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1D SCALAR CONSERVATION EQUATION

Find U(x1,t) such that

Classical Formulation

Variational Formulation

Define

Find                 in         such that

for all W in          and for all t>0

where



1D SCALAR CONSERVATION EQUATION

Galerkin Approximation

Construct a mesh of linear finite elements with p nodes on Ω

Define the finite dimensional subspaces

The Galerkin approximation is defined by the requirement

This implies that

where

Here          is a weight that depends upon the geometry of the mesh
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1D SCALAR CONSERVATION EQUATION

Stabilisation

The Galerkin method applied to the spatial derivative leads to an approximation that 
allows the appearance of spurious modes e.g. when F1=A1U and A1 constant

Stabilisation can be achieved by the addition of some form of diffusion

In finite difference methods this can be accomplished by discretising directly  a 
modified equation

In the finite element Galerkin method the actual flux function is replaced by the 
consistent numerical flux function

Nodal values of the solution gradient are calculated as
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Peraire (1993)



1D SCALAR CONSERVATION EQUATIONS

Discontinuity Capturing

Discontinuities may be captured by the explicit addition of a suitably scaled 
second order diffusion operator

The modified numerical flux function is defined as

where the discontinuity sensor is

The full form of the numerical flux function is

Only discontinuity capturing diffusion should be added in the regions of 
strong gradients

Lőhner (1985)



1D SYSTEM OF CONSERVATION EQUATIONS

Euler Equations

As in the case of the scalar equation, application of the Galerkin method and the 
explicit addition of  diffusion, for stabilisation and discontinuity capturing,  leads to

where

For the equation system, the discontinuity sensor is based upon a key variable, 
e.g. the pressure



3D SYSTEM OF CONSERVATION EQUATIONS

Euler Equations

As in the case of the 1D system, application of the Galerkin method and the explicit 
addition of  diffusion leads, on a linear tetrahedral mesh, to the edge based formulation

where

Formaggia (1988)

Peraire (1993)

Lyra (1995)

Sørensen (2002)



DEFINITION OF THE GEOMETRY AND THE MESH SIZE

Peraire (1987)

Peiró (1994)

Tremel (2005)

Peiró (1989)

Geometry Definition

surface components: bi-cubic patches, NURBS

curve components: cubic splines, NURBS

Mesh Size Definition

background mesh      

point, line, circular and planar sources

curvature controlled



UNSTRUCTURED MESH GENERATION

Surface Mesh Generation

Discretisation into triangles using an 

advancing front method

Volume Mesh Generation

Discretisation into isotropic tetrahedra

using a Delaunay method with 

automatic point creation

Requires 100Mb/106 elements

Generates > 0.5M elements/min on a PC

Peraire (1985)

Peiró (1989)

Hassan  (1994)

Lőhner (1987), Peraire (1987), Weatherill (1986)



AERODYNAMICS WITH FLITE3D

FLITE3D runs

For the A380, stringent
design targets were set
and 100s of different wing
geometries were analysed

Final design could not
have been achieved by
wind tunnel testing alone

Frank Ogilvie



Ampère’s Law

Faraday’s Law

Discretised TE form

Time step size
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2D CO–VOLUME ALGORITHM FOR CEM

Use the Delaunay-Voronoi dual diagram



2D MESH REQUIREMENTS

Ideal mesh consists of equilateral triangles

––deviation of the circumcentre from the barycentre
should be minimised

––deviation of the midpoint of each Voronoi edge
from its intersection with its Delaunay edge should be
minimised

For a general mesh

––each circumcentre should lie inside its
associated element

Zero length Voronoi edges may be 

removed by the merging of cells



To avoid distorted elements near boundaries, 
one or more layers of elements are 
generated first near the boundaries using an 
advancing front method

A mesh with the required size distribution is 
generated  to cover the whole domain—for 
CEM this is usually the ideal mesh shown 
here

The two meshes are stitched together

Mesh quality enhancement procedures are 
employed

MESH GENERATION BY THE STITCHING METHOD

Sazonov (2006)



Lloyd’s Algorithm

MESH ENHANCEMENT

Wang (2006)

Centroidal Voronoi tesellation (CVT) scheme that modifies a mesh by moving 
nodes to the mass centroids of the corresponding Voronoi cells; improves the 
mesh but a significant percentage of bad elements remain

The number of degrees of freedom representing the coordinates in a mesh is 
nnode*ndim

Most gradient free algorithms are only demonstrated to work successfully for up to 
around 300 degrees of freedom

Transform the global problem into nnode local problems of size ndim

Each node in turn is moved to the optimum position found using  a fixed number of 
generations of a modified Cuckoo search algorithm

Gradient Free Mesh Optimisation

Walton (2011)

: node number number of elements containing node k centroid element i

Voronoi vertex element i mean edge length element i =1 if i bad; 0 otherwise



For bad elements that remain, the weighted Voronoi diagram concept is employed in 
which vertices are moved while retaining edge orthogonality

Common chords of circles at each vertex with radius equal to that of the circumcircle 
intersect at the Voronoi vertex

Reducing the radius at one vertex moves the weighted Voronoi vertex inside the bad 
element while maintaining orthogonality

Vertex weights are optimised using the modified cuckoo search process

LOCAL WEIGHT OPTIMISATION

Xie (2011)



8l PEC Cavity15l PEC Cylinder

mesh resolution l/15

2D EM WAVE SCATTERING



Faraday’s Law Ampère’s Law

3D CO–VOLUME ALGORITHM FOR CEM



The ideal mesh consists of non−perfect tetrahedra

Each face is an isosceles triangle with one side of length        and 
two shorter sides of length

This configuration maximises the Voronoi edge length and all 
Voronoi edges have the same length

IDEAL 3D MESH

Sazonov (2006)



Scattering by a 2 λ PEC Polyhedron

Mesh resolution is λ/15 , λ/8 for 3D co‒volume method

Mesh resolution is λ/30 , λ/15 for FETD

15λ grid:     5 349 240 elements 915 540 points

3D co‒volume: 300 CPU sec FETD: 4000 CPU sec.

3D CEM EXAMPLE

Sazonov (2006)

Ez (colour) and (Ex,Ez) (black) in the (x,z) plane



Scattering by 6λ PEC Finned Body

co‒volume FETD
points         ~900K ~900K
cells          ~1.2M
hex              ~800K
steps/cyc 2 103            3 248
cpu/cyc          34.1m          282.8m

3D CEM EXAMPLE

Xie (2011)



CONCLUSIONS

Low Order Method for Aerodynamics

Co–Volume Method for Electromagnetics

Gansen (2015)

Walton (2015)

Linear finite element method for the compressible Euler equations

Efficient edge based formulation

Automatic unstructured mesh generation

Practical example of industrial application of the approach

Co‒volume method for the Maxwell equations

Delaunay and Voronoi dual meshes

Co‒volume mesh requirements

Mesh optimisation procedures

Possible extensions to fluid mechanics? Jones (2015)


