics,...)

= The size of the model is
sometimes subsidiary to the
geometrical complexity and
not only on the solution itself |

= Electromagnetic scattering

— »




Small geometric features

= Small geometric features cause global changes on the
solution
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Small geometric features
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= Can we simplify the geometry to avoid h-refinement?



Small geometric features

= Standard FEM meshes need h-refinement to capture small
geometric features

= With NEFEM the mesh size is no longer subsidiary to the
geometrical complexity
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Tomorrow morning

sma“ geometric features Mesh generation

= Scattering by a PEC aircraft profile (50 wavelengths)
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CONCLUDING
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Concluding remarks

= There is an industrial need to improve the numerical simulation
capabilities in the fields of CEM and CFD

= High-order methods are a promising alternative but some
Issues have hampered the widespread application of these
methods to problems of industrial relevance

= |deas to solve or alleviate these problems
« High-order curved mesh generation
 Elasticity analogy

« Geometry representation
* NURBS-Enhanced Finite Element Method (NEFEM)
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