High-order methods for the next generation of computational engineering software

Rubén Sevilla

Zienkiewicz Centre for Computational Engineering College of Engineering Swansea University Swansea Wales, UK

> 4th ACME School Swansea, 8 April, 2015

Swansea University Prifysgol Abertawe

Overview

- 1. High-order finite element methods
- 2. Applications
 - Computational electromagnetics
 - Computational fluid dynamics
- 3. Challenges
 - High-order curved mesh generation
 - Geometry representation
- 4. Concluding remarks

HIGH-ORDER FINITE ELEMENT METHODS

In the last decade there has been a great interest in evaluating the performance of high-order methods

- High-order elements provide
 - A better representation of the geometry with curved elements

- A polynomial basis of order p is build with (p+1)(p+2)/2 nodes
- Lagrange polynomials are usually considered although other basis are common (Legendre, hierarchical basis, etc)

- The mapping between the reference element and the physical element becomes nonlinear
- For a generic element with nodes $x_i = \{(x_i, y_i)\}_{i=1,...,n_{en}}$, the mapping between local and global coordinates can be expressed in terms of the shape functions (isoparametric)

 x_1

$$oldsymbol{arphi}(oldsymbol{\xi}) ~=~ \sum_{i=1}^{\mathtt{n_{en}}} oldsymbol{x}_i N_i(oldsymbol{\xi})$$

- The Jacobian $J = \begin{bmatrix} \frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} \\ \frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta} \end{bmatrix}$ is not constant
- Numerical integration is required to compute the integrals of the weak form

$$K_{ij}^{e} = \int_{\Omega_{e}} \boldsymbol{\nabla}_{\boldsymbol{x}} N_{i}(\boldsymbol{x}) \cdot \boldsymbol{\nabla}_{\boldsymbol{x}} N_{j}(\boldsymbol{x}) \ d\Omega = \int_{I} \left(\boldsymbol{J}^{-1} \boldsymbol{\nabla}_{\boldsymbol{\xi}} N_{i}(\boldsymbol{\xi}) \right) \cdot \left(\boldsymbol{J}^{-1} \boldsymbol{\nabla}_{\boldsymbol{\xi}} N_{j}(\boldsymbol{\xi}) \right) |\boldsymbol{J}| \ d\boldsymbol{\xi}$$

- High-order elements provide
 - Exponential convergence for smooth solutions

Motivation

- Finite differences are still the predominant technique in research and industry.
- There is a need to improve numerical capabilities in order to
 - Simulate the interaction of electromagnetic waves with thin wires (multi-scale phenomena)
 - Study the effect of lighting strike in an aircraft
 - Reduce the design cycles of several optical and photonic devices

- Maxwell's equations
- In dimensionless conservative form

$$\frac{\partial \boldsymbol{U}}{\partial t} + \frac{\partial \mathbf{F}_k(\boldsymbol{U})}{\partial x_k} = \mathbf{S}(\boldsymbol{U})$$

where

$$\boldsymbol{U} = \begin{pmatrix} \varepsilon \mathbf{E} \\ \mu \mathbf{H} \end{pmatrix} \quad \mathbf{F}_1 = \begin{pmatrix} 0 \\ H_3 \\ -H_2 \\ 0 \\ -E_3 \\ E_2 \end{pmatrix} \quad \mathbf{F}_2 = \begin{pmatrix} -H_3 \\ 0 \\ H_1 \\ E_3 \\ 0 \\ -E_1 \end{pmatrix} \quad \mathbf{F}_3 = \begin{pmatrix} H_2 \\ -H_1 \\ 0 \\ -E_2 \\ E_1 \\ 0 \end{pmatrix} \quad \mathbf{S} = \begin{pmatrix} -\sigma \mathbf{E} \\ \mathbf{O} \\ -E_2 \\ E_1 \\ 0 \end{pmatrix}$$

Linear system of hyperbolic equations

$$\frac{\partial \boldsymbol{U}}{\partial t} + \mathbf{A}_k \frac{\partial \mathbf{U}}{\partial x_k} = \mathbf{S}(\boldsymbol{U})$$

with
$$\mathbf{A}_k = \frac{\partial \mathbf{F}_k}{\partial x_k}$$

- Weak formulation
- The solution is sought in a broken space (i.e., discontinuous across elements). The weak form in an element is

$$\int_{\Omega_e} \boldsymbol{W} \cdot \frac{\partial \boldsymbol{U}_e}{\partial t} \, d\Omega - \int_{\Omega_e} \frac{\partial \boldsymbol{W}}{\partial x_k} \cdot \boldsymbol{F}_k(\boldsymbol{U}_e) \, d\Omega + \int_{\partial \Omega_e} \boldsymbol{W} \cdot \boldsymbol{F}_n(\boldsymbol{U}_e) \, d\Gamma = \int_{\Omega_e} \boldsymbol{W} \cdot \boldsymbol{S}(\boldsymbol{U}_e) \, d\Omega$$

 The continuity of the fluxes across the element boundaries is weakly imposed by introducing a numerical flux

$$\int_{\Omega_{e}} \boldsymbol{W} \cdot \frac{\partial \boldsymbol{U}_{e}}{\partial t} d\Omega - \int_{\Omega_{e}} \frac{\partial \boldsymbol{W}}{\partial x_{k}} \cdot \boldsymbol{F}_{k}(\boldsymbol{U}_{e}) d\Omega + \int_{\partial\Omega_{e}} \boldsymbol{W} \cdot \widetilde{\boldsymbol{F}}_{n}(\boldsymbol{U}_{e}, \boldsymbol{U}_{e}^{\text{out}}) d\Gamma = \int_{\Omega_{e}} \boldsymbol{W} \cdot \boldsymbol{S}(\boldsymbol{U}_{e}) d\Omega$$

 The numerical flux in an exact or approximate Riemman solver

- System of ODEs
- The semi-discrete system reads

$$\mathbf{M}\frac{d\mathbf{U}}{dt} + \mathbf{R}(\mathbf{U}) = \mathbf{0}$$

where the mass matrix is **block-diagonal**

Each block has dimension equal to the number of nodes per element

- The global matrix is never stored
- A high-order Runge-Kutta explicit time marching algorithm is suitable for
 - Explicit time marching because in many CEM applications a uniform mesh spacing is required (dictated by the frequency of the waves)

Advantages of a DG formulation

- Easy to parallelise when explicit time marching is used (block diagonal matrix)
- Ability to use non-uniform degree of approximation (p-adaptivity and singularities)
- Efficient for very high-order approximations

Disadvantages of a DG formulation

 For the same spatial resolution it uses more degrees of freedom than the standard continuous Galerkin formulation

Electromagnetic scattering

 With high-order approximations simulations can be performed with 4-6 nodes per wavelength opening the door to the simulation of higher frequency problems and more complex geometries

Photonics and optics

Physical problem

Nano-lasers, resonators and photonic crystals

- Applications
 - Communications
 - Filtering, energy transfer,...
 - Medical
 - Surgical treatment, eye treatment,...
 - Nano-photonic devices

Photonics and optics

Resonances in cavities

- Excite the fields using an initial condition or source
- Monitor the fields at certain point/s
- Transform the fields to the frequency domain to obtain the resonant

Approx	Exact
0.2497	0.2500
0.4994	0.5000
0.5585	0.5590
0.7069	0.7071
0.7503	0.7500
0.9011	0.9014
1.0000	1.0000
1.0302	1.0308
1.1183	1.1180
1.2497	1.2500
1.3462	1.3463
1.4138	1.4142

Motivation

- Europe needs to advance in the numerical simulation capabilities of aeronautical flows. This is partially motivated by the FlightPath 2050 vision
- Finite volumes are still today the predominant tool in industrial aerodynamic applications
 - TAU (DLR), FUN3D (NASA), FLITE (SU)
- Huge investment in developing high-order methods for the simulation of high Reynolds number flows in industry but... we are not quite there yet!

High-order stabilised FE formulation

- Compressible Navier-Stokes equations
- In dimensionless conservative form

$$\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial \mathbf{F}_i}{\partial x_i} - \frac{\partial \mathbf{G}_i}{\partial x_i} = \mathbf{0} \qquad \mathbf{U} = \begin{pmatrix} \rho \\ \rho v_1 \\ \rho v_2 \\ \rho E \end{pmatrix} \qquad \mathbf{F}_i = \begin{pmatrix} \rho v_i \\ \rho v_1 v_i + P \delta_{1i} \\ \rho v_2 v_i + P \delta_{2i} \\ (\rho E + P) v_i \end{pmatrix} \qquad \mathbf{G}_i = \begin{pmatrix} 0 \\ \tau_{i1} \\ \tau_{i2} \\ v_k \tau_{ki} + q_i \end{pmatrix}$$

- SUPG formulation
- The standard Galerkin formulation introduces negative diffusion that needs to be balanced

$$\int_{\Omega} \left(\mathbf{W} \cdot \frac{\partial \mathbf{U}}{\partial t} - \frac{\partial \mathbf{W}}{\partial x_k} \cdot \mathbf{F}_k(\mathbf{U}) + \frac{\partial \mathbf{W}}{\partial x_i} \cdot \left(\mathbf{K}_{ij} \frac{\partial \mathbf{U}}{\partial x_j} \right) \right) d\Omega$$

$$= \int_{\partial\Omega} \mathbf{W} \cdot \Big(-\mathbf{F}_k(\mathbf{U}) + \mathbf{G}_k(\mathbf{U}) \Big) n_k d\Gamma$$

SUPG – CFD - Examples

NACA0012, Mach 0.63, angle=2°

 Spurious entropy production substantially reduced by using high-order elements in coarse meshes

SUPG – CFD - Examples

NACA0012, Mach 0.8, angle=1.25°

 Good performance of high-order elements in coarse meshes with the shock-capturing term

SUPG – CFD - Examples

Performance

 For a given accuracy, an important reduction of CPU time and number of dofs by using high-order approximations

Moving domains

Validation

- Euler vortex Given mapping
 - Optimal convergence for different orders of approximation

Friday morning

Fluid Dynamics 4

Elastic analogy

Rationale

 Starting from a standard linear mesh, build a high-order nodal distribution on each element with straight edges

- "Project" boundary nodes on the true (CAD) boundary
- Solve a linear elastic problem
 - Dirichlet boundary conditions are applied in curved boundaries corresponding to the displacement given by the projection

Persson & Peraire (2009)

3D examples

Falcon

Isotropic and boundary layer meshes of a complete aircraft

 Minimum element quality 0.2 (isotropic) and 0.1 (boundary layer)

3D examples

Electromagnetic scattering

High-order DG

3D examples Delta wing

- Subsonic turbulent flow simulation
 - discontinuous Galerkin
 - p=3
 - Re = $3 \cdot 10^6$
 - M = 0.4
 - AoA = 13.3°

The importance of the geometrical model

- The higher the order the better, but a poor geometric approximation can prevent to exploit the full potential of highorder methods
 - Inviscid subsonic flow around a circle at free-stream Mach 0.3

Bassi and Rebay (1997), Barth (1998)

p=1; 8192 dof p=2; 6144 dof

The importance of the geometrical model

Small geometric features

 Drastically refined meshes and supercomputers are needed to simulate problems involving complex geometries. However, some *small* geometric features of the real model are neglected in the simulation (defeaturing)

NEFEM – Rationale

 A domain is considered, whose boundary (or a portion of its boundary) is described by NURBS

- Interior elements (straight edges/faces): treated as standard finite elements (FEs)
- Curved elements (NURBS edges/faces): interpolation and integration with exact geometry description (overhead reduced to boundary elements)

NEFEM – Rationale

- Curved elements are defined using the NURBS boundary
 - 2D
 - Curved element:

- 3D
 - Curved NURBS face: image of a straight-sided triangle in the parametric space
 - Curved face with a NURBS edge: convex linear combination of the edge and the interior node
- Interior edges are straight edges

Heat transfer – Comparison

- 3D example
- Numerical solution with FEM and NEFEM on the sphere surface
- Geometry errors introduced by the isoparametric formulation are clearly observed for quadratic and cubic interpolation

CFD – Comparison

Low-order comparison

128 elements describing the circle

High-order comparison

R. Sevilla, S. Fernandez-Mendez and A. Huerta, Arc. Comp. Met. Eng., 2011

- Engineering quantities of interest on the boundary, or near it (scattering, aerodynamics,...)
- The size of the model is sometimes subsidiary to the geometrical complexity and not only on the solution itself
- Electromagnetic scattering

 Small geometric features cause global changes on the solution

Can we simplify the geometry to avoid *h*-refinement?

- Standard FEM meshes need *h*-refinement to capture small geometric features
- With NEFEM the mesh size is no longer subsidiary to the geometrical complexity

Scattering by a PEC aircraft profile (50 wavelengths)

Concluding remarks

- There is an industrial need to improve the numerical simulation capabilities in the fields of CEM and CFD
- High-order methods are a promising alternative but some issues have hampered the widespread application of these methods to problems of industrial relevance
- Ideas to solve or alleviate these problems
 - High-order curved mesh generation
 - Elasticity analogy
 - Geometry representation
 - NURBS-Enhanced Finite Element Method (NEFEM)

Acknowledgements

Oubay Hassan Kenneth Morgan

Antonio Huerta Sonia Fernández-Méndez

Alan Shore

Ettore Barbieri

Juan J. Rodenas Onofre Marco

Bibliography

- 1. O. Marco, R. Sevilla, Y. Zhang, J.J. Ródenas and M. Tur, Exact 3D boundary representation in finite element analysis based on Cartesian grids independent of the geometry. International Journal for Numerical Methods in Engineering, In press.
- R. Sevilla and E. Barbieri. NURBS distance fields for extremely curved cracks, Computational Mechanics, 54 (6); 1431-1446, 2014
- 3. R. Sevilla, O. Hassan and K. Morgan, The use of hybrid meshes to improve the efficiency of a discontinuous Galerkin method for the solution of Maxwell's equations. Computers & Structures, 137; 2-13, 2014
- R. Sevilla, O. Hassan and K. Morgan, An analysis of the performance of a high-order stabilised finite element method for simulating compressible flows. Computer Methods in Applied Mechanics and Engineering. 253 (1); 15-27, 2013
- 5. Z. Q. Xie, R. Sevilla, O. Hassan and K. Morgan, The generation of arbitrary order curved meshes for 3D finite element analysis, Computational Mechanics, 51 (3); 361-374, 2013
- R. Sevilla, S. Fernández-Méndez and A. Huerta, NURBS-Enhanced Finite Element Method (NEFEM): A seamless bridge between CAD and FEM, Archives of Computational Methods in Engineering, 18 (4); 441-484, 2011
- 7. R. Sevilla, S. Fernández-Méndez and A. Huerta, Comparison of high-order curved finite elements, International Journal for Numerical Methods in Engineering, 87 (8); 719-734, 2011
- 8. R. Sevilla, S. Fernández-Méndez and A. Huerta, 3D NURBS-Enhanced Finite Element Method, International Journal for Numerical Methods in Engineering, 88 (2); 103-125, 2011
- 9. R. Sevilla and S. Fernández-Méndez, Numerical integration over 2D NURBS-shaped domains with applications to NURBS-enhanced FEM, Finite Elements in Analysis and Design, 47 (10); 1209-1220, 2011
- 10. R. Sevilla, S. Fernández-Méndez and A. Huerta, NURBS-Enhanced Finite Element Method for Euler equations, International Journal for Numerical Methods in Fluids, 57 (9); 1051-1069, 2008.
- 11. R. Sevilla, S. Fernández-Méndez and A. Huerta, NURBS-Enhanced Finite Element Method (NEFEM), International Journal for Numerical Methods in Engineering, 76 (1); 56-83, 2008