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PREFACE

The UK Association for Computational Mechanics in Engineering (ACME) was founded with the
aim of promoting research in computational mechanics and various engineering applications and
establishing formal links and with similar organisations in Europe and the International
Association of Computational Mechanics (IACM). One of the principal activities of ACME
involves the organisation of the annual conference. The first such conference took place at the
University College of Wales Swansea in 1993. Since then, the conferences have provided a forum
for reviewing research activities in many areas of mechanics, with an emphasis on
interdisciplinary aspects. The conferences have proved to be particularly useful events for
bringing together researchers from different disciplines, and especially for providing young
researchers with opportunities to present their work.

These conference proceedings contain more than 80 four-page papers presented at the 22nd
ACME Conference that was held in the Department of Engineering at the University of Exeter
from 3rd to 4th April 2014, following the 3rd ACME School on 2nd April, where four lectures
were delivered on the topics of Isogeometric Analysis and Automatic Meshing by renowned
academics.

On behalf of the local organising committee, |1 would like to thank many people who have
contributed to this conference, especially, all the authors who meticulously prepared their papers
and presented their original research. | would like to express my gratitude to the three invited
keynote speakers, Professor Hywel Thomas, Mr Adrian Gaylard and Professor Bassam Izzuddin
for their thought provoking lectures and seminal scholarly contributions. I would also like to
thank the speakers of the ACME School, Professor Sven Klinkel, Dr Ido Akkerman, Dr Robert
Simpson and Professor Philippe Young, for their excellent lectures on the very important topics
covered in the School.

I would like to acknowledge the support received from the College of Engineering, Mathematics
and Physical Sciences of the University of Exeter in the organisation of this conference. In
particular, 1 would like to thank Ms Karen Pope, Ms Denise Watts and Mr Chris Snow for
providing assistance and advise on financial issues and IT services. Finally, I would like to thank
the local organising committee members, with special thanks to Mr Mohammed S. Hussain for
his dedication and hard work in the day-to-day organisation of ACME2014 conference.

Akbar Javadi
Vice-Chairman of ACME 2014
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A coupled Partition of Unity FEM-collocation BEM for acoustic wave
scattering in heterogeneous media in two dimensions

Ganesh C. Diwan*!, Jon Trevelyan' and Graham Coates'
School of Engineering and Computing Sciences, Durham University, Durham, DH1 3LE
*g c.diwan @durham.ac.uk

ABSTRACT

The Finite Element Method (FEM) is known for its versatility to handle complex geometries and het-
erogeneities in the medium properties, while the Boundary Element Method (BEM) is known for its
ability of exact treatment of waves propagating to infinity for wave problems. In this paper, we pro-
pose a coupled formulation of partition of unity FEM (PUFEM) and partition of unity BEM (PUBEM)
to solve acoustic scattering problems in a heterogeneous medium. Numerical examples are presented
to establish the convergence of the proposed method. Two of the well known non-reflecting boundary
conditions for wave problems are implemented and their performance is compared against the coupled
PUFEM-PUBEM results.

Key Words: Wave scattering; Partition of unity method; Non-reflecting boundary condition; Boundary
integral equation; Heterogeneous media

1. Introduction

Modelling of waves in a heterogeneous medium can become a difficult task for the element based meth-
ods with polynomial basis as i) a heterogeneous medium requires a high resolution of mesh when the
degree of heterogeneity is high and ii) high frequency wave problems become increasingly costly due
the requirement of at least ten nodes per wavelength. Plane wave based methods have been found to
offer a clear advantage over polynomial based methods when modelling wave problems in the medium
frequency range, see [1][2]. Cases where the wavenumber is not constant in the computational domain
are of practical interest. PU based methods have been used in such cases, see [3][4]. It is known that the
Sommerfeld radiation condition is satisfied exactly for BEM (at least for the continuous equations) thus
the waves propagating to infinity are modelled exactly. FEM (or PUFEM) on the other hand needs the so
called non-reflecting boundary conditions (NRBCs) which are approximate and for an improved accu-
racy the non-reflecting boundary needs to be kept as far as possible from the scatterer to avoid spurious
reflections. The heterogeneity, if limited to a relatively small part of the domain, can be modelled using
PUFEM. The rest of the domain, if homogeneous and unbounded, can be modelled using PUBEM. It
is therefore natural to couple PUFEM and PUBEM for modelling exterior acoustic problems involving
wave scattering in heterogeneous medium which is the focus of this paper. The rest of the paper is or-
ganised as follows. Section 2 provides an overview of the governing PDE for wave scattering, its weak
form for PUFEM and the boundary integral equation. Section 3 gives the partition of unity concept and
coupling of PUFEM and PUBEM through matrix equations. This is followed by numerical examples
(Section 4) and conclusions (Section 5).

2. Weak form and boundary integral equation

We consider the case of a time-harmonic (¢7") acoustic wave scattering by a rigid sound hard obstacle
Q, bounded by I in R? (Fig. 1). We seek the total acoustic pressure p exterior to I'y that admits the
following BVP:
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Figure 1: Problem definition

pV-(p7'Vp)+Kp=0 in R*\Q, (1)
Z—p=0 on [y =0Q; 2
n

Jim 1472 (04(p = p™) = ik(p = p")) = 0 3)

where, p is the medium density, p is the total acoustic pressure, k = w/c, w is the circular frequency of
wave and c is the speed of sound. The parameters p and c are allowed to change in space, n is the unit
normal on I, (or I'y) pointing towards g, i = V=1, p™ is the incident wave and I’y UT, = 0. The weak
form for the Helmholtz equation (1) can be obtained by multiplying with a test function v thus the BVP
in (1)-(3) gives,

0
f (p_1Vv -Vp —p_lkzvp) dQ - f p_lv—de =0 @)
Qf I on

The boundary integral equation for p can be written as,

cwpeo+ [ FEEDpgar - [ GoeyZdr+ pr. xyer, )

r, oy r, on
where, X is the collocation point, y is the field point, c(x) is the jump term and G(X,y) is the Green’s
function. For a 2D case, G(x,y) = (i/4)Hy(kr), where Hy(-) is the Hankel function of first kind and
order zero and r = |y — x|. We assume I', is smooth and take c(x) = 0.5. We follow the same PUFEM
formulation as used in [5] and implement two of the well known NRBCs viz. the second order Bayliss-
Gunzburger-Turkel (BGT-2) and 2nd order Enquist-Majda (EM-2) conditions; for details the readers are
referred to [5].

3. Plane wave basis for heterogeneous medium and PUFEM-PUBEM coupling

In this paper, we restrict ourselves to piecewise constant density subdomains. We use 4-noded linear

quadrilateral finite elements to discretize 2y and we follow the well known partition of unity represen-

tation of the pressure field p. The heterogeneity arising on account of density jump in Qf results in a

corresponding jump in the wavenumber. We therefore use a combined basis which is used globally in the
ap

FE domain Q for total pressure p and its normal derivative 3, i.e.,

p(X) = ZN Zakl ikidjmx | _“+alibweik.d_,~mx+a ekdimX 4y

aizwelkzdjmx + akLeldeij + e+ a];?ueidejm-X’ X € Qf, (6)

ap d

8_(X) — Z N] Z bkl lk]djm X bkl lkldij + blleelkzdjm-x 4ot (7)
n -

bl e X g phLgihidinx gl kX x e T

where L stands for total number of density jumps in Q. Let the global notation for the pressure and its
normal derivative be given as

p=Qa (8)
P
aﬁ - Qb ©)

2



Here, a and b are the vectors of unknown plane wave amplitudes associated with total acoustic pressure
p (see (6)) in Q and g—’; on I'; (see (7)) respectively. Q can be readily formed using either (6) or (7).
Using (6)-(7) for the weak form of the Helmholtz equation (4) and the integral equation (5) along with
the isoparametric test functions for (4), we obtain following partly symmetric-partly unsymmetric system
after combining the discrete forms for (4) and (5).

ai
K; K; R [0
[ 0 H _G}{?}_{pim} (10)

It may be noted from above (see (10)), a = [ag,a]”. It can be readily seen that the coupling between
PUFEM and PUBEM is achieved as K; and H multiply the common plane wave amplitudes a; associated
with Dirichlet data on I', and R and G multiply the common plane wave amplitudes b associated with
Neumann data on I',. The block matrices on the left hand side of (10) are given by

K; = fp—l[va]TVQdQ, K, = fp—l[va]TVQdQ, R:fp_lQTQdQ, (1)

QI QNI T,

H= o'’ + f ey Y go 6= f P QY Gix,y) dO (12)
y
I,

I,
and p™ is the vector formed using the usual collocation procedure in BEM with the known incident wave
on I',. The BEM equations have to be normalised with the density of homogeneous exterior medium
(see (12)). It should be noted that the use of Lagrange multipliers is inevitable if each heterogeneity is
modelled with the corresponding wavenumber alone in the basis (see [4]). The use of mixed basis (as in
(6) or (7)) eliminates any such need as the continuity of acoustic pressure and normal particle velocity
across the interface of two different mediums is satisfied naturally.

4. Numerical examples

We consider a plane wave scattering problem from a sound hard cylinder placed in a medium with a
single jump in the density. The problem parameters are listed in Fig.2.

P N
* P2 e
L .
P o'y
S u
]
! ]
0 .
.
.
. -Q-2 . *

Problem definition Finite Element mesh

Figure 2: Two fluid example: p; = 1.20,, 7 ([5) = 1,r() =2, r(l}) = 3, pin¢ = etkox Qp =Q ULy,

Fig.3 shows the contours for real part of normalised total acoustic pressure in the computational domain
Q. For this problem, a reference solution based on Bessel function series can be constructed easily. The
errors associated with polynomial FEM, PUFEM and coupled PUFEM-PUBEM are also listed in Fig.3.
We now present the Q—convergence of the proposed coupled algorithm. We take 16 linear elements in
the circumferential direction and 2 elements in the radial direction to model the computational domain
Qp (see Fig. 2). The Q—refinement is achieved by increasing the number of plane waves in the basis (see
(6)-(7)). The geometry parameters are the same as shown in Fig.2. As seen from Fig. 4, adding more
degrees of freedom (dof) to the system improves the accuracy of coupled PUFEM-PUBEM solution
unlike for the PUFEM solution which does not improve even after addition of more plane waves. This
can be explained by the fact that the NRBCs used for PUFEM, namely BGT-2 and EM-2, are approximate
boundary conditions and cannot represent an outgoing wave from I', exactly.
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Figure 3: Real part of normalised total acoustic pressure, k; = 2x, kp = 7, Mj:no. of plane waves with k;
in basis, M;: no. of plane waves with k; in basis.

—&— PUFEM with BGT-2 NRBC
—4— PUFEM with EM-2 NRBC 20r

_f, —@— Coupled PUFEM-PUBEM with CHIEF —

L7 2
S 15-

5 2 2

N: B

= 8
= -3 = 10r

O i

- g

3

—4—PUFEM with BGT-2 NRBC
® 54 —4-PUFEM with EM-2 NRBC B
—e—Coupled PUFEM-PUBEM with CHIEF

2.6 2.8 3.4 3.6 2.6 2.8 3 3.4 3.6

3 3.2 3.2
Loglo(ndof) Loglo(ndof)
L? error on T’ Conditioning of linear system

Figure 4: Q-convergence: PUFEM vs coupled PUFEM-PUBEM- k| = 2r, k, = 7, nodes in radial
direction = 3, nodes in circumferential direction = 16, total FE nodes = 48, total FE elements = 32.

5. Conclusions

We have presented a coupled formulation of plane wave enriched FEM and BEM. The error analysis
presented shows a uniform convergence for coupled PUFEM-PUBEM algorithm and an improvement
over PUFEM. At the same time, the accuracy of PUFEM is limited by the inherent approximations in
the NRBCs used. The combined basis is shown to work for a heterogeneous problem without the need
to use Lagrange multipliers.
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ABSTRACT

Octree (and quadtree) representations of computational geometry are particularly well suited to mod-
elling domains that are defined implicitly, such as those generated by image segmentation algorithms
applied to medical scans. In this work we consider the simulation of soft-tissue which can be modelled
with a hyperelastic constitutive law. We include the effects of both non-linear geometry and material
properties.

Similarly to Legrain et al. [1] and Moumnassi et al. [2] we use the implicitly defined level set func-
tions as the basis for a partition of unity enrichment to more accurately represent the domain boundary.
Furthermore we use traditional extended finite element (XFEM) ideas to introduce arbitrary cuts and
discontinuities in the domain.

We explore the use of a three-field u-p-6 mixed approach to deal with the problem of volumetric-locking
in the incompressible limit.

We will discuss the extension of our method towards both traditional parallel and GPU implementation.
We aim to solve extremely large problems as well as produce snapshots to feed into model order reduction
methods for real-time surgical simulations.

Key Words: surgery, octree, incompressible, hyperelasticity, XFEM, level sets.

1. Introduction

A significant amount of research in numerical methods over the past two decades has been dedicated
towards alleviating the difficulties associated with accurately and efficiently representing geometrical
information about the domain of interest in a numerical simulation.

The traditional path has been to transfer geometrical information from one form, such as a computer aided
design (CAD) model, constructive solid geometry (CSG) model or image-based (pixel or voxel) data to
a mesh, a conforming partition of the problem domain of interest into simplices or polygonal/polyhedral
domains. Particularly in the case of simplex meshes in 2D and 3D there are now relatively robust methods
for converting all of the above geometric data sources into meshes, e.g. Simpleware+FE and CGAL [3].
Difficulties still remain particularly with the hexahedral case and often the methods produce meshes with
large number of degrees of freedom for complex geometries.

Meshfree methods attempt to help alleviate the difficulty of mesh generation by removing the restriction
of having to pre-define connectivity between nodes in the domain; connectivity is a natural consequence
of the support domain of each node and to some extent nodes can be placed arbitrarily. However, in the
vast majority of cases, meshfree methods still describe the geometry of the domain using an underlying



Figure 1: Left: Single image from CAT scan of abdomonen (Source: COLONIX). Right: Isosurface derived from
segmentation of part of human colon (black voids in CAT scan left).

T

Level O Level 1 Level 2 Level 3

Figure 2: Construction of a quadtree grid and the representative tree. Beginning with level zero (far left) the octree
is non-uniformly subdivided to level three (far right). Nodes of the tree with children are shown as squares, and
those without children are shown as circles.

mesh or assume that the geometry is formed by the convex hull of the node set. This latter assumption
makes describing highly non-convex domains (e.g. cracks) with meshfree methods difficult.

Other methods have attempted to unify the description of the geometrical information and the method
of numerical approximation, perhaps most famously the isogeometric analysis method where the same
basis functions such as NURBS are used to discretise the geometry and form the basis for solving the
PDE.

Partition of Unity Methods (PUM) [4] shift the burden of describing the geometry of the domain from
the mesh to the basis functions via suitable enrichment of the discretisation basis. One of the goals of
both the generalized finite element method (GFEM) and the eXtended finite element method (XFEM)
is to represent the geometry of the problem independently of the discretisation. Methods such as the
Finite Cell Method of Parnazian et al. [5] propose the integration of the weak form on sub-cells that
approximate the geometry as a stepped surface although they do not use enrichment functions.

We believe that the in the case of image-based analysis, where the geometry is defined implicitly through
advanced image segmentation procedures, see fig. 1, that partition of unity methods with seperate repre-
sentation of discretisation and geometry are particularly well-suited to rapidly producing patient-specific
mechanical models of the human body [6]. This paper discusses our first steps in this new project in
which we aim to build a parallel distributed-memory solver capable of solving real-world problems in
surgical simulation derived directly from patient-specific imagery.

2. Quadtree partition of implicitly defined domain

A quadtree or octree is a tree structure in which each node has four or eight children (respectively)
and in this case we use it to recursively subdivide either the 2D or 3D (respectively) bounding box of
the problem domain of interest Q fig. 2. The level of a node in the tree corresponds to the number of
subdivisions required to obtain that node.

In this work, in a similar manner to Legrain et al. [1], we construct two trees, one that we call the geomet-
ric octree O,, and one that we call the the discretisation octree Oy. On the geometrical tree we approx-
imate the geometrical information of the problem, derived, for example, from an image-segmentation
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Figure 3: Left: A fine-scale grid Oy is constructed by uniform refinement to level six of the bounding box of the
domain and contains information at the smallest geometric level, eg. pixel/voxel data. Middle: The fine-scale grid
is coarsened to level three to form the geometric grid O, based on the implicit information (e.g. level-set) on the
fine-scale grid Oy. Right: The geometric grid Oy is coarsened further to form the discretisation grid Oy.

procedure generating a level-set function. On the discretisation tree we construct the numerical method,
and we share information between the two via the partition of unity method.

We construct the trees from the highest-level down as shown in fig. 3, although it would be preferable
from an efficiency standpoint to construct from the lowest-level up. A point of departure from the work
of Legrain et al. is that we do not construct a triangulation from the octree. We believe this approach
is superior from a point of view of both efficiency and the ability to use the more robust isoparametric
quadrilateral/hexahedral finite element basis functions. We enforce the 2:1 mesh balance, sometimes
known as 1-irregular grids to ensure a smooth transition between areas of high and low refinement.

The octree data structure makes handling the relationship between the discretisation and the geometric
information very straightforward. By constructing a bi-directional map M : O; — O, between the nodes
of the two octrees we can easily support fast queries such as asking for the parent of a particular node in
the geometric tree or all of the children of a particular node in the discretisation tree. Futhermore we can
refine or coarsen both octrees independently of each other and efficiently regenerate the map between
the two allowing for future implementation of traditional hp-adaptivity combined with enrichment e
adaptivity. The method described in this paper is implemented in the deal.ii finite element framework

[7].

3. Incompressible Hyperelastic Material Model

Due to the hydrated nature of soft-tissue it is typically modelled as a nearly-incompressible hyperelas-
tic material. Standard displacement formulations typically suffer from volumetric locking in this regime
which occurs because the basis functions are not sufficiently rich to represent the incompressibility con-
straint enforced by the bulk modulus «. In this work we minimise the following three-field functional
where the pressure p is an independent variational quantity and acts as a Lagrange multiplier to enforce
the determinant of the deformation gradient J to an independent representation J:

M(u, p. 6) = f W(J,B) dQ + f P =) dQ — Tlex (1)
Q Q

where b = J=2/3b is the isochoric part of the left Cauchy-Green strain tensor b = FF, and the deforma-
tion gradient with respect to the reference configuration X is F = I + %%, and I,y represents the external

x>
loading.

4. XFEM Enrichment

We transfer the geometric information embedded in the geometric octree to the discretisation by means
of the Partition of Unity paradigm, or more specifically, the extended finite element method (XFEM). We
write the displacement field uy, pressure field p, and pressure parameter 6 constructed with N standard
classical finite element shape functions N; enriched with M scalar enrichment functions ¢ ; associated

with extra degrees of freedom a{ as:

N N M )
wp(®) = > Nt + D N; 3 r(x0a] @)
i=1 i=1 j=1
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We write similar expressions for p; and 6, noting that we ensure the satisfaction of the LBB stability
condition through the higher-order approximation of the displacements uy than the auxilliary variables
pr and 6. Whilst the definition of the discretisation and the partition of unity enrichment is defined
by degrees of freedom seeded from the discretisation octree O, the integration and construction of the
partition of unity enrichments is performed on the geometrical octree O,.

Currently we only include Heaviside type enrichments (ie. strong discontinuities) to represent material
boundaries and we are looking at the best way to include weak discontinuities in our formulation which
will be vital for including material discontinuities.

5. Dirichlet Boundary Conditions

Because the boundary of the domain no longer coincides with the positions of the nodes seeded from
the discretisation octree we no longer satisfy the basic requirement that our basis functions vanish on the
Dirichlet boundary, typically denoted v € H(l) (). Various methods can be used to enforce the Dirichlet
conditions including Nitsche’s method, the method of Lagrange multipliers and the penalty method.
The application of Nitsche’s method to the problem of hyperelasticity is a relatively new field and we
are currently investigating the application of methods developed in the Discontinuous Galerkin finite
element methods, see e.g. Noels and Radovitzky [8].
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ABSTRACT

The cost of mining for each block in an open pit mine is calculated using the dimension and specific weight of
that block. It is clear that the tonnage of these blocks located in each zone is determined on the basis of each
zones’ ore density. As a result, the delineation of rock characterisation in terms of density plays a significant
role in mine planning and design. This paper proposes a new practice named Density-Number (D-N) fractal
modelling to separate density populations based on 32 density core samples (data) analysed from 11 boreholes
in Kahang Cu-Mo porphyry deposit located in the central Iran. The D-N log-log plot indicates that there are
three density populations with breakpoints at 2.618 and 2.673 t/m®. Correlation between result of the fractal and
the geological 3D models illustrates that the rocks with high values of density are associated with chalcopyrite
and hypogene units.

Keywords: Density-Number (D-N) fractal modelling; Kahang Cu-Mo porphyry; chalcopyrite; hypogene

1. Introduction

Delineation of rock mass characterisation with respect to density is important in mineral exploration, resource
evaluation and mine planning especially in optimisation of an ultimate pit limit since the cost and income of
mining are related to the variation of density populations (societies) within an ore deposit [1, 2]. Host rocks of
porphyry deposits consist of sub-volcanic massive ore bodies such as porphyric quartz diorite (PQD), granite,
monzonite and quartz monzonite which are lithological units with high hardness [3, 4]. Variations of mineralogy
and lithology units are other useful factors for separation of rock mass characterisation in the porphyry deposits

[5].

The mathematical applications in geosciences have been massively created and consequently utilised to identify
various phenomena for better interpretation of geological features such as lithology, zonation, alteration and
mineralogy or for better understanding of different attributes like density, rock mass characterisation and RQD
analysis [6, 7]. A number of models have been intended for purpose of modelling based on statistical,
geostatistical. However, the classical statistics methods for delineation of populations from background such as
histogram analysis, box plot, summation of mean and standard deviation coefficients and median are not
accurate due to the fact that the statistical methods consider only the frequency distribution of information (such
as density data) while have no attention to spatial variability since the information about the spatial correlation is
not always available [8, 9]. In recent years, models based on fractal geometry as a nonlinear mathematical
science proposed by Mandelbrot [10], have been hugely used in different branches of earth sciences since
various geological processes and even mining-based issues like rock mass characterisation can be categorised by
changes in fractal dimensions resulting from analysis of relevant data and desirable attributes (density in this
scenario) [11, 12, 13]. As a result, Fractal analysis has the abilities to justify the differences within the ore
deposits especially in hydrothermal occurrences such as porphyry Cu deposits [14]. However, proper knowledge
of the rock mass characterisation is crucial to identify rock types and density populations. In other words,
differences of fractal dimensions in density data can certify applicable criteria to identify rock mass
characterisation by Density-Number (D-N) fractal modelling in the Kahang Cu-Mo porphyry deposit, Central
Iran. Then, the obtained result via D-N fractal model is correlated and subsequently validated with chalcopyrite
and hypogene as the major mineralisation and zonation unites in the studied area.

2. Methodology


mailto:*aby203@exeter.ac.uk

Initially, a database was generated based on density values analysed from 11 boreholes of the total 48 drillcores
carried out in the Kahang deposit. The project dimensions are 600x660x780m in X, Y and Z direction and each
voxel has a dimension of 4x4x10m respectively. Secondly, the dataset was entered into the RockWorks ™ v. 15
software package to build up 3D density block model (Fig. 1) utilising Inverse Distance Weighted (IDW)
anisotropy as the estimator. The next step was to suggest the Density-Number (D-N) fractal model for
delineation of different populations in terms of density within the deposit. Consequently, a mathematical facility
of the software called “Multiple of Model & Model” as a tool to manipulate the voxels in a solid model by the
corresponding voxels in another equally-dimensioned solid model file has been used for combination between
the density 3D block model interpreted via D-N and the most frequent mineralisation and zonation units namely;
Chalcopyrite and hypogene respectively (Fig. 2 and 3).

3645020

Fig.1. Density (t/m?) block model Fig.2. Chalcopyrite unit (m?) within the deposit
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3644360
L~ 2360

E

1580

638700

638100

Fig.3. Hypogene model in the Kahang deposit (Scale is in m3)

3. Fractal Model

The model is expressed by the following equation [10, 11]:

N(=p)=Fp-D €
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Where p denotes density values, N(>p) denotes cumulative number of samples with density values greater than
or equal to p, F is a constant and D is the scaling exponent or fractal dimension of the distribution of density
values. Log-log plot of N(=p) versus p shows straight line segments with different slopes —D corresponding to
different density intervals.

The D-N method was applied to the density data (values). The selection of breakpoints as the threshold values
appears to be an objective decision due to the density populations which are recognised by different segments in
the D-N log-log plot (Fig. 4). Accordingly, the D-N log-log plot reveals that there are three populations with
respect to density thresholds (breakpoints) of 2.618 and 2.673 t/m°. As a result, the rocks with correspondingly
high density commence from density > 2.673 t/m>, the slope of the straight line fitted in the log-log plot is near

to 90°.
D-N log-log plot

Log Number.

0.36 037 038 039 04 041 042 043 044 045

Log Density (T/m3)

Fig.4. D-N log-log plot in the Kahang deposit

4. Correlation of D-N with the Major Mineralogical and Zonation Units

The result of the D-N model was correlated to the major mineralogical and zonation units of the deposit
consisting of chalcopyrite and hypogene constructed by using RockWorks™ v. 15 software and drillcore data
(Fig. 5). Rocks with density >2.673 t/m* defined by means of the D-N fractal model are well-correlated with
chalcopyrite mineralogical unit and hypogene zone defined by the 3D modelling of lithological drillcores data.
As a result, there is spatial coincidence between rock mass characterisation in terms of high density driven via
means of the D-N model in the most parts of the deposit. Therefore, it can be concluded that chalcopyrite
mineralogical unit and hypogene zone host the excellent values for density within the Kahang deposit.

Density Hypogene>2 673 (T/m3)
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Fig.5. Correlation of D—N fractal with major geological models: a) Chalcopyrite; b) hypogene
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5. Conclusions

In this paper, the D-Number (D-N) fractal model was used to investigate and delineate various density
populations in the Kahang Cu-Mo porphyry deposit (Central Iran). The D-N log-log plot illustrates three density
populations delineated by two threshold values of 2.618 and 2.673 t/m®. According to the correlation between
result driven by fractal modelling and major mineralogical and zonation units resulted by the 3D geological
model in the Kahang deposit, Chalcopyrite and hypogene are associated with density values > 2.673.
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ABSTRACT

Numerical simulation of thermal radiation can be highly demanding in terms of computational resources
especially when the transient nature of the problem has to be considered. In this work the partition-of-
unity finite element method is implemented for solving the transient conduction-radiation problem in
glass cooling. Ag-refinement procedure is used to treat the radiationfegrént frequency bands. The
procedure achieves a significant reduction of the computational costs on top of the reduction already
achieved by the partition of unity method.

Key Words: Finite element method; Partition of unity method; Radiative heat transfer; Glass cooling

1. Introduction

The computational cost involved in considering thermal radiation is mainly caused by the wide spectrum
of electromagnetic waves that are emitted from a thermally radiating material. The optical properties
of a material define active frequency bands through which most of the heat energy radiates. The model
describing the thermal radiation needs to be solved for each of these frequency bands in order to estimate
the cumulative heat energy emitted through radiation. Furthermore, the radiation waves move at the speed
of light whereas other heat transfer mechanisms happen at much slower time scales. Thus the radiation
scale has anfiect on the scale used in the solution of other coupled mechanisms. In this paper, we
adopt the simplified Papproximation to the RHT problem. We consider glass cooling models with eight
frequency bands kindly provided by ITWM [1]. In the current study, a newly developed approach [3] is
used to solve the frequency-dependent RHT in glass cooling problems. A refined enrichment approach, to
reduce the computational cost especially when a high number of frequency bands is needed, is presented.
The performance of the proposed method is compared to-tteesion FEM.

2. Theory

In the current study we consider the;Sipproximation for the RHT equations [2]. By discretizating the
optical spectrum of the glass inté frequency bands, the $Phodel consists on solving for the glass
temperaturel and the radiative energy® for the kth band k = 1,2,...,N) the following transient
conduction-radation equations

N
aT
~V-(kVT) = —v ®), 1) € Q% [0, tend),
=~V (V) kz (37¢") (x.1) € QX [0, tenc)
2
&
-V (B—Kngo(k)) + Kkgo(k) = 47TKkB(k)(T, ng), (x,t) € Qx [0, tend),
ekeN(®) - VT +he(T = To) = an(BO(Th.ny) - BOT.mp)),  (X.1) € 92 % [0, tend). 1)
1 . .
o + 1+3r; 28 n) - ve® = 47BM(T,, Ng), (X, 1) € 0Q X [0, tend),
1- 2I’1 3Kk
T(x,0) = ToX), X € €,

where [Qteng) is the time intervalQ the spatial domain with bounda#{2, k. the thermal conductivityy
the absorption cdicient, h is the convective heat transfer ¢heient, Ty, is a given ambient temperature
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of the surroundingn(X) denotes the outward normal &twith respect taQ, ¢ is a difusion scaleq

is the mean hemispheric surface emissivity in the opaque spectral regiofd, vg], where radiation

is completely absorbed, ang andng are the refractive indices of the surrounding medium and the
glass material, respectively. In the above equati@{$(T, n) is the spectral intensity of the black-body
radiation in thekth band y«_1, vk) given by the Planck function in a medium with refractive inaex

K h 2hpv® , T -1
BY(T,n) = f B(T, v, n)dv, B(T,v,n):Tn (ePvikeT _ 1)~ (2)
Vk-1 0

wherehp, kg andcg are Planck’s constant, Boltzmann’'s constant and the speed of radiation propagation
in the vacuum, respectively [2]. In (1), the integradsandr, are defined by

1 1
ry= fo pp(—p)du, rp= j; 12p(=p)du,

wherep is the reflectivity obtained according to the Fresnel and Snell laws. Note that thapBrxi-
mation (1) consists to solve a system WNf{ 1) coupled semi-linear elliptic-parabolic equations.

Using a semi-implicit time stepping scheme, the procedure to advance the solution from thettime
the next timet,,1 can be carried out in the following two steps:

Step 1. Radiation stage: Fdt=1,2,...,N, solve forgo( K

£
-v. (—Vgo( K ) + Kk(,OE]_zl 471'K|(B(k)(Tn, Ng),

3 n+1
1+3r 2¢ ®)
(K) 2 5 K _ K
nel + (1——2['13_[(k) n(X) . V90n+1 = 47TB( )(Tb, ng).
Step 2. Conduction stage: Solve fdmh,, 1
Tn+1 - Tn (k)
A VT = Z v (5 Te)
ekeN(R) - Vi1 + he(Tne1 = Tp) = om(B( }(To. ) = BO(Ty, np)), 4)
T®) = To(x).

For the sake of simplicity we rewrite equations (3) and (4) in a compact form as

u-V-(&vu)

F, in Q,

. ®)
u+pnX)-vu = f, on 0Q,

Note that in the solution procedure, only linear systems have to be solved at each time step to update the
temperaturd .1 and the mean radiative intensitieﬁfﬁl

A weak variational form for the equations (5) can be reformulatea(@as) = b(v), Vv € V whereV is

a Sobolev space,a test function irV, a andb are bilinear and linear forms defined respectively, as

& N
a(u,v) = L(SVV- Vu+v u)dx + Ség Ev(u - f)dx, b(v) = Ldex. (6)

Let the domainQ be partitioned intoNe non-overlapping sub-domair@™, m = 1,...,Ne. Using a
conventional piecewise finite element space, the solutionQ™ is approximated as

#vert
U=L= D, Nl )
p=1
where N, stands for theH¥;) Lagrangian polynomial and, are the nodal values of the usedridde
triangular elements. Approximation (7) requires the mesh size to be small enough to capture the variable

field. This limitation is to be alleviated if a set of local enrichment functions are included [3]. In order to
achieve better approximation properties than is allowed by the polynomial basis funstions use the
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Figure 1: Comparison between FEM and PUFEM mesh grids.

10timesteps 40 timesteps 200 timesteps

Figure 2: Temperature patterns obtained using the PUFEM atlengent after dierent time steps.

partition of unity method to enrich the solution space with hyperbolic basis functions. It was found that
for problems of steep boundary layers using enrichments with steep gradients can significantly improve
the approximation of the finite element approach [3]. For example in a polygonal domain and for an edge
e, at a positionx = Xe, the enrichment functions may be written as

qg=12,...,Q, (8)

hq

whereC; andC; are constants defining the amplitude of the enrichment jump vahiie the parameter

to control the steepness of the functiGge. More details about the choice of the enrichment functions
can be found in [3]. The enrichment functiog are used within the partition of unity framework to
express the nodal valueg at any timet = t, and the solutioru;, identified in expression (7) can be

rewritten as
#vert Q

= > > AI"NGq (9)
p=1 g=1
Here the element numbaeris dropped for ease of notation. Thus the new unknowns to be computed by
solving the finite element resulting linear system Agé', forg = 1,2,...Q, which may be defined as
the contribution of each enrichment functi@g to the nodal valuel} at the nodep.

3. Numerical results

We check the performance of the proposed PUFEM for glass cooling at ambient temperatiref300

a disc enclosure with unit radius at initial temperature 1800n all our simulations, eight frequency
bands are used for the optical glass spectrum and fhesidin scales = 1 is considered. The material
properties along with the absorption déégent can be found in [2]. For the FEM simulations we consider

two meshes (a coarse mesh referred to as FEMc and a fine mesh referred to as FEMf) which are presented
in Figure 1. In this figure we also include the mesh used in our simulations using the PUFEM. We
emphasize the extremely low number of elements and nodes listed in Figure 1 for the PUFEM mesh
compared to both the coarse and fine FEM meshes. We present the numerical simulations using the
PUFEM with g-refinement. The number of hyperbolic functions used to enrich the PUFEM solution
space for solving the energy equatiorjs= 7. To solve the radiation equations for the mean intensities

oM with k = 1,2,...,8, the number of enrichment functions@= 6 for o, o@ and¢®, whereas

Q = 5 for ¢ and ¢®). This number is reduced 1© = 4 for ¢(® andQ = 3 for ¢{") and ¢®). Note

that due to the global nature of the enrichment, the saving in the computational cost is proportional
to the saving in the number of enrichments since the total number of degrees of freedom equals the
number of nodes multiplied by the number of enrichments. Thus, almost half of the computational cost
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Figure 3: Mean radiative intensities by FEMc, FEMf and PUFEN3 atstants after 10, 200 and 2000 time steps.

in solving the radiation equation is saved when this refinement strategy is used compared to using a
fixed number of enrichment® = 7. In Figure 2 we present snapshots of the temperature as recovered
by the PUFEM on one element after 10, 40 and 200 time steps. It can be seen that, at early simulation
times, the domain temperature remains uniform except at the boundary layer. The computed results for
this test example demonstrate a more stable behavior with the PUFEM compared to FEMc and FEMf.
Note that this accuracy in the PUFEM is achieved despite the fact that the total number of degrees of
freedom for the PUFEM is only around 1% of that for FEMc. To further examine the performance of
the PUFEM we present in Figure 3 the radial cross-sections for the mean radiative intensities for three
selected frequency bands after 10, 200 and 2000 time steps where the results obtained for other bands
exhibit similar behavior but with dlierent amplitudes. The mean radiative intensigi€sande® develop

steeper gradients than those associated with other frequency bands. Spurious oscillatiorfBeveétti di
amplitudes are more pronounced in the FEMc results for the first three frequency bands after 10 and
200 time steps than in the PUFEM results. It should also be pointed out that the largest mean radiative
intensity is calculated for the frequency bapld which dominate the other solutions in the remaining
frequency bands. As a consequence, the smooth boundary layéfsriray introduce stabilizingféects

in the considered radiative heat transfer problem. As mentioned earlier, the pattern described above when
refining the enrichment can be seen in Figure 3 in the steeper gradient associated with the temperature
as well as the mean radiative intensitigd), ¢@ and¢®). A relatively flat gradient can be seen in the
intensitiesp(”) and¢®. The PUFEM performs very satisfactorily for this frequency-dependent coupled
problem since it does notftlise the moving fronts and no spurious oscillations have been detected near
steep gradients of the temperature field and radiative intensities in the computational domain.

4. Conclusions

A g-refinement finite element method for radiative heat transfer in glass cooling is presented. Requiring
only a small fraction of the number of degrees of freedom required in the conventional FEM, the proposed
method shows better stability compared to that observed in the FEM. Indeed, because the main challenge
in most glass cooling applications is related to the steep gradients at the boundary layers, it is found
that adding steep gradient enrichments circumvent any need to mesh refinement. Other than these steep
gradient the solution can be very trivial and can be recovered with a very coarse finite element mesh.
Numerical simulations are performed for the glass cooling of a disc enclosure using a eight frequency-
dependent media. The presented results demonstrate the capability ppfetfigement finite element

method that can provide insight into complex radiative heat transfer problems.
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ABSTRACT

There is considerable interest in development of solid mechanics modelling which can cope with both
material and geometric nonlinearity, particularly in areas such as computational geotechnics, for applica-
tions such as slope failure and foundation installation. One such technique is the Material Point Method
(MPM), which appears to provide an efficient way to model these problems. The MPM models a prob-
lem domain using particles at which state variables are kept and tracked. The particles have no restriction
on movement, unlike in the Finite Element Method (FEM) where element distortion limits the level of
mesh deformation. In the MPM, calculations are carried out on a regular background grid to which state
variables are mapped from the particles. It is clear, however, that the MPM is actually closely related
to existing techniques, such as ALE and in this paper we review the MPM for solid mechanics and
demonstrate these links.

Key Words: Material Point Method; Solid Mechanics;, Mesh Free; Finite Deformation Mechanics

1. Introduction

Most computational methods in solid mechanics can be described as either Eulerian or Lagrangian.
Lagrangian methods work by splitting a problem into elements or particles in a mesh, and throughout
any deformation this mesh follows the problem domain. The advantage of this is that it is easy to track
surfaces and history dependant variables throughout a simulation as the position in relation to other
elements is always maintained. A disadvantage of a Lagrangian approach is that problems can begin to
occur when a material undergoes large deformations. These large deformations can result in a heavily
distorted mesh which, in certain situations, can result in calculations being unable to be completed.
Eulerian methods work by having a mesh that is fixed in space and allowing particles to move within it.
This is more commonly used in fluid mechanics applications but overcomes any issue of mesh distortion
as the mesh remains the same throughout calculations. A disadvantage is that it becomes more difficult
to track boundaries and history dependent variables as particles move. Attempts have been made to
combine together Eulerian and Lagrangian methods with the aim of keeping the positives without the
drawbacks. One method to combine these features is the Material Point Method (MPM) [1]. There are
currently many uses of the MPM, often in situations where the FEM struggles due to highly distorted
elements. Some uses currently of interest include problems involving impact and collision, penetration,
crack propagation, slope stability, soil mechanics and simulation of snow for use in animation. In this
paper we will review the MPM and highlight links to other techniques such as the Finite Element (FE)
and Arbitrary Lagrangian Eulerian (ALE) methods.

2. Method overview

The Material Point Method (MPM) was first developed by Sulsky et al. [1] as an extension for solid
mechanics of the FLuid Implicit Particle (FLIP) [2] method, which itself was an extension to the Particle
in Cell (PIC) [3] method used in fluid dynamics. The MPM can be referred to as a meshfree method.
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Although a background grid of connected nodes is required to perform calculations, material properties
are carried by a series of particles which are free to move independently of each other. In the MPM,
material points, known as particles, store state variables and move through a background grid or mesh
which can be changed or reset following each time step or load increment. This can be seen in Figure 1
where a material has been deformed and the mesh has been reset with particles in updated positions.

(ii) (iii)

Figure 1: Particle positions as mesh deforms and is reset: (i) original configuration, (ii) deformed mesh
and (ii1) reset mesh

Initially a material domain is split into a number of elements similar to the FEM. Each of these elements
is then populated with a number of material points. Each material point is assigned a weight based
on the volume of material that the particle represents. It can be desirable to initially locate particles at
Gauss quadrature points to simplify the volume weight calculation. In addition to the mesh covering the
material’s initial position, the mesh must extend to where the material is expected to deform.

In each element containing particles, the state variables must be mapped from the particles to the grid
nodes. This mapping process is carried out within each element using shape functions similar to those
used in the FEM. For instance the external force at a grid node is given by

np

) = Y INGE M e )
i=1

where f;’“ is the particle external force, {N(&;, i;)} are the nodal shape functions for the element contain-
ing the particle with local coordinates & and 7 and n), refers to the number of material points in the grid
element.

To be able to map to the correct grid nodes it is necessary to know in which element each material point
located at a point in time. Although trivial initially, after particles have moved this problem can become
more complex, especially if the mesh is not uniform. To simplify this process it is common to reset the
background mesh to a uniform grid after each loadstep.

The stiffness of each element is determined from the contributions from each of the particles currently
inside. Once the global stiffness matrix is assembled and the grid node displacements determined, the
grid node displacements {u,} are then mapped back to particles to get particle displacements {u,} through

() = > Nilug), @)
i=1

where n, is the number of element nodes. The particle positions are then updated. The grid node dis-
placements are not used to update the position of nodes in the mesh; the original undeformed mesh is
used.

3. Comparison with FEM

The MPM has many similarities with the standard FEM, in fact it is possible to think of the MPM as the
same as the FEM but with moving integration points instead of fixed Gauss points in each element. The
shape functions used to map between the grid and the particles in the MPM are the same as the shape
functions used in the FEM. If material points are located at the positions of Gauss points in the FEM
and if the mesh is not reset after each step then the MPM becomes identical to the FEM. In the MPM,
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external forces can be applied directly to the grid nodes or can be applied at particles and mapped to the
grid, however to do this particles must be placed where forces are applied.

Boundary conditions are applied directly to the background mesh as in the FEM. This works for fixed
boundaries with zero displacement conditions however to track boundaries it is necessary for some par-
ticle positions to coincide with material boundaries. Currently it is difficult to do this.

As the particles move it is possible that the background element they are in changes. One of the main
problems with the MPM is an error which occurs when material points cross element boundaries causing
an imbalance of internal forces [4]. In the MPM, if an element becomes void of particles it is turned off
so that it no longer contributes to the global stiffness matrix.

Due to the background nodal relationships the MPM is not as computationally expensive as some mesh-
less methods. However, as there is an additional mapping step, it is more expensive than the standard
FEM.

4. Comparison with Arbitrary Lagrangian-Eulerian methods

Arbitrary Lagrangian Eulerian (ALE) Methods [5], like the MPM, take advantage of useful aspects of
both types of method while trying to avoid disadvantages. In ALE methods a mesh is allowed to move
independently of the material moving in an arbitrary manner that can be defined by the user. This is
achieved by having a third set of coordinates (the so-called reference coordinates) other than the ini-
tial and current configurations, this allows the mesh to be adapted to avoid problems caused by mesh
distortions in a purely Lagrangian method. In the MPM the grid can be adapted in a similar manner if
desired however it is usual to reset the grid to an undeformed uniform state as this removes the additional
expense of particle searching.

5. Comparison with Smoothed Particle Hydrodynamics

Smoothed particle hydrodynamics (SPH) [6] is a Lagrangian meshfree method, where the domain is
represented by a set of distributed particles needing no connectivity, rather than split up into a set of
nodes in a grid. Like the MPM, each particle possesses a set of material properties and moves according
to governing equations. However SPH doesn’t have a background grid where calculations take place.
Instead, field functions at these points are approximated using a kernel function. These approximations
are then smoothed using a weighted average over neighbouring particles. Having no background grid,
shape functions cannot be used in the same way as in FEM and MPM. To calculate the support and
influence domains of a particle a weighting function is used. This is common to most meshfree methods.

A particular advantage of SPH is its ability to handle large deformations. This is due to the fact that parti-
cles aren’t restrained to a mesh. However it is not as straightforward to apply boundary conditions when
using SPH for solid mechanics. The need to search for a nearest neighbour to define nodal connectivity
can also make SPH more computationally expensive than the standard MPM.

6. Numerical example

Due to the similarities between the FEM and the MPM, a compact finite element code has been used as
the basis for a MPM code [7]. Material points, which originally were located at Gauss points are freed
to move after each load step and then the mesh is reset to its original configuration. Because of these
similarities between methods, the constitutive model used in the FEM can also be used in the MPM.
A Total Lagrangian FEM code has been modified to facilitate movement of material points, however
problems have been noted when material points cross grid element boundaries. As mentioned above, this
is a common issue highlighted in the literature.

The code was used for the simple problem of one-dimensional compression of a 1 X 1Xx 1m cube, as shown
in Figure 2(i). A Young’s modulus E = 1x10° Pa and Poissons ratio of v = 0.2 were used with downward
forces totalling 5x 10° N applied to the four uppermost particles over 10 loadsteps. The particle positions
within two elements in the Z direction throughout the simulation are shown in Figure 2(ii). It can be seen
that a problem arises when the uppermost particles displace into the lower element. When this happens
the internal force calculations result in a displacement back into the previous element for some of the
particles. This is repeated over the following loadsteps resulting in a oscillation of particles between two
elements.
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Figure 2: One dimensional compression of a unit cube: (i) Original and deformed mesh. (ii) Position of
particles within 2 elements over the period of 10 loadsteps.

One method that addresses the problem that occurs when particles cross element boundaries is the GIMP
method where characteristic functions are assigned to particles which give particles a support area so that
a particle can affect nodes in cells other than the one where the particle is located. The computational
expense of GIMP is larger than that of standard MPM however it provides improved accuracy stability
and robustness to simulations [8]. This is the next step in this work.

7. Conclusions and future work

From the work undertaken so far, the MPM appears to a promising technique for dealing with large
deformations, that can be simply achieved by altering an existing FE code. A MPM code is being devel-
oped using an Updated Lagrangian approach so that calculations are not affected by a stiffness that was
calculated when material points were in different positions. It is hoped that in the future a GIMP type
method can be implemented to address the boundary crossing problem encountered, and to then use the
MPM code for more complex problems involving large deformations.
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ABSTRACT

This paper presents a three-dimensional evolutionary structural optimisation approach based on the
boundary element and level set methods. The level set method (LSM) is used to provide an implicit
description of the structural geometry. The boundary movements in 3D LSM allow automatic hole nu-
cleation by the intersection of two surfaces moving towards each other. This eliminates the need of an
additional hole nucleation mechanism as required by the 2D LSM based optimisation methods. A com-
plete algorithm is proposed and tested for boundary element method (BEM) and LSM based structural
optimisation in three-dimensions. Optimal geometries obtained compare well against those in the litera-
ture for a range of benchmark examples.

Key Words: level set method; boundary element method; structural optimisation

1. Introduction

Structural optimisation is considered one of the most important and challenging fields in engineering
optimisation. Structural optimisation arranges the assembly of structural elements for sustaining the ap-
plied load in the most efficient manner. Numerous methods have been developed over the last decades
describing various numerical techniques to generate structures that are optimal in terms of quantities
such as weight, cost and stiffness. The LSM is an efficient numerical technique developed by Osher and
Sethian [1] for the tracking of propagating interfaces. The LSM uses the Eulerian approach to represent
an evolving geometry implicitly. In the implicit representation, the connectivity of the discretisation does
not need to be determined explicitly. This is one of the most interesting features of the implicit geometric
representation, in that merging and breaking of curves in 2D and surfaces in 3D can be handled automat-
ically. Sethian and Wiegmann [2] first presented an LSM based structural optimisation method for the
solution of two-dimensional problems. Since this first paper, numerous LSM based topology optimisation
techniques have been proposed for different engineering applications.

This paper presents a three-dimensional structural optimisation method based on the boundary element
and level set methods. The proposed method uses the 3D version of the BEM analysis software (3D
concept analyst [3]) developed at Durham University. In Section 2 of this paper we present the details of
the optimisation algorithm and its implementation. The results obtained from the proposed algorithm are
presented and discussed in Section 3, and the paper closes with some concluding remarks in Section 4.

2. Optimisation algorithm

The 3D optimisation algorithm proposed in this study is an extension of the 2D approach presented in
[4]. During the optimisation process, the structural geometry evolves into an optimal topology through
the progressive removal of inefficient material from the low stressed regions and addition to the high
stressed regions. The performance of the optimisation process is monitored through the specific strain
energy fy and the target volume fraction is used as a stopping criterion.

Ju=UV (1)
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The expression used for the strain energy calculation is,

1
U=f—t,~u,~dl" )
r2

where ¢ and u represent traction and displacement, respectively. In practice, since the product #;u; is non-
zero only over elements on which a non zero traction boundary condition has been prescribed (assuming
there are no non-zero displacement constraints applied) the integral involved in Equation (2) conve-
niently reduces to the integral taken only over these elements. The proposed optimisation algorithm is
summarised as follows:

[a—

Define structural geometry with applied loads and constraints.
Initialize level set grid with signed distance function to represent structural geometry implicitly.
Trace the zero level set contours.
Perform mesh postprocessing and improvement.
Carry out boundary element analysis.
Calculate the von Mises stress oy at each node point of the boundary.
Convert oy into velocity using the relationship developed in [4].
Extend boundary velocities to level set grid points in the narrow band.
Solve Equation (3) to update the level set function
9
5 T FIvel =0 3)
10. Repeat the above procedure from step 3 to 9, until the stopping criterion is satisfied.

e AR i

Most of the above steps are based on the simple extension of the steps followed in the 2D approach which
is discussed in detail in [4]. However, the extraction of the zero level set contours is different than that
used in the 2D approach. In 3D LSM , the zero level set contours can be extracted from the cubic cell
based level set grid with the marching cubes (MC) algorithm. The MC is a popular algorithm for extract-
ing iso-surface from implicit functions in the form of triangular mesh. A 3D structure can be analysed
with the BEM by first discretising its boundary into either triangular or quadrilateral elements. This is
then followed by the solution of the equilibrium equations and the calculation of the required properties
at the nodal points. In the proposed 3D optimisation method, at each iteration the modified structural
geometry is extracted in the form of a triangular mesh and this can be directly used for the BE analysis.
However, mesh postprocessing may be required to make it consistent with the BE analysis requirements.
Moreover, during the optimisation process, the structural geometry is continuously modified and this
may result into some low quality triangular elements which can affect the accuracy of the BE solution.
Therefore, in the current implementation, a mesh improvement step is used to improve the quality of
elements.

3. Numerical Example

In order to validate the proposed optimisation method, a short cantilever beam has been considered with
dimensions, L = 24, W = 8 and H = 48. The geometry of the structure shown in Figure 1 is constrained
at the top and bottom portions of the left face, and a load P = 1.2KN is applied at the middle of the right
face. The level set design domain is discretised into 12 X 4 x 24 cubic cells with edge length d = 2. The
target volume fraction used in this example is 0.30Vj. The material properties used are: Poisson’s ratio
= 0.3, Young’s modulus = 210 GPa, Yield stress = 280 MPa.

In this example, the maximum von Mises stress in the initial design, i.e. Ty;uqx = 178 MPa, is used as
reference stress for the solution of the optimisation problem. The evolution of the structural geometry
during the optimisation process is depicted in Figure 2. It can be seen that during the initial iterations
the structural geometry evolves through boundary movements caused by the incremental removal of
inefficient material from the low stressed regions of the structure. The optimal design obtained closely
resembles that obtained in [5].

Figure 3 shows the von Mises stress distribution in the initial and optimal designs. There are 1724 six-
noded triangular elements in the initial and 1200 in the optimal design. Comparison of these plots shows
that the stress contours are more uniform in the optimal design than the initial design. This indicates
that the optimisation method efficiently redistributes material within the design domain and results in an
optimal which is approaching towards a fully stressed design. Figure 4 shows the evolution of fy; during
the optimisation process.
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Figure 3: von Mises stress contours of initial and final optimal geometry

23



0-05 T T T T T T

0.041 i
0.03F i
=)
S—
0.02F 7
a———
0.01f 7
0 I I I I I I
0 6 12 18 24 30 36 42

Number of iterations

Figure 4: Evolution of fy

4. Conclusions

A 3D LSM based structural optimisation method has been successfully implemented for this study. Dur-
ing the optimisation process, the structural geometry evolves into an optimal design through the pro-
gressive removal of inefficient material from the low stressed regions and addition to the high stressed
regions of the structure. This evolutionary approach is integrated with the boundary element and level
set methods. The BEM is used to analyze the modified structural geometry at each iteration. During the
optimisation iterations, the MC algorithm extracts the new zero level set contours in the form of a trian-
gular mesh. As the BEM is based on a boundary discretisation approach; the extracted geometry can be
directly used to analyse the modified geometry. In order to validate the proposed optimisation method,
different benchmark examples are considered in this study. Each example is solved with different stress
criteria, and similar optimal designs are obtained for each case. The optimal designs obtained for each
example closely resemble the optima published within the field of structural optimisation.
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ABSTRACT

Non-linear rod dynamics is of great interest in many areas of engineering. It is relevant in structural engi-
neering but also in the aerospace industry, flexible robot dynamics, impact modelling etc. In recent years
the focus of research was directed towards Timoshenko-type rod theories were shearing is of importance.
Rod degrees of freedom are then the displacement field as well as a rotational field which describes the
independent rotation of the cross section. However, the algorithmic and numerical treatment of rotations
is not a straightforward task. Specifically for a general model of mechanisms and spatial deformations
it is desirable to have a displacement-only formulation which brings us back to the classical Bernoulli
beam. While it is well established in linear analysis, the Bernoulli beam is not as common in geomet-
rically exact models of dynamics, especially when it comes to incorporate the rotational inertia into the
model. Also the development of stable energy-momentum integration schemes for the same has been
considered as rather difficult in comparison to a Timoshenko-type model. This paper is about the devel-
opment of an energy-momentum integration scheme for the geometrically exact Bernoulli method. We
will show that the task is achievable and device a general framework to do so. Further important feature
of the model is the full incorporation of the rotational inertia term. Different applications stretching from
applications in structural rod dynamics to flexible multibody dynamics and finally impact modelling, will
demonstrate the strength of the approach and the excellent performance of the new integration scheme.

Key Words: non-linear dynamics;, finite strain,; energy-momentum method; multi-body dynamics

1. Kinematics, dynamics equation and finite discretisation

Let 8 ¢ R?, with R denoting the real numbers, define a reference configuration of the body. Without loss
of generality we want to identify the reference configuration with the body itself. The actual configuration
is denoted by B, c R?. We assume that our body is thin in two dimensions such that it is rod-like with
a cross section A at the reference configuration. The material particles are identified by their position
vectors X € B, the corresponding placement at the actual configuration by x € 8B,. A deformation is a
map x = @(X), the gradient of which defines the deformation gradient F = dx/0X.We want to restrict
ourselves to plane deformations and assume that the deformation lies in the e; —e, plane. For any material
point in the cross section a suitable curvilinear coordinate system which we consider to be convected,
is then given by the triple s, z, x3. z is the coordinate in the direction of the normal vector in the cross
section. To derive the rod theory we adopt the Bernoulli hypothesis which assumes rigid cross sections
and that the deformation can be completely characterized by the assumption

x = X(s) — zN(s) + u(s) + zn(s) = Xo(s) + u(s) + zn(s), (D)

where Xo = Xo(s) + zN(s) is the the placement of the centre line at the reference configuration, N and
n are the normal vectors in the reference configuration and deformed configuration respectively, u(s) is
the displacement at the curvilinear coordinate s. In the context of a in-plane Bernouilli beam, the right
Cauchy deformation tensor has only one single non-trivial component which is Cj; which reads

Cn = (X,s - ZN,S +u;+ Zn,s) : (X,s - ZN,S +u;+ Zl’l’s), 2)
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where (-) denotes the scalar product of vectors, a comma denotes a derivative. The expression of n holds
X0‘5+u’5

|X0,x+u,x| ’
tensor, one is then left with one sigle non-trivial component E|; which is given by (the term in z> can be

neglected since our thickness of the beam is small compared to its length)

n=e;Xx where X denotes the cross product of vectors. With E = %(C — 1) as the Green strain

1
Eny=usXos+ sty +2(ns (Xo, +u) =Ny Xoy). 3)
By defining £1; as the axial strain, « as the change of curvature, their expressions reads

1
€11 =Uy- XO,s + Eu,s ‘U, (4)

k=ny (Xos+uys)— N Xog. 5)

Starting from Hamilton Principle for our conservative mechanical system, the dynamics equation for our
beam is written down as follows

prii-éudsdt—i— fpln'-énds+ f(EAsnés]] + Elkbk) ds
L L L
N M
- fq(s) -ou(s)yds— ). P;-oui = Msjs0; =0, (6)
L i=1 =1

where E is Young’s Modulus of the material, V is the volume of the system, ¢(s) is distributed external
force, P;,i = 1,N and u; are the concentrated force and the corresponding displacement respectively,
Ms;;, j = 1,M and 6; are concentrated external moments and the corresponding rotation angle respec-
tively, / is the moment of inertia of the section and L is the length of the beam, p is the material density.
In this present paper cubic Hermite polynomials are used as interpolation functions because it ensures
the continuity of the first derivative. A 2D beam element having two nodes is considered and each node
has four degrees of freedom which correspond to the displacements (#1,u>) and its derivatives (u/,u)) in
two directions e and e;.

2. Energy-momentum time integration scheme

After the spatial discretisation via the finite element method, the numerical approach is completed by
devising a step-by-step time integration scheme for the time dependent equations. Classical implicite
schemes like the Midpoint rule or Newmark method have been very popular in the structural dynamics
community. However while these are stable integration methods in the linear regime, they proved less so
in the highly non-linear one, especially in long-term dynamics. They suffer from numerical instabilities
like blow-ups as well documented in the literature [1, 2, 3, 5]. Energy-momentum methods proved to
provide here the necessary stability. In what follows we will develop such a method tailored to our rod
formulation. However, so far no such formulation was attempted for the Bernoulli beam because of the
complexities involved in the kinematic assumptions. In the following we want to develop for the first time
such an Energy-momentum method. In doing so, we resort to an idea developed in [2, 3]. The method
described there is attractive because it is independent of the involved non-linearity, the source of problem
in the presently considered beam. The starting point, however is the standard midpoint rule. From step n,
where all kinematical fields and velocities are known, we need to find these quantities at time step n + 1.
Consider € to be a scalar which defines any position within the time interval AT, with 0 < ¢ < 1. We
start with the following expressions:

Xnte = é‘:xn+1 +(1 - f)xns )
X — X

Xne = ;—T (8)
X -X

g = ©)

The first defines a convex set, the following two are true for some value of &. The midpoint rule cor-
responding to & = 0.5. The key step is to employ strain velocity fields to define the strain fields in
replacement of Eq.(4) and (5). Let us consider the following velocity fields:
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First from (4), we also have:

E=uy-Xos+tug-uyand

(10)
= (2 X g
ouy T Gy )

11
.8 u g
Using (10) and (11), given the strain field defined at time 7, the strain field at step n + 1 then defined as
following:

Ente = Ep + é:ATérH%’

(12)
Knté = Kp + §ATkn+%. (13)
Specifically for & = 1, the relations hold
Envl = 80+ ATE, 1 = 0+ AT (it - KXoy +u-iby), (14)

. oKk | ok
Kn+1 = Kn + ATK,H_% =k, + AT (%.u,s + au—’ss.u’ss) (15)
The midpoint rule together with the strain fields defined in (14) and (15) is proved formally and numeri-
cally to conserve the linear momentum, angular momentum and the total energy.

3. Numerical example

To investigate conservation of momentum, angular momentum and energy, we consider a beam without
support. The beam is given in Fig. 1, the loading increases linearly to a peak and decreases with the same
velocity to zero, Fig. 2. We will run the calculation for one million time steps with AT = le — 3s.

The Energy history is depicted in Fig. 3, Fig. 4 and Fig. 5 reflect the linear momentum and angular

momentum respectively. In both figures not only the absolute value but also the components of the

mentioned quantities go without saying that conservation is valid for momentum and angular momentum
vector.

P(N)*
4p 2P
SES|
// \\\
// \
// \\\
- /"‘/ \\\ t(i)
04s
Figure 1: Beam figure Figure 2: Loading History
Parameters

Beam length L = 3m
Cross section area A = 0.12m?
Cross section inertia I = 1.44E — 4m*

Young’s Modulus E = 200000M pa
Density p = 48831kg/m>

Number of element = 4
Time increment AT = le — 3s
Number of steps = 1.000.000
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ABSTRACT

In this work we present a novel local patch projection technique for alleviating volumetric locking that
extends to general order and types of meshfree basis functions. We begin with the classical u-p mixed
formulation of incompressible elasticity before eliminating the pressure using a volume-averaged nodal
projection technique. This results in a family of projection methods of the type Q,/Q,-1 where Q,, is an
approximation space of polynomial order p. These methods are particularly robust on low-quality tetra-
hedral meshes. Our framework is generic with respects to the type of meshfree basis function used and
includes various types of existing finite element methods such as B-bar and nodal-pressure techniques.

As a particular example, we use maximum-entropy basis functions to build a scheme Q;./Q; with the
displacement field being enriched with bubble-like functions for stability. The flexibility of the nodal
placement in meshfree methods allows us to demonstrate the importance of this bubble-like enrichment
for stability; with no bubbles the pressure field is liable to oscillations, whilst with bubbles the oscillation
is eliminated. Interestingly however with half the bubbles removed, a scheme we call Q1./Q;, certain
undesirable tendencies of the full bubble scheme are also eliminated. This has important applications
in non-linear hyperelasticity. We also discuss some difficulties associated with moving to second-order
maximum entropy shape functions associated with numerical integration errors.

Key Words: meshless, incompressible, volume-averaged, maximum-entropy.

1. Mathematical development

By standard arguments it is well known that the problem of linear elasticity can be expressed as the
following weak form:

Problem 1. Find the displacement uw € U such that u|r, = ug and:
fa(e(u)) 1 0u€(u) dQ = f Oull - f dQ + f ouu-tdlr Yo ueU (D)
Q Q I;

where o is the Cauchy stress, € is the usual small-strain operator, u is the displacement of the solid, Q2 is
the domain occupied by the solid body with boundary I', ¢ are the external tractions applied on I, f are
body forces acting in the domain, and ¢, is the variation with respect to the variable u.

Standard numerical formulations of the displacement formulation of the elasticity problem above lead to
the problem of volumetric locking as v — 1/2. This results in the following constraint on the hydrostatic
pressure p : Q — L*(Q)/R being enforced exactly:

p=-Adivu = -Atre = —Aey, =0 )

The canonical method for alleviating the problem of volumetric locking in numerical formulations of
the nearly-incompressible elasticity problem is to treat the pressure as independent variational or weak
quantity, resulting in the following variational problem:
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Figure 1: Subset of cells attached to vertex a associated with pressure degree of freedom p, forming integration
domain ©Q, shown by the shaded region.

Problem 2. Find (u, p) € U X P such that u = uy and:

f2,ue(u) 1 0u€(m) dQ2 - fpl 1 0u€(u) dQ2

Q Q

(3a)

=f(5uu-fd!2+f oyu-tdlr YoueU
Q Iy

1
fdivu 6ppd9+fzp6ppd!2=0 Vo,peP (3b)
Q Q

In a general sense, by re-arranging the discrete equivalent of eq. (3b) we can express the pressure variable
pr in terms of the displacements uy, by the relation:

pr = —AlI(divuy) “4)

where the projection operator 11, : U, — P is a projection from the displacement space U, to the
pressure space #j,. This projection operator approach derived from the u-p mixed formulation constitutes
a discrete modification of the energy bilinear form associated with the volumetric or dilational energy of
the elastic body which results in the suppression of volumetric locking [1].

We now derive a specific form of /7, which we refer to as the volume-averaged nodal pressure operator.
This operator was introduced originally in the paper of Ortiz et al. [2] and in this work we extend its
application to meshfree basis functions of arbitary type and order. We denote N; as the linear finite ele-
ment shape functions associated with degrees of freedom i located at the vertices “V of the triangulation
7 allowing us to write the discrete pressure variable p;, and associated variation 6, p as:

pr= ) Nix)p; (52)

Spp = D Ni(®) S,pi (5b)

We denote in a general sense the space Q,(N,p) as the span of a set of meshless basis functions ¢;
associated with degree of freedom i located at the nodes N with polynomial consistency of order p and
support sizes p. We can then write the discrete displacement variable u;, and associated variation ,u as:

wy = ) i (6a)

Sup = ) $i(x) Sutt (6b)

Then by substituting egs. (5) and (6) into eq. (3) yields for every degree of freedom c in the construction

of 6, p:
1
f N.Ope. [mT Z Byuy + Z Ny pp| a2 =0 (7)
Q b b
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Figure 2: Pressure field p of highly-constrained rigid punch problem. Left: RPIM Q,/0Q,, Middle: RPIM Q,../0Q,
Right: RPIM Q5. /Q;. The solution with no bubbles (left) fails the inf-sup condition, leading to a highly oscillatory
pressure field. The half-bubble formulation (middle) retains the stability properties of the full-bubble solution
(right).

where the vector m’ takes the trace (tr) of the strain field e:
m" ={1 1 0 (8)

On relying on the arbitrariness of nodal variations we arrive at the following equation:

Z {LNcmTBb d.Q} up + Z {% fQNCNb aQ pb} =0 9)
b b

The second term on the left hand-side of eq. (9) can be used to eliminate the pressure from the formula-
tion. An approximate way to acheive this is by lumping the mass-type matrix formed by the second term
on the left hand-side of eq. (9), ie. };, No.Njp = N. Solving for p. in eq. (10) gives:

f B, dQ
‘—AZ{IQ o }ub (10)

- Jo, Ne d@

where Q has been replaced by . to indicate that due to the mass-lumping procedure the volume for
integration is now formed by a subset of the cells K attached to the vertex associated with pressure
degree of freedom p,, see fig. 1.

Finally, based on eq. (10) we can define the volume-averaged nodal projection operator 67 as:

N.[] dQ
0[] = —fg“ a (11a)
Jo, Ne d@
and the volume-averaged projection approximation operator GZ as:
1, = 6 [- Z No(x)02[] (11b)

These two expressions are used to eliminate the pressure from eq. (3), and result in a locking-free for-
mulation for incompressible elasticity.

2. Results

In this section we particularly want to show the effect of the quantity of bubble degrees of freedom on the
quality of the pressure field solution and convergence. The ‘bubbles’ are the extra meshfree degrees of
freedom inserted at the barycenters of the triangulation in a similar manner to the MINI element which
are required for stability. We consider three function spaces for the displacement, the first with no bubbles
which we denote Q,,, the second with full-bubbles denoted @, and the third with half-bubbles Q,., ie.
50% of the bubbles removed from the full-bubble solution. This idea of using only half the number of
bubbles was introduced in the finite element context by Kim and Lee [3].

We show the pressure field for the highly constrained indented block problem in fig. 2. In this problem
a displacement is applied to one third of the top surface and all other surfaces are fully constrained. We
use Radial Point Interpolation Method (RPIM) basis functions in this example. The solution with no
bubbles fails the inf-sup condition (left), leading to a highly oscillatory pressure field. The half-bubble
formulation (middle) retains the stability properties of the full-bubble solution (right).
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Figure 3: Convergence of Timoshenko beam problem. Top left: MaxEnt Q,/Q,, Top right: MaxEnt Q,../Q;, Bot-
tom: MaxEnt Q,,/Q;. With half-bubbles we still acheive the optimal convergence rate in both the H I and L2
norm.

We now consider the classic Timoshenko beam problem, where a parabolic traction is applied on one
end and the opposing end is fixed. In this example we use MaxEnt basis functions to demonstate the gen-
erality of our approach between different meshless basis functions. In fig. 3 we show the convergence for
the displacement variable in the usual displacement norm L? and energy-equivalent norm H'. Even with
the half-bubble formulation we obtain optimal-order convergence in both norms and significantly better
performance than the classical MINI element of Arnold et al. [4] owing to the superior approximation
properties of meshless basis functions. Additionally, upon moving to second-order RPIM functions (re-
sults not shown) we find that accurate integration of the weak form is critical to acheive full convergence.
We use the modified integration rule of Duan et al. [5] in all of the results shown in this paper.
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ABSTRACT

This paper presents the results of detailed numerical analyses simulating the response of masonry
arches and bridges up to collapse. Past research has shown that detailed numerical descriptions, where
bricks and brick-mortar joints are modelled separately can offer a sound representation of the
behaviour of masonry components up to collapse. However, because of the significant computational
effort, to date the use of this approach has been mainly restricted to 2D analysis. This does not allow
the investigation of the inherent 3D response especially in the case of arches with complex geometry
and masonry bridges. The modelling approach used in this work benefits from pioneering work
undertaken previously at Imperial College, where an accurate 3D mesoscale model for masonry and a
partitioning approach for parallel processing have been developed and used for detailed nonlinear
analysis of masonry components. The results of numerical studies, which also include comparisons
against experimental results, are presented to show the potential and the accuracy of the proposed
method for masonry arches and bridges.

Keywords: nonlinear analysis; masonry arches; masonry bridges; 3D mesoscale description; domain
partitioning approach.

1. Introduction

Masonry arches are critical components of masonry bridges which represent a significant portion of
existing bridges in the UK and Europe. Most of these old structures, which were built following rules
of thumb or using simple design approaches, need to be assessed considering current safety
requirements. In this respect, detailed numerical modelling represents an important vehicle for safety
and residual life assessment. Thus in recent years, different numerical strategies for analysing
masonry arches and bridges have been developed. These are mainly based upon the use of limit
analysis concepts [1], the finite element method (FEM) or discontinuous modelling techniques [2].
When utilising rigid plastic approaches, only the arch ultimate capacity can be evaluated. On the other
hand, FEM enables an accurate response prediction at different loading levels up to collapse only
when an accurate material description is used for masonry. This is a heterogeneous and strongly
nonlinear material whose behaviour is determined not only by the mechanical characteristics of units
and mortar joints but also by the specific unit-mortar arrangement considered to build the arch (e.g.
multi-ring arches, skew arches etc.). Moreover, the use of detailed FE modelling for masonry arch
bridges, which are relatively large structures, is computationally demanding, thus so far it has been
mainly employed in 2D plane stain analysis. In many cases, this is a too crude kinematic assumption,
as the response of masonry arch bridges is intrinsically three-dimensional also under simple loading
conditions. Recently, a few modelling approaches have been proposed for 3D nonlinear analysis of
masonry arch bridges using either the continuous approach with a simple nonlinear description for
masonry assumed as a uniform and isotropic material [3] or a more advanced nonlinear macro scale
homogenised model [4]. In this work, an alternative modelling strategy is presented and used for the
analysis of a masonry arch with complex geometry and a masonry arch interacting with backfill
material.
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2. Mesoscale Partitioned Modelling Approach

A partitioned mesoscale approach is adopted to analyse masonry arches and bridges. This enables the
use of a detailed model for describing material nonlinearity [5] in masonry at structural scales, as it is
combined with a partitioned approach allowing for parallel computation [6] which guarantees
computational efficiency. In the 3D mesoscale description [5], 3D elastic continuum solid elements
are used to model masonry blocks, while mortar and brick-mortar interfaces are modelled by means of
2D nonlinear interface elements (Fig. 1a) . Furthermore, zero-thickness interface elements are also
arranged in the vertical mid-plane of all blocks so as to account for possible unit failure in tension and
shear. This mesoscale approach enables the representation of any 3D arrangement for masonry
including the complex arrangement used in multi-ring and skew arches. Concerning the constitutive
model for the interface element, it accounts for the actual elastic deformations of mortar and brick-
mortar interfaces using specific elastic stiffness values [5], which are functions of the component
elastic properties and the joints dimensions. The inelastic response at the interfaces is simulated by
means of a cohesive fracture model based on a multi-surface plasticity criterion. The response in
tension and shear is described by an elasto-plastic contact law which follows a Coulomb slip criterion.
On the other hand, a formulation that considers energy dissipation, de-cohesion and residual frictional
behaviour is employed to describe cracks formation and propagation, where plastic work is used to
determine the evolution of material parameters.

Mid-plane for 2D interface element for
mortar joints

Partition for
Backfill material

|| lcommunication
| | partition-parent
structure

Partitioned
boundary

Partition for

20-noded solid
masonry arch

element for brick
units

(@) (b)

Figure 1 (a) 3D masonry mesoscale modelling for brick-masonry, (b) partitioned approach for modelling
masonry arch bridges

To achieve computational efficiency, the analysed structure with masonry is described by a parent
structure which consists of super-elements representing the partitioned subdomains. Dual super-
elements are used for modelling the partitions as separate processes, where two-way communication
between each pair of dual parent/child super-elements allows effective parallelisation of the nonlinear
structural analysis simulation [6]. The proposed partitioned approach applied to a simple masonry
bridge is illustrated in Figure 1b, where two partitions are used to model the backfill and masonry
arch. The two partitions communicate through the parent structure which corresponds to the nodes at
the partition boundary between the two subdomains. Evidently, in the case of large structures and to
achieve significant speed-up in the numerical simulation, a larger number of partitions can be used for
modelling the two subdomains. In the case of masonry bridges, which are heterogeneous systems, the
backfill material is modelled through a continuous plastic approach, while the physical interface
between the continuous and the discrete mesoscale domain for masonry is represented by nonlinear
zero-thickness interface elements allowing separation and plastic sliding.

3. Numerical Examples

The mescale partitioned model was implemented into ADAPTIC [7], a general finite element code for
nonlinear analysis of structures, which is used here to analyse masonry arches and bridges. Two
numerical examples are presented considering the analysis of a skew masonry arch and the interaction
between a masonry arch and backfill.
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The analysed skew arch is a two-ring arch with a 45° skew angle. The structure has 3 m direct span,
670 mm width and 215 mm thickness, and was previously tested by applying a concentrated force P at
3/4 span up to failure [8]. In the proposed FE modelling, the arch is modelled with four partitions. To
represent the complex 3D geometry typical of skew brick-masonry arches, each half brick is
represented by a 20-noded solid element. Nodal coordinates for each element are obtained following
the rules of descriptive geometry as suggested in [9], which were adopted to define skew arch
geometry in real old masonry bridges. The FE mesh of the arch is displayed in Figure 2a. A tensile
strength oy = 0.07 N/mm? is considered for mortar joints, while an elastic modulus E = 4000 N/mm?
and Poisson’s ratio v =0.15 are assumed for the brick units.
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Figure 3 Skew arch: (a) undeformed FE mesh, (b) deformed shape showing failure mechanism, (c) and (d) load-
displacement curves for vertical displacement at points T3 and TO.
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Figure 3 Arch-backfill: (a) Undeformed FE mesh, (b) load-displacement response, (c) deformed shape and
plastic deformation contour of backfill partition, (d) deformed shape and plastic work contour (Nmm) at
interface elements for masonry arch partition.
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Figure 2b shows the deformed shape of the skewed arch barrel at failure, where four large cracks are
noted. This is the typical 3D failure mode of masonry skew arches as observed in experimental tests
[8] which cannot be represented using simplified 2D models. Figures 2c,d shows numerical-
experimental comparisons in term of vertical displacements at 1/4 and 3/4 span. The numerical
predictions are very close to the experimental results at different loading levels confirming the
accuracy provided by the proposed modelling approach.

The second numerical example investigates the response of an arch strip interacting with backfill
material. This is a typical interaction mode in old masonry bridges where loads are transferred
through the backfill to the arch, and the backfill offers partial restraint to the arch deformations. Two
partitions are used for the arch and the backfill material, where the physical interface between the two
domains is modelled with nonlinear frictional interface elements. On the other hand, a continuous
plastic model utilising a smooth Mohr-Coulomb yield function is used for modelling the fill material.
The elastic modulus, frictional angle, cohesion and Poisson’s ratio of the backfill are taken as
1000 N/mm?, 46.4°, 0.0224 N/mm? and 0.2, respectively. Mortar cohesion and tensile strength for
mortar joints are taken as 0.35 N/mm? and 0.15 N/mm?, respectively. Figures 3a,b show the FE mesh
and the load-displacement response. The displacement are obtained at 1/4 span where the load is
applied at the top of the backfill. Figures 3c,d display the deformed shape and plastic deformation
contours for fill material and plastic work contour at nonlinear interfaces. The latter shows the
development of damage in the arch at maximum load, where it can be seen that large cracks
developed in four regions of the arch forming a collapse mechanism.

4. Conclusions

This paper presents an advanced numerical modelling strategy for nonlinear analysis of brick-
masonry arch bridges, which combines a mesoscale model for masonry and a partitioning approach
allowing parallel computation. Two numerical examples are presented which include comparisons
against experimental results. These show the accuracy of the proposed numerical approach in
describing the initial stiffness, maximum capacity and failure mechanisms of 3D multi-ring skew
arches under static loading as well as the interaction between masonry arches and backfill material.
This confirms the significant potential of the proposed modelling approach in the analysis of large
heterogeneous systems with masonry components, where the response is determined by the
interaction among different structural and non-structural components which can be modelled using
continuous or discrete nonlinear models.

References

[1] M. Gilbert, Limit analysis applied to masonry arch bridges: state-of-the-art and recent developments,
ARCH’07-5th International Conference on Arch Bridges, pp.13-28, 2007.

[2] A. Thavalingam, N. Bicanic, J.I. Robinson, D. A. Ponniah, Computational framework for discontinuous
modelling of masonry arch bridges, Computers and Structures, 79, 1821-1830, 2001.

[3] P.J. Fanning and T. E. Boothby, Three-dimensional modelling and full scale testing of stone arch bridges,
Computer and Structures, 79, 2645-2662, 2001.

[4] G. Milani, P.B. Lourenco, 3D nonlinear behaviour of masonry arch bridges, Computer and Structures,
110-111, 133-150, 2012.

[5] L. Macorini and B.A. Izzuddin, A non-linear interface element for 3D mesoscale analysis of brick-
masonry structures, Int. J. Numer. Meth. Engng., 85, 1584-1608, 2011.

[6] G.A. Jokhio and B.A. Izzuddin, Parallelisation of nonlinear structural analysis using dual partition super-
elements, Advances in Engineering Software, 60-61, 81-88, 2013.

[7] B.A. Izzuddin, Nonlinear dynamic analysis of framed structures, PhD Thesis, Imperial College, University
of London, 1991.

[8] J. Wang, The three dimensional behaviour of masonry arches, PhD Thesis, University of Salford, 2004.
[9] G.W. Buck, A practical and theoretical essay on oblique bridges, ICE Publishing, London, 1895.

36



Proceedings of the 22" UK Conference of the
Association for Computational Mechanics in Engineering
2-4 April 2014, University of Exeter, Exeter

Numerical Methods For Subsurface Reservoir Simulation: Boundary
Aligned Grid Generation and Flux Approximation Schemes

*Shahid Manzoor Toor', Michael G. Edwards', Ali H. Dogru? and Tareq M Al-Shaalan’

!College of Engineering, Swansea University, Singleton park, Swansea, SA2 8PP
2 EXPEC Advanced Research Center, Saudi Aramco, Saudi Arabia

*642969 @swansea.ac.uk

ABSTRACT

Reservoir simulation involves computation of subsurface flow fields, reservoirs often comprised of complex ge-
ometric objects, which requires feature based and boundary aligned grids. These constraints are satisfied by em-
ploying unstructured grid generation methods. Control-volume distributed multi-point flux approximation schemes
are used for solving the Darcy pressure equation, both cell centred and cell vertex approximations are used and
compared. A technique involving advancing front point placement is devised to generate boundary aligned meshes.
A concise description of boundary aligned mesh generation together with applications are presented.

Key Words: Reservoir simulation; Boundary aligned grid generation; Flux approximation; Unstructured meshing

1. Introduction

Petroleum reservoir simulation involves computation of subsurface flow fields and fluid flow processes,
in order to optimize the recovery of hydrocarbons. Subsurface reservoirs are often comprised of complex
geometric and geologic objects and features. In addition to robust numerical methods for solving the
flow equations, methods of grid generation are required which can handle geometric complexity. Grid
generation for large scale porous media such as oil and gas reservoirs has been a challenging problem
for decades. This is due to involvement of complex geometries and random distribution of spatial
heterogeneities in the domain[1].

Conventionally, reservoir simulators are based on simple grid blocks i.e. squares and cubes (structured
grids). Another class of grid generation methods which generally employs triangles and tetrahedrons
as grid elements, often termed unstructured grids[1, 2]. Compared with structured grids, unstructured
grids are more flexible and can adapt grid cells to various flow and geometric constraints such as faults,
fractures and wells and perform local refinement with smooth transition[2, 3]. However, unstructured
grids require special data treatment, so computationally are more involved. The use of unstructured grids
in reservoir simulation dated back to the early nineties. Despite unstructured grid generation methods
having been successfully employed in modelling complex giant reservoirs, in field applications there
is still increased inclination toward the use of structured grids. Fung et al. [2] have reported that this
might be the result of novelty of these methods in the field compared with structured grids for which
well established simulation tools exist. They are of opinion that more research work is required to carry
out simulation on unstructured grids.

2. Methods for Geological Feature Based Grids:

The subsurface flow of hydrocarbons is a very complex phenomenon and is direction dependent, where
permeability across the layers can jump by several orders of magnitude. In order to minimize the
effect of grid orientation and discretization errors, unstructured grids should conform as closely as
possible to geological features such as faults, fractures, pinchouts and wells , e.g. Merland et al.[3]. The
unstructured grids used in reservoir modelling, commonly employ Delaunay-Voronoi grids for spatial
discretization of domain. Voronoi grids can be made to conform to geologies by special treatment such
that their cells become aligned to geological features. Some of the techniques used to construct feature
based grids are outlined in [3].

In general feature based grids generated are a result of constrained Delaunay triangulation. However
in this work feature based grids are generated with unconstrained Delaunay triangulation. Advancing
Front Local Reconnection(AFLR) method is selected, detail and development of which can be found
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elsewhere[4, 5], here only a concise description is presented. A method which exploits the concept of
advancing front technique in conjunction with Delaunay triangulation is presented in [6]. AFLR is a
quite general triangulation method in that, it can be devised to use advancing front point placement
in combination with any local connection optimization criterion. However, in this text to construct
Delaunay triangulation it is designed to work with Delaunay as a quality criterion.

AFLR starts with valid initial triangulation of boundary points as background mesh. AFLR works in an
iterative fashion, wherein during every level it involves three major steps: for every active element define
candidate points; filter candidate points thereby rejecting those points which could deteriorate mesh
quality; finally the insertion phase, where the set of filtered points are triangulated. Grid generation
process is completely controlled by point distribution function(PDF), which in its simplest form can
be thought of representative of boundary point spacing. Figure 1 highlights different steps involved in
carrying out Delaunay triangulation by employing AFLR.
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Figure 1: : Pictorial representation of AFLR meshing technique; highlighting different stages involve in triangulating a domain

3. Boundary Aligned Grid(BAG) Generation

In general reservoir geometries are comprised of features such as faults/fractures, complex spatial
distribution of the wells and a wide range of variations in porosity and permeability across different
layers[1]. In order to minimize discretization error, it iS common practice to generate meshes which
are aligned with these features, thereby leading to feature based triangulations, usually termed as
boundary aligned grids(BAGs).The grids generated have to provide control-volume boundary alignment
consistent with spatial discritization required in flux approximation schemes. These schemes demand
control volume aligned grids and can be designed to work either with primal (cell centred schemes)
or dual cells (cell-vertex schemes) as their control volumes. Primal cell control volumes are the grid
elements in terms of which reservoir domain is directly subdivided, it consists of triangles and/or
quadrilaterals. Dual cells are obtained by connecting circumcentres surrounding a primal cell vertex.

Primal Cell BAG: AFLR method can be used to obtain meshes where primal cells are aligned with
faults and/or fractures. The key idea in this regard is to embed a discretized curve characterising some
geological feature, and then as the front initiates a layer of cells is placed on either side of it thereby
providing with permanent protection around it. This method is fully generalizable, some examples of
primal cell BAGs generated in a manner similar to one described above are shown in figure 2.

Dual Cell BAG: AFLR method when employed to construct dual(voronoi) cell aligned grid involves
embedding a discretized channel(halo) with actual interior boundary as its median line. The channel
used is designed to comprise of quadrilateral elements, where each element is allowed to have only four
co-circular points. This is because later in construction of the dual, for channel elements it becomes
feasible to work with circumcenter, so as to obtain dual which still enjoys the property of being an
integral part of a perpendicular bisector(PEBI) grid. Some examples of dual cell boundary aligned grids
illustrating the strength of the method are depicted in figure 3.

4. Flux Approximation Schemes:

Flux approximation schemes in reservoir simulation are generally control volume distributed(CVD)[7].
A piecewise constant representation of flow properties is assigned to the control volumes, where field
variables are computed at their centres(control points). As described earlier in selecting a control
volume normally there are two choices i.e. primal or dual cells. The resulting scheme from each of these
two settings is called cell centred and vertex centred approximation respectively. With respect to type of
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Figure 3: : Examples illustrating usefulness of AFLR in generating dual cell BAGs

formulation flux approximation schemes are broadly subdivided into two classes namely: two point flux
approximation(TPFA) scheme; and control-volume distributed multipoint flux approximation(CVD-
MPFA) schemes. The detailed description, along with their formulation and numerical analysis can be
found in[7, 8, 9, 10]. Formulation of these schemes in cell centre and cell vertex modes is analogous
and involves switching control volume from primal to dual or vice versa.

Test Case: This problem is taken from[10], where flow field governed by pressure equation is simulated
in a unit square domain, with permeability tensor whose degree of anisotropy is controlled by parameter
0 < € < 1. Grid generated by employing AFLR technique along with contour plot of exact solution
are shown in figure 4. An anisotropic flow field with € = 0.1 is simulated and solution obtained with
TPFA, TPS and FPS formulations both in cell centre and cell vertex mode are shown in figure 5, where
L, norm indicates deviation from the exact solution.

Numerical studies carried out reveal that in case grid employed is PEBI, and permeability constitute
an isotropic field then grid is K-orthogonal by default, for which TPFA provides consistent solutions
both in cell centre and cell vertex settings. For an anisotropic field the L, error comparison between
cell centre and cell vertex results indicates that cell centre formulations capture the effect of anisotropy
better than cell vertex, however neither of the formulations yields consistent approximation[7]. The
main idea behind CVD-MPFA schemes is to develop a consistent formulation, satisfying local pres-

(a) Grid with primal cells as  (b) Cell center exact solu- (¢) Grid with dual cells as (d) Cell vertex exact solu-
control volumes(cell centre tion; contour plot of pressure control volumes(cell vertex tion; contour plot of pressure
formulation) field simulation) field

Figure 4: : Problem Definition: Grids generated to simulate pressure field and exact solution plot
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Figure 5: : Comparison of TPFA, TPS and FPS formulation both in cell centre and cell vertex settings

sure and flux continuity conditions. The continuity conditions leads to an increased pressure support
with wider stencil compared to the standard TPFA scheme, however the number of degrees of freedom
remains unchanged[10]. Two commonly employed schemes are triangular pressure support(TPS) and
full pressure support(FPS) schemes. FPS schemes involve additional auxiliary pressure support, thus
have a wider range of quadrature compared to TPS. While general M-matrix conditions must be sat-
isfied to prevent spurious oscillations, FPS has been shown to be far more robust than the earlier TPS
methods|[8, 9, 10].

5. Conclusions:

The AFLR is a quite general triangulation technique in that it can be devised to work with any connection
optimization criterion. The AFLR has been found to yield quality meshes. In order to generate meshes
aligned with geological features, AFLR requires initial embedded discretized curves defining these fea-
tures. As the front initiates from such a curve, it generates a halo(protection zone) around it, thereby
ensuring boundary integrity. The AFLR method has been successfully employed in generating boundary
aligned meshes both with respect to primal and dual cells. In flux approximation schemes two point flux
approximation yields consistent solutions if grids employed are K-Orthogonal. For non-isotropic per-
meability tensor, in general CVD-MPFA schemes are found to yield consistent results. The Cell vertex
formulation is computationally more efficient and robust compared to cell centred formulation, however
it demands dual cell aligned grids.
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ABSTRACT

This paper investigates two summation rules for the Quasi-Continuum (QC) method using higher order interpola-
tion. Summation rules are the discrete equivalent of numerical quadrature used for continuous media. Summation
plays a key role in the QC method by reducing the computational expense of assembling the discretised governing
equations. A comparison is made between a pre-existing rule and a new rule. Results are shown for a planar beam
lattice under uniaxial deformation.

Key Words: the quasi-continuum method, structural lattice models; summation rules

1. Introduction

Lattice models are frequently used to represent directly a material’s discrete meso-, micro- or nano-
structure. A broad range of materials has been modelled in this way, including textiles, paper, colla-
gen networks and concrete. A review of micromechanical applications for lattice models can be found
in [7]. Such models do not rely on phenomenologically derived continuum models to relate stresses to
strains, but instead, use the small-scale lattice interactions to assemble the discretised governing equa-
tions. Atoms, bonds or fibres represented by the lattice models exist on such a small scale that the mod-
elling of realistically sized domains is precluded. The Quasi-Continuum (QC) method was introduced
by Tadmor et. al. [8] to alleviate this problem for (conservative) atomistic lattices. The QC method has
been applied mainly to atomistic crystals, for example, investigating edge disolcations and fracture [8, 6].
However, Beex et. al. [4] have recently extended the QC method to apply to non-conservative structural
lattice models, and have studied electronic textiles, and also bond failure in paper and textiles [3].

2. Structural lattice models and the Quasi-Continuum method

2.1. Lattice models

In this paper a planar lattice is used consisting of Euler-Bernoulli beams, hence there are both displace-
ment and rotational degrees of freedom. For given boundary conditions, a solution for the lattice is found
by minimising the total potential energy of the system. For a lattice of n points or nodes, there are 6n
degrees of freedom, as the displacements and rotations can be three-dimensional. The assembly of the
governing equations involves contributions from all the beams of the lattice. This computational expense,
in addition to the large number of degrees of freedom, makes solving problems at an engineering scale
impractical. The QC method was introduced to relieve the computational burden associated with lattice
calculations.

2.2. The Quasi-Continuum method

The QC method retains the above lattice description for ‘fully resolved regions’ where the solution is
of particular interest, for instance, in the vicinity of a crack. However, an approximation to the above
description is introduced throughout the remainder of the domain. The approximation is built on two
concepts: interpolation, which aims to reduce the number of degrees of freedom; and summation, which
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aims to reduce the cost of assembling the governing equations. A subset of lattice points is chosen,
which forms the vertices of a triangulation. Interpolation functions from finite element methodology
are used to interpolate the displacements and rotations. Any lattice points inside triangles can then be
condensed out of the system, thus reducing the 6n degrees of freedom. In the full lattice model, each
beam contributes to the energy of the system and so must be visited in order to construct the governing
equations. The QC method reduces this computational cost by selecting a subset of the beams, referred
to as sampling beams, and assigning a weight to them so that they are able to represent other beams.
The locations and weights of the sampling beams are determined by a summation rule. See Figure 1 for
a typical QC triangulation. In the interpolated region of Figure 1, the beams from the underlying lattice
are now entirely represented by the sampling beams (+). A detailed description of application of the QC
method to structural lattices can be found in [1].

N NS + ¥ 3. Summation rules

The summation rule determines which beams are se-
lected in the approximation of the governing equa-
T + t + tions and how many beams each sampling beam rep-
+ o+ + d A resents in the construction of the governing equations.
A+ + In the literature most summation rules have been de-
+ + 3 signed for atomistic lattices where linear interpolation
is used. For structural lattices with linear interpolation,
Beex et. al. [2] were able to relate the potential en-
ergy of the lattice to the interpolation and were there-
+ + fore able to determine suitable locations for the sam-
+ + + + pling beams representing a structural lattice. However,
+ + + + Beex et. al. [1] observe that, for higher order interpola-
tion functions, it is not clear how the interpolation re-
lates to the potential energy of the interpolated lattice.
Figure 1: An example of a typical QC triangula-  [nspired by Gunzburger and Zhang [5] who used Gaus-
tion, with a fully resolved region (top left) where ¢ja5 quadrature for one-dimensional chains of atoms,
all the beams are use(,i’ and an interpolated region Beex et. al. [1] based their summation rule on Gaussian
where only the sampling beams (+) are used. . .
quadrature and we follow this approach here. Given the
cubic displacements and quadratic rotations of Bernoulli-Euler beams, four quadrature points should be
sufficient, however Beex et. al. [1] reported that six quadrature points per triangle gave better results than
four, so we use six points here.

3.1. Closest summation rule

First used in [1], the closest summation rule selects as a sampling beam, the beam that is closest to the
Gauss point in the either the x or the y direction, as illustrated in Figure 2(a). The weight depends on
the weight associated with the Gauss point and the number of beams that the sampling beams represent.
For each triangle, beams that are parallel to the x—axis and are entirely or partly inside the triangle are
located. Beams within a triangle interior are fully represented and contribute a weight of 1 and those
aligned with a triangle edge or that cross a triangle edge are given a weight of 0.5. The weights of the
beams in the x direction are then totalled and multiplied by the weight from Gaussian quadrature. The
same is done for the beams orientated in the y direction.

When modelling a problem with the QC method, the triangles surrounding the fully resolved region are
likely to be smaller than elsewhere in the interpolated region. This fact exposes two weaknesses of the
closest summation rule. First, as the triangle size approaches the lattice spacing, the closest beam to one
Gauss point may also be the closest beam to other Gauss points. In this case the stiffness matrix is not
accurately integrated and can become ill-conditioned. The second problem encountered as the triangle
size approaches the lattice spacing, is that sampling beams are more likely to straddle two triangles.
Consequently the energy in a triangle is dependent not only on the nodal values of that triangle, but
also on the nodal values of a neighbouring triangle, which could be described as a ‘non-local’ effect. To
attempt to tackle these issues we introduce the mid-beam summation rule.
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(a) The closest summation rule (b) The mid-beam summation rule

Figure 2: Shown here is part of the entire beam lattice and one element from the triangulation. Horizontal beams are
aligned with the x—axis and vertical beams are aligned with the y—axis. Gaussian quadrature points are indicated
by crosses, and those beams designated as sampling beams are indicated by thicker lines.

3.2. Mid-beam summation rule

This rule is also based on Gaussian quadrature. A horizontal and vertical beam are centred at each Gauss
point as shown in Figure 2(b). These beams do not necessarily coincide with beams of the underlying
lattice. This is more akin in philosophy to homogenisation techniques, where a unique microstructural
unit cell problem is associated with all the integration points of a macro-scale (discretised) problem. The
weight of each beam is calculated by multiplying the area of a triangle by the Gauss point weight. In fact,
this gives the same weight as for the closest rule, but is a more straightforward and efficient calculation
as we do not have to consider all the beams. Unlike for the closest rule, the mid-beam summation rule
will result in 12 unique sampling beams, so the ill-conditioning of the stiffness matrix will be avoided.
The onset of the non-local effect is also delayed by this summation rule.

In this paper we investigate the error introduced by the use of these two summation rules. In the fully
resolved region the lattice is modelled exactly by taking into account all the beams, so no summation
rule is required. To focus on the error introduced by summation, the example in this paper uses a domain
that has only an interpolated region and no fully resolved region.

4. Results

Results are presented for a beam lattice under uniaxial deformation. Vertical displacements are prevented
along the upper and lower boundaries, but are free on the left and right boundaries. Horizontal displace-
ments are zero and one on the left and right edges respectively, and are free along the upper and lower
surfaces. Rotations in the x-y plane are free apart from the left edge where they are zero. Other rotations
and displacements in the z direction are zero on the boundary. The domain size, given in millimetres, is
[0, 80] x [0,40]; the Young’s modulus is 1kPa; and Poisson’s ratio is 0.3. The beam spacing is 1 mm,
the beam height and width are 1 mm and 0.1 mm respectively. Seven triangulations were used with the
following numbers of triangles: 12, 36, 60, 132, 296, 398 and 470. Three simulations were run for each
mesh. The first simulation uses all the beams when constructing the governing equations so no approx-
imation is made in the summation. These results are used as a standard against which the other results
are compared. The second simulation uses the closest rule and the third simulation uses the mid-beam
summation rule. The energy stored in the beams is calculated for all three simulations; Ej;, Ecjpsess and
Eiq respectively. The following formula is used to evaluate the error introduced by the summation rules
in the integration of the governing equations:

error = M , (D

Ean

where E is the energy stored by the beams using either the closest or the mid-beam summation rule. In
Figure 3 the error given by equation (1) is plotted against the number of triangles for both sampling rules.
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For the finest mesh, the closest summation rule resulted in such a high condition number that no solution
was obtained. As the number of triangles increases the error also increases. This is due to sampling beams
straddling two triangles thereby introducing a non-local effect, and, for the closest rule, as the triangles
decrease in size relative to the lattice, the sampling beams may be non-unique and may also be further
away from the Gauss point. The results clearly show that the error for the mid-beam summation rule is
much less than that of the closest rule.

—B— closest summation rule —B— closest summation rule
—%— mid—-beam summation rule —¥— mid-beam summation rule
0.25 10°
0.2} 107}
w® 0.15 w® 107}
w w
I I
W 01 W 107
0.05} 107}
0 u/*/*—A 10° .
0 100 200 300 400 500 10t 10 10°
number of triangles number of triangles

Figure 3: Error in energy for the closest and the mid-beam summation rules in a uniaxial test for several triangula-
tions (with a log-log scale on the right).

5. Conclusions

A new summation rule for the QC method has been introduced. In a uniaxial deformation test, the new
mid-beam summation rule performs much better than the previously existing closest summation rule.
Future work will involve a more rigorous investigation of the new rule on problems with defects and
with more demanding loading conditions in order to assess whether its early promise is fulfilled.
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ABSTRACT

Despite many advantages, such as simplicity and low computational cost, the standard Yee algorithm [1] still
needs to be improved in order to model objects of complex geometrical shape. In this work, we adapt three
dimensional unstructured meshes to meet the necessary requirements and preserve second order accuracy, even
close to objects of arbitrary shape. We present the requirements needed for a high quality primal Delaunay and
dual Voronoi mesh. The performance of the leapfrog scheme, previously elaborated in [2], will be demonstrated
for modelling the scattering of electromagnetic waves by a 3D lossy dielectric object in free space. The results
of the simulation will be presented and compared with benchmark tests.

Keywords: Unstructured, FDTD, Dielectric, lossy media

1. Introduction

For industrial electromagnetic simulations, the standard Yee algorithm is often the favoured computational
solution technique because of its simplicity, its low operation count and its low storage requirements. The main
drawback of the classical Yee scheme is the loss of accuracy for objects of complex geometrical shape, due to
the orthogonal Cartesian grid that is usually employed. To circumvent this problem, an equivalent unstructured
mesh process is implemented on a primal Delaunay mesh and its orthogonal VVoronoi dual graph. The difficulty
with this method is the generation of meshes with the necessary quality conditions for both the Delaunay and the
Voronoi graphs. The second order accuracy of the leapfrog algorithm is only fulfilled if each VVoronoi face is a
perpendicular bisector of the corresponding Delaunay edge and if each Delaunay face is a perpendicular bisector
of the corresponding Voronoi edge. Furthermore, in the primal Delaunay graph, two or more adjacent
tetrahedral elements should not share the same circumsphere, otherwise this mesh will be degenerate and the
leapfrog algorithm will fail.

To guarantee a high quality mesh, an unstructured tetrahedral mesh is generated by using an iterative
constrained centroidal Voronoi tessellation (CVT) [3]. The CVT relocates the generated nodes to the mass
centroids of the corresponding Voronoi cells and a new Voronoi tessellation of the relocated nodes is produced.

2. Problem formulation
The formulation employs the integral form of Maxwell’s equations [2]. For a three dimensional lossy dielectric

medium, of permittivity &, permeability u, electric conductivity & and magnetic conductivity @,,. Ampére’s and
Faraday’s law in the scattered field formulation are expressed as:

d 1 Eppn— € O &,
EJ{ Esrctdﬂ = E }( f"il.grn:tl"{I - ELE DEJ{ Einrdﬂ - EE .chlfdﬂ EL Eiﬂrdﬂ (1)
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av

A

ar

and

Here, 84 denotes the closed curve bounding of a surface A, dA is an element of surface area directed normal to
the surface and dl is an element of curve length in the direction of the tangent to the curve. In addition,
Ei. Hy, and E..;:, H..o: represent the incident electric and magnetic fields and scattered electric and
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magnetic fields respectively. The total fields are the sum of the corresponding incident and scattered fields.
The material properties ..o are not constant and their values in free space differ from those in the
dielectric. To take the boundary conditions into account we have to average these quantities at the dielectric
interface leading to &, 44y, 0y G, - The incident field represents a monochromatic plane wave illumination
from the far field which has the form E;,. = E, cos(k -+ — wt), where E; is the electric field vector, k is the
wavevector, r the position vector , @ the angular frequency and t the time. From the known electric field the
magnetic field may be determined using Faraday’s law leading to the relation

Hipe =—k % E

n 3)

- [
where k is the unit wavevector and # = ﬂﬁ the impedance.

3. Discrete equations

The Yee algorithm is a low operation count solution method for Ampére’s and Faraday’s law that is
implemented on two mutually orthogonal meshes. A primal tetrahedral mesh is generated using a Delaunay
method [4]. The Voronoi diagram associated with this primal mesh is used to define a dual mesh. Each Voronoi
face is a perpendicular bisector of the corresponding Delaunay edge and each Delaunay face is a perpendicular
bisector of the corresponding Voronoi edge. N7 and N} edges form the primal Delaunay and the dual Voronoi
mesh respectively. For the scheme to be second order, the unknowns are located at the midpoints of these edges.
The unknown at the node on the ith Delauany edge corresponds to the projection, E;..:; , of the scattered
electric field onto the direction of the edge. The unknown at the node on the jth VVoronoi edge corresponds to the
projection, H..; ; , of the scattered magnetic field onto the direction of the edge. The discretization of Ampere’s
and Faraday’s law leads to the equations

on 2 — gl 24t n+05 gl , @
Lopqe i = (5"E+|:Fﬂt] srn:rl+ |:7E+EF.|':I.£'IAL) Z srat i T E“l i Eme— (8~ EDIALE Sinc,i 4)
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where At is the time step, the superscript n denotes an evaluation at time level nit, I¥ represents the length of
the ith Delaunay edge and A} corresponds to the Voronoi face spanned by the Voronoi edges surrounding
Delaunay edge i. Similarly, {J!-" represents the length of the jth Delaunay edge and AJ‘.'-*" corresponds to the
Delaunay face spanned by the Delaunay edges surrounding Voronoi edge j. The numbers j; ; .k = 1,..., M}’
refers to the M} edges of the VVoronoi face corresponding to the ith Delaunay edge, as illustrated in Figure 1.
Similarly, the numbers i;; .k =1, ...,m;.-ﬂ, refers to the the m:? edges of the Delaunay face corresponding to the
jth Voronoi edge, as illustrated in Figure 2.

Figure 1

The ith Delaunay Edge ,
connecting Delaunay
vertices g1 and gz, and the
corresponding Voronoi face,
formed by the VVoronoi edges

Jiar o dig

Figure 2

The jth Voronoi Edge , connecting
Voronoi vertices &4 and e, and
the corresponding Delaunay face, p,‘/"-'
formed by the Delaunay edges

i; 1, . ;3. The 3 Delauany edges
may represent on face of a

4. Unstructured mesh strategy

All VVoronoi and Delaunay edge lengths should be bounded from below, as the update equations are not valid if
some edges have length zero. Furthermore, the centre of the circumsphere should lie inside each Delaunay
tetrahedron. All Delaunay and Voronoi edges should be bounded from above by a value that is not significantly
greater than & (the length of cubes forming the Cartesian mesh). If possible, any deviation in the location of the
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midpoint of a Voronoi edge from the actual point of intersection with the corresponding Delaunay face should
be minimized. Finally, any deviation in the location of the circumcentre of a tetrahedron from its centroid should
be minimized. The first two criteria are the more important and the last often cannot be exactly satisfied.

Figure 3 The surface of an arbitrary object, in this
case a sphere is approximated by tetrahedral. (1)
tetrahedra inside sphere, (2) boundary of sphere

(3) tetrahedra outside sphere. After several layers of
tetrahedra one layer of pyramids (4) links the
tetrahedra to the hexahedra (5). This procedure
reduces the computational costs compared to a
purely tetrahedral mesh

Traditional automatic unstructured mesh generation methods, such as the advancing front technique [5] and the
Delaunay triangulation [4], or their combination [6], are not designed to guarantee the requirements set out
above. The corresponding Voronoi diagram is often highly irregular and can include some very short Voronoi
edges. This means that regularity of the edge lengths of the dual mesh and the absence of bad elements cannot
be guaranteed. Methods based on swapping, reconnection and smoothing [7] used for improving the mesh
quality cannot guarantee a suitable mesh [8]. To circumvent these problems, the approach adopted is to
construct the unstructured mesh around the object surface by employing a combination of a CVT (Central
Voronoi tessellation) [3] with information provided from the ideal mesh. A CVT is a Voronoi tessellation whose
generating points are the centroids (centres of mass) of the corresponding Voronoi regions. For the mesh
optimization, the requirement that a dual edge must be a bisector of the corresponding Delaunay edge is relaxed.
This allows the displacement of the corresponding dual mesh vertex to a point which still ensures orthogonality
between two grids and which lies inside the corresponding primal element.

4. Simulation Results

The algorithm is applied for the simulation of scattering of an incident plane wave by a dielectric sphere of
diameter 24 and characterised by material properties & = 2 and i, = 2 . The mesh is formed out of 478,772
cells in total, 249,968 tetrahedra, 5,804 pyramids and 223,000 hexahedra. The surface of the sphere is formed
by 6,674 triangles and the PML is made out of 10 layers of hexahedra. Steady state was reached after 30 cycles.
The total time for the calculations on a single core was 22 min. Figure 4 and Figure 5 show the
computed the electric and magnetic field distributions respectively.

. Figure 5
Figure 4 Scattering by a Dielectric Sphere of electric
Scattering by a Dielectric Sphere of electric length length 24 with an electric permittivity of 2, view
24 with an electric permittivity of 2, view of the E; of the H, component of the magnetic field
component of the electric field vector. vector.
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Figure 6. Scattering by a dielectric sphere of electric length 24: (a) RCS distribution in the plane & = 0 and (b) in the plane
¢ =m/2

5. Conclusion

A time domain solution procedure for electromagnetic scattering simulations has been developed in which a Yee
algorithm is used on appropriately generated unstructured tetrahedral meshes, within the scatterer and in a
region of free space immediately adjacent to the scatterer, and the free space is filled with hexahedral elements.
The example that has been solved indicates that the accurate simulation of electromagnetic scattering problems
may be achieved, with an appropriate mesh. The advantages of using this method are (a) the reduction in the
storage requirements over the conventional finite element approach; (b) the fast computation that results from
the use of the leap frog Yee scheme; (c) the fact that the method allows straightforward modelling of multi-
material and complex geometries. A full assessment of the accuracy of the approach, for more challenging
examples, is currently underway.
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ABSTRACT

An enriched finite element method is presented to solve wave scattering problems governed by the
Helmholtz equation. The basis functions are constructed by multiplying the polynomial interpolation
functions by either plane waves or radial waves. Alternatively, a combination of both plane and radial
waves is used. This approach is used to solve two practical problems including the diffraction of an inci-
dent plane wave by a circular cylinder or by a square obstacle. In the first case, the obtained results are
compared with the analytical solution whereas in the second case a classical finite element solution is
used for comparison. It is shown that both plane wave and radial wave enriched elements lead to good
quality solutions with significant reduction of the required number of degrees of freedom, in comparison
to polynomial based finite elements.

Key Words: Helmholtz equation; finite elements; plane waves; radial waves; diffraction problem

1. Introduction

This paper deals with efficient numerical modeling of 2D Helmholtz problems using the Partition of
Unity Finite Element Method (PUFEM). The feature of this idea is that analytical solutions to the
Helmholtz equation are used to enrich the solution space. These are usually in the form of plane waves.
This technique has been very successful in achieving good accuracy results and reducing the number of
degrees of freedom in comparison to the standard finite elements.

The partition of unity finite element method was first proposed by Melenk and Babuska [3] and used
to solve the Helmholtz equation in the case of a progressive plane wave. Later, the method has been
applied to a range of diffraction problems in two and three dimensions [6, 2]. It has also been extended
to elastic wave problems [1]. The use of radial waves as enriching functions was investigated in [5] and
were found to be more effective than plane waves in the far field. The use of radial waves in the form of
Bessel functions was also tried in the framework of the Ultra Weak Variational Formulation (UWVF)[4]
in which a singular Helmholtz problem was efficiently solved using combinations of plane waves and
Bessel functions.

This work aims at long term to effectively model wave scattering by corners. Such problems present
singularities and usually need fine mesh refinements to capture the solution. The use of radial wave
enrichment, rather plane waves, seem to be effective in modelling these singularities. However, element
assembling remains a burden because of the intensive numerical integration. In this paper, the use of
both plane wave and radial wave enrichments is used for modelling the diffracted potential by a smooth
circular scatterer. Then wave enriched finite elements are used to model the diffraction of a plane wave
by a rigid square. In the first case, the accuracy of the solution is assessed by computing the L,-norm
error via the use of the available analytical solution. For the second case, the solution is compared with
the standard FEM results on the boundary of the square.

2. Plane wave diffracted by circular cylinder

Figure 1 (left) shows an incident horizontal plane wave encounters a rigid object is modified and then
radiates away to infinity. The scattered wave potential ¢(x,y), which satisfies the two dimensional
Helmholtz equation

V2 + k¢ =0, (1)
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Figure 1: Schematic diagram of the problem (left). Behaviour of the L;-norm error for linear, quadratic and en-
riched finite elements (right).

is studied in the domain Q. Note that V? is the Laplacian operator, k = w/c is the wave number of the
considered problem and c is the wave speed. We assume also that the potential satisfies the following
Robin boundary condition

% ikp=g  on T )
on

where g is the boundary condition and n is the outward normal to the line boundary I'. This problem
has an analytical solution expressed as a series of Hankel functions and it is imposed on the boundary I"
through the Robin boundary condition given in expression (2). We use the weighted residual scheme by
multiplying equation (1) by the weighting function W(x, y) and integrate over the domain Q such that

f W(V2p + k2¢) dQ = 0. 3)
Q

Integrating by part the above equation and replacing the normal derivative of the function ¢ by its ex-
pression deduced from expression (2), the system of equations to solve is then

f (VW - V¢ — > W)dQ + ik f Wedl = f Wgdr. 4)
Q - r r

The domain Q is meshed into n-node finite elements. Within each element the potential is interpolated
using the usual Legendre polynomials and enriched by both plane waves and radial waves in the following
form

n np . my .
o=y Ni| Y Al di 4 N Blkne |, 5)
i=1 Jj=1 =1

where (r, 0) are the polar coordinates, d; is a given direction in the plane, N; is the Legendre polynomial
at node i and J;(kr) is the Bessel function of first kind and of order /. The unknowns of the problem are
no more the nodal potentials but the coefficients A{ and Bf of the enriching functions.

We solve the problem stated above by the standard polynomial based finite elements and wave enriched
finite elements. In the case of polynomial based finite elements, linear and quadratic elements are con-
sidered. To ensure accurate simulation each wavelength must be discretized into around 10 nodal points
(rule of thumb). In general, this approach leads to huge numbers of nodes for problems with increasing
wave number k and because of pollution error the mesh grid must be even finer. Various approaches have
been developed to get around the requirement cited above. One of them is to use higher order polynomial
basis functions for the solution space.

For this specific example, the wave number k = 2. Figure 1 (right) shows the L,-norm error for the cases
of linear and quadratic elements. It is clear that increasing the number of degrees of freedom, by refining
the mesh grid, leads to exponential decrease of the error. Moreover, for the same number of degrees of
freedom, using quadratic elements leads to better quality results in comparison to the results of the linear
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elements.

Using enriched elements, with only plane waves (m, # 0 and m, = 0), leads to even better quality
results. In this case, the mesh grid remains very coarse while the number of enriching plane waves is
increased. A very sharp decrease of the error is noticed, in comparison to the polynomial finite elements,
up to a certain level and then the error stagnates. This was shown in past work [1] to be caused by the ill
conditioning of the plane wave enrichment approach.

In the next series of numerical results the considered computational domain Q is placed in three differ-

Table 1: L-norm errors for different combinations of plane waves and radial waves

m, m,|1<xy<5 | 6<xy<10]|11<xy<I15

16 O 0.00733 0.00672 0.00460
14 2 0.01566 0.00132 0.06246
12 4 0.00619 0.00027 0.00010
10 6 0.03327 0.00922 0.00180
8 8 0.00646 0.02083 0.12690
6 10 0.03771 0.00109 0.00065
4 12 0.68439 0.00022 0.00027
2 14 0.37392 0.00112 0.00028
0 16 0.53989 0.01083 0.00066

ent locations which represent the near field 1 < x,y < 5 intermediate field 6 < x,y < 10 and far field
11 < x,y < 15. It is meshed into linear finite elements enriched by a combination of m,, plane waves
and m, radial waves such that the total number m = m, + m, of basis functions is chosen to be 16. The
L,-norm errors for all cases of enrichments are shown in Table 1 for the case of wave number k = 4r.
First, for the near field location, it is obvious from Table 1 that the plane wave enrichment performs bet-
ter than the radial wave enrichment. In deed, as the number of plane wave decreases to add radial waves
instead, the L, error increases. This is noticed again in the case of intermediate field in spite of the better
quality results, in comparison to near field case. For the far field case, however, the results are of very
good quality and the radial wave enrichment is shown to perform better than the plane wave enrichment.
This is probably due to the fact that the diffracted potential propagates away to infinity radially and hence
radial waves are more suitable as enrichment functions.

3. Plane wave diffracted by square object

The second example deals with the diffraction of a plane wave by a rigid square object of boundary T;.
Applying the finite element procedure of expression (3) to this problem leads to

f(—V_W Vo + KEWp)dQ — WV¢-ndl + WV¢-ndl =0, (6)
Q - | T — L
where the computational domain is Q is bounded by the internal boundary I'; and the external boundary
I',. In this the incident wave is totally reflected and so the Neumann boundary condition is applied

a¢ __0¢'
= 7
on on @
applies on I'1. Here, ¢' and ¢ are the incident and scattered waves, respectively. The boundary I’y is
assumed to be placed far enough from the diffracting object to consider that the scattered wave is propa-

gating radially. A simple radiation condition is then used

op 1 )
— + —¢ —ik¢ = 0. 8
on * 2r¢ k¢ ®)
Introducing the boundary conditions (7) and (8) into equation (6), the problem to solve is then
2 . ag'
(VW - V¢ — k“We)dQ + W(=— —ik)¢dl’ = W(—)dI" 9
Q —_— I, 2r I on
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Incident Wave Diffracted by Square Object: FEM vs PUFEM

—— PUFEM
——FEM

Figure 2: Real part of the diffracted potential: FEM results (left), PUFEM results (middle), PUFEM and FEM
results around the scattering square 9right).

This problem does have an analytical solution and so the PUFEM results are compared to those obtained
using the polynomial based FEM for k = 2x. In the case of PUFEM, 16 quadratic elements are taken
around the square scatterer and to approximate the wave potential 18 plane waves are used as enrichment
functions. For the case of FEM, 9568 triangular linear elements are used. Figure 2 (left and middle)
shows contour plots of the real part of the scattered potential which look very similar and Figure 2 (right)
shows the real part of the scattered potential around the scatterer obtained by PUFEM and FEM and,
overall, the results look very similar. It is worth noting that 4926 degrees of freedom were used in the
FEM results while for the PUFEM only 1440 degrees of freedom were used.

In this case of scattering problem with a square body, it is known that they present singularities at the
corners. Usually, in the case of FEM, the mesh is over refined around the corners to capture the solution.
It is planned to investigate the performance of the PUFEM using either plane waves or radial waves or
even a combination of both to deal with such problems.

4. Conclusions

In this work, solutions to wave problems governed by the Helmholtz equation are approximated either by
the standard polynomial based finite element method or by enriched finite elements. For the latter case,
field enrichment is carried out by using either plane waves, radial waves or a combination of both. For
the problems dealt with above, it is clear that the PUFEM leads to better quality results in comparison to
low order FEM elements. Regarding the enriched version and for a scattering problem, it was concluded
that plane wave enrichment performs better in the near field while radial wave enrichment leads to better
quality results in the far field.

An attempt is made here to solve a scattering problem with a rigid square. This problem’s solution
presents singularities at the corners. The aim is compare the performance of the PUFEM against the
FEM which usually requires further mesh refinement around the corners.
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ABSTRACT

The calcarenite rock slab, on which the medieval town of San Leo is situated, is severely tectonized and crossed
by a number of joint sets and faults. It is affected by lateral spreading instability processes associated with rock
falls and topples. The underlying clayey substratum is involved in movements, like earth flows and slides. In the
present work these phenomena are analysed within the framework of unsaturated soil mechanics. A coupled
hydro-mechanical model employing viscoplasticity (BBM-VP) is adopted herein to numerically simulate the
landslide processes in San Leo region. The model allows simulating the hardening and softening processes in
the rock material due to hydraulic loading and unloading, and the shear strength change with degree of
saturation. The results are then compared with those obtained for the same problem but employing different
constitutive model for explaining the viscoplastic behaviour that is independent on suction and based on
Drucker-Prager plasticity. The differences of the two conceptual model approaches are analysed.

Keywords: landslides, BBM, suction, unsaturated soil, San Leo, Italy

1. Introduction

Rock spreading in brittle formations overlying ductile terrains is a well-known process of instability
in the clay-rich hillslopes of the northern Apennines of Italy. It mainly consists of creep and slow
movements of the clayey materials, which induce progressive dismembering of the overlying rock
slabs [8]. The town of San Leo rises on a rock slab, affected by widespread instability phenomena.
Within this study a cross-section in the north side of this slab was analyzed. It was chosen for a
number of reasons: i) the last important landslide event occurred in this area; ii) data from field
observations are available; iii) at this stage of the research it can be acknowledged that in the local
geological and geomorphological context is representative for the whole rock slab.

In the literature many examples of slow moving landslides have been modelled using a viscous
component in the formulation of the strain rate. However, in this type of analysis, it is difficult to
distinguish between movements related to water infiltration and displacements related to a viscous
component in the strain rate, as both processes occur simultaneously. Moreover, other mechanisms
may lead to a dissipation of energy during the moving of the earth mass, which are not related to a
viscosity component in the strain rate. This paper focuses on the analysis of slow movement initiation
in the clayey substratum under rainfall infiltration as a precursor of earthflows. The phenomenon is
analysed in the framework of unsaturated soil mechanics, applying coupled hydro-mechanical
analysis. Two constitutive models are used in competitive way. The first model is the BBM-VP whose
feature is the dependence of the viscoplastic constitutive functions on suction. The second viscoplastic
model is based on Drucker-Prager plasticity model with viscoplastic criterion and potential considered
not dependent on suction. The results after the application of the two models are then compared and
the differences in the predictions of the two models are analysed.

2. Typical Slope Instability Phenomena

The town of San Leo was built on a calcarenite and sandstone slab, which is crossed by several joint
sets and faults. It is affected by lateral spreading with associated rock falls and topples, partly
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developing along pre-existing discontinuities. Moreover, the underlying clay-shales and loose
deposits are involved in earthflows.

The high deformability contrast between the slab and the underlying clay-shale drives the instability
of the whole area [3,5]. Together with the structural setting of the slab, a further instability
predisposing  factor is the groundwater flow path developing inside the plate (Fig. 1). The
groundwater flow is driven by discontinuity networks, which induce a rather high secondary
permeability within the calcarenite slab. This leads to the formation of ephemeral springs at the base
of the cliffs, near the contact with the almost impermeable substratum. The springs promote the
remoulding of the basal clay-shale, leading, together with creep and subsequent flows, to the
undermining of the foot of the rock slab. These processes can cause the progressive opening and
widening of fractures in the rock masses which, in turn lead to higher discharge rates in the springs.
During the most recent and notable landslide event, occurred on 11th May 2006, a rock fall affected
the northern side of the slab, suddenly detaching from the vertical cliff. The undrained loading at the
top of the clay-shale slope triggered an earthflow which reached velocities in the order of 4.2 cm/h.
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Fig.1 (a) location of the study area (red point) and trace of the EE’ section. (b) South-North EE’ section of San
Leo slab; the contact between the slab and the substratum under the plate and the water table are sketched; in the
black box the location of analyzed sector is reported.

3. Modelling Analysis and Results

Mechanical constitutive model: The mechanical models considered here are elasto-viscoplastic
models for unsaturated soil based on the Perzyna viscoplasticity concept [9]. Following the Perzyna

viscoplastic concept, the total strain rate is assumed to be a sum of the elastic (&) and viscoplastic
(£") strain rates. The formulation for the constitutive modelling is based on the use of pair stress state

variables, namely the net stress and the suction (s). Suction is zero when the soil pore system is filled
with only fluid. Therefore, the stress variables are suction and net stress for unsaturated condition and
effective stress in saturated state. The elastic part is related to the net stress ¢ through the generalized
Hooke’s law.

The two viscoplastic models considered here are implemented in the FE program CODE_BRIGHT
[4,6,7]. The first one is a linear elastic viscoplastic model for unsaturated soil based on the Barcelona
Basic Model [2], named BBM-VP model. The second model is a linear elastic viscoplastic model
based on the Drucker-Prager failure criterion, named DP-VP model.

In BBM-VP model yield surfaces F is given according to [1].

1 2 2
Flg.ps)=a2q M v(p+p,)(p,-p") (1)

where M determines the slope of the critical state line and it depends on suction according to [2],
p.and p are the tensile stress limit and pre-consolidation pressure, p' is the net (effective) stress, g

is the deviatoric stress, a and y are model parameters.
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In DP-VP, the yield surface F and the plastic potential G are given by:
G=F=q-Mp'-c'B, 2)
In this case M and P, are calculated by providing the best fit to the Mohr-Coulomb hexagon and ¢’

and ¢' are the effective angle of friction and the cohesion defining the Mohr-Coulomb failure
envelope at saturated condition.

Hydraulic flow law: The advective flow of the water phase is described via the generalized Darcy’s
law:

kkr/
q, :__(VE_ng) (3)

A,
where 4 is the dynamic viscosity of the pore liquid, g is the gravity acceleration, p, is the liquid
density. The tensor of intrinsic permeability k is a tensor defined depending on porosity via the
Kozeny’s model. The relative permeability (&, ) is derived employing the Mualem-van Genuchten

model [10].

Numerical model of San Leo landslide:

The slope instability phenomena in San Leo are simplified and the geometry of the adopted model is
shown in Fig. 2. The model in Fig 2 is based on the description of the test site given in section 2. The
problem is analysed in two phases. In the first phase, the infiltration is analysed considering water
flow through non-deformable porous media — the unsaturated rock and the clay-shale material. In the
second phase the coupled hydro-mechanical approach is used to analyse the stress-strain behaviour
during the infiltration process. For the second phase, the hydraulic boundary conditions correspond to
the water pressure obtained in the first phase. The whole slope is subjected to consolidation in order to
simulate closely the current conditions of the clay-shale formation in the first stage. Afterwards the
infiltration step is simulated in the second stage.

In the first phase the analysis shows that the rain falling on the top of the rock slab permeates into the
rock slab due to its weight and the capillary force. Due to the large difference in the permeability of
the rock and the clay-shale formation, the groundwater table develops in the rock slab (Fig. 3). This
way the water is then drained throughout the foot of the rock wall.

When analysed by BBM-VP model, during water infiltration in the second phase, the model shows
differential displacements between the area beneath the rock slab (point A) and the region on the clay-
shale slope close to the rock slab (point B). On the contrary, there is no significant change of vertical
displacements during water infiltration when analysed by DP-VP model. The displacements are due to
the increase of water content that causes an increase of the soil weight. Stress distribution obtained by
BBM-VP model demonstrates that the distribution of vertical pressure is influenced by infiltration
processes (Fig. 4b). The rather high vertical stress values which are observed close to the boundary of
the slab indicate the danger of high shear force which may trigger earthflow beside the other factors.
From the above discussion it can be concluded that the instability phenomena in San Leo should be
analysed via a coupled problem formulation. It is also demonstrated that the coupled hydro-
mechanical viscoplastic model allows better explaining the mechanical behaviour of the considered
clay-shale slope.
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Fig. 2: A conceptual model of instability problems in San Leo slope
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ABSTRACT

Soft clays are normally consolidated or lightly overconsolidated soils where even small increases of stresses are
likely to cause non-linearity and plasticity in their response. In addition, soft clays have a significant degree of
anisotropy in their natural state that adds to the complexity of their behaviour. In this paper a new model is
proposed by extending the anisotropic critical state-based model S-CLAY1 with a bounding surface
formulation. Both isotropic and rotational hardening rules are incorporated into the bounding surface
formulation with an associated flow rule. The new model is shown to capture well the important aspects of
observed response during cyclic loading of natural clays such as anisotropy, hysteresis, accumulation of
permanent strains and loading-unloading cycles.

Keywords: soft clays; constitutive modelling; anisotropy; bounding surface; cyclic loading

1. Introduction

One of the important issues in geotechnical engineering is the response of the natural soft clays to
cyclic loadings. This type of clays are usually normally consolidated or lightly over consolidated and
have a significant degree of anisotropy in their structure that can further evolve during straining.
Several constitutive models have been developed to capture the anisotropic response of these soils
(e.g. [1-2]), among which S-CLAY1 model [1] has been widely accepted to provide good results in
simulating the plastic anisotropy of soft soils. However, the main focus of these models is on large
plastic strains at primary loadings and on subsequent unloading-reloading cycles within the yield
surface they only produce purely elastic strains. To overcome the limitations of classical elasto-plastic
models in simulating the hysteretic behaviour, Dafalias (1986) [3] modified the Bounding Surface
plasticity (BS) theory for geomaterials. In this paper, a new constitutive model is proposed for
enhanced prediction of the cyclic behaviour in soft soils by capturing non-linearity and plasticity from
the early stages of loading. The new model is based on further extension of S-CLAY1 model through
incorporation of a Bounding Surface formulation, hence it is referred to as SCLAY1-BS model. The
general formulation of the model is presented in this paper and the enhanced model performance is
illustrated with a number of simple examples.

2. SCLAY1-BSModel Formulation

In the following the elements of the proposed model are briefly presented and discussed.
2.1.Bounding Surface and Plastic Potential

The vyield surface of original S-CLAY1 model is adopted as the bounding suAasd) in the
SCLAY1-BS model

3 _ _ 3 _ .
F =20 - a6 - P'aa) - (M? - S (e {ag)) (77, = P) = 0 ©)
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whereg,; anda, are the deviatoric stress tensor and the deviatoric fabric tensor respectisigy (
represents that the variable is associated with the bounding suMaisethe critical state valug! is

the mean effective stress, aﬁ’qnis the size of the yield surface related to the soil's preconsolidation
pressure. An associated flow rule is adopted; therefore, the same function as above is also utilised as
plastic potential function, Gor the S-CLAY1-BS model.

2.2.Hardening Laws

Every change in the shape of the bounding surface, such as changes in the size and orientation, are
assume to be governed by the isotropic hardening and rotational hardening laws of S-CLAY1 model.
The isotropic hardening is assumed to be solely related to plastic volumetricdstfain (

v !

ap',, =22 de @)

wherev is the specific volume} is the gradient of the normal compression line in the compression
plane [np’ — v space), and is the slope of the swelling line in the compression plane. And the
rotational hardening law, that describes the changes of inclination of the bounding surface caused by
plastic volumetric and plastic shear straining, is defined as

da = [{i;;_‘f - ad} <de? > +p {%— ad} deg] 3)
where defl’ is the increment of plastic deviatoric strajnand § are soil constants and > are
Macaulay brackets. The model parame¢tatefines the relative effectiveness of plastic shear strains
and plastic volumetric strains in rotating the bounding surface; and same as in S-CLAY1, we have

_ 3(4M? — 4o — 310)
8(Mko — M? + 210)
wheren, is the stress ratio durir¢, consolidation and similar t# it is a function of soil’s friction
angle [1]. The value of parameterthat controls the absolute rate of the rotation of the bounding
surface toward its current target value can be obtained by simulation of experimental data [1]. The
initial inclination of the bounding surface is also determined from

2 2
Nio + 3Nko — M
a[(o — KO 31(0 (5)

4

2.3.Mapping Rule

A radial mapping rule [3] is adopted to project the current stress state to an image point, where the
origin of the stress space is assumed to be the fix projection centre in the unload-reload conditions

0ij = 6 0y (6)
where § is a similarity ratio between the bounding surface and the loading surface.

2.4.Plastic M odulus

In the BS plasticity theory, the plastic modulus of an arbitrary stress point on the loading surface is a
function of the plastic modulus of the image point on the bounding surface. A hardening function
needs to be defined in order to relate these two plastic moduli to each other. Different hardening
functions are proposed for loading and unloading conditions

H= H+S, (orS,) 7
_ oF [0a, aG day [2 106\ 106G OF vp'_ 3G
H==——-A <= > - —(—_)(—_) - n__ =0 8
day (665 ap’ * del |3 \dag/ "\day, op' A—Kkop’ ®)
_3 1—8¥1
Si=p', X s €©))
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where hy, hy,, 1 and ¥, are additional model parameters in the SCLAY1-BS compared to the
original S-CLAY1 model. The values of these new parameters can be obtained by simulating cyclic,
or even monotonic, element test results. Sensitivity analysis over the full set of additional model
parameters has shown that the model performance varies only within a limited domain when the value
of each individual parameter is changed. As a result determination of these parameter values becomes
straightforward when experimental data is available. For example Figures 1(a) and 1(b) show the
variations of the model prediction, in simulating the stress path of an arbitrary monotonic triaxial
compression test with arbitrary set of parameter values, for different valagardd v, respectively.

—3
Sur = plm hyr X (10)
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Figure 1: Effect of additional parameters due to bounding surface theohy, (@)y,
As itis seen in Figure 1(b), simulation results are converging to a limiting pgthvadue increases.
3. Mode Performance

The S-CLAY1-BS model explained in section 2 is used to simulate undrained shearing tests on
anisotropically consolidated specimens of two different soft soils, namely Kaolin Clay and San
Farncisco Bay Mud [4]. For both soils elasticity and critical state parameter values are those reported
in [4], whereas rotational hardening parameters are calculated from Egs. (4) and (5), and bounding
surface parameter values are arbitrarily adjusted simply to illustrate the advantages of incorporating
the BS theory into the original anisotropic elasto-plastic model. Parameter values used for the
simulations are summarised in Table 1. Figures 2(a) to 2(d) show performances of both S-CLAY1-BS
and S-CLAY1 models in simulating undrained cyclic shearing tests on two soils. The simulation
results are plotted ip’ — g space.

Table 1: Model parameter values

Category Designatior] Kaolin Clay | San Francisco Bay Mug
. K 0.05 0.054
Elasticity v 0.2 0.2
" A 0.14 0.37
Critical State M 105 14
h; 100 110
- Yy 2 1
Bounding surface h, 20 60
P, 3 3
Rotational Z" Oégo 02%5
hardening B 0.54 0.87

Figures 2(b) and 2(d) show the results of simulation using the S-CLAY1 model, which does not
include the BS feature. It is observed that without the BS feature, the model simulates plastic strains
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mainly in the first cycle of loading for the stress states on the yield surface. In the subsequent cycles,
the stress moves only inside the yield surface, and no additional plastic strain is produced. In contrast
Figures 2(a) and 2(c) show the simulated results of SCLAY1-BS model. Compared with the previous
case, here, plastic strains are produced even for the stress states within the bounding surface,
accompanied by reduction of p (contractive response) which is due to the distance dependent plastic
modulus employed in the bounding surface formulation.
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Figure 2: Comparison of S-CLAY1-BS and S-CLAY1 in simuation of cyclic loading in
(a),(b) Kaoline clay, (c),(d) San Francisco bay mud

4. Conclusions

A new constitutive model has been developed by further extension of the critical state based model S-
CLAY1 and the bounding surface plasticity to simulate inherent and evolving anisotropy in soft clays
together with their nonlinear cyclic response. The new model, SCLAY1-BS, has four additional
parameters which their values can be readily calibrated through simulations of experimental data. The
comparisons of cyclic loadings on two types of clay revealed the much improved capability of the
proposed model in simulating the gradual accumulation of permanent strains within the yield surface.
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ABSTRACT

It has long been recognised that the macroscopic mechanical behaviour of a granular material depends,
to differing extents, on micro-mechanical properties such as the particle size distribution, the particle
shape, the inter-particle friction angle and the particle strength. However, despite the interest this issue
has generated over the years, a systematic investigation of some of these effects is still lacking. This
paper represents a first attempt to systematically investigate the effect of particle shape. Of the three
independent parameters that are generally considered to characterise particle shape in different scales
of observation, i.e. form, angularity and roughness, we focus on the effect of form, which describes the
overall shape of a particle. We present a new way of quantifying particle form in terms of the axes of an
equivalent scalene ellipsoid. To quantify the effect of form on the strength characteristics of a granular
assembly we use DEM simulations of triaxial tests on specimens consisting of scalene ellipsoids. The
ellipsoids in each specimen have the same form, particle size distribution and interparticle friction, thus
eliminating the effects of particle angularity and roughness from the analysis. Some first results for
particles of different form are presented systematically and comparisons are made.

Key Words: Particle Shape; Granular Materials; DEM; Railway Ballast; Triaxial test

1. Introduction

The shape of its particles is one of the fundamental properties of a granular material. In the case of
granular materials, there are three (assumed) independent aspects of shape that are generally considered,
each describing geometrical properties of a particle at a different scale of observation. These are particle
form, angularity and roughness. Form quantifies the overall shape of a particle, angularity describes
the number and sharpness of angles on its perimeter/surface, and roughness relates to the microscopic
asperities of the particle surface that are to some extent responsible for interparticle friction.

Particle form in particular is generally quantified using the longest (L), intermediate (I) and shortest
(S) dimensions of the particle, although the way these are defined may vary. One possible way is to
consider an equivalent scalene ellipsoid with axes equal to S < I < L, as in [2]. Different measures and
combinations of measures that can be used to describe form have been proposed, however no consensus
exists on whether one has a clear advantage over the others [3]. Also, although particle form is certain to
influence the mechanical properties of a particulate, a systematic study of its effect is still lacking.

Here we propose a new way of describing form using the dimensions of an equivalent scalene ellipsoid.
We then perform DEM simulations of triaxial compression on granular assemblies of uniform particle
form, to investigate how the latter affects the strength of the material. We use the method of potential
particles, which allows modelling of particles with (almost) arbitrary shape[4]. Particle size distributions
consistent with those of railway ballast are used, while the number of particles in each simulation is
consistent with the number of ballast particles present in the specimens of corresponding physical tests.
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2. Quantification of particle form

In [3] the authors presented a comprehensive discussion of the different ways in which particle shape,
including form, can be quantified. The measures summarised there appear to have been developed heuris-
tically. As a contribution to that discussion, we present a new way of quantifying particle form that is
derived mathematically and may be considered more intuitive.

We assume that the form of a particle is characterised by the dimensions S < I < L of an equivalent
scalene ellipsoid. If we consider §, I and L to be coordinates in a three dimensional space, any particle
can be represented by a vector f linking the origin of the axes to point (S, I, L). Clearly, co-linear vectors
correspond to particles that share the same form and differ only in size; to quantify form it is thus suffi-
cient to consider only the direction of the vector, not its length. A straight-forward way of quantifying
direction is by using the elevation and azimuth in spherical coordinates; this will be detailed in a separate
publication. Instead, here we quantify form using the deviation of f from the spherical axis S =1 = L,
whose points correspond to particles of perfectly spherical form, in a way analogous to the decomposi-
tion of stress into a hydrostatic and a deviatoric component. In particular, we consider the intersection F
of f with the S + I + L — 1 = 0 “deviatoric” plane that is normal to the spherical axis, and calculate its
in-plane coordinates in a frame of reference centered at the intersection P of the spherical axis (Figure 1.)
Taking into account that 0 < § < I < L, the in-plane coordinates can be derived using standard vector
algebra that will not be detailed here. Further, normalisation yields a pair of coordinates (@, {) on the
“deviatoric” plane that vary between 0 and 1 and are defined as:

21-5) L1

= — - 1
¢ L+I1+S’ L+I1+S 0

The two parameters @ and ¢ suffice to describe all possible forms represented by a scalene ellipsoid,
including the degenerate cases of a sphere (¢ = ¢ = 0), a prolate ellipsoid (¢ = 0, > 0), an oblate
ellipsoid (@ > 0,¢ = 0), a flat circular (¢ = 1, = 0) or elliptical (o + { = 1) disk, and a needle
(@ = 0, = 1). Observing the effect that varying each parameter independently has, a can be termed
platyness and { elongation of the particle.

needle

scalene
ellipsoid

circular
disk

prolate ellipsoid

Figure 1: Representation of particle form in (S, I, L) space (left); the @-{ form parameter space and a description
of the corresponding forms (right.)

3. DEM modelling

To quantify the effect of form on the strength characteristics of a granular assembly we use DEM simu-
lations of triaxial tests on specimens consisting of scalene ellipsoids. Attempts to investigate the effect of
particle shape more generally by modelling more realistic particle shapes can be found in the literature
[5] however these focussed on the effect of angularity and used clumps of spheres to model particles
of different shapes. Whether such clumps can adequately reproduce angular particles is debatable, and
in any case our focus here is particle form. We therefore decided to use smooth ellipsoid particles, thus
removing the effect of particle angularity from the results.

Each DEM specimen used consists of ellipsoid particles that have the same form, i.e. the same («, {)
parameters and therefore plot at the same point on the “deviatoric” plane. The different particle forms
considered are given in Table 1, in the form S/I : 1 : L/I. The corresponding values of the («,?)
parameters are also given.
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Table 1: The different particle forms considered in the analyses.

Form Ratio a 4
Form 1 1:1:1 0 0
Form?2 2.25:1:0.45 0.2973 0.3378
Form 3 2.25:1:1 0 0.2941

Form 4 1:1:0.60 0.3077 0

A particle size distribution must also be prescribed for the models. To avoid known issues with monodis-
perse specimens as well as further constrain the problem to a matter of direct practical interest, we use
a particle size distribution consistent with the British Standard for railway ballast [1]. It was assumed
that the size of sieve a particle can pass through is determined by its intermediate dimension /. Particles
of five different sizes between the maximum and minimum allowable gradation curves for ballast were
created and used in each model.

To ensure comparability of the results it was decided that all specimens have the same total volume,
as would have been the case with physical tests. The total volume for each model was kept at 0.2m?,
although this caused the number of particles to vary among models. The material most commonly used
for railway ballast is granite; typical values for particle density (2700 Kg/m?) and interparticle coefficient
of friction (30°) are used. In any case, in all models a sufficient number of particles was present, consistent
with those of similar physical tests.
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Figure 2: Particle size distribution of DEM models (left) and typical DEM model (right.)

To create a specimen a pre-determined number of particles of different sizes as above are randomly
distributed within 3D space to a target void ratio of 2.0. The particles themselves are given random ori-
entation to remove any bias in the initial fabric, which can significantly affect results. The specimen is
then subjected to isotropic compression using periodic boundaries, zero gravity forces and no interparti-
cle friction. Once the specimen is compacted to a void ratio of 0.65 and corresponds to a densely packed
granular material, isotropic stress of 100kPa is applied to the boundaries and, once the specimen has
settled interparticle friction is reintroduced. The final pre-test configuration of a typical specimen can be
seen in Figure 2. The model is then subjected to triaxial loading, where the lateral pressure is kept con-
stant while the top boundary is moved downwards imposing a constant axial strain rate; all boundaries
remain periodic.

Figure 3 shows the mobilised friction angle of all models plotted against shear strain. In all cases a peak
is observed, as expected of densely packed granular materials, before a critical state is reached. Peak
strengths are not comparable among models because, despite their common initial void ratio, the models
are expected to initially be at different relative densities. The friction angle at critical state, however, is
unaffected by the initial relative density and thus is comparable. Figure 3 also shows the evolution of
volumetric strain for all models; dilatancy consistent with dense initial packings is observed in all cases,
and volumetric strain stabilises as a critical state is approached.
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Figure 3: Mobilised friction angle (left) and volumetric strain (right) v.s. shear strain, for different particle forms.

4. Discussion and conclusions

Figure 4 shows the friction angle at critical state for each model, plotted against the (@, ) form parameters
of its particles. It shows that a departure from spherical form (c.f. Figure 1) increases shear strength and
that changes in elongation ¢ seem to have a greater effect than changes in platyness a, although further
work is needed to fully establish the latter. This work is currently in progress, as the (@, {) space is being
systematically explored to fully quantify the effect of particle form. Subsequent steps of this work are the
investigation of the effects of angularity and roughness, with a long-term goal of predicting shear strength
on the basis of particle shape, and designing particulates to a pre-determined standard of strength.
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Figure 4: Friction angle at critical state as a function of particle form.
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ABSTRACT

The phenomenon of soil erosion occurs when soil particles are pulled off by seepage forces and transported
through the pore channels. This may cause serious damage to hydraulic structures such as earth dams or levees
as well as their foundations. In this paper a coupled DEM-LBM technique is employed to investigate this
phenomenon at the grain level. The Discrete Element Method and Lattice Boltzmann Method are used for the
solid and the fluid, respectively. The Immersed Moving Boundary is adopted for the fluid-solid coupling. It is
shown that the coupled DEM-LBM approach is effective for such fluid-particle systems and can capture the
evolution of the process of erosion. The commonly used parameter (radius ratio) in 2D simulations is explored
in a simple 2-dimentional modelling.

Keywords: LB Equation; DEM; Immersed Moving Boundary; Fluid-solid Interaction; Soil erosion

1. Introduction

Fluid-particle interaction plays an important role in geotechnical engineering. Related fluid-particle
system covers liquefaction, piping, quick sand conditions in construction and sand production from oil
wells in petroleum engineering. Recently, the coupled DEM-LBM technique has been proved to be a
promising approach for fluid-particle problems. The coupled DEM-LBM technique was first proposed
by Cook at al. [1]. It then attracted great attentions of researchers from different research areas.

2. Lattice Boltzmann Method

The Lattice Boltzmann Method (LBM) is a kind of microscopic or mesoscopic fluid dynamics
approach. In the LBM, the fluid domain is divided into regular lattices. The fluid phase is treated as a
group of fluid particles which are allowed to move to the adjacent lattice nodes or stay at rest. During
each discrete time step of the simulation, fluid particles at each lattice node move to their immediate
neighbouring lattice nodes along given directions. At each node, the fluid particles from neighbouring
nodes collide, which is controlled by solving the Lattice Boltzmann equation. Finally, the macro fluid
behaviour can be obtained through the statistics of the motion of fluid particles [2].

The Lattice Bhatnagar-Gross-Krook (LBGK) Model is one kind of popular Lattice Boltzmann Model.
It can be characterised by the following Lattice Boltzmann Equation

fl(x+eAt,t +At)-1i(x,t)=Q 1)

Where 7. is the primary variables in the LB formulation (so-called fluid density distribution
functions), €2 is the collision operator.

In the LBGK Model, Q is characterised by a relaxation time 7 and the equilibrium distribution
function 7(x, t)
At :
Q=-——/[fi(x,t)-1"(x,0)] )
T

The central issue to LBM is to control the movement of fluid particles via density distribution
functions.
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3. Discrete Element Method

In the DEM, the Newton’s second law (see equation (3) and (4)) is used to determine the translational
and rotational motion of each particle arising from the contact forces, applied forces and body forces
acting upon it, while the force-displacement law is used to update the contact forces arising from the
relative motion at each contact. The dynamic behaviour is represented numerically by a time-stepping
algorithm in which the velocities and accelerations are assumed to be constant within each time step.
The resultant forces on any particle are determined by the particles with which it is in contact and the
hydrodynamic forces.

ma+cv =F + mg + F, 3)

I0=T 4)
where m and / are mass and moment of inertia of the particle, respectively; a .6 and g are,
respectively, translational, angular and gravitational accelerations. £ and 7. denote the contact force
and torque between particles; cis a damping coefficient; 7, is the hydrodynamic force.

The normal and tangential contact model used here are based on the Hertz-Mindlin model [3].

4. DEM-LBM Coupling

An accurate fluid-particle interaction scheme is of great importance in DEM-LBM. Since the 1990s, a
number of fluid-solid coupling schemes have been proposed for LBM. In this work the commonly
used Immersed Moving Boundary is adopted and is extended to incorporate the effect of particle
rotation.

In order to resolve the problems in Modified Bounce-back Rule for moving particles, Noble and
Torczynski [4] proposed a new boundary scheme. This is accomplished by introducing an additional
collision term, ¢, for nodes covered partially or fully by the solid. Then the collision term in the LB

equation including body force becomes
A
Q= -0 Bri(x,t) - r(x, )] + (1 - B ALF, + KOS 5)
T

Where B is a weighting function that depends on the local solid ratio ¢, defined as the fraction of the
node area (see Fig. 1).

e(1-005) ©)

(1—-¢)+(7-0205)
The additional collision term is based on the bounce-rule for nonequilibrium part and is given by

Qf =f.(x,t)-F(x, )+ (0, U;) - £(p,u) @)
Where v is the velocity of the solid node.
It is well known that particle rotation plays an important role in granular mechanics and in some cases
it cannot be neglected. Therefore, the velocity of the solid node should be considered by

Ug =U, +ox1, U =(x-x)" +(y-y)") (8)
The resultant hydrodynamic force and torque exerted on the solid can be calculated by summing the
momentum change of solid nodes:

B:

Fo= Y38, Q) ] ©9)
7, = o Y lx - x.) x3,Y, e, )] | (10)

Later this method was modified by Holdych [5]. The only difference is that the solid velocity is used
to calculate the equilibrium distribution for the last term. The modified version is as follows

Qf = f‘—f(X" t) —_ f; (X, t) + f;—eq(p; Us) - f:elq(p; US) (11)
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5. Simulation of Soil Erosion

In this section, the onset and evolution of quicksand which is a typical soil erosion phenomenon will
be investigated first. It is followed by exploring the effect of effective radius used in 2-dimentional
DEM-LBM simulations.

A two-dimensional numerical simulation of quicksand phenomenon was carried out using the coupled
DEM-LBM technique. In this simple simulation there are three large particles (A, B and C) and 93
small particles surrounding large particles. (See Fig. 2). The basic parameters used in the simulations
are listed in Table 1. During the tests, a constant fluid pressure was applied to the bottom.
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Fig. 1 Immersed moving boundary including rotation Fig. 2 Quicksand model
Table 1 Parameters used in this study
Parameter Value Parameter Value
Particle density (kg/m3) 2700 Fluid density (kg/m3) 1000
Friction coefficient in the DEM calculation 0.5 Lattice spacing (m) 1.0x10-3
Young’s modulus (MPa) 69 LBM time step (s) 1.0x10-4
Poisson’s ratio 0.3 Dimensionless relaxation time 0.5003
DEM time step (s) 3.33x10-5 Ratio of hydraulic radius 0.685

Quicksand condition is a special case of soil liquefaction which occurs when a granular deposit is
subjected to a large enough upward pore fluid flow. Fig. 3 gives shapshots of the evolution of the
quicksand phenomenon from time step 0 to 1500. It can be found that the coupled DEM-LBM
technique can easily trace the movement of granular particles and simulate pore water flow. Under the
fluid pressure at bottom, the pore water will flow upward and small particles will also move upward
under the hydrodynamics from pore water. Finally, the small particles above the large particles are
washed away with time. But during the whole process the large particles nearly keep unchanged, as
the hydrodynamic forces applied to them are smaller than their weights.

In 2-D simulations combining DEM and other fluid methods, like CFD and LBM, there is a
significant issue in the pore water flow path. Because the flow paths are always blocked up by circular
particles, it is difficult to obtain realistic flow channels. In order to solve this problem, Boultt at al. [6]
proposed a method in which the radius of the particle will be reduced to certain degree (called
effective radius) artificially when the fluid flow is implemented. This effective hydraulic radius can be
accomplished by introducing a ratio of effective radius to the particle radius. In this study, 6 ratios are
chosen for investigation. When the ratio is 1, effective radius is equal to the real particle radius. The
movement of large particle A shown in Fig. 4(a) in the vertical direction and the change of pore
pressure at the point D during the whole simulation are displayed in Fig. 4(b).

From Fig. 4 we can find that with the decrease of the radius ratio large particle A is gradually
fluidised. When the radius ratio is larger than 0.785, there is no movement for particle A in the
vertical direction; when the radius ratio is decreased to 0.785, small changes happen and the particle
A could move up and down. It can be deemed as a critical state. When the radius ratio is lower than
0.785, complete fluidization can be observed. Meanwhile, it can be also seen the pore water pressure
at point D gradually goes up with the decrease of radius ratio.
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Fig. 4 Impact of effective radius on the 2-D simulation

6. Conclusions

In this paper the implementation of Immersed Moving Boundary including the particle rotation was
introduced in the coupled DEM-LBM program and the fluid-solid coupling was illustrated. A simple
soil erosion simulation was then performed using the coupled DEM-LBM technique. The impact of
effective radius was investigated at the grain level in the quicksand modelling. It is seen that the
choosing of effective radius plays a vital role in quicksand simulations. The coupled DEM-LBM
scheme seems to be promising and effective for investigating the fluid-particle systems.
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ABSTRACT

The buried pipelines in urban cities nowadays have a dense distribution and easily get disturbed by tunnelling
around. Therefore, ensuring the safety of pipelines during the tunnel construction is important. According to the
correlation between ground subsidence and pipeline stress when the pipeline is perpendicular to the tunnel drive,
a maximum value of ground subsidence based on the deformation capacity of the pipeline was proposed. A case
study of Shanghai South Hong-mei Road Tunnel was carried out, where the deformation of buried pipelines
crossed by very large diameter slurry shield tunnelling and its safety control were discussed in order to provide a
reference for the prevention of pipeline accidents during construction in practical engineering.

Keywords: ground subsidence; tunnel construction; buried pipelines; safety control

1. Introduction

Tunnel projects are often found with a concentrated distribution of all kinds of pipelines in
underground space, whose running state is directly related to the quality of people’s life. However, no
matter how advanced the slurry shield technology, the advance process of large diameter shield will
inevitably cause ground subsidence (or swell), and the disturbance on the surrounding soil. Therefore
the research on the disturbance of soil around the underground pipelines due to shield driving and its
influence on the deformation of the pipelines is valuable.

Researchers have carried out investigation on the soil behaviour under the condition of shield driving
[1-3]. A case history of Shanghai South Hong-mei Road Tunnel Project using slurry balance shield at
a very large diameter was studied. The theoretical and numerical analyses were carried out and their
predictions were compared to the field data. Then the deformation and stress distribution of ethylene
gas pipelines during the process of tunnel construction were summarized.

2. Calculation of Soil Subsidence

Currently Peck formula [4] is widely used for calculating the displacement of soils due to tunnel
construction. The hypothesis of volume loss proposed by Peck is valid for the soil layer between the
ground surface and the plane above the tunnel, i.e., the volume of settlement trough for an arbitrary
layer below the ground surface is equal to the soil loss and the shape of the settlement trough can be
represented by a normal distribution, as shown in Figure 1. The origin is located at the ground surface
directly above the center line of the tunnel, the x axis is perpendicular to the center line of the tunnel,
and the z axis is perpendicular to the ground surface and goes down. The maximum vertical
displacement ratio of the soil layer at depth z to ground surface can be expressed by:

5ma>< (Z) — -0.3 io
Taxo—(l_z/zo) _ﬁ (1)

where i, is the width of the settlement trough, i(z) is the width of the settlement trough for the soil
layer at depth z, and the depth of the centreline of the tunnel is z,.
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Figure 1: The shape of settlement troughs

3. Accepted Vertical Displacement of Ground Surface

The curvature 1/ p of pipelines rather than the vertical displacement is mostly concerned. According

to Attewell [1], the maximum curvature of pipelines occurs at the position x=0. When the pipeline is
perpendicular to the tunnel, the relationship between the maximum curvature of the pipeline 1/ p and

the maximum vertical displacement of the soil layer in which the pipeline is imbedded can be
expressed as [5]:

% 700 :
%[1—A(2.3up,1)]_LgX, 1/i,A>0.7
1 & I, (2)
p_ i,4 oP )
2= T 1/i 2<0.7
231 "

p

where i, is the width of the settlement trough at the pipeline and 4 is the deformation coefficient of
the elastic foundation beam. Practically, the vertical displacement of underground pipelines is usually
not easy to measure directly, and therefore the influence of tunnel construction on the underground
pipelines can be obtained indirectly by measuring the vertical displacement of the ground. According
to the knowledge of mechanics of materials, the strain of the outermost fibres of the pipeline can be
expressed by £=(d /2)x(1/ p), then the normal stress due to bending can be obtained in the form of
o=E,-e=(d/2)x(1/ p)E,. If the acceptable normal stress of the pipeline is known as [o], then
the acceptable curvature of the pipeline can be given as:

[%]=[a]/ (‘; Epj )

Substitute Eqg. (3) to Eq. (2), the acceptable vertical displacement of the soil layer around the pipeline
[6P..] can be obtained and then the acceptable vertical displacement of the ground surface can be
obtained by solving Eqg. (1).

4. Case Study

Shanghai Hong-mei Road Tunnel Project was carried out by slurry balance shield at a diameter of
14.93 m. To predict the deformation and stress of an industrial ethylene pipeline above the tunnel in
the real project, a steel pipeline with the same material properties was embedded in Feng-xian
construction site. The parameters for the numerical analysis are presented in table 1.

The steel pipeline made of three welded steel pipes was totally 30 m long. It was perpendicular to the
tunnel and the centre was located at H96. There were 1 reference point and 12 monitoring points and
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set every 2.5 m along the steel pipeline (see Figure 2). The vertical displacement of the steel pipeline
was monitored by the BGK-4675 type monitoring system. Figure 3 shows the vertical displacement of
the steel pipeline. It can be seen that due to the different disturbance of soils caused by shield driving,
the differential vertical displacement between the middle and the sides of the steel pipeline gradually
increases after the shield tail goes out of ring 10. The maximum vertical displacement of the steel
pipeline on 5 November, 2012 is about 14 mm.

Table 1: Parameters for the numerical analysis

Item Value Unit
Outer diameter d 0.273 m
Thickness t 7.10x10° m
Steel pipe Elastic modulus E, 2.10x10" Pa
Berried depth z, 2.0 m
Acceptable normal stress [o] 1.38x10° Pa
Soil Soil bed coefficient k 10000 kN/m?®
Modulus of deformation E 5.50x10° Pa
Possion’s ratio u 0.30 -
Internal friction angle ¢ 16.0 °
Tunnel Depth of the center line of the tunnel zg 25.00 m
Outer diameter D 14.93 m
lp,M
Steel pipe Cross section of the steel pipe -16 -12 -8 -4 0 4 8 12 16
| 4 | E 4
= "—o—T Incision reathed '
——————— ---f--------- [ 4 L —=&— Shield tail out
Tunneling direction g —a&— Shield tail out ofring 10
I | ) L —>— 20 Sep,2012 .
I \Centre of the steel pipe (H96) E 0 12 X 7”
Test instrument % 4
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Ground = 8
7XXN o
£-12
Steel pipe > 16

Figure 2: The location of the monitoring points Figure 3: Vertical displacement of the steel pipeline

A two-dimensional model was established for the numerical analysis when a finite element analysis
software ABAQUS was used. The Mohr-coulomb law was employed to represent the constitutive
model of the soil, and the unit type was set as CPE4. The boundary condition was that there was no
horizontal displacement at the side and there were no horizontal and vertical displacements at the
bottom. The steel pipeline was simulated as an isotropic and elastic material by using B21 beam
element. The steel pipeline and the soil were closely contacted with each other during the whole
process. Three cases were considered to investigate the effects of the buried depth and the strength of
the steel pipeline on the deformation of the steel pipeline: Pipeline 1 was the real one and had material
properties as shown in Table 1; Pipeline 2 had material properties as Pipeline 1 except that it was
buried at a depth of 10 m; Pipeline 3 was buried at a depth of 10 m and had a strength smaller than
Pipeline 1.

Figure 4 shows the vertical displacements of the ground surface, Pipeline 1, Pipeline 2, and Pipeline 3.
It can be seen that the influence zone due to the excavation are roughly the same for different buried
depths, about 3.5 times the diameter of the tunnel. The maximum vertical displacement of pipeline 2
is obviously larger than that of pipeline 1, indicating that the maximum value of the settlement trough
increases as the buried depth of pipelines increases. In addition, the maximum vertical displacement
of Pipeline 3 is larger than that of Pipeline 2, indicating that the maximum value of settlement trough
increases as the strength of the pipelines decreases. The bending moment along pipelines is shown in
Figure 5. The results show that the pipelines are subjected to negative and positive bending moments
for r, <Dand D <r, <2D respectively, however, the bending moment is small for r, >2D . The

bending moment of Pipeline 1 is larger than that of Pipeline 2, indicating that the bending moment
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increases as the buried depth of the pipeline increases. The bending moment of Pipeline 3 is the
smallest, indicating that the bending moment decreases as the strength of the pipeline decreases.
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Figure 4: Vertical displacement after excavation Figure 5: Bending moment after excavation

Figure 6 shows the horizontal displacements of the ground surface, Pipeline 1, Pipeline 2, and
Pipeline 3. The horizontal displacement is relatively small compared to the vertical displacement (see
Figure 4), and due to the soil loss after excavation, the horizontal displacement is towards the centre.
It can be seen that the horizontal displacement decreases as the buried depth and strength of pipelines
increase. The measured and numerically predicted vertical displacements for both the ground surface
and Pipeline 1 are compared in Figure 7. For the ground surface, the predicted value of 11.5 mm is
larger than the measured value of 8.2 mm, however, the shapes of the settlement troughs are almost
the same. The difference in measured and predicted values for Pipeline 1 is limited, but the shapes of
them are quite different.
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Figure 6: Horizontal displacement after excavation Figure 7: Comparison of predicted and measured data

5. Conclusions

A case study of Shanghai South Hong-mei Road Tunnel Project was carried out, where the vertical
displacement, horizontal displacement, and bending moment of the underground pipelines after
excavation were discussed. The measured and predicted data were compared and an agreement was
achievement to some extent.
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ABSTRACT

Recent improvements in both digital data acquisition and software for subsequent analysis, through use of
photogrammetry and both aerial and terrestrial LIDAR (Laser Interferometry Detection And Ranging), have
provided improved tools to capture rock mass characteristics, slope geometries and digital terrain models for
more effective slope management in the extractive industries. Advantages of using the improved technology
(such as safer collection of data — not exposing personnel to dangerous areas; greater areal coverage for data
collection — not restricted by man-access/reach; rapid collection of numerous data points; fully geo-referenced X,
y, z point cloud data) far out-way the perceived disadvantages (need for correct training to ensure user
proficiency of both hardware and software; need for awareness of equipment and software limitations; too much
data to analyse effectively in a timely manner). Example use of remotely captured data for subsequent data
analysis is presented to demonstrate the wide range of different applications such as providing input for slope
stability analyses for subsequent implementation of appropriate mitigation strategies, highlighting unstable
regions of a slope, comparative evaluation of point cloud data from repeated scans to monitor movement of
material (or placement of materials on tips or stockpiles), providing data for risk-based design and providing
capability to undertake real-time monitoring of rock slopes. A key benefit of the detailed point cloud data is the
ability to measure and evaluate discontinuity characteristics such as orientation, spacing, persistence and
volumetric data which are key factors that dictate the size of any potential failure.

Keywords: terrestrial LiDAR; slope stability; point cloud data; discontinuity characteristics
1. Introduction

Remotely captured spatial data, generated from a variety of techniques including both aerial and
ground-based laser scanning data (LiDAR) and digital photogrammetry can be used to monitor and
track movement or deformation of specific locations or targets on the Earth’s surface. Such data can
be subsequently used for a range of geological and geomorphological applications including
monitoring of both temporal and spatial change of an excavation profile, rock mass characterisation
(including determination of orientation and spatial parameters) and generation of hazard maps [1-4].
These techniques are being increasingly used within the mining and minerals industry for more
effective management of natural resources; taking advantage of improved, high-resolution monitoring
data and reduced exposure of personnel to potentially hazardous working environments [5].

Apart from the obvious improved Health and Safety aspects, remote mapping techniques allow rapid
collection of digital data that can be subsequently analysed to provide input parameters for a variety
of geomechanical or geotechnical computer-based design models or software. The key advantages of
remote techniques are their speed, greater area coverage and ability to map inaccessible areas [6]. The
remote data capture systems allow rapid collection of large quantities of data that can be subsequently
analysed to provide realistic representations of the slope surface and rock mass fracture network. The
data can also be incorporated into slope stability design software to assess potential modes of
instability, undertake sensitivity analyses on critical input parameters, carry out back analyses of
recent slope failures and provide design-related data for geotechnical investigations (be it for
deterministic analysis to calculate a Factor of Safety value or probabilistic analysis to provide
probability of failure or evaluation of risk of failure). Advances in technology provide ever increasing
opportunities for improved visualisation and a geospatial rich data source for subsequent evaluation.
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2. Data capture and acquisition

LiDAR systems can be operated from a static position (terrestrial) or on the move (mobile).
Terrestrial systems allow data to be gathered from one set-up location (position) and then the
instrument is physically moved to a new position (if required). Mobile (including airborne) based
systems incorporate an Inertial Measurement Unit (IMU) that feeds data back into the system of the
instruments location and compensate for movement of the equipment when in transit [1]. The
terrestrial instrument has to be either set over a known location and subsequently sighted to another in
order to obtain an orientation. Alternatively, the surveyor must place a number of targets within the
area to be scanned in order to reference them using conventional survey methodologies. This can be
achieved by sighting the targets to be scanned using a total station from a known location or using
Global Positioning System (GPS) with Real Time Kinematic (RTK) correction to compensate for
errors obtained through signals.

Singular point clouds encounter problems with ‘blinding’; when the scene is obscured and the point
cloud is missing data. In order to overcome this, multiple laser scans are taken to obtain a complete
data set for a scene. However, when multiple scans are surveyed, the point clouds have to be joined
together. This process is known as registration. Common points are chosen and assigned between the
scans. Once enough points (at least 3) are matched between the point clouds, a registration adjustment
is processed by the software and an error value is obtained. Once a complete geo-referenced model
has been made the data can then be exported for use within many different software applications.
However, a clear understanding of the hardware and software requirements are necessary in order to
export the data in a useable format for the desired outcome.

3. Applications of digital data for effective slope management

Example use of terrestrial LiDAR data for subsequent data analysis is provided in Fig. 1, which
highlights applications for evaluation of both rock mass and slope instability characteristics. This data
can also form the basis for development of GIS-based qualitative hazard and risk analysis, provide
input for slope instability simulation and be used to undertake real-time monitoring of rock slopes. It
can also be used for more effective evaluation of slope management systems, by highlighting
kinematically susceptible areas, sheared zones or potentially unstable lithologies, providing data on
block size distribution for design of appropriate mitigation measures, analysing trajectory paths and
monitoring not only failure source areas but potential run-out distances.

I Terrestrial LIDAR 3D point cloud data

l Evaluation of Rock Masses | | Evaluation of Slope Fai\urel

Discontinuity Discontinuity Discontinuity Rock Block Failure Slope Profile Slope
Orientation Roughness Persistence Size Source Area & Failure Path Monitoring
& Spacing Trajectory

I Kinematic Analysis | | Risk Assessment, Prediction and Modelling

Figure 1: Use and applications of terrestrial LIDAR point cloud data in relation to rock mass characterisation
and slope instability evaluation. Adapted from [1].

Example use of terrestrial LIDAR to effectively capture the three-dimensional nature of a rock mass
can be seen in Figs. 2 and 3. Evaluation of the fully geo-referenced X, y, z point cloud, using Split-FX
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[7], can then be undertaken to determine the orientation of specific discontinuities, which can then be
incorporated into stereographic software for kinematic evaluation of discontinuity-controlled failure.
Remote characterisation has been applied to different rock types, across a range of varying rock
quality. Experience indicates that use of remote data acquisition systems for evaluation of rock
fracture network orientations are better suited for geotechnical applications that involve blocky rock
masses. Representative scales of mapping should be established, however, to ensure that important
features are captured during the mapping exercise, to ensure that critical discontinuities are included
within the mapped region.

Figure 3: Point cloud representation of a chalk cliff face (left) and subsequent rockfall simulation (right).

A key benefit of the detailed x, y, z point cloud data is the ability to measure and evaluate
discontinuity spacing and persistence data which are key factors that dictate the block size and
location of strategic key blocks. Block size distribution data/statistics can be used to characterise the
rock mass, identify rockfall susceptible lithologies, and indicate the size and potential extent of any
likely rockfall. Representative cross-sections taken through point cloud data can been used to
undertake two-dimensional rockfall simulations, as depicted in Fig. 3. This type of analysis can be
used to assess potential remediation strategies, such as design of catch ditches, stand-off bunds and, if
necessary, consideration of catch fences [8]. However, successful use of rockfall simulation software
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relies on correct calibration of input parameters [8; 9; 10]. Further software developments are required
to incorporate different rock particle shapes within rockfall analysis, together with realistic impact
properties to ensure user confidence. Where possible, it is important that any analysis should be
validated against historical rockfall records or field trial data [9; 10].

Detrimental effects of blasting may also be quantified (by recognition of the extent and location of
any damage induced by blasting). Repeated scans have been used to quantify the volume difference
between successive scans (to determine both the location and extent of failure activity between
surveys) for a range of application within the extractive industries including monitoring of movement
of material.

4, Conclusions

Recent improvements in both digital data acquisition and software for subsequent analysis, through a
variety of techniques, have provided improved tools to capture rock mass characteristics, slope
geometries and digital terrain models for more effective slope management in the extractive
industries.

Research suggests that automated analysis of data using automated routines is not yet recommended,
and there is a need for educated users that are familiar with potential limitations/issues with use of
both hardware and software. Despite these reservations, when used correctly remote mapping
techniques can be extremely useful for not only capturing the geometrical characteristics of the rock
mass but also using this information for optimisation of excavation and extraction of resources. The
need for effective and efficient management of data collection, data transfer and subsequent analysis
and associated interpretation is essential.
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ABSTRACT

Suction-induced seepage is pivotal to the installation of caisson foundations in sand. Indeed, Pressure gradient
generated by the imposed suction inside the caisson cavity cause an overall reduction in the lateral soil pressure
acting on the caisson wall as well as caisson tip resistance. This transient loosening of soil around the caisson
wall helps caisson penetration into the seabed. However, these effects must be controlled to avoid soil failure
due to critical condition such as piping which may cause the installation process to fail because of instability of
the soil plug trapped inside the caisson cavity. Therefore, in order to have a safe installation process the soll
conditions, especially soil resistance and critical condition to piping must be predicted and controlled during
entire installation procedure.

In this paper, the effects of excess pore water pressure gradients due to applying suction on soil resistance in
homogenous sandy soil and isotropic heterogeneous seabed profile is addressed. For this purpose a simple finite
difference model is used to solve the normalised seepage problem. In order to apply the results to any size of the
caisson, the problem dimensions are scaled with regard to the caisson radius. The results show that a predication
of soil resistance based on constant permeability in the seabed profile with varying permeability by depth is non-
conservative, due to an overestimated reduction in effective stress under suction-induced seepage.

Keywords: Suction Caisson Installation; Varying Permeability with depth; Soil Resistance; Normalised seepage
problem

1. Introduction

A suction caisson consists of a thin-walled upturned ‘bucket’ of cylindrical shape made of steel [1-2].
This novel type of foundation has been approved to be very successful in oil and gas industry and the
current trend is to employ them as foundations for offshore wind turbines. Usually the initial
penetration into the seabed takes place under the caisson self-weight, and once the rim of the caisson
creates a sufficient seal with seabed due to its dead weight, suction is subsequently applied by
pumping out the water trapped inside the internal caisson cavity in order to push the caisson to the
desired depth.

In sandy soils, seepage causes an overall reduction in soil resistance and facilitates caisson installation
process [3]. The role of the porewater seepage induced by suction has been considered in most of the
design procedures of caisson installation in sand [4-6]. The effect of suction during caisson
installation in sand has also been considered in centrifuge model testing. A series of experimental
tests on suction caisson foundations in a geotechnical centrifuge were conducted to study the variation
and distribution of excess pore water pressure generated by suction in homogeneous dense sand [7].
Additionally, numerical modelling such as finite element simulations was employed to model the
suction caisson installation process [8]. The existence of low permeability silt layers has been
considered by Tran et al [9].

In this paper, the numerical procedure proposed by Harireche et al. [3, 10] is employed to investigate
the effect of seepage induced suction on soil resistance during caisson installation in homogenous
sand and in a seabed profile with decreasing permeability by depth. The aim of this study is to assess
whether a homogenous seabed model is a conservative assumption for caisson installation design or
not.
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2. Normalised Seepage Problem and Permeability Profiles

In order to draw conclusions that are not related to the problem dimensions, any length measure is
scaled with respect to the caisson radius and pressure is normalised by the magnitude of applied
suction. Figure 1, shows a vertical section through the meridian plane of the system caisson-soll
where a cylindrical system of coordinates r* and z*is used. For the dimensionless counterpart of the
caisson penetration depth h*=h/R is adopted.

Meanwhile, to describe the variation of permeability with depth, the following expression is adopted:

K(Z) (1 g)ee? (1)
» (1-B)e™ +8

Wherek = K/ ny,, andK is the absolute permeability andienotes the porosity. The coefficidpt

denotes the permeability at the seabed surfacedp are two constants, and z*=z/R indicates the
normalised depth. Figure 2 shows different permeability profiles and the corresponding values of the
parametersy and . Three cases have been selected, which will be investigated in the following
sections. Case A corresponds to a homogeneous seabed profile with constant permeability. In case B,
the permeability decreases with depth almost linearly. Finally, in case C, permeability has a non-linear
profile and decreases with depth at a much higher rate compared to case B. Additionally, in both
cases B and C, the soil is assumed to become impervious at large depth.
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3. Soil Resistanceto Suction Caisson | nstallation

The suction magnitude imposed over the radial distance(ld¢ 1) is expected to increase during
installation. Indeed, as the caisson is pushed into the seabed, suction must be increased to overcome
the increasing solil resistance. Water seepage caused by suction produces a hydraulic gradient which,
on both faces of the caisson wall, varies with depth. Figures 3a and 3b show the vertical component of
the normalised pressure gradient gp / 2z on both sides of the caisson wall as a function of scaled

depth z for the three permeability profiles (cases A, B and C). Values of scaled penetration depth h
0.2and 1 have been considered. It can be seen that the pressure gradient on each side of the caisson
wall is higher at the early stages of the installation process. Maximum values of the gradient occur at
the caisson tip.
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Figure 3: Dimensionless pressure gradient as a function of normalised depth for different permeability profile
(case A, B and C). (a)h 0.2 & (b) h=1

4. Lateral Frictional Resistance on Caisson Wall

In the presence of seepage the reduction of lateral effective stress around the caisson wall is expressed
by Equation.2 [3, 10].

Ao, (R, 2)
KsS
and

=L(Z)+L(2) W

L(Z)=] g ¢ >0 L(2)=] g0y <0 anc [L(2)[>|L(2)
Where, g (R, {) andg, (R, {) denote the vertical component of the pressure gradie the

inner and the outer sides of the caisson wall respectively. Using a numerical calculation of
the integrals in Equation 3.0 on the normalised finite difference mesh, the scaled reduction of
the lateral effective stress has been obtained for two different scaled penetration depth
(Figure 4a, b). It can be observed that a higher rate of variability in the permeability
corresponds to a lower reduction in the lateral effective stress. This shows clearly that the
assumption of a homogeneous seabed is not in favour of a conservative estimation of soil
resistance to caisson penetration as it overestimates the effect of seepage on the reduction of
the lateral effective stress.

(3)
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Figure 4: Change in the normalised lateral effective stress on caisson wall due to suction-induced seepage. (a)
h'=0.2 & (b) h =1.

5. Conclusion

In this study the effect of a permeability varying with depth on the prediction of shear soil resistance

to caisson penetration has been considered. The effect of suction induced seepage on solil resistance to
caisson penetration has been investigated using the normalised solution of seepage around the caisson
wall. It has been observed that a constant permeability profile leads to an under-estimation of soil
resistance to caisson penetration. This highlights the importance of taking into account a permeability
profile with certain variability with depth for a more accurate prediction of the required suction
throughout the installation process.
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ABSTRACT

This paper is concerned with a numerical study of the vertical bearing capacity of a strip footing foundation. We
consider a rough contact between the base of foundation and the substrate which is assumed elastic perfectly
plastic follow the Drucker-Prager model. Analyses were performed by incremental finite element simulations.
The post-treatment of the numerical results permits one to investigate the effect of the non-associated flow rule
on the plastic limit load and the failure mechanism in order to build theoretical solutions.

Keywords: Bearing capacity; shallow foundation; Drucker-Parger criterion; non associated flow rule; Finite
element method

1. Introduction

The plastic limit load evaluation of soil is of a great importance in theoretical plasticity and civil
engineering design. Since the first analytical solutions of the bearing capacity of shallow foundations
presented by Prandtl [12] and Reissner [13], a large number of contributions and papers have been
published in literature.

The limit analysis [5, 14, 4] considers rigid-perfectly plastic materials under proportional loading. It
assume an associated flow rule which means that the dilatancy angle is equal to the friction angle of
the material. Nevertheless, it has been recognized that dilatancy angle is lower than the friction one
and thus the plasticity is not associated. Some numerical solutions obtained by the finite element
method are proposed in the literature [6, 10]. The purpose of this paper is to investigate numerically
the influence of the non associativity of the Drucker-Prager model on the plastic limit load. A
particular focus is devoted to the failure mechanism which is compared to the Prandtl and Hill
mechanisms. The step-by-step elastic plastic computations are derived by the software Cast3m [7].

2. The non associated Drucker-Prager criterion

In their pioneering work [18], Drucker and Prager proposed a generalization of Von Mises criterion
by including the effect of the hydrostatic pressure (or the first invariant of the stress field).
The model is known as the Drucker-Prager model for which the yield function is given by:

f(aij)zae +a.tr(aij)+ Oy S0 i (@]
3 1
Where: Equivalent stress: o, = (E $;;S;;) 2, Deviatoric part of the stress tensor : s; = o, — 0,0, -

Hydrostatic Stress: o, = 1tro-ij , Pressure sensitivity factor o = ta% , 0, -Yield stress
The plastic potential is given by: g(aij) =0, + ﬂ.tr(aij)s O e (2)
Where: S = tany’
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3. Bearing capacity and the collapse mechanism of the strip footing

A rigid strip footing is pressed into an elastic perfectly plastic soil by a vertical loading under the
assumption of plane strain conditions. The substratum is considered weightless and obeys the
Drucker-Prager model with a non associated flow rule (1) and (2). The interface contact with the
punch is assumed rough . The width of the foundation is noted by B and the dimensions of the
substrate are LxH

Due to the symmetry, only the half of the sheet is modeled by the finite element method. The
substrate is discritized by 6-noded triangular elements as depicted in figure 1. The path loading
consists of uniform increments of vertical displacement exerted on the nodes beneath the footing. The
two vertical sides of the soil are restrained in horizontal direction while the base is fixed in both
directions (see figure 1). The rough condition between the soil and the footing is ensured by
preventing the horizontal displacement of the nodes under the footing.

Numerical simulations were carried out withB=2m, H =5B and L=10B . The following

material parameters were used: E =30MPa, v=0.3, o, =0.01MPa and ¢ =35°

4. Limit plastic load

Figure 2 represents the load-displacement curves for different dilatancy anglesy . The footing load is
obtained as the sum of the nodal reactions at the nodes below the punch. It is clearly seen that the
limit load is well-defined without oscillations in the curves for all values of the dilatancy angle except
for very small values of y (such asy =0°) which are known as difficult cases [3, 9]. It is worth
noting that, in many works in literature [10, 15] with Mohr-Coulomb model, oscillations are observed
in the load-footing settlement and the intensity of this oscillation increases with increasing mesh
refinement and with increasing. As expected, the limit load for non-associated plasticity is lower than
the one corresponding to the associated model. More precisely, the limit load decreases with the
dilatancy angle. This property has been observed in other published works [9, 1, 2].
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Figure 2: Plastic limit load. Figure 1: Mesh and boundary conditions

5. Failure mechanism

Figures [5, 6, 7, 8], show the failure patterns depicted by the isovalues of the incremental vertical
displacement at the numerical limit load for a friction angle ¢ =35°° and an angle of dilatancy
W= {35,25,20,10 } .The collapse mechanism is reminiscent of the Prandtl's one [5] and shows three
zones of different strains. (See figure 3).

It is important to note that the for associate case y =@ =35°in the figure5 the mechanism is
identical in shape and size to the mechanism for an associated Mohr-Coulomb model predicted by
Method of characteristics, using the computer program ABC [11]) in the figure 4. Moreover, we
observe that the extend of rupture area for = ¢ is greater than that for y < ¢ the deformation is
highly localized for the non-associated material while strains seem to be more diffuse inside the
mechanism for associated Drucker-Prager model.
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Figure 3: The Prandtl failure mechanism Figure 4: Mechanism with ABC program (y=¢p=35°)

Figure 5: Mechanism for the associated case w=¢p=35 Figure 6: Mechanism for the associated case y=25

Figure 7: Mechanism for the non associated (y=10°) Figure 8: Mechanism for the non associated (y=20°)

Moreover, it seems that the triangular wedge (ABC) is independent of the dilatancy angley . To

investigate this more detailed analysis by post-treatment of the numerical results has been conducted
in order to identify with the maximum of precision the band between the triangular wedge ABC and
the Logspiral zone BCD and to measure the base anglea . Recall that for the associated Mohr-

Coulomb material = L% + %J . To capture the transition line, we considered the curves of vertical
displacement on two horizontal lines L, and L, (see figure [1]) and then, by the finite differences

method, we computed and plotted the curvature of theses curves, by means of the first derivative, in
terms of the horizontal coordinates.
For the associated Drucker-Prager model and for different values of the friction angle ¢ , the measured

values of the angle « obtained by post-processing are in good agreement with the value of (% + %J

as summarized in table 1.Let us now consider the non associated model. For a friction angle y=35°,
the values of the angle base o obtained by post-treatment are given in table 2 for different values of
the dilatancy angley = {35,30,25,20,15,10 } It is observed that this value is independent of the

dilatancy angle and can therefore be estimated by L% + %J for both associated and non associated
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Table 1: the measured angle (a.°) for associated case  Table 2: the measured angle (o.®) for non associated case

y=(°) | Theoretical Measured | Error % v (%) Measured Error %
35 62.5 62.34 0.25 35 62.34 0.25
30 60.0 57.60 4.00 30 62.25 0.40
25 57.5 55.60 3.20 25 62.25 0.40
20 55.0 53.88 2.00 20 62.34 0.25
15 52.5 52.05 0.80 15 62.15 0.56
10 50 50.33 -0.60 10 62.25 0.25

6-Conclusions

This paper investigated the effect of the non associativity of the Drucker-Prager model on the plastic
limit load and the collapse mechanism of substrate.

The obtained results confirm that the ultimate bearing capacity decreases with the dilatancy angle and
provide relevant information on the collapse mechanism:

* For non associated materials, the failure mechanism is a Prandtl-type one for both associates and
non associated materials but the extend of failure zone narrows with the dilatancy angle.

« It turns out that « is independent of the dilatancy angle for both associated and non associated
materials.

Finally, it should be noted that further research has to be carried out to improve the approach used in
this work in order to identify with a maximum of precision the interface lines between different blocs
of collapse zones which will help in buliding analytical solution.
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ABSTRACT

This study presents the application of a density-dependent finite element model to simulate the transient effects
of sea level rise (SLR) on seawater intrusion (SWI) in a conceptual case of unconfined aquifer. The model
considers both the unsaturated and saturated flow conditions. To model the natural process of SLR, a time-
dependent boundary condition is used to define the hydrostatic head imposed by seawater at the coastal
boundary where the effect of the gradual rise in the sea level with time is considered. The specified values of
SLR are chosen, in the range of that predicted by IPCC (Intergovernmental Panel on Climate Change), for five
different periods of time in the current century (from 2014 to 2100). The results indicate that a considerable
advance in SWI can be expected in the coastal aquifers until the end of century. The rising of sea level is
followed by the lifting of the groundwater table, especially near the shoreline, which gradually declines towards
the inland boundary. The effects of spatial variations of the shoreline slope on SWI under SLR condition are
also investigated. The results highlight that the flatter slopes of the shoreline intensify the landward process
of seawater intrusion.

Keywords: seawater intrusion; sea level rise; numerical modelling; unsaturated flow; unconfined aquifer

1. Introduction

Groundwater is a vital component of the global water cycle and it is a valuable resource for water
supply. However, the quality of groundwater in the arid and semi-arid coastal areas is one of the
environmental issues of the 21% century, which is continuously threatened by the landward intrusion
of seawater. Under natural conditions, the replacement of freshwater in coastal aquifers by the
seawater due to density-dependent landward movement of saline water body into the freshwater is
known as SWI [4]. SWI is considered as the final outcome of this density-dependent interaction
between freshwater and seawater and is responsible for dynamic equilibrium of groundwater
movement. The hydrodynamic dispersion which is the combination of mechanical dispersion and
physio-chemical dispersion (molecular diffusion) controls the spreading out of solute and the mixing
process.

A distinct curved zone of saline water, known as the regional “saltwater wedge”, is created in the
freshwater body and it is the source of contamination that degrades the quality and quantity of
freshwater. The negative impacts of SWI would be intensified by the anthropogenic factors such as
unplanned exploitation of groundwater and also by the natural factors such as sea level rise (SLR) and
tidal effects. The reduction of atmospheric pressure and thermal expansion of oceans are the earliest
outcomes of global warming which will in turn lead to the increase of water level in the oceans and
seas. However, melting of mountain glaciers, small ice caps, and also melting of polar (Greenland and
Antarctic) ice sheets will exacerbate its negative effects in terms of SWI by accelerating the SLR
process [2].

Limited research has attempted to study the effects of gradual rise of sea levels on SWI in aquifers.
The majority of previous works have focused on simulation of this problem in confined (and even
unconfined aquifers) with vertical seaside boundary (without slopes) subjected to constant, time-
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independent and unrealistic values of SLR in saturated flow condition. In the present work we study
the transient effects of sea level rise on seawater intrusion over a century in a hypothetical unconfined
aquifer, considering the effects of the unsaturated (vadose) zone and the shoreline slope.

2. Model Description

In this study, the SUTRA code [1] is used for numerical modelling of 2D case studies of unconfined
aquifer. SUTRA implements a hybridization of finite element and integrated finite difference methods
to solve the density-dependent flow and transport mass balance equations [1]. A rectangular aquifer
with the dimensions 500 m by 30 m is considered as the base model. It is discretized using irregular
mesh with 2483 elements and 2594 nodes. The idealized form of the base aquifer and the used
boundary conditions are shown in Figure 1. The aquifer is divided vertically in two layers; an
unsaturated layer overlying the bottom saturated layer. The hydraulic gradient in the system is 0.0032
corresponding to the defined head boundaries. The modelling parameters used for the groundwater
flow, solute transport and porous medium are: Dy,, coefficient of water molecular diffusion = 1.0%10°
m?s; &p/6C, change of fluid density with concentration = 700.0 kg*(seawater)/kg(dissolved
solids).m3; g, gravitational acceleration = 9.8 m/s®; Cea, SOlute mass fraction of seawater = 0.0357
kg(dissolved solids)/kg(seawater); psea, density of seawater = 1025 kg/m; p,, density of fresh water =
1000 kg/m?; u, fluid viscosity = 0.001 kg/(m.s); aL, longitudinal dispersivity = 2.0 m; a7, transverse
dispersivity = 0.2 m; permeability of top layer = 1.3*10™? m?; permeability of bottom layer = 1.3*10™
m?; porosity of top layer = 0.37; porosity of bottom layer = 0.35 and thickness of model = 1.0 m. The
following unsaturated parameters were considered for Van Genuchten function ¢=12.5*10"* (m.s®)/kg,
n=3.5 and S,,=0.01.
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Figure 1: Boundary conditions of base model Figure 2: Global average SLR estimated by IPCC [3]

The unsaturated flow simulation in the model requires a fine temporal discretization to limit the
instability and oscillatory results of calculated pressure and saturation values which may change
sharply during wetting events [1]. To obtain the natural initial values of pressure within the domain,
first a steady state solution is obtained through an extra simulation with the head boundary conditions
described above at the inland and seaside boundaries of the aquifer. The system essentially reached a
steady state after 10000 time steps, with time step of 0.25 days. In order to more closely replicate the
behaviour of rising sea levels, the model is subjected to five different increments of rising sea levels
starting from current time (year 2014) up to the end of century (year 2100). According to IPCC report
[3] future SLR is expected to occur at a rate greatly exceeding that of the recent past. Figure 2 shows
the estimated global average SLR between 1990 and 2100 based on different economic and
technological development scenarios [3]. By 2100 it is expected that the rise in sea levels would be
between 20 cm to 88 cm [3].

The current steady state condition of the model with the sea level located at elevation of 24 m is
assumed to represent the hydrological situation for the year 2014 and it is used as the reference level
for simulation of the system in the following time periods. The typical values for SLR used in the
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present work are marked on Figure 2 for the years 2014, 2040, 2055, 2070, 2085 and 2100 which
show the SLR of 0.1m, 0.2m, 0.35m, 0.5m and 0.65m (with respect to 2014 as the base line) in years
2040, 2055, 2070, 2085 and 2100 respectively. The corresponding hydraulic head boundary
conditions defined at the seaside boundary in each rising period are increased linearly with time. The
simulation outputs (pressure and salinity) of each time period are used as the initial condition for the
next period.

Furthermore, the effect of different shoreline slopes (and the corresponding inundated surfaces) on
SWI process is investigated under the gradual rise of sea level. The shoreline boundary of the base
model is geometrically modified by implementing a different inland slope that starts from elevation of
15 m above the bottom boundary. For the purposes of comparison in this paper, the revised problems
are simulated under the same hydraulic gradient (0.0032).

3. Results

An initial steady state simulation is used to estimate the current situation of saltwater wedge profile
that exists in the system prior to SLR. The 50% iso-concentration line for this model is shown (by
dashed line) in Figure 3. Under the present state (2014) the toe of the saline wedge is advanced by 70
m into the aquifer as a result of natural hydrodynamic dispersion. The results of the gradual rising of
sea level at the end of each time period are also presented as 50% isochlor lines. The results show that
the salinity wedge continues its inland intrusion to the extent that in year 2100 the toe will be located
at 125 m from the coast boundary. The results of variation of groundwater level during the SLR
process indicate that there is a significant lifting in water table especially in the vicinity with the sea
boundary and it gradually declines towards the inland boundary. This variation of the hydraulic
gradient during the SLR increases the thickness of the saturated layer of the system which results in
the further inland penetration of saltwater/freshwater interface [5].
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Figure 3: Variations of 50% iso-concentration lines of developed base model with SLR

The 50% iso-concentration profiles of the current steady state condition (year 2014) in aquifers with
different shoreline slopes are illustrated in Figure 4a. The inundation surfaces resulting from different
shoreline slopes provide the wider contact areas of the models with the seawater. In other word, a
wider inundation surface resulting from a flatter slope accelerates the SWI process. These negative
patterns of the inclined coastal boundaries also emerge during the rising of the mean sea levels. Figure
4b shows the variations of the same curve of saline/freshwater interface under gradual rising of sea
level (up to 0.65 m) at the end of century. In the model with 10% slope the rising of sea level extends
the inland location of saline wedge by 70 m compared with its current steady state condition.
However, in the aquifer with 5% slope and under the same conditions, the toe location is advancement
about 150 m during the same gradual SLR. Therefore the small variations of slopes play an important
role in natural periodic progressive of SWI. Generally, the increasing of the inundation surface areas
can result in reduction of fresh groundwater resources in the aquifer; lowering the capability of the
groundwater discharge of the aquifer to cope with the intruded seawater.
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Figure 4: a) Current steady state variations of 50% iso-concentration lines of SWI in the aquifers with different
coastal slopes; b) Variations of same isochlors with the SLR at the end of centaury

4. Conclusions

In this study, the transient effects of the gradual rising of sea levels (expected during the current
century) on the SWI is investigated through a set of conceptual models of unconfined aquifers with
different sloped coastal boundaries. It has been shown that rising of sea level leads to further inland
advancement of seawater and the problem is intensified by the flatter slopes of shoreline boundary.
An implication of these findings is that the threats and the unexpected outcomes of the SLR (and the
global warming) could have serious consequences on the quality and quantity of fresh groundwater
resources in real case studies coastal areas, especially in shallow unconfined aquifers.
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ABSTRACT

The slope stability analysis is one of the fundamental problems in geotechnical analysis and design of earth
structures particularly road and embankment. The stability of slope can be analyzed by finite element method as
a powerful approach which is accurate, versatile and requires fewer a priori assumptions especially, regarding
the failure mechanism. However, the inherent variability of the soil parameters which affect slope stability
analysis dictates that the problem is of a probabilistic nature rather than being deterministic. In this research,
random finite element method and limit equilibrium stochastic analysis are used for probabilistic analysis and
reliability assessment of the stability of cohesive vertical cut. The selected stochastic parameters are cohesion
and unit weight, which are modelled using a truncated normal probability distribution function. The height of
slope is regarded as constant parameter. The resultant probability distributions of safety factor and reliability
index of two methods are compared to each other.

Keywords: Slope stability analysis; Random finite element method; Cohesive vertical cut.

1. Introduction

Investigating the stability of slopes and vertical cuts is one of the considerable geotechnical problems
and there has been a great deal of research into the stability analysis of slopes and vertical long
unsupported cuts corresponding to plane strain problem [8]. In this regard, numerical methods such as
elasto-plastic finite element technique have been widely used in different problem conditions. There is
a useful literature on using finite element method and its advantages as a discretization tool in slope
stability analysis [5].

In recent years, some researchers [7] have been following a more rigorous method of probabilistic
geotechnical analysis in which deterministic formulation of the finite element method are combined
with random field generation techniques by taking into account mean value, standard deviation,
correlation and load design parameters. This numerical methodology is named Random Finite
Element Method (RFEM) which was first introduced by Griffiths and Fenton [3] and is employed in
many applications. By now many researcher applying this method in geotechnical problem such as
slope stability [2], bearing capacity [4] and retaining wall [6]. It is become one of the suggested
design approaches.

In this paper, the random finite element method is used for probabilistic analysis and reliability
assessment of the stability of cohesive vertical cut. The selected stochastic parameters are cohesion
and unit weight, which are modelled using a truncated normal probability distribution function. At the
end of the paper, the distribution of stability number is obtained and discussed.

2. Random field technique

Random field are utilized to realistically present the ground, allowing for the ground properties to
varying spatially, as they do in nature. The simplest random field's models follow a normal or
trenched distribution. This is because the multi-variate normal distribution is relatively simple to use,
both analytically and to simulate. A normal random field is characterized by mean (), a variance (

o?) and a correlation structure. The mean could spatially varying, 4(x ), and it is appropriate to do so
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when a trend has been identified at the site being modelled. In concept, the variance could also be
spatially varying, o2(x), although this is rarely implemented since a very extensive site investigation

would be required in order to even roughly estimate the variance trend. Generally, the variance is
assumed to be stationary, in other words the same everywhere.

The most difficult aspect of random field models to both understand and estimate is its correlation
structure. The purpose of a correlation structure is to provide some persistence in random field- points
close together will have similar properties while widely separated points could have quite different
properties. This feature of random fields is what makes it a realistic soil model since, in general, real
soils also tend to have similar properties at nearby points and less similar at large separations.

3. Random finite element method

As it is mentioned before, the random finite element method combines elasto-plastic finite element
analysis with random field theory. In this technique, a random field of stochastic parameters are
generated and mapped onto the finite element mesh. For each random set, the entire elasto-plastic
analysis is performed.

In a random field, the value assigned to each element is itself a random variable. These variables can
be correlated to each other by controlling the spatial correlation length (&), which defined for each
random parameter. Furthermore, the correlation function is used to represent the field observation that
soil samples taken close together are more likely to have similar properties, than samples taken from
far apart. The details of methodology could be found in other publications [4].

In random finite element process, for a given set of input (mean, standard deviation and spatial
correlation length), Monte Carlo simulations are utilized. This means that the stability analysis of
vertical cut is repeated many times until the statistics of the output quantities of stability number
become stable.

4. Problem definition

The stability safety factor of cohesion vertical cut stability is determined by limit equilibrium method
as:
4C

= H (1)

where, H is the height of cut and, y and c are the soil unit weight and cohesion respectively.

The stochastic stability of this type of slope can be made in several methods. In this research this
purely cohesive soil under its own weight is analyzed by elasto-plastic finite element method. The
theoretical basis of the method is described in Literature [9].

The soil parameters such as unit weight () and cohesion (c) are considered as input stochastic

parameters which are modelled using a truncated normal probability distribution function. The height
of slope (H), Young’s modulus (E), Poisson’s ratio (v) and friction angle are regarded as constant
parameters. The stochastic parameters with truncated normal probability density function are shown
in Table 1 and the deterministic parameters are given in Table 2. A computer model was developed by
codding in MATLAB. For modelling of the soil behaviour, a specific Moher-Columb elasto-plastic
model is used.

The spatial auto-correlation function for normally distributed field's parameters is assumed to be

Markovian as:
2|‘C|
P =exp| - T (2)

where 1 is the distance between any two points and 6 is the correlation length beyond which two
points in the field are largely uncorrelated. In many studies, the correlation length is considered equal
to the smaller model lengths [1,10]. In this study, the correlation length is selected equal to 4.0 m.

Table 1: Stochastic parameters
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Parameters Mean Standard deviation | Minimum | Maximum

4 18 0.5 16.50 19.50
Cc 25 3 16 34

Table 2: Deterministic parameters

Parameters value
E 3x10* MPa
vV 0.30
H 6m
L 10m
(O] 0

To solve this stability problem by random finite element technique, a model consists of 56 elements
with side length 1.0 m is implemented. These elements have eight nodes and each of the nodes has
two degrees of freedom in the horizontal and vertical direction. The boundary conditions are such that
the bottom side of the soil layer is fully restrained. The left (A) and the right (B) side of the soil layer
are restrained only in the horizontal direction. This two-dimensional plane strain state body analyzed
under self-weight. The geometry and mesh details of cohesive vertical cut are shown in Figure 1.

L
Figure 1: The geometry and mesh details of cohesive vertical cut

It was determined that 10,000 realizations of the Monte-Carlo process for each parametric group, was
sufficient to give reliable and reproducible estimates of the probability of pore pressure ratio. Figure 2
show the probability density function and cumulative distribution function of safety factor. It can be
seen the probability density function of the safety factor for vertical cut slope has normal distribution
and the probability of failure is about 60%.
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Figure 2: (a) Probability and (b) Cumulative distribution function of stability number in cohesive

vertical cut
5. Conclusions
Slope stability analysis is a probabilistic problem due to the inherent uncertainties in the
geotechnical parameters, model performance as well as human uncertainty. In this paper, the
random finite element method was used to assess the reliability of vertical cut stability based on
the uncertainty in the geotechnical properties. The results showed that the probability distribution
of the safety factor also has a nearly normal distribution. The sensitivity analysis also showed that
the friction angle is the most influential parameter in stability of vertical cut.
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ABSTRACT

Liquefaction of soils is defined as significant reduction in shear strength and stiffness due to increase in pore
pressure. This phenomenon can be assessed in static or dynamic loading types. However, in each type, the
inherent variability of the soil parameters dictates that this problem is of a probabilistic nature rather than being
deterministic. In this research, a random finite element analysis is used for reliability assessment of static
liquefaction potential of loose sand under monotonic loading. The soil behaviour is modelled by an elasto-
plastic constitutive model. The selected stochastic parameters are soil parameters such as unit weight, peak
friction angle and initial plastic shear modulus. A sensitivity analysis was carried out to evaluate the response of
liquefaction potential with respect to changes in input stochastic parameters. It is shown that the unit weight is
the most effective parameter within selected stochastic parameters in soil liquefaction potential.

Keywords: Reliability analysis, Soil liquefaction, Random finite element method, Monotonic loading

1. Introduction

Liquefaction resulting from the application of monotonic undrained loading is referred to as static
liquefaction. Among the previous research works, limited attempts have been made to stochastic
analysis of static liquefaction. However, the inherent uncertainties of the characteristics which affect
static liquefaction dictate that the problem is of a stochastic nature rather than being deterministic. In
this research, the random finite element method is used to assess the reliability of the static
liquefaction potential of sandy soils based on probability density function of modified pore pressure
ratio at each depth. The soil parameters such as saturated unit weight, peak friction angle and initial
plastic shear modulus are considered as input stochastic parameters. A computer model was
developed by coding in MATLAB. For modelling of the soil behaviour, a specific elasto-plastic
effective stress constitutive model UBCSAND that was developed by Byrne et al. [1] is used.

2. Constitutive model: UBCSAND

UBCSAND [2] is a 2-dimensional effective stress plasticity model for use in advanced stress-
deformation analysis of geotechnical structures. This model predicts the shear stress-strain behaviour
of the soil using an assumed hyperbolic relationship and estimates the associated volumetric response
of the soil skeleton using a non-associated flow rule. Information on UBCSAND is presented by
Beaty and Byrne [3] and Puebla et al. [4].

3. Modified pore pressure ratio

If a soil layer is loaded at surface (e.g., constriction of embankment) the pore pressure ratio must be
modified based on increasing in total stress (AP) as following:

(1) = =2 )

T P4AP
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Where r is pore pressure ratio, u
stress.

is excess pore water pressure and Py is initial mean effective

excess

4. Random field modelling

To sake the spatial variability of soil’s parameters a two-dimensional (2-D) Gaussian random field
modelling is used. In this paper, the exponential correlation function, which is commonly used in
random field modelling, is selected [5].

5. Procedure of static liquefaction reliability analysis by RFEM method

For developing the model to reliability analysis of static liquefaction, the finite element method is
combined with random field generation techniques. For this purpose a monotonic load is exerted on
the surface of saturated loose sand layer and at the end of loading, values of mean total stress, pore
water pressure and mean effective stress are determined. Finally for evaluation of liquefaction
occurrence, the values of modified pore pressure ratio at each point of field region are obtained.

In each realization after producing the stochastic soil parameter, they are mapped to the elements and
the soil mass analyzed by the finite-element method under external load (load incrementally
increased) and modified pore pressure ratios are calculated in each point. This analysis over a
sequence of realizations (Monte Carlo simulation) yields a sequence of computed responses, allowing
the distribution of the modified pore pressure ratio to be estimated.

6. Example

A 10m*30m horizontal saturated loose sand layer is considered and the static loading is exerted to the
surface of it. The field region includes 30 by 10 square elements with element size of 1m (Figure 1).
A two-dimensional plane strain state body subjected to a monotonic load of 20kN/m.

The stochastic parameters with truncated normal probability density function are shown in Table 1
and the deterministic parameters are given in Table 2. Figure 2 show typical random field realizations
of stochastic input parameters. Figure 3 show modified pore pressure ratio variation in soil mass at the
end of loading related to one realization. According to this figure, the modified pore pressure ratio and
probability of liquefaction occurrence reduced with increase in the soil depth.

v Y'Y Y YYvVYvV Y Y V Y VY VYVYVYYVYYVY Y ‘L YVvYyvYVY YWY
ES Lo 3
_ A :
= P 5 3
il B
ES E =3
B 3 > c e 3
y, 30m .,
Figure 1: Finite element meshes discretization of problem.
Table 1.Stochastic truncated normal parameters.
Parameter Mean Standard deviation Maximum Minimum
y sat 19 0.5 21 17
oF 33 1 37 29
GL 30000 5000 50000 10000
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Table 2: Deterministic parameters.

P B Y 0 e

Parameter | m,,n, n k a f w R v K
° | (kpa) | (kPa) | kim3) | (M) | o
Value 0.5 0.4 0.5 100 2e5 10 10 0.95 0.35 900 300
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Figure 2: Sample realization of 2D normal random
field. Representing spatial variation of saturated unit

weight.

Pore Pressure Ratio

Y (m)

) X (m)
Figure 3: Sample field of modified pore pressure
ratio variation.

At the end of analysis a probability distribution curve for the mean total stress, pore water pressure
and mean effective stress were achieved in each element. Consequently, the probability distribution
function of modified pore pressure ratio in all elements can be determined and probability of
liquefaction is obtained at these elements.
Figure 5 shows, the probability of zero mean effective stress in the eighth element is approximately
equal to 68% and this probability for the ninth and tenth elements is equal to 100%; that means
occurrence of limited liquefaction in eighth element and complete liquefaction in ninth and tenth

elements.
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Figure 4: Probability density function of mean
.effective stress in depth steps 1.0m
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Figure 5: Cumulative density function of mean
effective stress in depth steps 1.0m.

Figure 6 shows the probability density function of modified pore pressure ratio in depth steps 1.0m.
According to Figure 7, the probability of liquefaction (modified pore pressure ratio equal to 1.0) in the
eighth element is approximately equal to 68%. This probability for the ninth and tenth elements is
equal to 100% which represents an occurrence of limited liquefaction in eighth element and complete
liquefaction in ninth and tenth elements
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Conclusion

The paper is presented the reliability analysis of static soil liquefaction based on probability density
function of modified pore pressure ratio at each depth using the random finite element method. The
soil behaviour is modelled by an elasto-plastic effective stress constitutive model. Each realization of
the Monte Carlo simulation involves a 2D Gaussian random field modelling. Soil parameters such as
saturated unit weight, peak friction angle, and initial plastic shear modulus are selected as stochastic
parameters which are modelled using a truncated normal probability density function. In addition, the
sensitivity analysis of the proposed model indicated that this method can correctly predict the patterns
of influence of the stochastic parameters.
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ABSTRACT

The formation of subway network in metropolis inevitably brings the case of shield tunnels going across the
adjacent tunnels at different locations to shield tunnel excavation. Considering the complicated project of four-
line overlapped tunnels in Shanghai metro construction, in which the Metro Line 11 below-shield and above-
shield cross the short-distance Metro Line 4 tunnels successively, 3D-FEM simulation together with field
measurements is employed to study the ground surface displacement. According to the distribution law of earth
pressure around the existing tunnels, the face support pressure and grouting pressure change with the advance of
shield machine. Based on analysis of numerical results and measured data, the influence of short-distance multi-
line overlapped shield tunneling on the ground surface displacement is obtained. The conclusions would be
helpful for the construction of similar multi-line overlapped tunnels.

Keywords: Multi-line Overlapped Tunnels; Shield Tunneling, Ground Surface Displacement; 3D-FEM

1. Introduction

The ground surface displacement caused by shield tunneling is one of the most important indicators
during the tunnel construction. More and more tunnels are being constructed to meet the increasing
demands of transportation in metropolises such as Beijing, Shanghai and Guangzhou. As a result,
improving an existing subway network inevitably requires new tunnels driving closely across running
tunnels. In Japan, Yamaguchi et al. [1] analyzed the behavior of four subway tunnels that run closely
each other by collecting numerous monitoring data. Lee et al. [2] performed a series of numerical
simulations to investigate the surface settlement troughs, tunnel stability and arching effects that
develop during two parallel tunneling. Chehade and Shahrour [3] carried out a numerical analysis of
the excavation of twin-tunnels with a particular focus on the influence of both the relative position
and the excavation procedure on the soil settlement. Nagel et al. [4] found that the influence of
heading face support pressure and grouting pressure on the surface settlements can be realistically
described by the use of the holistic proposed simulation model.

Ground surface displacement has been extensively analyzed in the condition of single-line and
double-line tunneling. However, the case of Metro Line 11 below-shield and above-shield
successively cross the short-distance Metro Line 4 tunnels results in unforeseen impact on ground
displacement in Shanghai. For this reason, this paper performs a 3D finite element numerical
investigation of ground surface displacement during the construction of short-distance multi-line
shield tunnels. Based on the comparison between numerical results and measured data, some
conclusions would be helpful for the construction of multi-line overlapped tunnels.

2. Project Background

The new Metro Line 11 tunnels are constructed by two EPB shield machines with diameter of 6.34 m.
From Xujiahui station to Shanghai gymnasium station, the Up-line 11 shield and Down-line 11 shield
cross from below and above the running Metro Line 4 tunnels with the angle of 75° successively. The
minimum vertical clearance between the Line 11 and Line 4 is 1.82 m and 1.69 m respectively. The
external diameter D of the Line 11 tunnel is 6.2 m, width of the lining ring is 1.2 m, thickness of the
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segment is 0.35 m and the strength grade is C55. Corresponding parameters of the Line 4 tunnel are
same to those of the Line 11 tunnel. The mechanical parameters of the soil are summarized in Table 1.

Table 1: Mechanical parameters of the soil

Soil layer Depth (m) | y (kN/m’) | ¢ (kPa) | ¢ (°) | Es (MPa) | u
@ Fill 0.0~2.0 18.3 15.0 | 16.0 4.52 0.33
@ Silty clay 2.0~3.3 18.5 26.0 |17.0 4.48 0.32

® Muddy silty clay | 3.3~6.6 17.4 100 |165| 254 |032

@ Muddy clay 6.6~15.0 16.7 11.0 | 12,5 2.09 0.33

®); Clay 15.0~16.0 17.8 14.0 | 14.5 3.36 0.26
®),, Sandy silt 16.0~20.5 18.2 50 |33.0 8.21 0.24
®) Clay 20.5~24.8 17.8 14.0 | 14.5 3.36 0.26

®); Silty clay 24.8~39.8 18.1 16.0 | 225 4.66 0.29

3. 3D-FEM analysis model

In order to study the ground surface displacement induced by short-distance multi-line shield
tunneling, a 3D model with dimension of 84 m (direction of the Line 11 excavation) x 84 m
(longitudinal direction of the Line4)x60 m (depth) is established, as shown in Fig. 1. An elastic
perfectly plastic constitutive relation based on the Drucker-Prager yield criterion is adopted to
describe the soil behavior. The soil, tunnel lining and equivalent layer are modeled by 8-nodes solid
elements. It should be noted that, after the completion of Up-line 11 tunnel, the Down-line 11 shield
starts to move forward. The Young’s modulus of the grout changes with excavation step from 0.58
MPa to 1.2 MPa, which is supposed to reflect the process of grout hardening. According to the
distribution law of vertical earth pressure around the existing Line 4 tunnels (see Figure 2), the
grouting pressure was set to be equal to the vertical earth pressure of working face center(s,) and the
face support pressure was given by P=Ko, (K is the coefficient of lateral earth pressure).

0.6 r—— Up-line 11 upper point —~— Down-line 11 upper point

72 A4 F—c— Up-line 11 lower point —— Down-line 11 lower point
B A | | |
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_Outer{line 4 =
[ _ = * *
A glgrjsne 4 § 0.2\:T~7*f-7—7—7—T~WWVVw!PWvV’WV V{rk,;r;m{’?\WW‘-T—T—T‘-T“V-T—V-W
— = — : | |
/ Ag 0 1 A AN A A ACEA A‘AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA CASHACHAN A ACHA A AN
. > B I I
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/ 0.0 2 1 " 1 " ! 1 i 1 ! i 1 i 1 i J
Lorgitudinal direction of thf:> Line4 0 12 24 36 48 60 72 84

Direction of the Line 11 excavation /m

Figure 1: 3D geometric model and observing lines  Figure 2: Vertical earth pressure distribution at different
positions of new tunnel excavation face

4. Results and comparisons
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Construction of the Up-line 11 tunnel. Fig. 3 shows the change of vertical displacements of the
points in the longitudinal direction of the Up-linell tunnel axis with the construction of Up-linel 1
tunnel. It is noted that the vertical displacements of the points remain stable at around 0.2 mm and
decrease gradually before the Up-linel1 shield machine reaching the centerlines of existing tunnels.
As the shield machine moving forward continually, the settlements of the points would be stable
finally. Fig. 4 shows the vertical displacement curve of ground surface at section CC and DD in
different excavation step. The maximum settlement value occurs at the centerline position of the Up-
linel1 tunnel.

Excavation step 2r
0 3 6 9 12 15 18 21 24 27

—o— 4, point

—o— A4, point

., —2— 4, point

N E

line 11

> Section CC step 9
—o— Section CC step 17
—~— Section DD step 9
—— Section.DD step. 17

Vertical displacement /mm

T«
iC
p-line f1

Vertical displacement /mm
)
L}

-12 N 1 N 1 N 1 N 1
-lar Centerine of ~ Centerfine of 0 12 24 36 48 60 72 84
-l6L Inner-line 4 Outeriline 4 Longitudinal direction of the Line4 /m
Figure 3: Change of vertical displacements Figure 4: Vertical displacement curve in
with excavation step different excavation step

Construction of the Down-line 11 tunnel. The Down-line 11 shield starts to move forward when the
Up-line 11 tunnel has been constructed in the overlapped site. In order to compare with the measured
data during the construction of Down-line 11 tunnel, the initial displacement of ground surface is
assumed to be 0 mm at the beginning of the construction.

Vertical displacements of the points in the longitudinal direction of the Down-linell tunnel axis
change with the construction of Down-line 11 tunnel are given in Fig. 5. Different from the vertical
displacements during the construction of Up-line 11 tunnel, the maximum uplift value of the point
increases to 1.5 mm due to the effect of face support pressure. Part uplift of the ground surface
appears at section CC and DD, which is mainly caused by centerlines misalignment of the Line 11
tunnels, as shown in Fig. 6.

Excavation step
0 3 6 9 12 15 18 21 24 27

—o— B, point
—o— B, point

. —~— B, point

—o— Section CC step 9
p —o— Section CC step 17
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25 1 1 |":| 1 1 ]
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Vertical displacement /mm

Vertical displacement /mm
)

O

-14 Centerline of ~ Centerline of 12 24 36 48 60 7 34
i Innerline4  Outeriline 4 o o .
-l6 - ! Longitudinal direction of the Line4 /m
Figure 5: Change of vertical displacements Figure 6: Vertical displacement curve in
with excavation step different excavation step

Analysis of measured data. Because of the complicated project of multi-line overlapped tunnels,
strict measurement on the vertical displacements of ground surface in the longitudinal direction of
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Linell tunnel axis is executed. Fig. 7 and Fig. 8 show the measured data of the points during the
excavation process of Up-line 11 tunnel and Down-line 11 tunnel respectively.

From the figures, vertical displacement lag of the ground surface is observed during the excavation
process. The maximum uplift value of ground surface caused by 1.0D-depth Down-line 11 tunneling
is greater than the one caused by 3.5D-depth Up-line 11 tunneling. In addition, during the
construction of shallow tunnel, ground surface uplift is mainly induced by rebound effect of the
underlying tunnels which is affected by ground loss and stress release.

Driving rings Driving rings
976 984 992 1000 1008 1016 1024 1032 1040 ) 976 984 992 1000 1008 1016 1024 1032

. —o— B, poi
——4, point  pornt
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Vertical displacement /mm

—LFAZ point 6F i
sp =, poin =B, point N
6L 8L
Figure 7: Vertical displacements during the Figure 8: Vertical displacements during the
Up-line 11 tunnel construction Down-line 11 tunnel construction

5. Conclusions

3D finite element numerical simulation and field measurements have been carried out to investigate
the vertical displacements of ground surface due to the construction of short-distance multi-line
overlapped shield tunnels in Shanghai. The following conclusions can be obtained from this study.

(1) As a whole, the settlements of ground surface in the longitudinal direction of the Linell tunnel
axis increase gradually with the advance of shield machine.

(2) The maximum settlement values in the longitudinal direction of the Line4 tunnel axis occur at the
centerline position of the Up-linel1 tunnel which was constructed at first. However, part uplift of the
ground surface is observed due to the centerlines misalignment of the Line 11 tunnels.

(3) Results from the measured data show that rebound deformation of the underlying tunnels is the
primary cause which results in the uplift of ground surface during the construction of shallow tunnel.
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ABSTRACT

The importance of stress intensity factors (SIFs) in linear elastic fracture mechanics is that they may
be readily applied to give fracture safety assessment as well as fatigue life predictions. There are many
numerical approaches that aim to capture the stress singularity in some way, and some postprocessing is
required to give the SIFs. The proposed method provides a direct evaluation of SIFs with high accuracy
and a low number of elements. The solution column reveals the values of K; and Kj; without the necessity
for postprocessing calculations such as the J-integral. The method takes advantage of a new Extended
BEM approach, which limits the additional Degrees of Freedom (DOF) to two per crack-tip; this allows
for unlimited elements to be enriched. Auxiliary equations are derived from enforcing continuity of
displacement at the crack tip. Numerical examples for mode I and mixed mode problems show a high
level of accuracy with a low number of elements.

Key Words: Enriched BEM, XBEM; Fracture Mechanics, Stress Intensity Factors

1. Introduction

Cracks existing in engineering structures can grow extremely rapidly when they reach a certain length,
leading to serious failure. Determination of crack growth rates and critical length requires an accurate
evaluation of the stresses near to the crack-tip. In linear elastic fracture mechanics, William’s expan-
sions can provide an accurate evaluation of stresses near the crack-tip [1] once the SIFs are known.
However, although analytical SIFs are available for simple geometries, for the majority of cases numeri-
cal techniques are required. Contributions of numerical methods in fracture mechanics are well-known.
However, some selected previous works that have led to our algorithm for direct calculation of SIFs are
briefly discussed.

The Partition of Unity Method (PUM) established the concept of using basis functions with better ap-
proximation properties than piecewise polynomials [2]; this has been widely implemented with FEM
to model fracture mechanics problems with great success. The use of Extended FEM (XFEM) [3] has
led to accurate results being produced from a coarse mesh. Simpson [4] has introduced a technique that
might be called the extended BEM (XBEM), to determine SIFs with similar enrichment to XFEM. This
shows a high accuracy at low computational rate, but requires a J-integral for accurate SIFs. However, the
current method involves revealing accurate values of K; and Kj; directly, without the need for such post-
processing. This is likely to be of significance particularly in 3D, though this paper considers only 2D. A
new auxiliary equation is also introduced to enforce displacement continuity at the crack tip, replacing
the need for additional collocation points as used in [4]. The method shows flexibility in the number of
enriched elements, which allows more elements to be enriched without increasing the DoFs or degrading
the conditioning.

2. Formulation

The formulation of XBEM introduced by Simpson and Trevelyan [5], based on PUM, is used in the
same fashion in the current method. The XBEM permits the use of Williams’ asymptotic displacement
expansions around the crack-tip as an additional basis function. Here the Williams displacement equation
can be written as,
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uj = Knpijp, 0) + K (o, 0) M

where K; and Kj; are mode I and mode II SIFs; y;i(p,6) and y;i(p,0) are given by the following
functions, obtained from Williams expansions,

Ui = i %Tcosg[/<—1+2sin2 g] (2a)
Ui = i\/gsing k+ 1+ 2cos? g] (2b)
Uiy = i\/gsing[K+ 1 — 2 cos? g] (2¢)
Uity = i \/gcos g [K —1-2sin? g] (2d)

where p and 6 are polar coordinates centred at the crack-tip, and « is a parameter defined as xk = 3 — 4v
and x = % for plane strain and plane stress, respectively, v being Poisson’s ratio. Eq (1) can be rewritten
to approximate the displacement near the crack-tip in the style of Benzley [6]; as follows,

M

uj = K+ Ky + Z Nuj 3)
a=1

where terms u;f are not nodal displacements but are now more general coefficients used to find the dis-

placement, N is the Lagrangian shape function for node a and M is the total number of element nodes.

K; and Kj; are coefficients playing the role of SIFs K; and Kj;, and are yielded as part of the solution

vector. The first two terms of Eq. (3) are used to capture the local crack displacement, relative to the

crack-tip, while the last term is included to approximate any non-zero displacement of the crack-tip.

The enriched displacement form (3) is used within the Dual Boundary Element Method (DBEM)[7].
DBEM is an ideal technique to model crack problems without giving rank deficiency. The BEM system
is formed using the Displacement Boundary Integral Equation (DBIE) when collocating on one crack
surface (and all non-crack boundaries) and the Traction Boundary Integral Equation (TBIE) for the op-
posing crack surface. DBIE can be written in a discretised form as,

1

Ne 1 Ne
Cij(Duj(x) + Cij(Du (%) + Z u' f 1 NUET;j(x, x(€)J"(€)dé + Z K f Tj(x, xEWu ()T (E)dé
n=1 - a=1 -

1

pn
Pijl

Ne 1
3 f NOUy s XN e ()
n=1 -

where Ne is the total number of elements, and J"(§) is the Jacobian. T;;, U;; are the usual traction and
displacement kernels. If the n' element is unenriched then 13?/.[ = 0,l = 1,1I. In addition, as 0 = +m at
the crack surfaces for flat cracks, ¢7; and y;; are only functions of & . Jump terms in the enriched DBIE
remain the same as unenriched jump terms; these will be cancelled during implementation. The TBIE
can be obtained in numerical form as follows,

Ne 1 Ne 1
() Y f NUOS ki MENSEE +mi) ) Ki f Swii(k XOWRE" E)dE
n=1 - a=1 -

in
Ekijl

Ne 1
—nn Y ¢ [ N@Dytxe Ol ©
n=1 -

where Sy;j, Dy;; are the usual derivative kernels. If the n'™ element is unenriched E~]’(’iﬂ =0, =11l
Implementation of the TBIE and DBIE requires considerable care in evaluating the hyper-singular and
strongly-singular integrals, and the injection of extra enrichment degrees of freedom requires us to supply
auxiliary equations to reach a square linear system.
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Figure 2: K; compared to post-process method

3. Crack-tip displacement continuity

The Dual BEM involves a hypersingular integral equation which places requirements on the continuity
of displacement derivatives at the collocation point. This cannot normally be achieved because of the C°
continuity of shape functions at nodes shared between adjacent elements. Therefore, most Dual BEM
implementations make use of discontinuous elements. One result of this is that a displacement disconti-
nuity is often observed at the crack tip. While this does not in itself preclude us from obtaining accurate
SIFs, it does provide us with an opportunity to design a simple set of auxiliary equations while at the
same time enforcing a displacement continuity that is observed in the physical problem being modelled.
The crack tip displacement can be approximated by extrapolating over the adjacent elements on the up-
per and lower crack surfaces. The approximations taken from the two surfaces can be equated to enforce
displacement continuity, i.e.

~

L
a a _ a a
Z uj(upper)N - Z uj(lower)N (6)
a=1

a=1
L is the number of nodes used for the crack-tip extrapolation and N¢ is the associated Lagrangian shape
function. Eq. (6) is considered in both x and y directions independently, and the resulting equations used
to form extra rows of the matrix description of the BEM problem. Now, K; and Kj; can present the SIFs
directly, without requiring the J-integral.

4. Numerical Examples

The first example is a pure Mode I centre crack in a rectangular flat plate under uniaxial traction, with
dimensions of & = 2w = 4a, as illustrated in Fig.1(a). Because of symmetry, only half of the plate
is considered. The problem does not have an exact solution; instead a reference solution is used[8].
Normalised results K/Ky, where Ko = o vma, are shown in Fig. 2 in which the reference solution is
plotted as a horizontal line.

In the second example, a mixed mode inclined edge crack in a rectangular flat plate is shown in Fig. 1(b).
A solution by Wilson [9] is used as a reference solution. Results have been plotted in Figs. 3 (a) and (b)
for K; and Ky, respectively.
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Figure 3: K; compared to post-process method

In all figures we compare the Direct K; and Kj; results against (i) a conventional (unenriched) Dual
BEM using the J-integral, and (ii) an enriched Dual XBEM using the J-integral. In all cases the directly
obtained SIFs show excellent convergence properties.

5. Conclusions

A direct method has been presented that is able to evaluate SIFs without need for postprocessing (J-
integral) calculations. This has been achieved using a Dual XBEM approach in which auxiliary equations
are formed by enforcing displacement continuity at the crack tip. Additional DoFs are limited to two
per crack-tip, which allows for the enrichment of all crack surface elements for greater accuracy with
controlled conditioning. Special treatment must be applied to singular integrals as illustrated in [4]. The
results show accurate values for SIFs compared to conventional J-integral based BEM approaches. The
method can be extended to 3D, where the removal of the requirement for a J-integral will be helpful.
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ABSTRACT

The validation of macroscopic fracture modelling of heterogenous materials is strongly related to the
effectiveness of the homogenization principle at fine scales. Often because the complete material morphology is
missing, artificial repetitive boundary conditions are deployed despite many criticisms on their inadequate local
subscale assumptions. This paper applies a recently developed multiscale stochastic fracture modelling approach
(MsSFrM) to simulate crack growth in FRP materials. First, image-based models are solved at micro level and
mapped onto the macro scale using a two-scales adaptive window principle; and second, the macro scale is
solved by using a calibrated heterogencous cohesive interface crack model based on [6, 7]. Two further
enhancements are proposed here, both being able of representing the macro continuum in a stochastic fashion.
First, the micro scale is related to various degrees of aggregations (DAG) via Voronoi tessellation statistics; and
second, Karhunen-Loeve (KL) material property expansions are used for areas where images cannot be
provided.

Keywords: multiscale stochastic fracture mechanics, cohesive zone modelling (CZM); fibre reinforced plastics
(FRPs); Monte Carlo simulation

1. Introduction

In order to extend the micro mechanical interactions of heterogeneous materials to macro continuum,
two options are available. First the random mapping of heterogeneous properties which extends the
formulation to semi-infinite continuum, but with a good control of the material property variances;
second, cascade scale segmentations such as hierarchical image based reconstructions can be defined
in order to ensure that the crack paths and energy conservation principles yields best matching results.
While the undamaged plasticity behaviour does not pose any modelling difficulty and most traditional
multiscale modelling strategies can be employed, modelling the softening part poses great challenges
which are commonly associated with the stochastic character of the crack paths. Crack bias effects
arise mainly from random distribution of the inclusions, but also from size effects, local material
defects and incompatible boundary conditions.

This paper uses the multiscale stochastic fracture modelling method (MsSFrM) developed by Sencu,
et. al. (2014) which is based on image based FRP models. The modelling is done in two different
stages. In the first stage, the orthotropic properties of transverse plies at micro-scale were obtained;
afterwards, a memory-wise mapping links material properties from micro to macro scale. The local
mismatch of properties between meso scale units is evaluated by stress displacement curves from
prescribed boundary conditions. Multiple meso scale elements (MeEs) were used to capture most
critical failure events. However, when extending the computational domain to full scale, some
important morphological information required is unavailable due to limited fields of view. In such
cases, bootstrapping algorithms [1] can be further employed to assign continuum properties.
Therefore, this paper extends the MsSFrM to a hybrid formulation MsSFrM-H which promises
flexibility and accuracy for modelling heterogeneous structural components. The MsSFrM-H
framework is aimed at using the available material information in most critical areas (such as the
beam notch, comers and areas where stress concentrations are expected) and uses bootstrapped data
for the rest of macro continuum. This method should not be confused with concurrent discretisation
methods such as [2, 3] or the hierarchical uncoupled approaches in [4, 5]. The benefit of using this
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new development is that the computational cost is kept to minimum, while the non-local elasto-plastic
disruption of the overall model is also minimized.

2. Stochastic coupling enhancements of MsSFrM

The conceptual formulation of the MsSFrM-H method is shortly presented in Figure 1. The key steps
of this method are as follows: image acquisition, image based models reconstruction and simulation
by using overlapped windows, adaptive mesh discretisation at macro scale and properties mapping,
KL expansions and reconstruction of the overall structural model. The detailed modelling
methodology is not presented here.

Meso mechanics Macro continuum

= three phase material = qutomatic MaFE discretisation

i = overlapped discretisation i ™ preserved crack paths :
i = image based MeE modelling

= coupled properties

= identification of bulk cohesive laws | ™ MaFE memory wise mapping
= adaptive discretisation based on DAG = anisotropic FE formulation

= [dentification and statistics of fracture
parameters E]], Egz, G]], ng etc.
" PBootstrapping K-L expansion

= K-L expansion mapping
®  adaptive mapping

Figure 1: The big picture of MsSFrM-H framework.

A finite number of MeEs are explicitly simulated in fracture modes I and II on the two principal
orthonormal directions. The macro scale properties are then approximated based on two overlapping
average equations which collect the effects of elements sharing the same edge:
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The new MsSFrM-H approach is based on correlation concepts of statistical fibre distribution within
individual MeE windows which are transferred to macro scale via Voronoi tessellation cells. Similar
interfacial stochastic homogenized cohesive elements are used at macro scale to represent the
fluctuations of microscopic deformation fields.
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3. Modelling results

The enhancements in this paper can be separated in two main categories according to the scale
definition. At meso scale, the MeE size can systematically change according to the target domain
which allows the discretisation of difficult computational areas (such as for curved components like
pipes, nozzles, ribs etc.). Second, we introduce a new meso scale degree of aggregation (DAQG)
evaluated based on Voronoi tessellation. This will be further related to the crack initiation and
propagation processes. At macro scale, material properties bootstrap is introduced based on
Karhunen-Loeve (KL) expansion. The KL process produces best possible basis for expansion.

Figure 2: Stress contours on a type 2 failure mode with MeE size 100 pm®.

Figure 3 explains some methodologies which were used. Both non-overlapped as well as overlapped
MeE discretisations were tested. As previously mentioned, different crack paths can arise. It has been
observed that in general, the overlapping concept is a better method to solve the deformation
compatibility problem and therefore gives more accurate multiscale links.
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Figure 3: (a) non-overlapping discretisation; (b) crack paths from MeEs in (a); (¢) overlapped
discretisation; (d) crack paths from MeEs in (c).

i

In Figure 4 we illustrate the stress-displacement curves and crack path benchmarks as they were
obtained from the overlapped series MeE 16x50 against fully detailed meso-scale simulations (typical
MeE 100 stress contour plots are shown in Figure 2). The grid size was 25 microns and the
simulations were computed on multiple CPUs. The individual crack paths were used to build an
adaptive macro mesh which matched the detailed crack paths from different boundary conditions such
as mode 1 and mixed modes on x and y directions. The CPU time on a desktop PC i7 — 2600 @3.40
GHz with 8 cores was about 5 to 6 hours per simulation, while when using 48 cores per simulation on
the CSF facility at University of Manchester, the average time was 45 min.
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Figure 4: Nonlinear benchmark by using the overlapping concept vs fully detailed simulations.

4. Conclusions

Simulations of a wide range of properties by using traditional non-overlapping discretisation are not
always possible due to the bias of the crack paths. The novel overlapping discretisation concept was
successfully employed to transfer crack growth from micro to macro on FRP materials. Once the most
critical crack locations are known, many discretisation options could be created in order to solve the
macro scale. For example, reduced integration order meshes either containing full information about
inclusions or by using homogenized continuum solids are all possible. Finally, it is proved that the
cohesive crack interface model can be employed to simulate both intra and inter meso to macro scale
complicated fracture interactions by using the newly developed MsSFrM-H framework. The hybrid
formulation allows the extension of the image based results to further simulate full scale structural
components. It is believed that unstructured discretisations can be related to statistical measurements
at micro scale, such as the proposed Voronoi DAG. This is an essential step in decomposing the crack
probability spectrum in order to shape feasible realizations for modelling the complete macro
continuum.
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ABSTRACT

This paper presents initial work on the computational modelling of 3D fluid-driven fractures in rock. In
this work, the rock deformation is assumed to be elastic and the fluid flow is considered to be constant
along the fracture. Leak-off is not considered at this stage. Propagating fractures are modelled using co-
hesive interface elements. The model is developed in the context of the finite element method (FEM) and
utilises a hierarchic approximation basis [1], allowing for local p-refinement. In this paper, the perfor-
mance of the interface elements, with higher-order approximation polynomials, will be studied in detail.
The dissipative load path is controlled by a local arc-length control methodology [2]. All problems are
undertaken in 3D. The model is being incorporated into our open source software package MoFEM [3]
and is optimised for high performance computing on distributed memory computers.

Key Words: fluid-driven fractures; hierarchic element; cohesive interface element; local arc-length con-
trol; MoFEM

1. Introduction

Hydraulic fracture (fracking) is an important technique, widely used in petroleum engineering, under-
ground mining, ground thermal energy exploitation, etc. Fracking has received significant attention by
engineers in recent years due to the discovery and exploration of shale gas. Basically, fracking is the
process of drilling and injecting fluid (typically water mixed with sand and chemicals) into the ground at
high pressure in order to fracture rock and release gas or hydrocarbons.

Fracking is a fluid-driven fracture processing, which requires many aspects to be considered, such as [4]:
the flow of fluid on the fracture aperture; the mechanics deformation of the surrounding medium induced
by the fluid pressure; the leak-off fluid from the fracture to the rock; the fracture propagation in rock. In
this work, fracking is considered to be a quasi-static process, the deformation of rock is assumed to be
elastic and the fluid flow is considered to be constant along the fracture. Leak-off is not considered at this
stage.

The 3D model is being built using the finite element method (FEM) and utilises a hierarchic approxima-
tion basis [1], allowing for local p-refinement. Propagating fractures are modelled using zero-thickness
cohesive interface elements. In addition, the local arc-length control methodology is used to capture the
dissipative load path [2].

This work is incorporated in MoFEM (Mesh-oriented Finite Element Method), our group’s open source
software package for multi-physics problems and optimised for high-performance computing [3].
2. Hierarchical finite element method

The 3D domains under consideration are discretised with tetrahedral finite elements and utilise hierar-
chical basis functions of arbitrary polynomial order, following the work of Ainsworth and Coyle [1]. In
this paper, the response of a benchmark problem for different orders of approximation are investigated.
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3. Zero-thickness cohesive element

In this paper, cohesive elements are adopted for modelling the hydraulic fracture. A bilinear cohesive
damage law between the traction f and the displacement jump g is adopted across the cohesive surface
and is shown in Fig.1 and Fig.2. Linear elastic behaviour is assumed for tractions less than the tensile
strength f; (or the displacement jump is less than gg), with a high penalty stiffness. For displacements
beyond gg, the traction reduces linearly to zero. When g = go, the internal parameter « is equal to 0; this
parameter is used in the definition of the water pressure. When « reaches «1, the crack is traction-free [5].

fl\

1,

fa Water pressure
criterion

E

Figure 1: the irreversible bilinear cohesive law Figure 2: the water pressure criterion in cohesive element

In Figure 1 and 2, w is damage parameter; E is penalty stiffness Ey = % E is Young Modulus and 4 is

stiffness coefficient; G is fracture energy Gy = Kle’

4. Local arc-length control

The global load-displacement response of the system can be highly nonlinear, involving snap-back or
snap-through phenomena, depending on the material properties, loading, geometry and constraints. As
a result, traditional path-following techniques can struggle to trace the post-bifurcation response. In this
work, a local arc-length control with line search has been successfully implemented and found to be
robust [2, 3].

5. Water pressure effect

At this stage of research, fracking is considered to be quasi-static. That is to say, the rate of crack open-
ing is slow enough so that temporal effects do not need to be taken into account, and the static water
pressure acts on both the traction-free crack and the cohesive zone. Following experimental results, the
water pressure in the cohesive zone can be assumed to be an exponential function of the crack opening
displacement (herein is «) [6].

P=(P = Po)(1-e" )+ Py (1)

Here P is the water pressure on the interface, P; is external water pressure, Py is the prescribed pressure
distribution at the interface before cracking (usually taken as 0), r is a material parameter based on
laboratory tests. When r — 0, no water-pressure acts, when r — 3/«, then P = Pj, i.e. the external
pressure fully acts on the interface.

An alternative water pressure function in the cohesive zone could be piece-wise linear, expressed as
following:

{P=P1'(K/K1) (k < k1) ()

P=P1 (K>K])

where the water pressure P increases linearly from zero to the external static water pressure P;.

6. Simple Numerical Example

The model (seen in Fig. 3) is 3D and the thickness is 2m. The initial crack is 2m long and the ini-
tial crack opening is 1m. The parameters for the model and the cohesive elements can be seen in Table 1.
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Table 1: The parameters of the model

Finite Element Cohesive Element
Young-modulous 2e10 Pa i 125e4 N
Possion-ration 0.2 Gy 120]

h 0.64 B 0

In Table 1, parameter S is a weighting coefficient for the gap of cohesive element, expressed in following

equation:
§= s tB-g (3)

where g, and g, are normal and shear displacements of cohesive elements, respectively.

6.1 Casel

For the problem shown in Fig.3, different orders of approximation are investigated for the same external
water pressure and constraints. The results can be seen in Fig.4, where the order of approximation has
increased from 1st-order to 5th-order. The external water pressure in the initial crack is 1e6 Pa, the water
pressure in the cohesive zone follows the exponential function described above. The results are shown
for the first step of the analysis.

Zero-thickness
Y cohesive element

A0100) w0100

0.00020 T T T T T 6
displacement ——
0.00015 -
_ 4
N /] / z = . )
[Lay /, '_in.nmm E - 35
é
2
0.00005 -
1
200000 : . g " - 10
0 X ) Order
Figure 3: Simplified fracking model Figure 4: Displacement at point A and computational time.
6.2 Case?2

Here the external water pressure in the initial crack is 1e6 Pa. The water pressure in the cohesive zone
follows the exponential function described above for different values of r. 20 load steps are applied and
the order of approximation is 2nd-order. The load-displacement response for point A is shown in Fig.5.
It is noted that when r = le7, nearly the full water pressure acts on the interface during the propagation
process; and when r = 1e0, almost no water pressure acts in the cohesive zone.

6.3 Case3

Here, all parameters are the same as for Case 2, except that the water pressure in the cohesive zone
follows the linear function described above. The load-displacement response for point A is shown in
Fig.6, where the response for the linear pressure is compared to no water pressure in the cohesive zone.
Fig .8 shows the final deformation of the model.

6.4 Case4

Here the external water pressure is lowered to le5 Pa but extremes of r are considered. The load-
displacement response for point A is shown in Fig.7. It should be noted that when r = 1e7, snap-back
behaviour is observed and the local arc-length control can trace the nonlinear dissipative load path suc-
cessfully.

Future work will consider fluid flow in the fracture and fluid leak-off.
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Figure 5: case 2. Load-displacement response

Figure 6: case 3. Load-displacement response
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ABSTRACT

The displacement correlation technique is applied to extract stress intensity factors of 3D cracks discre-
tised using unstructured hybrid triangle-tetrahedral meshes. The crack surface is discretised by triangles;
crack walls are split at all nodes except for those on the tips; and elements on the crack tip are quarter
point triangles that have either a side or a corner on a tip segment. The paper proposes that the low-
cost displacement correlation technique can be applied to compute stress intensity factors of such grids,
provided that it is performed on corner quarter point triangular element. Displacements are interpolated
onto a plane normal to the crack front using the element local reference space. The numerical values of
the SIFs for a tilted penny-shaped crack embedded in a cube are compared with analytical results. There
is a good agreement between the numerical and analytical SIFs along the crack front.

Key Words: stress intensity factor, displacement correlation; quarter-point element; unstructured mesh

1. Introduction

Analysing cracked bodies often requires the accurate computation of fracture mechanics parameters such
as stress intensity factors (SIFs). In the context of linear elastic fracture mechanics, SIFs fully charac-
terise the stress state around the crack, and can be used to predict propagation. SIFs can be calculated
analytically or experimentally for restricted geometric configurations and boundary conditions. Numer-
ical techniques, such as the finite element method, often applied to analyse complex crack problems,
require spatial discretisation of the geometric domain. Barsoum [1] and Henshell and Shaw [2] proposed
the idea of using quarter-point elements (QPEs) in order to capture the high stress gradient near the crack
to accurately compute the singular crack stress field. They independently showed that the singularity at
the crack tip can be properly modelled by placing the mid-side node near the crack tip at the quarter-
point position. This shift simply results in a nonlinear mapping between the natural and local coordinate
systems in a way that singular strains at the crack tip occur, and an inverse square root singularity is mod-
elled throughout the element. Volumetric QPEs, such as the collapsed quarter-point twenty-noded brick
element and quarter-point fifteen-noded pentahedral element, are placed around the tip to form a brick-
structured mesh [1]. However, in practise, complex geometric multiple crack layouts are best discretised
using unstructured meshes which can be generated in a quick non-interactive manner, by a number of
mature open-source and commercial meshers, optimised to accurately capture geometry [3]. This paper
focusses on the use of a fully unstructured mesh to model 3D crack configurations, and employs the
nodal displacement near the crack to extract SIFs using the low-cost displacement correlation technique.
Quarter-point triangle and tetrahedral elements are used in an unstructured mesh layout to model singu-
larity along the crack front. The displacement correlation method is then developed to extract the SIFs
from FE results directly.

2. Displacement correlation method

Once the finite element simulation has been performed for a particular crack problem, crack tip stress
intensity factors can be computed by employing a correlation between the finite element nodal displace-
ments values and the well-known crack tip displacement fields. This method was first developed by for a
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general FE solution of a crack problem without using CPEs or QPEs around the crack tip. As the FE re-
sults for stresses at crack tip are bounded in these solutions, the FE results are not very accurate very close
to the crack tip. Hence, an extrapolation approach was firstly used to compute SIFs from nodal displace-
ments. Shih et al. [4] employed a correlation between the displacement distribution over the quarter-point
element and the well known displacement field expressions, to extract the SIFs in 2D crack problems. In-
graffea and Manu [5] then generalised this approach for computing the SIFs in 3D crack problems using
collapsed quarter-point twenty-noded brick elements. The displacement correlation approach is concep-
tually simple and straight forward. Unlike energy approaches which require further numerical integration
of the FE results, this method directly uses the finite element nodal values to obtain the SIFs.

Two types of quarter-point tetrahedral elements are generated along the crack front: i) the ones which
share an edge with the crack front, side quarter-point tetrahedra (SQPTs); and the ones which share
one node with the crack front, corner quarter-point tetrahedra (CQPTs). As the square-root singularity
occurs in the whole domain of CQPTs, we shall use the displacement representation of these elements
for computing SIFs. In fact, we choose those CQPT elements through which the normal to the crack front
passes. Let us assume that { = 0 corresponds to the tetrahedal element face which is one of the corner-
based quarter-point triangles lies on the crack face (see Fig. 1). The ray normal to the crack front, OP in
Fig. 1, is defined by the natural coordinate O < ¢ < 0 in a way that ¢ = 0 and ¢ = 1 represents points
O and P, respectively. Along this ray, the natural coordinates & and n7 will be: & = &py and n = npy,
in which (¢p, np,0) is the coordinate of point P in natural coordinate system (&, 7, (). Using the shape
functions of the tetrahedral element, the relative displacement along the ray OP with respect to crack tip
displacement is expressed as:

u = (£p(dus — uz) + np(dus — us)yr + 2(Ep(uz — 2us) + np(us — 2uz) + 2pnp(us —us —up) jy* (1)

The distance of any point along OP from the crack tip is defined as r = Lpy?, in which Lp =
V(Epxy + px3)? + (€pya + py3)? + (Epza + npz3)? is the length of line OP. The displacement along the
ray OP will therefore be given by:

= (6p(dus — o) + np(duuy =) | 7= + 2(p(u2 = 2us) + mpus = 2ur) + 2 pmpluts = s = wr)) 7= (2)
P P

The first term in Eq. (2) reproduces the displacement field due to the singular stress field, and the second

(b)

Figure 1: Matching triangular elements used for extracting SIFs.

term represents the displacement due to the constant stress. As we aim to compute the coefficients of
singular stress terms, only the first term shall be considered. Similar expressions can be obtained for the
displacements in y and z directions (v and w). The relative displacement of the top surface element with
respect to the displacement of the bottom surface element is therefore given by:

Au = [§P(4(u5 —us-) — (u2 — uz*)) + T]P(4(M7 —up) = (uz — u3*))] L_rP
Av = [fP(4(V5 —v5:) — (vp — Vz*)) + UP(4(V7 ) = (v — v3*))] \/L:I;) 3
Aw = [fP(4(W5 —ws) —(wy — WQ*)) + T]P(4(W7 — W) — (w3 — W3*))] L_rP
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On the other hand, the expressions for the relative displacement of the top and bottom crack faces are
given from the leading terms in Williams series expansion as:

AM=KH(K; 1)”%"‘0(”)
K+ 1 r
Av = KI( ; ),/§+0<r> (4)

where Kj, K11, and Kjyy are the stress intensity factors in modes I, II and III, respectively. u = E/2(1 + v)
is the shear modulus, E and v are the Young’s modulus and Poisson’s ratio, and the Kolosov constant «
is equal to 3 — 4v for plain strain and (3 — v)/(1 + v) for plane stress. The assumptions of plane stress on
the free surfaces and plane strain elsewhere are also used for 3D crack problems. By equating Eqgs. (3)
and (4) the following expessions for the SIFs are obtained:

K= i—Z(Ki ; )[fp(4(vs —v5:) — (vp — vz*)) + np(4(V7 —vp)—(v3 — VS*))]
Ky = \/i:’;(,(ﬁ 1)[fp(4<us — us+) = (u = uz)) + np(4(u7 — uz-) — (u3 — us*))] ©)

Ky = \/i::('%)[fp@(ws —ws) = (w2 = Wz*)) + UP(4(W7 —wre) = (w3 = W3*))]

3. Results and discussion

Fig. 2a schematically shows the configuration of a penny-shaped crack embedded in a cube and the
boundary conditions applied on the specimen. The model is discretised using a fully unstructured mesh
with triangles on the crack surface and tetrahedral elements elsewhere. The mid-side nodes near the crack
front are moved onto the quarter-point position. Fig. 3b shows the mesh structure on the crack face. The
full specimen was modelled to ensure that an unstructured mesh is generated all over the crack front. The
mixed mode stress intensity factors were computed using Eq. (5), and are plotted along the crack front
in a normalised form in Fig. 3. Numerical values are in a good agreement with analytical results. The
advantages of the displacement correlation approach are simplicity and low computational cost. This
method can be used for analysing very complicated crack configurations for which a structured mesh
cannot be generated.
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Figure 2: Geometry and boundary conditions. (a) An inclined penny-shaped crack in a cubic body under uniaxial
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ABSTRACT

A methodology has been developed to study unstable fracture in multi-body impacts. This has required the
combination of two modelling frameworks, namely multi-body contact mechanics and quasi-static crack
propagation. This was achieved by developing a number of algorithms for rigid body motion mitigation, crack
initiation and Boolean unification between volume elements and the crack surface for coarse mesh generation.

Keywords: Fracture, rigid body motion, crack initiation, Boolean unification of volume and surface

1. Introduction

The objective of this research is to develop a methodology for modelling crack propagation in three-
dimensional multi-body impact scenarios. The developed methodology makes use of a dynamic multi-
body contact finite element analysis code, SOLFEC [1], and a quasi-static crack propagation code,
MoFEM [2]. The motivation of this work is the study of crack propagation in graphite bricks in an
Advanced Gas-Cooled Reactor (AGR) subjected to abnormal loading conditions.

2. Background

The graphite core in an AGR is a large assembly of graphite bricks stored in an array format
organised on top and next to each other with a vertical channel in the middle of each brick that
contains the fuel, namely uranium dioxide. These graphite bricks will be idealised as isotropic linear
elastic and assumed to behave in a brittle manner.

SOLFEC is based on an implicit formulation of contact conditions, in contrast to commercial codes
that typically employ repulsive springs in their contact methodology. This provides a physically
accurate representation of reality and permits larger stable time-steps in simulations. SOLFEC has
been developed with high performance computing in mind from the onset making it an ideal code for
modelling a large number of impacting bodies. However, this capability does not extend to the finite
element analysis part of the code. Subsequently, the mesh representing graphite bricks in an impact
simulation uses a relatively simple mesh comprising through-depth elements as pictorially depicted in
Figure 1(a).

Figure 1. (;) SOLFEC graphite brick mesh, & (b) example of MoFEM crack propagation.
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The crack propagation available in MoFEM employs configurational forces and maximum energy
dissipation at the crack front. The configurational forces provide the crack propagation direction and
the crack propagation criterion is based on Griffith theory. The local topology is modified to
accommodate the crack extension and a local hp-adaptive mesh refinement scheme is concentrated on
the crack front. The local mesh is adapted through the movement of the nodes on the crack front;
mesh refinement and edge decimation maintains the validity of the local mesh. An example of crack
propagation can be seen in Figure 1(b). The crack propagation analysis relies on a much more refined
mesh than is necessary or practical in SOLFEC and this discrepancy has to be addressed.

3. Method Development

It is assumed fracture events in bodies do not influence the contact force evolution with time. This
simply means that the crack propagation will occur faster than the change in boundary conditions in
SOLFEC. Furthermore, and most importantly, it is assumed that fracture in one body will not have a
bearing on the fracture in other bodies.

An approach for modelling unstable crack propagation can then be formulated, which is represented
by the following sequential steps:

(i) SOLFEC implicit contact analysis is executed and run to completion;

(i) Bodies that will fracture are identified during the simulation and the contact forces as well as
corresponding Lagrangian displacement (relative to the reference configuration) on the surface
boundary are recorded at the specific time-step;

(ii1) Rigid body motion is removed from the displacements of the identified bodies and a denser
mesh is generated in preparation for crack propagation analysis;

(iv) Location of crack initiation is determined in the identified bodies and crack propagation to
failure is carried out in MoFEM, given the displacement boundary conditions as constraints;

(v) The predicted crack surface is unified with the original SOLFEC mesh and the intersected
elements have a denser mesh generated for them to account for the modified geometry;

(vi) SOLFEC is re-run with the fractured bodies to study the impact that cracks have on the overall
simulation and on individual graphite bricks.

The bodies that will undergo fracture are identified in SOLFEC using an energetic criterion that
monitors the strain energy of each element and has an empirically set threshold.

Algorithms to remove rigid body motion from the displacement, to perform the Boolean operation of
unification and to generate the subsequent mesh have been developed. In addition, a crack initiation
criterion has been proposed to determine the location(s) of crack initiation in MoFEM, which
currently requires manual identification of the affected edges. The algorithms and proposed criterion
are briefly documented in the next sections. To facilitate data transfer between SOLFEC, MoFEM and
the developed algorithms, the legacy VTK file format has been selected.

4. Rigid Body Motion Removal

The contact forces output by SOLFEC are provided on the

DIRICHLET_BC X

surface, while the displacements are given on the nodes. %‘583;‘_’85
Therefore, a surface-to-node algorithm was written to EOOO
identify the nodes where the contact forces are applied. The
displacements on those nodes are then used as constraint in '113226025

the crack propagation analysis.

Figure 2. Example of rigid body translation mitigation.

A routine was written to remove the rigid body translation; this involves subtracting the average of the
displacements at the identified nodes from the displacement magnitude at each identified node. An
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illustration demonstrating the removal of rigid body displacement in a graphite brick is shown in
Figure 2.

The removal of rigid body rotations is a more involved process. The displacements have to be

decomposed into a deformational u and rotational part u”,

d r
u‘=u-u’,and (1)
u’=(R—I)X, )

where R is the rotation operator, I the identity matrix and X the reference configuration position
vector. The object of this exercise is to determine the rotation operator. One can take advantage of the
fact that the anti-symmetric part of the displacement gradient vanishes when there is no rotation.
Assuming that the rotation is constant over a body volume V , the anti-symmetric part of the
displacement gradient averaged over all the elements can be expressed,

)

Alternatively, a pseudo-vector applied on the surface boundary can be defined as [3],

o' |

—| @V =0. 3
X ©)

h=f(nxud)dS, )

where n is the surface spatial normal. An objective function can then be defined and optimized to
yield the rotation operator,

J(R) =h’h. (5)

A number of algorithms were implemented and investigated for the optimization procedure: (i) the
finite difference method using the complex derivative; (ii) the Cayley transform based method; (iii) a
Gauss-Newtonian approach; and a (iv) Newtonian approach based on local parameterization of the

manifold SO (3) [4]. The final method was selected as it proved to be the least computationally

expensive and to be the most stable for large rotations.

5. Crack Initiation Criterion

A crack initiation criterion has been proposed based on the notion that fracture is a sudden discrete
rupture event that suddenly appears at the macroscopic level. A topological asymptotic expansion
evaluates the sensitivity of the total potential energy change involved in introducing a hole into an
unperturbed (geometrically) elastic system at a point through the expression,

1 2 2
DT(x0)=—ﬁ[(al+az) +2(0,-0,) ] (6)

where 0, and O, are the principal stresses, while E is the Young’s modulus. The change in energy

is then equated to a critical factor derived from an energy equivalent of Novozhilov’s non-local force-
based criterion. A more thorough treatment of this criterion is available in [5].
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6. Boolean Unification

At the heart of this part of the work is the CGAL library [6] and the contained half-edge data
structure, which provides connectivity information of the vertices, edges and faces that compose a
shape. TetGen [7] is used as the mesh generator due to the fact that interior surfaces inside the shape
volume can be treated as an extension of the boundary. A novel, simple and robust procedure has been
developed for unifying the crack surface and the original volume SOLFEC mesh as follows:

(i) Mesh simplification is performed on the crack surface to reduce the triangle count;

(ii) The elements in the original SOLFEC mesh that are intersected by the crack surface are
identified and the shared faces in the elements are not included in the following steps;

(ii1) The simplified crack surface boundary nodes are aligned with the intersected SOLFEC mesh
elements and assigned to the intersected element faces;

(iv) Delaunay triangulation in 2-D is performed on the identified faces to reconstruct them so as to
include the crack surface nodes;

(v) The intersected element faces are merged together to form a new shape;

(vi) The simplified crack front mesh and the new shape are unified in the TetGen data structure for
purposes of mesh generation;

(vii) The generated mesh is split at the crack surface front and replaces the intersected elements in
the original SOLFEC mesh.

Existing CGAL functionality is employed to perform the mesh simplification, intersection tests and
Delaunay triangulation. The half-edge data structure is utilised to store face information regarding the
intersected vertices and triangulations to produce an efficient algorithm for Boolean unification of a
volume with a surface.

Figure 3. (a) Simple example of surface (red) intersecting volume elements, & (b) volume elements containing
intersection identified and reconstructed.
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ABSTRACT

We investigate multiple fracture evolution under quasi-static conditions in an isotropic linear elastic
solid based on the principle of minimum potential elastic energy in the framework of the extended finite
element method. The technique enables a minimization of the potential energy with respect to all crack
increment directions. Results show that the maximum hoop stress criterion and the energy minimization
approach converge to the same fracture path. It is found that the converged solution lies in between the
fracture paths obtained by each criterion for coarser meshes. This presents an opportunity to estimate an
upper and lower bound of the true fracture path as well as an error on the crack path.

Key Words: crack propagation; extended finite element method; energy minimisation.

1. Introduction

In computational fracture mechanics as applied, for example, to damage tolerance assessment, it has been
common practice to determine the onset of fracture growth and the growth direction by post-processing
the solution of the linear elastostatics problem, at a particular instance in time. For mixed mode loading
the available analytically derived criteria that can be used for determining the onset of crack growth
typically rely on the assumptions of an idealized geometry e.g. a single crack subjected to remote loading
[9, 5] and that the kink angle of the infinitesimal crack increment is small [7]. Moreover, the growth
direction given by a criterion that is based on an instantaneous local crack tip field can only be valid for
infinitesimally small crack growth increments. Consequently, the maximum hoop stress criterion [4] and
other similar criteria [2] disregard the changes in the solution that take place as fractures advance over
a finite size propagation. Hence, due to the error committed in time-integration, fractures may no longer
follow the most energetically favorable paths that theoretically could be achieved for a specific discrete
problem.

2. Methodology

In our approach, we investigate multiple fracture evolution under quasi-static conditions in an isotropic
linear elastic solid based on the principle of minimum potential elastic energy, which can help circumvent
the aforementioned difficulties. The technique enables a minimization of the potential energy with respect
to all crack increment directions taking into consideration their relative interactions. The directions are
optimized (in the energy sense) by considering virtual crack rotations to find the energy release rates and
its first derivatives in order to determine, via an iterative process, the directions that yield zero energy
release rates with respect to all virtual rotations [6]. We use the extended finite element method (XFEM)
[1, 8] for discretization of a 2D continuum in order to model an elaborate crack evolution over time,
similar in principle to [3], although here we would like to consider hundreds of propagating cracks.
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3. Governing equations

The energy release rate with respect to a fracture growth direction 8; can be obtained by differentiation
of the potential energy I1 of the system:

ol
Gsi=—— 1
Si 90, (D
Considering a general case of multiple fractures, the rate of the energy release rate can be obtained as:
dGs; gt
Hs; ;= =- 2
= 00, T 96,06 )
In a discrete setting, the potential energy of a static system can be written as:
1
I = Eu’Ku—u'f 3)

where u, K, and f are the displacement vector, the stiffness matrix, and the applied force vector. The en-
ergy release rate with respect to an arbitrary crack incitement angle 6; is defined as the negative variation
of the potential energy:

1
Gs; = —Eu'é,-Ku +u'S;f — 6;u' (Ku — f) ()]

in which case the last term in (4) disappears due to assumed equilibrium of the discrete system i.e.
Ku = f. Hence, the expression for the energy release rate becomes:

1
Gs; = —Eu’éiKu +u'6;f 5)

where 0;f only needs to be accounted for if the applied loads influence the virtual crack rotation, e.g.
due to crack face tractions and body-type loads. The rates of the energy release rate, Hs;; are obtained
by differentiating Gs; in (5) with respect to 6;:

1 ’ ’ ’
Hsij = | 5u o, Ku—u's}; f) ~ 5 (5:;Ku — 6;f) (©6)
The variations of displacements 6 ju in (6) are global, and can be determined from the equilibrium con-
dition and that the variation must vanish, i.e. 6 j(Ku — f) = 0 and thus:

su=—-K'(6Ku - 6f) (7)
Substituting (7) in (6) gives:

1
Hsij= - (Eu’éizjl(u - u's}, f) +(6jKu—8;f) K~ (6:;Ku — 6if) )

In (8) the second order mixed derivatives 51.2].K and 6?1. f capture the local interaction between the rotations
of different crack increments. However, if the crack tips are sufficiently far apart such that no geometrical
interactions exist between different rotations, then for i # j the interacting terms vanish, i.e. 61.2jK =0 and
61.2]. f = 0. As such, it only becomes necessary to retain the non-zero self-interactions i.e. 61.21.K and 61.21. f.
Consequently, by leaving out the cross-interactions, equation (8) reads as:

1

HS,'J':— 5

u' 7 Ku — u’al.%.F) +(6;Ku—6,;f) K (6:;Ku - 8;f) 9)
Equations (5) and (9) can be used to determine the energy release rates and the rates of the energy
release rates associated with the rotation of different crack increments. The problem of finding the most
energetically favorable growth directions for the candidate finite length crack increments, denoted by a
set [inc, is one requiring that the corresponding energy release rates must vanish i.e. Gs; = 0, Vi € [j.
The solution procedure at every time step, #**! can be cast as Newton-Raphson iterations:

Or+1 = 6 — H, "' Gsy, (10)

where k is the iteration count. The converged solution is attained when |6+ — x| < €, € being the
tolerance in the change in the angle of the finite crack increment, e.g. € = 0.1°.
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4. Implementation

Although XFEM facilitates mesh independent fracture propagation the enrichment must be updated at
each time step. In the current implementation this is achieved by means of a systematic book-keeping of
the element enrichment data, addition and removal of enrichment only where necessary, and a consistent
updating of the global system of equations. Consequently, moderate computational times are obtained,
even in our Matlab implementation. In the problems we solve, the greatest cost, by far, is in the solution
of the linear system of equations rather than in the assembly/updating.

5. Results and discussion

We compare the fracture paths obtained by different criteria for problems consisting of multiple cracks
and verify that, with mesh refinement, both criteria converge to the same fracture path provided the
criterion for growth is the same. However, the convergence rate of the energy minimization technique
to the converged crack path is found to be only marginally superior to that of the maximum hoop stress
criterion. It is found that the converged fracture path lies in between the fracture paths obtained by each
criterion for coarser meshes. This presents an opportunity to estimate an upper and lower bound of the
true fracture path as well as an error on the crack path. It is found that a more accurate approximation
of the fracture path for coarser meshes can be obtained by averaging the directions determined by each
criteria individually at every time step. Some results are demonstrated in Appendix A. Although there is
no limitation on the number of cracks in the implementation, the example cases presented consider only
few cracks as it is sufficient to demonstrate the key idea clearly.

6. Conclusions

Convergence of the maximum hoop stress criterion and the energy minimization towards the true frac-
ture path is found to be similar. However, from numerical experiments it is found that the converged
fracture path lies in between the fracture paths obtained by each criterion for coarser meshes. Besides the
opportunity to estimate the error on the fracture path for a given mesh, a more accurate approximation of
the true fracture path can be obtained by taking the average of the propagation directions given by each
criterion separately at every time step. Future work involves optimization of fracture increment lengths
as well as the growth directions simultaneously.
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Appendix A. Figures

Fracture paths by different criteria
(double cantilever problem with an edge crack offset by 0.01 above the x—axis)
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Figure A.1: Fracture paths considering different growth criteria for the double cantilever problem with the initial
crack positioned 0.01 above the x-axis. The prying action is exerted by prescribed displacements on the left edge.

Fracture paths by different criteria
(simply supported cracked square plate with a pressure loaded center crack)
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Figure A.2: Fracture paths considering different growth criteria for a simply supported square plate with three
pre-existing cracks, where the center crack is subjected to a pressure load acting normal to the crack surface.

Fracture paths by different criteria

(simply supported square plate with two pressure loaded edge cracks: Ax=0.6, Ay=0.04)
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Figure A.3: Fracture paths considering different growth criteria for a simply supported square plate with two initial
edge cracks that are loaded by pressure acting normal to the crack surface.

124



Proceedings of the 22" UK Conference of the
Association for Computational Mechanics in Engineering
2—4April 2014, University of Exeter, Exeter

MESO-SCALE FRACTURE MODELLING OF CONCRETE WITH
RANDOM AGGREGATES AND PORES

*X.F. Wang?, Z.J. Yang!?and J.R. Yates®
!School of MACE, the University of Manchester, Manchester, M13 9PL, UK
“College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, China
*Simuline Ltd, Derbyshire, $18 1QD, UK

*xiaofeng.wang@manchester.ac.uk
ABSTRACT

Generation and packing algorithms are developed to create models of two-dimensional heterogeneous concrete
specimens with randomly distributed circular, elliptical and polygonal pores and aggregates. A recently
developed numerical method based on the cohesive crack model is used to simulate meso-scale crack initiation
and propagation. Monte Carlo simulations are carried out to evaluate the effects of pore and aggregate shape,
porosity and aggregate volume fraction. The nucleation and coalescence of microcracks and propagation of
macrocracks are modelled in detail with some important conclusions drawn.

Keywords: concrete, random packing, Monte Carlo simulation, cohesive elements, meso-scale modelling
1. Introduction

Concrete is a composite material with a variety of inhomogeneities and its response to mechanical
loading is complex. Due to its multi-phase composition and quasi-brittle mechanical behaviour,
modelling of concrete for structural engineering analysis is an important and challenging problem [1,
2]. At the mesoscopic scale, it is evident that several parameters, such as the shape, pore and
aggregate distribution, aggregate gradation, porosity, aggregate volume fraction and aggregate-mortar
interfaces, significantly influence the numerical simulation of the mechanical behaviour of concrete.
The majority of researchers treat concrete as a two-phase (mortar and inclusions) or three-phase
(mortar, inclusions and interfaces) material at the mesoscale. However, the XCT images [3, 4] clearly
show that pores exist in the concrete at this scale. In our paper, we describe the generation of random
mesostructure models with circular, elliptical, polygonal aggregates and pores based on prescribed
parameters. The models are then meshed automatically, solved by FEM, and statistically analysed to
elucidate the effects of mesostructural parameters on the mechanical behaviour.

2. Mesostructure Generation

Wang et al. [5] presented a comprehensive procedure using a commonly adopted “taking” and
“placing” method to generate a random geometric arrangement of aggregates. A similar procedure is
adopted in the present study, which is programmed using MATLAB. The basic idea is to create the
aggregates in the concrete in a repeated manner, until the target area is filled. The “input” step reads
the controlling parameters for different shapes of aggregates and pores, the “taking” step generates an
individual aggregate/pore in accordance with the random size and shape descriptions, and the
“placing” step subsequently positions the aggregates and pores into the predefined area in a random
manner, subjected to the prescribed physical constraints. The shape of aggregate particles depends on
the aggregate type. Generally, gravel aggregates have a circular or elliptical shape, while crushed
stone aggregates have an angular shape and are therefore modelled as polygons.

3. Cohesive Crack Model

A recently developed numerical method based on the cohesive crack model is used to simulate meso-
scale crack initiation and propagation [2]. Here 4-node zero in-plane thickness cohesive elements are
pre-inserted into the existing element edges by an in-house computer program. Fig. 1(a) and Fig. 1(b)
shows the initial FE mesh (16 elements and 13 nodes) and FE mesh with inserted cohesive elements
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(36 elements, 48 nodes). The element and node numbers are denoted as E and N respectively. The
detailed numbering of elements and nodes in the initial mesh and the mesh with inserted cohesive
elements (see Fig. 1) shows the insertion procedure with the new nodes generated at the same
positions and interface cohesive elements between the continuum elements. The inserted cohesive
elements can be divided into three groups (see Fig. 1(b)); those along mortar-aggregate interfaces
(yellow in Fig. 1(b)), inside mortar (green in Fig. 1(b)) and inside aggregates (blue in Fig. 1(b)). In
general, aggregates are less likely than mortar to crack. But, in our work additional interface elements
are inserted within the aggregates to represent potential cracks, such as in the case of lightweight or
high-strength concrete. So in the mesostructure of concrete, a potential crack path may transverse
through aggregates, or mortar, or along their interfaces.
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Fig. 1. Inserting different cohesive elements into the initial mesh
4. Monte Carlo Simulation

4.1. Effect of aggregate and pore shape

A series of 2D concrete specimens (50mmx50mm, aggregate volume fraction=40%, porosity=2%)
with different shapes of aggregates and pores are modelled under a uniaxial tension test. Horizontal
displacements are prescribed to all nodes of the left and right surfaces of the specimen, with value
equal to zero on the left surface, and a uniformly distributed displacement (0.1mm) on the right
surface. Vertical displacements for the same nodes are left free, except for the node at the left lower
corner of the specimen, which is fixed to prevent rigid body translation. The material parameters used
for the continuum elements are: Young’s Modulus E=7x10* MPa (aggregates), E=2.5x10* MPa
(mortar) and Poisson’s ratio v=0.2 (both); for the aggregate-aggregate and mortar-mortar interface
elements: elastic stiffness k,=k=10° MPa/mm, tensile strength t,=6 MPa and fracture energy G; =0.06
N/mm; for the aggregate-mortar interface elements: ks=ks=10° MPa/mm, t,=3 MPa and G; =0.03
N/mm.

The effect of aggregate and pore shape is investigated by performing 100 Monte Carlo simulations
while all the other parameters are fixed. Fig. 2 plots the typical crack paths for samples with different
shapes of aggregates and pores. Two typical crack types as found in asphalt mixture [6] are observed
in the Monte Carlo simulations under a uniaxial tension test: namely, type | cracking with only one
dominant crack, and type Il cracking with two dominant cracks. The both types of cracking are easily
observed in concrete samples with different shapes of aggregates and pores (see Fig. 2(a)-(f)). This is
because microcracks first initiate and coalesce in some weaker regions, type | crack develops when
the degraded regions are almost in a line, and type Il crack develops when the microcrack connection
is obstructed by a strong portion. Fig. 3(a)-(f) shows the resulting stress-displacement curves for the 6
groups. The mean stress-displacement curves are plotted, and the mean value and the standard
deviation of the peak stress are also calculated. It seems to reveal that the load capacity in the tensile
test of the circular and elliptical aggregate samples is greater than that of polygonal ones. The load
capacity difference between samples with circular aggregates and elliptical aggregates is about 2%
while the difference between samples with circular aggregates and polygonal aggregates is about 6%.
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It is postulated that this is because the local stresses are enhanced by the higher stress concentration at
the corners of the polygonal aggregates, while the smooth edges of the circular and elliptical

aggregates have a more benign stress distribution which delays the fracture event and increases the
tensile strength.

(a) Circular aggregates and circular pores (b) Circular aggregates and elliptical pores

(c) Elliptical aggregates and circular pores (d) Elliptical aggregates and elliptical pores
(e) Elliptical aggregates and elliptical pores (f) Elliptical aggregates and elliptical pores

Fig. 2. Typical type I and type Il crack paths for samples with different shapes of aggregates and pores
(magnification factor=10)
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4.2. Effect of aggregate volume fraction and porosity

In order to investigate the effect of aggregate volume fraction and porosity, concrete samples with
circular aggregates and circular pores are chosen. Monte Carlo simulations were carried out under a
uniaxial tension test and all the parameters except for aggregate volume fraction and porosity were
fixed to the values used in section 4.1. Fig. 5 shows the mean stress-displacement curves of the
samples with different aggregate volume fraction and porosity. It can be observed that the mean
stress-displacement curve is relatively insensitive to the aggregate volume fraction (see Fig. 5(a)).
This may be because the increase of weak interfaces offsets the effect of increase in strong aggregates
for this particular material set. As shown in Fig. 5(b), the effect of porosity on the load capacity is
more pronounced. This is because the pores enable the cracks to propagate easily through them so that
the samples fail quickly. It clearly shows that the pores which exist in the concrete should not be
neglected when analyzing the mechanical properties and fracture of concrete.
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Fig. 4. Effect of aggregate volume fraction and porosity
5. Conclusions

Models of concrete with a random mesostructure comprising circular, elliptical, or polygonal
aggregates and pores have been developed in this study. The results obtained from the Monte Carlo
simulations of a uniaxial tension test show that the load capacity of the circular and elliptical
aggregate samples is greater than that of polygonal aggregates for this particular material set; It is also
found that the porosity has a great effect on the load capacity so that the pores should be considered in
meso-scale fracture modelling of concrete.
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ABSTRACT

A cell-centered control-volume distributed multi-point flux (CVD-MPFA) finite volume formulation is
presented for fractured porous media. Highly conductive fractures are modelled as lower-dimensional
(1D) interfaces in between the (2D) matrix cells. Matrix-fracture flux transfer is incorporated into the
MPFA formulation dficiently by the transfer function used in the fracture flow equation. The lower-
dimensional fracture model is compared to the explicit equi-dimensional model and hybrid-grid method.
Highly conductive fractures arefficiently modelled by a lower-dimensional fracture approximation
while yielding results that are comparable with equi-dimensional methods.

Key Words: MPFA,; fractured porous; lower-dimensional; interfaces; transfer function

1. Introduction

The understanding of fluid flow through fractured porous medium has immense importance in environ-
mental and energy production problems. Generally, fractures have higher permeability and lower porosity
in contrast to the matrix (main part of porous medium) and act as preferential fluid flow paths. Because
of the importance of fractures in reservoirs, increasifigreis devoted to the development dfieient

and accurate numerical methods to simulate the fluid flow through fractured porous media. To avoid the
deficiencies of the conventional dual-porosity model, discrete-fracture model (DFM) was developed; see
e.g. [1, 5, 6]. In this model actual geometry and location of the fracture are honoured in the domain. Gen-
erally, fractures are modelled by (n-1) dimensional elements in a n-dimensional problem, for example in
2d, fractures are represented by the lines at the edges of the polygonal matrix elements.

Here, we will focus on the control volume distributed finite-volume method for discrete-fracture method
with multi-point flux approximation (MPFA). Recently, T.H. Sandve et al [7] has proposed hybrid-grid
approach with MPFA for discrete-fracture modelling. In the hybrid-grid approach, introduced in [4],
fractures are (n-1)D in the physical mesh and are expanded to nD in the computational domain. The
fracture-fracture intermediate cell is assumed to be of small size so that pressure variation and mass ac-
cumulation is zero in that cell. We present and investigate a simplified formulation which couples the
CVD-MPFA method (refer to e.g. H.A. Friis et al [2]) with the lower dimensional fracture model in the
computational domain without using the hybrid grid approach. The simplified formulation is naturally
incorporated into the existing CVD-MPFA framework.

2. CVD-MPFA lower-dimensional fracture formulation

For high permeability and low aperture, the jump in pressure across the fracture is very low. Pressure
can be assumed constant along the width of fracture but the velocity jump is nhon-zero as discussed in
[6]. We use the transfer function as presented by H. Hoteit et al. [3], coupled within the cell-centered
CVD-MPFA framework. For a matrix domain the nD equation is solved while the (n-1)D equation is
solved (simultaneously) for fracture cells:

-V-KiVgs = Qi+ ft in Qg (2
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whereK; is the longitudinal permeability of fracture agk is the transfer function to account for the
flux transfer between matrix and fracture cells. The cluster of cells is shown in figure (1(a)) which is
typically used in the CVD-MPFA formulation.

(a) Cluster of matrix cells (b) Dual cell with sub-cells (c) Cluster of 1D fracture
involving fracture cells as of matrix cells. Triangular cdls

interfaces in between, de-  pressure supports are also
picted by bold lines shown

Figure 1: Cluster and dual-cell involving fracture cells as interfaces

2.1. Matrix-matrix and matrix-fracture fluxes

For the dual-cell shown in figure(1(b)), we require 3 fluxes on the edges which are not fractures and 6
fluxes on both the sides (right and left) of the edges which are fractures and can be written in matrix form
as:

F — A9><6¢M + BQX3¢F + CQX3¢I (3)

whereg), are pressures associated with the matrix cellsare pressures on the edges, between matrix
cells, which are not fracture cells agg are pressures related to fracture cells. As in the usual CVD-
MPFA formulation,¢, are eliminated by imposing continuity of fluxes on both sides of edges. Thus we
obtain fluxes in terms ap,, and¢g only as follows:

F = A%6g,, + B™3¢. 4)

Fluxes on the edges of fractures are discontinuous across the fracture ffEhende in these fluxes on
both sides of fracture edges are the half integral of transfer functions for the corresponding 1D fracture
cells.

Qt12=FL-Fr (5)
= Qt12 = E>6gy, + F>3¢e (6)

2.2. Fracture-fracture fluxes

A cluster of 1d fracture cells is represented in figure (1(c)). Pressures are associated with fracture mid-
points, and with intermediate vertices between fractures. The outgoing fluxes are computed for every
fracture at the vertex, formulated as follows:

F = A3><3¢F + B3><1¢V (7)

The pressure at the intermediate vertex is eliminated by imposing the condition of mass conservation at
the vertex, Kirchhé’s law analogy. We obtain fluxes in terms of fracture cell pressures.

3
Z Fi=0 = v = (B> A
K

=  F=A¥ (8)
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2.3. Global linear system

We use the fluxes, determined in (4) and (8), and transfer function, determined in (6), to complete the
discrete conservation scheme of equations (1) and (2) for every matrix cell and fracture cell respectively.
A coupled linear system is obtained for matrix cells away from the fragye matrix cells associated

with fractureg),, and the fracture cellgg:

Gwm; Gwm, O (P, f v,
GM2M1 GMzMz GMzF ¢M2 = fM2 (9)
O Grm, Gr )\ ¢f fe

Above coupled system, (9) can be solved monolithically or by iterative solution methods for matrix and
fracture pressures. The overall condition number of the global system depends on the fracture permeabil-
ity and aperture magnitudes.

3. Transport model

We assume high flow in the fractures and the intermediate cell is so small that there is no accumulation
inside. If there aren intersecting fractures at the intermediate cell and theré #in&es going into the
intermediate cell then we can compute concentration at intermediate;gebly the following condition;

| n—I|
Z Fi.Ck = Cfo Z Fi, (10)
=] =

In this way we do not need to include the intermediate cell in overall computations and avoid the restric-
tion of low CFL condition because of the inclusion of the intermediate cell.

4. Numerical Tests

Convergence tests forfierent aperture and fracture to matrix permeability ratios are presented for a
domain with single fracture. The convergence for the 1D fracture model is the same as that obtained for
the hybrid-grid method. Also we have compared the 1D fracture results to the results obtained by explicit
2D fracture model and hybrid-grid method. Meshes are shown in figure (2). Pressure and concentration
contours are shown in figure (3). Concentration of producer w.r.t time is also shown in figure (4).

(a) 11984 cells (b) 8648 cells+ 80 1D fracture cells

Figure 2: Explicit grid representation of intersecting fractures and mixed-dimensional grid with 1D fractures rep-
resentation, aperture 1073

5. Conclusions

We have presented a CVD-MPFA formulation for discrete fracture modelling #ialeat lower-
dimensional fracture modelling in computational domain. For thin highly conductive fractures, the lower-
dimensional fracture model yields results that rival the hybrid grid method and explicit equi-dimensional
modelling of fractures, without extra degrees of freedom in the cluster. In addition the lower dimensional
fracture model is naturally coupled with the CVD-MPFA method.
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ABSTRACT

Numerical modelling of brittle fracture and failure in geological materials is now possible through a variety of
available software. Given the wide scope of numerical applications it is essential for the engineer and
geoscientist to fully understand and appreciate the varying strengths and limitations inherent in each of the
different methodologies. In this paper we demonstrate the application of brittle fracture modelling from the
laboratory to rock mass scale. Examples of brittle fracture simulation in both two and three dimensions to
underground and surface mine geometries are presented. The loading conditions, and therefore engineering
response of the structure, can be complex as a result of the redistribution of the three-dimensional stress field;
this can result in stress-induced fracture and associated failure of the rock at varying scales. The modelling of
geological materials is made more complex in view of the potential controlling behaviour of the discrete fracture
network. Failure can result from formation of new fractures or extension of pre-existing discontinuities. With
increasing scale of the modelled structure the pre-existing discrete fracture network can have a dramatic
influence on the modelled behaviour. Hybrid codes that incorporate fracture simulation capabilities have been
used to model a wide spectrum of rock-related failure modes, and are particularly well suited to modelling
complex instabilities where failure requires yielding, brittle fracture and shearing. The influence of the correct
geological model and choice of modelling approach on the simulated failure mechanism is demonstrated.

Keywords: brittle fracture; numerical modelling; geological model; discontinuity characteristics
1. Introduction

The role of brittle fracture in rock excavation instability, both in engineered and natural structures, is
the subject of considerable on-going research. For example, man-made excavations can vary in size
from centimetres (borehole and associated breakout), metres (tunnel and pillar stability) to hundreds
of metres (large open pit slopes). The loading conditions, and therefore engineering response of the
structure, can be complex as a result of the redistribution of the three-dimensional stress field. This
can result in stress-induced fracture and associated failure of the rock at varying scales. The modelling
of geological materials is made more complex in view of the potential controlling behaviour of the
discrete fracture network. Failure can result from formation of new fractures or extension of pre-
existing discontinuities. With increasing scale of the modelled structure the pre-existing discrete
fracture network can have a dramatic influence on the modelled behaviour. Stead et al [1] emphasised
the diversity of roles and scale of brittle fracture in rock slopes.

2. Brittle fracture

Stead et al [1] suggested that brittle facture may be conveniently considered in terms of primary,
secondary and tertiary processes. Primary brittle fracture is considered to include processes that occur
prior to the onset of failure. They include: (i) propagation of failure surfaces through fracture tip
growth, (ii) coalescence of fractures and failure of intact rock bridges and (iii) shearing along
discontinuities involving removal of asperities. These processes may lead to failure through a variety
of mechanisms such as sliding along discrete daylighting planes of weakness, step-path failure surface
generation and in extreme cases major changes in kinematics through the fracture of keyblocks within
an excavation surface. Stead and Coggan [2] described rock slope failure using a total slope failure
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analysis terminology. In this framework, primary brittle fracture processes are predominantly
associated with the failure initiation or trigger zone.

Following the onset of primary slope movements within a slope, secondary brittle fracture processes
may be involved in: (i) development of rear and lateral release surfaces leading toward global slope
failure and (ii) internal deformation, fracturing and dilation of the rock slope mass associated with
translational failure, toppling or multiple complex interacting mechanisms. Secondary brittle fracture
processes, in rock slopes, are associated with a transition from the initiation to transportation stages in
a slope failure. They accompany a gradual reduction in rock mass strength and removal of kinematic
restraint prior to global rock slope failure and debris transportation.

The final stages in the rock slope brittle fracture involve the comminution of the rock mass associated
with transport leading up to final debris deposition. These tertiary brittle fracture processes are
recognised to be particularly important when characterising the distance that rock failure debris will
travel or ‘run-out’ of natural slopes. Researchers have characterised the comminution of the rock
slope mass using approaches that consider the initial block size distribution in the initiation zone and
the final block size in the debris pile. As large open pits become more frequent the need to assess
tertiary brittle fracture processes, velocity of transport and run-out extent will increase.

3. Numerical modelling of brittle fracture

The possible approaches to numerical modelling of rock-related failure have been previously
described in [1-7], with [3] providing a review of advantages and limitations of each approach. Stead
et al [1] emphasised the importance of simulation of brittle fracture at varying scales and the need to
incorporate representative discrete fracture networks within model geometry.

Figure 1 shows results of brittle fracture modelling undertaken by [8; 9] with the ELFEN code [10].
These comparative laboratory numerical modelling studies were extremely useful in calibrating the
use of the ELFEN code approach against continuum finite element and Voronoi distinct element
models. The importance of considering ongoing continuous kinematic changes even at the laboratory
scale is indicated from the results of these ELFEN simulations. Karami and Stead [9] further
demonstrate the key role of scale when considering simple direct shear in a shear box test.

Figure 2 shows example modelling results from three-dimensional simulation of roof failure in an
underground coal mine roadway using 3DEC [11; 12]. A newly developed Trigon logic was
employed within the 3DEC modelling to simulate cutter roof failure caused by oblique horizontal
stress with respect to roadway advance direction. The roadway roof was represented as an assembly
of tetrahedral blocks bonded together through the contact surfaces between them. As the roadway face
advanced, stress concentration was observed at the intersecting corner of the major horizontal stress
and the roadway roof, with no stress concentration observed at the other corner of the roof. This leads
to cutter roof failure immediately behind the advancing face.

Figure 3 shows selected stages of the modelled failure of the 1967 failure of the West face at Delabole
Slate Quarry using ELFEN [6; 10] to highlight the initial fracture geometry and subsequent fracture
development through extension of pre-existing fractures and development of new fractures in an
application to surface excavation. The results highlight the step-path nature of the modelled failure,
together with internal fracturing and subsequent rotation and translation of the failed mass.
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Figure 1: Brittle fracture simulation at the laboratory scale: (a) stages in step-path fracturing under uniaxial
compression and (b) direct shear simulation, top low normal stress, bottom high normal stress (after [8])
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Figure 2: Cutter roof failure captured at 1 m behind the advance face in: (a) Model without pre-existing
fractures, (b) model with pre-existing fractures (after [9])
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Figure 3: Modelled stages of the 1967 failure at Delabole Slate Quarry showing initial assumed fracture
geometry and subsequent fracture development for non-continuous discontinuities
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4. Conclusions

Numerical codes that incorporate fracture simulation capabilities can now be used to model a wide
spectrum of rock-related failure modes, and are particularly well suited to modelling complex
translational/rotational instabilities where failure requires yielding, brittle fracturing and shearing. The
results confirm the importance of the correct geological model and correct choice of modelling
approach based on likely failure mechanism (whether material, discontinuity or a combination of both
material and discontinuity controlled failure). There is, however, a need to appreciate both model and
parameter uncertainty within the chosen approach, together with both spatial and temporal changes in
material behaviour. With ever increasing computing power there has been a drive towards more
realistic modelling with increasingly complex representation of the rock mass. With more
sophisticated three-dimensional models it remains important however to be aware of both model and
parameter uncertainty.
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ABSTRACT

This paper presents a solution strategy for quasi-static brittle fracture in three dimensional solids. The
paper briefly set outs the theoretical basis for determining the initiation and direction of propagating
cracks based on concept of configurational mechanics. Attention is focused on load control enforcing
dissipative loading path, consistent fracture with Griffith’s theory and resolution of by the finite element
mesh. Cracks are restricted on to the element faces and the mesh is adapted in order to align with the
predicted crack direction. A local mesh improvement procedure is developed to maximise mesh quality
in order to improve accuracy and solution robustness and to reduce the influence of the initial mesh
on the direction of propagating cracks. The performance of this modelling approach is demonstrated
on three numerical examples that qualitatively illustrate its ability to predict complex crack paths. All
problems are three-dimensional, including a torsion problem that results in the accurate prediction of
a doubly-curved crack. Finally hierarchical hp-adaptivity is studied in order to improve approximation
of displacements and crack geometry. Since the presented methodology is based on face splitting, and
since no changes in approximation function space are introduced, it could be easily implemented in
commercial finite element systems.

Key Words: fracture; configurational forces; crack path;, mesh adaptivity, mesh quality; arc-length
control

1. Introduction

Fracture is a pervasive problem in materials and structural engineering and the predictive modelling of
crack propagation remains one of the most significant challenges in solid mechanics. A computational
framework for modelling crack propagation must be able not only to predict the initiation and direction
of cracks but also provide a numerical setting to accurately resolve the crack path.

Finite element method (FEM) is, on the face of it, not well adopted to the resolution of cracks, i.e.
changes of topology. Nevertheless, strategies for discretization of the discontinuities in the context of
FEM can be categorized into two main types: smeared and discrete. The former is attractive form the
point of view that the problem can be solved within continuum setting, without need of approximation
of discontinuities or changing mesh connectivity. However, as strain localization occurs, or crack is
approximated in averaged sense like in phase-field methods, causes numerical difficulties and requires
regularization. Discrete approaches on the other hand are able to directly approximate macroscopic crack
geometry. Discrete approaches describe fractures in a more natural and straightforward manner in terms
of displacement jumps and tractions. Developments in discrete approaches include introducing embedded
displacement jumps within finite elements via additional enhanced strain modes (for example [1]) or can
be based on partition of unity, e.g. [2].

A potentially straightforward approach is to restrict the path to element faces. Such approach means that
that the predicted path can be strongly influenced by the mesh and strongly influence crack surface area
strongly affecting total crack release energy. The crack geometry dependence on mesh can be somehow
reduced by using very fine, unstructured meshes, but this could be computationally expensive analysis
which unrealistic crack release surface energy. It is worth to notice that the authors [3, 4] have shown that,
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Figure 1: Pull-out test load displacement path and energy dissipation . On the right hand figure: The contour plot
on the crack surface presenting density of strain energy. The contour plot on the slice presenting approximation
order, blue color: linear approximation, white: quadratic approximation, red: cubic approximation. Figure on the
right hand side shows final crack surface.

when modelling energy is released by crack opening, for cohesive element methodology, and heteroge-
neous microstructures, the crack propagation is largely controlled by the need for the mesh to resolve the
heterogeneities. However, in the modelling of ideally brittle homogeneous materials, studied here, this is
clearly not the case.

In addition to the need yo resolve crack within the context of the Finite Element Method, it is necessary
to employ a rational means of determining the direction of crack propagation and crack propagation
criterion. This is particular difficult for three-dimensional case where crack front is approximated on the
finite element edges. The approach taken in this paper is principally based on the principle of maximal
energy dispassion, with configurational forces, which at crack front at material and spatial equilibrium,
determine direction of crack front propagation. Similar technique was successfully adopted by a number
of authors, but here we mainly follow the work of [5, 6]. Such an approach for predicting the crack path
can be coupled with local r-adaptivity to mitigate the influence of the mesh.

We are primarily concerned in this chapter with solving crack propagation in large three-dimensional
problems. The efficiency of such problems, with large numbers of degrees of freedom (DOFS), usually
requires the use of an iterative solvers for solving system of algebraic equations. In such case the we must
control element quality in order to optimise matrix conditioning, thereby increasing the computational
efficiency of the solver. This in could difficulty in methods such as XFEM where enrichment functions not
only increase band of the stiffness matrix but also deteriorate matrix conditioning. This paper also shows
how controlling mesh quality improves crack path predictions and robustness of the solution algorithm.

Two numerical examples are presented for crack propagation that demonstrate the ability of formulation
to accurately predict crack paths, as well as demonstrate mesh independence and influence of both mesh
adaptivity and controlling mesh quality on the solution obtained.

2. Example

Solution strategy presented in this paper is implemented for parallel shared memory computers. The two
core libraries are used for this implementation, MOAB: A mesh-oriented database [10] to store data on
mesh, input and output operations and access all information about mesh topology. The parallel matri-
ces and vectors are implemented using PETSc: Portable, Extensible Toolkit for Scientific Computation
[11]. For the solution of linear system of equations and other algebraic operations are implemented with
PETSc. For parallel mesh partitioning is used ParMetis [12] using PETSc native interface. Calculations
are executed on ARCHIE-West academic super computer for the west of Scotland.

Three numerical examples are presented for crack propagation in three-dimensions that demonstrate the
ability of the formulation to accurately predict crack paths, as well as demonstrate mesh independence
and the influence of both mesh adaptivity and controlling mesh quality on the solution obtained.
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2.1. Pull out test

This example consists of a pull-out test of a steel anchor embedded in a concrete cylindrical block.
This numerical examples is compared with results of Duan & Areias, Belytschko [7, 8] and Gasser
& Holzapfel [9]. All geometrical data could be obtained form [7, 8, 9]. Analysis is made for Young-
modulus E = 30000N/mm2, Poison ratio v = 0.2 and Griffith energy Gy = 0.106N/mm. Following [7]
to represent the steel anchor effect, we impose vertical displacement. The anchor stem is not explicitly
modelled. Other examples and detailed description of presented methodology can be found in paper [13].
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ABSTRACT

This paper extended the 2D meso-scale image-based models to 3D by using a small volume proportion of
images obtained from an X-ray computed tomography test. The real microstructure of concrete specimen was
characterized as three phases: aggregate, cement and voids (which is empty areas). Zero-thickness cohesive
interface elements were embedded in cement phase to represent the potential cracks (no cracks allowed to
propagate through aggregate particles). The average stress-strain curve of the 3D mesh under uniaxial tension
was compared with a 2D simulation result. The crack propagation process in 3D was illustrated together with
the final crack surfaces.

Keywords: Concrete; X-ray computed tomography; Image based modelling; Cohesive interface element; Meso-
scale model

1. Introduction

As a quasi-brittle composite material, concrete has been widely used in many civil and industrial
structures. Due to the existence of intrinsic heterogeneity at nano, micro, meso and macro scales, it is
very complicated to model fracture behaviour of both microcracks and macrocracks, such as initiation
and coalescence. Traditionally, numerical models are obtained by computer programmes and the
material heterogeneity is realized either by random distributed material properties controlled by
correlated functions [1-3] or by randomised positions and shapes of inclusions [4-7]. Monte Carlo
simulation method can be used to get the statistical analysis because of the ease of using computer
programmes. However, most of these studies assume the morphologies, which are mathematical
representations.

The innovation of this paper is to build the 3D meso-scale model with realistic internal microstructure
by transforming images obtained from X-ray computed tomography (XCT) into a 3D finite element
(FE) mesh, which is acknowledged as image-based modelling method [8]. In the companion paper
[9], the two-dimensional (2D) meso-scale FE meshes based on XCT images were used along with
pre-embedding cohesive interface elements to simulate crack propagation processes in concrete under
uniaxial tension loading. In this paper, a three-dimensional (3D) model is built by cropping a
10x10x10 mm?® volume from the whole image model (size of 37.2x37.2x37.2 mm®). The zero-
thickness cohesive interface elements (CIEs) are embedded in cement using an in house computer
programme to simulate potential cracks.

2. Image-based modelling

The proposed method involves the following steps:

1) Creating the 3D image model from XCT test. The detailed reconstruction and segmentation
process of the concrete specimen from XCT test can be found in [10]. Here, a randomly
selected small volume cube (10 mm?®) was cropped from a large specimen. Figure 1 shows the
3D image, in which blue and grey colours represent aggregates and cement paste respectively;

2) Generating mesh. The software package of Simpleware [11] is used to directly transform the
3D image into a fine 3D Mesh;
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3) Inserting the cohesive interfaces elements (CIEs). The CIEs (known as COH3D6 and

COH3D8 in Abaqus [12]) are inserted in cement and on aggregate-cement interfaces
(different material properties are assigned) using the same approach as used for 2D in [9].The
cracks are not allowed to be propagated in aggregates due to their high strength. The final
image-based 3D mesh is shown in figure 2;

4) Assigning material properties and conducting analysis. The material properties used for 2D
simulations [9] are considered and shown in Table 1. Due to the lack of experimental data,
the shear components of initial stiffness and cohesive strength are assumed to be the
same as the normal ones. The periodic boundary conditions are applied. A
displacement controlled loading of un-notched specimen under uniaxial tension is
simulated. Abaqus/Explicit solver is selected because of its high efficiency and convergence
advantage for simulations of material degradation.

= -—-..
N, '
Figure 1: 3D image of concrete specimen Figure 2: Image based 3D mesh
Table 1: Material properties
Elastic . , . Initial Tensile Fracture
modulus PO::E%H S (Dker};:%/ stiffness strength energy
(MPa) ; (MPa/m) (MPa) (N/m)

Aggregate 70000 0.2 2500 / / /

Cement 25000 0.2 2200 / / /

CIE_CEM / / 2200 10° 6 60

CIE_INT / / 2200 10° 3 30

3. Numerical simulation results

Figure 3 shows the energy curves of model, including Kinetic energy, Strain energy, Internal energy
and External work. Figure 3 concludes that the energy balance is obtained: the kinetic energy remains
less than 5% of the internal energy; meanwhile, the internal energy is almost identical to the external
work) as expected for a quasi-static analysis.

Energy (mJ)

7 5.5
6 | | —*Kinetic - RO 5 C —=—3D_10x10x10mm*_Z
—#=— Strain 4.5 1 bl 2D _10x10mm* X
5 1 Internal / ?3; T4A 3
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4 =4 External j E 3 _! \\
3 z25 |
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L5 \
1 1 \
& . 0.5 J E
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Time (5) Strain
Figure 3: Energy curves of the whole model Figure 4: Stress-strain curves of 2D and 3D models
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Figure 4 shows the average stress-strain curves of the 3D simulation and a 2D model having the same
material properties and boundary conditions. The pre-peak stiffness is identical for both, however
with different peak values (4.94 MPa for 3D and only 3.01 MPa for 2D). One reason is that
microcracks in 3D are more difficult to get interconnected to form macrocracks due to the arbitrary
shapes of the 3D aggregate particles. The 3D model seems to be more brittle (stiffer softening slope)
than 2D.

Figure 5 shows the process of initiation and coalescence of microcracks and macrocracks
(corresponding to the points marked A, B, C, D and E in figure 4). The blue areas in figure 5 represent
aggregates. The orange and red (darker) colours represent the microcracks exist on aggregate-cement
interfaces and within cement. A lot of microcracks first only initiated on aggregate-cement interfaces
(Point A). At point B, more microcracks appeared on aggregate-cement interfaces. Some of interfacial
ones begin to coalesce and get connected by newly formed cracks in cement. Most of interfacial
cracks formed before peak value (point C), meanwhile more and more cracks in cement increased
gradually (point D) and finally the specimen failed into two pieces (point E). The cracked specimen is
shown in figure 5(f).

(a) A (6=0.00017) (b) B (£=0.00029) (©) C (peak, £=0.00044)

(d) D (¢=0.00086) (e) E (e=0.00375) (f) Final macrocrack
Figure 5: The initiation and propagation of micro and macro cracks

The final cracked surfaces are shown in figure 6 and the 3D visualisation of crack path is plotted in
figure 7. The numbers ((1)-(5)) represent five aggregates (in blue colour) around the cracking surface.

Figure 6: Final cracked pieces Figure 7: 3D crack surfaces (SDEG>0.9)
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As no cracks are allowed through aggregates, the crack surfaces always formed around particles. The
numbers ((1)-(5)) in figure 7 are the corresponding places in Figure 6 which caused the resulting
crack path.

4. Conclusions

3D meso-scale FE image-based model is developed to simulate crack propagation process in concrete
under uniaxial tension loading. The average stress-strain curve of the 3D mesh is compared with a 2D
analysis by using same material inputs and boundary conditions. The curves show that the 3D model
predicts a higher peak strength and stiffer softening slope. The features of initiation and coalescence
of microcracks into macrocracks were illustrated. The final 3D crack surface shows that cracks are
always formed along the surfaces of aggregates. The proposed imaged-based modelling technique
shows a powerful way to study fracture mechanics of the composites with realistic internal structures.
Moreover, the meso-scale simulation results could be also used to predict more realistic macro
behaviour of concrete by multiscale analysis. Though there is a limitation of proposed modelling
method: the computational cost. It is high due to the use of a very fine mesh and a large amount of
inserted cohesive elements. This is unavoidable as the particles in the real materials always exhibit
highly heterogeneous and the resultant mesh is very fine. However, with the help of parallel
computing, the computation time could be greatly reduced when explicit solver is selected.

Acknowledgements

The research is funded by a Royal Society Research Grant and an EPSRC grant (No. EP/J019763/1).

References

[1] ZJ. Yang and X. Frank Xu. A heterogeneous cohesive model for quasi-brittle materials considering
spatially varying random fracture properties. Computer Methods in Applied Mechanics and Engineering,
197(45-48): 4027-4039. 2008.

[2] zJ. Yang, X.T. Su, J.F. Chen and G.H. Liu. Monte Carlo simulation of complex cohesive fracture in
random heterogeneous quasi-brittle materials. International Journal of Solids and Structures, 46(17):
3222-3234. 20009.

[3] X.T. Su, ZJ. Yang and G.H. Liu. Monte Carlo simulation of complex cohesive fracture in random
heterogeneous quasi-brittle materials: A 3D study. International Journal of Solids and Structures, 47(17):
2336-2345. 2010.

[4] G. Lilliu and J.G.M. van Mier. 3D lattice type fracture model for concrete. Engineering Fracture
Mechanics, 70(7-8): 927-941. 2003.

[5] C. Lopez, I. Carol and A. Aguado. Meso-structural study of concrete fracture using interface elements. I:
numerical model and tensile behavior. Materials and Structures, 41(3): 583-599. 2008.

[6] A.Y.Yin, X.H. Yang and Z.J. Yang. 2D and 3D Fracture Modeling of Asphalt Mixture with Randomly
Distributed Aggregates and Embedded Cohesive Cracks. Procedia IUTAM, 6(0): 114-122. 2013.

[7] L. Skarzynski and J. Tejchman. Calculations of fracture process zones on meso-scale in notched concrete
beams subjected to three-point bending. European Journal of Mechanics - A/Solids, 29(4): 746-760. 2010.

[8] R. Sharma, P. Mahajan, and R.K. Mittal. Fiber bundle push-out test and image-based finite element
simulation for 3D carbon/carbon composites. Carbon, 50(8): 2717-2725. 2012.

[9] W.Y. Ren, ZJ. Yang and P. Withers. Meso-scale Fracture Modelling of Concrete Based on X-ray
Computed Tomography Images, APCOM & ISCM, Singapore. 2013.

[10] zJ.Yang, W.Y. Ren, M. Mostafavi, S.A. McDonald and T.J. Marrow. Characterisation of 3d fracture
evolution in concrete using in-situ X-ray computed tomography testing and digital volume correlation. VIII
International Conference on Fracture Mechanics of Concrete and Concrete Structures, Toledo. 2013.

[11] Simpleware, ScanlP, +FE and +CAD Version 4.3 Reference Guide, Simpleware Ltd. Exeter, UK. 2011.

[12] Abaqus, Abaqus 6.10 Online Documentation, Internet Manual, 2010.

143



Proceedings of the 22nd UK Conference of the
Association for Computational Mechanics in Engineering
2 — 4April 2014, University of Exeter, Exeter

USING SEMI-FUZZY RMR TO DETERMINE THE REQUIRED
SUPPORT SYSTEM FOR GHESHLAGH COAL MINE

*Mahdi Mahdizadeh?, Navid Navid Hosseini', Payman Afzal*?, Daryoush Kaveh Ahangaranl’z,
Amir Bijan Yasrebi

!Department of Mining Engineering, South Tehran branch, Islamic Azad University, Tehran, Iran
“Camborne School of Mines, University of Exeter, Cornwall Campus, Penryn, TR10 9EZ, UK

* mahdizadeh67@gmail.com
ABSTRACT

It is very important to have a comprehensive recognition of rocks on the way in designing underground spaces
because this highly affects the determination of support system. Rock rating system is known as one of the ways
of rocks analysis such as Q and RMR. However, RMR rating system is more common in mining studies. In this
system, different parameters are applied and then each part of a rock mass is scored and finally the intended
support system needed for the tunnel is suggested. The parameters entering to RMR are classified into two
groups of quantitative and qualitative ones and are placed in one specific classification accordingly. Since
quantitative parameters are not fixed yet, it is hard to determine an exact threshold between the classifications
and devote a specific amount to one certain group. To solve this problem, membership functions can be defined
for each one of the quantative parameters and the output point of every parameter can be figured out by fuzzy
sets. Fuzzy inference system calculated the points related to the quantitative parameters and other parameters are
classified based on quality and they are scored in the normal way. Ultimately, the amount of RMR is obtained
from adding the points of every one of the parameters. The current essay evaluates the final results of the semi-
fuzzy method due to the support system in every part of the mine which is sampled. These studies demonstrate
that the semi-fuzzy method is well able to determine the support system required for mining tunnels.

Key Words: Rock classification, RMR semi-fuzzy, Fuzzy inference system, Gheshlagh coal mine

1. Introduction

One of the most common methods determining the support system required for underground mines is
to use Rock Mass Rating system (RMR) [1]. This rating system first analyzes 10 different quantative
and descriptive parameters and then it classifies every part of the tunnel which has almost similar
conditions with one another in one group and it also suggests their required support system. Table 1
indicates the parameters required for rating based on being either quantative or qualitative. In RMR
system, according to the fact that the amount of each parameter is placed in which interval of the
tables, the point related to that parameter is calculated. One of the outstanding disadvantages of these
types of classifications is being fixed near the thresholds. To solve this problem; the changes of results
near these thresholds can become milder according to their degree of membership in every one of the
classes using fuzzy inference system. It is simply to prevent sudden changes in the output amount near
the thresholds. It is not also necessary to define fixedness for qualitative parameters because the input
amounts of these parameters are descriptive and they don’t have an exact threshold to make the output
amounts are unclear that is why semi-fuzzy method is suggested for their research.

Table 1: Comparing quantitative and qualitative (Descriptive) parameters

Quantitative Parameters Value Range Rating Descriptive Value Range Rating
Range Parameters Range
Uniaxial Compressive Strength of rock material | 1 - >250 MPa | 0 - 15 |Groundwater conditions| Flowing -Completely dry | 0 - 15
Rock quality designation (RQD) 0-100 3-20 Infilling Soft filling -Hard filling | 0-6
Spacing of discontinuities <60mm->2m|5-20 Weathering Decomposed -Unweathered | 0 - 6
Orientation of discontinuities 0-90 (Degree) [(12) -0 Roughness Slickensided -Very rough| 0 - 6
Discontinuity length >20m-<1m| 0-6
Separation (aperture) >5mm - None| 0-6
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2. The Specifications of the under Study Mine

Gheshlagh coal mines also called Rudbare Gheshlagh mine is known as the oldest mine in Golestan
Province and placed in the 35 km away from Azadshahr to Shahrud road and 6 km further in the
auxiliary road and it ends to two Rudbar and Shahrud villages. Each village is 3 km away from the
mine. Figure 1 shows the situation of Gheshlagh coal mine in roads map.

# 75 et Qeateh o i
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Figurel: the situation of Gheshlagh mine

3. Rock Mass Rating(RMR)

Bieniawski represented the system of Rock Mass Rating (RMR) as a rock geomechanical rating [2].
As mentioned RMR uses 10 input parameters and rates each parameter according to Table 2.

Table 2: Classification parameters and their ratings

Parameter | Range of values
Quantitative Parameters
Strength Poin]t l:joad :/[t;ength 10 410 9.4 12 For this low :antg.e Uni?xial ((iiompressive
e ndex (MPa) est is preferre
rock Uniaxial
material Compressive >250 100 - 250 50-100 25-50 5-25 1-5 <1
Streneth (MPa)
Rating 15 12 7 4 2 1 0
Drill core quality RQD (%) 90-100 75-90 50-75 25-50 <25
Rating 20 17 13 8 3
200mm - 100mm -
Spacing of di tinuiti 6- <60
pacing of discontinuities >2m 0.6-2m 600mm 200mm mm
Rating 20 15 10 8 5
Discontinuity length (m) <1 1-3 3-10 10-20 >20
Rating 6 4 2 1 0
Separation (aperture) None < 0.1 mm 0.1mm - 1.0mm| 1mm - 5mm >5mm
Rating 6 5 4 1 0
Strike perpendicular to tunnel axis Strike parallel to punnel axis Dip < 20
Orientation of discontinuities Drive with di Drive against di i
p 8 p Dip 20 - 45 | Dip 45 -90 lrrespen.:tlve
Dip 45 - 90 Dip 20 - 45 Dip 45 - 90 Dip 20 - 45 of strike
Descriptive Parameters
Groundwater conditions Completely dry Damp Wet Dripping Flowing
Rating 15 10 7 4 0
Infilling None Hard >5mm Hard <5mm | Soft >5mm Soft <5mm
Rating 6 4 2 2 0
Weathering Unweathered Slightly Moderately Highly Decomposed
weathered weathered weathered
Rating 6 5 3 1 0
Roughness Very rough Rough Slightly rough Smooth Slickensided
Rating 6 5 3 1 0

By reviewing existing support system in tunnels which installed in this mine for many years and the
proposed support system in RMR, table 3 shows suggestion to determine the required support
instrument for each class of systems.
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Table 3: Required support systems for each classes of RMR

2 Required support system
< Support Rating - -
© Applied sst[Eerrtnlir;]ethe under General support system (According to RMR)
No 81- . . .
I support | 100 Generally, no support required except for occasional spot bolting
. Occasional wood frame and Locally, bolts In Crown 3 m Iong,
Light . spaced 2.5 m, with occasional wire
Il 61-80 lagging in wall where .
support - mesh, 50 mm shotcrete in crown where
required .
required,
Systematic wood frames with | Systematic bolts 4 m long, spaced 1.5-
n Moderate 41-60 1.5-2 m spacing and lagging | 2 m in crown and walls with wire mesh
support in crown (and sides if in crown, 50-100 mm shotcrete in
required). crown and 30 mm in sides.
Systematic steel sets 1-1.5m Systema‘glc bolts 4-5 m long, _spaC(_ad 1-
Heavy spacing, required lagging in 1.5 min crown and wall W|t_h wire
v 21-40 ! . mesh, 100-150 mm shotcrete in crown
support tectonized zones in crown q in sid iah di
and wall an _100 mm in sides, Light to me ium
‘ ribs spaced 1.5 m where required.
Systematic bolts 5-6 m long, spaced 1 -
. 1.5 m in crown and walls with wire
Very rSnyztzr;itlc f;eelir?etisnoézg)\;\,i mesh and bolt invert, 150-200 mm
Vv Heavy 0-20 pacing, 'agging in crow shotcrete in crown, 150 mm in sides,
and wall and crete lining if .
support required and 50 mm on face, medium to heavy
g ' ribs spaced 0.75 m with steel lagging
and forepoling if required, close invert.

4.

Fuzzy Inference System

Fuzzy inference system turns the data of input space into the output one by fuzzy logic. This is done
by membership functions and fuzzy rules [3]. In fact, membership function defines the input
membership degree in every one of the classes [4]. The output amount matched with the input is
obtained by multiplying the point of every set in the correlation co-efficiency of the input amount to
that set and then adding up all points. For example, the uniaxial compressive rock strength is MPa 48.
Scoring is placed in the second group and it must get point 4 while the uniaxial compressive strength
is MPa 52 for another rock and it is placed in the third group and it need point 7. This sudden change
of point can be milder through membership functions. According to the uniaxial compressive strength
(Fig 2), the output point related to the strength is MPa 48 is 5.3 and for the strength MPa52, it is 5.7.
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Figure 2: UCS rating in semi-fuzzy RMR, (a) UCS=48MPa, (b) UCS=52MPa

Figure 3 represents the input and output membership functions related to quantative parameters.
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5. Results Analysis
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Figure 3: Input and outputs membership functions of quantitative parameters

In this research, 45samples were taken from different parts of the tunnel and the information related
the parameters required were recorded in RMR. Then, the supporting class of every one of these parts
calculated by RMR semi-fuzzy method and compared with real facts. Table 4 compares these results
with one another and it proves that 63% of this method is matched with the current supporting.

Table 4 : RMR results for 30 samples with their real classes

S 4 & | support Existing | = g Support Existing |= o € | support Existing
E3 2 Class Support € S| = Class Support |E 3| = Class Support
R System | | & System |& | & System
1 | 52.7 | Moderate Heavy 14 | 52.0 | Moderate Light 32 | 49.9 | Moderate | Very Heavy
3 | 58.9 | Moderate Heavy 16 | 48.3 | Moderate Light 33 | 50.1 | Moderate Heavy
5 | 57.9 | Moderate | Moderate | 18 | 69.9 Light Light 35 | 54.9 | Moderate Moderate
5-1 | 49.4 | Moderate Heavy 19 | 80.1 | No Support | No Support | 37 | 50.1 | Moderate Moderate
6 | 69.3 Light Light 21 | 49.6 | Moderate Light 38 | 51.3 | Moderate Moderate
8 | 60.9 Light Light 23 | 604 Light Light 39 | 55.2 | Moderate Moderate
10 | 48.6 | Moderate Light 24 | 40.9 | Moderate Heavy 40 | 54.5 | Moderate Light
11 | 69.5 Light Light 26 | 49.9 | Moderate Moderate 41 | 60.4 Light Light
12 | 49.4 | Moderate | Moderate | 27 | 59.1 | Moderate Moderate 42 | 69.4 Light Light
13 | 48.9 | Moderate | Moderate | 29 | 44.6 | Moderate Moderate 45 | 38.2 Heavy Heavy

6. Conclusions

By comparing the results of the semi- fuzzy RMR with the results in mine, this system specifies that
fuzzy making is a part of quantative parameters and not fuzzy making the quantative parameters
highly affects the power of RMR separation method. Holistically, there are limitations in supporting
equipments in the understudy mine; it is both economically and technically beneficial to apply a new
scientific method in this mine or other similar mines.
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ABSTRACT

A facetted quadrilateral shell element based on Reissner-Mindlin theory and a hybrid equilibrium formulation is
presented. Each side of an element has six rigid body freedoms as well as six additional modes of deformation.
The element is incorporated within a co-rotational framework, upgrading its applicability to large displacement
geometric non-linear analysis. Numerical examples are included concerning the pinched hemisphere benchmark
problem for both linear and geometrically non-linear behaviour. Results are included regarding the convergence
of the radial displacements of the loaded points, and distributions of stress-resultants. All results from the hybrid
models are compared with those from similar meshes of 9-noded conforming elements.

Keywords: finite elements; equilibrium; shells; large rotations.

1. Introduction

The formulation of equilibrium shell elements is not so well suited to curved elements, either with
curved boundaries or with curved surfaces, as are conforming elements. However, the general use of
faceted models for curved shells is widely accepted as a valid simplification, and it thus seems
justified to investigate the use of flat straight-sided equilibrium shell elements in this context. In
general, the motivation for the use of equilibrium models is the expectation that, compared with
conforming models, much stronger forms of equilibrium are determined without loss of accuracy
concerning displacements, albeit that displacements are only determined at the sides of elements.
Recent work [4] has indicated good results can be obtained with such elements to model linear elastic
behaviour of a folded plate and a curved shell having zero Gaussian curvature. In this paper we extend
the formulation to model cases where small strains can be assumed and local behaviour continues to
be linear elastic, but displacements become large enough to produce non-linear behaviour in a global
sense.

2. Hybrid equilibrium quadrilateral flat shell element

We consider a co-rotational formulation of a quadrilateral hybrid equilibrium flat shell macro-element
which combines four triangular primitive elements [4]. We assume moment fields and side rotations
of degree 2, together with membrane and transverse shear force fields and side translations of degree
1. The plate bending behaviour is governed by Reissner-Mindlin theory, and the sides are assumed to
be initially straight. The 12 kinematic parameters associated with a side include its 6 rigid body
freedoms plus 6 additional modes of deformation. The conjugate static parameters consist of 6
resultant forces/moments plus 6 self-balanced distributions of stress-resultants. Thus each side has a
separate rigid body drilling degree of freedom, but the transverse fibres are not free to rotate
independently, as would be the case with micropolar theory, or at the nodes of an element which
exploits Allman’s incompatible shape functions to interpolate drilling rotations [5].

Special consideration needs to be given at the interfaces between elements which are not coplanar.
Without additional distributions of drilling rotation, the twisting rotations of fibres cannot necessarily
be transferred to an adjacent element. Two alternative assumptions are made: (a) the additional modes
of twisting are assumed to be free to occur and the conjugate torsional moments are released at an
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interface; or (b) the additional modes of twisting are assumed to be transferred between elements even
though their axes of rotation are in different directions. In case (a) we have a strictly equilibrated
model in terms of stress-resultants, but in case (b) where torsional moments are not released, the self-
balanced modes of torsion are not codiffusive, and we have a so-called quasi-equilibrium model. Of
course in the case of modelling curved shells, their shapes are only approximated by a facetted model,
and equilibrium must be understood to be with reference to that model.

When the response of a model involves large displacements, including large rotations, the co-
rotational formulation follows a similar procedure as in [1,2]. Global and local element Cartesian
axes are used as indicated in Figure 1, where the effective nodes of the element are located at the

midpoints of the sides. The local coplanar (f,i) axes bisect the lines joining nodes (42,13) and

(13,24) respectively, and the z axis is normal to the plane of the element.

3. Analysis of the pinched hemisphere benchmark problem

The performance of the element is assessed when either small or large rotations occur for the
benchmark problem [6] of the pinched hemisphere, radius 10m, thickness 40mm, with an 18°
opening. The hemisphere is modelled by the quadrant in Figure 2 by using appropriate symmetry
conditions on the boundary. Solutions are compared with those produced from models based on 9-
noded curved conforming elements [1], which models are susceptible to locking.

e,

o,
o soss e I )
A, S
%%
P
X
Figure 1: global and local Cartesian reference Figure 2: Plan view of quadrant of
axes for the flat quadrilateral element. hemisphere with radial pinch loads.

The convergence of the radial displacements of the pinch points are compared in Figure 3(a) for a
small load P = £1kN with regular meshes containing 4, 8, 16, and 32 elements uniformly distributed
along each boundary curve. It should be noted that the theoretical value of 94mm is based on linear
elastic theory [6], and this amounts to nearly 2.5 times the shell thickness.
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(a) approximately linear behaviour with loads +1kN (b) non-linear behaviour with loads +160kN

Figure 3: convergence of the radial displacements at the pinch points.
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Figure 3(b) includes results for both the equilibrium and the quasi-equilibrium models, and it can be
seen that they are both giving upper bounds to the radial displacements. However, it must be noted
that these results refer to facetted model geometries that change as the mesh is refined. The vertices of
the quadrilateral elements always lie in the midsurface of the shell, but the structural nodes are offset
from the midsurface as a result of the facetted approximation. Clearly, the quasi-equilibrium models
tend towards the true solution as the mesh is refined and adjacent elements approach being coplanar.
However, the equilibrium models remain too flexible due to the release of the torsional moments at
element interfaces. The conforming models represent the shape of the shell more precisely, but, as
expected, are too stiff with a tendency towards membrane locking in the coarser meshes.

(a) Mxy (blue: 0 to r:.O qasi-equilibrium model (b) Mxy central element at bottom edge

(c) quasi-equilibrium model (d) conforming model
Ny tension (blue: 0 to red: 20kN/m), patch of 7x10 elements adjacent to the outward pinch force

(e) quasi-equilibrium model (f) conforming model
Ny compression (blue: -100 to red: OkN/m), patch of 2x10 elements adjacent to the outward pinch force
Figure 4: contours of moment and membrane force stress-resultants from 64x64 meshes; axes x,y refer to
longitudinal and latitudinal directions respectively.

The contours of moment stress-resultants are generally in agreement in both types of model, e.g. Mxy
in Figure 4(a), with an important exception. The conforming model shows Mxy to be at its maximum
value on the bottom edge of the hemisphere, whereas the quasi-equilibrium model indicates high local
gradients in Mxy, which moments correctly become zero, as prescribed, on the bottom edge as
indicated in Figure 4(b). The gradient in Mxy also correctly reflects the presence of a boundary layer
which contains concentrations of transverse shear forces Qzy.

The distributions of membrane forces, e.g. circumferential forces Ny, are better recovered from the
quasi-equilibrium model, as indicated in Figures 4(c to f), where the results from the conforming
model tend to oscillate in a typical, but unrealistic, way.

The results from the models when P = +1kN contain small differences between the inward and
outward displacements of the loads, as well as small differences from expected symmetric or
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antisymmetric contours of stress-resultants. These differences indicate that geometric non-linear
behaviour is already present at this load.

When the load P = +160kN, geometric non-linear behaviour is very evident, as indicated in Figure 5,
and in the convergence towards different magnitudes of radial displacement at the pinch points, as
shown in Figure 3(b). The converged values agree with those in [3] to within 0.5% for the quasi-
equilibrium model, and within 3.6% for the conforming model with 32x32 meshes.

b
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(4x4 mesh) (32x32 mesh)
Figure 5: deflected shapes of the quasi-equilibrium model at +160kN.

As with the linear case, the quasi-equilibrium model gives apparent upper bounds to the magnitudes
of both radial displacements, with even the coarsest 4x4 mesh providing excellent results in this
respect. This is in stark contrast with the conforming model which is far too stiff for coarse meshes.
However it is observed that for the 4x4 mesh, some of the facetted elements become quite distorted
and warped out of their planes. A consequence of this is that local equilibrium of nodal forces and
moments can be violated without a non-linear formulation of the local element response.

4. Conclusions

The radial displacements of the pinch points from the quasi-equilibrium hybrid models converge
monotonically as upper bounds to the reference solutions of the benchmark problem for both linear
and geometrically non-linear forms of behaviour. The equilibrium model which releases the self-
balanced modes of torsion gives greater upper bounds, and appears to converge to a more flexible
solution. As expected, unlike the conforming model, there is no evidence of locking in either form of
hybrid model. The distributions of stress-resultants from the quasi-equilibrium models tend to
converge more rapidly towards useful forms for the design engineer compared with the conforming
models. Future research is required to investigate the formulation of a non-planar macro-element.
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ABSTRACT

In this paper a stochastic finite element model is developed to investigate the probability of failure of
cementitious buried sewer pipes under combined effects of corrosion and stresses. Using the developed model,
the effects of different random variables including traffic loads, pipe material and corrosion on the remaining
safe life of the cementitious sewer pipes are explored. A numerical example is presented to demonstrate the
application of the proposed model in evaluating the effect of the contributing parameters to the probability of
failure of concrete sewer pipes. The stochastic finite element model provides a practical tool for both designers
and asset managers to predict the reliable service life of the system.

Keywords: Stochastic finite element method; cementitious sewer pipes; probability of failure; concrete
corrosion; random variables

1. Introduction

Underground sewer pipes are important and vital infrastructures that play a crucial role in the
economy, prosperity, quality of life and especially the health of a country. These essential structures
are designed to resist and operate safely under various external loads and environmental conditions.
However the degradation of sewer pipes over their service life in combination with the effect of
overlaying soil and surface traffic loads can sometimes cause failures in sewer pipes. It is known that
for cementitious sewer pipes, corrosion is the main cause of degradation [1]. The corrosion can cause
reduction in structural strength of the pipeline, leading to pipe collapse. Therefore considering the
effect of corrosion in the analysis and design of cementitious sewer pipes is essential for developing
advanced model(s) to predict the likelihood of collapses of sewer systems. In order to provide an
accurate prediction of remaining safe life of the sewer pipes, all the parameters that affect and control
the process of deterioration and failure of pipes, the interaction of different mechanisms of failure, and
their effect on remaining safe life of sewer pipes should be considered. Due to the large degree of
uncertainty relating to the factors that are involved in the operation of underground sewer systems - in
particular corrosion - it is more rational to model the failure of sewer pipes as a stochastic process. To
fulfil this, a comprehensive model has been developed and is reported in this paper that takes into
consideration all parameters contributing towards the failure of cementitious sewer pipes using
stochastic finite element method (SFEM). SFEM can determine the prospect of failure of sewer pipes
throughout their intended service life. Particular attention is paid to simulate the corrosion using the
stochastic finite element model and to investigate its interaction with other mechanisms of failure and
their effect on the remaining safe life of sewer pipes. The results provided by the proposed stochastic
finite element model can help asset managers and owners to make risk-informed and cost-minimised
decisions with respect to when, where, what and how interventions are required to ensure the safety
and integrity of existing pipelines during their whole life of service.

2. Stochastic Finite Element Method

The stochastic finite element method (SFEM) is a powerful numerical tool in computational stochastic
mechanics. SFEM can be classified as an extension of the classic deterministic finite element
approach to the stochastic framework i.e. to the solution of static and dynamic problems with
stochastic mechanical, geometric and/or loading properties [2]. The general formulation of a SFEM
can be written in the following form [3]:
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K(6)U(0) = F(6) 1

where K is the global stiffness matrix, U and F represent the nodal displacement and force vectors and
0 represents the randomness of the parameters. The above equation is the stochastic representation of
the static finite element problems and the uncertain response of structure (i.e. U(6)) and other
quantities of interest such as stresses ¢(0), and strains £(6) can be obtained by solving Equation 1. In
this paper a stochastic finite element model based on the Monte Carlo simulation (MCS) technique is
developed to analyse the probability of failure of underground cementitious sewer pipes. In the MCS-
based SFEM, a deterministic finite element problem (Equation 1) is solved a large number of times
and the response variability is calculated using statistical relationships. The MCS method does not
involve any simplification or assumption which makes it a robust and universal technique to treat
complex stochastic problems. The developed code is employed incrementally over the time in order to
account for the degradation of the sewer pipe and predict the probability of failure of the sewer pipes
throughout their service life. In the MCS code, for every simulation, the limit state function(s) is
checked using the finite element method (i.e. if the resultant stress has exceeded the yield stress) and
the probability of failure is obtained using the following equation [4]:
. N
P = 2

where P;' is defined as the probability of failure of each limit state function, N is the number of
simulations when the limit state function is violated, and N is the total number of simulations. In a
series system, where more than one limit state function exist, the failure of any of the limit state
functions implies the failure of the system. If the individual failures are mutually independent, then
the probability of the system can be obtained from Equation 3 [4]. In this equation P is the probability
of failure of the system, and m is the number of limit state functions defined for the system.

m
Pf=1—n(1—P}) 3
i=1

Effect of Corrosion

Concrete corrosion due to sulphuric acid attack is known to be one of the main contributory factors in
the degradation of concrete sewer pipes. In this study it is assumed that the corrosion of concrete
sewer pipes is dependent on the age of the pipe and can be presented using a power law model. The
power law model to predict the biogenic sulphuric acid corrosion of concrete pipes can be presented
in the form of the following equation:

C=aT? 4

where C is the corrosion of the pipe, a is a multiplying coefficient, A is an exponential coefficient, and
T is the age of the pipe. The data provided in Meyer [5] are utilised to estimate the coefficients in
Equation 4 using an exponential regression. Due to a large degree of uncertainty of corrosion process,
the corrosion and consequently the coefficients in Equation 4 are considered as stochastic parameters.
At every finite element simulation the amount of corrosion is obtained using Equation 4 and the finite
element input file is updated via re-meshing the pipe domain using the new coordinates after
considering the corrosion. The strength of the concrete pipe is expected to be reduced as a result of the
reduction of pipe wall thickness.

3. Numerical Example

In this section a numerical example is considered to evaluate the performance of the developed SFEM
in predicting the probability of failure of concrete sewer pipes subject to stresses and corrosion. The
finite element (FE) model of the problem consists of a concrete pipe with a circular section buried
underground and surrounded by a homogenous soil. The model is subjected to self-weight and an
external traffic load applied on the surface of the model. The FE model is assumed to be two
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dimensional with plane strain geometrical condition. In order to draw conclusions that are not affected
by a particular example, the problem is scaled with respect to the external diameter of the pipe and the
variations of different normalised parameters are investigated. Figure 1 shows the geometry and
normalised parameters of the problem.

l > Table 1: Random variables used for the SFEM
A .-
— Coefficient of
Symbol Description Mean variation

£ Concrete maximum 35 MPa 01
h* compressive strength

F* Traffic load 20 0.25

I Load impact factor 15 0.15

Corrosion multiplying _s

/ a coefficient 3.5x10 0.1
| Corrosion exponential

4 coefficient 15 0.15

Figure 1: Geometry and parameters used in the FE model

In addition to the deterministic parameters such as diameter and thickness of the pipe, there are some
parameters that are considered as stochastic or random parameters. Using the existing studies on the
reliability analyses of underground pipelines and performing a number of pilot simulations, five
parameters were chosen as random variables. The normal distribution has been adopted for these
random variables since only means and variances were available. These parameters, their mean and
their coefficient of variation (cv) are presented in Table 1.

Results and discussion

After choosing the type of each parameter (deterministic or stochastic) and creating the FE models,
the time-dependant SFEM were performed for different values of scaled parameters in order to study
their effect on the probability of failure of concrete sewer pipes. Figure 2 shows the results of the
SFEM on probability of failure of the example sewer pipe under various normalised traffic loads over
its service life. It can be seen that as the traffic load increases the probability of failure of sewer pipes
grows rapidly. In addition it can be noted that initially the probability of failure is zero or very small
for all cases; however as the effect of corrosion emerges (usually after the first 20 years) the
probability of failure increases rapidly. To further investigate the effect of traffic load on the service
life of concrete sewer pipes subject to stresses and corrosion, the following analysis was also carried
out. Let us assume that the acceptable probability of failure (Pr) is 10%, or 20% or 30% (equivalent of
a remaining safe life of 90%, 80% and 70% respectively). The service life of each FE model (each
model has a different normalised traffic load) can be evaluated using the results provided by the
SFEM (Figure 3). It can be seen in Figure 3 that the service life of the sewer pipe is reduced
significantly with a non-linear trend as the traffic load increases. For example if the traffic load is
doubled (i.e. F* increases from 10 to 20) then the service life of the sewer pipe is reduced from 60
years to zero years for the acceptable probability of failure of 10%. A similar trend can also be seen
for other presumed acceptable values of probability of failure (i.e. Pr = 20% and Pr = 30%).
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Figure 2: Probability of failure of concrete sewer Figure 3: The variation of traffic load (normalised)
pipe for different values of scaled traffic load with the service life of sewer pipes
versus service-life

4. Summary and Conclusions

In the present study a stochastic finite element model was utilised to predict the probability of failure
of concrete sewer pipes under combined effects of internal corrosion and stresses. Uncertainties
involved in pipe material, traffic load and corrosion are considered to develop the stochastic finite
element model. A nonlinear time-dependent model was chosen to predict the corrosion in concrete
sewer pipes. A normalised numerical example was employed to investigate the effect of both
deterministic and probabilistic parameters on the probability of failure of sewer pipes. Two
mechanisms of failure (i.e. corrosion and shear failure) were adopted to define the limit state
functions. The results of the numerical simulations revealed a nonlinear relationship between most of
the parameters and the probability of failure of sewer pipes. The results of the developed stochastic
finite element model can be used to improve the performance and planning of existing sewer systems,
by providing better predictions for the probability of failure of sewer pipes compared to the existing
approaches. The model can bring together the effect of contributing parameters in the probability of
failure of the system being studied in a numerical framework with high precision. Using the stochastic
finite element model it is possible to study the effect of each parameter on the failure of the system
and their interaction with each other. The SFEM also provides a time-dependant reliability analysis
for predicting the remaining safe life of sewers, which provides a means to better manage the existing
sewers and plan resources during their whole life of service. Further improvement in the predictions
provided by model can be achieved by collecting additional data on the corrosion rate of concrete
sewer pipes.
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ABSTRACT

A 9-noded co-rotational shell element based on a layer-wise theory is proposed for the nonlinear analysis of
three-layered sandwich plates/shells with soft core. The cross-sectional zigzag effect of planar displacements is
considered by assuming a layer-wise linear zigzag function specific to stiff/soft/stiff sandwich construction. A
novel zigzag function is introduced into the Reissner-Mindlin element formulation leading to seven
displacement freedoms per node. Meanwhile, a piecewise linear-constant-linear distribution of the transverse
shear stress through thickness is also assumed, which leads to three stress parameters per node. By employing
the Hellinger-Reissner variational principle at each layer, stress parameters can be expressed in terms of
displacement parameters and thus eliminated, and the governing equations can be obtained. The proposed shell
element is formulated in a co-rotational framework allowing for large displacement analysis. For computational
efficiency, additional displacement fields related to the zigzag effect are defined in a shell coordinate system so
that co-rotational transformations of nodal forces and stiffness associated with these freedoms are excluded. To
address the locking issue of the proposed shell element, an optimisation approach is adapted to the sandwich
shell element. Two nonlinear examples are used to illustrate the effectiveness of the proposed element.

Keywords: sandwich plates/shells; zigzag function; locking; assumed strain; shell coordinate system

1. Introduction

Sandwich structures, which comprise a relatively flexible core sandwiched by stiff face sheets, have
been widely used in engineering practice. These are characterised by zigzag displacements and
interlaminar continuity of transverse stresses due to the large face-to-core modular ratio. In this work,
a 9-noded sandwich shell element is proposed for nonlinear analysis of sandwich plates and shells.

2. Zigzag Planar Displacement Fields

A 9-noded sandwich shell element based on a layer-wise theory has been developed and implemented
in ADAPTIC [1], which assumes that planar displacement fields are layer-wise linear through
thickness. The element is an extension of a previous 9-noded shell element [2,3] to a 3-layered
application, which is formulated in a co-rotational framework to allow for nonlinear analysis. The
optimisation approach proposed by Izzuddin [3] has been adapted to this element to address locking.
The transverse displacement field is assumed to be constant through the thickness, while planar
displacement fields are derived by adding a zigzag-shaped component to the original Reissner-
Mindlin displacement terms, which are expressed as:

u(é,n, u, (&, 0, (€, 9, (€,
{ (énC)}:{ (€ n)}+ﬂg (&.m) A (&:m) M
v(&.n.¢) Vo(&m)) 27 |6,(&m) 9,(&n)
where (¢,7,¢) is the element natural coordinate system, in which ¢ = +1 at the top/bottom surface;
u, and v, are planar displacement fields of the middle surface; 6, (a = x,y) is the rotation in o -
direction of the cross-section with reference to initial geometry; 9 (o =x,y) is the additional
displacement field; A(¢) is the zigzag-shaped function. For three-layered sandwich plates/shells

whose faces are stiffer than the core, the zigzag effect is dominated by the mode that has identical
rotations in the faces. Therefore, the mode in Figure 1 is used as the zigzag function A (¢) .

3. Shell Coordinate System

The proposed sandwich shell element has seven freedoms per node (five Reissner-Mindlin freedoms
plus two additional freedoms associated with sectional warping). The five Reissner-Mindlin
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displacement variables are local co-rotational freedoms transformed from their global counterparts.
Since external loading is usually associated with traditional freedoms only, it is unnecessary to define
the additional freedoms in the global coordinate system as those Reissner-Mindlin freedoms. Instead,
a specific local shell coordinate system independent of the co-rotational framework is proposed within
which additional freedoms are defined. The orientations of the shell coordinates are obtained by
rotating the element coordinates by an angle p extracted at that point. This angle p is a function
varying throughout the shell surface, which is defined such that at a node shared by two or more
elements, the orientations of the shell coordinate systems at that node are exactly or close to identical.
Despite possible second-order violation of continuity, this shell coordinate system is computationally
efficient with mesh refinement, hence excluding co-rotational transformations related to the additional
freedoms. By denoting gs ,9- E the additional displacement fields defined in the shell coordinate

system, the following rel tionsh p is obtained:
9, :{cesﬁ —-sinB |95 . @)
9, sinp cosBJ 95
Substituting Equation (2) into Equation (1) gives:
0. (&, —si 9-
{u(élﬂlC)}:{uo(ﬁ,n)}Jrﬂg L(Em) +A(€)Fces]3 sinp 7|9 @)
veno |vEm| 276, Emn [sinp cosp ||9:
Ca

: [ Linear
—— f’ | Face
: 0 — Qc:] Core Constant

— I(;HJ. Face
R Linear

Figure 1: Schematic plot of the zigzag function. Figure 2: Assumed distribution of transverse shear
stress through thickness.

4. Assumed Transverse Shear Stress Fields

If the face-to-core modular ratio is relatively large, distribution of the transverse shear stress through
the thickness exhibits a piecewise linear-constant-linear pattern. Therefore, a shear stress distribution
as shown in Figure 2 is assumed. For computational efficiency, transverse shear stresses at the three
layers are assumed to be mutually independent, though resulting in possible violation of C° continuity
at laminar interfaces. The assumed transverse shear stresses are expressed as:

[ ( 2(c — e DY)
|0)(1) Ll+ MJ C(l) <C< C(l)
| a3 C(l) N N
N TR Log (P sg<c® @
L‘523,ASJ | [ 2(@_@(3))
I(”Ss) 1- ——— tP<g<c®
| ¢

where 0 = {o,? m‘;’} is the vector of stress variables for Layer (k); ¢ = ¢! —¢® ; ¢! and ¢

+

are values of ¢ at the top and bottom of Layer (k); ¢! is the value of ¢ in the middle of Layer (k).

5. The Hellinger-Reissner Variational Principle

Consistently with layer-wise theories, each individual layer is regarded as a pseudo Reissner-Mindlin
shell. The vector of 45 pseudo freedoms at Layer (k),uU;, can be expressed in terms of the vector of
the 45 local freedomsu_ and the vector of 18 additional freedoms U,
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u‘k) TO U +TY U, (5)

ps,C ps,A

in which 7%, and T,
Layer (k) are obtained via von Karman’s equations.

The Hellinger-Reissner principle is employed at each individual layer, which gives both the
relationship between the stress and displacement parameters and the weak form of equilibrium. At

Layer (k), the Hellinger-Reissner variation of the model is expressed as

are transformation matrices. With the use of pseudo freedoms u %’ | strains at

ps !

(k) (k)
hy hy

(( )
511, :J Lsgﬁnk”cf:’ +5ee® 50T | T;k;dzjde [ [ 5rT (e - S‘Z\S)dsz
h(,k) h(,k)

(6)

A

5wl =0 vsU,,8U,,80%

ext

where terms with subscripts ‘m’, ‘b’, and ‘s’ represent respectively the membrane, bending and
transverse shear stresses/strains; si"j\s are transverse shear strains obtained from assumed stress fields.
The stress parameters »") can be expressed in terms of displacement parameters by the use of the
second integral in Equatlon (6). Further manipulation of Equation (6) gives the weak form of

equilibrium at Layer (k):

T\ T (k) D ) 0\ R0 0\ R0
(esuC (TY,) +8u,7(TY,) J “e® 1 (BY) DYe¥ +(BY) DYs! )dA
A (7
5w =0 wsu_,8U,

ext

wheree® , B, and B(k’ represent respectively the first derivative of £¢% ¢!, and " with respect to

us; D&) D? and D ) are generalised constitutive matrices, in which D% mcorporates the effect
of the assumed transverse shear stress distribution.

6. Nodal Forces and Tangent Stiffness Matrices

Using Equation (7), the nodal forces f_ and f, can be obtained:

3
:ZT;?CTJ(B(“TD Vel L BTDWeM 1 ng)TDg”sgk’)dA 8)
k=1 A
3
k (k) (k) . (k) KT~ K) (k) KT ~ k) (k)
f, :ZT;S}ATJ(BmTDm e + B D e + B D" ¢! )dA 9)

k=1 A
The element tangent stiffness matrices related tou . and U , are also readily available:

of
kc: CT;kA: AT;kCA

c U,

of
=k, = — 10
AC aUAT ( )

The co-rotational transformation of local nodal forces f_ and tangent stiffness matrices are:
fo=T'f, (11)

of otu.’ . .
kg =—2== C—f + Tk T; Kgp =Kpg =

of, ;
Tk, (12)
¢ au.” oau.oU, e au,T A

It is obvious that co-rotational transformations regarding f, and k , are excluded, which enhances the
computational efficiency of the element.

7. Examples

Two nonlinear examples are provided to examine the effectiveness of the proposed shell element
(SS-AO3). Equilibrium paths are plotted in Figure 4 and 6. Results with the first order shear
deformation theory (FSDT-AQO3) are also plotted for comparison. Solution of 3D models (i.e. BK20
in Example 1, and SOLSH190 in Example 2) are used as reference solution. In each example, the
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result with FSDT-AO3 elements deviates from the reference solution, which gives a stiffer response,
thus showing the importance of incorporating the zigzag effect in these examples. On the other hand,
the equilibrium path of a relatively coarse mesh with SS-AO3 elements coincide with the reference
solution, which verifies the adopted zigzag function, the assumed transverse shear stress distribution,
and the defined shell coordinate system. It is also clear that the proposed element is free of shear and
membrane locking with the application of the optimisation approach to each individual layer.
Therefore, the results of the coarse meshes with SS-AQO3 elements prove the computational efficiency
and accuracy of the proposed 9-noded sandwich shell element.

1.2

3.0E+4
N SS-AO3 (4x4) N
" e 2 5E+4 | — — — SS-AO3 (8x8) A
----- FSDT-AO3 (8x8) .*
s
20574 | @ BK20(32632x6) S
(=] 4
8 .
S1.5E+4 - .
(=9 rd
.,-
1.OE+4 - N
- ° ” f
50E+3 | -7
0.0E+0 - ' '
0.0 0.3 0.6 0.9
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Figure 3: Cylindrical sandwich shell under point load

(Example 1). with different elements.

A

Figure 4: Comparison of equilibrium paths of Example 1
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Figure 5: Annular sandwich plate under end shear with
(0/0/0) layup (Example 2). with different elements.

8. Conclusions

This paper presents a 9-noded shell element for nonlinear analysis of sandwich plates/shells. A novel
zigzag displacement function specific to sandwich structures is introduced, and a simple distribution
of transverse shear stresses through thickness is also assumed in the formulation. Additional freedoms
associated with the zigzag effect are defined in a specific shell coordinate system for computational
efficiency. Numerical examples have verified the accuracy and effectiveness of the proposed element.
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ABSTRACT

The dynamics of cable-stayed bridges are complex, in particular because of the complex interaction between the
deck and all the cables. The whole bridge is difficult to model and to reproduce in the laboratory, moreover, the
presence of many cables complicates the modeling process. As a result, the substructuring technique often
represents an efficient solution for capturing its behaviour. The cable available at the Earthquake Engineering
Laboratory of the University of Bristol (UK) is representative of a full scale cable on the Second Severn
Crossing, a cable-stayed bridge in United Kingdom. Using this example several parameters can be considered in
order to extend the developed theory to a general cable for cable-stayed bridges. The 5.4m long steel cable has
been experimentally observed interacting with the deck that has been modelled numerically as a single degree-
of-freedom system. The cable is excited at the bottom through a vertical actuator that transfers the input force,
generated by the numerical model, to the physical structure. A time lag exists due to the latency in the acturator
and the input is effectively applied later than expected. Delay compensation has been optimized in the range of
the exciting frequencies and several values have been found and correlated to the magnitudes of the applied
forces. Various tests have been conducted in order to compare the response of the system in the absence of delay
compensation, and optimizing delay compensation. It has been shown that both the accuracy of the results and
the detection of the stability boundaries of the cable are sensitive to the delay compensation process.

Keywords: cable-stayed bridge, cable-deck interaction, delay compensation, hybrid tests, substructuring
technique, time lag.

1. Introduction

Real-time dynamic substructuring (RTDS) is a kind of hybrid testing technique. Essentially, the whole system is
divided into two parts. One part of the system is physically built in the laboratory. The remaining part is
modelled in the computer and it interfaces with the physical model - see [1,2,5]. RTDS technique has been
adopted for the present research, to conduct tests on a cable representative of a full scale cable for a cable-stayed
bridge, that interacts with the deck [3-4].

The numerical model (deck) generates the input signal. The latter is acquired by the transfer system, which is an
actuator that in turn excites the physical model (cable). The signal is then acquired and closes the control loop
by feeding back to the numerical model, and a new input signal is generated. The response of the physical model
depends on the effective input signal, which is affected by delay.

Several approaches have been proposed to compensate for the transfer system error in RTDS tests - see [7-8]
and reference therein. The authors, beside those approaches already in use, consider the online adaptive forward
prediction (AFP) technique. The AFP algorithm is adopted to create a new reference signal in the time domain.
The reference signal is used as the transfer system demand, then eliminating the response delay and obtaining
nominally zero synchronization error between each transfer system and its numerical model [7].

This paper is concerned with the significant effects of delay compensation on the reliability of the results in
RTDS tests. Section 2 is devoted to the experimental setup of the cable-deck system. In Section 3, the online
adaptive forward prediction algorithm is presented. Section 4 is concerned with the effect of delay on the
reliability of the results in RTDS tests conducted on the cable-deck system.

2. Cable-deck experimental setup

The theory on the cable-deck interaction considers a single degree-of-freedom system [3-4]. The mass-spring-
damper model simulates the behaviour of a bridge deck, which is connected at the lower end of an inclined
cable. The angle of inclination of the cable, 0, is measured from the horizontal line in the gravity plane. The
cable is vertically excited at its lower (deck) support at a frequency close to its second natural frequency, which
leads the cable to experience in-plane and out-of-plane vibrations. The purpose of exciting the inclined cable is
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to identify its nonlinear dynamics and to mark the stability boundary of the semi-trivial solution. The latter
physically corresponds to the point at which the cable starts to have an out-of-plane response when both input
and previous response were in-plane.

The cable, available at the Earthquake Engineering Research Laboratory of the University of Bristol, UK, (Fig.
1) is a single wire steel cable with diameter 0.78:10 °m and length L=5.4m, inclined at an angle 6 = 22.6°. The
cable interacts with the numerical model of the deck through a vertical actuator. It has been designed to
reproduce the behaviour of a real cable on the Second Severn Crossing, a motorway bridge in the South West of
the UK [3]. In accordance with this purpose, 21 lead masses have been attached, spaced at 0.25m, except the
one on the top and the one on the bottom that distance 0.20m by the ends of the cable [5]. The parameters that
significantly influence the similitude of the scaled cable with the real cable have been non dimensionalised. This
approach enables to extend the theory to a general inclined cable interacting with the deck, with the same
nondimensional parameters.

The tension in the cable is measured by a single axial esse shape load cell, which is connected to the cable at the
upper end. At the bottom of the cable, a multiaxial six-degree-of-freedom load cell measures the applied force,
and a linear variable displacement transducer (LVDT) with limit displacement of £10mm, measures the vertical
displacement corresponding to the applied force. The hydraulic actuator, in displacement control, is able to
apply a maximum force of 10kN and a maximum displacement of £150mm. The acquisition system consists of
two cameras, one along the cable that records in-plane modes, and one in front of it that records out-of-plane
modes. The vibrations of 21 discretised points of the cable, which correspond to the added lead masses, are
tracked by the Imetrum Video Gauge System (VGS). Each test has been performed, ensuring consistency of the
initial setting parameters since they are considerably sensitive to the external conditions.

Moreover, free vibration tests on the cable have been conducted to measure the viscous-damping ratio &, and, a
reasonable damping ratio of £,=0.02% has been assumed for the first four considered modes.

3. Delay in RTDS tests conducted on a cable-deck system

Experimental tests on the cable-deck system have been performed to mark the stability boundaries, such as
when the cable is excited in the second in plane mode and it responds with either of the other modes. The
investigation has been restricted to four modes, such as the first and the second both in plane and out of plane
modes.

The tests conducted to identify the cable-deck interaction are carried out in real-time, so that the complex
dynamic behaviour is captured as accurately as possible. Whereas, when RTDS tests are performed, the transfer
system introduces into the desirable displacement signal a delay, t, which will significantly affect the feedback
force.

Delay in hybrid tests can be represented by two components. One, ey, is a function that describes the accuracy of
the numerical models compared to the appropriate variable in the complete emulated system. The other, e,,
represents the degree of synchronization between each transfer system and its numerical model. Both terms, e,
and e,, are coupled and, when substructuring complex systems, the only measure of accuracy is the degree of
synchronization, e,, which in practice is never equal to zero in RTDS tests - see [7] for the full derivation.

The effectiveness of the control algorithm is measured by using the subspace plots approach. The design
interface displacement of the numerical model is plotted versus the actual position of the transfer system. Thus,
the amount of delay is online predicted and a new reference signal is generated to ideally eliminate the response
error. The ideal delay compensation corresponds to narrow the ellipse that plots the desirable input displacement
versus the acquired input displacement, to the maximum axis inclined at 45° and the minimum axis close to
zero. Any introduced delay in substructuring tests transforms the ideal straight line into an ellipse.

Figure 1: Cable-deck experimental setup at EERL, University of Bristol, UK.

161



Online procedures of delay estimation and adaptive mechanisms have been used to correct the delay parameter
and to account for the system dynamics, which in fact may be varying during the test. Those procedures include
the online adaptive forward prediction technique that is used by the authors to conduct RTDS tests on the cable-
deck system. The AFP algorithm removes the need for tuning both the magnitude of the forward prediction and
the amplitude gain for each different excitation condition. This tuning is a need for the basic Forward Prediction
(FP) algorithm. Moreover, the AFP algorithm achieves high levels of synchronization for frequency dependent
and transient plant conditions by closing the control loop and using the feedback dynamics of the transfer
system [7]. This technique can appropriately be used when there is no knowledge of the plant dynamics and
when there is transient or frequency dependent plant behaviour.

The approach used here follows the AFP technique, which is based on a polynomial estimation algorithm to
compensate for the delay present in the transfer system [7]. The prediction algorithm is:

3(t)" = (Pan, o [BD(t+ p) (1

where 3 is the target displacement coming form the substructuring, Py, .[8] is the least squares fitting Nth-order
polynomial through the n time-point pairs (t, 3(t)), (t— A, [3(t— A)),...., (t—(n—1) A, 3(t—(n—1) A)); p is the amount
of the FP. The sampling time step, A, used in the RTDS tests is Ims for experimentation.

4. Estimation of delay and effect on RTDS tests

A number of RTDS tests has been conducted on the cable-deck system to observe the cable’s behaviour [6]. The
ratio q=m,/m,, between the deck’s natural frequency and the cable’s second natural frequency, has been fixed as
q= 0.98. Further tests have been conducted for q = 1 and q = 1.04, aiming to develop a general theory. The
cable has been observed in the range of the excitation frequencies of -0.03< p <+0.03, where p=Q/m,-1 is a
parameter accounting for the oscillator’s frequency, and the second in-plane frequency of the cable.

Figure 2a shows the synchronization subspace plot for tests conducted when the cable is excited and it responds
in the second in-plane mode, Z,: then it is stable. Delay has been evaluated by essentially measuring the shift
time between two sine wave excitations in the time domain and the value of 7=12ms has been assessed (Fig. 2b).
Panels c and d in Fig. 2, state the response of the cable shacked by sine waves, which are exciting its second in-
plane mode for u=+0.01. The top panel shows the results from a typical test performed in the absence of delay
compensation: the response of the system is substantially away from the ideal response, which is recognisable
when the ellipse condenses in a line (Fig. 2d).

Steady state RTDS tests have been performed on the cable-deck system to mark the stability boundaries. Figure
3 shows the Z, stability boundary of the cable interacting with a deck for u=+0.03. The cable has been excited in
the second in-plane mode and the maximum displacement of the quarter point has been recorded by the VGS,
before that the cable vibrates in either of the out-of-plane modes.

The analytical curve shown in Fig. 3, plots the normalised amplitude of the quarter point, Z,, against the
normalised applied displacement, A. The curve has been defined by following the theory on the nonlinear
dynamics of the cable as discussed in [4]. The parameter p=+0.03 has been chosen because the S-shape is more
distinguishable then the comparison with the experimental results is appreciable. The experimental results from
tests conducted with delay compensation of 12ms - stars in Fig. 3 -, follow the lower boundary branch of the S-
shape curve and capture the second branch of the Z, response. The experimental points upon the third higher
branch of the S-shape curve state the presence of higher Z, stability branches, which have been defined in [5].
Whereas, the experimental results from tests conducted in the presence of delay, partially catch the first lower
branch and do not predict possible higher branches of the Z, response of the cable interacting with the deck - see
the circles in Fig. 3.

q=0.98, f=6.6381 Hz, F=125 N, 1==0-12ms  ¢=0.98, f=6.6381 Hz, F=125 N, =0 ms
0.

03 3 -
(b) N =098, f=6.4420Hz, m=0.01,F=1300N, t=0ms

02 02 [ \ £ : ‘ :
— U ) 1 £
£ \ Y §2(0)
£ _ | / \
2 0.1 £ 0.17} / \ 20
£ o = \ ; \ £
g g 0 \“ | ! 5.4 L | | \
_g £ \\\ ’r \ > -4 -3 =2 -1 0 1 2 4 4
£-01 &.01 \\‘ / \ =0.98, f=6.4429 H 0,01, F=1300N, t=12
o & | //, ! € q=0.98, f=6. z, m=0.01,F= , t=12ms
5 2 ‘= v $ E S T : : T
802 T -02 A ’ ! 1 £
2 \\/ —oscillator displ|| £ ] (d)
o \ «,V i o i g

03 03 L) LVDT displ || T}

2
= i ;
K S5 -3 =2 = 0 2 3
0;6.4 -0.2 0 0.2 04 0'40 100 200 300 3 oscillator displacement [mm)]
oscillator displ [mm] time [s]

Figure 2: Estimation of delay compensation.
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Figure 3: Second in-plane stability boundary affected by delay compensation.

Moreover, neither the second nor the third branch of the Z, response in the range of 2:10™* < A/L < 3-10*is
captured by the circle points. It is evident that the presence of delay, in the form as afore discussed, has a
significant effect on the prediction of the cable behaviour.

5. Conclusions

This work is concerned with the significant effect of delay on the reliability of real-time dynamic substructuring
tests performed on a cable-deck system. The cable is physically present at the Earthquake Engineering Research
Laboratory of the University of Bristol, UK, and the deck is modelled numerically, as a single-degree-of-
freedom system. The singularity of the real-time susbstructuring technique is that the characteristics of the
numerical model, which simulates the deck, can be changed in real-time, without any physical change. The
cable is observed interacting with different decks and a general stability theory is experimentally validated.

The adaptive forward prediction technique has been used to compensate for the delay error, which is present in
the transfer system when real-time dynamic substructuring tests are performed. It is based on a polynomial
estimation algorithm that removes the need for tuning both magnitude of the forward prediction and amplitude
gain for each different excitation conditions. The experimental tests conducted with compensated delay of
T =12ms capture significant aspects of the behaviour of the cable-deck system. A discrepancy between the
analytical model and the experimental data is still evident for high combination of excitation force and
frequency. On of the reasons of such discrepancy is that the analytical model in fact does not include the
dynamic effect of the cable on the deck, which is included in the performed RTDS tests.

Acknowledgements

The author would like to acknowledge the support from the Engineering and Physical Sciences Research
Council (EPSRC), under the grant EP/F030711/1.

References

[1] A. Blakeborough, J. Sieber, S. Neild, D. Wagg, B. Krauskopf. The development of real-time substructure
testing. Philosofical Transaction of the Royal Society of London A, 34(15), pp.1869-1891,2011.

[2] O.Bursi and D. Wagg. Modern testing techniques for Substructural System. Springer-Verlag, 2008.

[3] V. Gattulli, L. Martinelli, et al. Non-linear oscillations of cables under harmonic loading using analytical
and finite element models. Comput. Meth. Appl. Mech. Eng., (193) pp.69-85, 2004.

[4] J. Macdonald, M. Dietz, S. Neild, A. Gonzalez-Buelga, A. Crewe, D. Wagg. Generalized modal stability
of inclined cables subjected to support excitations. J. Sound & Vibr, (329), pp.4515-4533, 2010.

[5] M.R. Marsico, V. Tzanov, D. Wagg, et al. Bifurcation analysis of parametrically excited inclined cable
close to two-to one internal resonance. J. Sound & Vibr, 24(330), pp.6023-6035, 2011.

[6] M.R. Marsico, D. Wagg, et al. Real time dynamic substructuring tests on a cable-deck system in absence
of delay, Network Earthq Eng Simulation, Dataset, 2013, DOI:10.4231/D3VX0635F.

[7] M. Wallace, D. Wagg, S. Neild. An adaptive polynomial based forward prediction algorithm for multi-
actuator real-time dynamic substructuring. Proceedings of the Royal Society, 461, pp.3807-3826, 2005.

[8] B. Wu, Q. Wang, et al. Equivalent force control method for generalized real-time substructure testing with
implicit integration. Earth Eng & Str Dynamics, 36, pp.1127-1149, 2007.

163



Proceedings of the 22" UK Conference of the
Association for Computational Mechanics in Engineering
2—4April 2014, University of Exeter, Exeter

Dynamic Modeling and Analysis for Flexible Space Web

*Zhang Qingbint, Feng zhiwei* and Yang tao"

! College of Aerospace Science and Engineering, University of National University of Defence Technology,
410073, Deya Rd. 109, Changsha, Hunan, P. R. China

*gingbinzhang@sina.com

ABSTRACT

As a new type of structure for advanced concepts in space exploration, flexible web system shows the important
and potential applications in various space explorations. The dynamic behaviour of flexible web is investigated
by using finite segment method. The flexible web is modelled as a set of semi-damp springs with masses
lumped at appropriated nodes. The internal forces produced by the semi-damp springs are modelled based on the
experimental result of cables. The motion equations of each node are derived by Newton’s law with considering
internal elastic force and external forces including the aerodynamic force and gravity. Then a flexible multibody
systems model is build to predict the dynamics behaviour of the space web. The effective area, flight rang, and
web shape in the orbital environment is compared with the one in ground for various size of web and
deployment velocity. The results can be used to the design and analysis of the future space web application
system.

Keywords: dynamic modelling; Newton's law, flexible web

1. Introduction

Flexible net system which can be used to capture failed satellites is of increasing interest in many aerospace
applications. Several on-going studies indicate the potential. ROGER sponsored by ESA employed flexible
tether-net to capture the target, which could be a satellite or an upper stage or another debris part. With funding
from the DARPA, Star Inc. revealed plans for a spacecraft equipped with nets called Electrodynamics Debris
Eliminator (EDDE). University of Tokyo has been proposing a large space membrane structure named “
Furoshiki Satellite” as a promising candidate for the future structure for those missions requiring large area in
space, such as a solar cell or a large communication antenna [1].

Flexible net systems can be regarded as complex tethers system, and there are two basic approaches which are
often used to model general tethers system. Recently, some numerical and experimental investigations were
performed for this new type of spacecraft. Mattias employed the commercial software LS-DYNA to
demonstrate a robust method for space webs spinning deployment [2]. Onoda 