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High-order finite element methods

 In the last decade there has been a great interest in 

evaluating the performance of high-order methods
Initial mesh

h refinement p refinement

Numerical solution



High-order finite element methods

 High-order elements provide

• A better representation of the geometry with curved elements

p=1 p=1 p=3



High-order finite element methods

 A high-order polynomial basis are 

defined within the reference element

• For triangles

• A polynomial basis of order p is build with (p+1)(p+2)/2 nodes

• Lagrange polynomials are usually considered although other basis 

are common (Legendre, hierarchical basis, etc)

Linear (p=1)

3 nodes

Quadratic (p=2)

6 nodes

Cubic (p=3)

10 nodes



High-order finite element methods

 The mapping between the reference element and the 

physical element becomes nonlinear

 For a generic element with nodes                               ,  the 

mapping between local and global coordinates can be 

expressed in terms of the 

shape functions (isoparametric)

 The Jacobian is not constant 

 Numerical integration is required to compute the integrals of 

the weak form



High-order finite element methods

 High-order elements provide

• Exponential convergence for smooth solutions





Motivation

 Finite differences are still the predominant technique in 

research and industry.

 There is a need to improve numerical capabilities in order to

• Simulate the interaction of electromagnetic waves with thin wires 

(multi-scale phenomena)

• Study the effect of lighting strike in an aircraft 

• Reduce the design cycles of several optical and photonic devices



High-order discontinuous Galerkin (DG) formulation

 Maxwell’s equations

 In dimensionless conservative form

where

 Linear system of hyperbolic equations

with



High-order discontinuous Galerkin (DG) formulation

 Weak formulation

 The solution is sought in a broken space (i.e., discontinuous 

across elements). The weak form in an element is

 The continuity of the fluxes across the

element boundaries is weakly imposed

by introducing a numerical flux

 The numerical flux in an exact or

approximate Riemman solver



High-order discontinuous Galerkin (DG) formulation

 System of ODEs

 The semi-discrete system reads

where the mass matrix is block-diagonal

Each block has dimension equal to the 

number of nodes per element

• The global matrix is never stored

 A high-order Runge-Kutta explicit time marching algorithm is 

suitable for 

• Explicit time marching because in many CEM applications a 

uniform mesh spacing is required (dictated by the frequency of the 

waves)



High-order discontinuous Galerkin (DG) formulation

 Advantages of a DG formulation

• Easy to parallelise when explicit time 

marching is used (block diagonal matrix)

• Ability to use non-uniform degree of 

approximation (p-adaptivity and 

singularities)

• Efficient for very high-order 

approximations

 Disadvantages of a DG formulation

• For the same spatial resolution it uses

more degrees of freedom than the 

standard continuous Galerkin formulation

p=2

p=3

p=1

p



Electromagnetic scattering

 With high-order approximations simulations 

can be performed with 4-6 nodes per 

wavelength opening the door to the 

simulation of higher frequency problems 

and more complex geometries



Photonics and optics

Physical problem

 Nano-lasers, resonators and photonic crystals

 Applications

• Communications

• Filtering, energy transfer,…

• Medical

• Surgical treatment, eye treatment,…

• Nano-photonic devices

Y.K. Chembo and N. Yu, 2010



Photonics and optics

Resonances in cavities

 Excite the fields using an initial 

condition or source

 Monitor the fields at certain point/s

 Transform the fields to the frequency 

domain to obtain the resonant 

frequencies

Air

PEC

Excitation

Monitor

Approx Exact

0.2497 0.2500

0.4994 0.5000

0.5585 0.5590

0.7069 0.7071

0.7503 0.7500

0.9011 0.9014

1.0000 1.0000

1.0302 1.0308

1.1183 1.1180

1.2497 1.2500

1.3462 1.3463

1.4138 1.4142

Wave Propataion 1

Tomorrow morning





Motivation

 Europe needs to advance in the 

numerical simulation capabilities of 

aeronautical flows. This is partially 

motivated by the FlightPath 2050 

vision

 Finite volumes are still today the 

predominant tool in industrial 

aerodynamic applications

• TAU (DLR), FUN3D (NASA), FLITE (SU)

 Huge investment in developing 

high-order methods for the simulation 

of high Reynolds number flows in 

industry but… we are not quite there yet!



High-order stabilised FE formulation

 Compressible Navier-Stokes equations

 In dimensionless conservative form

 SUPG formulation

 The standard Galerkin formulation introduces negative 

diffusion that needs to be balanced



SUPG – CFD - Examples

NACA0012, Mach 0.63, angle=2º

 Spurious entropy production substantially reduced by using 

high-order elements in coarse meshes

Mach, p=3

Mach, p=1



SUPG – CFD - Examples

NACA0012, Mach 0.8, angle=1.25º

 Good performance of high-order elements in coarse meshes 

with the shock-capturing term

Pressure, p=3

Pressure, p=3



SUPG – CFD - Examples 

Performance

 For a given accuracy, an important reduction of CPU time 

and number of dofs by using high-order approximations

NACA0012, 

Mach 0.63, AoA=2º

Circular cylinder, 

Mach 0.1, Re=30



Moving domains

Validation

 Euler vortex – Given mapping

• Optimal convergence for different orders of approximation

1

2.0

1

2.8

1

3.9

Friday morning

Fluid Dynamics 4





Elastic analogy

Rationale

 Starting from a standard linear mesh, build a high-order 

nodal distribution on each element with straight edges

 “Project” boundary nodes on the true (CAD) boundary 

 Solve a linear elastic problem

• Dirichlet boundary conditions

are applied in curved 

boundaries corresponding to

the displacement given by 

the projection

Persson & Peraire (2009)

Tomorrow morning

Mesh generation



3D examples

Falcon

 Isotropic and boundary layer meshes of a complete aircraft

 Minimum element quality 0.2 (isotropic) and 

0.1 (boundary layer)



3D examples

Electromagnetic scattering

 High-order DG

 Hybrid meshes



3D examples

Delta wing

 Subsonic turbulent

flow simulation

• discontinuous Galerkin

• p=3

• Re = 3·106

• M = 0.4

• AoA = 13.3º

Courtesy of Ralf Hartmann (DLR)





The importance of the geometrical model

 The higher the order the better, but a poor geometric 

approximation can prevent to exploit the full potential of high-

order methods

• Inviscid subsonic flow around a circle at free-stream Mach 0.3

p=1;   8192 dof p=2;     6144 dof

Bassi and 

Rebay (1997), 

Barth (1998)

FEM

p=6



The importance of the geometrical model

 Small geometric features

 Drastically refined meshes and supercomputers are needed to 

simulate problems involving complex geometries. However, 

some small geometric features of the real model are neglected 

in the simulation (defeaturing) 



NEFEM – Rationale

 A domain is considered, whose boundary (or a portion of its 

boundary) is described by NURBS

 Interior elements (straight edges/faces): treated as standard 

finite elements (FEs)

 Curved elements (NURBS edges/faces): interpolation and 

integration with exact geometry description (overhead reduced 

to boundary elements) 



NEFEM – Rationale

 Curved elements are defined using the NURBS boundary

• 2D

• Curved element: 

• 3D

• Curved NURBS face: image of a straight-sided triangle in the parametric 

space

• Curved face with a NURBS edge: convex linear combination of the edge

and the interior node

• Interior edges are straight edges



Heat transfer – Comparison

 3D example

 Numerical solution 

with FEM and 

NEFEM on the 

sphere surface

 Geometry errors

introduced by the 

isoparametric 

formulation are 

clearly observed 

for quadratic and 

cubic interpolation

FEM p=2 FEM p=3

NEFEM p=2 NEFEM p=3



CFD – Comparison

 Low-order comparison

 High-order comparison

R. Sevilla, S. Fernandez-Mendez and A. Huerta, Arc. Comp. Met. Eng., 2011

128

elements 

describing 

the circle

FEM NEFEM

NEFEM

p=6

FEM

p=6



Small geometric features

 Engineering quantities of interest on the boundary, or near it 

(scattering, aerodynamics,…)

 The size of the model is 

sometimes subsidiary to the 

geometrical complexity and 

not only on the solution itself

 Electromagnetic scattering



Small geometric features

 Small geometric features cause global changes on the 

solution



Small geometric features

 Can we simplify the geometry to avoid h-refinement?

Small is influential!



Small geometric features

 Standard FEM meshes need h-refinement to capture small 

geometric features

 With NEFEM the mesh size is no longer subsidiary to the 

geometrical complexity

FEM mesh NEFEM mesh



Small geometric features

 Scattering by a PEC aircraft profile (50 wavelengths)

NEFEM, p=10

h for 27 nodes p.w.l. h/10

h for 22 nodes p.w.l. h/2

Reference, p=2

Tomorrow morning 

Mesh generation





Concluding remarks

 There is an industrial need to improve the numerical simulation 

capabilities in the fields of CEM and CFD

 High-order methods are a promising alternative but some 

issues have hampered the widespread application of these 

methods to problems of industrial relevance

 Ideas to solve or alleviate these problems

• High-order curved mesh generation

• Elasticity analogy

• Geometry representation

• NURBS-Enhanced Finite Element Method (NEFEM)
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