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PREFACE

The UK Association for Computational Mechanics in Engineering (ACME) was founded with the 

aim of promoting research in computational mechanics and various engineering applications and 

establishing formal links and with similar organisations in Europe and the International 

Association of Computational Mechanics (IACM). One of the principal activities of ACME 

involves the organisation of the annual conference. The first such conference took place at the 

University College of Wales Swansea in 1993. Since then, the conferences have provided a forum 

for reviewing research activities in many areas of mechanics, with an emphasis on 

interdisciplinary aspects. The conferences have proved to be particularly useful events for 

bringing together researchers from different disciplines, and especially for providing young 

researchers with opportunities to present their work. 

These conference proceedings contain more than 80 four-page papers presented at the 22nd 

ACME Conference that was held in the Department of Engineering at the University of Exeter 

from 3rd to 4th April 2014, following the 3rd ACME School on 2nd April, where four lectures 

were delivered on the topics of Isogeometric Analysis and Automatic Meshing by renowned 

academics.  

On behalf of the local organising committee, I would like to thank many people who have 

contributed to this conference, especially, all the authors who meticulously prepared their papers 

and presented their original research. I would like to express my gratitude to the three invited 

keynote speakers, Professor Hywel Thomas, Mr Adrian Gaylard and Professor Bassam Izzuddin 

for their thought provoking lectures and seminal scholarly contributions. I would also like to 

thank the speakers of the ACME School, Professor Sven Klinkel, Dr Ido Akkerman, Dr Robert 

Simpson and Professor Philippe Young, for their excellent lectures on the very important topics 

covered in the School.  

I would like to acknowledge the support received from the College of Engineering, Mathematics 

and Physical Sciences of the University of Exeter in the organisation of this conference. In 

particular, I would like to thank Ms Karen Pope, Ms Denise Watts and Mr Chris Snow for 

providing assistance and advise on financial issues and IT services. Finally, I would like to thank 

the local organising committee members, with special thanks to Mr Mohammed S. Hussain for 

his dedication and hard work in the day-to-day organisation of ACME2014 conference.   

Akbar Javadi 

Vice-Chairman of ACME 2014 
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ABSTRACT

The Finite Element Method (FEM) is known for its versatility to handle complex geometries and het-
erogeneities in the medium properties, while the Boundary Element Method (BEM) is known for its
ability of exact treatment of waves propagating to infinity for wave problems. In this paper, we pro-
pose a coupled formulation of partition of unity FEM (PUFEM) and partition of unity BEM (PUBEM)
to solve acoustic scattering problems in a heterogeneous medium. Numerical examples are presented
to establish the convergence of the proposed method. Two of the well known non-reflecting boundary
conditions for wave problems are implemented and their performance is compared against the coupled
PUFEM-PUBEM results.

Key Words: Wave scattering; Partition of unity method; Non-reflecting boundary condition; Boundary
integral equation; Heterogeneous media

1. Introduction

Modelling of waves in a heterogeneous medium can become a difficult task for the element based meth-
ods with polynomial basis as i) a heterogeneous medium requires a high resolution of mesh when the
degree of heterogeneity is high and ii) high frequency wave problems become increasingly costly due
the requirement of at least ten nodes per wavelength. Plane wave based methods have been found to
offer a clear advantage over polynomial based methods when modelling wave problems in the medium
frequency range, see [1][2]. Cases where the wavenumber is not constant in the computational domain
are of practical interest. PU based methods have been used in such cases, see [3][4]. It is known that the
Sommerfeld radiation condition is satisfied exactly for BEM (at least for the continuous equations) thus
the waves propagating to infinity are modelled exactly. FEM (or PUFEM) on the other hand needs the so
called non-reflecting boundary conditions (NRBCs) which are approximate and for an improved accu-
racy the non-reflecting boundary needs to be kept as far as possible from the scatterer to avoid spurious
reflections. The heterogeneity, if limited to a relatively small part of the domain, can be modelled using
PUFEM. The rest of the domain, if homogeneous and unbounded, can be modelled using PUBEM. It
is therefore natural to couple PUFEM and PUBEM for modelling exterior acoustic problems involving
wave scattering in heterogeneous medium which is the focus of this paper. The rest of the paper is or-
ganised as follows. Section 2 provides an overview of the governing PDE for wave scattering, its weak
form for PUFEM and the boundary integral equation. Section 3 gives the partition of unity concept and
coupling of PUFEM and PUBEM through matrix equations. This is followed by numerical examples
(Section 4) and conclusions (Section 5).

2. Weak form and boundary integral equation

We consider the case of a time-harmonic (e−iωt) acoustic wave scattering by a rigid sound hard obstacle
Ωs bounded by Γs in R2 (Fig. 1). We seek the total acoustic pressure p exterior to Γs that admits the
following BVP:

1



Figure 1: Problem definition

ρ ∇ ·
(
ρ−1∇p

)
+ k2 p = 0 in R2 \Ωs (1)

∂p
∂n
= 0 on Γs = ∂Ωs (2)

lim
|x|→∞

|x|1/2
(
∂|x|(p − pinc) − ik(p − pinc)

)
= 0 (3)

where, ρ is the medium density, p is the total acoustic pressure, k = ω/c, ω is the circular frequency of
wave and c is the speed of sound. The parameters ρ and c are allowed to change in space, n is the unit
normal on Γr (or Γs) pointing towards Ω0, i =

√
−1, pinc is the incident wave and Γs ∪ Γr = ∅. The weak

form for the Helmholtz equation (1) can be obtained by multiplying with a test function v thus the BVP
in (1)-(3) gives, ∫

Ω f

(
ρ−1∇v · ∇p − ρ−1k2vp

)
dΩ −

∫
Γr

ρ−1v
∂p
∂n

dΓ = 0 (4)

The boundary integral equation for p can be written as,

c(x)p(x) +
∫
Γr

∂G(x, y)
∂ny

p(y)dΓ −
∫
Γr

G(x, y)
∂p
∂n

dΓ + pinc(x), x, y ∈ Γr (5)

where, x is the collocation point, y is the field point, c(x) is the jump term and G(x, y) is the Green’s
function. For a 2D case, G(x, y) = (i/4)H0(kr), where H0(·) is the Hankel function of first kind and
order zero and r = |y − x|. We assume Γr is smooth and take c(x) = 0.5. We follow the same PUFEM
formulation as used in [5] and implement two of the well known NRBCs viz. the second order Bayliss-
Gunzburger-Turkel (BGT-2) and 2nd order Enquist-Majda (EM-2) conditions; for details the readers are
referred to [5].

3. Plane wave basis for heterogeneous medium and PUFEM-PUBEM coupling
In this paper, we restrict ourselves to piecewise constant density subdomains. We use 4-noded linear
quadrilateral finite elements to discretize Ω f and we follow the well known partition of unity represen-
tation of the pressure field p. The heterogeneity arising on account of density jump in Ω f results in a
corresponding jump in the wavenumber. We therefore use a combined basis which is used globally in the
FE domain Ω f for total pressure p and its normal derivative ∂p

∂n , i.e.,

p(x) =
4∑

j=1

N j

M∑
m=1

ak1
11eik1d jm·x + · · · + ak1

4Meik1d jm·x + ak2
11eik2d jm·x + · · ·+

ak2
4Meik2d jm·x + akL

11eikLd jm·x + · · · + akL
4MeikLd jm·x, x ∈ Ω f , (6)

∂p
∂n

(x) =
4∑

j=1

N j

M∑
m=1

bk1
11eik1d jm·x + · · · + bk1

4Meik1d jm·x + bk2
11eik2d jm·x + · · ·+ (7)

bk2
4Meik2d jm·x + bkL

11eikLd jm·x + · · · + bkL
4MeikLd jm·x, x ∈ Γr.

where L stands for total number of density jumps in Ω f . Let the global notation for the pressure and its
normal derivative be given as

p = Qa (8)
∂p
∂n
= Qb (9)

2



Here, a and b are the vectors of unknown plane wave amplitudes associated with total acoustic pressure
p (see (6)) in Ω f and ∂p

∂n on Γr (see (7)) respectively. Q can be readily formed using either (6) or (7).
Using (6)-(7) for the weak form of the Helmholtz equation (4) and the integral equation (5) along with
the isoparametric test functions for (4), we obtain following partly symmetric-partly unsymmetric system
after combining the discrete forms for (4) and (5).

[
K1 K2 R
0 H −G

] 
a1
a2
b

 =
{

0
pinc

}
(10)

It may be noted from above (see (10)), a = [a1, a2]T . It can be readily seen that the coupling between
PUFEM and PUBEM is achieved as K2 and H multiply the common plane wave amplitudes a2 associated
with Dirichlet data on Γr and R and G multiply the common plane wave amplitudes b associated with
Neumann data on Γr. The block matrices on the left hand side of (10) are given by

K1 =

∫
Ω f \Γr

ρ−1 [∇Q]T ∇Q dΩ , K2 =

∫
Ω f∩Γr

ρ−1 [∇Q]T ∇Q dΩ , R =
∫
Γr

ρ−1QTQ dΩ , (11)

H =
1
2
ρ−1Q(x)T +

∫
Γr

ρ−1Q(y)T ∂G(x, y)
∂ny

dΩ , G =
∫
Γr

ρ−1Q(y)TG(x, y) dΩ (12)

and pinc is the vector formed using the usual collocation procedure in BEM with the known incident wave
on Γr. The BEM equations have to be normalised with the density of homogeneous exterior medium
(see (12)). It should be noted that the use of Lagrange multipliers is inevitable if each heterogeneity is
modelled with the corresponding wavenumber alone in the basis (see [4]). The use of mixed basis (as in
(6) or (7)) eliminates any such need as the continuity of acoustic pressure and normal particle velocity
across the interface of two different mediums is satisfied naturally.

4. Numerical examples

We consider a plane wave scattering problem from a sound hard cylinder placed in a medium with a
single jump in the density. The problem parameters are listed in Fig.2.

Problem definition Finite Element mesh

Figure 2: Two fluid example: ρ1 = 1.2ρ2, r(Γs) = 1, r(Γi) = 2, r(Γr) = 3, pinc = eik2 x,Ω f = Ω1 ∪Ω2.

Fig.3 shows the contours for real part of normalised total acoustic pressure in the computational domain
Ω f . For this problem, a reference solution based on Bessel function series can be constructed easily. The
errors associated with polynomial FEM, PUFEM and coupled PUFEM-PUBEM are also listed in Fig.3.
We now present the Q−convergence of the proposed coupled algorithm. We take 16 linear elements in
the circumferential direction and 2 elements in the radial direction to model the computational domain
Ω f (see Fig. 2). The Q−refinement is achieved by increasing the number of plane waves in the basis (see
(6)-(7)). The geometry parameters are the same as shown in Fig.2. As seen from Fig. 4, adding more
degrees of freedom (dof) to the system improves the accuracy of coupled PUFEM-PUBEM solution
unlike for the PUFEM solution which does not improve even after addition of more plane waves. This
can be explained by the fact that the NRBCs used for PUFEM, namely BGT-2 and EM-2, are approximate
boundary conditions and cannot represent an outgoing wave from Γr exactly.
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Polynomial FEM,
L2(Γs) =19.8%,

ndof = 2100

 

 

PUFEM,
M1 = M2 = 16,
L2(Γs) = 1.45%,

ndof = 1548

 

 

Coupled
PUFEM-PUBEM,

M1 = M2 = 8,
L2(Γs) = 0.4%,

ndof = 1024
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Figure 3: Real part of normalised total acoustic pressure, k1 = 2π, k2 = π, M1:no. of plane waves with k1
in basis, M2: no. of plane waves with k2 in basis.
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Conditioning of linear system

Figure 4: Q-convergence: PUFEM vs coupled PUFEM-PUBEM- k1 = 2π, k2 = π, nodes in radial
direction = 3, nodes in circumferential direction = 16, total FE nodes = 48, total FE elements = 32.

5. Conclusions

We have presented a coupled formulation of plane wave enriched FEM and BEM. The error analysis
presented shows a uniform convergence for coupled PUFEM-PUBEM algorithm and an improvement
over PUFEM. At the same time, the accuracy of PUFEM is limited by the inherent approximations in
the NRBCs used. The combined basis is shown to work for a heterogeneous problem without the need
to use Lagrange multipliers.
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ABSTRACT

Octree (and quadtree) representations of computational geometry are particularly well suited to mod-
elling domains that are defined implicitly, such as those generated by image segmentation algorithms
applied to medical scans. In this work we consider the simulation of soft-tissue which can be modelled
with a hyperelastic constitutive law. We include the effects of both non-linear geometry and material
properties.

Similarly to Legrain et al. [1] and Moumnassi et al. [2] we use the implicitly defined level set func-
tions as the basis for a partition of unity enrichment to more accurately represent the domain boundary.
Furthermore we use traditional extended finite element (XFEM) ideas to introduce arbitrary cuts and
discontinuities in the domain.

We explore the use of a three-field u-p-θ mixed approach to deal with the problem of volumetric-locking
in the incompressible limit.

We will discuss the extension of our method towards both traditional parallel and GPU implementation.
We aim to solve extremely large problems as well as produce snapshots to feed into model order reduction
methods for real-time surgical simulations.

Key Words: surgery, octree, incompressible, hyperelasticity, XFEM, level sets.

1. Introduction

A significant amount of research in numerical methods over the past two decades has been dedicated
towards alleviating the difficulties associated with accurately and efficiently representing geometrical
information about the domain of interest in a numerical simulation.

The traditional path has been to transfer geometrical information from one form, such as a computer aided
design (CAD) model, constructive solid geometry (CSG) model or image-based (pixel or voxel) data to
a mesh, a conforming partition of the problem domain of interest into simplices or polygonal/polyhedral
domains. Particularly in the case of simplex meshes in 2D and 3D there are now relatively robust methods
for converting all of the above geometric data sources into meshes, e.g. Simpleware+FE and CGAL [3].
Difficulties still remain particularly with the hexahedral case and often the methods produce meshes with
large number of degrees of freedom for complex geometries.

Meshfree methods attempt to help alleviate the difficulty of mesh generation by removing the restriction
of having to pre-define connectivity between nodes in the domain; connectivity is a natural consequence
of the support domain of each node and to some extent nodes can be placed arbitrarily. However, in the
vast majority of cases, meshfree methods still describe the geometry of the domain using an underlying
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Figure 1: Left: Single image from CAT scan of abdomonen (Source: COLONIX). Right: Isosurface derived from
segmentation of part of human colon (black voids in CAT scan left).

Level 0 Level 1 Level 2 Level 3

Figure 2: Construction of a quadtree grid and the representative tree. Beginning with level zero (far left) the octree
is non-uniformly subdivided to level three (far right). Nodes of the tree with children are shown as squares, and
those without children are shown as circles.

mesh or assume that the geometry is formed by the convex hull of the node set. This latter assumption
makes describing highly non-convex domains (e.g. cracks) with meshfree methods difficult.

Other methods have attempted to unify the description of the geometrical information and the method
of numerical approximation, perhaps most famously the isogeometric analysis method where the same
basis functions such as NURBS are used to discretise the geometry and form the basis for solving the
PDE.

Partition of Unity Methods (PUM) [4] shift the burden of describing the geometry of the domain from
the mesh to the basis functions via suitable enrichment of the discretisation basis. One of the goals of
both the generalized finite element method (GFEM) and the eXtended finite element method (XFEM)
is to represent the geometry of the problem independently of the discretisation. Methods such as the
Finite Cell Method of Parnazian et al. [5] propose the integration of the weak form on sub-cells that
approximate the geometry as a stepped surface although they do not use enrichment functions.

We believe that the in the case of image-based analysis, where the geometry is defined implicitly through
advanced image segmentation procedures, see fig. 1, that partition of unity methods with seperate repre-
sentation of discretisation and geometry are particularly well-suited to rapidly producing patient-specific
mechanical models of the human body [6]. This paper discusses our first steps in this new project in
which we aim to build a parallel distributed-memory solver capable of solving real-world problems in
surgical simulation derived directly from patient-specific imagery.

2. Quadtree partition of implicitly defined domain

A quadtree or octree is a tree structure in which each node has four or eight children (respectively)
and in this case we use it to recursively subdivide either the 2D or 3D (respectively) bounding box of
the problem domain of interest Ω fig. 2. The level of a node in the tree corresponds to the number of
subdivisions required to obtain that node.

In this work, in a similar manner to Legrain et al. [1], we construct two trees, one that we call the geomet-
ric octree Og, and one that we call the the discretisation octree O f . On the geometrical tree we approx-
imate the geometrical information of the problem, derived, for example, from an image-segmentation
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Figure 3: Left: A fine-scale grid O f is constructed by uniform refinement to level six of the bounding box of the
domain and contains information at the smallest geometric level, eg. pixel/voxel data. Middle: The fine-scale grid
is coarsened to level three to form the geometric grid Og based on the implicit information (e.g. level-set) on the
fine-scale grid O f . Right: The geometric grid Og is coarsened further to form the discretisation grid Od.

procedure generating a level-set function. On the discretisation tree we construct the numerical method,
and we share information between the two via the partition of unity method.

We construct the trees from the highest-level down as shown in fig. 3, although it would be preferable
from an efficiency standpoint to construct from the lowest-level up. A point of departure from the work
of Legrain et al. is that we do not construct a triangulation from the octree. We believe this approach
is superior from a point of view of both efficiency and the ability to use the more robust isoparametric
quadrilateral/hexahedral finite element basis functions. We enforce the 2:1 mesh balance, sometimes
known as 1-irregular grids to ensure a smooth transition between areas of high and low refinement.

The octree data structure makes handling the relationship between the discretisation and the geometric
information very straightforward. By constructing a bi-directional mapM : Od → Og between the nodes
of the two octrees we can easily support fast queries such as asking for the parent of a particular node in
the geometric tree or all of the children of a particular node in the discretisation tree. Futhermore we can
refine or coarsen both octrees independently of each other and efficiently regenerate the map between
the two allowing for future implementation of traditional hp-adaptivity combined with enrichment e
adaptivity. The method described in this paper is implemented in the deal.ii finite element framework
[7].

3. Incompressible Hyperelastic Material Model

Due to the hydrated nature of soft-tissue it is typically modelled as a nearly-incompressible hyperelas-
tic material. Standard displacement formulations typically suffer from volumetric locking in this regime
which occurs because the basis functions are not sufficiently rich to represent the incompressibility con-
straint enforced by the bulk modulus κ. In this work we minimise the following three-field functional
where the pressure p is an independent variational quantity and acts as a Lagrange multiplier to enforce
the determinant of the deformation gradient J to an independent representation J̄:

Π(u, p, θ) =

∫
Ω

ψ(J, b̄) dΩ +

∫
Ω

p(J − J̄) dΩ − Πext (1)

where b̄ = J−2/3b is the isochoric part of the left Cauchy-Green strain tensor b = FFT , and the deforma-
tion gradient with respect to the reference configuration X is F = I + ∂u

∂X , and Πext represents the external
loading.

4. XFEM Enrichment

We transfer the geometric information embedded in the geometric octree to the discretisation by means
of the Partition of Unity paradigm, or more specifically, the extended finite element method (XFEM). We
write the displacement field uh, pressure field ph and pressure parameter θ constructed with N standard
classical finite element shape functions Ni enriched with M scalar enrichment functions ψ j associated
with extra degrees of freedom a j

i as:

uh(x) =

N∑
i=1

Niui +

N∑
i=1

Ni

M∑
j=1

ψ j(x)a j
i (2)
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We write similar expressions for ph and θh, noting that we ensure the satisfaction of the LBB stability
condition through the higher-order approximation of the displacements uh than the auxilliary variables
ph and θh. Whilst the definition of the discretisation and the partition of unity enrichment is defined
by degrees of freedom seeded from the discretisation octree Od the integration and construction of the
partition of unity enrichments is performed on the geometrical octree Og.

Currently we only include Heaviside type enrichments (ie. strong discontinuities) to represent material
boundaries and we are looking at the best way to include weak discontinuities in our formulation which
will be vital for including material discontinuities.

5. Dirichlet Boundary Conditions

Because the boundary of the domain no longer coincides with the positions of the nodes seeded from
the discretisation octree we no longer satisfy the basic requirement that our basis functions vanish on the
Dirichlet boundary, typically denoted v ∈ H1

0(Ω). Various methods can be used to enforce the Dirichlet
conditions including Nitsche’s method, the method of Lagrange multipliers and the penalty method.
The application of Nitsche’s method to the problem of hyperelasticity is a relatively new field and we
are currently investigating the application of methods developed in the Discontinuous Galerkin finite
element methods, see e.g. Noels and Radovitzky [8].
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ABSTRACT 

The cost of mining for each block in an open pit mine is calculated using the dimension and specific weight of 

that block. It is clear that the tonnage of these blocks located in each zone is determined on the basis of each 

zones’ ore density. As a result, the delineation of rock characterisation in terms of density plays a significant 

role in mine planning and design. This paper proposes a new practice named Density-Number (D-N) fractal 

modelling to separate density populations based on 32 density core samples (data) analysed from 11 boreholes 

in Kahang Cu-Mo porphyry deposit located in the central Iran. The D-N log-log plot indicates that there are 

three density populations with breakpoints at 2.618 and 2.673 t/m
3
. Correlation between result of the fractal and 

the geological 3D models illustrates that the rocks with high values of density are associated with chalcopyrite 

and hypogene units. 

 

  Keywords: Density-Number (D-N) fractal modelling; Kahang Cu-Mo porphyry; chalcopyrite; hypogene  

 

1. Introduction  

Delineation of rock mass characterisation with respect to density is important in mineral exploration, resource 

evaluation and mine planning especially in optimisation of an ultimate pit limit since the cost and income of 

mining are related to the variation of density populations (societies) within an ore deposit [1, 2]. Host rocks of 

porphyry deposits consist of sub-volcanic massive ore bodies such as porphyric quartz diorite (PQD), granite, 

monzonite and quartz monzonite which are lithological units with high hardness [3, 4]. Variations of mineralogy 

and lithology units are other useful factors for separation of rock mass characterisation in the porphyry deposits 

[5].  

 

The mathematical applications in geosciences have been massively created and consequently utilised to identify 

various phenomena for better interpretation of geological features such as lithology, zonation, alteration and 

mineralogy or for better understanding of different attributes like density, rock mass characterisation and RQD 

analysis [6, 7]. A number of models have been intended for purpose of modelling based on statistical, 

geostatistical. However, the classical statistics methods for delineation of populations from background such as 

histogram analysis, box plot, summation of mean and standard deviation coefficients and median are not 

accurate due to the fact that the statistical methods consider only the frequency distribution of information (such 

as density data) while have no attention to spatial variability since the information about the spatial correlation is 

not always available [8, 9]. In recent years, models based on fractal geometry as a nonlinear mathematical 

science proposed by Mandelbrot [10], have been hugely used in different branches of earth sciences since 

various geological processes and even mining-based issues like rock mass characterisation can be categorised by 

changes in fractal dimensions resulting from analysis of relevant data and desirable attributes (density in this 

scenario) [11, 12, 13]. As a result, Fractal analysis has the abilities to justify the differences within the ore 

deposits especially in hydrothermal occurrences such as porphyry Cu deposits [14]. However, proper knowledge 

of the rock mass characterisation is crucial to identify rock types and density populations. In other words, 

differences of fractal dimensions in density data can certify applicable criteria to identify rock mass 

characterisation by Density-Number (D-N) fractal modelling in the Kahang Cu-Mo porphyry deposit, Central 

Iran. Then, the obtained result via D-N fractal model is correlated and subsequently validated with chalcopyrite 

and hypogene as the major mineralisation and zonation unites in the studied area.   

 

2. Methodology 
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Initially, a database was generated based on density values analysed from 11 boreholes of the total 48 drillcores 

carried out in the Kahang deposit. The project dimensions are 600×660×780m in X, Y and Z direction and each 

voxel has a dimension of 4×4×10m respectively. Secondly, the dataset was entered into the RockWorks 
TM 

v. 15 

software package to build up 3D density block model (Fig. 1) utilising Inverse Distance Weighted (IDW) 

anisotropy as the estimator. The next step was to suggest the Density-Number (D-N) fractal model for 

delineation of different populations in terms of density within the deposit. Consequently, a mathematical facility 

of the software called “Multiple of Model & Model” as a tool to manipulate the voxels in a solid model by the 

corresponding voxels in another equally-dimensioned solid model file has been used for combination between 

the density 3D block model interpreted via D-N and the most frequent mineralisation and zonation units namely; 

Chalcopyrite and hypogene respectively (Fig. 2 and 3).  

     Fig.1. Density (t/m
3
) block model    Fig.2. Chalcopyrite unit (m

3
) within the deposit 

Fig.3. Hypogene model in the Kahang deposit (Scale is in m
3
) 

3. Fractal Model

The model is expressed by the following equation [10, 11]: 

  DFN            (1)

3645020 

3644360 

2360 

1580 

638700 

638100 
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Where ρ denotes density values, N(≥ρ) denotes cumulative number of samples with density values greater than 

or equal to ρ, F is a constant and D is the scaling exponent or fractal dimension of the distribution of density 

values. Log–log plot of N(≥ρ) versus ρ shows straight line segments with different slopes −D corresponding to 

different density intervals. 

The D-N method was applied to the density data (values). The selection of breakpoints as the threshold values 

appears to be an objective decision due to the density populations which are recognised by different segments in 

the D-N log-log plot (Fig. 4). Accordingly, the D-N log-log plot reveals that there are three populations with 

respect to density thresholds (breakpoints) of 2.618 and 2.673 t/m
3
. As a result, the rocks with correspondingly 

high density commence from density > 2.673 t/m
3
, the slope of the straight line fitted in the log-log plot is near 

to 90°.   

Fig.4. D-N log-log plot in the Kahang deposit 

4. Correlation of D-N with the Major Mineralogical and Zonation Units

The result of the D-N model was correlated to the major mineralogical and zonation units of the deposit 

consisting of chalcopyrite and hypogene constructed by using RockWorks™ v. 15 software and drillcore data 

(Fig. 5). Rocks with density >2.673 t/m
3
 defined by means of the D-N fractal model are well-correlated with 

chalcopyrite mineralogical unit and hypogene zone defined by the 3D modelling of lithological drillcores data. 

As a result, there is spatial coincidence between rock mass characterisation in terms of high density driven via 

means of the D-N model in the most parts of the deposit. Therefore, it can be concluded that chalcopyrite 

mineralogical unit and hypogene zone host the excellent values for density within the Kahang deposit. 

     (a)                                                                                                 (b)     

Fig.5. Correlation of D–N fractal with major geological models: a) Chalcopyrite; b) hypogene 
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5. Conclusions

In this paper, the D-Number (D-N) fractal model was used to investigate and delineate various density 

populations in the Kahang Cu-Mo porphyry deposit (Central Iran). The D-N log-log plot illustrates three density 

populations delineated by two threshold values of 2.618 and 2.673 t/m
3
. According to the correlation between 

result driven by fractal modelling and major mineralogical and zonation units resulted by the 3D geological 

model in the Kahang deposit, Chalcopyrite and hypogene are associated with density values > 2.673. 
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ABSTRACT

Numerical simulation of thermal radiation can be highly demanding in terms of computational resources
especially when the transient nature of the problem has to be considered. In this work the partition-of-
unity finite element method is implemented for solving the transient conduction-radiation problem in
glass cooling. Aq-refinement procedure is used to treat the radiation at different frequency bands. The
procedure achieves a significant reduction of the computational costs on top of the reduction already
achieved by the partition of unity method.

Key Words: Finite element method; Partition of unity method; Radiative heat transfer; Glass cooling

1. Introduction

The computational cost involved in considering thermal radiation is mainly caused by the wide spectrum
of electromagnetic waves that are emitted from a thermally radiating material. The optical properties
of a material define active frequency bands through which most of the heat energy radiates. The model
describing the thermal radiation needs to be solved for each of these frequency bands in order to estimate
the cumulative heat energy emitted through radiation. Furthermore, the radiation waves move at the speed
of light whereas other heat transfer mechanisms happen at much slower time scales. Thus the radiation
scale has an effect on the scale used in the solution of other coupled mechanisms. In this paper, we
adopt the simplified P1 approximation to the RHT problem. We consider glass cooling models with eight
frequency bands kindly provided by ITWM [1]. In the current study, a newly developed approach [3] is
used to solve the frequency-dependent RHT in glass cooling problems. A refined enrichment approach, to
reduce the computational cost especially when a high number of frequency bands is needed, is presented.
The performance of the proposed method is compared to theh-version FEM.

2. Theory

In the current study we consider the SP1 approximation for the RHT equations [2]. By discretizating the
optical spectrum of the glass intoN frequency bands, the SP1 model consists on solving for the glass
temperatureT and the radiative energyϕ(k) for the kth band (k = 1, 2, . . . ,N) the following transient
conduction-radation equations

∂T
∂t
− ∇ ·

(

kc∇T
)

=

N
∑

k=1

∇ ·

( 1
3κk
∇ϕ(k)

)

, (x, t) ∈ Ω × [0, tend),

−∇ ·

( ε2

3κk
∇ϕ(k)

)

+ κkϕ
(k) = 4πκkB(k)(T, ng), (x, t) ∈ Ω × [0, tend),

εkcn(x̂) · ∇T + hc(T − Tb) = απ
(

B(0)(Tb, nb) − B(0)(T, nb)
)

, (x̂, t) ∈ ∂Ω × [0, tend), (1)

ϕ(k) +

(

1+ 3r2

1− 2r1

2ε
3κk

)

n(x̂) · ∇ϕ(k) = 4πB(k)(Tb, ng), (x̂, t) ∈ ∂Ω × [0, tend),

T(x, 0) = T0(x), x ∈ Ω,

where [0, tend) is the time interval,Ω the spatial domain with boundary∂Ω, kc the thermal conductivity,κk
the absorption coefficient,hc is the convective heat transfer coefficient,Tb is a given ambient temperature
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of the surrounding,n(x̂) denotes the outward normal atx̂ with respect to∂Ω, ε is a diffusion scale,α
is the mean hemispheric surface emissivity in the opaque spectral regionν ∈ [0, ν0], where radiation
is completely absorbed, andnb and ng are the refractive indices of the surrounding medium and the
glass material, respectively. In the above equations,B(k)(T, n) is the spectral intensity of the black-body
radiation in thekth band [νk−1, νk) given by the Planck function in a medium with refractive indexn,

B(k)(T, n) =
∫ νk

νk−1

B(T, ν, n)dν, B(T, ν, n) =
2hPν

3

c2
0

n2(ehPν/κBT
− 1

)−1
, (2)

wherehP, κB andc0 are Planck’s constant, Boltzmann’s constant and the speed of radiation propagation
in the vacuum, respectively [2]. In (1), the integralsr1 andr2 are defined by

r1 =

∫ 1

0
µρ(−µ)dµ, r2 =

∫ 1

0
µ2ρ(−µ)dµ,

where̺ is the reflectivity obtained according to the Fresnel and Snell laws. Note that the SP1 approxi-
mation (1) consists to solve a system of (N + 1) coupled semi-linear elliptic-parabolic equations.

Using a semi-implicit time stepping scheme, the procedure to advance the solution from the timetn to
the next timetn+1 can be carried out in the following two steps:

Step 1. Radiation stage: Fork = 1, 2, . . . ,N, solve forϕ(k)
n+1

−∇ ·

( ε2

3κk
∇ϕ

(k)
n+1

)

+ κkϕ
(k)
n+1 = 4πκkB(k)(Tn, ng),

(3)

ϕ
(k)
n+1 +

(

1+ 3r2

1− 2r1

2ε
3κk

)

n(x̂) · ∇ϕ(k)
n+1 = 4πB(k)(Tb, ng).

Step 2. Conduction stage: Solve forTn+1

Tn+1 − Tn

∆t
− ∇ ·

(

kc∇Tn+1
)

=

N
∑

k=1

∇ ·

( 1
3κk
∇ϕ

(k)
n+1

)

,

εkcn(x̂) · ∇Tn+1 + hc(Tn+1 − Tb) = απ
(

B(0)(Tb, nb) − B(0)(Tn, nb)
)

, (4)

T0(x) = T0(x).

For the sake of simplicity we rewrite equations (3) and (4) in a compact form as

u− ∇ ·
(

E∇u
)

= F, in Ω,
(5)

u+ βn(x̂) · ∇u = f , on ∂Ω,

Note that in the solution procedure, only linear systems have to be solved at each time step to update the
temperatureTn+1 and the mean radiative intensitiesϕ(k)

n+1.
A weak variational form for the equations (5) can be reformulated asa(u, v) = b(v),∀v ∈ V whereV is
a Sobolev space,v a test function inV, a andb are bilinear and linear forms defined respectively, as

a(u, v) =
∫

Ω

(

E∇v · ∇u+ v u
)

dx +
∮

∂Ω

E

β
v
(

u− f
)

dx̂, b(v) =
∫

Ω

vFdx. (6)

Let the domainΩ be partitioned intoNe non-overlapping sub-domainsΩm, m = 1, . . . ,Ne. Using a
conventional piecewise finite element space, the solutionu onΩm is approximated as

u ≃ um
h =

#vert
∑

p=1

Npum
p , (7)

whereNp stands for the (P1) Lagrangian polynomial andup are the nodal values of the used 3−node
triangular elements. Approximation (7) requires the mesh size to be small enough to capture the variable
field. This limitation is to be alleviated if a set of local enrichment functions are included [3]. In order to
achieve better approximation properties than is allowed by the polynomial basis functionsNp we use the

14



FEMf (62785 nodes, 30608 elements) FEMc (16089 nodes, 7652 elements) PUFEM (37 nodes, 12 elements)

Figure 1: Comparison between FEM and PUFEM mesh grids.
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Figure 2: Temperature patterns obtained using the PUFEM at oneelement after different time steps.

partition of unity method to enrich the solution space with hyperbolic basis functions. It was found that
for problems of steep boundary layers using enrichments with steep gradients can significantly improve
the approximation of the finite element approach [3]. For example in a polygonal domain and for an edge
e, at a positionx = xe, the enrichment functions may be written as

Gqe = C1 +C2 tanh
( x− xe

hq

)

, q = 1, 2, . . . ,Q, (8)

whereC1 andC2 are constants defining the amplitude of the enrichment jump whilehq is the parameter
to control the steepness of the functionGqe. More details about the choice of the enrichment functions
can be found in [3]. The enrichment functionsGq are used within the partition of unity framework to
express the nodal valuesup at any timet = tn and the solutionun

h identified in expression (7) can be
rewritten as

un
h =

#vert
∑

p=1

Q
∑

q=1

Aq,n
p NpGq. (9)

Here the element numberm is dropped for ease of notation. Thus the new unknowns to be computed by
solving the finite element resulting linear system areAq,n

p , for q = 1, 2, . . .Q, which may be defined as
the contribution of each enrichment functionGq to the nodal valueun

p at the nodep.

3. Numerical results

We check the performance of the proposed PUFEM for glass cooling at ambient temperature 300K of
a disc enclosure with unit radius at initial temperature 1000K. In all our simulations, eight frequency
bands are used for the optical glass spectrum and the diffusion scaleε = 1 is considered. The material
properties along with the absorption coefficient can be found in [2]. For the FEM simulations we consider
two meshes (a coarse mesh referred to as FEMc and a fine mesh referred to as FEMf) which are presented
in Figure 1. In this figure we also include the mesh used in our simulations using the PUFEM. We
emphasize the extremely low number of elements and nodes listed in Figure 1 for the PUFEM mesh
compared to both the coarse and fine FEM meshes. We present the numerical simulations using the
PUFEM with q-refinement. The number of hyperbolic functions used to enrich the PUFEM solution
space for solving the energy equation isQ = 7. To solve the radiation equations for the mean intensities
ϕ(k), with k = 1, 2, . . . , 8, the number of enrichment functions isQ = 6 for ϕ(1), ϕ(2) andϕ(3), whereas
Q = 5 for ϕ(4) andϕ(5). This number is reduced toQ = 4 for ϕ(6) andQ = 3 for ϕ(7) andϕ(8). Note
that due to the global nature of the enrichment, the saving in the computational cost is proportional
to the saving in the number of enrichments since the total number of degrees of freedom equals the
number of nodes multiplied by the number of enrichments. Thus, almost half of the computational cost
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Figure 3: Mean radiative intensities by FEMc, FEMf and PUFEM at3 instants after 10, 200 and 2000 time steps.

in solving the radiation equation is saved when this refinement strategy is used compared to using a
fixed number of enrichmentsQ = 7. In Figure 2 we present snapshots of the temperature as recovered
by the PUFEM on one element after 10, 40 and 200 time steps. It can be seen that, at early simulation
times, the domain temperature remains uniform except at the boundary layer. The computed results for
this test example demonstrate a more stable behavior with the PUFEM compared to FEMc and FEMf.
Note that this accuracy in the PUFEM is achieved despite the fact that the total number of degrees of
freedom for the PUFEM is only around 1% of that for FEMc. To further examine the performance of
the PUFEM we present in Figure 3 the radial cross-sections for the mean radiative intensities for three
selected frequency bands after 10, 200 and 2000 time steps where the results obtained for other bands
exhibit similar behavior but with different amplitudes. The mean radiative intensitiesϕ(2) andϕ(3) develop
steeper gradients than those associated with other frequency bands. Spurious oscillations with different
amplitudes are more pronounced in the FEMc results for the first three frequency bands after 10 and
200 time steps than in the PUFEM results. It should also be pointed out that the largest mean radiative
intensity is calculated for the frequency bandϕ(7) which dominate the other solutions in the remaining
frequency bands. As a consequence, the smooth boundary layers inϕ(7) may introduce stabilizing effects
in the considered radiative heat transfer problem. As mentioned earlier, the pattern described above when
refining the enrichment can be seen in Figure 3 in the steeper gradient associated with the temperature
as well as the mean radiative intensitiesϕ(1), ϕ(2) andϕ(3). A relatively flat gradient can be seen in the
intensitiesϕ(7) andϕ(8). The PUFEM performs very satisfactorily for this frequency-dependent coupled
problem since it does not diffuse the moving fronts and no spurious oscillations have been detected near
steep gradients of the temperature field and radiative intensities in the computational domain.

4. Conclusions

A q-refinement finite element method for radiative heat transfer in glass cooling is presented. Requiring
only a small fraction of the number of degrees of freedom required in the conventional FEM, the proposed
method shows better stability compared to that observed in the FEM. Indeed, because the main challenge
in most glass cooling applications is related to the steep gradients at the boundary layers, it is found
that adding steep gradient enrichments circumvent any need to mesh refinement. Other than these steep
gradient the solution can be very trivial and can be recovered with a very coarse finite element mesh.
Numerical simulations are performed for the glass cooling of a disc enclosure using a eight frequency-
dependent media. The presented results demonstrate the capability of theq-refinement finite element
method that can provide insight into complex radiative heat transfer problems.
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ABSTRACT

There is considerable interest in development of solid mechanics modelling which can cope with both
material and geometric nonlinearity, particularly in areas such as computational geotechnics, for applica-
tions such as slope failure and foundation installation. One such technique is the Material Point Method
(MPM), which appears to provide an efficient way to model these problems. The MPM models a prob-
lem domain using particles at which state variables are kept and tracked. The particles have no restriction
on movement, unlike in the Finite Element Method (FEM) where element distortion limits the level of
mesh deformation. In the MPM, calculations are carried out on a regular background grid to which state
variables are mapped from the particles. It is clear, however, that the MPM is actually closely related
to existing techniques, such as ALE and in this paper we review the MPM for solid mechanics and
demonstrate these links.

Key Words: Material Point Method; Solid Mechanics; Mesh Free; Finite Deformation Mechanics

1. Introduction

Most computational methods in solid mechanics can be described as either Eulerian or Lagrangian.
Lagrangian methods work by splitting a problem into elements or particles in a mesh, and throughout
any deformation this mesh follows the problem domain. The advantage of this is that it is easy to track
surfaces and history dependant variables throughout a simulation as the position in relation to other
elements is always maintained. A disadvantage of a Lagrangian approach is that problems can begin to
occur when a material undergoes large deformations. These large deformations can result in a heavily
distorted mesh which, in certain situations, can result in calculations being unable to be completed.
Eulerian methods work by having a mesh that is fixed in space and allowing particles to move within it.
This is more commonly used in fluid mechanics applications but overcomes any issue of mesh distortion
as the mesh remains the same throughout calculations. A disadvantage is that it becomes more difficult
to track boundaries and history dependent variables as particles move. Attempts have been made to
combine together Eulerian and Lagrangian methods with the aim of keeping the positives without the
drawbacks. One method to combine these features is the Material Point Method (MPM) [1]. There are
currently many uses of the MPM, often in situations where the FEM struggles due to highly distorted
elements. Some uses currently of interest include problems involving impact and collision, penetration,
crack propagation, slope stability, soil mechanics and simulation of snow for use in animation. In this
paper we will review the MPM and highlight links to other techniques such as the Finite Element (FE)
and Arbitrary Lagrangian Eulerian (ALE) methods.

2. Method overview

The Material Point Method (MPM) was first developed by Sulsky et al. [1] as an extension for solid
mechanics of the FLuid Implicit Particle (FLIP) [2] method, which itself was an extension to the Particle
in Cell (PIC) [3] method used in fluid dynamics. The MPM can be referred to as a meshfree method.
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Although a background grid of connected nodes is required to perform calculations, material properties
are carried by a series of particles which are free to move independently of each other. In the MPM,
material points, known as particles, store state variables and move through a background grid or mesh
which can be changed or reset following each time step or load increment. This can be seen in Figure 1
where a material has been deformed and the mesh has been reset with particles in updated positions.

Y

X

Particle

Node

(i) (ii) (iii)

Figure 1: Particle positions as mesh deforms and is reset: (i) original configuration, (ii) deformed mesh
and (iii) reset mesh

Initially a material domain is split into a number of elements similar to the FEM. Each of these elements
is then populated with a number of material points. Each material point is assigned a weight based
on the volume of material that the particle represents. It can be desirable to initially locate particles at
Gauss quadrature points to simplify the volume weight calculation. In addition to the mesh covering the
material’s initial position, the mesh must extend to where the material is expected to deform.

In each element containing particles, the state variables must be mapped from the particles to the grid
nodes. This mapping process is carried out within each element using shape functions similar to those
used in the FEM. For instance the external force at a grid node is given by

{ f ext
g } =

np∑
i=1

{N(ξi, ηi)} f ext
pi

(1)

where f ext
p is the particle external force, {N(ξi, ηi)} are the nodal shape functions for the element contain-

ing the particle with local coordinates ξ and η and np refers to the number of material points in the grid
element.

To be able to map to the correct grid nodes it is necessary to know in which element each material point
located at a point in time. Although trivial initially, after particles have moved this problem can become
more complex, especially if the mesh is not uniform. To simplify this process it is common to reset the
background mesh to a uniform grid after each loadstep.

The stiffness of each element is determined from the contributions from each of the particles currently
inside. Once the global stiffness matrix is assembled and the grid node displacements determined, the
grid node displacements {ug} are then mapped back to particles to get particle displacements {up} through

{up} =

ng∑
i=1

Ni{ugi}, (2)

where ng is the number of element nodes. The particle positions are then updated. The grid node dis-
placements are not used to update the position of nodes in the mesh; the original undeformed mesh is
used.

3. Comparison with FEM

The MPM has many similarities with the standard FEM, in fact it is possible to think of the MPM as the
same as the FEM but with moving integration points instead of fixed Gauss points in each element. The
shape functions used to map between the grid and the particles in the MPM are the same as the shape
functions used in the FEM. If material points are located at the positions of Gauss points in the FEM
and if the mesh is not reset after each step then the MPM becomes identical to the FEM. In the MPM,
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external forces can be applied directly to the grid nodes or can be applied at particles and mapped to the
grid, however to do this particles must be placed where forces are applied.

Boundary conditions are applied directly to the background mesh as in the FEM. This works for fixed
boundaries with zero displacement conditions however to track boundaries it is necessary for some par-
ticle positions to coincide with material boundaries. Currently it is difficult to do this.

As the particles move it is possible that the background element they are in changes. One of the main
problems with the MPM is an error which occurs when material points cross element boundaries causing
an imbalance of internal forces [4]. In the MPM, if an element becomes void of particles it is turned off

so that it no longer contributes to the global stiffness matrix.

Due to the background nodal relationships the MPM is not as computationally expensive as some mesh-
less methods. However, as there is an additional mapping step, it is more expensive than the standard
FEM.

4. Comparison with Arbitrary Lagrangian-Eulerian methods

Arbitrary Lagrangian Eulerian (ALE) Methods [5], like the MPM, take advantage of useful aspects of
both types of method while trying to avoid disadvantages. In ALE methods a mesh is allowed to move
independently of the material moving in an arbitrary manner that can be defined by the user. This is
achieved by having a third set of coordinates (the so-called reference coordinates) other than the ini-
tial and current configurations, this allows the mesh to be adapted to avoid problems caused by mesh
distortions in a purely Lagrangian method. In the MPM the grid can be adapted in a similar manner if
desired however it is usual to reset the grid to an undeformed uniform state as this removes the additional
expense of particle searching.

5. Comparison with Smoothed Particle Hydrodynamics

Smoothed particle hydrodynamics (SPH) [6] is a Lagrangian meshfree method, where the domain is
represented by a set of distributed particles needing no connectivity, rather than split up into a set of
nodes in a grid. Like the MPM, each particle possesses a set of material properties and moves according
to governing equations. However SPH doesn’t have a background grid where calculations take place.
Instead, field functions at these points are approximated using a kernel function. These approximations
are then smoothed using a weighted average over neighbouring particles. Having no background grid,
shape functions cannot be used in the same way as in FEM and MPM. To calculate the support and
influence domains of a particle a weighting function is used. This is common to most meshfree methods.

A particular advantage of SPH is its ability to handle large deformations. This is due to the fact that parti-
cles aren’t restrained to a mesh. However it is not as straightforward to apply boundary conditions when
using SPH for solid mechanics. The need to search for a nearest neighbour to define nodal connectivity
can also make SPH more computationally expensive than the standard MPM.

6. Numerical example

Due to the similarities between the FEM and the MPM, a compact finite element code has been used as
the basis for a MPM code [7]. Material points, which originally were located at Gauss points are freed
to move after each load step and then the mesh is reset to its original configuration. Because of these
similarities between methods, the constitutive model used in the FEM can also be used in the MPM.
A Total Lagrangian FEM code has been modified to facilitate movement of material points, however
problems have been noted when material points cross grid element boundaries. As mentioned above, this
is a common issue highlighted in the literature.

The code was used for the simple problem of one-dimensional compression of a 1×1×1m cube, as shown
in Figure 2(i). A Young’s modulus E = 1×109Pa and Poissons ratio of ν = 0.2 were used with downward
forces totalling 5×109N applied to the four uppermost particles over 10 loadsteps. The particle positions
within two elements in the Z direction throughout the simulation are shown in Figure 2(ii). It can be seen
that a problem arises when the uppermost particles displace into the lower element. When this happens
the internal force calculations result in a displacement back into the previous element for some of the
particles. This is repeated over the following loadsteps resulting in a oscillation of particles between two
elements.
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Figure 2: One dimensional compression of a unit cube: (i) Original and deformed mesh. (ii) Position of
particles within 2 elements over the period of 10 loadsteps.

One method that addresses the problem that occurs when particles cross element boundaries is the GIMP
method where characteristic functions are assigned to particles which give particles a support area so that
a particle can affect nodes in cells other than the one where the particle is located. The computational
expense of GIMP is larger than that of standard MPM however it provides improved accuracy stability
and robustness to simulations [8]. This is the next step in this work.

7. Conclusions and future work

From the work undertaken so far, the MPM appears to a promising technique for dealing with large
deformations, that can be simply achieved by altering an existing FE code. A MPM code is being devel-
oped using an Updated Lagrangian approach so that calculations are not affected by a stiffness that was
calculated when material points were in different positions. It is hoped that in the future a GIMP type
method can be implemented to address the boundary crossing problem encountered, and to then use the
MPM code for more complex problems involving large deformations.
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ABSTRACT

This paper presents a three-dimensional evolutionary structural optimisation approach based on the
boundary element and level set methods. The level set method (LSM) is used to provide an implicit
description of the structural geometry. The boundary movements in 3D LSM allow automatic hole nu-
cleation by the intersection of two surfaces moving towards each other. This eliminates the need of an
additional hole nucleation mechanism as required by the 2D LSM based optimisation methods. A com-
plete algorithm is proposed and tested for boundary element method (BEM) and LSM based structural
optimisation in three-dimensions. Optimal geometries obtained compare well against those in the litera-
ture for a range of benchmark examples.

Key Words: level set method; boundary element method; structural optimisation

1. Introduction

Structural optimisation is considered one of the most important and challenging fields in engineering
optimisation. Structural optimisation arranges the assembly of structural elements for sustaining the ap-
plied load in the most efficient manner. Numerous methods have been developed over the last decades
describing various numerical techniques to generate structures that are optimal in terms of quantities
such as weight, cost and stiffness. The LSM is an efficient numerical technique developed by Osher and
Sethian [1] for the tracking of propagating interfaces. The LSM uses the Eulerian approach to represent
an evolving geometry implicitly. In the implicit representation, the connectivity of the discretisation does
not need to be determined explicitly. This is one of the most interesting features of the implicit geometric
representation, in that merging and breaking of curves in 2D and surfaces in 3D can be handled automat-
ically. Sethian and Wiegmann [2] first presented an LSM based structural optimisation method for the
solution of two-dimensional problems. Since this first paper, numerous LSM based topology optimisation
techniques have been proposed for different engineering applications.

This paper presents a three-dimensional structural optimisation method based on the boundary element
and level set methods. The proposed method uses the 3D version of the BEM analysis software (3D
concept analyst [3]) developed at Durham University. In Section 2 of this paper we present the details of
the optimisation algorithm and its implementation. The results obtained from the proposed algorithm are
presented and discussed in Section 3, and the paper closes with some concluding remarks in Section 4.

2. Optimisation algorithm

The 3D optimisation algorithm proposed in this study is an extension of the 2D approach presented in
[4]. During the optimisation process, the structural geometry evolves into an optimal topology through
the progressive removal of inefficient material from the low stressed regions and addition to the high
stressed regions. The performance of the optimisation process is monitored through the specific strain
energy fU and the target volume fraction is used as a stopping criterion.

fU = UV (1)
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The expression used for the strain energy calculation is,

U =
∫
Γ

1
2

tiuidΓ (2)

where t and u represent traction and displacement, respectively. In practice, since the product tiui is non-
zero only over elements on which a non zero traction boundary condition has been prescribed (assuming
there are no non-zero displacement constraints applied) the integral involved in Equation (2) conve-
niently reduces to the integral taken only over these elements. The proposed optimisation algorithm is
summarised as follows:

1. Define structural geometry with applied loads and constraints.
2. Initialize level set grid with signed distance function to represent structural geometry implicitly.
3. Trace the zero level set contours.
4. Perform mesh postprocessing and improvement.
5. Carry out boundary element analysis.
6. Calculate the von Mises stress σV at each node point of the boundary.
7. Convert σV into velocity using the relationship developed in [4].
8. Extend boundary velocities to level set grid points in the narrow band.
9. Solve Equation (3) to update the level set function

∂ϕ

∂t
+ F|∇ϕ| = 0 (3)

10. Repeat the above procedure from step 3 to 9, until the stopping criterion is satisfied.

Most of the above steps are based on the simple extension of the steps followed in the 2D approach which
is discussed in detail in [4]. However, the extraction of the zero level set contours is different than that
used in the 2D approach. In 3D LSM , the zero level set contours can be extracted from the cubic cell
based level set grid with the marching cubes (MC) algorithm. The MC is a popular algorithm for extract-
ing iso-surface from implicit functions in the form of triangular mesh. A 3D structure can be analysed
with the BEM by first discretising its boundary into either triangular or quadrilateral elements. This is
then followed by the solution of the equilibrium equations and the calculation of the required properties
at the nodal points. In the proposed 3D optimisation method, at each iteration the modified structural
geometry is extracted in the form of a triangular mesh and this can be directly used for the BE analysis.
However, mesh postprocessing may be required to make it consistent with the BE analysis requirements.
Moreover, during the optimisation process, the structural geometry is continuously modified and this
may result into some low quality triangular elements which can affect the accuracy of the BE solution.
Therefore, in the current implementation, a mesh improvement step is used to improve the quality of
elements.

3. Numerical Example
In order to validate the proposed optimisation method, a short cantilever beam has been considered with
dimensions, L = 24, W = 8 and H = 48. The geometry of the structure shown in Figure 1 is constrained
at the top and bottom portions of the left face, and a load P = 1.2KN is applied at the middle of the right
face. The level set design domain is discretised into 12 × 4 × 24 cubic cells with edge length d = 2. The
target volume fraction used in this example is 0.30V0. The material properties used are: Poisson’s ratio
= 0.3, Young’s modulus = 210 GPa, Yield stress = 280 MPa.

In this example, the maximum von Mises stress in the initial design, i.e. σVmax = 178 MPa, is used as
reference stress for the solution of the optimisation problem. The evolution of the structural geometry
during the optimisation process is depicted in Figure 2. It can be seen that during the initial iterations
the structural geometry evolves through boundary movements caused by the incremental removal of
inefficient material from the low stressed regions of the structure. The optimal design obtained closely
resembles that obtained in [5].

Figure 3 shows the von Mises stress distribution in the initial and optimal designs. There are 1724 six-
noded triangular elements in the initial and 1200 in the optimal design. Comparison of these plots shows
that the stress contours are more uniform in the optimal design than the initial design. This indicates
that the optimisation method efficiently redistributes material within the design domain and results in an
optimal which is approaching towards a fully stressed design. Figure 4 shows the evolution of fU during
the optimisation process.
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Figure 1: Design domain, loading and boundary conditions

(a) Iteration 2 (0.77V0) (b) Iteration 10 (0.52V0) (c) Iteration 24 (0.39V0) (d) Iteration 37 (0.30V0)

Figure 2: Evolution of structural geometry
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Figure 3: von Mises stress contours of initial and final optimal geometry
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Figure 4: Evolution of fU

4. Conclusions

A 3D LSM based structural optimisation method has been successfully implemented for this study. Dur-
ing the optimisation process, the structural geometry evolves into an optimal design through the pro-
gressive removal of inefficient material from the low stressed regions and addition to the high stressed
regions of the structure. This evolutionary approach is integrated with the boundary element and level
set methods. The BEM is used to analyze the modified structural geometry at each iteration. During the
optimisation iterations, the MC algorithm extracts the new zero level set contours in the form of a trian-
gular mesh. As the BEM is based on a boundary discretisation approach; the extracted geometry can be
directly used to analyse the modified geometry. In order to validate the proposed optimisation method,
different benchmark examples are considered in this study. Each example is solved with different stress
criteria, and similar optimal designs are obtained for each case. The optimal designs obtained for each
example closely resemble the optima published within the field of structural optimisation.
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ABSTRACT

Non-linear rod dynamics is of great interest in many areas of engineering. It is relevant in structural engi-
neering but also in the aerospace industry, flexible robot dynamics, impact modelling etc. In recent years
the focus of research was directed towards Timoshenko-type rod theories were shearing is of importance.
Rod degrees of freedom are then the displacement field as well as a rotational field which describes the
independent rotation of the cross section. However, the algorithmic and numerical treatment of rotations
is not a straightforward task. Specifically for a general model of mechanisms and spatial deformations
it is desirable to have a displacement-only formulation which brings us back to the classical Bernoulli
beam. While it is well established in linear analysis, the Bernoulli beam is not as common in geomet-
rically exact models of dynamics, especially when it comes to incorporate the rotational inertia into the
model. Also the development of stable energy-momentum integration schemes for the same has been
considered as rather difficult in comparison to a Timoshenko-type model. This paper is about the devel-
opment of an energy-momentum integration scheme for the geometrically exact Bernoulli method. We
will show that the task is achievable and device a general framework to do so. Further important feature
of the model is the full incorporation of the rotational inertia term. Different applications stretching from
applications in structural rod dynamics to flexible multibody dynamics and finally impact modelling, will
demonstrate the strength of the approach and the excellent performance of the new integration scheme.

Key Words: non-linear dynamics; finite strain; energy-momentum method; multi-body dynamics

1. Kinematics, dynamics equation and finite discretisation

Let B ⊂ R3, with R denoting the real numbers, define a reference configuration of the body. Without loss
of generality we want to identify the reference configuration with the body itself. The actual configuration
is denoted by Bt ⊂ R3. We assume that our body is thin in two dimensions such that it is rod-like with
a cross section A at the reference configuration. The material particles are identified by their position
vectors X ∈ B, the corresponding placement at the actual configuration by x ∈ Bt. A deformation is a
map x = ϕ(X), the gradient of which defines the deformation gradient F = ∂x/∂X.We want to restrict
ourselves to plane deformations and assume that the deformation lies in the e1−e2 plane. For any material
point in the cross section a suitable curvilinear coordinate system which we consider to be convected,
is then given by the triple s, z, x3. z is the coordinate in the direction of the normal vector in the cross
section. To derive the rod theory we adopt the Bernoulli hypothesis which assumes rigid cross sections
and that the deformation can be completely characterized by the assumption

x = X(s) − zN(s) + u(s) + zn(s) = X0(s) + u(s) + zn(s), (1)

where X0 = X0(s) + zN(s) is the the placement of the centre line at the reference configuration, N and
n are the normal vectors in the reference configuration and deformed configuration respectively, u(s) is
the displacement at the curvilinear coordinate s. In the context of a in-plane Bernouilli beam, the right
Cauchy deformation tensor has only one single non-trivial component which is C11 which reads

C11 = (X,s − zN,s + u,s + zn,s) · (X,s − zN,s + u,s + zn,s), (2)
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where (·) denotes the scalar product of vectors, a comma denotes a derivative. The expression of n holds
n = e3 ×

X0 ,s+u,s
|X0 ,s+u,s | , where × denotes the cross product of vectors. With E = 1

2 (C − 1) as the Green strain

tensor, one is then left with one sigle non-trivial component E11 which is given by (the term in z2 can be
neglected since our thickness of the beam is small compared to its length)

E11 = u,s · X0,s +
1
2

u,s · u,s + z
(
n,s · (X0,s + u,s) − N,s · X0,s

)
. (3)

By defining ε11 as the axial strain, κ as the change of curvature, their expressions reads

ε11 = u,s · X0,s +
1
2

u,s · u,s, (4)

κ = n,s · (X0,s + u,s) − N,s · X0,s. (5)

Starting from Hamilton Principle for our conservative mechanical system, the dynamics equation for our
beam is written down as follows∫

L
ρAü · δu ds dt +

∫
L
ρI n̈ · δnds +

∫
L

(EAε11δε11 + EIκδκ) ds

−

∫
L

q(s) · δu(s) ds −
N∑

i=1

Pi · δui −

M∑
j=1

M3 jδθ j = 0, (6)

where E is Young’s Modulus of the material, V is the volume of the system, q(s) is distributed external
force, Pi, i = 1,N and ui are the concentrated force and the corresponding displacement respectively,
M3 j, j = 1,M and θ j are concentrated external moments and the corresponding rotation angle respec-
tively, I is the moment of inertia of the section and L is the length of the beam, ρ is the material density.
In this present paper cubic Hermite polynomials are used as interpolation functions because it ensures
the continuity of the first derivative. A 2D beam element having two nodes is considered and each node
has four degrees of freedom which correspond to the displacements (u1,u2) and its derivatives (u′1,u′2) in
two directions e1 and e2.

2. Energy-momentum time integration scheme

After the spatial discretisation via the finite element method, the numerical approach is completed by
devising a step-by-step time integration scheme for the time dependent equations. Classical implicite
schemes like the Midpoint rule or Newmark method have been very popular in the structural dynamics
community. However while these are stable integration methods in the linear regime, they proved less so
in the highly non-linear one, especially in long-term dynamics. They suffer from numerical instabilities
like blow-ups as well documented in the literature [1, 2, 3, 5]. Energy-momentum methods proved to
provide here the necessary stability. In what follows we will develop such a method tailored to our rod
formulation. However, so far no such formulation was attempted for the Bernoulli beam because of the
complexities involved in the kinematic assumptions. In the following we want to develop for the first time
such an Energy-momentum method. In doing so, we resort to an idea developed in [2, 3]. The method
described there is attractive because it is independent of the involved non-linearity, the source of problem
in the presently considered beam. The starting point, however is the standard midpoint rule. From step n,
where all kinematical fields and velocities are known, we need to find these quantities at time step n + 1.
Consider ξ to be a scalar which defines any position within the time interval ∆T , with 0 ≤ ξ ≤ 1. We
start with the following expressions:

xn+ξ = ξxn+1 + (1 − ξ)xn, (7)

ẋn+ξ =
xn+1 − xn

∆T
, (8)

ẍn+ξ =
ẋn+1 − ẋn

∆T
. (9)

The first defines a convex set, the following two are true for some value of ξ. The midpoint rule cor-
responding to ξ = 0.5. The key step is to employ strain velocity fields to define the strain fields in
replacement of Eq.(4) and (5). Let us consider the following velocity fields:
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First from (4), we also have:

ε̇ = u̇,s · X0,s + u,s · u̇,s and (10)

κ̇ =

(
∂κ

∂u,s
.u̇,s +

∂κ

∂u,ss
.u̇,ss

)
. (11)

Using (10) and (11), given the strain field defined at time n, the strain field at step n + 1 then defined as
following:

εn+ξ = εn + ξ∆T ε̇n+ 1
2
, (12)

κn+ξ = κn + ξ∆T κ̇n+ 1
2
. (13)

Specifically for ξ = 1, the relations hold

εn+1 = εn + ∆T ε̇n+ 1
2

= εn + ∆T
(
u̇,s · X0,s + u,s · u̇,s

)
, (14)

κn+1 = κn + ∆T κ̇n+ 1
2

= κn + ∆T
(
∂κ

∂u,s
.u̇,s +

∂κ

∂u,ss
.u̇,ss

)
. (15)

The midpoint rule together with the strain fields defined in (14) and (15) is proved formally and numeri-
cally to conserve the linear momentum, angular momentum and the total energy.

3. Numerical example

To investigate conservation of momentum, angular momentum and energy, we consider a beam without
support. The beam is given in Fig. 1, the loading increases linearly to a peak and decreases with the same
velocity to zero, Fig. 2. We will run the calculation for one million time steps with ∆T = 1e − 3s.
The Energy history is depicted in Fig. 3, Fig. 4 and Fig. 5 reflect the linear momentum and angular
momentum respectively. In both figures not only the absolute value but also the components of the
mentioned quantities go without saying that conservation is valid for momentum and angular momentum
vector.

Figure 1: Beam figure Figure 2: Loading History

Parameters

Beam length L = 3m
Cross section area A = 0.12m2

Cross section inertia I = 1.44E − 4m4

Young’s Modulus E = 200000Mpa
Density ρ = 48831kg/m3

Number of element = 4
Time increment ∆T = 1e − 3s
Number of steps = 1.000.000
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Figure 3: Energy history Figure 4: Momentum history

Figure 5: Angular momentum history
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ABSTRACT

In this work we present a novel local patch projection technique for alleviating volumetric locking that
extends to general order and types of meshfree basis functions. We begin with the classical u-p mixed
formulation of incompressible elasticity before eliminating the pressure using a volume-averaged nodal
projection technique. This results in a family of projection methods of the type Qp/Qp−1 where Qp is an
approximation space of polynomial order p. These methods are particularly robust on low-quality tetra-
hedral meshes. Our framework is generic with respects to the type of meshfree basis function used and
includes various types of existing finite element methods such as B-bar and nodal-pressure techniques.

As a particular example, we use maximum-entropy basis functions to build a scheme Q1+/Q1 with the
displacement field being enriched with bubble-like functions for stability. The flexibility of the nodal
placement in meshfree methods allows us to demonstrate the importance of this bubble-like enrichment
for stability; with no bubbles the pressure field is liable to oscillations, whilst with bubbles the oscillation
is eliminated. Interestingly however with half the bubbles removed, a scheme we call Q1∗/Q1, certain
undesirable tendencies of the full bubble scheme are also eliminated. This has important applications
in non-linear hyperelasticity. We also discuss some difficulties associated with moving to second-order
maximum entropy shape functions associated with numerical integration errors.

Key Words: meshless, incompressible, volume-averaged, maximum-entropy.

1. Mathematical development

By standard arguments it is well known that the problem of linear elasticity can be expressed as the
following weak form:

Problem 1. Find the displacement u ∈ U such that u|Γd = ud and:∫
Ω
σ(ε(u)) : δuε(u) dΩ =

∫
Ω
δuu · f dΩ +

∫
Γt

δuu · t dΓ ∀ δuu ∈ U (1)

where σ is the Cauchy stress, ε is the usual small-strain operator, u is the displacement of the solid, Ω is
the domain occupied by the solid body with boundary Γ, t are the external tractions applied on Γt, f are
body forces acting in the domain, and δu is the variation with respect to the variable u.

Standard numerical formulations of the displacement formulation of the elasticity problem above lead to
the problem of volumetric locking as ν→ 1/2. This results in the following constraint on the hydrostatic
pressure p : Ω→ L2(Ω)/R being enforced exactly:

p = −λ div u = −λ tr ε = −λεkk = 0 (2)

The canonical method for alleviating the problem of volumetric locking in numerical formulations of
the nearly-incompressible elasticity problem is to treat the pressure as independent variational or weak
quantity, resulting in the following variational problem:
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Figure 1: Subset of cells attached to vertex a associated with pressure degree of freedom pa forming integration
domain Ωa shown by the shaded region.

Problem 2. Find (u, p) ∈ U × P such that u = ud and:∫
Ω

2µε(u) : δuε(u) dΩ −
∫
Ω

pI : δuε(u) dΩ

=

∫
Ω
δuu · f dΩ +

∫
Γt

δuu · t dΓ ∀ δuu ∈ U
(3a)

∫
Ω

div u δp p dΩ +

∫
Ω

1
λ

p δp p dΩ = 0 ∀ δp p ∈ P (3b)

In a general sense, by re-arranging the discrete equivalent of eq. (3b) we can express the pressure variable
ph in terms of the displacements uh by the relation:

ph = −λΠh(div uh) (4)

where the projection operator Πh : Uh → Ph is a projection from the displacement space Uh to the
pressure spacePh. This projection operator approach derived from the u-p mixed formulation constitutes
a discrete modification of the energy bilinear form associated with the volumetric or dilational energy of
the elastic body which results in the suppression of volumetric locking [1].

We now derive a specific form of Πh which we refer to as the volume-averaged nodal pressure operator.
This operator was introduced originally in the paper of Ortiz et al. [2] and in this work we extend its
application to meshfree basis functions of arbitary type and order. We denote Ni as the linear finite ele-
ment shape functions associated with degrees of freedom i located at the verticesV of the triangulation
T allowing us to write the discrete pressure variable ph and associated variation δp p as:

ph =
∑

i

Ni(x)pi (5a)

δp p =
∑

i

Ni(x) δp pi (5b)

We denote in a general sense the space Qp(N , ρ) as the span of a set of meshless basis functions φi

associated with degree of freedom i located at the nodes N with polynomial consistency of order p and
support sizes ρ. We can then write the discrete displacement variable uh and associated variation δuu as:

uh =
∑

i

φi(x)ui (6a)

δuh =
∑

i

φi(x) δuui (6b)

Then by substituting eqs. (5) and (6) into eq. (3) yields for every degree of freedom c in the construction
of δp p: ∫

Ω
Ncδpc

mT
∑

b

Bbub +
1
λ

∑
b

Nb pb

 dΩ = 0 (7)
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Figure 2: Pressure field p of highly-constrained rigid punch problem. Left: RPIM Q2/Q1, Middle: RPIM Q2∗/Q1,
Right: RPIM Q2+/Q1. The solution with no bubbles (left) fails the inf-sup condition, leading to a highly oscillatory
pressure field. The half-bubble formulation (middle) retains the stability properties of the full-bubble solution
(right).

where the vector mT takes the trace (tr) of the strain field ε:

mT =
{
1 1 0

}
(8)

On relying on the arbitrariness of nodal variations we arrive at the following equation:∑
b

{∫
Ω

NcmT Bb dΩ
}

ub +
∑

b

{
1
λ

∫
Ω

NcNb dΩ pb

}
= 0 (9)

The second term on the left hand-side of eq. (9) can be used to eliminate the pressure from the formula-
tion. An approximate way to acheive this is by lumping the mass-type matrix formed by the second term
on the left hand-side of eq. (9), ie.

∑
b NcNb = Nc. Solving for pc in eq. (10) gives:

pc = −λ
∑

b


∫
Ωc

NcmT Bb dΩ∫
Ωc

Nc dΩ

ub (10)

where Ω has been replaced by Ωc to indicate that due to the mass-lumping procedure the volume for
integration is now formed by a subset of the cells K attached to the vertex associated with pressure
degree of freedom pc, see fig. 1.

Finally, based on eq. (10) we can define the volume-averaged nodal projection operator θq
c as:

θ
q
c [·] =

∫
Ωc

Nc [·] dΩ∫
Ωc

Nc dΩ
(11a)

and the volume-averaged projection approximation operator θq
h as:

Πh := θ
q
h [·] =

∑
c

Nc(x)θq
c [·] (11b)

These two expressions are used to eliminate the pressure from eq. (3), and result in a locking-free for-
mulation for incompressible elasticity.

2. Results

In this section we particularly want to show the effect of the quantity of bubble degrees of freedom on the
quality of the pressure field solution and convergence. The ‘bubbles’ are the extra meshfree degrees of
freedom inserted at the barycenters of the triangulation in a similar manner to the MINI element which
are required for stability. We consider three function spaces for the displacement, the first with no bubbles
which we denote Qp, the second with full-bubbles denoted Qp+ and the third with half-bubbles Qp∗, ie.
50% of the bubbles removed from the full-bubble solution. This idea of using only half the number of
bubbles was introduced in the finite element context by Kim and Lee [3].

We show the pressure field for the highly constrained indented block problem in fig. 2. In this problem
a displacement is applied to one third of the top surface and all other surfaces are fully constrained. We
use Radial Point Interpolation Method (RPIM) basis functions in this example. The solution with no
bubbles fails the inf-sup condition (left), leading to a highly oscillatory pressure field. The half-bubble
formulation (middle) retains the stability properties of the full-bubble solution (right).
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Figure 3: Convergence of Timoshenko beam problem. Top left: MaxEnt Q2/Q1, Top right: MaxEnt Q2∗/Q1, Bot-
tom: MaxEnt Q2+/Q1. With half-bubbles we still acheive the optimal convergence rate in both the H1 and L2

norm.

We now consider the classic Timoshenko beam problem, where a parabolic traction is applied on one
end and the opposing end is fixed. In this example we use MaxEnt basis functions to demonstate the gen-
erality of our approach between different meshless basis functions. In fig. 3 we show the convergence for
the displacement variable in the usual displacement norm L2 and energy-equivalent norm H1. Even with
the half-bubble formulation we obtain optimal-order convergence in both norms and significantly better
performance than the classical MINI element of Arnold et al. [4] owing to the superior approximation
properties of meshless basis functions. Additionally, upon moving to second-order RPIM functions (re-
sults not shown) we find that accurate integration of the weak form is critical to acheive full convergence.
We use the modified integration rule of Duan et al. [5] in all of the results shown in this paper.
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ABSTRACT 

This paper presents the results of detailed numerical analyses simulating the response of masonry 

arches and bridges up to collapse. Past research has shown that detailed numerical descriptions, where 

bricks and brick-mortar joints are modelled separately can offer a sound representation of the 

behaviour of masonry components up to collapse. However, because of the significant computational 

effort, to date the use of this approach has been mainly restricted to 2D analysis. This does not allow 

the investigation of the inherent 3D response especially in the case of arches with complex geometry 

and masonry bridges. The modelling approach used in this work benefits from pioneering work 

undertaken previously at Imperial College, where an accurate 3D mesoscale model for masonry and a 

partitioning approach for parallel processing have been developed and used for detailed nonlinear 

analysis of masonry components. The results of numerical studies, which also include comparisons 

against experimental results, are presented to show the potential and the accuracy of the proposed 

method for masonry arches and bridges. 

Keywords: nonlinear analysis; masonry arches; masonry bridges; 3D mesoscale description; domain 

partitioning approach. 

1. Introduction

Masonry arches are critical components of masonry bridges which represent a significant portion of 

existing bridges in the UK and Europe. Most of these old structures, which were built following rules 

of thumb or using simple design approaches, need to be assessed considering current safety 

requirements. In this respect, detailed numerical modelling represents an important vehicle for safety 

and residual life assessment. Thus in recent years, different numerical strategies for analysing 

masonry arches and bridges have been developed. These are mainly based upon the use of limit 

analysis concepts [1], the finite element method (FEM) or discontinuous modelling techniques [2]. 

When utilising rigid plastic approaches, only the arch ultimate capacity can be evaluated. On the other 

hand, FEM enables an accurate response prediction at different loading levels up to collapse only 

when an accurate material description is used for masonry. This is a heterogeneous and strongly 

nonlinear material whose behaviour is determined not only by the mechanical characteristics of units 

and mortar joints but also by the specific unit-mortar arrangement considered to build the arch (e.g. 

multi-ring arches, skew arches etc.). Moreover, the use of detailed FE modelling for masonry arch 

bridges, which are relatively large structures, is computationally demanding, thus so far it has been 

mainly employed in 2D plane stain analysis. In many cases, this is a too crude kinematic assumption, 

as the response of masonry arch bridges is intrinsically three-dimensional also under simple loading 

conditions. Recently, a few modelling approaches have been proposed for 3D nonlinear analysis of 

masonry arch bridges using either the continuous approach with a simple nonlinear description for 

masonry assumed as a uniform and isotropic material [3] or a more advanced nonlinear macro scale 

homogenised model [4]. In this work, an alternative modelling strategy is presented and used for the 

analysis of a masonry arch with complex geometry and a masonry arch interacting with backfill 

material.  
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2. Mesoscale Partitioned Modelling Approach

A partitioned mesoscale approach is adopted to analyse masonry arches and bridges. This enables the 

use of a detailed model for describing material nonlinearity [5] in masonry at structural scales, as it is 

combined with a partitioned approach allowing for parallel computation [6] which guarantees 

computational efficiency. In the 3D mesoscale description [5], 3D elastic continuum solid elements 

are used to model masonry blocks, while mortar and brick-mortar interfaces are modelled by means of 

2D nonlinear interface elements (Fig. 1a) . Furthermore, zero-thickness interface elements are also 

arranged in the vertical mid-plane of all blocks so as to account for possible unit failure in tension and 

shear. This mesoscale approach enables the representation of any 3D arrangement for masonry 

including the complex arrangement used in multi-ring and skew arches. Concerning the constitutive 

model for the interface element, it accounts for the actual elastic deformations of mortar and brick-

mortar interfaces using specific elastic stiffness values [5], which are functions of the component 

elastic properties and the joints dimensions. The inelastic response at the interfaces is simulated by 

means of a cohesive fracture model based on a multi-surface plasticity criterion. The response in 

tension and shear is described by an elasto-plastic contact law which follows a Coulomb slip criterion. 

On the other hand, a formulation that considers energy dissipation, de-cohesion and residual frictional 

behaviour is employed to describe cracks formation and propagation, where plastic work is used to 

determine the evolution of material parameters. 

      (a)                                                                             (b) 

Figure 1 (a) 3D masonry mesoscale modelling for brick-masonry, (b) partitioned approach for modelling 

masonry arch bridges 

To achieve computational efficiency, the analysed structure with masonry is described by a parent 

structure which consists of super-elements representing the partitioned subdomains. Dual super-

elements are used for modelling the partitions as separate processes, where two-way communication 

between each pair of dual parent/child super-elements allows effective parallelisation of the nonlinear 

structural analysis simulation [6]. The proposed partitioned approach applied to a simple masonry 

bridge is illustrated in Figure 1b, where two partitions are used to model the backfill and masonry 

arch. The two partitions communicate through the parent structure which corresponds to the nodes at 

the partition boundary between the two subdomains. Evidently, in the case of large structures and to 

achieve significant speed-up in the numerical simulation, a larger number of partitions can be used for 

modelling the two subdomains. In the case of masonry bridges, which are heterogeneous systems, the 

backfill material is modelled through a continuous plastic approach, while the physical interface 

between the continuous and the discrete mesoscale domain for masonry is represented by nonlinear 

zero-thickness interface elements allowing separation and plastic sliding. 

3. Numerical Examples

The mescale partitioned model was implemented into ADAPTIC [7], a general finite element code for 

nonlinear analysis of structures, which is used here to analyse masonry arches and bridges. Two 

numerical examples are presented considering the analysis of a skew masonry arch and the interaction 

between a masonry arch and backfill. 

Communication 

partition-parent 

structure 

Partition for 

Backfill material 

Partitioned 

boundary 

20-noded solid 

element for brick 
units 

Mid-plane for 2D  interface element for 

mortar joints 

Partition for 
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The analysed skew arch is a two-ring arch with a 45° skew angle. The structure has 3 m direct span, 

670 mm width and 215 mm thickness, and was previously tested by applying a concentrated force P at 

3/4 span up to failure [8]. In the proposed FE modelling, the arch is modelled with four partitions. To 

represent the complex 3D geometry typical of skew brick-masonry arches, each half brick is 

represented by a 20-noded solid element. Nodal coordinates for each element are obtained following 

the rules of descriptive geometry as suggested in [9], which were adopted to define skew arch 

geometry in real old masonry bridges. The FE mesh of the arch is displayed in Figure 2a. A tensile 

strength σt0  = 0.07 N/mm
2
 is considered for mortar joints, while an elastic modulus E = 4000 N/mm

2

and Poisson’s ratio  =0.15 are assumed for the brick units.  

(a) (b) 

(c) (d) 

Figure 3 Skew arch: (a) undeformed FE mesh, (b) deformed shape showing failure mechanism, (c) and (d) load-

displacement curves for vertical displacement at points T3 and T9. 

(a) 

(b) 

(c) (d) 

Figure 3 Arch-backfill: (a) Undeformed FE mesh, (b) load-displacement response, (c) deformed shape and 

plastic deformation contour of backfill partition, (d) deformed shape and plastic work contour (Nmm) at 

interface elements for masonry arch partition. 

Proposed model 
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Figure 2b shows the deformed shape of the skewed arch barrel at failure, where four large cracks are 

noted. This is the typical 3D failure mode of masonry skew arches as observed in experimental tests 

[8] which cannot be represented using simplified 2D models. Figures 2c,d shows numerical-

experimental comparisons in term of vertical displacements at 1/4 and  3/4 span. The numerical 

predictions are very close to the experimental results at different loading levels confirming the 

accuracy provided by the proposed modelling approach. 

The second numerical example investigates the response of an arch strip interacting with backfill 

material. This is a typical interaction mode in old masonry bridges where loads are transferred 

through the backfill to the arch, and the backfill offers partial restraint to the arch deformations. Two 

partitions are used for the arch and the backfill material, where the physical interface between the two 

domains is modelled with nonlinear frictional interface elements. On the other hand, a continuous 

plastic model utilising a smooth Mohr-Coulomb yield function is used for modelling the fill material. 

The elastic modulus, frictional angle, cohesion and Poisson’s ratio of the backfill are taken as 

1000 N/mm
2
, 46.4°, 0.0224 N/mm

2
 and 0.2, respectively. Mortar cohesion and tensile strength for

mortar joints are taken as 0.35 N/mm
2
 and 0.15 N/mm

2
, respectively. Figures 3a,b show the FE mesh 

and the load-displacement response. The displacement are obtained at 1/4 span where the load is 

applied at the top of the backfill. Figures 3c,d display the deformed shape and plastic deformation 

contours for fill material and plastic work contour at nonlinear interfaces. The latter shows the 

development of damage in the arch at maximum load, where it can be seen that large cracks 

developed in four regions of the arch forming a collapse mechanism. 

4. Conclusions

This paper presents an advanced numerical modelling strategy for nonlinear analysis of brick-

masonry arch bridges, which combines a mesoscale model for masonry and a partitioning approach 

allowing parallel computation. Two numerical examples are presented which include comparisons 

against experimental results. These show the accuracy of the proposed numerical approach in 

describing the initial stiffness, maximum capacity and failure mechanisms of 3D multi-ring skew 

arches under static loading as well as the interaction between masonry arches and backfill material. 

This confirms the significant potential of the proposed modelling approach in the analysis of large 

heterogeneous systems with masonry components, where the response is determined by the 

interaction among different structural and non-structural components which can be modelled using 

continuous or discrete nonlinear models.   
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ABSTRACT

Reservoir simulation involves computation of subsurface flow fields, reservoirs often comprised of complex ge-
ometric objects, which requires feature based and boundary aligned grids. These constraints are satisfied by em-
ploying unstructured grid generation methods. Control-volume distributed multi-point flux approximation schemes
are used for solving the Darcy pressure equation, both cell centred and cell vertex approximations are used and
compared. A technique involving advancing front point placement is devised to generate boundary aligned meshes.
A concise description of boundary aligned mesh generation together with applications are presented.

Key Words: Reservoir simulation; Boundary aligned grid generation; Flux approximation; Unstructured meshing

1. Introduction

Petroleum reservoir simulation involves computation of subsurface flow fields and fluid flow processes,
in order to optimize the recovery of hydrocarbons. Subsurface reservoirs are often comprised of complex
geometric and geologic objects and features. In addition to robust numerical methods for solving the
flow equations, methods of grid generation are required which can handle geometric complexity. Grid
generation for large scale porous media such as oil and gas reservoirs has been a challenging problem
for decades. This is due to involvement of complex geometries and random distribution of spatial
heterogeneities in the domain[1].

Conventionally, reservoir simulators are based on simple grid blocks i.e. squares and cubes (structured
grids). Another class of grid generation methods which generally employs triangles and tetrahedrons
as grid elements, often termed unstructured grids[1, 2]. Compared with structured grids, unstructured
grids are more flexible and can adapt grid cells to various flow and geometric constraints such as faults,
fractures and wells and perform local refinement with smooth transition[2, 3]. However, unstructured
grids require special data treatment, so computationally are more involved. The use of unstructured grids
in reservoir simulation dated back to the early nineties. Despite unstructured grid generation methods
having been successfully employed in modelling complex giant reservoirs, in field applications there
is still increased inclination toward the use of structured grids. Fung et al. [2] have reported that this
might be the result of novelty of these methods in the field compared with structured grids for which
well established simulation tools exist. They are of opinion that more research work is required to carry
out simulation on unstructured grids.

2. Methods for Geological Feature Based Grids:

The subsurface flow of hydrocarbons is a very complex phenomenon and is direction dependent, where
permeability across the layers can jump by several orders of magnitude. In order to minimize the
effect of grid orientation and discretization errors, unstructured grids should conform as closely as
possible to geological features such as faults, fractures, pinchouts and wells , e.g. Merland et al.[3]. The
unstructured grids used in reservoir modelling, commonly employ Delaunay-Voronoi grids for spatial
discretization of domain. Voronoi grids can be made to conform to geologies by special treatment such
that their cells become aligned to geological features. Some of the techniques used to construct feature
based grids are outlined in [3].

In general feature based grids generated are a result of constrained Delaunay triangulation. However
in this work feature based grids are generated with unconstrained Delaunay triangulation. Advancing
Front Local Reconnection(AFLR) method is selected, detail and development of which can be found
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elsewhere[4, 5], here only a concise description is presented. A method which exploits the concept of
advancing front technique in conjunction with Delaunay triangulation is presented in [6]. AFLR is a
quite general triangulation method in that, it can be devised to use advancing front point placement
in combination with any local connection optimization criterion. However, in this text to construct
Delaunay triangulation it is designed to work with Delaunay as a quality criterion.

AFLR starts with valid initial triangulation of boundary points as background mesh. AFLR works in an
iterative fashion, wherein during every level it involves three major steps: for every active element define
candidate points; filter candidate points thereby rejecting those points which could deteriorate mesh
quality; finally the insertion phase, where the set of filtered points are triangulated. Grid generation
process is completely controlled by point distribution function(PDF), which in its simplest form can
be thought of representative of boundary point spacing. Figure 1 highlights different steps involved in
carrying out Delaunay triangulation by employing AFLR.

(a) Empty Mesh (b) Adancing front point place-
ment followed by direct subdiv-
ion of containing elements

(c) Connection optimization sub-
ject to Delaunay Criterion and
Level-1 points

(d) Final Delaunay Triangulation

Figure 1: : Pictorial representation of AFLR meshing technique; highlighting different stages involve in triangulating a domain

3. Boundary Aligned Grid(BAG) Generation

In general reservoir geometries are comprised of features such as faults/fractures, complex spatial
distribution of the wells and a wide range of variations in porosity and permeability across different
layers[1]. In order to minimize discretization error, it is common practice to generate meshes which
are aligned with these features, thereby leading to feature based triangulations, usually termed as
boundary aligned grids(BAGs).The grids generated have to provide control-volume boundary alignment
consistent with spatial discritization required in flux approximation schemes. These schemes demand
control volume aligned grids and can be designed to work either with primal (cell centred schemes)
or dual cells (cell-vertex schemes) as their control volumes. Primal cell control volumes are the grid
elements in terms of which reservoir domain is directly subdivided, it consists of triangles and/or
quadrilaterals. Dual cells are obtained by connecting circumcentres surrounding a primal cell vertex.

Primal Cell BAG: AFLR method can be used to obtain meshes where primal cells are aligned with
faults and/or fractures. The key idea in this regard is to embed a discretized curve characterising some
geological feature, and then as the front initiates a layer of cells is placed on either side of it thereby
providing with permanent protection around it. This method is fully generalizable, some examples of
primal cell BAGs generated in a manner similar to one described above are shown in figure 2.

Dual Cell BAG: AFLR method when employed to construct dual(voronoi) cell aligned grid involves
embedding a discretized channel(halo) with actual interior boundary as its median line. The channel
used is designed to comprise of quadrilateral elements, where each element is allowed to have only four
co-circular points. This is because later in construction of the dual, for channel elements it becomes
feasible to work with circumcenter, so as to obtain dual which still enjoys the property of being an
integral part of a perpendicular bisector(PEBI) grid. Some examples of dual cell boundary aligned grids
illustrating the strength of the method are depicted in figure 3.

4. Flux Approximation Schemes:

Flux approximation schemes in reservoir simulation are generally control volume distributed(CVD)[7].
A piecewise constant representation of flow properties is assigned to the control volumes, where field
variables are computed at their centres(control points). As described earlier in selecting a control
volume normally there are two choices i.e. primal or dual cells. The resulting scheme from each of these
two settings is called cell centred and vertex centred approximation respectively. With respect to type of
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(a) Primal cell BAG with re-
spect to a layer, with two holes
postioned on either side of it

(b) Primal cell BAG with re-
spect to a complex frcature

(c) Primal cell BAG of a
layered system, embeded with
some fratures

Figure 2: : Examples illustrating usefulness of AFLR in generating primal cell BAGs

(a) Dual cell BAG with respect
to a layer, with two holes pos-
tioned on either side of it

(b) Dual cell BAG with respect
to a complex frcature

(c) Dual cell BAG of a layered
system, embeded with some
fratures

Figure 3: : Examples illustrating usefulness of AFLR in generating dual cell BAGs

formulation flux approximation schemes are broadly subdivided into two classes namely: two point flux
approximation(TPFA) scheme; and control-volume distributed multipoint flux approximation(CVD-
MPFA) schemes. The detailed description, along with their formulation and numerical analysis can be
found in[7, 8, 9, 10]. Formulation of these schemes in cell centre and cell vertex modes is analogous
and involves switching control volume from primal to dual or vice versa.

Test Case: This problem is taken from[10], where flow field governed by pressure equation is simulated
in a unit square domain, with permeability tensor whose degree of anisotropy is controlled by parameter
0 < ε ≤ 1. Grid generated by employing AFLR technique along with contour plot of exact solution
are shown in figure 4. An anisotropic flow field with ε = 0.1 is simulated and solution obtained with
TPFA, TPS and FPS formulations both in cell centre and cell vertex mode are shown in figure 5, where
L2 norm indicates deviation from the exact solution.

Numerical studies carried out reveal that in case grid employed is PEBI, and permeability constitute
an isotropic field then grid is K-orthogonal by default, for which TPFA provides consistent solutions
both in cell centre and cell vertex settings. For an anisotropic field the L2 error comparison between
cell centre and cell vertex results indicates that cell centre formulations capture the effect of anisotropy
better than cell vertex, however neither of the formulations yields consistent approximation[7]. The
main idea behind CVD-MPFA schemes is to develop a consistent formulation, satisfying local pres-

(a) Grid with primal cells as
control volumes(cell centre
formulation)

(b) Cell center exact solu-
tion; contour plot of pressure
field

(c) Grid with dual cells as
control volumes(cell vertex
simulation)

(d) Cell vertex exact solu-
tion; contour plot of pressure
field

Figure 4: : Problem Definition: Grids generated to simulate pressure field and exact solution plot
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(a) Cell centre TPFA
L2 = 8.13 × 10−2

(b) Cell centre TPS
L2 = 2.99 × 10−3

(c) Cell centre FPS
L2 = 2.83 × 10−2

(d) Cell vertex TPFA
L2 = 1.04 × 10−1

(e) Cell vertex TPS
L2 = 2.35 × 10−3

(f) Cell vertex FPS
L2 = 3.02 × 10−3

Figure 5: : Comparison of TPFA, TPS and FPS formulation both in cell centre and cell vertex settings

sure and flux continuity conditions. The continuity conditions leads to an increased pressure support
with wider stencil compared to the standard TPFA scheme, however the number of degrees of freedom
remains unchanged[10]. Two commonly employed schemes are triangular pressure support(TPS) and
full pressure support(FPS) schemes. FPS schemes involve additional auxiliary pressure support, thus
have a wider range of quadrature compared to TPS. While general M-matrix conditions must be sat-
isfied to prevent spurious oscillations, FPS has been shown to be far more robust than the earlier TPS
methods[8, 9, 10].

5. Conclusions:

The AFLR is a quite general triangulation technique in that it can be devised to work with any connection
optimization criterion. The AFLR has been found to yield quality meshes. In order to generate meshes
aligned with geological features, AFLR requires initial embedded discretized curves defining these fea-
tures. As the front initiates from such a curve, it generates a halo(protection zone) around it, thereby
ensuring boundary integrity. The AFLR method has been successfully employed in generating boundary
aligned meshes both with respect to primal and dual cells. In flux approximation schemes two point flux
approximation yields consistent solutions if grids employed are K-Orthogonal. For non-isotropic per-
meability tensor, in general CVD-MPFA schemes are found to yield consistent results. The Cell vertex
formulation is computationally more efficient and robust compared to cell centred formulation, however
it demands dual cell aligned grids.
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[3] R. Merland, B. Lévy and G. Caumon. Building PEBI Grids Conforming To 3D Geological Features
Using Centroidal Voronoi Tessellations, in: R. Marschallinger and R. Zolb (Eds.), Mathematical
Geosciences at the Crossroads of Theory and Practice (IAMG), pp.254-265, 2011.

[4] D.L. Marcum and N.P. Weatherill. Unstructured grid generation using iterative point insertion and
local reconnection. AIAA Journal, 33, 1619–1625, 1995.

[5] D.J. Mavriplis. An Advancing Front Delaunay Triangulation Algorithm Designed for Robustness.
Journal of Computational Physics, 117, 90-101, 1995.

[6] I. Sazonov, D. Wang, O. Hassan, K. Morgan and N. Weatherill. A stitching method for the gen-
eration of unstructured meshes for use with co-volume solution techniques. Computer Methods in
Applied Mechanics and Engineering, 195, 1826–1845, 2006.

[7] M.G. Edwards and C.F. Rogers. Finite volume discretization with imposed flux continuity for the
general tensor pressure equation. Computational Geosciences, 2, 259–290,1998.

[8] M.G. Edwards and H. Zheng. A quasi-positive family of continuous Darcy-flux finite-volume
schemes with full pressure support. Journal of Computational Physics, 227, 9333–9364, 2008.

[9] M.G. Edwards and H. Zheng. Double-families of quasi-positive Darcy-flux approximations with
highly anisotropic tensors on structured and unstructured grids. Journal of Computational Physics,
229, 594–625, 2010.

[10] H.A. Friis, M.G. Edwards and J. Mykkeltveit. Symmetric Positive Definite Flux-Continuous Full-
Tensor Finite-Volume Schemes on Unstructured Cell-Centered Triangular Grids. SIAM Journal on
Scientific Computing, 31, 1192–1220, 2009.

40



Proceedings of the 22nd UK Conference of the
Association for Computational Mechanics in Engineering

2 - 4 April 2014, University of Exeter, Exeter

SUMMATION RULES FOR HIGHER ORDER
QUASI-CONTINUUM METHODS

*Claire E. Heaney, Lars A. A. Beex and Pierre Kerfriden

Institute of Mechanics and Advanced Materials, Cardiff School of Engineering
Cardiff University, Queen’s Buildings, The Parade, CARDIFF CF24 3AA Wales, UK.

*claire.e.heaney@gmail.com

ABSTRACT

This paper investigates two summation rules for the Quasi-Continuum (QC) method using higher order interpola-
tion. Summation rules are the discrete equivalent of numerical quadrature used for continuous media. Summation
plays a key role in the QC method by reducing the computational expense of assembling the discretised governing
equations. A comparison is made between a pre-existing rule and a new rule. Results are shown for a planar beam
lattice under uniaxial deformation.

Key Words: the quasi-continuum method; structural lattice models; summation rules

1. Introduction

Lattice models are frequently used to represent directly a material’s discrete meso-, micro- or nano-
structure. A broad range of materials has been modelled in this way, including textiles, paper, colla-
gen networks and concrete. A review of micromechanical applications for lattice models can be found
in [7]. Such models do not rely on phenomenologically derived continuum models to relate stresses to
strains, but instead, use the small-scale lattice interactions to assemble the discretised governing equa-
tions. Atoms, bonds or fibres represented by the lattice models exist on such a small scale that the mod-
elling of realistically sized domains is precluded. The Quasi-Continuum (QC) method was introduced
by Tadmor et. al. [8] to alleviate this problem for (conservative) atomistic lattices. The QC method has
been applied mainly to atomistic crystals, for example, investigating edge disolcations and fracture [8, 6].
However, Beex et. al. [4] have recently extended the QC method to apply to non-conservative structural
lattice models, and have studied electronic textiles, and also bond failure in paper and textiles [3].

2. Structural lattice models and the Quasi-Continuum method

2.1. Lattice models

In this paper a planar lattice is used consisting of Euler-Bernoulli beams, hence there are both displace-
ment and rotational degrees of freedom. For given boundary conditions, a solution for the lattice is found
by minimising the total potential energy of the system. For a lattice of n points or nodes, there are 6n
degrees of freedom, as the displacements and rotations can be three-dimensional. The assembly of the
governing equations involves contributions from all the beams of the lattice. This computational expense,
in addition to the large number of degrees of freedom, makes solving problems at an engineering scale
impractical. The QC method was introduced to relieve the computational burden associated with lattice
calculations.

2.2. The Quasi-Continuum method

The QC method retains the above lattice description for ‘fully resolved regions’ where the solution is
of particular interest, for instance, in the vicinity of a crack. However, an approximation to the above
description is introduced throughout the remainder of the domain. The approximation is built on two
concepts: interpolation, which aims to reduce the number of degrees of freedom; and summation, which
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aims to reduce the cost of assembling the governing equations. A subset of lattice points is chosen,
which forms the vertices of a triangulation. Interpolation functions from finite element methodology
are used to interpolate the displacements and rotations. Any lattice points inside triangles can then be
condensed out of the system, thus reducing the 6n degrees of freedom. In the full lattice model, each
beam contributes to the energy of the system and so must be visited in order to construct the governing
equations. The QC method reduces this computational cost by selecting a subset of the beams, referred
to as sampling beams, and assigning a weight to them so that they are able to represent other beams.
The locations and weights of the sampling beams are determined by a summation rule. See Figure 1 for
a typical QC triangulation. In the interpolated region of Figure 1, the beams from the underlying lattice
are now entirely represented by the sampling beams (+). A detailed description of application of the QC
method to structural lattices can be found in [1].

Figure 1: An example of a typical QC triangula-
tion, with a fully resolved region (top left) where
all the beams are used, and an interpolated region
where only the sampling beams (+) are used.

3. Summation rules

The summation rule determines which beams are se-
lected in the approximation of the governing equa-
tions and how many beams each sampling beam rep-
resents in the construction of the governing equations.
In the literature most summation rules have been de-
signed for atomistic lattices where linear interpolation
is used. For structural lattices with linear interpolation,
Beex et. al. [2] were able to relate the potential en-
ergy of the lattice to the interpolation and were there-
fore able to determine suitable locations for the sam-
pling beams representing a structural lattice. However,
Beex et. al. [1] observe that, for higher order interpola-
tion functions, it is not clear how the interpolation re-
lates to the potential energy of the interpolated lattice.
Inspired by Gunzburger and Zhang [5] who used Gaus-
sian quadrature for one-dimensional chains of atoms,
Beex et. al. [1] based their summation rule on Gaussian
quadrature and we follow this approach here. Given the

cubic displacements and quadratic rotations of Bernoulli-Euler beams, four quadrature points should be
sufficient, however Beex et. al. [1] reported that six quadrature points per triangle gave better results than
four, so we use six points here.

3.1. Closest summation rule

First used in [1], the closest summation rule selects as a sampling beam, the beam that is closest to the
Gauss point in the either the x or the y direction, as illustrated in Figure 2(a). The weight depends on
the weight associated with the Gauss point and the number of beams that the sampling beams represent.
For each triangle, beams that are parallel to the x−axis and are entirely or partly inside the triangle are
located. Beams within a triangle interior are fully represented and contribute a weight of 1 and those
aligned with a triangle edge or that cross a triangle edge are given a weight of 0.5. The weights of the
beams in the x direction are then totalled and multiplied by the weight from Gaussian quadrature. The
same is done for the beams orientated in the y direction.

When modelling a problem with the QC method, the triangles surrounding the fully resolved region are
likely to be smaller than elsewhere in the interpolated region. This fact exposes two weaknesses of the
closest summation rule. First, as the triangle size approaches the lattice spacing, the closest beam to one
Gauss point may also be the closest beam to other Gauss points. In this case the stiffness matrix is not
accurately integrated and can become ill-conditioned. The second problem encountered as the triangle
size approaches the lattice spacing, is that sampling beams are more likely to straddle two triangles.
Consequently the energy in a triangle is dependent not only on the nodal values of that triangle, but
also on the nodal values of a neighbouring triangle, which could be described as a ‘non-local’ effect. To
attempt to tackle these issues we introduce the mid-beam summation rule.
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(a) The closest summation rule (b) The mid-beam summation rule

Figure 2: Shown here is part of the entire beam lattice and one element from the triangulation. Horizontal beams are
aligned with the x−axis and vertical beams are aligned with the y−axis. Gaussian quadrature points are indicated
by crosses, and those beams designated as sampling beams are indicated by thicker lines.

3.2. Mid-beam summation rule

This rule is also based on Gaussian quadrature. A horizontal and vertical beam are centred at each Gauss
point as shown in Figure 2(b). These beams do not necessarily coincide with beams of the underlying
lattice. This is more akin in philosophy to homogenisation techniques, where a unique microstructural
unit cell problem is associated with all the integration points of a macro-scale (discretised) problem. The
weight of each beam is calculated by multiplying the area of a triangle by the Gauss point weight. In fact,
this gives the same weight as for the closest rule, but is a more straightforward and efficient calculation
as we do not have to consider all the beams. Unlike for the closest rule, the mid-beam summation rule
will result in 12 unique sampling beams, so the ill-conditioning of the stiffness matrix will be avoided.
The onset of the non-local effect is also delayed by this summation rule.

In this paper we investigate the error introduced by the use of these two summation rules. In the fully
resolved region the lattice is modelled exactly by taking into account all the beams, so no summation
rule is required. To focus on the error introduced by summation, the example in this paper uses a domain
that has only an interpolated region and no fully resolved region.

4. Results

Results are presented for a beam lattice under uniaxial deformation. Vertical displacements are prevented
along the upper and lower boundaries, but are free on the left and right boundaries. Horizontal displace-
ments are zero and one on the left and right edges respectively, and are free along the upper and lower
surfaces. Rotations in the x-y plane are free apart from the left edge where they are zero. Other rotations
and displacements in the z direction are zero on the boundary. The domain size, given in millimetres, is
[0, 80] × [0, 40]; the Young’s modulus is 1 kPa; and Poisson’s ratio is 0.3. The beam spacing is 1 mm,
the beam height and width are 1 mm and 0.1 mm respectively. Seven triangulations were used with the
following numbers of triangles: 12, 36, 60, 132, 296, 398 and 470. Three simulations were run for each
mesh. The first simulation uses all the beams when constructing the governing equations so no approx-
imation is made in the summation. These results are used as a standard against which the other results
are compared. The second simulation uses the closest rule and the third simulation uses the mid-beam
summation rule. The energy stored in the beams is calculated for all three simulations; Eall, Eclosest and
Emid respectively. The following formula is used to evaluate the error introduced by the summation rules
in the integration of the governing equations:

error =
| Eall − E |

Eall
, (1)

where E is the energy stored by the beams using either the closest or the mid-beam summation rule. In
Figure 3 the error given by equation (1) is plotted against the number of triangles for both sampling rules.
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For the finest mesh, the closest summation rule resulted in such a high condition number that no solution
was obtained. As the number of triangles increases the error also increases. This is due to sampling beams
straddling two triangles thereby introducing a non-local effect, and, for the closest rule, as the triangles
decrease in size relative to the lattice, the sampling beams may be non-unique and may also be further
away from the Gauss point. The results clearly show that the error for the mid-beam summation rule is
much less than that of the closest rule.
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Figure 3: Error in energy for the closest and the mid-beam summation rules in a uniaxial test for several triangula-
tions (with a log-log scale on the right).

5. Conclusions
A new summation rule for the QC method has been introduced. In a uniaxial deformation test, the new
mid-beam summation rule performs much better than the previously existing closest summation rule.
Future work will involve a more rigorous investigation of the new rule on problems with defects and
with more demanding loading conditions in order to assess whether its early promise is fulfilled.
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ABSTRACT 

Despite many advantages, such as simplicity and low computational cost, the standard Yee algorithm [1] still 

needs to be improved in order to model objects of complex geometrical shape. In this work, we adapt three 

dimensional unstructured meshes to meet the necessary requirements and preserve second order accuracy, even 

close to objects of arbitrary shape. We present the requirements needed for a high quality primal Delaunay and 

dual Voronoi mesh. The performance of the leapfrog scheme, previously elaborated in [2], will be demonstrated 

for modelling the scattering of electromagnetic waves by a 3D lossy dielectric object in free space. The results 

of the simulation will be presented and compared with benchmark tests. 

 

Keywords: Unstructured, FDTD, Dielectric, lossy media 

 

1. Introduction  

For industrial electromagnetic simulations, the standard Yee algorithm is often the favoured computational 

solution technique because of its simplicity, its low operation count and its low storage requirements. The main 

drawback of the classical Yee scheme is the loss of accuracy for objects of complex geometrical shape, due to 

the orthogonal Cartesian grid that is usually employed. To circumvent this problem, an equivalent unstructured 

mesh process is implemented on a primal Delaunay mesh and its orthogonal Voronoi dual graph. The difficulty 

with this method is the generation of meshes with the necessary quality conditions for both the Delaunay and the 

Voronoi graphs. The second order accuracy of the leapfrog algorithm is only fulfilled if each Voronoi face is a 

perpendicular bisector of the corresponding Delaunay edge and if each Delaunay face is a perpendicular bisector 

of the corresponding Voronoi edge. Furthermore, in the primal Delaunay graph, two or more adjacent 

tetrahedral elements should not share the same circumsphere, otherwise this mesh will be degenerate and the 

leapfrog algorithm will fail. 

To guarantee a high quality mesh, an unstructured tetrahedral mesh is generated by using an iterative 

constrained centroidal Voronoi tessellation (CVT) [3]. The CVT relocates the generated nodes to the mass 

centroids of the corresponding Voronoi cells and a new Voronoi tessellation of the relocated nodes is produced.  

 

2. Problem formulation  

 

The formulation employs the integral form of Maxwell’s equations [2]. For a three dimensional lossy dielectric 

medium, of permittivity ε, permeability μ, electric conductivity  and magnetic conductivity . Ampère’s and 

Faraday’s law in the scattered field formulation are expressed as: 

 

and 

Here,  denotes the closed curve bounding of a surface A, dA is an element of surface area directed normal to 

the surface and dl is an element of curve length in the direction of the tangent to the curve. In addition, 

,  and ,  represent the incident electric and magnetic fields and scattered electric and 

 

 

(1) 

 

 

(2) 
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magnetic fields respectively. The total fields are the sum of the corresponding incident and scattered fields. 

The material properties  are not constant and their values in free space differ from those in the 

dielectric. To take the boundary conditions into account we have to average these quantities at the dielectric 

interface leading to . The incident field represents a monochromatic plane wave illumination 

from the far field which has the form  where  is the electric field vector, k is the 

wavevector, r the position vector , ω the angular frequency and t the time. From the known electric field the 

magnetic field may be determined using Faraday’s law leading to the relation 

 

                             
 

(3) 

where  is the unit wavevector and  the impedance. 

 

3. Discrete equations 

 

The Yee algorithm is a low operation count solution method for Ampère’s and Faraday’s law that is 

implemented on two mutually orthogonal meshes. A primal tetrahedral mesh is generated using a Delaunay 

method [4]. The Voronoi diagram associated with this primal mesh is used to define a dual mesh. Each Voronoi 

face is a perpendicular bisector of the corresponding Delaunay edge and each Delaunay face is a perpendicular 

bisector of the corresponding Voronoi edge.  and edges form the primal Delaunay and the dual Voronoi 

mesh respectively. For the scheme to be second order, the unknowns are located at the midpoints of these edges. 

The unknown at the node on the ith Delauany edge corresponds to the projection,  , of the scattered 

electric field onto the direction of the edge. The unknown at the node on the jth Voronoi edge corresponds to the 

projection,  , of the scattered magnetic field onto the direction of the edge. The discretization of Ampère’s 

and Faraday’s law leads to the equations 

 

 

 

(4) 

 

 

 

(5) 

 

where  is the time step, the superscript n denotes an evaluation at time level ,  represents the length of 

the ith Delaunay edge and  corresponds to the Voronoi face spanned by the Voronoi edges surrounding 

Delaunay edge i. Similarly,  represents the length of the jth Delaunay edge and  corresponds to the 

Delaunay face spanned by the Delaunay edges surrounding Voronoi edge j. The numbers  

refers to the edges of the Voronoi face corresponding to the ith Delaunay edge, as illustrated in Figure 1. 

Similarly, the numbers , refers to the the  edges of the Delaunay face corresponding to the 

jth Voronoi edge, as illustrated in Figure 2. 

 

4. Unstructured mesh strategy 

All Voronoi and Delaunay edge lengths should be bounded from below, as the update equations are not valid if 

some edges have length zero. Furthermore, the centre of the circumsphere should lie inside each Delaunay 

tetrahedron. All Delaunay and Voronoi edges should be bounded from above by a value that is not significantly 

greater than  (the length of cubes forming the Cartesian mesh). If possible, any deviation in the location of the 

 

Figure 2  

The jth Voronoi Edge , connecting 

Voronoi vertices  and , and 

the corresponding Delaunay face, 

formed by the Delaunay edges 

 . The 3 Delauany edges 

may represent on face of a 

tetrahedral element. 

 

Figure 1 

The ith Delaunay Edge , 

connecting Delaunay  

vertices  and , and the 

corresponding Voronoi face, 

formed by the Voronoi edges 
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midpoint of a Voronoi edge from the actual point of intersection with the corresponding Delaunay face should 

be minimized. Finally, any deviation in the location of the circumcentre of a tetrahedron from its centroid should 

be minimized. The first two criteria are the more important and the last often cannot be exactly satisfied. 

Traditional automatic unstructured mesh generation methods, such as the advancing front technique [5] and the 

Delaunay triangulation [4], or their combination [6], are not designed to guarantee the requirements set out 

above. The corresponding Voronoi diagram is often highly irregular and can include some very short Voronoi 

edges. This means that regularity of the edge lengths of the dual mesh and the absence of bad elements cannot 

be guaranteed. Methods based on swapping, reconnection and smoothing [7] used for improving the mesh 

quality cannot guarantee a suitable mesh [8]. To circumvent these problems, the approach adopted is to 

construct the unstructured mesh around the object surface by employing a combination of a CVT (Central 

Voronoi tessellation) [3] with information provided from the ideal mesh. A CVT is a Voronoi tessellation whose 

generating points are the centroids (centres of mass) of the corresponding Voronoi regions. For the mesh 

optimization, the requirement that a dual edge must be a bisector of the corresponding Delaunay edge is relaxed. 

This allows the displacement of the corresponding dual mesh vertex to a point which still ensures orthogonality 

between two grids and which lies inside the corresponding primal element. 

4. Simulation Results

The algorithm is applied for the simulation of scattering of an incident plane wave by a dielectric sphere of 

diameter  and characterised by material properties  and  . The mesh is formed out of 478,772 

cells in total, 249,968 tetrahedra,  5,804 pyramids and 223,000 hexahedra. The surface of the sphere is formed 

by 6,674 triangles and the PML is made out of 10 layers of hexahedra. Steady state was reached after 30 cycles. 

The total time for the calculations on a single core was 22 min. Figure 4 and                   Figure 5 show the 

computed the electric and magnetic field distributions respectively. 

Figure 4 
   Figure 5 

 

1 

2 
3 

Figure 3 The surface of an arbitrary object, in this 

case a sphere is approximated by tetrahedral. (1) 

tetrahedra inside sphere, (2) boundary of sphere 

(3) tetrahedra outside sphere. After several layers of 

tetrahedra one layer of pyramids (4) links the 

tetrahedra to the hexahedra (5). This procedure 

reduces the computational costs compared to a 

purely tetrahedral mesh 

Scattering by a Dielectric Sphere of electric length 

 with an electric permittivity of 2, view of the 

component of the electric field vector. 

Scattering by a Dielectric Sphere of electric 

length  with an electric permittivity of 2, view 

of the  component of the magnetic field 

vector. 
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 (a) (b) 
Figure 6. Scattering by a dielectric sphere of electric length : (a) RCS distribution in the plane  and (b) in the plane 

5. Conclusion

A time domain solution procedure for electromagnetic scattering simulations has been developed in which a Yee 

algorithm is used on appropriately generated unstructured tetrahedral meshes, within the scatterer and in a 

region of free space immediately adjacent to the scatterer, and the free space is filled with hexahedral elements. 

The example that has been solved indicates that the accurate simulation of electromagnetic scattering problems 

may be achieved, with an appropriate mesh. The advantages of using this method are (a) the reduction in the 

storage requirements over the conventional finite element approach; (b) the fast computation that results from 

the use of the leap frog Yee scheme; (c) the fact that the method allows straightforward modelling of multi-

material and complex geometries. A full assessment of the accuracy of the approach, for more challenging 

examples, is currently underway. 
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ABSTRACT

An enriched finite element method is presented to solve wave scattering problems governed by the
Helmholtz equation. The basis functions are constructed by multiplying the polynomial interpolation
functions by either plane waves or radial waves. Alternatively, a combination of both plane and radial
waves is used. This approach is used to solve two practical problems including the diffraction of an inci-
dent plane wave by a circular cylinder or by a square obstacle. In the first case, the obtained results are
compared with the analytical solution whereas in the second case a classical finite element solution is
used for comparison. It is shown that both plane wave and radial wave enriched elements lead to good
quality solutions with significant reduction of the required number of degrees of freedom, in comparison
to polynomial based finite elements.

Key Words: Helmholtz equation; finite elements; plane waves; radial waves; diffraction problem

1. Introduction

This paper deals with efficient numerical modeling of 2D Helmholtz problems using the Partition of
Unity Finite Element Method (PUFEM). The feature of this idea is that analytical solutions to the
Helmholtz equation are used to enrich the solution space. These are usually in the form of plane waves.
This technique has been very successful in achieving good accuracy results and reducing the number of
degrees of freedom in comparison to the standard finite elements.
The partition of unity finite element method was first proposed by Melenk and Babuška [3] and used
to solve the Helmholtz equation in the case of a progressive plane wave. Later, the method has been
applied to a range of diffraction problems in two and three dimensions [6, 2]. It has also been extended
to elastic wave problems [1]. The use of radial waves as enriching functions was investigated in [5] and
were found to be more effective than plane waves in the far field. The use of radial waves in the form of
Bessel functions was also tried in the framework of the Ultra Weak Variational Formulation (UWVF)[4]
in which a singular Helmholtz problem was efficiently solved using combinations of plane waves and
Bessel functions.
This work aims at long term to effectively model wave scattering by corners. Such problems present
singularities and usually need fine mesh refinements to capture the solution. The use of radial wave
enrichment, rather plane waves, seem to be effective in modelling these singularities. However, element
assembling remains a burden because of the intensive numerical integration. In this paper, the use of
both plane wave and radial wave enrichments is used for modelling the diffracted potential by a smooth
circular scatterer. Then wave enriched finite elements are used to model the diffraction of a plane wave
by a rigid square. In the first case, the accuracy of the solution is assessed by computing the L2-norm
error via the use of the available analytical solution. For the second case, the solution is compared with
the standard FEM results on the boundary of the square.

2. Plane wave diffracted by circular cylinder

Figure 1 (left) shows an incident horizontal plane wave encounters a rigid object is modified and then
radiates away to infinity. The scattered wave potential ϕ(x, y), which satisfies the two dimensional
Helmholtz equation

∇2ϕ + k2ϕ = 0, (1)
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Figure 1: Schematic diagram of the problem (left). Behaviour of the L2-norm error for linear, quadratic and en-
riched finite elements (right).

is studied in the domain Ω. Note that ∇2 is the Laplacian operator, k = ω/c is the wave number of the
considered problem and c is the wave speed. We assume also that the potential satisfies the following
Robin boundary condition

∂ϕ

∂n
+ ikϕ = g on Γ, (2)

where g is the boundary condition and n is the outward normal to the line boundary Γ. This problem
has an analytical solution expressed as a series of Hankel functions and it is imposed on the boundary Γ
through the Robin boundary condition given in expression (2). We use the weighted residual scheme by
multiplying equation (1) by the weighting function W(x, y) and integrate over the domain Ω such that∫

Ω

W(∇2ϕ + k2ϕ) dΩ = 0. (3)

Integrating by part the above equation and replacing the normal derivative of the function ϕ by its ex-
pression deduced from expression (2), the system of equations to solve is then∫

Ω

(∇W · ∇ϕ − k2Wϕ)dΩ + ik
∫
Γ

WϕdΓ =
∫
Γ

WgdΓ. (4)

The domain Ω is meshed into n-node finite elements. Within each element the potential is interpolated
using the usual Legendre polynomials and enriched by both plane waves and radial waves in the following
form

ϕ =

n∑
i=1

Ni

 mp∑
j=1

A j
i e

ikr·d j +

mr∑
l=1

Bl
iJl(kr)eilθ

 , (5)

where (r, θ) are the polar coordinates, d j is a given direction in the plane, Ni is the Legendre polynomial
at node i and Jl(kr) is the Bessel function of first kind and of order l. The unknowns of the problem are
no more the nodal potentials but the coefficients A j

i and Bl
i of the enriching functions.

We solve the problem stated above by the standard polynomial based finite elements and wave enriched
finite elements. In the case of polynomial based finite elements, linear and quadratic elements are con-
sidered. To ensure accurate simulation each wavelength must be discretized into around 10 nodal points
(rule of thumb). In general, this approach leads to huge numbers of nodes for problems with increasing
wave number k and because of pollution error the mesh grid must be even finer. Various approaches have
been developed to get around the requirement cited above. One of them is to use higher order polynomial
basis functions for the solution space.
For this specific example, the wave number k = 2π. Figure 1 (right) shows the L2-norm error for the cases
of linear and quadratic elements. It is clear that increasing the number of degrees of freedom, by refining
the mesh grid, leads to exponential decrease of the error. Moreover, for the same number of degrees of
freedom, using quadratic elements leads to better quality results in comparison to the results of the linear
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elements.
Using enriched elements, with only plane waves (mp , 0 and mr = 0), leads to even better quality
results. In this case, the mesh grid remains very coarse while the number of enriching plane waves is
increased. A very sharp decrease of the error is noticed, in comparison to the polynomial finite elements,
up to a certain level and then the error stagnates. This was shown in past work [1] to be caused by the ill
conditioning of the plane wave enrichment approach.
In the next series of numerical results the considered computational domain Ω is placed in three differ-

Table 1: L2-norm errors for different combinations of plane waves and radial waves

mp mr 1 ≤ x, y ≤ 5 6 ≤ x, y ≤ 10 11 ≤ x, y ≤ 15

16 0 0.00733 0.00672 0.00460
14 2 0.01566 0.00132 0.06246
12 4 0.00619 0.00027 0.00010
10 6 0.03327 0.00922 0.00180
8 8 0.00646 0.02083 0.12690
6 10 0.03771 0.00109 0.00065
4 12 0.68439 0.00022 0.00027
2 14 0.37392 0.00112 0.00028
0 16 0.53989 0.01083 0.00066

ent locations which represent the near field 1 ≤ x, y ≤ 5 intermediate field 6 ≤ x, y ≤ 10 and far field
11 ≤ x, y ≤ 15. It is meshed into linear finite elements enriched by a combination of mp plane waves
and mr radial waves such that the total number m = mp + mr of basis functions is chosen to be 16. The
L2-norm errors for all cases of enrichments are shown in Table 1 for the case of wave number k = 4π.
First, for the near field location, it is obvious from Table 1 that the plane wave enrichment performs bet-
ter than the radial wave enrichment. In deed, as the number of plane wave decreases to add radial waves
instead, the L2 error increases. This is noticed again in the case of intermediate field in spite of the better
quality results, in comparison to near field case. For the far field case, however, the results are of very
good quality and the radial wave enrichment is shown to perform better than the plane wave enrichment.
This is probably due to the fact that the diffracted potential propagates away to infinity radially and hence
radial waves are more suitable as enrichment functions.

3. Plane wave diffracted by square object

The second example deals with the diffraction of a plane wave by a rigid square object of boundary Γ1.
Applying the finite element procedure of expression (3) to this problem leads to∫

Ω

(−∇W · ∇ϕ + k2Wϕ)dΩ −
∫
Γ1

W∇ϕ · n dΓ +
∫
Γ2

W∇ϕ · n dΓ = 0, (6)

where the computational domain is Ω is bounded by the internal boundary Γ1 and the external boundary
Γ2. In this the incident wave is totally reflected and so the Neumann boundary condition is applied

∂ϕ

∂n
= −∂ϕ

i

∂n
, (7)

applies on Γ1. Here, ϕi and ϕ are the incident and scattered waves, respectively. The boundary Γ2 is
assumed to be placed far enough from the diffracting object to consider that the scattered wave is propa-
gating radially. A simple radiation condition is then used

∂ϕ

∂n
+

1
2r
ϕ − ikϕ = 0. (8)

Introducing the boundary conditions (7) and (8) into equation (6), the problem to solve is then∫
Ω

(∇W · ∇ϕ − k2Wϕ)dΩ +
∫
Γ2

W(
1
2r
− ik)ϕdΓ =

∫
Γ1

W(
∂ϕi

∂n
) dΓ (9)
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Figure 2: Real part of the diffracted potential: FEM results (left), PUFEM results (middle), PUFEM and FEM
results around the scattering square 9right).

This problem does have an analytical solution and so the PUFEM results are compared to those obtained
using the polynomial based FEM for k = 2π. In the case of PUFEM, 16 quadratic elements are taken
around the square scatterer and to approximate the wave potential 18 plane waves are used as enrichment
functions. For the case of FEM, 9568 triangular linear elements are used. Figure 2 (left and middle)
shows contour plots of the real part of the scattered potential which look very similar and Figure 2 (right)
shows the real part of the scattered potential around the scatterer obtained by PUFEM and FEM and,
overall, the results look very similar. It is worth noting that 4926 degrees of freedom were used in the
FEM results while for the PUFEM only 1440 degrees of freedom were used.
In this case of scattering problem with a square body, it is known that they present singularities at the
corners. Usually, in the case of FEM, the mesh is over refined around the corners to capture the solution.
It is planned to investigate the performance of the PUFEM using either plane waves or radial waves or
even a combination of both to deal with such problems.

4. Conclusions

In this work, solutions to wave problems governed by the Helmholtz equation are approximated either by
the standard polynomial based finite element method or by enriched finite elements. For the latter case,
field enrichment is carried out by using either plane waves, radial waves or a combination of both. For
the problems dealt with above, it is clear that the PUFEM leads to better quality results in comparison to
low order FEM elements. Regarding the enriched version and for a scattering problem, it was concluded
that plane wave enrichment performs better in the near field while radial wave enrichment leads to better
quality results in the far field.
An attempt is made here to solve a scattering problem with a rigid square. This problem’s solution
presents singularities at the corners. The aim is compare the performance of the PUFEM against the
FEM which usually requires further mesh refinement around the corners.
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ABSTRACT

The calcarenite rock slab, on which the medieval town of San Leo is situated, is severely tectonized and crossed
by a number of joint sets and faults. It is affected by lateral spreading instability processes associated with rock
falls and topples. The underlying clayey substratum is involved in movements, like earth flows and slides. In the
present work these phenomena are analysed within the framework of unsaturated soil mechanics. A coupled
hydro-mechanical model employing viscoplasticity (BBM-VP) is adopted herein to numerically simulate the
landslide processes in San Leo region. The model allows simulating the hardening and softening processes in
the rock material due to hydraulic loading and unloading, and the shear strength change with degree of
saturation. The results are then compared with those obtained for the same problem but employing different
constitutive model for explaining the viscoplastic behaviour that is independent on suction and based on
Drucker-Prager plasticity. The differences of the two conceptual model approaches are analysed.

Keywords: landslides, BBM, suction, unsaturated soil, San Leo, Italy

1. Introduction

Rock spreading in brittle formations overlying ductile terrains is a well-known process of instability
in the clay-rich hillslopes of the northern Apennines of Italy. It mainly consists of creep and slow
movements of the clayey materials, which induce progressive dismembering of the overlying rock
slabs [8]. The town of San Leo rises on a rock slab, affected by widespread instability phenomena.
Within this study a cross-section in the north side of this slab was analyzed. It was chosen for a
number of reasons: i) the last important landslide event occurred in this area; ii) data from field
observations are available; iii) at this stage of the research it can be acknowledged that in the local
geological and geomorphological context is representative for the whole rock slab.
In the literature many examples of slow moving landslides have been modelled using a viscous
component in the formulation of the strain rate. However, in this type of analysis, it is difficult to
distinguish between movements related to water infiltration and displacements related to a viscous
component in the strain rate, as both processes occur simultaneously. Moreover, other mechanisms
may lead to a dissipation of energy during the moving of the earth mass, which are not related to a
viscosity component in the strain rate. This paper focuses on the analysis of slow movement initiation
in the clayey substratum under rainfall infiltration as a precursor of earthflows. The phenomenon is
analysed in the framework of unsaturated soil mechanics, applying coupled hydro-mechanical
analysis. Two constitutive models are used in competitive way. The first model is the BBM-VP whose
feature is the dependence of the viscoplastic constitutive functions on suction. The second viscoplastic
model is based on Drucker-Prager plasticity model with viscoplastic criterion and potential considered
not dependent on suction. The results after the application of the two models are then compared and
the differences in the predictions of the two models are analysed.

2. Typical Slope Instability Phenomena

The town of San Leo was built on a calcarenite and sandstone slab, which is crossed by several joint
sets and faults. It is affected by lateral spreading with associated rock falls and topples, partly
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developing along pre-existing discontinuities. Moreover, the underlying clay-shales and loose
deposits are involved in earthflows.
The high deformability contrast between the slab and the underlying clay-shale drives the instability
of the whole area [3,5]. Together with the structural setting of the slab, a further instability
predisposing factor is the groundwater flow path developing inside the plate (Fig. 1). The
groundwater flow is driven by discontinuity networks, which induce a rather high secondary
permeability within the calcarenite slab. This leads to the formation of ephemeral springs at the base
of the cliffs, near the contact with the almost impermeable substratum. The springs promote the
remoulding of the basal clay-shale, leading, together with creep and subsequent flows, to the
undermining of the foot of the rock slab. These processes can cause the progressive opening and
widening of fractures in the rock masses which, in turn lead to higher discharge rates in the springs.
During the most recent and notable landslide event, occurred on 11th May 2006, a rock fall affected
the northern side of the slab, suddenly detaching from the vertical cliff. The undrained loading at the
top of the clay-shale slope triggered an earthflow which reached velocities in the order of 4.2 cm/h.

(a) (b)

Fig.1 (a) location of the study area (red point) and trace of the EE’ section. (b) South-North EE’ section of San
Leo slab; the contact between the slab and the substratum under the plate and the water table are sketched; in the

black box the location of analyzed sector is reported.

3. Modelling Analysis and Results

Mechanical constitutive model: The mechanical models considered here are elasto-viscoplastic
models for unsaturated soil based on the Perzyna viscoplasticity concept [9]. Following the Perzyna
viscoplastic concept, the total strain rate is assumed to be a sum of the elastic ( e ) and viscoplastic
( vp ) strain rates. The formulation for the constitutive modelling is based on the use of pair stress state
variables, namely the net stress and the suction (s). Suction is zero when the soil pore system is filled
with only fluid. Therefore, the stress variables are suction and net stress for unsaturated condition and
effective stress in saturated state. The elastic part is related to the net stress σ' through the generalized
Hooke’s law.
The two viscoplastic models considered here are implemented in the FE program CODE_BRIGHT
[4,6,7]. The first one is a linear elastic viscoplastic model for unsaturated soil based on the Barcelona
Basic Model [2], named BBM-VP model. The second model is a linear elastic viscoplastic model
based on the Drucker-Prager failure criterion, named DP-VP model.
In BBM-VP model yield surfaces F is given according to [1].

  2 21
( , , ) ' '

3 s oF q p s a q M p p p p     (1)

where M determines the slope of the critical state line and it depends on suction according to [2],
sp and op are the tensile stress limit and pre-consolidation pressure, 'p is the net (effective) stress, q

is the deviatoric stress, a and  are model parameters.
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In DP-VP, the yield surface F and the plastic potential G are given by:
' ' cG F q Mp c     (2)

In this case M and c are calculated by providing the best fit to the Mohr-Coulomb hexagon and '
and 'c are the effective angle of friction and the cohesion defining the Mohr-Coulomb failure
envelope at saturated condition.
Hydraulic flow law: The advective flow of the water phase is described via the generalized Darcy’s
law:

 rl
l l l

l

k
P 


   

k
q g (3)

where l is the dynamic viscosity of the pore liquid, g is the gravity acceleration, l is the liquid
density. The tensor of intrinsic permeability k is a tensor defined depending on porosity via the
Kozeny’s model. The relative permeability ( rlk ) is derived employing the Mualem-van Genuchten
model [10].
Numerical model of San Leo landslide:
The slope instability phenomena in San Leo are simplified and the geometry of the adopted model is
shown in Fig. 2. The model in Fig 2 is based on the description of the test site given in section 2. The
problem is analysed in two phases. In the first phase, the infiltration is analysed considering water
flow through non-deformable porous media – the unsaturated rock and the clay-shale material. In the
second phase the coupled hydro-mechanical approach is used to analyse the stress-strain behaviour
during the infiltration process. For the second phase, the hydraulic boundary conditions correspond to
the water pressure obtained in the first phase. The whole slope is subjected to consolidation in order to
simulate closely the current conditions of the clay-shale formation in the first stage. Afterwards the
infiltration step is simulated in the second stage.
In the first phase the analysis shows that the rain falling on the top of the rock slab permeates into the
rock slab due to its weight and the capillary force. Due to the large difference in the permeability of
the rock and the clay-shale formation, the groundwater table develops in the rock slab (Fig. 3). This
way the water is then drained throughout the foot of the rock wall.
When analysed by BBM-VP model, during water infiltration in the second phase, the model shows
differential displacements between the area beneath the rock slab (point A) and the region on the clay-
shale slope close to the rock slab (point B). On the contrary, there is no significant change of vertical
displacements during water infiltration when analysed by DP-VP model. The displacements are due to
the increase of water content that causes an increase of the soil weight. Stress distribution obtained by
BBM-VP model demonstrates that the distribution of vertical pressure is influenced by infiltration
processes (Fig. 4b). The rather high vertical stress values which are observed close to the boundary of
the slab indicate the danger of high shear force which may trigger earthflow beside the other factors.
From the above discussion it can be concluded that the instability phenomena in San Leo should be
analysed via a coupled problem formulation. It is also demonstrated that the coupled hydro-
mechanical viscoplastic model allows better explaining the mechanical behaviour of the considered
clay-shale slope.

Fig. 2: A conceptual model of instability problems in San Leo slope
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Fig. 2: Phase 1 - Degree of saturation after 4 days of rainfall
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Fig. 4: Phase 2 - (a) displacement along Y axis and water saturation, (b) Vertical stress at the interface.
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ABSTRACT 

Soft clays are normally consolidated or lightly overconsolidated soils where even small increases of stresses are 
likely to cause non-linearity and plasticity in their response. In addition, soft clays have a significant degree of 
anisotropy in their natural state that adds to the complexity of their behaviour. In this paper a new model is 
proposed by extending the anisotropic critical state-based model S-CLAY1 with a bounding surface 
formulation. Both isotropic and rotational hardening rules are incorporated into the bounding surface 
formulation with an associated flow rule. The new model is shown to capture well the important aspects of 
observed response during cyclic loading of natural clays such as anisotropy, hysteresis, accumulation of 
permanent strains and loading-unloading cycles.  

Keywords: soft clays; constitutive modelling; anisotropy; bounding surface; cyclic loading 

1. Introduction

One of the important issues in geotechnical engineering is the response of the natural soft clays to 
cyclic loadings. This type of clays are usually normally consolidated or lightly over consolidated and 
have a significant degree of anisotropy in their structure that can further evolve during straining. 
Several constitutive models have been developed to capture the anisotropic response of these soils 
(e.g. [1-2]), among which S-CLAY1 model [1] has been widely accepted to provide good results in 
simulating the plastic anisotropy of soft soils. However, the main focus of these models is on large 
plastic strains at primary loadings and on subsequent unloading-reloading cycles within the yield 
surface they only produce purely elastic strains. To overcome the limitations of classical elasto-plastic 
models in simulating the hysteretic behaviour, Dafalias (1986) [3] modified the Bounding Surface 
plasticity (BS) theory for geomaterials. In this paper, a new constitutive model is proposed for 
enhanced prediction of the cyclic behaviour in soft soils by capturing non-linearity and plasticity from 
the early stages of loading. The new model is based on further extension of S-CLAY1 model through 
incorporation of a Bounding Surface formulation, hence it is referred to as SCLAY1-BS model. The 
general formulation of the model is presented in this paper and the enhanced model performance is 
illustrated with a number of simple examples. 

2. SCLAY1-BS Model Formulation

In the following the elements of the proposed model are briefly presented and discussed. 

2.1. Bounding Surface and Plastic Potential 

The yield surface of original S-CLAY1 model is adopted as the bounding surface (� = 0) in the 
SCLAY1-BS model 

� = 32 ��	
� − 
�������	
� − 
������ − ��� − 32 ���������� �
��� − 
�� �
�� = 0 	�1� 
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where 	
� and �� are the deviatoric stress tensor and the deviatoric fabric tensor respectively (	 ̅  sign 
represents that the variable is associated with the bounding surface), M is the critical state value,	
��  is 
the mean effective stress, and 
���is the size of the yield surface related to the soil’s preconsolidation 
pressure. An associated flow rule is adopted; therefore, the same function as above is also utilised as 
plastic potential function, G, for the S-CLAY1-BS model. 
 
2.2. Hardening Laws 

Every change in the shape of the bounding surface, such as changes in the size and orientation, are 
assume to be governed by the isotropic hardening and rotational hardening laws of S-CLAY1 model. 
The isotropic hardening is assumed to be solely related to plastic volumetric strain (dϵ� ) 

																																																																									!
��� = "
���# − $ 	!%&'																																																																																									�2� 
where " is the specific volume, # is the gradient of the normal compression line in the compression 
plane (ln 
′ − " space), and $ is the slope of the swelling line in the compression plane. And the 
rotational hardening law, that describes the changes of inclination of the bounding surface caused by 
plastic volumetric and plastic shear straining, is defined as  

																																											!� = +	 ,-3	
�4
�� − ��/ < !%&' > +3 - 	
�3
�� − ��/ 	!%�'4																																																									�3� 
where !%�' is the increment of plastic deviatoric strain, +	and 3 are soil constants and <	> are 
Macaulay brackets. The model parameter 3 defines the relative effectiveness of plastic shear strains 
and plastic volumetric strains in rotating the bounding surface; and same as in S-CLAY1, we have 

																																																																3 = 3�4�� − 4567� − 3567�8�567� −�� + 2567� 																																																																																�4� 
where 567 is the stress ratio during K0 consolidation and similar to M it is a function of soil’s friction 
angle [1]. The value of parameter + that controls the absolute rate of the rotation of the bounding 
surface toward its current target value can be obtained by simulation of experimental data [1]. The 
initial inclination of the bounding surface is also determined from 

																																																																					�67 = 567� + 3567 −��3 																																																																																�5�		 
2.3. Mapping Rule 

A radial mapping rule [3] is adopted to project the current stress state to an image point, where the 
origin of the stress space is assumed to be the fix projection centre in the unload-reload conditions 																																																																																									
:; = <		:; 																																																																																									�6�	
 
where 	δ is a similarity ratio between the bounding surface and the loading surface. 
 
2.4. Plastic Modulus 

In the BS plasticity theory, the plastic modulus of an arbitrary stress point on the loading surface is a 
function of the plastic modulus of the image point on the bounding surface. A hardening function 
needs to be defined in order to relate these two plastic moduli to each other. Different hardening 
functions are proposed for loading and unloading conditions  																																																																																? = 	?� + @A 	�BC	@DE�																																																																														�7�		
																							?� = − G�G�� HG��G%&' < GIG
�� 	> 	+	G��G%�' J23	� GIG	�


� . � GIG	�


�	L − G�G
���

"
���# − $ GIG
�� = 0																											�8� 
																																																																													@A = 
���M 	ℎA 	× 1 − <PQ	<	 																																																																											�9� 

58



@DE = 
���M 	ℎDE × 1 � �<PS � 1�1 � <
	�10� 

where NA , NDE, UV	and U� are additional model parameters in the SCLAY1-BS compared to the 
original S-CLAY1 model. The values of these new parameters can be obtained by simulating cyclic, 
or even monotonic, element test results. Sensitivity analysis over the full set of additional model 
parameters has shown that the model performance varies only within a limited domain when the value 
of each individual parameter is changed. As a result determination of these parameter values becomes 
straightforward when experimental data is available. For example Figures 1(a) and 1(b) show the 
variations of the model prediction, in simulating the stress path of an arbitrary monotonic triaxial 
compression test with arbitrary set of parameter values, for different values of NA and UV, respectively. 

Figure 1: Effect of additional parameters due to bounding surface theory, (a) NA  (b) UV 

As it is seen in Figure 1(b), simulation results are converging to a limiting path as UV value increases. 

3. Model Performance

The S-CLAY1-BS model explained in section 2 is used to simulate undrained shearing tests on 
anisotropically consolidated specimens of two different soft soils, namely Kaolin Clay and San 
Farncisco Bay Mud [4]. For both soils elasticity and critical state parameter values are those reported 
in [4], whereas rotational hardening parameters are calculated from Eqs. (4) and (5), and bounding 
surface parameter values are arbitrarily adjusted simply to illustrate the advantages of incorporating 
the BS theory into the original anisotropic elasto-plastic model. Parameter values used for the 
simulations are summarised in Table 1. Figures 2(a) to 2(d) show performances of both S-CLAY1-BS 
and S-CLAY1 models in simulating undrained cyclic shearing tests on two soils. The simulation 
results are plotted in 
′ � W space. 

Table 1: Model parameter values 

Category Designation Kaolin Clay San Francisco Bay Mud 

Elasticity 
$ 
" 

0.05 
0.2 

0.054 
0.2 

Critical State # 
�

0.14 
1.05 

0.37 
1.4 

Bounding surface 

NA 	
UV	
ND	
U� 

100 
2 
40 
3 

110 
1 
60 
3 

Rotational 
hardening 

�7	
+	
3 

0.40 
30 

0.54 

0.55 
20 

0.87 

Figures 2(b) and 2(d) show the results of simulation using the S-CLAY1 model, which does not 
include the BS feature. It is observed that without the BS feature, the model simulates plastic strains 

Original S-CLAY1 Original S-CLAY1 

UV � 1 

UV � 2 

UV � 5 

UV � 10 

UV � 15 


�/
��
�/
��

W/
��  

a b 

W/
��  
NA � 50 

NA � 100 

NA � 175 

NA � 500 

NA � 250 
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mainly in the first cycle of loading for the stress states on the yield surface. In the subsequent cycles, 
the stress moves only inside the yield surface, and no additional plastic strain is produced. In contrast 
Figures 2(a) and 2(c) show the simulated results of SCLAY1-BS model. Compared with the previous 
case, here, plastic strains are produced even for the stress states within the bounding surface, 
accompanied by reduction of p (contractive response) which is due to the distance dependent plastic 
modulus employed in the bounding surface formulation. 
 

  

  
Figure 2: Comparison of S-CLAY1-BS and S-CLAY1 in simuation of cyclic loading in 

(a),(b) Kaoline clay,  (c),(d) San Francisco bay mud 

 
4. Conclusions 

A new constitutive model has been developed by further extension of the critical state based model S-
CLAY1 and the bounding surface plasticity to simulate inherent and evolving anisotropy in soft clays 
together with their nonlinear cyclic response. The new model, SCLAY1-BS, has four additional 
parameters which their values can be readily calibrated through simulations of experimental data. The 
comparisons of cyclic loadings on two types of clay revealed the much improved capability of the 
proposed model in simulating the gradual accumulation of permanent strains within the yield surface.   

Acknowledgement 

The first author appreciates the financial support from the Nottingham University’s Dean of Engineering award. 
 
Refrences 

[1] S.J. Wheeler, A. Näätänen, M. Karstunen and M. Lojander. An anisotropic elastoplastic model for soft 
clays. Canadian Geotechnical Journal, 40, 403-418, 2003. 

[2] Y.F. Dafalias, M.T. Manzari, A.G. Papadimitriou. SANICLAY: simple anisotropic clay plasticity model, 
International Journal for Numerical and Analytical Methods in Geomechanics, 30(12), 1231-1257, 2006.  

[3] Y.F. Dafalias. Bounding surface plasticity. I: Mathematical foundation and hypoplasticity. Journal of 
Engineering Mechanics, 112, 966-987, 1986. 

[4] H.I. Ling, D.Y. Yue, V.N. Kaliakin, N.J. Themelis. Anisotropic elstoplastic bounding surface model for 
cohesive soils. Journal of Engineering Mechanics, 128, 748-758, 2002. 

W W 

W W 


′ 
′ 


′ 
′ 

a b 

d c 

60



Proceedings of the 22nd UK Conference of the
Association for Computational Mechanics in Engineering

2 - 4 April 2014, University of Exeter, Exeter

A numerical investigation into the effect of particle form on the strength of
granular materials

M. Potticary1,∗, A. Zervos1 and J. Harkness1

1Infrastructure Research Group, Faculty of Engineering and the Environment, University of
Southampton, University Rd, Southampton SO17 1BJ

*M.Potticary@soton.ac.uk

ABSTRACT

It has long been recognised that the macroscopic mechanical behaviour of a granular material depends,
to differing extents, on micro-mechanical properties such as the particle size distribution, the particle
shape, the inter-particle friction angle and the particle strength. However, despite the interest this issue
has generated over the years, a systematic investigation of some of these effects is still lacking. This
paper represents a first attempt to systematically investigate the effect of particle shape. Of the three
independent parameters that are generally considered to characterise particle shape in different scales
of observation, i.e. form, angularity and roughness, we focus on the effect of form, which describes the
overall shape of a particle. We present a new way of quantifying particle form in terms of the axes of an
equivalent scalene ellipsoid. To quantify the effect of form on the strength characteristics of a granular
assembly we use DEM simulations of triaxial tests on specimens consisting of scalene ellipsoids. The
ellipsoids in each specimen have the same form, particle size distribution and interparticle friction, thus
eliminating the effects of particle angularity and roughness from the analysis. Some first results for
particles of different form are presented systematically and comparisons are made.

Key Words: Particle Shape; Granular Materials; DEM; Railway Ballast; Triaxial test

1. Introduction

The shape of its particles is one of the fundamental properties of a granular material. In the case of
granular materials, there are three (assumed) independent aspects of shape that are generally considered,
each describing geometrical properties of a particle at a different scale of observation. These are particle
form, angularity and roughness. Form quantifies the overall shape of a particle, angularity describes
the number and sharpness of angles on its perimeter/surface, and roughness relates to the microscopic
asperities of the particle surface that are to some extent responsible for interparticle friction.

Particle form in particular is generally quantified using the longest (L), intermediate (I) and shortest
(S) dimensions of the particle, although the way these are defined may vary. One possible way is to
consider an equivalent scalene ellipsoid with axes equal to S ≤ I ≤ L, as in [2]. Different measures and
combinations of measures that can be used to describe form have been proposed, however no consensus
exists on whether one has a clear advantage over the others [3]. Also, although particle form is certain to
influence the mechanical properties of a particulate, a systematic study of its effect is still lacking.

Here we propose a new way of describing form using the dimensions of an equivalent scalene ellipsoid.
We then perform DEM simulations of triaxial compression on granular assemblies of uniform particle
form, to investigate how the latter affects the strength of the material. We use the method of potential
particles, which allows modelling of particles with (almost) arbitrary shape[4]. Particle size distributions
consistent with those of railway ballast are used, while the number of particles in each simulation is
consistent with the number of ballast particles present in the specimens of corresponding physical tests.
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2. Quantification of particle form

In [3] the authors presented a comprehensive discussion of the different ways in which particle shape,
including form, can be quantified. The measures summarised there appear to have been developed heuris-
tically. As a contribution to that discussion, we present a new way of quantifying particle form that is
derived mathematically and may be considered more intuitive.

We assume that the form of a particle is characterised by the dimensions S ≤ I ≤ L of an equivalent
scalene ellipsoid. If we consider S , I and L to be coordinates in a three dimensional space, any particle
can be represented by a vector f linking the origin of the axes to point (S , I, L). Clearly, co-linear vectors
correspond to particles that share the same form and differ only in size; to quantify form it is thus suffi-
cient to consider only the direction of the vector, not its length. A straight-forward way of quantifying
direction is by using the elevation and azimuth in spherical coordinates; this will be detailed in a separate
publication. Instead, here we quantify form using the deviation of f from the spherical axis S = I = L,
whose points correspond to particles of perfectly spherical form, in a way analogous to the decomposi-
tion of stress into a hydrostatic and a deviatoric component. In particular, we consider the intersection F
of f with the S + I + L − 1 = 0 “deviatoric” plane that is normal to the spherical axis, and calculate its
in-plane coordinates in a frame of reference centered at the intersection P of the spherical axis (Figure 1.)
Taking into account that 0 ≤ S ≤ I ≤ L, the in-plane coordinates can be derived using standard vector
algebra that will not be detailed here. Further, normalisation yields a pair of coordinates (α, ζ) on the
“deviatoric” plane that vary between 0 and 1 and are defined as:

α =
2(I − S )
L + I + S

, ζ =
L − I

L + I + S
(1)

The two parameters α and ζ suffice to describe all possible forms represented by a scalene ellipsoid,
including the degenerate cases of a sphere (α = ζ = 0), a prolate ellipsoid (α = 0, ζ > 0), an oblate
ellipsoid (α > 0, ζ = 0), a flat circular (α = 1, ζ = 0) or elliptical (α + ζ = 1) disk, and a needle
(α = 0, ζ = 1). Observing the effect that varying each parameter independently has, α can be termed
platyness and ζ elongation of the particle.

Figure 1: Representation of particle form in (S , I, L) space (left); the α-ζ form parameter space and a description
of the corresponding forms (right.)

3. DEM modelling

To quantify the effect of form on the strength characteristics of a granular assembly we use DEM simu-
lations of triaxial tests on specimens consisting of scalene ellipsoids. Attempts to investigate the effect of
particle shape more generally by modelling more realistic particle shapes can be found in the literature
[5] however these focussed on the effect of angularity and used clumps of spheres to model particles
of different shapes. Whether such clumps can adequately reproduce angular particles is debatable, and
in any case our focus here is particle form. We therefore decided to use smooth ellipsoid particles, thus
removing the effect of particle angularity from the results.

Each DEM specimen used consists of ellipsoid particles that have the same form, i.e. the same (α, ζ)
parameters and therefore plot at the same point on the “deviatoric” plane. The different particle forms
considered are given in Table 1, in the form S/I : 1 : L/I. The corresponding values of the (α, ζ)
parameters are also given.
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Table 1: The different particle forms considered in the analyses.

Form Ratio α ζ

Form 1 1:1:1 0 0
Form 2 2.25:1:0.45 0.2973 0.3378
Form 3 2.25:1:1 0 0.2941
Form 4 1:1:0.60 0.3077 0

A particle size distribution must also be prescribed for the models. To avoid known issues with monodis-
perse specimens as well as further constrain the problem to a matter of direct practical interest, we use
a particle size distribution consistent with the British Standard for railway ballast [1]. It was assumed
that the size of sieve a particle can pass through is determined by its intermediate dimension I. Particles
of five different sizes between the maximum and minimum allowable gradation curves for ballast were
created and used in each model.

To ensure comparability of the results it was decided that all specimens have the same total volume,
as would have been the case with physical tests. The total volume for each model was kept at 0.2m3,
although this caused the number of particles to vary among models. The material most commonly used
for railway ballast is granite; typical values for particle density (2700 Kg/m3) and interparticle coefficient
of friction (30◦) are used. In any case, in all models a sufficient number of particles was present, consistent
with those of similar physical tests.

Figure 2: Particle size distribution of DEM models (left) and typical DEM model (right.)

To create a specimen a pre-determined number of particles of different sizes as above are randomly
distributed within 3D space to a target void ratio of 2.0. The particles themselves are given random ori-
entation to remove any bias in the initial fabric, which can significantly affect results. The specimen is
then subjected to isotropic compression using periodic boundaries, zero gravity forces and no interparti-
cle friction. Once the specimen is compacted to a void ratio of 0.65 and corresponds to a densely packed
granular material, isotropic stress of 100kPa is applied to the boundaries and, once the specimen has
settled interparticle friction is reintroduced. The final pre-test configuration of a typical specimen can be
seen in Figure 2. The model is then subjected to triaxial loading, where the lateral pressure is kept con-
stant while the top boundary is moved downwards imposing a constant axial strain rate; all boundaries
remain periodic.

Figure 3 shows the mobilised friction angle of all models plotted against shear strain. In all cases a peak
is observed, as expected of densely packed granular materials, before a critical state is reached. Peak
strengths are not comparable among models because, despite their common initial void ratio, the models
are expected to initially be at different relative densities. The friction angle at critical state, however, is
unaffected by the initial relative density and thus is comparable. Figure 3 also shows the evolution of
volumetric strain for all models; dilatancy consistent with dense initial packings is observed in all cases,
and volumetric strain stabilises as a critical state is approached.
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Figure 3: Mobilised friction angle (left) and volumetric strain (right) v.s. shear strain, for different particle forms.

4. Discussion and conclusions

Figure 4 shows the friction angle at critical state for each model, plotted against the (α, ζ) form parameters
of its particles. It shows that a departure from spherical form (c.f. Figure 1) increases shear strength and
that changes in elongation ζ seem to have a greater effect than changes in platyness α, although further
work is needed to fully establish the latter. This work is currently in progress, as the (α, ζ) space is being
systematically explored to fully quantify the effect of particle form. Subsequent steps of this work are the
investigation of the effects of angularity and roughness, with a long-term goal of predicting shear strength
on the basis of particle shape, and designing particulates to a pre-determined standard of strength.

Figure 4: Friction angle at critical state as a function of particle form.
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ABSTRACT 

The phenomenon of soil erosion occurs when soil particles are pulled off by seepage forces and transported 
through the pore channels. This may cause serious damage to hydraulic structures such as earth dams or levees 
as well as their foundations. In this paper a coupled DEM-LBM technique is employed to investigate this 
phenomenon at the grain level. The Discrete Element Method and Lattice Boltzmann Method are used for the 
solid and the fluid, respectively. The Immersed Moving Boundary is adopted for the fluid-solid coupling. It is 
shown that the coupled DEM-LBM approach is effective for such fluid-particle systems and can capture the 
evolution of the process of erosion. The commonly used parameter (radius ratio) in 2D simulations is explored 
in a simple 2-dimentional modelling. 

Keywords: LB Equation; DEM; Immersed Moving Boundary; Fluid-solid Interaction; Soil erosion 

1. Introduction

Fluid-particle interaction plays an important role in geotechnical engineering. Related fluid-particle 
system covers liquefaction, piping, quick sand conditions in construction and sand production from oil 
wells in petroleum engineering. Recently, the coupled DEM-LBM technique has been proved to be a 
promising approach for fluid-particle problems. The coupled DEM-LBM technique was first proposed 
by Cook at al. [1]. It then attracted great attentions of researchers from different research areas. 

2. Lattice Boltzmann Method

The Lattice Boltzmann Method (LBM) is a kind of microscopic or mesoscopic fluid dynamics 
approach. In the LBM, the fluid domain is divided into regular lattices. The fluid phase is treated as a 
group of fluid particles which are allowed to move to the adjacent lattice nodes or stay at rest. During 
each discrete time step of the simulation, fluid particles at each lattice node move to their immediate 
neighbouring lattice nodes along given directions. At each node, the fluid particles from neighbouring 
nodes collide, which is controlled by solving the Lattice Boltzmann equation. Finally, the macro fluid 
behaviour can be obtained through the statistics of the motion of fluid particles [2]. 
The Lattice Bhatnagar-Gross-Krook (LBGK) Model is one kind of popular Lattice Boltzmann Model. 
It can be characterised by the following Lattice Boltzmann Equation 

 t),(fΔt)tΔt,(f iii xex  (1) 

Where if  is the primary variables in the LB formulation (so-called fluid density distribution 

functions),  is the collision operator. 
In the LBGK Model,   is characterised by a relaxation time τ  and the equilibrium distribution 
function t),(f eq

i x  

t)],(ft),([f
τ

Δt eq
ii xx             (2)

The central issue to LBM is to control the movement of fluid particles via density distribution 
functions.  
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3. Discrete Element Method

In the DEM, the Newton’s second law (see equation (3) and (4)) is used to determine the translational 
and rotational motion of each particle arising from the contact forces, applied forces and body forces 
acting upon it, while the force-displacement law is used to update the contact forces arising from the 
relative motion at each contact. The dynamic behaviour is represented numerically by a time-stepping 
algorithm in which the velocities and accelerations are assumed to be constant within each time step. 
The resultant forces on any particle are determined by the particles with which it is in contact and the 
hydrodynamic forces.    

fc mcm FgFva        (3) 

cI T
..

          (4) 

where m  and I  are mass and moment of inertia of the particle, respectively; a ,
..

θ and g  are, 
respectively, translational, angular and gravitational accelerations. 

cF and 
cT denote the contact force 

and torque between particles; c is a damping coefficient; 
fF is the hydrodynamic force. 

The normal and tangential contact model used here are based on the Hertz-Mindlin model [3]. 

4. DEM-LBM Coupling

An accurate fluid-particle interaction scheme is of great importance in DEM-LBM. Since the 1990s, a 
number of fluid-solid coupling schemes have been proposed for LBM. In this work the commonly 
used Immersed Moving Boundary is adopted and is extended to incorporate the effect of particle 
rotation. 
In order to resolve the problems in Modified Bounce-back Rule for moving particles, Noble and 
Torczynski [4] proposed a new boundary scheme. This is accomplished by introducing an additional 
collision term, S

i , for nodes covered partially or fully by the solid. Then the collision term in the LB 
equation including body force becomes 

S
iiFxx  BB)Δt(1t)],(ft),(B)[f(1

τ

Δt eq
ii

   (5) 

Where B is a weighting function that depends on the local solid ratio , defined as the fraction of the 
node area (see Fig. 1).  

0.5)(τε)(1

0.5)ε(τ
B




         (6) 

The additional collision term is based on the bounce-rule for nonequilibrium part and is given by 

)(ρ,f)(ρ,ft),(ft),(f eq
i

eq

iii uUxx S
S
i            (7) 

Where 
SU  is the velocity of the solid node. 

It is well known that particle rotation plays an important role in granular mechanics and in some cases 
it cannot be neglected. Therefore, the velocity of the solid node should be considered by 

)( 22 )()( CCCCCS yyxxllUU    (8) 

The resultant hydrodynamic force and torque exerted on the solid can be calculated by summing the 
momentum change of solid nodes: 

   
n i

n )(BCh i
s
if eF        (9) 

   )(B)(Ch
i

n
n

  i
s
iCf exxT      (10) 

Later this method was modified by Holdych [5]. The only difference is that the solid velocity is used 
to calculate the equilibrium distribution for the last term. The modified version is as follows 

)(ρ,f)(ρ,ft),(ft),(f eq
i

eq

iii SS
S
i UUxx            (11) 
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5. Simulation of Soil Erosion

In this section, the onset and evolution of quicksand which is a typical soil erosion phenomenon will 
be investigated first. It is followed by exploring the effect of effective radius used in 2-dimentional 
DEM-LBM simulations.  
A two-dimensional numerical simulation of quicksand phenomenon was carried out using the coupled 
DEM–LBM technique. In this simple simulation there are three large particles (A, B and C) and 93 
small particles surrounding large particles. (See Fig. 2). The basic parameters used in the simulations 
are listed in Table 1. During the tests, a constant fluid pressure was applied to the bottom. 

Fig. 1 Immersed moving boundary including rotation Fig. 2 Quicksand model 

Table 1 Parameters used in this study 

Parameter Value Parameter Value
Particle density (kg/m3) 2700 Fluid density (kg/m3) 1000 
Friction coefficient in the DEM calculation 0.5 Lattice spacing (m) 1.0×10-3 
Young’s modulus (MPa) 69 LBM time step (s) 1.0×10-4 
Poisson’s ratio 0.3 Dimensionless relaxation time 0.5003 
DEM time step (s) 3.33×10-5 Ratio of hydraulic radius 0.685 

Quicksand condition is a special case of soil liquefaction which occurs when a granular deposit is 
subjected to a large enough upward pore fluid flow. Fig. 3 gives snapshots of the evolution of the 
quicksand phenomenon from time step 0 to 1500. It can be found that the coupled DEM-LBM 
technique can easily trace the movement of granular particles and simulate pore water flow. Under the 
fluid pressure at bottom, the pore water will flow upward and small particles will also move upward 
under the hydrodynamics from pore water. Finally, the small particles above the large particles are 
washed away with time. But during the whole process the large particles nearly keep unchanged, as 
the hydrodynamic forces applied to them are smaller than their weights. 
In 2-D simulations combining DEM and other fluid methods, like CFD and LBM, there is a 
significant issue in the pore water flow path. Because the flow paths are always blocked up by circular 
particles, it is difficult to obtain realistic flow channels. In order to solve this problem, Boutt at al. [6] 
proposed a method in which the radius of the particle will be reduced to certain degree (called 
effective radius) artificially when the fluid flow is implemented. This effective hydraulic radius can be 
accomplished by introducing a ratio of effective radius to the particle radius. In this study, 6 ratios are 
chosen for investigation. When the ratio is 1, effective radius is equal to the real particle radius.  The 
movement of large particle A shown in Fig. 4(a) in the vertical direction and the change of pore 
pressure at the point D during the whole simulation are displayed in Fig. 4(b). 
From Fig. 4 we can find that with the decrease of the radius ratio large particle A is gradually 
fluidised. When the radius ratio is larger than 0.785, there is no movement for particle A in the 
vertical direction; when the radius ratio is decreased to 0.785, small changes happen and the particle 
A could move up and down. It can be deemed as a critical state. When the radius ratio is lower than 
0.785, complete fluidization can be observed. Meanwhile, it can be also seen the pore water pressure 
at point D gradually goes up with the decrease of radius ratio. 
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Time step 500 Time step 1000 Time step 1500 

Fig. 3 The simulation process of quicksand 
 

 
(a) The coordinate of particle A in Y-axis (b) The water pressure at point D 

Fig. 4 Impact of effective radius on the 2-D simulation 
 
6. Conclusions 

In this paper the implementation of Immersed Moving Boundary including the particle rotation was 
introduced in the coupled DEM-LBM program and the fluid-solid coupling was illustrated. A simple 
soil erosion simulation was then performed using the coupled DEM-LBM technique. The impact of 
effective radius was investigated at the grain level in the quicksand modelling. It is seen that the 
choosing of effective radius plays a vital role in quicksand simulations. The coupled DEM-LBM 
scheme seems to be promising and effective for investigating the fluid-particle systems. 
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ABSTRACT 

The buried pipelines in urban cities nowadays have a dense distribution and easily get disturbed by tunnelling 
around. Therefore, ensuring the safety of pipelines during the tunnel construction is important. According to the 
correlation between ground subsidence and pipeline stress when the pipeline is perpendicular to the tunnel drive, 
a maximum value of ground subsidence based on the deformation capacity of the pipeline was proposed. A case 
study of Shanghai South Hong-mei Road Tunnel was carried out, where the deformation of buried pipelines 
crossed by very large diameter slurry shield tunnelling and its safety control were discussed in order to provide a 
reference for the prevention of pipeline accidents during construction in practical engineering. 
 
Keywords: ground subsidence; tunnel construction; buried pipelines; safety control 
 

1. Introduction  

Tunnel projects are often found with a concentrated distribution of all kinds of pipelines in 
underground space, whose running state is directly related to the quality of people's life. However, no 
matter how advanced the slurry shield technology, the advance process of large diameter shield will 
inevitably cause ground subsidence (or swell), and the disturbance on the surrounding soil. Therefore 
the research on the disturbance of soil around the underground pipelines due to shield driving and its 
influence on the deformation of the pipelines is valuable.  

Researchers have carried out investigation on the soil behaviour under the condition of shield driving 
[1-3]. A case history of Shanghai South Hong-mei Road Tunnel Project using slurry balance shield at 
a very large diameter was studied. The theoretical and numerical analyses were carried out and their 
predictions were compared to the field data. Then the deformation and stress distribution of ethylene 
gas pipelines during the process of tunnel construction were summarized. 

 
2. Calculation of Soil Subsidence  

Currently Peck formula [4] is widely used for calculating the displacement of soils due to tunnel 
construction. The hypothesis of volume loss proposed by Peck is valid for the soil layer between the 
ground surface and the plane above the tunnel, i.e., the volume of settlement trough for an arbitrary 
layer below the ground surface is equal to the soil loss and the shape of the settlement trough can be 
represented by a normal distribution, as shown in Figure 1. The origin is located at the ground surface 
directly above the center line of the tunnel, the x  axis is perpendicular to the center line of the tunnel, 
and the z axis is perpendicular to the ground surface and goes down. The maximum vertical 
displacement ratio of the soil layer at depth z  to ground surface can be expressed by:  

( )
( )

max 0.3 0
0

max 0

=(1 z z ) =
z i

i z
δ
δ

−−                                                           (1) 

where 0i  is the width of the settlement trough, ( )i z  is the width of the settlement trough for the soil 

layer at depth  z , and the depth of the centreline of the tunnel is 0z . 
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Figure 1: The shape of settlement troughs 

3. Accepted Vertical Displacement of Ground Surface

The curvature 1 ρ  of pipelines rather than the vertical displacement is mostly concerned. According 
to Attewell [1], the maximum curvature of pipelines occurs at the position 0x = . When the pipeline is 
perpendicular to the tunnel, the relationship between the maximum curvature of the pipeline 1 ρ and 
the maximum vertical displacement of the soil layer in which the pipeline is imbedded can be 
expressed as [5]: 
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where pi  is the width of the settlement trough at the pipeline and λ  is the deformation coefficient of 
the elastic foundation beam. Practically, the vertical displacement of underground pipelines is usually 
not easy to measure directly, and therefore the influence of tunnel construction on the underground 
pipelines can be obtained indirectly by measuring the vertical displacement of the ground. According 
to the knowledge of mechanics of materials, the strain of the outermost fibres of the pipeline can be 
expressed by ( ) ( )= / 2 1 /dε ρ× , then the normal stress due to bending can be obtained in the form of 

( ) ( )P P/ 2 1 /E d Eσ ε ρ= ⋅ = × . If the acceptable normal stress of the pipeline is known as [ ]σ , then 
the acceptable curvature of the pipeline can be given as: 

p

1
[ ] [ ]

2

d Eσ
ρ

 =  
 

     (3) 

Substitute Eq. (3) to Eq. (2), the acceptable vertical displacement of the soil layer around the pipeline 
p
max[ ]δ  can be obtained and then the acceptable vertical displacement of the ground surface can be 

obtained by solving Eq. (1). 

4. Case Study

Shanghai Hong-mei Road Tunnel Project was carried out by slurry balance shield at a diameter of 
14.93 m. To predict the deformation and stress of an industrial ethylene pipeline above the tunnel in 
the real project, a steel pipeline with the same material properties was embedded in Feng-xian 
construction site. The parameters for the numerical analysis are presented in table 1. 

The steel pipeline made of three welded steel pipes was totally 30 m long. It was perpendicular to the 
tunnel and the centre was located at H96. There were 1 reference point and 12 monitoring points and 
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z
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D
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of the ground surface

Settlement tank 
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set every 2.5 m along the steel pipeline (see Figure 2). The vertical displacement of the steel pipeline 
was monitored by the BGK-4675 type monitoring system. Figure 3 shows the vertical displacement of 
the steel pipeline. It can be seen that due to the different disturbance of soils caused by shield driving, 
the differential vertical displacement between the middle and the sides of the steel pipeline gradually 
increases after the shield tail goes out of ring 10. The maximum vertical displacement of the steel 
pipeline on 5 November, 2012 is about 14 mm. 

Table 1: Parameters for the numerical analysis 

Item Value Unit 

Steel pipe 

Outer diameter d 0.273 m 
Thickness t 7.10×10-3 m 

Elastic modulus Ep 2.10×1011 Pa 
Berried depth zp 2.0 m 

Acceptable normal stress [σ] 1.38×108 Pa 
Soil Soil bed coefficient k 10000 kN/m3 

Modulus of deformation Es 5.50×106 Pa 
Possion’s ratio μ 0.30 - 

Internal friction angle φ 16.0 ° 
Tunnel Depth of the center line of the tunnel z0 25.00 m 

Outer diameter D 14.93 m 

Figure 2: The location of the monitoring points 
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 Figure 3: Vertical displacement of the steel pipeline 

A two-dimensional model was established for the numerical analysis when a finite element analysis 
software ABAQUS was used. The Mohr-coulomb law was employed to represent the constitutive 
model of the soil, and the unit type was set as CPE4. The boundary condition was that there was no 
horizontal displacement at the side and there were no horizontal and vertical displacements at the 
bottom. The steel pipeline was simulated as an isotropic and elastic material by using B21 beam 
element. The steel pipeline and the soil were closely contacted with each other during the whole 
process. Three cases were considered to investigate the effects of the buried depth and the strength of 
the steel pipeline on the deformation of the steel pipeline: Pipeline 1 was the real one and had material 
properties as shown in Table 1; Pipeline 2 had material properties as Pipeline 1 except that it was 
buried at a depth of 10 m; Pipeline 3 was buried at a depth of 10 m and had a strength smaller than 
Pipeline 1. 

Figure 4 shows the vertical displacements of the ground surface, Pipeline 1, Pipeline 2, and Pipeline 3. 
It can be seen that the influence zone due to the excavation are roughly the same for different buried 
depths, about 3.5 times the diameter of the tunnel. The maximum vertical displacement of pipeline 2 
is obviously larger than that of pipeline 1, indicating that the maximum value of the settlement trough 
increases as the buried depth of pipelines increases. In addition, the maximum vertical displacement 
of Pipeline 3 is larger than that of Pipeline 2, indicating that the maximum value of settlement trough 
increases as the strength of the pipelines decreases. The bending moment along pipelines is shown in 
Figure 5. The results show that the pipelines are subjected to negative and positive bending moments 
for Dr <p and DrD 2p ≤≤ respectively, however, the bending moment is small for Dr 2p > . The 

bending moment of Pipeline 1 is larger than that of Pipeline 2, indicating that the bending moment 

Steel pipe

Tunneling direction

( )Centre of the steel pipe H96

d

Cross section of the steel pipe

Ground

Steel pipe

Test instrument
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increases as the buried depth of the pipeline increases. The bending moment of Pipeline 3 is the 
smallest, indicating that the bending moment decreases as the strength of the pipeline decreases. 
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Figure 4: Vertical displacement after excavation 
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Figure 5: Bending moment after excavation 

Figure 6 shows the horizontal displacements of the ground surface, Pipeline 1, Pipeline 2, and 
Pipeline 3. The horizontal displacement is relatively small compared to the vertical displacement (see 
Figure 4), and due to the soil loss after excavation, the horizontal displacement is towards the centre. 
It can be seen that the horizontal displacement decreases as the buried depth and strength of pipelines 
increase. The measured and numerically predicted vertical displacements for both the ground surface 
and Pipeline 1 are compared in Figure 7. For the ground surface, the predicted value of 11.5 mm is 
larger than the measured value of 8.2 mm, however, the shapes of the settlement troughs are almost 
the same. The difference in measured and predicted values for Pipeline 1 is limited, but the shapes of 
them are quite different.  
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5. Conclusions

A case study of Shanghai South Hong-mei Road Tunnel Project was carried out, where the vertical 
displacement, horizontal displacement, and bending moment of the underground pipelines after 
excavation were discussed. The measured and predicted data were compared and an agreement was 
achievement to some extent.  
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ABSTRACT 

Recent improvements in both digital data acquisition and software for subsequent analysis, through use of 

photogrammetry and both aerial and terrestrial LiDAR (Laser Interferometry Detection And Ranging), have 

provided improved tools to capture rock mass characteristics, slope geometries and digital terrain models for 

more effective slope management in the extractive industries. Advantages of using the improved technology 

(such as safer collection of data – not exposing personnel to dangerous areas; greater areal coverage for data 

collection – not restricted by man-access/reach; rapid collection of numerous data points; fully geo-referenced x, 

y, z point cloud data) far out-way the perceived disadvantages (need for correct training to ensure user 

proficiency of both hardware and software; need for awareness of equipment and software limitations; too much 

data to analyse effectively in a timely manner). Example use of remotely captured data for subsequent data 

analysis is presented to demonstrate the wide range of different applications such as providing input for slope 

stability analyses for subsequent implementation of appropriate mitigation strategies, highlighting unstable 

regions of a slope, comparative evaluation of point cloud data from repeated scans to monitor movement of 

material (or placement of materials on tips or stockpiles), providing data for risk-based design and providing 

capability to undertake real-time monitoring of rock slopes. A key benefit of the detailed point cloud data is the 

ability to measure and evaluate discontinuity characteristics such as orientation, spacing, persistence and 

volumetric data which are key factors that dictate the size of any potential failure. 

Keywords: terrestrial LiDAR; slope stability; point cloud data; discontinuity characteristics 

1. Introduction

Remotely captured spatial data, generated from a variety of techniques including both aerial and 

ground-based laser scanning data (LiDAR) and digital photogrammetry can be used to monitor and 

track movement or deformation of specific locations or targets on the Earth’s surface. Such data can 

be subsequently used for a range of geological and geomorphological applications including 

monitoring of both temporal and spatial change of an excavation profile, rock mass characterisation 

(including determination of orientation and spatial parameters) and generation of hazard maps [1-4]. 

These techniques are being increasingly used within the mining and minerals industry for more 

effective management of natural resources; taking advantage of improved, high-resolution monitoring 

data and reduced exposure of personnel to potentially hazardous working environments [5].  

Apart from the obvious improved Health and Safety aspects, remote mapping techniques allow rapid 

collection of digital data that can be subsequently analysed to provide input parameters for a variety 

of geomechanical or geotechnical computer-based design models or software. The key advantages of 

remote techniques are their speed, greater area coverage and ability to map inaccessible areas [6]. The 

remote data capture systems allow rapid collection of large quantities of data that can be subsequently 

analysed to provide realistic representations of the slope surface and rock mass fracture network. The 

data can also be incorporated into slope stability design software to assess potential modes of 

instability, undertake sensitivity analyses on critical input parameters, carry out back analyses of 

recent slope failures and provide design-related data for geotechnical investigations (be it for 

deterministic analysis to calculate a Factor of Safety value or probabilistic analysis to provide 

probability of failure or evaluation of risk of failure). Advances in technology provide ever increasing 

opportunities for improved visualisation and a geospatial rich data source for subsequent evaluation. 
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2. Data capture and acquisition 

LiDAR systems can be operated from a static position (terrestrial) or on the move (mobile). 

Terrestrial systems allow data to be gathered from one set-up location (position) and then the 

instrument is physically moved to a new position (if required). Mobile (including airborne) based 

systems incorporate an Inertial Measurement Unit (IMU) that feeds data back into the system of the 

instruments location and compensate for movement of the equipment when in transit [1]. The 

terrestrial instrument has to be either set over a known location and subsequently sighted to another in 

order to obtain an orientation. Alternatively, the surveyor must place a number of targets within the 

area to be scanned in order to reference them using conventional survey methodologies. This can be 

achieved by sighting the targets to be scanned using a total station from a known location or using 

Global Positioning System (GPS) with Real Time Kinematic (RTK) correction to compensate for 

errors obtained through signals. 

 

Singular point clouds encounter problems with ‘blinding’; when the scene is obscured and the point 

cloud is missing data. In order to overcome this, multiple laser scans are taken to obtain a complete 

data set for a scene. However, when multiple scans are surveyed, the point clouds have to be joined 

together. This process is known as registration. Common points are chosen and assigned between the 

scans. Once enough points (at least 3) are matched between the point clouds, a registration adjustment 

is processed by the software and an error value is obtained. Once a complete geo-referenced model 

has been made the data can then be exported for use within many different software applications. 

However, a clear understanding of the hardware and software requirements are necessary in order to 

export the data in a useable format for the desired outcome. 

 

3. Applications of digital data for effective slope management  

Example use of terrestrial LiDAR data for subsequent data analysis is provided in Fig. 1, which 

highlights applications for evaluation of both rock mass and slope instability characteristics. This data 

can also form the basis for development of GIS-based qualitative hazard and risk analysis, provide 

input for slope instability simulation and be used to undertake real-time monitoring of rock slopes. It 

can also be used for more effective evaluation of slope management systems, by highlighting 

kinematically susceptible areas, sheared zones or potentially unstable lithologies, providing data on 

block size distribution for design of appropriate mitigation measures, analysing trajectory paths and 

monitoring not only failure source areas but potential run-out distances. 

 

 
 

Figure 1: Use and applications of terrestrial LiDAR point cloud data in relation to rock mass characterisation 

and slope instability evaluation. Adapted from [1]. 

 

Example use of terrestrial LiDAR to effectively capture the three-dimensional nature of a rock mass 

can be seen in Figs. 2 and 3. Evaluation of the fully geo-referenced x, y, z point cloud, using Split-FX 
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[7], can then be undertaken to determine the orientation of specific discontinuities, which can then be 

incorporated into stereographic software for kinematic evaluation of discontinuity-controlled failure. 

Remote characterisation has been applied to different rock types, across a range of varying rock 

quality. Experience indicates that use of remote data acquisition systems for evaluation of rock 

fracture network orientations are better suited for geotechnical applications that involve blocky rock 

masses. Representative scales of mapping should be established, however, to ensure that important 

features are captured during the mapping exercise, to ensure that critical discontinuities are included 

within the mapped region.  

Figure 2: Photographic image (left) and point cloud representation (right) of a failure scar in a quarry slope face. 

Figure 3: Point cloud representation of a chalk cliff face (left) and subsequent rockfall simulation (right). 

A key benefit of the detailed x, y, z point cloud data is the ability to measure and evaluate 

discontinuity spacing and persistence data which are key factors that dictate the block size and 

location of strategic key blocks. Block size distribution data/statistics can be used to characterise the 

rock mass, identify rockfall susceptible lithologies, and indicate the size and potential extent of any 

likely rockfall. Representative cross-sections taken through point cloud data can been used to 

undertake two-dimensional rockfall simulations, as depicted in Fig. 3. This type of analysis can be 

used to assess potential remediation strategies, such as design of catch ditches, stand-off bunds and, if 

necessary, consideration of catch fences [8]. However, successful use of rockfall simulation software 
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relies on correct calibration of input parameters [8; 9; 10]. Further software developments are required 

to incorporate different rock particle shapes within rockfall analysis, together with realistic impact 

properties to ensure user confidence. Where possible, it is important that any analysis should be 

validated against historical rockfall records or field trial data [9; 10]. 

Detrimental effects of blasting may also be quantified (by recognition of the extent and location of 

any damage induced by blasting). Repeated scans have been used to quantify the volume difference 

between successive scans (to determine both the location and extent of failure activity between 

surveys) for a range of application within the extractive industries including monitoring of movement 

of material.  

4. Conclusions

Recent improvements in both digital data acquisition and software for subsequent analysis, through a 

variety of techniques, have provided improved tools to capture rock mass characteristics, slope 

geometries and digital terrain models for more effective slope management in the extractive 

industries.  

Research suggests that automated analysis of data using automated routines is not yet recommended, 

and there is a need for educated users that are familiar with potential limitations/issues with use of 

both hardware and software. Despite these reservations, when used correctly remote mapping 

techniques can be extremely useful for not only capturing the geometrical characteristics of the rock 

mass but also using this information for optimisation of excavation and extraction of resources. The 

need for effective and efficient management of data collection, data transfer and subsequent analysis 

and associated interpretation is essential. 
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ABSTRACT 

Suction-induced seepage is pivotal to the installation of caisson foundations in sand. Indeed, Pressure gradient 
generated by the imposed suction inside the caisson cavity cause an overall reduction in the lateral soil pressure 
acting on the caisson wall as well as caisson tip resistance. This transient loosening of soil around the caisson 
wall helps caisson penetration into the seabed. However, these effects must be controlled to avoid soil failure 
due to critical condition such as piping which may cause the installation process to fail because of instability of 
the soil plug trapped inside the caisson cavity. Therefore, in order to have a safe installation process the soil 
conditions, especially soil resistance and critical condition to piping must be predicted and controlled during 
entire installation procedure.  
In this paper, the effects of excess pore water pressure gradients due to applying suction on soil resistance in 
homogenous sandy soil and isotropic heterogeneous seabed profile is addressed. For this purpose a simple finite 
difference model is used to solve the normalised seepage problem. In order to apply the results to any size of the 
caisson, the problem dimensions are scaled with regard to the caisson radius. The results show that a predication 
of soil resistance based on constant permeability in the seabed profile with varying permeability by depth is non-
conservative, due to an overestimated reduction in effective stress under suction-induced seepage.  

Keywords: Suction Caisson Installation; Varying Permeability with depth; Soil Resistance; Normalised seepage 
problem 

1. Introduction

A suction caisson consists of a thin-walled upturned ‘bucket’ of cylindrical shape made of steel [1-2]. 
This novel type of foundation has been approved to be very successful in oil and gas industry and the 
current trend is to employ them as foundations for offshore wind turbines. Usually the initial 
penetration into the seabed takes place under the caisson self-weight, and once the rim of the caisson 
creates a sufficient seal with seabed due to its dead weight, suction is subsequently applied by 
pumping out the water trapped inside the internal caisson cavity in order to push the caisson to the 
desired depth.  
In sandy soils, seepage causes an overall reduction in soil resistance and facilitates caisson installation 
process [3]. The role of the porewater seepage induced by suction has been considered in most of the 
design procedures of caisson installation in sand [4-6]. The effect of suction during caisson 
installation in sand has also been considered in centrifuge model testing.  A series of experimental 
tests on suction caisson foundations in a geotechnical centrifuge were conducted to study the variation 
and distribution of excess pore water pressure generated by suction in homogeneous dense sand [7]. 
Additionally, numerical modelling such as finite element simulations was employed to model the 
suction caisson installation process [8]. The existence of low permeability silt layers has been 
considered by Tran et al [9].  
In this paper, the numerical procedure proposed by Harireche et al. [3, 10] is employed to investigate 
the effect of seepage induced suction on soil resistance during caisson installation in homogenous 
sand and in a seabed profile with decreasing permeability by depth. The aim of this study is to assess 
whether a homogenous seabed model is a conservative assumption for caisson installation design or 
not. 
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2. Normalised Seepage Problem and Permeability Profiles   

In order to draw conclusions that are not related to the problem dimensions, any length measure is 
scaled with respect to the caisson radius and pressure is normalised by the magnitude of applied 
suction. Figure 1, shows a vertical section through the meridian plane of the system caisson-soil 
where a cylindrical system of coordinates r* and z*is used. For the dimensionless counterpart of the 
caisson penetration depth h*=h/R is adopted. 
Meanwhile, to describe the variation of permeability with depth, the following expression is adopted: 

( ) *
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( )
1 zk z

k e
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αβ β−≡ = − +
  
 

Where / wk K nγ≡   and K is the absolute permeability and n denotes the porosity. The coefficient k0 

denotes the permeability at the seabed surface, α and β are two constants, and z*=z/R indicates the 
normalised depth. Figure 2 shows different permeability profiles and the corresponding values of the 
parameters α and β. Three cases have been selected, which will be investigated in the following 
sections. Case A corresponds to a homogeneous seabed profile with constant permeability. In case B, 
the permeability decreases with depth almost linearly. Finally, in case C, permeability has a non-linear 
profile and decreases with depth at a much higher rate compared to case B.  Additionally, in both 
cases B and C, the soil is assumed to become impervious at large depth. 

 

                    
 

 
 

 

3. Soil Resistance to Suction Caisson Installation  

The suction magnitude imposed over the radial distance OC- (Fig. 1) is expected to increase during 
installation. Indeed, as the caisson is pushed into the seabed, suction must be increased to overcome 
the increasing soil resistance. Water seepage caused by suction produces a hydraulic gradient which, 
on both faces of the caisson wall, varies with depth. Figures 3a and 3b show the vertical component of 
the normalised pressure gradient g*= ǝp* / ǝz*   on both sides of the caisson wall as a function of scaled 
depth z* for the three permeability profiles (cases A, B and C). Values of scaled penetration depth h* = 
0.2 and 1 have been considered. It can be seen that the pressure gradient on each side of the caisson 
wall is higher at the early stages of the installation process. Maximum values of the gradient occur at 
the caisson tip. 
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Figure 2: Permeability profile: case A   (Constant- 
permeability), Case B (α=0.288) and Case C (α=1.204)  
 

Figure1: Normalised geometry and 
finite difference mesh  
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(a) 

(b) 

Figure 3: Dimensionless pressure gradient as a function of normalised depth for different permeability profile 
(case A, B and C). (a) h*= 0.2 & (b) h*=1 

4. Lateral Frictional Resistance on Caisson Wall

In the presence of seepage the reduction of lateral effective stress around the caisson wall is expressed 
by Equation.2 [3, 10]. 
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Where, gi (R, ζ) and go (R, ζ) denote the vertical component of the pressure gradient on the 
inner and the outer sides of the caisson wall respectively.  Using a numerical calculation of 
the integrals in Equation 3.0 on the normalised finite difference mesh, the scaled reduction of 
the lateral effective stress has been obtained for two different scaled penetration depth 
(Figure 4a, b). It can be observed that a higher rate of variability in the permeability 
corresponds to a lower reduction in the lateral effective stress. This shows clearly that the 
assumption of a homogeneous seabed is not in favour of a conservative estimation of soil 
resistance to caisson penetration as it overestimates the effect of seepage on the reduction of 
the lateral effective stress.  

and

(2) 

(3) 
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Figure 4: Change in the normalised lateral effective stress on caisson wall due to suction-induced seepage. (a) 
h*=0.2 & (b) h* =1. 

5. Conclusion

In this study the effect of a permeability varying with depth on the prediction of shear soil resistance 
to caisson penetration has been considered. The effect of suction induced seepage on soil resistance to 
caisson penetration has been investigated using the normalised solution of seepage around the caisson 
wall. It has been observed that a constant permeability profile leads to an under-estimation of soil 
resistance to caisson penetration. This highlights the importance of taking into account a permeability 
profile with certain variability with depth for a more accurate prediction of the required suction 
throughout the installation process. 
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ABSTRACT 

This paper is concerned with a numerical study of the vertical bearing capacity of a strip footing foundation. We 

consider a rough contact between the base of foundation and the substrate which is assumed elastic perfectly 

plastic follow the Drucker-Prager model. Analyses were performed by incremental finite element simulations. 

The post-treatment of the numerical results permits one to investigate the effect of the non-associated flow rule 

on the plastic limit load and the failure mechanism in order to build theoretical solutions. 

Keywords: Bearing capacity; shallow foundation; Drucker-Parger criterion; non associated flow rule; Finite 

element method  

1. Introduction

The plastic limit load evaluation of soil is of a great importance in theoretical plasticity and civil 

engineering design. Since the first analytical solutions of the bearing capacity of shallow foundations 

presented by Prandtl [12] and Reissner [13], a large number of contributions and papers have been 

published in literature. 

The limit analysis [5, 14, 4] considers rigid-perfectly plastic materials under proportional loading. It 

assume an associated flow rule which means that the dilatancy angle is equal to the friction angle of 

the material. Nevertheless, it has been recognized that dilatancy angle is lower than the friction one 

and thus the plasticity is not associated. Some numerical solutions obtained by the finite element 

method are proposed in the literature [6, 10]. The purpose of this paper is to investigate numerically 

the influence of the non associativity of the Drucker-Prager model on the plastic limit load. A 

particular focus is devoted to the failure mechanism which is compared to the Prandtl and Hill 

mechanisms. The step-by-step elastic plastic computations are derived by the software Cast3m [7]. 

2. The non associated Drucker-Prager criterion

In their pioneering work [18], Drucker and Prager proposed a generalization of Von Mises criterion 

by including the effect of the hydrostatic pressure (or the first invariant of the stress field). 

The model is known as the Drucker-Prager model for which the yield function is given by: 

   )1....(....................0. 0   ijeij trf  

Where: Equivalent stress: 2

1

)
2

3
( ijije ss ,  Deviatoric part of the stress tensor : mijijijs    :

Hydrostatic Stress: ijm tr
3

1
 , Pressure sensitivity factor 

3

tan
  , 0 :Yield stress 

The plastic potential is given by:    )2.(....................0.)  ijeij trg 

Where:  
3

tan
 
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3. Bearing capacity and the collapse mechanism of the strip footing

A rigid strip footing is pressed into an elastic perfectly plastic soil by a vertical loading under the 

assumption of plane strain conditions. The substratum is considered weightless and obeys the 

Drucker-Prager model with a non associated flow rule (1) and (2). The interface contact with the 

punch is assumed rough . The width of the foundation is noted by B  and the dimensions of the 

substrate are LxH  

Due to the symmetry, only the half of the sheet is modeled by the finite element method. The 

substrate is discritized by 6-noded triangular elements as depicted in figure 1. The path loading 

consists of uniform increments of vertical displacement exerted on the nodes beneath the footing. The 

two vertical sides of the soil are restrained in horizontal direction while the base is fixed in both 

directions (see figure 1). The rough condition between the soil and the footing is ensured by 

preventing the horizontal displacement of the nodes under the footing.  

Numerical simulations were carried out with mB 2 , BH 5  and BL 10  . The following 

material parameters were used: MPaE 30 ,  3.0 ,  MPa01.00   and   35  

4. Limit plastic load

Figure 2 represents the load-displacement curves for different dilatancy angles . The footing load is 

obtained as the sum of the nodal reactions at the nodes below the punch. It is clearly seen that the 

limit load is well-defined without oscillations in the curves for all values of the dilatancy angle except 

for very small values of   (such as  0 ) which are known as difficult cases [3, 9]. It is worth 

noting that, in many works in literature [10, 15] with Mohr-Coulomb model, oscillations are observed 

in the load-footing settlement and the intensity of this oscillation increases with increasing mesh 

refinement and with increasing. As expected, the limit load for non-associated plasticity is lower than 

the one corresponding to the associated model. More precisely, the limit load decreases with the 

dilatancy angle. This property has been observed in other published works [9, 1, 2].  

      Figure 2: Plastic limit load.            Figure 1: Mesh and boundary conditions 

5. Failure mechanism

Figures [5, 6, 7, 8], show the failure patterns depicted by the isovalues of the incremental vertical 

displacement at the numerical limit load for a friction angle  35 ° and an angle of dilatancy 

.  10,20,25,35  .The collapse mechanism is reminiscent of the Prandtl's one [5] and shows three

zones of different strains. (See figure 3). 

It is important to note that the for associate case  35 in the figure5  the mechanism is 

identical in shape and size to the mechanism for an associated Mohr-Coulomb model predicted by 

Method of characteristics, using the computer program ABC [11]) in the figure 4. Moreover, we 

observe that the extend of rupture area for    is greater than that for   : the deformation is 

highly localized for the non-associated material while strains seem to be more diffuse inside the 

mechanism for associated Drucker-Prager model. 
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Figure 3: The Prandtl failure mechanism        Figure 4: Mechanism with ABC program (==35°) 

 Figure 5: Mechanism for the associated case ==35    Figure 6: Mechanism for the associated case =25 

Figure 7: Mechanism for the non associated (=10°)   Figure 8: Mechanism for the non associated (=20°) 

Moreover, it seems that the triangular wedge (ABC) is independent of the dilatancy angle . To 

investigate this more detailed analysis by post-treatment of the numerical results has been conducted 

in order to identify with the maximum of precision the band between the triangular wedge ABC and 

the Logspiral zone BCD and to measure the base angle . Recall that for the associated Mohr-

Coulomb material 









24


  . To capture the transition line, we considered the curves of vertical 

displacement on two horizontal lines 1L  and 2L  (see figure [1]) and then, by the finite differences 

method, we computed and plotted the curvature of theses curves, by means of the first derivative, in 

terms of the horizontal coordinates.  

For the associated Drucker-Prager model and for different values of the friction angle , the measured 

values of the angle   obtained by post-processing are in good agreement with the value of 









24


 

as summarized in table 1.Let us now consider the non associated model. For a friction angle =35°, 

the values of the angle base  obtained by post-treatment are given in table 2 for different values of 

the dilatancy angle  10,15,20,25,30,35 . It is observed that this value is independent of the

dilatancy angle and can therefore be estimated by 









24


 for both associated and non associated  
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Table 1: the measured angle (°) for associated case     Table 2: the measured angle (°) for non associated case 

6-Conclusions 

This paper investigated the effect of the non associativity of the Drucker-Prager model on the plastic 

limit load and the collapse mechanism of substrate. 

The obtained results confirm that the ultimate bearing capacity decreases with the dilatancy angle and 

provide relevant information on the collapse mechanism:   

• For non associated materials, the failure mechanism is a Prandtl-type one for both associates and

non associated materials but the extend of failure zone narrows with the dilatancy angle. 

• It turns out that   is independent of the dilatancy angle for both associated and non associated

materials. 

Finally, it should be noted that further research has to be carried out to improve the approach used in 

this work in order to identify with a maximum of precision the interface lines between different blocs 

of collapse zones which will help in buliding analytical solution.  
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 (°) Measured Error % 

35 62.34 0.25 

30 62.25 0.40 

25 62.25 0.40 

20 62.34 0.25 

15 62.15 0.56 

10 62.25 0.25 

=(°) Theoretical Measured Error % 

35 62.5 62.34 0.25 

30 60.0 57.60 4.00 

25 57.5 55.60 3.20 

20 55.0 53.88 2.00 

15 52.5 52.05 0.80 

10 50 50.33 -0.60 
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ABSTRACT 

This study presents the application of a density-dependent finite element model to simulate the transient effects 

of sea level rise (SLR) on seawater intrusion (SWI) in a conceptual case of unconfined aquifer. The model 

considers both the unsaturated and saturated flow conditions. To model the natural process of SLR, a time-

dependent boundary condition is used to define the hydrostatic head imposed by seawater at the coastal 

boundary where the effect of the gradual rise in the sea level with time is considered. The specified values of 

SLR are chosen, in the range of that predicted by IPCC (Intergovernmental Panel on Climate Change), for five 

different periods of time in the current century (from 2014 to 2100). The results indicate that a considerable 

advance in SWI can be expected in the coastal aquifers until the end of century. The rising of sea level is 

followed by the lifting of the groundwater table, especially near the shoreline, which gradually declines towards 

the inland boundary. The effects of spatial variations of the shoreline slope on SWI under SLR condition are 

also investigated. The results highlight that the flatter slopes of the shoreline intensify the landward process 

of seawater intrusion. 

Keywords: seawater intrusion; sea level rise; numerical modelling; unsaturated flow; unconfined aquifer 

1. Introduction

Groundwater is a vital component of the global water cycle and it is a valuable resource for water 

supply. However, the quality of groundwater in the arid and semi-arid coastal areas is one of the 

environmental issues of the 21
st
 century, which is continuously threatened by the landward intrusion 

of seawater. Under natural conditions, the replacement of freshwater in coastal aquifers by the 

seawater due to density-dependent landward movement of saline water body into the freshwater is 

known as SWI [4]. SWI is considered as the final outcome of this density-dependent interaction 

between freshwater and seawater and is responsible for dynamic equilibrium of groundwater 

movement. The hydrodynamic dispersion which is the combination of mechanical dispersion and 

physio-chemical dispersion (molecular diffusion) controls the spreading out of solute and the mixing 

process.  

A distinct curved zone of saline water, known as the regional “saltwater wedge”, is created in the 

freshwater body and it is the source of contamination that degrades the quality and quantity of 

freshwater. The negative impacts of SWI would be intensified by the anthropogenic factors such as 

unplanned exploitation of groundwater and also by the natural factors such as sea level rise (SLR) and 

tidal effects. The reduction of atmospheric pressure and thermal expansion of oceans are the earliest 

outcomes of global warming which will in turn lead to the increase of water level in the oceans and 

seas. However, melting of mountain glaciers, small ice caps, and also melting of polar (Greenland and 

Antarctic) ice sheets will exacerbate its negative effects in terms of SWI by accelerating the SLR 

process [2].  

Limited research has attempted to study the effects of gradual rise of sea levels on SWI in aquifers. 

The majority of previous works have focused on simulation of this problem in confined (and even 

unconfined aquifers) with vertical seaside boundary (without slopes) subjected to constant, time-
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independent and unrealistic values of SLR in saturated flow condition. In the present work we study 

the transient effects of sea level rise on seawater intrusion over a century in a hypothetical unconfined 

aquifer, considering the effects of the unsaturated (vadose) zone and the shoreline slope. 

2. Model Description

In this study, the SUTRA code [1] is used for numerical modelling of 2D case studies of unconfined 

aquifer. SUTRA implements a hybridization of finite element and integrated finite difference methods 

to solve the density-dependent flow and transport mass balance equations [1]. A rectangular aquifer 

with the dimensions 500 m by 30 m is considered as the base model. It is discretized using irregular 

mesh with 2483 elements and 2594 nodes. The idealized form of the base aquifer and the used 

boundary conditions are shown in Figure 1. The aquifer is divided vertically in two layers; an 

unsaturated layer overlying the bottom saturated layer. The hydraulic gradient in the system is 0.0032 

corresponding to the defined head boundaries. The modelling parameters used for the groundwater 

flow, solute transport and porous medium are: Dm, coefficient of water molecular diffusion = 1.0*10
-9

m
2
/s; ∂ρ/∂C, change of fluid density with concentration = 700.0 kg

2
(seawater)/kg(dissolved 

solids).m
3
; g, gravitational acceleration = 9.8 m/s

2
; Csea, solute mass fraction of seawater = 0.0357

kg(dissolved solids)/kg(seawater); ρsea, density of seawater = 1025 kg/m
3
; ρo, density of fresh water =

1000 kg/m
3
; μ, fluid viscosity = 0.001 kg/(m.s); αL, longitudinal dispersivity = 2.0 m; αT , transverse 

dispersivity = 0.2 m; permeability of top layer = 1.3*10
-12 

m
2
; permeability of bottom layer = 1.3*10

-11
 

m
2
; porosity of top layer = 0.37; porosity of bottom layer = 0.35 and thickness of model = 1.0 m. The 

following unsaturated parameters were considered for Van Genuchten function α=12.5*10
-4

 (m.s
2
)/kg, 

n=3.5 and Sres=0.01. 

     Figure 1: Boundary conditions of base model  Figure 2: Global average SLR estimated by IPCC [3] 

The unsaturated flow simulation in the model requires a fine temporal discretization to limit the 

instability and oscillatory results of calculated pressure and saturation values which may change 

sharply during wetting events [1]. To obtain the natural initial values of pressure within the domain, 

first a steady state solution is obtained through an extra simulation with the head boundary conditions 

described above at the inland and seaside boundaries of the aquifer. The system essentially reached a 

steady state after 10000 time steps, with time step of 0.25 days. In order to more closely replicate the 

behaviour of rising sea levels, the model is subjected to five different increments of rising sea levels 

starting from current time (year 2014) up to the end of century (year 2100). According to IPCC report 

[3] future SLR is expected to occur at a rate greatly exceeding that of the recent past. Figure 2 shows 

the estimated global average SLR between 1990 and 2100 based on different economic and 

technological development scenarios [3]. By 2100 it is expected that the rise in sea levels would be 

between 20 cm to 88 cm [3]. 

The current steady state condition of the model with the sea level located at elevation of 24 m is 

assumed to represent the hydrological situation for the year 2014 and it is used as the reference level 

for simulation of the system in the following time periods. The typical values for SLR used in the 
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present work are marked on Figure 2 for the years 2014, 2040, 2055, 2070, 2085 and 2100 which 

show the SLR of 0.1m, 0.2m, 0.35m, 0.5m and 0.65m (with respect to 2014 as the base line) in years 

2040, 2055, 2070, 2085 and 2100 respectively. The corresponding hydraulic head boundary 

conditions defined at the seaside boundary in each rising period are increased linearly with time. The 

simulation outputs (pressure and salinity) of each time period are used as the initial condition for the 

next period. 

Furthermore, the effect of different shoreline slopes (and the corresponding inundated surfaces) on 

SWI process is investigated under the gradual rise of sea level. The shoreline boundary of the base 

model is geometrically modified by implementing a different inland slope that starts from elevation of 

15 m above the bottom boundary. For the purposes of comparison in this paper, the revised problems 

are simulated under the same hydraulic gradient (0.0032).  

3. Results

An initial steady state simulation is used to estimate the current situation of saltwater wedge profile 

that exists in the system prior to SLR. The 50% iso-concentration line for this model is shown (by 

dashed line) in Figure 3. Under the present state (2014) the toe of the saline wedge is advanced by 70 

m into the aquifer as a result of natural hydrodynamic dispersion. The results of the gradual rising of 

sea level at the end of each time period are also presented as 50% isochlor lines. The results show that 

the salinity wedge continues its inland intrusion to the extent that in year 2100 the toe will be located 

at 125 m from the coast boundary. The results of variation of groundwater level during the SLR 

process indicate that there is a significant lifting in water table especially in the vicinity with the sea 

boundary and it gradually declines towards the inland boundary. This variation of the hydraulic 

gradient during the SLR increases the thickness of the saturated layer of the system which results in 

the further inland penetration of saltwater/freshwater interface [5]. 

Figure 3: Variations of 50% iso-concentration lines of developed base model with SLR 

The 50% iso-concentration profiles of the current steady state condition (year 2014) in aquifers with 

different shoreline slopes are illustrated in Figure 4a. The inundation surfaces resulting from different 

shoreline slopes provide the wider contact areas of the models with the seawater. In other word, a 

wider inundation surface resulting from a flatter slope accelerates the SWI process. These negative 

patterns of the inclined coastal boundaries also emerge during the rising of the mean sea levels. Figure 

4b shows the variations of the same curve of saline/freshwater interface under gradual rising of sea 

level (up to 0.65 m) at the end of century. In the model with 10% slope the rising of sea level extends 

the inland location of saline wedge by 70 m compared with its current steady state condition. 

However, in the aquifer with 5% slope and under the same conditions, the toe location is advancement 

about 150 m during the same gradual SLR. Therefore the small variations of slopes play an important 

role in natural periodic progressive of SWI. Generally, the increasing of the inundation surface areas 

can result in reduction of fresh groundwater resources in the aquifer; lowering the capability of the 

groundwater discharge of the aquifer to cope with the intruded seawater.  
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Figure 4: a) Current steady state variations of 50% iso-concentration lines of SWI in the aquifers with different 

coastal slopes; b) Variations of same isochlors with the SLR at the end of centaury  

4. Conclusions

In this study, the transient effects of the gradual rising of sea levels (expected during the current 

century) on the SWI is investigated through a set of conceptual models of unconfined aquifers with 

different sloped coastal boundaries. It has been shown that rising of sea level leads to further inland 

advancement of seawater and the problem is intensified by the flatter slopes of shoreline boundary. 

An implication of these findings is that the threats and the unexpected outcomes of the SLR (and the 

global warming) could have serious consequences on the quality and quantity of fresh groundwater 

resources in real case studies coastal areas, especially in shallow unconfined aquifers.  
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ABSTRACT 

The slope stability analysis is one of the fundamental problems in geotechnical analysis and design of earth 

structures particularly road and embankment. The stability of slope can be analyzed by finite element method as 

a powerful approach which is accurate, versatile and requires fewer a priori assumptions especially, regarding 

the failure mechanism. However, the inherent variability of the soil parameters which affect slope stability 

analysis dictates that the problem is of a probabilistic nature rather than being deterministic. In this research, 

random finite element method and limit equilibrium stochastic analysis are used for probabilistic analysis and 

reliability assessment of the stability of cohesive vertical cut. The selected stochastic parameters are cohesion 

and unit weight, which are modelled using a truncated normal probability distribution function. The height of 

slope is regarded as constant parameter. The resultant probability distributions of safety factor and reliability 

index of two methods are compared to each other. 

Keywords: Slope stability analysis; Random finite element method; Cohesive vertical cut. 

1. Introduction

Investigating the stability of slopes and vertical cuts is one of the considerable geotechnical problems 

and there has been a great deal of research into the stability analysis of slopes and vertical long 

unsupported cuts corresponding to plane strain problem [8]. In this regard, numerical methods such as 

elasto-plastic finite element technique have been widely used in different problem conditions. There is 

a useful literature on using finite element method and its advantages as a discretization tool in slope 

stability analysis [5]. 

In recent years, some researchers [7] have been following a more rigorous method of probabilistic 

geotechnical analysis in which deterministic formulation of the finite element method are combined 

with random field generation techniques by taking into account mean value, standard deviation, 

correlation and load design parameters. This numerical methodology is named Random Finite 

Element Method (RFEM) which was first introduced by Griffiths and Fenton [3] and is employed in 

many applications. By now many researcher applying this method in geotechnical problem such as 

slope stability [2], bearing capacity [4] and retaining wall [6]. It is become one of the suggested 

design approaches. 

In this paper, the random finite element method is used for probabilistic analysis and reliability 

assessment of the stability of cohesive vertical cut. The selected stochastic parameters are cohesion 

and unit weight, which are modelled using a truncated normal probability distribution function. At the 

end of the paper, the distribution of stability number is obtained and discussed.  

2. Random field technique

Random field are utilized to realistically present the ground, allowing for the ground properties to 

varying spatially, as they do in nature. The simplest random field's models follow a normal or 

trenched distribution. This is because the multi-variate normal distribution is relatively simple to use, 

both analytically and to simulate. A normal random field is characterized by mean ( ), a variance ( 
2 ) and a correlation structure. The mean could spatially varying, ( )x , and it is appropriate to do so 
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when a trend has been identified at the site being modelled. In concept, the variance could also be 

spatially varying, 2 ( )x , although this is rarely implemented since a very extensive site investigation 

would be required in order to even roughly estimate the variance trend. Generally, the variance is 

assumed to be stationary, in other words the same everywhere. 

The most difficult aspect of random field models to both understand and estimate is its correlation 

structure. The purpose of a correlation structure is to provide some persistence in random field- points 

close together will have similar properties while widely separated points could have quite different 

properties. This feature of random fields is what makes it a realistic soil model since, in general, real 

soils also tend to have similar properties at nearby points and less similar at large separations. 

3. Random finite element method

As it is mentioned before, the random finite element method combines elasto-plastic finite element 

analysis with random field theory.  In this technique, a random field of stochastic parameters are 

generated and mapped onto the finite element mesh. For each random set, the entire elasto-plastic 

analysis is performed. 

In a random field, the value assigned to each element is itself a random variable. These variables can 

be correlated to each other by controlling the spatial correlation length ( ), which defined for each 

random parameter. Furthermore, the correlation function is used to represent the field observation that 

soil samples taken close together are more likely to have similar properties, than samples taken from 

far apart. The details of methodology could be found in other publications [4]. 

In random finite element process, for a given set of input (mean, standard deviation and spatial 

correlation length), Monte Carlo simulations are utilized. This means that the stability analysis of 

vertical cut is repeated many times until the statistics of the output quantities of stability number 

become stable. 

4. Problem definition

The stability safety factor of cohesion vertical cut stability is determined by limit equilibrium method 

as:  

         
4

S

C
F

H
      (1) 

where, H is the height of cut and,  and c are the soil unit weight and cohesion respectively.  

The stochastic stability of this type of slope can be made in several methods. In this research this 

purely cohesive soil under its own weight is analyzed by elasto-plastic finite element method. The 

theoretical basis of the method is described in Literature [9].  

The soil parameters such as unit weight ( γ ) and cohesion (c) are considered as input stochastic 

parameters which are modelled using a truncated normal probability distribution function. The height 

of slope (H), Young’s modulus (E), Poisson’s ratio (ν) and friction angle are regarded as constant 

parameters. The stochastic parameters with truncated normal probability density function are shown 

in Table 1 and the deterministic parameters are given in Table 2. A computer model was developed by 

codding in MATLAB. For modelling of the soil behaviour, a specific Moher-Columb elasto-plastic 

model is used.  

The spatial auto-correlation function for normally distributed field's parameters is assumed to be 

Markovian as: 

 
 
 

2
ρ = exp -

θ  
(2) 

where τ is the distance between any two points and θ is the correlation length beyond which two 

points in the field are largely uncorrelated. In many studies, the correlation length is considered equal 

to the smaller model lengths [1,10]. In this study, the correlation length is selected equal to 4.0 m. 

Table 1:  Stochastic parameters 
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Table 2: Deterministic parameters 

To solve this stability problem by random finite element technique, a model consists of 56 elements 

with side length 1.0 m is implemented. These elements have eight nodes and each of the nodes has 

two degrees of freedom in the horizontal and vertical direction. The boundary conditions are such that 

the bottom side of the soil layer is fully restrained. The left (A) and the right (B) side of the soil layer 

are restrained only in the horizontal direction. This two-dimensional plane strain state body analyzed 

under self-weight. The geometry and mesh details of cohesive vertical cut are shown in Figure 1. 

Figure 1: The geometry and mesh details of cohesive vertical cut 

It was determined that 10,000 realizations of the Monte-Carlo process for each parametric group, was 

sufficient to give reliable and reproducible estimates of the probability of pore pressure ratio. Figure 2 

show the probability density function and cumulative distribution function of safety factor. It can be 

seen the probability density function of the safety factor for vertical cut slope has normal distribution 

and the probability of failure is about 60%. 
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      (a)                                                                                     (b) 
Figure 2: (a) Probability and (b) Cumulative distribution function of stability number in cohesive 

vertical cut 

5. Conclusions

Slope stability analysis is a probabilistic problem due to the inherent uncertainties in the

geotechnical parameters, model performance as well as human uncertainty. In this paper, the

random finite element method was used to assess the reliability of vertical cut stability based on

the uncertainty in the geotechnical properties. The results showed that the probability distribution

of the safety factor also has a nearly normal distribution. The sensitivity analysis also showed that

the friction angle is the most influential parameter in stability of vertical cut.
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ABSTRACT 

Liquefaction of soils is defined as significant reduction in shear strength and stiffness due to increase in pore 

pressure. This phenomenon can be assessed in static or dynamic loading types. However, in each type, the 

inherent variability of the soil parameters dictates that this problem is of a probabilistic nature rather than being 

deterministic. In this research, a random finite element analysis is used for reliability assessment of static 

liquefaction potential of loose sand under monotonic loading. The soil behaviour is modelled by an elasto-

plastic constitutive model. The selected stochastic parameters are soil parameters such as unit weight, peak 

friction angle and initial plastic shear modulus. A sensitivity analysis was carried out to evaluate the response of 

liquefaction potential with respect to changes in input stochastic parameters. It is shown that the unit weight is 

the most effective parameter within selected stochastic parameters in soil liquefaction potential. 

Keywords: Reliability analysis, Soil liquefaction, Random finite element method, Monotonic loading 

1. Introduction

Liquefaction resulting from the application of monotonic undrained loading is referred to as static 

liquefaction. Among the previous research works, limited attempts have been made to stochastic 

analysis of static liquefaction. However, the inherent uncertainties of the characteristics which affect 

static liquefaction dictate that the problem is of a stochastic nature rather than being deterministic. In 

this research, the random finite element method is used to assess the reliability of the static 

liquefaction potential of sandy soils based on probability density function of modified pore pressure 

ratio at each depth. The soil parameters such as saturated unit weight, peak friction angle and initial 

plastic shear modulus are considered as input stochastic parameters. A computer model was 

developed by coding in MATLAB. For modelling of the soil behaviour, a specific elasto-plastic 

effective stress constitutive model UBCSAND that was developed by Byrne et al. [1] is used.  

2. Constitutive model: UBCSAND

UBCSAND [2] is a 2-dimensional effective stress plasticity model for use in advanced stress-

deformation analysis of geotechnical structures. This model predicts the shear stress-strain behaviour 

of the soil using an assumed hyperbolic relationship and estimates the associated volumetric response 

of the soil skeleton using a non-associated flow rule. Information on UBCSAND is presented by 

Beaty and Byrne [3] and Puebla et al. [4]. 

3. Modified pore pressure ratio

If a soil layer is loaded at surface (e.g., constriction of embankment) the pore pressure ratio must be 

modified based on increasing in total stress (ΔP) as following: 

PP

u
r excess

Mu



'

)(
0

        (1) 
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Where 
u

r  is pore pressure ratio, excess
u  is excess pore water pressure and 

0
P is initial mean effective 

stress. 

4. Random field modelling

To sake the spatial variability of soil’s parameters a two-dimensional (2-D) Gaussian random field 

modelling is used. In this paper, the exponential correlation function, which is commonly used in 

random field modelling, is selected [5]. 

5. Procedure of static liquefaction reliability analysis by RFEM method

For developing the model to reliability analysis of static liquefaction, the finite element method is 

combined with random field generation techniques. For this purpose a monotonic load is exerted on 

the surface of saturated loose sand layer and at the end of loading, values of mean total stress, pore 

water pressure and mean effective stress are determined. Finally for evaluation of liquefaction 

occurrence, the values of modified pore pressure ratio at each point of field region are obtained.     

In each realization after producing the stochastic soil parameter, they are mapped to the elements and 

the soil mass analyzed by the finite-element method under external load (load incrementally 

increased) and modified pore pressure ratios are calculated in each point. This analysis over a 

sequence of realizations (Monte Carlo simulation) yields a sequence of computed responses, allowing 

the distribution of the modified pore pressure ratio to be estimated.  

6. Example

A 10m*30m horizontal saturated loose sand layer is considered and the static loading is exerted to the 

surface of it. The field region includes 30 by 10 square elements with element size of 1m (Figure 1). 

A two-dimensional plane strain state body subjected to a monotonic load of 20kN/m. 

The stochastic parameters with truncated normal probability density function are shown in Table 1 

and the deterministic parameters are given in Table 2. Figure 2 show typical random field realizations 

of stochastic input parameters. Figure 3 show modified pore pressure ratio variation in soil mass at the 

end of loading related to one realization. According to this figure, the modified pore pressure ratio and 

probability of liquefaction occurrence reduced with increase in the soil depth. 

Figure 1: Finite element meshes discretization of problem. 

Table 1.Stochastic truncated normal parameters. 

Minimum Maximum Standard deviation Mean Parameter 

17 21 0.5 19 γ sat 

29 37 1 33 f

10000 50000 5000 30000 
i
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Table 2: Deterministic parameters. 
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Figure 2: Sample realization of 2D normal random 

field. Representing spatial variation of saturated unit 

weight. 
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Figure 3: Sample field of modified pore pressure 

ratio variation. 

 

At the end of analysis a probability distribution curve for the mean total stress, pore water pressure 

and mean effective stress were achieved in each element. Consequently, the probability distribution 

function of modified pore pressure ratio in all elements can be determined and probability of 

liquefaction is obtained at these elements.  

Figure 5 shows, the probability of zero mean effective stress in the eighth element is approximately 

equal to 68% and this probability for the ninth and tenth elements is equal to 100%; that means 

occurrence of limited liquefaction in eighth element and complete liquefaction in ninth and tenth 

elements. 
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Figure 4: Probability density function of mean 
effective stress in depth steps 1.0m. 
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Figure 5: Cumulative density function of mean  
effective stress in depth steps 1.0m. 

 

Figure 6 shows the probability density function of modified pore pressure ratio in depth steps 1.0m. 

According to Figure 7, the probability of liquefaction (modified pore pressure ratio equal to 1.0) in the 

eighth element is approximately equal to 68%. This probability for the ninth and tenth elements is 

equal to 100% which represents an occurrence of limited liquefaction in eighth element and complete 

liquefaction in ninth and tenth elements 
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Figure 6: Probability density function of modified pore

pressure ratio in depth steps 1.0m. 
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Figure 7: Cumulative density function of modified 

pore pressure ratio in depth steps 1.0m. 

7. Conclusion

The paper is presented the reliability analysis of static soil liquefaction based on probability density 

function of modified pore pressure ratio at each depth using the random finite element method. The 

soil behaviour is modelled by an elasto-plastic effective stress constitutive model. Each realization of 

the Monte Carlo simulation involves a 2D Gaussian random field modelling. Soil parameters such as 

saturated unit weight, peak friction angle, and initial plastic shear modulus are selected as stochastic 

parameters which are modelled using a truncated normal probability density function. In addition, the 

sensitivity analysis of the proposed model indicated that this method can correctly predict the patterns 

of influence of the stochastic parameters.  
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ABSTRACT 

The formation of subway network in metropolis inevitably brings the case of shield tunnels going across the 
adjacent tunnels at different locations to shield tunnel excavation. Considering the complicated project of four-
line overlapped tunnels in Shanghai metro construction, in which the Metro Line 11 below-shield and above-
shield cross the short-distance Metro Line 4 tunnels successively, 3D-FEM simulation together with field 
measurements is employed to study the ground surface displacement. According to the distribution law of earth 
pressure around the existing tunnels, the face support pressure and grouting pressure change with the advance of 
shield machine. Based on analysis of numerical results and measured data, the influence of short-distance multi-
line overlapped shield tunneling on the ground surface displacement is obtained. The conclusions would be 
helpful for the construction of similar multi-line overlapped tunnels. 

Keywords: Multi-line Overlapped Tunnels; Shield Tunneling; Ground Surface Displacement; 3D-FEM 

1. Introduction

The ground surface displacement caused by shield tunneling is one of the most important indicators 
during the tunnel construction. More and more tunnels are being constructed to meet the increasing 
demands of transportation in metropolises such as Beijing, Shanghai and Guangzhou. As a result, 
improving an existing subway network inevitably requires new tunnels driving closely across running 
tunnels. In Japan, Yamaguchi et al. [1] analyzed the behavior of four subway tunnels that run closely 
each other by collecting numerous monitoring data. Lee et al. [2] performed a series of numerical 
simulations to investigate the surface settlement troughs, tunnel stability and arching effects that 
develop during two parallel tunneling. Chehade and Shahrour [3] carried out a numerical analysis of 
the excavation of twin-tunnels with a particular focus on the influence of both the relative position 
and the excavation procedure on the soil settlement. Nagel et al. [4] found that the influence of 
heading face support pressure and grouting pressure on the surface settlements can be realistically 
described by the use of the holistic proposed simulation model. 
Ground surface displacement has been extensively analyzed in the condition of single-line and 
double-line tunneling. However, the case of Metro Line 11 below-shield and above-shield 
successively cross the short-distance Metro Line 4 tunnels results in unforeseen impact on ground 
displacement in Shanghai. For this reason, this paper performs a 3D finite element numerical 
investigation of ground surface displacement during the construction of short-distance multi-line 
shield tunnels. Based on the comparison between numerical results and measured data, some 
conclusions would be helpful for the construction of multi-line overlapped tunnels. 

2. Project Background

The new Metro Line 11 tunnels are constructed by two EPB shield machines with diameter of 6.34 m. 
From Xujiahui station to Shanghai gymnasium station, the Up-line 11 shield and Down-line 11 shield 
cross from below and above the running Metro Line 4 tunnels with the angle of 75º successively. The 
minimum vertical clearance between the Line 11 and Line 4 is 1.82 m and 1.69 m respectively. The 
external diameter D of the Line 11 tunnel is 6.2 m, width of the lining ring is 1.2 m, thickness of the 
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segment is 0.35 m and the strength grade is C55. Corresponding parameters of the Line 4 tunnel are 
same to those of the Line 11 tunnel. The mechanical parameters of the soil are summarized in Table 1. 

 
Table 1: Mechanical parameters of the soil 

 

Soil layer Depth (m) γ (kN/m3) c (kPa) φ (°) Es (MPa) μ 

① Fill 0.0~2.0 18.3 15.0 16.0 4.52 0.33 

② Silty clay 2.0~3.3 18.5 26.0 17.0 4.48 0.32 

③ Muddy silty clay 3.3~6.6 17.4 10.0 16.5 2.54 0.32 

④ Muddy clay 6.6~15.0 16.7 11.0 12.5 2.09 0.33 

⑤1 Clay 15.0~16.0 17.8 14.0 14.5 3.36 0.26 

⑤1a Sandy silt 16.0~20.5 18.2 5.0 33.0 8.21 0.24 

⑤1 Clay 20.5~24.8 17.8 14.0 14.5 3.36 0.26 

⑤3 Silty clay 24.8~39.8 18.1 16.0 22.5 4.66 0.29 

 

3. 3D-FEM analysis model 

In order to study the ground surface displacement induced by short-distance multi-line shield 
tunneling, a 3D model with dimension of 84 m (direction of the Line 11 excavation) × 84 m 
(longitudinal direction of the Line4)×60 m (depth) is established, as shown in Fig. 1. An elastic 
perfectly plastic constitutive relation based on the Drucker-Prager yield criterion is adopted to 
describe the soil behavior. The soil, tunnel lining and equivalent layer are modeled by 8-nodes solid 
elements. It should be noted that, after the completion of Up-line 11 tunnel, the Down-line 11 shield 
starts to move forward. The Young’s modulus of the grout changes with excavation step from 0.58 
MPa to 1.2 MPa, which is supposed to reflect the process of grout hardening. According to the 
distribution law of vertical earth pressure around the existing Line 4 tunnels (see Figure 2), the 
grouting pressure was set to be equal to the vertical earth pressure of working face center(σv) and the 
face support pressure was given by P=Kσv (K is the coefficient of lateral earth pressure). 
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Figure 1: 3D geometric model and observing lines     Figure 2: Vertical earth pressure distribution at different 

                                                                                            positions of new tunnel excavation face 
 

4. Results and comparisons 
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Construction of the Up-line 11 tunnel. Fig. 3 shows the change of vertical displacements of the 
points in the longitudinal direction of the Up-line11 tunnel axis with the construction of Up-line11 
tunnel. It is noted that the vertical displacements of the points remain stable at around 0.2 mm and 
decrease gradually before the Up-line11 shield machine reaching the centerlines of existing tunnels. 
As the shield machine moving forward continually, the settlements of the points would be stable 
finally. Fig. 4 shows the vertical displacement curve of ground surface at section CC and DD in 
different excavation step. The maximum settlement value occurs at the centerline position of the Up-
line11 tunnel. 
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Construction of the Down-line 11 tunnel. The Down-line 11 shield starts to move forward when the 
Up-line 11 tunnel has been constructed in the overlapped site. In order to compare with the measured 
data during the construction of Down-line 11 tunnel, the initial displacement of ground surface is 
assumed to be 0 mm at the beginning of the construction. 
Vertical displacements of the points in the longitudinal direction of the Down-line11 tunnel axis 
change with the construction of Down-line 11 tunnel are given in Fig. 5. Different from the vertical 
displacements during the construction of Up-line 11 tunnel, the maximum uplift value of the point 
increases to 1.5 mm due to the effect of face support pressure. Part uplift of the ground surface 
appears at section CC and DD, which is mainly caused by centerlines misalignment of the Line 11 
tunnels, as shown in Fig. 6. 
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Analysis of measured data. Because of the complicated project of multi-line overlapped tunnels, 
strict measurement on the vertical displacements of ground surface in the longitudinal direction of 
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Line11 tunnel axis is executed. Fig. 7 and Fig. 8 show the measured data of the points during the 
excavation process of Up-line 11 tunnel and Down-line 11 tunnel respectively. 
From the figures, vertical displacement lag of the ground surface is observed during the excavation 
process. The maximum uplift value of ground surface caused by 1.0D-depth Down-line 11 tunneling 
is greater than the one caused by 3.5D-depth Up-line 11 tunneling. In addition, during the 
construction of shallow tunnel, ground surface uplift is mainly induced by rebound effect of the 
underlying tunnels which is affected by ground loss and stress release. 
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5. Conclusions

3D finite element numerical simulation and field measurements have been carried out to investigate 
the vertical displacements of ground surface due to the construction of short-distance multi-line 
overlapped shield tunnels in Shanghai. The following conclusions can be obtained from this study.  
(1) As a whole, the settlements of ground surface in the longitudinal direction of the Line11 tunnel 
axis increase gradually with the advance of shield machine. 
(2) The maximum settlement values in the longitudinal direction of the Line4 tunnel axis occur at the 
centerline position of the Up-line11 tunnel which was constructed at first. However, part uplift of the 
ground surface is observed due to the centerlines misalignment of the Line 11 tunnels. 
(3) Results from the measured data show that rebound deformation of the underlying tunnels is the 
primary cause which results in the uplift of ground surface during the construction of shallow tunnel. 
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ABSTRACT

The importance of stress intensity factors (SIFs) in linear elastic fracture mechanics is that they may
be readily applied to give fracture safety assessment as well as fatigue life predictions. There are many
numerical approaches that aim to capture the stress singularity in some way, and some postprocessing is
required to give the SIFs. The proposed method provides a direct evaluation of SIFs with high accuracy
and a low number of elements. The solution column reveals the values of KI and KII without the necessity
for postprocessing calculations such as the J-integral. The method takes advantage of a new Extended
BEM approach, which limits the additional Degrees of Freedom (DOF) to two per crack-tip; this allows
for unlimited elements to be enriched. Auxiliary equations are derived from enforcing continuity of
displacement at the crack tip. Numerical examples for mode I and mixed mode problems show a high
level of accuracy with a low number of elements.

Key Words: Enriched BEM, XBEM; Fracture Mechanics, Stress Intensity Factors

1. Introduction

Cracks existing in engineering structures can grow extremely rapidly when they reach a certain length,
leading to serious failure. Determination of crack growth rates and critical length requires an accurate
evaluation of the stresses near to the crack-tip. In linear elastic fracture mechanics, William’s expan-
sions can provide an accurate evaluation of stresses near the crack-tip [1] once the SIFs are known.
However, although analytical SIFs are available for simple geometries, for the majority of cases numeri-
cal techniques are required. Contributions of numerical methods in fracture mechanics are well-known.
However, some selected previous works that have led to our algorithm for direct calculation of SIFs are
briefly discussed.

The Partition of Unity Method (PUM) established the concept of using basis functions with better ap-
proximation properties than piecewise polynomials [2]; this has been widely implemented with FEM
to model fracture mechanics problems with great success. The use of Extended FEM (XFEM) [3] has
led to accurate results being produced from a coarse mesh. Simpson [4] has introduced a technique that
might be called the extended BEM (XBEM), to determine SIFs with similar enrichment to XFEM. This
shows a high accuracy at low computational rate, but requires a J-integral for accurate SIFs. However, the
current method involves revealing accurate values of KI and KII directly, without the need for such post-
processing. This is likely to be of significance particularly in 3D, though this paper considers only 2D. A
new auxiliary equation is also introduced to enforce displacement continuity at the crack tip, replacing
the need for additional collocation points as used in [4]. The method shows flexibility in the number of
enriched elements, which allows more elements to be enriched without increasing the DoFs or degrading
the conditioning.

2. Formulation

The formulation of XBEM introduced by Simpson and Trevelyan [5], based on PUM, is used in the
same fashion in the current method. The XBEM permits the use of Williams’ asymptotic displacement
expansions around the crack-tip as an additional basis function. Here the Williams displacement equation
can be written as,
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u j = KIψI j(ρ, θ) + KIIψII j(ρ, θ) (1)

where KI and KII are mode I and mode II SIFs; ψI j(ρ, θ) and ψII j(ρ, θ) are given by the following
functions, obtained from Williams expansions,

ψIx =
1

2µ

√
ρ

2π
cos

θ

2

[
κ − 1 + 2 sin2 θ

2

]
(2a)

ψIIx =
1

2µ

√
ρ

2π
sin

θ

2

[
κ + 1 + 2 cos2 θ

2

]
(2b)

ψIy =
1

2µ

√
ρ

2π
sin

θ

2

[
κ + 1 − 2 cos2 θ

2

]
(2c)

ψIIy =
1

2µ

√
ρ

2π
cos

θ

2

[
κ − 1 − 2 sin2 θ

2

]
(2d)

where ρ and θ are polar coordinates centred at the crack-tip, and κ is a parameter defined as κ = 3 − 4υ
and κ = 3−υ

1+υ for plane strain and plane stress, respectively, υ being Poisson’s ratio. Eq (1) can be rewritten
to approximate the displacement near the crack-tip in the style of Benzley [6]; as follows,

u j = K̃IψI j + K̃IIψII j +

M∑
a=1

Naua
j (3)

where terms ua
j are not nodal displacements but are now more general coefficients used to find the dis-

placement, Na is the Lagrangian shape function for node a and M is the total number of element nodes.
K̃I and K̃II are coefficients playing the role of SIFs KI and KII , and are yielded as part of the solution
vector. The first two terms of Eq. (3) are used to capture the local crack displacement, relative to the
crack-tip, while the last term is included to approximate any non-zero displacement of the crack-tip.

The enriched displacement form (3) is used within the Dual Boundary Element Method (DBEM)[7].
DBEM is an ideal technique to model crack problems without giving rank deficiency. The BEM system
is formed using the Displacement Boundary Integral Equation (DBIE) when collocating on one crack
surface (and all non-crack boundaries) and the Traction Boundary Integral Equation (TBIE) for the op-
posing crack surface. DBIE can be written in a discretised form as,

Ci j(x̀)u j(x̀) + Ci j(x̂)u j(x̂) +

Ne∑
n=1

una
j

∫ 1

−1
Na(ξ)Ti j(x̀, x(ξ))Jn(ξ)dξ +

Ne∑
a=1

K̃l

∫ 1

−1
Ti j(x̀, x(ξ))ψl j(ξ)Jn(ξ)dξ︸                               ︷︷                               ︸

P̃n
i jl

=

Ne∑
n=1

tna
j

∫ 1

−1
Na(ξ)Ui j(x̀, x(ξ))Jn(ξ)dξ (4)

where Ne is the total number of elements, and Jn(ξ) is the Jacobian. Ti j,Ui j are the usual traction and
displacement kernels. If the nth element is unenriched then P̃n

i jl = 0, l = I, II. In addition, as θ = ±π at
the crack surfaces for flat cracks, ψI j and ψII j are only functions of ξ . Jump terms in the enriched DBIE
remain the same as unenriched jump terms; these will be cancelled during implementation. The TBIE
can be obtained in numerical form as follows,

ni(x̀)
Ne∑
n=1

una
k

∫ 1

−1
Na(ξ)S ki j(x̀, x(ξ))Jn(ξ)dξ + ni(x̀)

Ne∑
a=1

K̃l

∫ 1

−1
S ki j(x̀, x(ξ))ψlk(ξ)Jn(ξ)dξ︸                                 ︷︷                                 ︸

Ẽn
ki jl

= ni(x̀)
Ne∑
n=1

tna
k

∫ 1

−1
Na(ξ)Dki j(x̀, x(ξ))Jn(ξ)dξ (5)

where S ki j,Dki j are the usual derivative kernels. If the nth element is unenriched Ẽn
ki jl = 0, l = I, II.

Implementation of the TBIE and DBIE requires considerable care in evaluating the hyper-singular and
strongly-singular integrals, and the injection of extra enrichment degrees of freedom requires us to supply
auxiliary equations to reach a square linear system.
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Figure 1: Numerical examples, a) Mode I centred crack on a flat plate; b) Inclined edge crack on rectangular plate
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Figure 2: KI compared to post-process method

3. Crack-tip displacement continuity

The Dual BEM involves a hypersingular integral equation which places requirements on the continuity
of displacement derivatives at the collocation point. This cannot normally be achieved because of the C0

continuity of shape functions at nodes shared between adjacent elements. Therefore, most Dual BEM
implementations make use of discontinuous elements. One result of this is that a displacement disconti-
nuity is often observed at the crack tip. While this does not in itself preclude us from obtaining accurate
SIFs, it does provide us with an opportunity to design a simple set of auxiliary equations while at the
same time enforcing a displacement continuity that is observed in the physical problem being modelled.
The crack tip displacement can be approximated by extrapolating over the adjacent elements on the up-
per and lower crack surfaces. The approximations taken from the two surfaces can be equated to enforce
displacement continuity, i.e.

L∑
a=1

ua
j(upper)

Na =

L∑
a=1

ua
j(lower)

Na (6)

L is the number of nodes used for the crack-tip extrapolation and Na is the associated Lagrangian shape
function. Eq. (6) is considered in both x and y directions independently, and the resulting equations used
to form extra rows of the matrix description of the BEM problem. Now, K̃I and K̃II can present the SIFs
directly, without requiring the J-integral.

4. Numerical Examples

The first example is a pure Mode I centre crack in a rectangular flat plate under uniaxial traction, with
dimensions of h = 2w = 4a, as illustrated in Fig.1(a). Because of symmetry, only half of the plate
is considered. The problem does not have an exact solution; instead a reference solution is used[8].
Normalised results K/K0, where K0 = σ

√
πa, are shown in Fig. 2 in which the reference solution is

plotted as a horizontal line.

In the second example, a mixed mode inclined edge crack in a rectangular flat plate is shown in Fig. 1(b).
A solution by Wilson [9] is used as a reference solution. Results have been plotted in Figs. 3 (a) and (b)
for KI and KII , respectively.
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Figure 3: KI compared to post-process method

In all figures we compare the Direct K̃I and K̃II results against (i) a conventional (unenriched) Dual
BEM using the J-integral, and (ii) an enriched Dual XBEM using the J-integral. In all cases the directly
obtained SIFs show excellent convergence properties.

5. Conclusions

A direct method has been presented that is able to evaluate SIFs without need for postprocessing (J-
integral) calculations. This has been achieved using a Dual XBEM approach in which auxiliary equations
are formed by enforcing displacement continuity at the crack tip. Additional DoFs are limited to two
per crack-tip, which allows for the enrichment of all crack surface elements for greater accuracy with
controlled conditioning. Special treatment must be applied to singular integrals as illustrated in [4]. The
results show accurate values for SIFs compared to conventional J-integral based BEM approaches. The
method can be extended to 3D, where the removal of the requirement for a J-integral will be helpful.
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ABSTRACT 
The validation of macroscopic fracture modelling of heterogenous materials is strongly related to the 
effectiveness of the homogenization principle at fine scales. Often because the complete material morphology is 
missing, artificial repetitive boundary conditions are deployed despite many criticisms on their inadequate local 
subscale assumptions. This paper applies a recently developed multiscale stochastic fracture modelling approach 
(MsSFrM) to simulate crack growth in FRP materials. First, image-based models are solved at micro level and 
mapped onto the macro scale using a two-scales adaptive window principle; and second, the macro scale is 
solved by using a calibrated heterogeneous cohesive interface crack model based on [6, 7]. Two further 
enhancements are proposed here, both being able of representing the macro continuum in a stochastic fashion. 
First, the micro scale is related to various degrees of aggregations (DAG) via Voronoi tessellation statistics; and 
second, Karhunen-Loeve (KL) material property expansions are used for areas where images cannot be 
provided.  

Keywords: multiscale stochastic fracture mechanics; cohesive zone modelling (CZM); fibre reinforced plastics 
(FRPs); Monte Carlo simulation  

1. Introduction

In order to extend the micro mechanical interactions of heterogeneous materials to macro continuum, 
two options are available. First the random mapping of heterogeneous properties which extends the 
formulation to semi-infinite continuum, but with a good control of the material property variances; 
second, cascade scale segmentations such as hierarchical image based reconstructions can be defined 
in order to ensure that the crack paths and energy conservation principles yields best matching results. 
While the undamaged plasticity behaviour does not pose any modelling difficulty and most traditional 
multiscale modelling strategies can be employed, modelling the softening part poses great challenges 
which are commonly associated with the stochastic character of the crack paths. Crack bias effects 
arise mainly from random distribution of the inclusions, but also from size effects, local material 
defects and incompatible boundary conditions. 
This paper uses the multiscale stochastic fracture modelling method (MsSFrM) developed by Sencu, 
et. al. (2014) which is based on image based FRP models. The modelling is done in two different 
stages. In the first stage, the orthotropic properties of transverse plies at micro-scale were obtained; 
afterwards, a memory-wise mapping links material properties from micro to macro scale. The local 
mismatch of properties between meso scale units is evaluated by stress displacement curves from 
prescribed boundary conditions. Multiple meso scale elements (MeEs) were used to capture most 
critical failure events. However, when extending the computational domain to full scale, some 
important morphological information required is unavailable due to limited fields of view. In such 
cases, bootstrapping algorithms [1] can be further employed to assign continuum properties. 
Therefore, this paper extends the MsSFrM to a hybrid formulation MsSFrM-H which promises 
flexibility and accuracy for modelling heterogeneous structural components. The MsSFrM-H 
framework is aimed at using the available material information in most critical areas (such as the 
beam notch, corners and areas where stress concentrations are expected) and uses bootstrapped data 
for the rest of macro continuum. This method should not be confused with concurrent discretisation 
methods such as [2, 3] or the hierarchical uncoupled approaches in [4, 5]. The benefit of using this 
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new development is that the computational cost is kept to minimum, while the non-local elasto-plastic 
disruption of the overall model is also minimized.  

2. Stochastic coupling enhancements of MsSFrM

The conceptual formulation of the MsSFrM-H method is shortly presented in Figure 1. The key steps 
of this method are as follows: image acquisition, image based models reconstruction and simulation 
by using overlapped windows, adaptive mesh discretisation at macro scale and properties mapping, 
KL expansions and reconstruction of the overall structural model. The detailed modelling 
methodology is not presented here. 

Figure 1: The big picture of MsSFrM-H framework. 

A finite number of MeEs are explicitly simulated in fracture modes I and II on the two principal 
orthonormal directions. The macro scale properties are then approximated based on two overlapping 
average equations which collect the effects of elements sharing the same edge: 
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The new MsSFrM-H approach is based on correlation concepts of statistical fibre distribution within 
individual MeE windows which are transferred to macro scale via Voronoi tessellation cells. Similar 
interfacial stochastic homogenized cohesive elements are used at macro scale to represent the 
fluctuations of microscopic deformation fields. 

Meso mechanics 

three phase material
overlapped discretisation
image based MeE modelling

identification of bulk cohesive laws
adaptive discretisation based on DAG

Identification and statistics of fracture
parameters E11, E22, G11, G22 etc.
Bootstrapping K-L expansion

Macro continuum 

automatic MaE discretisation
preserved crack paths

coupled properties
MaE memory wise mapping
anisotropic FE formulation

K-L expansion mapping
adaptive mapping
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3. Modelling results 

The enhancements in this paper can be separated in two main categories according to the scale 
definition. At meso scale, the MeE size can systematically change according to the target domain 
which allows the discretisation of difficult computational areas (such as for curved components like 
pipes, nozzles, ribs etc.). Second, we introduce a new meso scale degree of aggregation (DAG) 
evaluated based on Voronoi tessellation. This will be further related to the crack initiation and 
propagation processes. At macro scale, material properties bootstrap is introduced based on 
Karhunen-Loeve (KL) expansion. The KL process produces best possible basis for expansion.  

 

 
Figure 2: Stress contours on a type 2 failure mode with MeE size 100 µm2. 

 

Figure 3 explains some methodologies which were used. Both non-overlapped as well as overlapped 
MeE discretisations were tested. As previously mentioned, different crack paths can arise. It has been 
observed that in general, the overlapping concept is a better method to solve the deformation 
compatibility problem and therefore gives more accurate multiscale links.   

 

Figure 3: (a) non-overlapping discretisation; (b) crack paths from MeEs in (a); (c) overlapped 
discretisation; (d) crack paths from MeEs in (c). 

 

In Figure 4 we illustrate the stress-displacement curves and crack path benchmarks as they were 
obtained from the overlapped series MeE 16x50 against fully detailed meso-scale simulations (typical 
MeE 100 stress contour plots are shown in Figure 2). The grid size was 25 microns and the 
simulations were computed on multiple CPUs. The individual crack paths were used to build an 
adaptive macro mesh which matched the detailed crack paths from different boundary conditions such 
as mode 1 and mixed modes on x and y directions.  The CPU time on a desktop PC i7 – 2600 @3.40 
GHz with 8 cores was about 5 to 6 hours per simulation, while when using 48 cores per simulation on 
the CSF facility at University of Manchester, the average time was 45 min.  

(a) (b) (c) (d) 

(a) (b) 
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Figure 4: Nonlinear benchmark by using the overlapping concept vs fully detailed simulations. 

4. Conclusions

Simulations of a wide range of properties by using traditional non-overlapping discretisation are not 
always possible due to the bias of the crack paths. The novel overlapping discretisation concept was 
successfully employed to transfer crack growth from micro to macro on FRP materials. Once the most 
critical crack locations are known, many discretisation options could be created in order to solve the 
macro scale. For example, reduced integration order meshes either containing full information about 
inclusions or by using homogenized continuum solids are all possible. Finally, it is proved that the 
cohesive crack interface model can be employed to simulate both intra and inter meso to macro scale 
complicated fracture interactions by using the newly developed MsSFrM-H framework. The hybrid 
formulation allows the extension of the image based results to further simulate full scale structural 
components. It is believed that unstructured discretisations can be related to statistical measurements 
at micro scale, such as the proposed Voronoi DAG. This is an essential step in decomposing the crack 
probability spectrum in order to shape feasible realizations for modelling the complete macro 
continuum.  
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ABSTRACT

This paper presents initial work on the computational modelling of 3D fluid-driven fractures in rock. In
this work, the rock deformation is assumed to be elastic and the fluid flow is considered to be constant
along the fracture. Leak-off is not considered at this stage. Propagating fractures are modelled using co-
hesive interface elements. The model is developed in the context of the finite element method (FEM) and
utilises a hierarchic approximation basis [1], allowing for local p-refinement. In this paper, the perfor-
mance of the interface elements, with higher-order approximation polynomials, will be studied in detail.
The dissipative load path is controlled by a local arc-length control methodology [2]. All problems are
undertaken in 3D. The model is being incorporated into our open source software package MoFEM [3]
and is optimised for high performance computing on distributed memory computers.

Key Words: fluid-driven fractures; hierarchic element; cohesive interface element; local arc-length con-
trol; MoFEM

1. Introduction

Hydraulic fracture (fracking) is an important technique, widely used in petroleum engineering, under-
ground mining, ground thermal energy exploitation, etc. Fracking has received significant attention by
engineers in recent years due to the discovery and exploration of shale gas. Basically, fracking is the
process of drilling and injecting fluid (typically water mixed with sand and chemicals) into the ground at
high pressure in order to fracture rock and release gas or hydrocarbons.

Fracking is a fluid-driven fracture processing, which requires many aspects to be considered, such as [4]:
the flow of fluid on the fracture aperture; the mechanics deformation of the surrounding medium induced
by the fluid pressure; the leak-off fluid from the fracture to the rock; the fracture propagation in rock. In
this work, fracking is considered to be a quasi-static process, the deformation of rock is assumed to be
elastic and the fluid flow is considered to be constant along the fracture. Leak-off is not considered at this
stage.

The 3D model is being built using the finite element method (FEM) and utilises a hierarchic approxima-
tion basis [1], allowing for local p-refinement. Propagating fractures are modelled using zero-thickness
cohesive interface elements. In addition, the local arc-length control methodology is used to capture the
dissipative load path [2].

This work is incorporated in MoFEM (Mesh-oriented Finite Element Method), our group’s open source
software package for multi-physics problems and optimised for high-performance computing [3].

2. Hierarchical finite element method

The 3D domains under consideration are discretised with tetrahedral finite elements and utilise hierar-
chical basis functions of arbitrary polynomial order, following the work of Ainsworth and Coyle [1]. In
this paper, the response of a benchmark problem for different orders of approximation are investigated.
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3. Zero-thickness cohesive element

In this paper, cohesive elements are adopted for modelling the hydraulic fracture. A bilinear cohesive
damage law between the traction f and the displacement jump g is adopted across the cohesive surface
and is shown in Fig.1 and Fig.2. Linear elastic behaviour is assumed for tractions less than the tensile
strength ft (or the displacement jump is less than g0), with a high penalty stiffness. For displacements
beyond g0, the traction reduces linearly to zero. When g = g0, the internal parameter κ is equal to 0; this
parameter is used in the definition of the water pressure. When κ reaches κ1, the crack is traction-free [5].

Figure 1: the irreversible bilinear cohesive law Figure 2: the water pressure criterion in cohesive element

In Figure 1 and 2, ω is damage parameter; E0 is penalty stiffness E0 = E
h , E is Young Modulus and h is

stiffness coefficient; G f is fracture energy G f =
κ1 ft

2 .

4. Local arc-length control

The global load-displacement response of the system can be highly nonlinear, involving snap-back or
snap-through phenomena, depending on the material properties, loading, geometry and constraints. As
a result, traditional path-following techniques can struggle to trace the post-bifurcation response. In this
work, a local arc-length control with line search has been successfully implemented and found to be
robust [2, 3].

5. Water pressure effect

At this stage of research, fracking is considered to be quasi-static. That is to say, the rate of crack open-
ing is slow enough so that temporal effects do not need to be taken into account, and the static water
pressure acts on both the traction-free crack and the cohesive zone. Following experimental results, the
water pressure in the cohesive zone can be assumed to be an exponential function of the crack opening
displacement (herein is κ) [6].

P = (Pl − P0)(1 − e−r·κ) + P0 (1)

Here P is the water pressure on the interface, Pl is external water pressure, P0 is the prescribed pressure
distribution at the interface before cracking (usually taken as 0), r is a material parameter based on
laboratory tests. When r → 0, no water-pressure acts, when r → 3/κ, then P ≈ Pl, i.e. the external
pressure fully acts on the interface.

An alternative water pressure function in the cohesive zone could be piece-wise linear, expressed as
following: P = Pl · (κ/κ1) (κ ≤ κ1)

P = Pl (κ > κ1)
(2)

where the water pressure P increases linearly from zero to the external static water pressure Pl.

6. Simple Numerical Example

The model (seen in Fig. 3) is 3D and the thickness is 2m. The initial crack is 2m long and the ini-
tial crack opening is 1m. The parameters for the model and the cohesive elements can be seen in Table 1.
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Table 1: The parameters of the model

Finite Element Cohesive Element
Young-modulous 2e10 Pa ft 125e4 N
Possion-ration 0.2 G f 120 J
h 0.64 β 0

In Table 1, parameter β is a weighting coefficient for the gap of cohesive element, expressed in following
equation:

g =

√
g2

n + β · g2
t (3)

where gn and gt are normal and shear displacements of cohesive elements, respectively.

6.1 Case 1
For the problem shown in Fig.3, different orders of approximation are investigated for the same external
water pressure and constraints. The results can be seen in Fig.4, where the order of approximation has
increased from 1st-order to 5th-order. The external water pressure in the initial crack is 1e6 Pa, the water
pressure in the cohesive zone follows the exponential function described above. The results are shown
for the first step of the analysis.

Figure 3: Simplified fracking model Figure 4: Displacement at point A and computational time.

6.2 Case 2
Here the external water pressure in the initial crack is 1e6 Pa. The water pressure in the cohesive zone
follows the exponential function described above for different values of r. 20 load steps are applied and
the order of approximation is 2nd-order. The load-displacement response for point A is shown in Fig.5.
It is noted that when r = 1e7, nearly the full water pressure acts on the interface during the propagation
process; and when r = 1e0, almost no water pressure acts in the cohesive zone.

6.3 Case 3
Here, all parameters are the same as for Case 2, except that the water pressure in the cohesive zone
follows the linear function described above. The load-displacement response for point A is shown in
Fig.6, where the response for the linear pressure is compared to no water pressure in the cohesive zone.
Fig .8 shows the final deformation of the model.

6.4 Case 4
Here the external water pressure is lowered to 1e5 Pa but extremes of r are considered. The load-
displacement response for point A is shown in Fig.7. It should be noted that when r = 1e7, snap-back
behaviour is observed and the local arc-length control can trace the nonlinear dissipative load path suc-
cessfully.

Future work will consider fluid flow in the fracture and fluid leak-off.
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Figure 5: case 2. Load-displacement response Figure 6: case 3. Load-displacement response

Figure 7: case 4. Load-displacement repsonse Figure 8: Final deformation of the model
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ABSTRACT

The displacement correlation technique is applied to extract stress intensity factors of 3D cracks discre-
tised using unstructured hybrid triangle-tetrahedral meshes. The crack surface is discretised by triangles;
crack walls are split at all nodes except for those on the tips; and elements on the crack tip are quarter
point triangles that have either a side or a corner on a tip segment. The paper proposes that the low-
cost displacement correlation technique can be applied to compute stress intensity factors of such grids,
provided that it is performed on corner quarter point triangular element. Displacements are interpolated
onto a plane normal to the crack front using the element local reference space. The numerical values of
the SIFs for a tilted penny-shaped crack embedded in a cube are compared with analytical results. There
is a good agreement between the numerical and analytical SIFs along the crack front.

Key Words: stress intensity factor; displacement correlation; quarter-point element; unstructured mesh

1. Introduction

Analysing cracked bodies often requires the accurate computation of fracture mechanics parameters such
as stress intensity factors (SIFs). In the context of linear elastic fracture mechanics, SIFs fully charac-
terise the stress state around the crack, and can be used to predict propagation. SIFs can be calculated
analytically or experimentally for restricted geometric configurations and boundary conditions. Numer-
ical techniques, such as the finite element method, often applied to analyse complex crack problems,
require spatial discretisation of the geometric domain. Barsoum [1] and Henshell and Shaw [2] proposed
the idea of using quarter-point elements (QPEs) in order to capture the high stress gradient near the crack
to accurately compute the singular crack stress field. They independently showed that the singularity at
the crack tip can be properly modelled by placing the mid-side node near the crack tip at the quarter-
point position. This shift simply results in a nonlinear mapping between the natural and local coordinate
systems in a way that singular strains at the crack tip occur, and an inverse square root singularity is mod-
elled throughout the element. Volumetric QPEs, such as the collapsed quarter-point twenty-noded brick
element and quarter-point fifteen-noded pentahedral element, are placed around the tip to form a brick-
structured mesh [1]. However, in practise, complex geometric multiple crack layouts are best discretised
using unstructured meshes which can be generated in a quick non-interactive manner, by a number of
mature open-source and commercial meshers, optimised to accurately capture geometry [3]. This paper
focusses on the use of a fully unstructured mesh to model 3D crack configurations, and employs the
nodal displacement near the crack to extract SIFs using the low-cost displacement correlation technique.
Quarter-point triangle and tetrahedral elements are used in an unstructured mesh layout to model singu-
larity along the crack front. The displacement correlation method is then developed to extract the SIFs
from FE results directly.

2. Displacement correlation method

Once the finite element simulation has been performed for a particular crack problem, crack tip stress
intensity factors can be computed by employing a correlation between the finite element nodal displace-
ments values and the well-known crack tip displacement fields. This method was first developed by for a

113



general FE solution of a crack problem without using CPEs or QPEs around the crack tip. As the FE re-
sults for stresses at crack tip are bounded in these solutions, the FE results are not very accurate very close
to the crack tip. Hence, an extrapolation approach was firstly used to compute SIFs from nodal displace-
ments. Shih et al. [4] employed a correlation between the displacement distribution over the quarter-point
element and the well known displacement field expressions, to extract the SIFs in 2D crack problems. In-
graffea and Manu [5] then generalised this approach for computing the SIFs in 3D crack problems using
collapsed quarter-point twenty-noded brick elements. The displacement correlation approach is concep-
tually simple and straight forward. Unlike energy approaches which require further numerical integration
of the FE results, this method directly uses the finite element nodal values to obtain the SIFs.

Two types of quarter-point tetrahedral elements are generated along the crack front: i) the ones which
share an edge with the crack front, side quarter-point tetrahedra (SQPTs); and the ones which share
one node with the crack front, corner quarter-point tetrahedra (CQPTs). As the square-root singularity
occurs in the whole domain of CQPTs, we shall use the displacement representation of these elements
for computing SIFs. In fact, we choose those CQPT elements through which the normal to the crack front
passes. Let us assume that ζ = 0 corresponds to the tetrahedal element face which is one of the corner-
based quarter-point triangles lies on the crack face (see Fig. 1). The ray normal to the crack front, OP in
Fig. 1, is defined by the natural coordinate 0 ≤ ψ ≤ 0 in a way that ψ = 0 and ψ = 1 represents points
O and P, respectively. Along this ray, the natural coordinates ξ and η will be: ξ = ξPψ and η = ηPψ,
in which (ξP, ηP,0) is the coordinate of point P in natural coordinate system (ξ, η, ζ). Using the shape
functions of the tetrahedral element, the relative displacement along the ray OP with respect to crack tip
displacement is expressed as:

u =
(
ξP(4u5 − u2) + ηP(4u7 − u3)

)
ψ + 2

(
ξP(u2 − 2u5) + ηP(u3 − 2u7) + 2ξPηP(u6 − u5 − u7)

)
ψ2 (1)

The distance of any point along OP from the crack tip is defined as r = LPψ
2, in which LP =√

(ξPx2 + ηPx3)2 + (ξPy2 + ηPy3)2 + (ξPz2 + ηPz3)2 is the length of line OP. The displacement along the
ray OP will therefore be given by:

u =
(
ξP(4u5 − u2) + ηP(4u7 − u3)

)√ r
LP

+ 2
(
ξP(u2 − 2u5) + ηP(u3 − 2u7) + 2ξPηP(u6 − u5 − u7)

) r
LP

(2)

The first term in Eq. (2) reproduces the displacement field due to the singular stress field, and the second

Figure 1: Matching triangular elements used for extracting SIFs.

term represents the displacement due to the constant stress. As we aim to compute the coefficients of
singular stress terms, only the first term shall be considered. Similar expressions can be obtained for the
displacements in y and z directions (v and w). The relative displacement of the top surface element with
respect to the displacement of the bottom surface element is therefore given by:

∆u =

[
ξP

(
4(u5 − u5∗) − (u2 − u2∗)

)
+ ηP

(
4(u7 − u7∗) − (u3 − u3∗)

)]√ r
LP

∆v =

[
ξP

(
4(v5 − v5∗) − (v2 − v2∗)

)
+ ηP

(
4(v7 − v7∗) − (v3 − v3∗)

)]√ r
LP

∆w =

[
ξP

(
4(w5 − w5∗) − (w2 − w2∗)

)
+ ηP

(
4(w7 − w7∗) − (w3 − w3∗)

)]√ r
LP

(3)
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On the other hand, the expressions for the relative displacement of the top and bottom crack faces are
given from the leading terms in Williams series expansion as:

∆u = KII

(
κ + 1
µ

)√ r
2π

+ O(r)

∆v = KI

(
κ + 1
µ

)√ r
2π

+ O(r)

∆w = KIII

(4
µ

)√ r
2π

+ O(r)

(4)

where KI, KII, and KIII are the stress intensity factors in modes I, II and III, respectively. µ = E/2(1 + ν)
is the shear modulus, E and ν are the Young’s modulus and Poisson’s ratio, and the Kolosov constant κ
is equal to 3 − 4ν for plain strain and (3 − ν)/(1 + ν) for plane stress. The assumptions of plane stress on
the free surfaces and plane strain elsewhere are also used for 3D crack problems. By equating Eqs. (3)
and (4) the following expessions for the SIFs are obtained:

KI =

√
2π
LP

(
µ

κ + 1

)[
ξP

(
4(v5 − v5∗) − (v2 − v2∗)

)
+ ηP

(
4(v7 − v7∗) − (v3 − v3∗)

)]
KII =

√
2π
LP

(
µ

κ + 1

)[
ξP

(
4(u5 − u5∗) − (u2 − u2∗)

)
+ ηP

(
4(u7 − u7∗) − (u3 − u3∗)

)]
KIII =

√
2π
LP

(
µ

4

)[
ξP

(
4(w5 − w5∗) − (w2 − w2∗)

)
+ ηP

(
4(w7 − w7∗) − (w3 − w3∗)

)]
(5)

3. Results and discussion

Fig. 2a schematically shows the configuration of a penny-shaped crack embedded in a cube and the
boundary conditions applied on the specimen. The model is discretised using a fully unstructured mesh
with triangles on the crack surface and tetrahedral elements elsewhere. The mid-side nodes near the crack
front are moved onto the quarter-point position. Fig. 3b shows the mesh structure on the crack face. The
full specimen was modelled to ensure that an unstructured mesh is generated all over the crack front. The
mixed mode stress intensity factors were computed using Eq. (5), and are plotted along the crack front
in a normalised form in Fig. 3. Numerical values are in a good agreement with analytical results. The
advantages of the displacement correlation approach are simplicity and low computational cost. This
method can be used for analysing very complicated crack configurations for which a structured mesh
cannot be generated.
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a) b)

Figure 2: Geometry and boundary conditions. (a) An inclined penny-shaped crack in a cubic body under uniaxial
tension. b) Mesh structure around the crack front.

Figure 3: Normalised mixed mode stress intensity factors for an inclined penny-shaped crack in a cubic body
(a/w = 0.1, β = 45◦)
.
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ABSTRACT 

A methodology has been developed to study unstable fracture in multi-body impacts. This has required the 
combination of two modelling frameworks, namely multi-body contact mechanics and quasi-static crack 
propagation. This was achieved by developing a number of algorithms for rigid body motion mitigation, crack 
initiation and Boolean unification between volume elements and the crack surface for coarse mesh generation.   
 
Keywords: Fracture, rigid body motion, crack initiation, Boolean unification of volume and surface 
 

1. Introduction  

The objective of this research is to develop a methodology for modelling crack propagation in three-
dimensional multi-body impact scenarios. The developed methodology makes use of a dynamic multi-
body contact finite element analysis code, SOLFEC [1], and a quasi-static crack propagation code, 
MoFEM [2]. The motivation of this work is the study of crack propagation in graphite bricks in an 
Advanced Gas-Cooled Reactor (AGR) subjected to abnormal loading conditions.  
 
2. Background 

The graphite core in an AGR is a large assembly of graphite bricks stored in an array format 
organised on top and next to each other with a vertical channel in the middle of each brick that 
contains the fuel, namely uranium dioxide. These graphite bricks will be idealised as isotropic linear 
elastic and assumed to behave in a brittle manner. 
 
SOLFEC is based on an implicit formulation of contact conditions, in contrast to commercial codes 
that typically employ repulsive springs in their contact methodology. This provides a physically 
accurate representation of reality and permits larger stable time-steps in simulations. SOLFEC has 
been developed with high performance computing in mind from the onset making it an ideal code for 
modelling a large number of impacting bodies. However, this capability does not extend to the finite 
element analysis part of the code. Subsequently, the mesh representing graphite bricks in an impact 
simulation uses a relatively simple mesh comprising through-depth elements as pictorially depicted in 
Figure 1(a). 
 

    
Figure 1. (a) SOLFEC graphite brick mesh, & (b) example of MoFEM crack propagation. 
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The crack propagation available in MoFEM employs configurational forces and maximum energy 
dissipation at the crack front. The configurational forces provide the crack propagation direction and 
the crack propagation criterion is based on Griffith theory. The local topology is modified to 
accommodate the crack extension and a local hp-adaptive mesh refinement scheme is concentrated on 
the crack front. The local mesh is adapted through the movement of the nodes on the crack front; 
mesh refinement and edge decimation maintains the validity of the local mesh. An example of crack 
propagation can be seen in Figure 1(b). The crack propagation analysis relies on a much more refined 
mesh than is necessary or practical in SOLFEC and this discrepancy has to be addressed.  
 
3. Method Development 

It is assumed fracture events in bodies do not influence the contact force evolution with time. This 
simply means that the crack propagation will occur faster than the change in boundary conditions in 
SOLFEC. Furthermore, and most importantly, it is assumed that fracture in one body will not have a 
bearing on the fracture in other bodies. 
 
An approach for modelling unstable crack propagation can then be formulated, which is represented 
by the following sequential steps: 

(i) SOLFEC implicit contact analysis is executed and run to completion; 
(ii) Bodies that will fracture are identified during the simulation and the contact forces as well as 

corresponding Lagrangian displacement (relative to the reference configuration) on the surface 
boundary are recorded at the specific time-step; 

(iii)  Rigid body motion is removed from the displacements of the identified bodies and a denser 
mesh is generated in preparation for crack propagation analysis; 

(iv) Location of crack initiation is determined in the identified bodies and crack propagation to 
failure is carried out in MoFEM, given the displacement boundary conditions as constraints; 

(v) The predicted crack surface is unified with the original SOLFEC mesh and the intersected 
elements have a denser mesh generated for them to account for the modified geometry; 

(vi) SOLFEC is re-run with the fractured bodies to study the impact that cracks have on the overall 
simulation and on individual graphite bricks. 

 
The bodies that will undergo fracture are identified in SOLFEC using an energetic criterion that 
monitors the strain energy of each element and has an empirically set threshold. 
 
Algorithms to remove rigid body motion from the displacement, to perform the Boolean operation of 
unification and to generate the subsequent mesh have been developed. In addition, a crack initiation 
criterion has been proposed to determine the location(s) of crack initiation in MoFEM, which 
currently requires manual identification of the affected edges. The algorithms and proposed criterion 
are briefly documented in the next sections. To facilitate data transfer between SOLFEC, MoFEM and 
the developed algorithms, the legacy VTK file format has been selected. 
 
4. Rigid Body Motion Removal 

The contact forces output by SOLFEC are provided on the 
surface, while the displacements are given on the nodes. 
Therefore, a surface-to-node algorithm was written to 
identify the nodes where the contact forces are applied. The 
displacements on those nodes are then used as constraint in 
the crack propagation analysis. 
 
 

Figure 2. Example of rigid body translation mitigation. 
 
A routine was written to remove the rigid body translation; this involves subtracting the average of the 
displacements at the identified nodes from the displacement magnitude at each identified node. An 
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illustration demonstrating the removal of rigid body displacement in a graphite brick is shown in 
Figure 2. 
 
The removal of rigid body rotations is a more involved process. The displacements have to be 
decomposed into a deformational ud and rotational part ur , 
 
ud = u−ur , and          (1) 
 
ur = R − I( )X ,           (2) 

 
where R  is the rotation operator, I  the identity matrix and X  the reference configuration position 
vector. The object of this exercise is to determine the rotation operator. One can take advantage of the 
fact that the anti-symmetric part of the displacement gradient vanishes when there is no rotation. 
Assuming that the rotation is constant over a body volume V , the anti-symmetric part of the 
displacement gradient averaged over all the elements can be expressed, 
 

∂ud

∂X

"

#
$

%

&
'−

∂ud

∂X

"

#
$

%

&
'

T)

*

+
+

,

-

.

.∫ dV = 0 .         (3) 

 
Alternatively, a pseudo-vector applied on the surface boundary can be defined as [3], 
 
h = n×ud( )∫ dS ,          (4) 

 
where n  is the surface spatial normal. An objective function can then be defined and optimized to 
yield the rotation operator, 
 
J R( ) = hTh .            (5) 

 
A number of algorithms were implemented and investigated for the optimization procedure: (i) the 
finite difference method using the complex derivative; (ii) the Cayley transform based method; (iii) a 
Gauss-Newtonian approach; and a (iv) Newtonian approach based on local parameterization of the 
manifold SO 3( ) [4]. The final method was selected as it proved to be the least computationally 
expensive and to be the most stable for large rotations. 
 
5. Crack Initiation Criterion 

A crack initiation criterion has been proposed based on the notion that fracture is a sudden discrete 
rupture event that suddenly appears at the macroscopic level. A topological asymptotic expansion 
evaluates the sensitivity of the total potential energy change involved in introducing a hole into an 
unperturbed (geometrically) elastic system at a point through the expression, 
 

DT x0( ) = − 1
2E

σ1 +σ 2( )2 + 2 σ1 −σ 2( )2"
#

$
% ,        (6) 

 
where σ1  and σ 2  are the principal stresses, while E  is the Young’s modulus. The change in energy 
is then equated to a critical factor derived from an energy equivalent of Novozhilov’s non-local force-
based criterion. A more thorough treatment of this criterion is available in [5]. 
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6. Boolean Unification  

At the heart of this part of the work is the CGAL library [6] and the contained half-edge data 
structure, which provides connectivity information of the vertices, edges and faces that compose a 
shape. TetGen [7] is used as the mesh generator due to the fact that interior surfaces inside the shape 
volume can be treated as an extension of the boundary. A novel, simple and robust procedure has been 
developed for unifying the crack surface and the original volume SOLFEC mesh as follows: 
 

(i) Mesh simplification is performed on the crack surface to reduce the triangle count; 
(ii) The elements in the original SOLFEC mesh that are intersected by the crack surface are 

identified and the shared faces in the elements are not included in the following steps; 
(iii) The simplified crack surface boundary nodes are aligned with the intersected SOLFEC mesh 

elements and assigned to the intersected element faces; 
(iv)  Delaunay triangulation in 2-D is performed on the identified faces to reconstruct them so as to 

include the crack surface nodes; 
(v) The intersected element faces are merged together to form a new shape;  
(vi) The simplified crack front mesh and the new shape are unified in the TetGen data structure for 

purposes of mesh generation; 
(vii) The generated mesh is split at the crack surface front and replaces the intersected elements in 

the original SOLFEC mesh. 
 
Existing CGAL functionality is employed to perform the mesh simplification, intersection tests and 
Delaunay triangulation. The half-edge data structure is utilised to store face information regarding the 
intersected vertices and triangulations to produce an efficient algorithm for Boolean unification of a 
volume with a surface. 
 

      
Figure 3. (a) Simple example of surface (red) intersecting volume elements, & (b) volume elements containing 

intersection identified and reconstructed. 
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ABSTRACT

We investigate multiple fracture evolution under quasi-static conditions in an isotropic linear elastic
solid based on the principle of minimum potential elastic energy in the framework of the extended finite
element method. The technique enables a minimization of the potential energy with respect to all crack
increment directions. Results show that the maximum hoop stress criterion and the energy minimization
approach converge to the same fracture path. It is found that the converged solution lies in between the
fracture paths obtained by each criterion for coarser meshes. This presents an opportunity to estimate an
upper and lower bound of the true fracture path as well as an error on the crack path.

Key Words: crack propagation; extended finite element method; energy minimisation.

1. Introduction

In computational fracture mechanics as applied, for example, to damage tolerance assessment, it has been
common practice to determine the onset of fracture growth and the growth direction by post-processing
the solution of the linear elastostatics problem, at a particular instance in time. For mixed mode loading
the available analytically derived criteria that can be used for determining the onset of crack growth
typically rely on the assumptions of an idealized geometry e.g. a single crack subjected to remote loading
[9, 5] and that the kink angle of the infinitesimal crack increment is small [7]. Moreover, the growth
direction given by a criterion that is based on an instantaneous local crack tip field can only be valid for
infinitesimally small crack growth increments. Consequently, the maximum hoop stress criterion [4] and
other similar criteria [2] disregard the changes in the solution that take place as fractures advance over
a finite size propagation. Hence, due to the error committed in time-integration, fractures may no longer
follow the most energetically favorable paths that theoretically could be achieved for a specific discrete
problem.

2. Methodology

In our approach, we investigate multiple fracture evolution under quasi-static conditions in an isotropic
linear elastic solid based on the principle of minimum potential elastic energy, which can help circumvent
the aforementioned difficulties. The technique enables a minimization of the potential energy with respect
to all crack increment directions taking into consideration their relative interactions. The directions are
optimized (in the energy sense) by considering virtual crack rotations to find the energy release rates and
its first derivatives in order to determine, via an iterative process, the directions that yield zero energy
release rates with respect to all virtual rotations [6]. We use the extended finite element method (XFEM)
[1, 8] for discretization of a 2D continuum in order to model an elaborate crack evolution over time,
similar in principle to [3], although here we would like to consider hundreds of propagating cracks.

121



3. Governing equations

The energy release rate with respect to a fracture growth direction θi can be obtained by differentiation
of the potential energy Π of the system:

Gsi = −
∂Π

∂θi
(1)

Considering a general case of multiple fractures, the rate of the energy release rate can be obtained as:

Hsi, j =
∂Gsi

∂θ j
= −

∂2Π

∂θi∂θ j
(2)

In a discrete setting, the potential energy of a static system can be written as:

Π =
1
2

u′Ku − u′ f (3)

where u, K, and f are the displacement vector, the stiffness matrix, and the applied force vector. The en-
ergy release rate with respect to an arbitrary crack incitement angle θi is defined as the negative variation
of the potential energy:

Gsi = −
1
2

u′δiKu + u′δi f − δiu′(Ku − f ) (4)

in which case the last term in (4) disappears due to assumed equilibrium of the discrete system i.e.
Ku = f . Hence, the expression for the energy release rate becomes:

Gsi = −
1
2

u′δiKu + u′δi f (5)

where δi f only needs to be accounted for if the applied loads influence the virtual crack rotation, e.g.
due to crack face tractions and body-type loads. The rates of the energy release rate, Hsi j are obtained
by differentiating Gsi in (5) with respect to θ j:

Hsi j = −

(
1
2

u′δ2
i jKu − u′δ2

i j f
)
− δ ju′ (δiKu − δi f ) (6)

The variations of displacements δ ju in (6) are global, and can be determined from the equilibrium con-
dition and that the variation must vanish, i.e. δ j(Ku − f ) = 0 and thus:

δu = −K−1(δKu − δ f ) (7)

Substituting (7) in (6) gives:

Hsi j = −

(
1
2

u′δ2
i jKu − u′δ2

i j f
)

+ (δ jKu − δ j f )′K−1(δiKu − δi f ) (8)

In (8) the second order mixed derivatives δ2
i jK and δ2

i j f capture the local interaction between the rotations
of different crack increments. However, if the crack tips are sufficiently far apart such that no geometrical
interactions exist between different rotations, then for i , j the interacting terms vanish, i.e. δ2

i jK = 0 and
δ2

i j f = 0. As such, it only becomes necessary to retain the non-zero self-interactions i.e. δ2
iiK and δ2

ii f .
Consequently, by leaving out the cross-interactions, equation (8) reads as:

Hsi j = −

(
1
2

u′δ2
iiKu − u′δ2

iiF
)

+ (δ jKu − δ j f )′K−1(δiKu − δi f ) (9)

Equations (5) and (9) can be used to determine the energy release rates and the rates of the energy
release rates associated with the rotation of different crack increments. The problem of finding the most
energetically favorable growth directions for the candidate finite length crack increments, denoted by a
set Iinc, is one requiring that the corresponding energy release rates must vanish i.e. Gsi = 0, ∀i ∈ Iinc.
The solution procedure at every time step, tn+1 can be cast as Newton-Raphson iterations:

θk+1 = θk − Hk
−1Gsk (10)

where k is the iteration count. The converged solution is attained when |θk+1 − θk| ≤ ε, ε being the
tolerance in the change in the angle of the finite crack increment, e.g. ε = 0.1◦.
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4. Implementation

Although XFEM facilitates mesh independent fracture propagation the enrichment must be updated at
each time step. In the current implementation this is achieved by means of a systematic book-keeping of
the element enrichment data, addition and removal of enrichment only where necessary, and a consistent
updating of the global system of equations. Consequently, moderate computational times are obtained,
even in our Matlab implementation. In the problems we solve, the greatest cost, by far, is in the solution
of the linear system of equations rather than in the assembly/updating.

5. Results and discussion

We compare the fracture paths obtained by different criteria for problems consisting of multiple cracks
and verify that, with mesh refinement, both criteria converge to the same fracture path provided the
criterion for growth is the same. However, the convergence rate of the energy minimization technique
to the converged crack path is found to be only marginally superior to that of the maximum hoop stress
criterion. It is found that the converged fracture path lies in between the fracture paths obtained by each
criterion for coarser meshes. This presents an opportunity to estimate an upper and lower bound of the
true fracture path as well as an error on the crack path. It is found that a more accurate approximation
of the fracture path for coarser meshes can be obtained by averaging the directions determined by each
criteria individually at every time step. Some results are demonstrated in Appendix A. Although there is
no limitation on the number of cracks in the implementation, the example cases presented consider only
few cracks as it is sufficient to demonstrate the key idea clearly.

6. Conclusions

Convergence of the maximum hoop stress criterion and the energy minimization towards the true frac-
ture path is found to be similar. However, from numerical experiments it is found that the converged
fracture path lies in between the fracture paths obtained by each criterion for coarser meshes. Besides the
opportunity to estimate the error on the fracture path for a given mesh, a more accurate approximation of
the true fracture path can be obtained by taking the average of the propagation directions given by each
criterion separately at every time step. Future work involves optimization of fracture increment lengths
as well as the growth directions simultaneously.
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Appendix A. Figures
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Fracture paths by different criteria
(double cantilever problem with an edge crack offset by 0.01 above the x−axis)
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Figure A.1: Fracture paths considering different growth criteria for the double cantilever problem with the initial
crack positioned 0.01 above the x-axis. The prying action is exerted by prescribed displacements on the left edge.
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Fracture paths by different criteria
(simply supported cracked square plate with a pressure loaded center crack)
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Figure A.2: Fracture paths considering different growth criteria for a simply supported square plate with three
pre-existing cracks, where the center crack is subjected to a pressure load acting normal to the crack surface.
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Fracture paths by different criteria
(simply supported square plate with two pressure loaded edge cracks: ∆x=0.6, ∆y=0.04)
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Figure A.3: Fracture paths considering different growth criteria for a simply supported square plate with two initial
edge cracks that are loaded by pressure acting normal to the crack surface.
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ABSTRACT 

Generation and packing algorithms are developed to create models of two-dimensional heterogeneous concrete 
specimens with randomly distributed circular, elliptical and polygonal pores and aggregates. A recently 
developed numerical method based on the cohesive crack model is used to simulate meso-scale crack initiation 
and propagation. Monte Carlo simulations are carried out to evaluate the effects of pore and aggregate shape, 
porosity and aggregate volume fraction. The nucleation and coalescence of microcracks and propagation of 
macrocracks are modelled in detail with some important conclusions drawn. 
 
Keywords: concrete, random packing, Monte Carlo simulation, cohesive elements, meso-scale modelling  

1. Introduction  

Concrete is a composite material with a variety of inhomogeneities and its response to mechanical 
loading is complex. Due to its multi-phase composition and quasi-brittle mechanical behaviour, 
modelling of concrete for structural engineering analysis is an important and challenging problem [1, 
2]. At the mesoscopic scale, it is evident that several parameters, such as the shape, pore and 
aggregate distribution, aggregate gradation, porosity, aggregate volume fraction and aggregate-mortar 
interfaces, significantly influence the numerical simulation of the mechanical behaviour of concrete. 
The majority of researchers treat concrete as a two-phase (mortar and inclusions) or three-phase 
(mortar, inclusions and interfaces) material at the mesoscale. However, the XCT images [3, 4] clearly 
show that pores exist in the concrete at this scale. In our paper, we describe the generation of random 
mesostructure models with circular, elliptical, polygonal aggregates and pores based on prescribed 
parameters. The models are then meshed automatically, solved by FEM, and statistically analysed to 
elucidate the effects of mesostructural parameters on the mechanical behaviour. 
 
2.  Mesostructure Generation 

Wang et al. [5] presented a comprehensive procedure using a commonly adopted “taking” and 
“placing” method to generate a random geometric arrangement of aggregates. A similar procedure is 
adopted in the present study, which is programmed using MATLAB. The basic idea is to create the 
aggregates in the concrete in a repeated manner, until the target area is filled. The “input” step reads 
the controlling parameters for different shapes of aggregates and pores, the “taking” step generates an 
individual aggregate/pore in accordance with the random size and shape descriptions, and the 
“placing” step subsequently positions the aggregates and pores into the predefined area in a random 
manner, subjected to the prescribed physical constraints. The shape of aggregate particles depends on 
the aggregate type. Generally, gravel aggregates have a circular or elliptical shape, while crushed 
stone aggregates have an angular shape and are therefore modelled as polygons.  
 
3. Cohesive Crack Model 

A recently developed numerical method based on the cohesive crack model is used to simulate meso-
scale crack initiation and propagation [2]. Here 4-node zero in-plane thickness cohesive elements are 
pre-inserted into the existing element edges by an in-house computer program. Fig. 1(a) and Fig. 1(b) 
shows the initial FE mesh (16 elements and 13 nodes) and FE mesh with inserted cohesive elements 
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(36 elements, 48 nodes). The element and node numbers are denoted as E and N respectively. The 
detailed numbering of elements and nodes in the initial mesh and the mesh with inserted cohesive 
elements (see Fig. 1) shows the insertion procedure with the new nodes generated at the same 
positions and interface cohesive elements between the continuum elements. The inserted cohesive 
elements can be divided into three groups (see Fig. 1(b)); those along mortar-aggregate interfaces 
(yellow in Fig. 1(b)), inside mortar (green in Fig. 1(b)) and inside aggregates (blue in Fig. 1(b)). In 
general, aggregates are less likely than mortar to crack. But, in our work additional interface elements 
are inserted within the aggregates to represent potential cracks, such as in the case of lightweight or 
high-strength concrete. So in the mesostructure of concrete, a potential crack path may transverse 
through aggregates, or mortar, or along their interfaces.  
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(a) Initial mesh  (b) Mesh with zero thickness cohesive elements 

Fig. 1. Inserting different cohesive elements into the initial mesh 

4. Monte Carlo Simulation 

4.1. Effect of aggregate and pore shape 
A series of 2D concrete specimens (50mm×50mm, aggregate volume fraction=40%, porosity=2%) 
with different shapes of aggregates and pores are modelled under a uniaxial tension test. Horizontal 
displacements are prescribed to all nodes of the left and right surfaces of the specimen, with value 
equal to zero on the left surface, and a uniformly distributed displacement (0.1mm) on the right 
surface. Vertical displacements for the same nodes are left free, except for the node at the left lower 
corner of the specimen, which is fixed to prevent rigid body translation. The material parameters used 
for the continuum elements are: Young’s Modulus E=7×104 MPa (aggregates), E=2.5×104 MPa 
(mortar) and Poisson’s ratio υ=0.2 (both); for the aggregate-aggregate and mortar-mortar interface 
elements: elastic stiffness kn=ks=106 MPa/mm, tensile strength tn=6 MPa and fracture energy Gf =0.06 
N/mm; for the aggregate-mortar interface elements: kn=ks=106 MPa/mm, tn=3 MPa and Gf =0.03 
N/mm. 

The effect of aggregate and pore shape is investigated by performing 100 Monte Carlo simulations 
while all the other parameters are fixed. Fig. 2 plots the typical crack paths for samples with different 
shapes of aggregates and pores. Two typical crack types as found in asphalt mixture [6] are observed 
in the Monte Carlo simulations under a uniaxial tension test: namely, type I cracking with only one 
dominant crack, and type II cracking with two dominant cracks. The both types of cracking are easily 
observed in concrete samples with different shapes of aggregates and pores (see Fig. 2(a)-(f)). This is 
because microcracks first initiate and coalesce in some weaker regions, type I crack develops when 
the degraded regions are almost in a line, and type II crack develops when the microcrack connection 
is obstructed by a strong portion. Fig. 3(a)-(f) shows the resulting stress-displacement curves for the 6 
groups. The mean stress-displacement curves are plotted, and the mean value and the standard 
deviation of the peak stress are also calculated. It seems to reveal that the load capacity in the tensile 
test of the circular and elliptical aggregate samples is greater than that of polygonal ones. The load 
capacity difference between samples with circular aggregates and elliptical aggregates is about 2% 
while the difference between samples with circular aggregates and polygonal aggregates is about 6%. 
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It is postulated that this is because the local stresses are enhanced by the higher stress concentration at 
the corners of the polygonal aggregates, while the smooth edges of the circular and elliptical 
aggregates have a more benign stress distribution which delays the fracture event and increases the 
tensile strength. 

    
(a) Circular aggregates and circular pores (b) Circular aggregates and elliptical pores 

    
(c) Elliptical aggregates and circular pores (d) Elliptical aggregates and elliptical pores 

    
(e) Elliptical aggregates and elliptical pores (f) Elliptical aggregates and elliptical pores 
Fig. 2. Typical type I and type II crack paths for samples with different shapes of aggregates and pores  
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(d) Elliptical aggregates and 
elliptical pores 

(e) Polygonal aggregates and 
circular pores 

(f) Polygonal aggregates and 
elliptical pores 

Fig. 3. Stress-displacement curves for different shapes of aggregates and pores  

127



 

4.2. Effect of aggregate volume fraction and porosity 
In order to investigate the effect of aggregate volume fraction and porosity, concrete samples with 
circular aggregates and circular pores are chosen. Monte Carlo simulations were carried out under a 
uniaxial tension test and all the parameters except for aggregate volume fraction and porosity were 
fixed to the values used in section 4.1. Fig. 5 shows the mean stress-displacement curves of the 
samples with different aggregate volume fraction and porosity. It can be observed that the mean 
stress-displacement curve is relatively insensitive to the aggregate volume fraction (see Fig. 5(a)).  
This may be because the increase of weak interfaces offsets the effect of increase in strong aggregates 
for this particular material set. As shown in Fig. 5(b), the effect of porosity on the load capacity is 
more pronounced. This is because the pores enable the cracks to propagate easily through them so that 
the samples fail quickly. It clearly shows that the pores which exist in the concrete should not be 
neglected when analyzing the mechanical properties and fracture of concrete. 
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Fig. 4. Effect of aggregate volume fraction and porosity 
5. Conclusions 

Models of concrete with a random mesostructure comprising circular, elliptical, or polygonal 
aggregates and pores have been developed in this study. The results obtained from the Monte Carlo 
simulations of a uniaxial tension test show that the load capacity of the circular and elliptical 
aggregate samples is greater than that of polygonal aggregates for this particular material set; It is also 
found that the porosity has a great effect on the load capacity so that the pores should be considered in 
meso-scale fracture modelling of concrete. 
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ABSTRACT

A cell-centered control-volume distributed multi-point flux (CVD-MPFA) finite volume formulation is
presented for fractured porous media. Highly conductive fractures are modelled as lower-dimensional
(1D) interfaces in between the (2D) matrix cells. Matrix-fracture flux transfer is incorporated into the
MPFA formulation efficiently by the transfer function used in the fracture flow equation. The lower-
dimensional fracture model is compared to the explicit equi-dimensional model and hybrid-grid method.
Highly conductive fractures are efficiently modelled by a lower-dimensional fracture approximation
while yielding results that are comparable with equi-dimensional methods.

Key Words: MPFA; fractured porous; lower-dimensional; interfaces; transfer function

1. Introduction

The understanding of fluid flow through fractured porous medium has immense importance in environ-
mental and energy production problems. Generally, fractures have higher permeability and lower porosity
in contrast to the matrix (main part of porous medium) and act as preferential fluid flow paths. Because
of the importance of fractures in reservoirs, increasing effort is devoted to the development of efficient
and accurate numerical methods to simulate the fluid flow through fractured porous media. To avoid the
deficiencies of the conventional dual-porosity model, discrete-fracture model (DFM) was developed; see
e.g. [1, 5, 6]. In this model actual geometry and location of the fracture are honoured in the domain. Gen-
erally, fractures are modelled by (n-1) dimensional elements in a n-dimensional problem, for example in
2d, fractures are represented by the lines at the edges of the polygonal matrix elements.
Here, we will focus on the control volume distributed finite-volume method for discrete-fracture method
with multi-point flux approximation (MPFA). Recently, T.H. Sandve et al [7] has proposed hybrid-grid
approach with MPFA for discrete-fracture modelling. In the hybrid-grid approach, introduced in [4],
fractures are (n-1)D in the physical mesh and are expanded to nD in the computational domain. The
fracture-fracture intermediate cell is assumed to be of small size so that pressure variation and mass ac-
cumulation is zero in that cell. We present and investigate a simplified formulation which couples the
CVD-MPFA method (refer to e.g. H.A. Friis et al [2]) with the lower dimensional fracture model in the
computational domain without using the hybrid grid approach. The simplified formulation is naturally
incorporated into the existing CVD-MPFA framework.

2. CVD-MPFA lower-dimensional fracture formulation

For high permeability and low aperture, the jump in pressure across the fracture is very low. Pressure
can be assumed constant along the width of fracture but the velocity jump is non-zero as discussed in
[6]. We use the transfer function as presented by H. Hoteit et al. [3], coupled within the cell-centered
CVD-MPFA framework. For a matrix domain the nD equation is solved while the (n-1)D equation is
solved (simultaneously) for fracture cells:

−∇ · Km∇φm = fm in Ωm (1)

−∇ · K f∇φ f = Qf + f f in Ω f (2)
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whereK f is the longitudinal permeability of fracture andQf is the transfer function to account for the
flux transfer between matrix and fracture cells. The cluster of cells is shown in figure (1(a)) which is
typically used in the CVD-MPFA formulation.
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Figure 1: Cluster and dual-cell involving fracture cells as interfaces

2.1. Matrix-matrix and matrix-fracture fluxes

For the dual-cell shown in figure(1(b)), we require 3 fluxes on the edges which are not fractures and 6
fluxes on both the sides (right and left) of the edges which are fractures and can be written in matrix form
as:

F = A9×6φM + B9×3φF +C9×3φI (3)

whereφM are pressures associated with the matrix cells,φI are pressures on the edges, between matrix
cells, which are not fracture cells andφF are pressures related to fracture cells. As in the usual CVD-
MPFA formulation,φI are eliminated by imposing continuity of fluxes on both sides of edges. Thus we
obtain fluxes in terms ofφM andφF only as follows:

F = Ā9×6φM + B̄9×3φF (4)

Fluxes on the edges of fractures are discontinuous across the fracture. The difference in these fluxes on
both sides of fracture edges are the half integral of transfer functions for the corresponding 1D fracture
cells.

Q f ,1/2 = FL − FR (5)

=⇒ Q f ,1/2 = Ē3×6φM + F̄3×3φF (6)

2.2. Fracture-fracture fluxes

A cluster of 1d fracture cells is represented in figure (1(c)). Pressures are associated with fracture mid-
points, and with intermediate vertices between fractures. The outgoing fluxes are computed for every
fracture at the vertex, formulated as follows:

F = A3×3φF + B3×1φV (7)

The pressure at the intermediate vertex is eliminated by imposing the condition of mass conservation at
the vertex, Kirchhoff’s law analogy. We obtain fluxes in terms of fracture cell pressures.

3
∑

k

Fk = 0 =⇒ φV = (BV
1×1)

−1
AV

1×3φF

=⇒ F = Ā3×3φF (8)
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2.3. Global linear system

We use the fluxes, determined in (4) and (8), and transfer function, determined in (6), to complete the
discrete conservation scheme of equations (1) and (2) for every matrix cell and fracture cell respectively.
A coupled linear system is obtained for matrix cells away from the fractureφM1

, matrix cells associated
with fractureφM2

and the fracture cellsφF:
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




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

(9)

Above coupled system, (9) can be solved monolithically or by iterative solution methods for matrix and
fracture pressures. The overall condition number of the global system depends on the fracture permeabil-
ity and aperture magnitudes.

3. Transport model

We assume high flow in the fractures and the intermediate cell is so small that there is no accumulation
inside. If there aren intersecting fractures at the intermediate cell and there arel fluxes going into the
intermediate cell then we can compute concentration at intermediate cell,cf o, by the following condition;

l
∑

k1=1

Fk1ck = cf o

n−l
∑

k2=1

Fk2 (10)

In this way we do not need to include the intermediate cell in overall computations and avoid the restric-
tion of low CFL condition because of the inclusion of the intermediate cell.

4. Numerical Tests

Convergence tests for different aperture and fracture to matrix permeability ratios are presented for a
domain with single fracture. The convergence for the 1D fracture model is the same as that obtained for
the hybrid-grid method. Also we have compared the 1D fracture results to the results obtained by explicit
2D fracture model and hybrid-grid method. Meshes are shown in figure (2). Pressure and concentration
contours are shown in figure (3). Concentration of producer w.r.t time is also shown in figure (4).

P

I


(a) 11984 cells

P

I


(b) 8648 cells+ 801D fracture cells

Figure 2: Explicit grid representation of intersecting fractures and mixed-dimensional grid with 1D fractures rep-
resentation, aperture= 10−3

5. Conclusions

We have presented a CVD-MPFA formulation for discrete fracture modelling and efficient lower-
dimensional fracture modelling in computational domain. For thin highly conductive fractures, the lower-
dimensional fracture model yields results that rival the hybrid grid method and explicit equi-dimensional
modelling of fractures, without extra degrees of freedom in the cluster. In addition the lower dimensional
fracture model is naturally coupled with the CVD-MPFA method.
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Figure 3: Pressure plot and concentration plots at 5 time unitsand 8 time units for 2D fracture, Hybrid-grid and 1D
fracture model;kf = 106.
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Figure 4: Comparison of concentration plots for two different permeability contrast values.
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ABSTRACT 

Numerical modelling of brittle fracture and failure in geological materials is now possible through a variety of 

available software. Given the wide scope of numerical applications it is essential for the engineer and 

geoscientist to fully understand and appreciate the varying strengths and limitations inherent in each of the 

different methodologies. In this paper we demonstrate the application of brittle fracture modelling from the 

laboratory to rock mass scale. Examples of brittle fracture simulation in both two and three dimensions to 

underground and surface mine geometries are presented. The loading conditions, and therefore engineering 

response of the structure, can be complex as a result of the redistribution of the three-dimensional stress field; 

this can result in stress-induced fracture and associated failure of the rock at varying scales. The modelling of 

geological materials is made more complex in view of the potential controlling behaviour of the discrete fracture 

network.  Failure can result from formation of new fractures or extension of pre-existing discontinuities. With 

increasing scale of the modelled structure the pre-existing discrete fracture network can have a dramatic 

influence on the modelled behaviour. Hybrid codes that incorporate fracture simulation capabilities have been 

used to model a wide spectrum of rock-related failure modes, and are particularly well suited to modelling 

complex instabilities where failure requires yielding, brittle fracture and shearing. The influence of the correct 

geological model and choice of modelling approach on the simulated failure mechanism is demonstrated. 

 

Keywords: brittle fracture; numerical modelling; geological model; discontinuity characteristics  

1. Introduction  

The role of brittle fracture in rock excavation instability, both in engineered and natural structures, is 

the subject of considerable on-going research. For example, man-made excavations can vary in size 

from centimetres (borehole and associated breakout), metres (tunnel and pillar stability) to hundreds 

of metres (large open pit slopes). The loading conditions, and therefore engineering response of the 

structure, can be complex as a result of the redistribution of the three-dimensional stress field. This 

can result in stress-induced fracture and associated failure of the rock at varying scales. The modelling 

of geological materials is made more complex in view of the potential controlling behaviour of the 

discrete fracture network.  Failure can result from formation of new fractures or extension of pre-

existing discontinuities. With increasing scale of the modelled structure the pre-existing discrete 

fracture network can have a dramatic influence on the modelled behaviour. Stead et al [1] emphasised 

the diversity of roles and scale of brittle fracture in rock slopes.  

 

2. Brittle fracture 

Stead et al [1] suggested that brittle facture may be conveniently considered in terms of primary, 

secondary and tertiary processes. Primary brittle fracture is considered to include processes that occur 

prior to the onset of failure. They include: (i) propagation of failure surfaces through fracture tip 

growth, (ii) coalescence of fractures and failure of intact rock bridges and (iii) shearing along 

discontinuities involving removal of asperities. These processes may lead to failure through a variety 

of mechanisms such as sliding along discrete daylighting planes of weakness, step-path failure surface 

generation and in extreme cases major changes in kinematics through the fracture of keyblocks within 

an excavation surface. Stead and Coggan [2] described rock slope failure using a total slope failure 
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analysis terminology. In this framework, primary brittle fracture processes are predominantly 

associated with the failure initiation or trigger zone. 

 

Following the onset of primary slope movements within a slope, secondary brittle fracture processes 

may be involved in: (i) development of rear and lateral release surfaces leading toward global slope 

failure and (ii) internal deformation, fracturing and dilation of the rock slope mass associated with 

translational failure, toppling or multiple complex interacting mechanisms. Secondary brittle fracture 

processes, in rock slopes, are associated with a transition from the initiation to transportation stages in 

a slope failure. They accompany a gradual reduction in rock mass strength and removal of kinematic 

restraint prior to global rock slope failure and debris transportation. 

 

The final stages in the rock slope brittle fracture involve the comminution of the rock mass associated 

with transport leading up to final debris deposition. These tertiary brittle fracture processes are 

recognised to be particularly important when characterising the distance that rock failure debris will 

travel or ‘run-out’ of natural slopes. Researchers have characterised the comminution of the rock 

slope mass using approaches that consider the initial block size distribution in the initiation zone and 

the final block size in the debris pile. As large open pits become more frequent the need to assess 

tertiary brittle fracture processes, velocity of transport and run-out extent will increase. 

 

3. Numerical modelling of brittle fracture  

The possible approaches to numerical modelling of rock-related failure have been previously 

described in [1-7], with [3] providing a review of advantages and limitations of each approach. Stead 

et al [1] emphasised the importance of simulation of brittle fracture at varying scales and the need to 

incorporate representative discrete fracture networks within model geometry. 

 

Figure 1 shows results of brittle fracture modelling undertaken by [8; 9] with the ELFEN code [10]. 

These comparative laboratory numerical modelling studies were extremely useful in calibrating the 

use of the ELFEN code approach against continuum finite element and Voronoi distinct element 

models. The importance of considering ongoing continuous kinematic changes even at the laboratory 

scale is indicated from the results of these ELFEN simulations. Karami and Stead [9] further 

demonstrate the key role of scale when considering simple direct shear in a shear box test. 

 

Figure 2 shows example modelling results from three-dimensional simulation of roof failure in an 

underground coal mine roadway using 3DEC [11; 12]. A newly developed Trigon logic was 

employed within the 3DEC modelling to simulate cutter roof failure caused by oblique horizontal 

stress with respect to roadway advance direction. The roadway roof was represented as an assembly 

of tetrahedral blocks bonded together through the contact surfaces between them. As the roadway face 

advanced, stress concentration was observed at the intersecting corner of the major horizontal stress 

and the roadway roof, with no stress concentration observed at the other corner of the roof. This leads 

to cutter roof failure immediately behind the advancing face. 

 

Figure 3 shows selected stages of the modelled failure of the 1967 failure of the West face at Delabole 

Slate Quarry using ELFEN [6; 10] to highlight the initial fracture geometry and subsequent fracture 

development through extension of pre-existing fractures and development of new fractures in an 

application to surface excavation. The results highlight the step-path nature of the modelled failure, 

together with internal fracturing and subsequent rotation and translation of the failed mass. 
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Figure 1: Brittle fracture simulation at the laboratory scale: (a) stages in step-path fracturing under uniaxial 

compression and (b) direct shear simulation, top low normal stress, bottom high normal stress (after [8]) 

 

 
Figure 2: Cutter roof failure captured at 1 m behind the advance face in: (a) Model without pre-existing 

fractures, (b) model with pre-existing fractures (after [9]) 

 

 

 

 

Figure 3: Modelled stages of the 1967 failure at Delabole Slate Quarry showing initial assumed fracture 

geometry and subsequent fracture development for non-continuous discontinuities 
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4. Conclusions 

Numerical codes that incorporate fracture simulation capabilities can now be used to model a wide 

spectrum of rock-related failure modes, and are particularly well suited to modelling complex 

translational/rotational instabilities where failure requires yielding, brittle fracturing and shearing. The 

results confirm the importance of the correct geological model and correct choice of modelling 

approach based on likely failure mechanism (whether material, discontinuity or a combination of both 

material and discontinuity controlled failure). There is, however, a need to appreciate both model and 

parameter uncertainty within the chosen approach, together with both spatial and temporal changes in 

material behaviour. With ever increasing computing power there has been a drive towards more 

realistic modelling with increasingly complex representation of the rock mass. With more 

sophisticated three-dimensional models it remains important however to be aware of both model and 

parameter uncertainty. 
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ABSTRACT

This paper presents a solution strategy for quasi-static brittle fracture in three dimensional solids. The

paper briefly set outs the theoretical basis for determining the initiation and direction of propagating

cracks based on concept of configurational mechanics. Attention is focused on load control enforcing

dissipative loading path, consistent fracture with Griffith’s theory and resolution of by the finite element

mesh. Cracks are restricted on to the element faces and the mesh is adapted in order to align with the

predicted crack direction. A local mesh improvement procedure is developed to maximise mesh quality

in order to improve accuracy and solution robustness and to reduce the influence of the initial mesh

on the direction of propagating cracks. The performance of this modelling approach is demonstrated

on three numerical examples that qualitatively illustrate its ability to predict complex crack paths. All

problems are three-dimensional, including a torsion problem that results in the accurate prediction of

a doubly-curved crack. Finally hierarchical hp-adaptivity is studied in order to improve approximation

of displacements and crack geometry. Since the presented methodology is based on face splitting, and

since no changes in approximation function space are introduced, it could be easily implemented in

commercial finite element systems.

Key Words: fracture; configurational forces; crack path; mesh adaptivity; mesh quality; arc-length

control

1. Introduction

Fracture is a pervasive problem in materials and structural engineering and the predictive modelling of

crack propagation remains one of the most significant challenges in solid mechanics. A computational

framework for modelling crack propagation must be able not only to predict the initiation and direction

of cracks but also provide a numerical setting to accurately resolve the crack path.

Finite element method (FEM) is, on the face of it, not well adopted to the resolution of cracks, i.e.

changes of topology. Nevertheless, strategies for discretization of the discontinuities in the context of

FEM can be categorized into two main types: smeared and discrete. The former is attractive form the

point of view that the problem can be solved within continuum setting, without need of approximation

of discontinuities or changing mesh connectivity. However, as strain localization occurs, or crack is

approximated in averaged sense like in phase-field methods, causes numerical difficulties and requires

regularization. Discrete approaches on the other hand are able to directly approximate macroscopic crack

geometry. Discrete approaches describe fractures in a more natural and straightforward manner in terms

of displacement jumps and tractions. Developments in discrete approaches include introducing embedded

displacement jumps within finite elements via additional enhanced strain modes (for example [1]) or can

be based on partition of unity, e.g. [2].

A potentially straightforward approach is to restrict the path to element faces. Such approach means that

that the predicted path can be strongly influenced by the mesh and strongly influence crack surface area

strongly affecting total crack release energy. The crack geometry dependence on mesh can be somehow

reduced by using very fine, unstructured meshes, but this could be computationally expensive analysis

which unrealistic crack release surface energy. It is worth to notice that the authors [3, 4] have shown that,
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Figure 1: Pull-out test load displacement path and energy dissipation . On the right hand figure: The contour plot

on the crack surface presenting density of strain energy. The contour plot on the slice presenting approximation

order, blue color: linear approximation, white: quadratic approximation, red: cubic approximation. Figure on the

right hand side shows final crack surface.

when modelling energy is released by crack opening, for cohesive element methodology, and heteroge-

neous microstructures, the crack propagation is largely controlled by the need for the mesh to resolve the

heterogeneities. However, in the modelling of ideally brittle homogeneous materials, studied here, this is

clearly not the case.

In addition to the need yo resolve crack within the context of the Finite Element Method, it is necessary

to employ a rational means of determining the direction of crack propagation and crack propagation

criterion. This is particular difficult for three-dimensional case where crack front is approximated on the

finite element edges. The approach taken in this paper is principally based on the principle of maximal

energy dispassion, with configurational forces, which at crack front at material and spatial equilibrium,

determine direction of crack front propagation. Similar technique was successfully adopted by a number

of authors, but here we mainly follow the work of [5, 6]. Such an approach for predicting the crack path

can be coupled with local r-adaptivity to mitigate the influence of the mesh.

We are primarily concerned in this chapter with solving crack propagation in large three-dimensional

problems. The efficiency of such problems, with large numbers of degrees of freedom (DOFS), usually

requires the use of an iterative solvers for solving system of algebraic equations. In such case the we must

control element quality in order to optimise matrix conditioning, thereby increasing the computational

efficiency of the solver. This in could difficulty in methods such as XFEM where enrichment functions not

only increase band of the stiffness matrix but also deteriorate matrix conditioning. This paper also shows

how controlling mesh quality improves crack path predictions and robustness of the solution algorithm.

Two numerical examples are presented for crack propagation that demonstrate the ability of formulation

to accurately predict crack paths, as well as demonstrate mesh independence and influence of both mesh

adaptivity and controlling mesh quality on the solution obtained.

2. Example

Solution strategy presented in this paper is implemented for parallel shared memory computers. The two

core libraries are used for this implementation, MOAB: A mesh-oriented database [10] to store data on

mesh, input and output operations and access all information about mesh topology. The parallel matri-

ces and vectors are implemented using PETSc: Portable, Extensible Toolkit for Scientific Computation

[11]. For the solution of linear system of equations and other algebraic operations are implemented with

PETSc. For parallel mesh partitioning is used ParMetis [12] using PETSc native interface. Calculations

are executed on ARCHIE-West academic super computer for the west of Scotland.

Three numerical examples are presented for crack propagation in three-dimensions that demonstrate the

ability of the formulation to accurately predict crack paths, as well as demonstrate mesh independence

and the influence of both mesh adaptivity and controlling mesh quality on the solution obtained.
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2.1. Pull out test

This example consists of a pull-out test of a steel anchor embedded in a concrete cylindrical block.

This numerical examples is compared with results of Duan & Areias, Belytschko [7, 8] and Gasser

& Holzapfel [9]. All geometrical data could be obtained form [7, 8, 9]. Analysis is made for Young-

modulus E = 30000N/mm2, Poison ratio ν = 0.2 and Griffith energy G f = 0.106N/mm. Following [7]

to represent the steel anchor effect, we impose vertical displacement. The anchor stem is not explicitly

modelled. Other examples and detailed description of presented methodology can be found in paper [13].
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ABSTRACT 

This paper extended the 2D meso-scale image-based models to 3D by using a small volume proportion of 

images obtained from an X-ray computed tomography test. The real microstructure of concrete specimen was 

characterized as three phases: aggregate, cement and voids (which is empty areas). Zero-thickness cohesive 

interface elements were embedded in cement phase to represent the potential cracks (no cracks allowed to 

propagate through aggregate particles). The average stress-strain curve of the 3D mesh under uniaxial tension 

was compared with a 2D simulation result. The crack propagation process in 3D was illustrated together with 

the final crack surfaces. 

 

Keywords: Concrete; X-ray computed tomography; Image based modelling; Cohesive interface element; Meso-

scale model 

 

1. Introduction  

As a quasi-brittle composite material, concrete has been widely used in many civil and industrial 

structures. Due to the existence of intrinsic heterogeneity at nano, micro, meso and macro scales, it is 

very complicated to model fracture behaviour of both microcracks and macrocracks, such as initiation 

and coalescence. Traditionally, numerical models are obtained by computer programmes and the 

material heterogeneity is realized either by random distributed material properties controlled by 

correlated functions [1-3] or by randomised positions and shapes of inclusions [4-7]. Monte Carlo 

simulation method can be used to get the statistical analysis because of the ease of using computer 

programmes. However, most of these studies assume the morphologies, which are mathematical 

representations.  

 

The innovation of this paper is to build the 3D meso-scale model with realistic internal microstructure 

by transforming images obtained from X-ray computed tomography (XCT) into a 3D finite element 

(FE) mesh, which is acknowledged as image-based modelling method [8]. In the companion paper 

[9], the two-dimensional (2D) meso-scale FE meshes based on XCT images were used along with 

pre-embedding cohesive interface elements to simulate crack propagation processes in concrete under 

uniaxial tension loading. In this paper, a three-dimensional (3D) model is built by cropping a 

10×10×10 mm
3
 volume from the whole image model (size of 37.2×37.2×37.2 mm

3
). The zero-

thickness cohesive interface elements (CIEs) are embedded in cement using an in house computer 

programme to simulate potential cracks.  
 

2. Image-based modelling 

The proposed method involves the following steps: 

1) Creating the 3D image model from XCT test. The detailed reconstruction and segmentation 

process of the concrete specimen from XCT test can be found in [10]. Here, a randomly 

selected small volume cube (10 mm
3
) was cropped from a large specimen. Figure 1 shows the 

3D image, in which blue and grey colours represent aggregates and cement paste respectively; 

2) Generating mesh. The software package of Simpleware [11] is used to directly transform the 

3D image into a fine 3D Mesh; 
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3) Inserting the cohesive interfaces elements (CIEs). The CIEs (known as COH3D6 and 

COH3D8 in Abaqus [12]) are inserted in cement and on aggregate-cement interfaces 

(different material properties are assigned) using the same approach as used for 2D in [9].The 

cracks are not allowed to be propagated in aggregates due to their high strength. The final 

image-based 3D mesh is shown in figure 2; 

4) Assigning material properties and conducting analysis. The material properties used for 2D 

simulations [9] are considered and shown in Table 1. Due to the lack of experimental data, 

the shear components of initial stiffness and cohesive strength are assumed to be the 

same as the normal ones. The periodic boundary conditions are applied. A 

displacement controlled loading of un-notched specimen under uniaxial tension is 

simulated. Abaqus/Explicit solver is selected because of its high efficiency and convergence 

advantage for simulations of material degradation. 

 

  
Figure 1: 3D image of concrete specimen Figure 2: Image based 3D mesh 

 
Table 1: Material properties 

 

Elastic 

modulus 

(MPa) 

Poisson’s 

ratio 

Density 

(kg/m
3
) 

Initial 

stiffness 

(MPa/m) 

Tensile 

strength 

(MPa) 

Fracture 

energy 

(N/m) 

Aggregate 70000 0.2 2500 / / / 

Cement 25000 0.2 2200 / / / 

CIE_CEM / / 2200 10
9
 6 60 

CIE_INT / / 2200 10
9
 3 30 

 

3. Numerical simulation results 

Figure 3 shows the energy curves of model, including Kinetic energy, Strain energy, Internal energy 

and External work. Figure 3 concludes that the energy balance is obtained: the kinetic energy remains 

less than 5% of the internal energy; meanwhile, the internal energy is almost identical to the external 

work) as expected for a quasi-static analysis.  

 

  
Figure 3: Energy curves of the whole model Figure 4: Stress-strain curves of 2D and 3D models 
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Figure 4 shows the average stress-strain curves of the 3D simulation and a 2D model having the same 

material properties and boundary conditions. The pre-peak stiffness is identical for both, however 

with different peak values (4.94 MPa for 3D and only 3.01 MPa for 2D). One reason is that 

microcracks in 3D are more difficult to get interconnected to form macrocracks due to the arbitrary 

shapes of the 3D aggregate particles. The 3D model seems to be more brittle (stiffer softening slope) 

than 2D.  

 

Figure 5 shows the process of initiation and coalescence of microcracks and macrocracks 

(corresponding to the points marked A, B, C, D and E in figure 4). The blue areas in figure 5 represent 

aggregates. The orange and red (darker) colours represent the microcracks exist on aggregate-cement 

interfaces and within cement. A lot of microcracks first only initiated on aggregate-cement interfaces 

(Point A). At point B, more microcracks appeared on aggregate-cement interfaces. Some of interfacial 

ones begin to coalesce and get connected by newly formed cracks in cement. Most of interfacial 

cracks formed before peak value (point C), meanwhile more and more cracks in cement increased 

gradually (point D) and finally the specimen failed into two pieces (point E). The cracked specimen is 

shown in figure 5(f). 

 

   
(a) A (ε=0.00017) (b) B (ε=0.00029) (c) C (peak, ε=0.00044) 

   
(d) D (ε=0.00086) (e) E (ε=0.00375) (f) Final macrocrack  

Figure 5: The initiation and propagation of micro and macro cracks 

 

The final cracked surfaces are shown in figure 6 and the 3D visualisation of crack path is plotted in 

figure 7. The numbers (①-⑤) represent five aggregates (in blue colour) around the cracking surface.  

 

  
Figure 6: Final cracked pieces  Figure 7: 3D crack surfaces (SDEG˃0.9) 

① 
② 

③ 

④ 

⑤ 

④ 
⑤ 

② 
③ 

① 
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As no cracks are allowed through aggregates, the crack surfaces always formed around particles. The 

numbers (①-⑤) in figure 7 are the corresponding places in Figure 6 which caused the resulting 

crack path. 

 

4. Conclusions 

3D meso-scale FE image-based model is developed to simulate crack propagation process in concrete 

under uniaxial tension loading. The average stress-strain curve of the 3D mesh is compared with a 2D 

analysis by using same material inputs and boundary conditions. The curves show that the 3D model 

predicts a higher peak strength and stiffer softening slope. The features of initiation and coalescence 

of microcracks into macrocracks were illustrated. The final 3D crack surface shows that cracks are 

always formed along the surfaces of aggregates. The proposed imaged-based modelling technique 

shows a powerful way to study fracture mechanics of the composites with realistic internal structures. 

Moreover, the meso-scale simulation results could be also used to predict more realistic macro 

behaviour of concrete by multiscale analysis. Though there is a limitation of proposed modelling 

method: the computational cost. It is high due to the use of a very fine mesh and a large amount of 

inserted cohesive elements. This is unavoidable as the particles in the real materials always exhibit 

highly heterogeneous and the resultant mesh is very fine. However, with the help of parallel 

computing, the computation time could be greatly reduced when explicit solver is selected. 
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ABSTRACT 

It is very important to have a comprehensive recognition of rocks on the way in designing underground spaces 

because this highly affects the determination of support system. Rock rating system is known as one of the ways 

of rocks analysis such as Q and RMR. However, RMR rating system is more common in mining studies. In this 

system, different parameters are applied and then each part of a rock mass is scored and finally the intended 

support system needed for the tunnel is suggested. The parameters entering to RMR are classified into two 

groups of quantitative and qualitative ones and are placed in one specific classification accordingly. Since 

quantitative parameters are not fixed yet, it is hard to determine an exact threshold between the classifications 

and devote a specific amount to one certain group. To solve this problem, membership functions can be defined 

for each one of the quantative parameters and the output point of every parameter can be figured out by fuzzy 

sets. Fuzzy inference system calculated the points related to the quantitative parameters and other parameters are 

classified based on quality and they are scored in the normal way. Ultimately, the amount of RMR is obtained 

from adding the points of every one of the parameters. The current essay evaluates the final results of the semi-

fuzzy method due to the support system in every part of the mine which is sampled. These studies demonstrate 

that the semi-fuzzy method is well able to determine the support system required for mining tunnels. 

 

Key Words: Rock classification, RMR semi-fuzzy, Fuzzy inference system, Gheshlagh coal mine 

 

1. Introduction 

One of the most common methods determining the support system required for underground mines is 

to use Rock Mass Rating system (RMR) [1]. This rating system first analyzes 10 different quantative 

and descriptive parameters and then it classifies every part of the tunnel which has almost similar 

conditions with one another in one group and it also suggests their required support system. Table 1 

indicates the parameters required for rating based on being either quantative or qualitative. In RMR 

system, according to the fact that the amount of each parameter is placed in which interval of the 

tables, the point related to that parameter is calculated. One of the outstanding disadvantages of these 

types of classifications is being fixed near the thresholds. To solve this problem; the changes of results 

near these thresholds can become milder according to their degree of membership in every one of the 

classes using fuzzy inference system. It is simply to prevent sudden changes in the output amount near 

the thresholds. It is not also necessary to define fixedness for qualitative parameters because the input 

amounts of these parameters are descriptive and they don’t have an exact threshold to make the output 

amounts  are  unclear that is why semi-fuzzy method is suggested for their research. 
 

Table 1: Comparing quantitative and qualitative (Descriptive) parameters 
Quantitative Parameters 

Value Range 
Rating 

Range 

Descriptive 

Parameters 
Value Range 

Rating 

Range 

Uniaxial Compressive Strength of rock material 1 - >250 MPa 0 - 15 Groundwater conditions Flowing -Completely dry 0 - 15 

Rock quality designation (RQD) 0 - 100 3 - 20 Infilling Soft filling -Hard filling 0 - 6 

Spacing of discontinuities < 60 mm - > 2 m 5 - 20 Weathering Decomposed -Unweathered 0 - 6 

Orientation of discontinuities 0-90 (Degree) (12) - 0 Roughness Slickensided -Very rough 0 - 6 

Discontinuity length > 20 m - < 1 m 0 - 6       

Separation (aperture) > 5 mm - None 0 - 6       
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2. The Specifications of the under Study Mine 

 Gheshlagh coal mines also called Rudbare Gheshlagh mine is known as the oldest mine in Golestan 

Province and placed in the 35 km away from Azadshahr to Shahrud road and 6 km further in the 

auxiliary road and it ends to two Rudbar and Shahrud villages. Each village is 3 km away from the 

mine. Figure 1 shows the situation of Gheshlagh coal mine in roads map. 

 

 
Figure1: the situation of Gheshlagh mine 

3. Rock Mass Rating(RMR) 

 Bieniawski represented the system of Rock Mass Rating (RMR) as a rock geomechanical rating [2]. 

As mentioned RMR uses 10 input parameters and rates each parameter according to Table 2. 

 
Table 2: Classification parameters and their ratings 

 

By reviewing existing support system in tunnels which installed in this mine for many years and the 

proposed support system in RMR, table 3 shows suggestion to determine the required support 

instrument for each class of systems.  

Point Load Strength 

Index (MPa)
>10 4-10 2-4 1-2

Uniaxial 

Compressive 

Strength (MPa)

> 250 100 - 250 50 - 100 25 - 50 5 - 25 1 - 5 < 1

15 12 7 4 2 1 0

90-100 75-90 50-75 25-50

20 17 13 8

> 2 m 0.6 - 2 m
200mm - 

600mm

100mm - 

200mm

20 15 10 8

<1 1 - 3 3 - 10 10 - 20

6 4 2 1

None < 0.1 mm 0.1mm - 1.0mm 1mm - 5mm

6 5 4 1

Dip < 20

Dip 45 - 90 Dip 20 - 45 Dip 45 - 90 Dip 20 - 45

Completely dry Damp Wet Dripping

15 10 7 4

None Hard >5mm Hard <5mm Soft >5mm

6 4 2 2

Unweathered
 Slightly

weathered

 Moderately

weathered

 Highly

weathered

6 5 3 1

Very rough Rough Slightly rough Smooth

6 5 3 1

Parameter Range of values

 Strength 

of intact 

rock 

material

For this low range Uniaxial Compressive 

test is preferred

Rating

Quantitative Parameters

Descriptive Parameters

Rating 5

0

Drill core quality RQD (%) < 25

Rating 3

Spacing of discontinuities < 60 mm

0

Roughness

Decomposed

0

Groundwater conditions

Infilling

Flowing

Soft <5mm

Rating

Rating

0Rating

Rating

Slickensided

Weathering

Strike perpendicular to tunnel axis

Orientation of discontinuities Drive against dip

0

Discontinuity length (m)

Rating

Separation (aperture)

Rating

> 20

0

> 5 mm

Drive with dip

Strike parallel to punnel axis

Dip 45 -90
Irrespective 

of strike
Dip 20 - 45
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Table 3: Required support systems for each classes of RMR 

C
la

ss
 

Support Rating 

Required support system 

Applied support in the under 

study mine 
General support system (According to RMR) 

I 
No 

support 

81-

100 
Generally, no support required except for occasional spot bolting 

II 
Light 

support 
61-80 

Occasional wood frame and 

lagging in wall where 

required 

Locally, bolts in crown 3 m long, 

spaced 2.5 m, with occasional wire 

mesh, 50 mm shotcrete in crown where 

required, 

III 
Moderate 

support 
41-60 

Systematic wood frames with 

1.5-2 m spacing and lagging 

in crown (and sides if 

required). 

Systematic bolts 4 m long, spaced 1.5-

2 m in crown and walls with wire mesh 

in crown, 50-100 mm shotcrete in 

crown and 30 mm in sides. 

IV 
Heavy 

support 
21-40 

Systematic steel sets 1-1.5 m 

spacing, required lagging in 

tectonized zones in crown 

and wall. 

Systematic bolts 4-5 m long, spaced 1-

1.5 m in crown and wall with wire 

mesh, 100-150 mm shotcrete in crown 

and 100 mm in sides, Light to medium 

ribs spaced 1.5 m where required. 

V 

Very 

Heavy 

support 

0-20 

Systematic steel sets 0.75- 1 

m spacing, lagging in crown 

and wall and crete lining if 

required. 

Systematic bolts 5-6 m long, spaced 1 -

1.5 m in crown and walls with wire 

mesh and bolt invert, 150-200 mm 

shotcrete in crown, 150 mm in sides, 

and 50 mm on face, medium to heavy 

ribs spaced 0.75 m with steel lagging 

and forepoling if required, close invert. 

 

4. Fuzzy Inference System 

Fuzzy inference system turns the data of input space into the output one by fuzzy logic. This is done 

by membership functions and fuzzy rules [3]. In fact, membership function defines the input 

membership degree in every one of the classes [4]. The output amount matched with the input is 

obtained by multiplying the point of every set in the correlation co-efficiency of the input amount to 

that set and then adding up all points. For example, the uniaxial compressive rock strength is MPa 48. 

Scoring is placed in the second group and it must get point 4 while the uniaxial compressive strength 

is MPa 52 for another rock and it is placed in the third group and it need point 7. This sudden change 

of point can be milder through membership functions. According to the uniaxial compressive strength 

(Fig 2), the output point related to the strength is MPa 48 is 5.3 and for the strength MPa52, it is 5.7. 

 

 
(b) 

 
(a) 

Figure 2: UCS rating in semi-fuzzy RMR, (a) UCS=48MPa, (b) UCS=52MPa 

 

Figure 3 represents the input and output membership functions related to quantative parameters. 
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Figure 3: Input and outputs membership functions of quantitative parameters 

 

5. Results Analysis 

In this research, 45samples were taken from different parts of the tunnel and the information related 

the parameters required were recorded in RMR. Then, the supporting class of every one of these parts 

calculated by RMR semi-fuzzy method and compared with real facts. Table 4 compares these results 

with one another and it proves that 63% of this method is matched with the current supporting. 
 

Table 4 : RMR results for 30 samples with their real classes 

S
a

m
p

le
 

N
o

. 

R
M

R
 

Support 

Class 

Existing 

Support 

System S
a

m
p

le
 

N
o

. 

R
M

R
 

Support 

Class 

Existing 

Support 

System S
a

m
p

le
 

N
o

. 

R
M

R
 

Support 

Class 

Existing 

Support 

System 

1 52.7 Moderate Heavy 14 52.0 Moderate Light 32 49.9 Moderate Very Heavy 

3 58.9 Moderate Heavy 16 48.3 Moderate Light 33 50.1 Moderate Heavy 

5 57.9 Moderate Moderate 18 69.9 Light Light 35 54.9 Moderate Moderate 

5-1 49.4 Moderate Heavy 19 80.1 No Support No Support 37 50.1 Moderate Moderate 

6 69.3 Light Light 21 49.6 Moderate Light 38 51.3 Moderate Moderate 

8 60.9 Light Light 23 60.4 Light Light 39 55.2 Moderate Moderate 

10 48.6 Moderate Light 24 40.9 Moderate Heavy 40 54.5 Moderate Light 

11 69.5 Light Light 26 49.9 Moderate Moderate 41 60.4 Light Light 

12 49.4 Moderate Moderate 27 59.1 Moderate Moderate 42 69.4 Light Light 

13 48.9 Moderate Moderate 29 44.6 Moderate Moderate 45 38.2 Heavy Heavy 

 

6. Conclusions 

By comparing the results of the semi- fuzzy RMR with the results in mine, this system specifies that 

fuzzy making is a part of quantative parameters and not fuzzy making the quantative parameters 

highly affects the power of RMR separation method. Holistically, there are limitations in supporting 

equipments in the understudy mine; it is both economically and technically beneficial to apply a new 

scientific method in this mine or other similar mines. 
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ABSTRACT 

A facetted quadrilateral shell element based on Reissner-Mindlin theory and a hybrid equilibrium formulation is 

presented. Each side of an element has six rigid body freedoms as well as six additional modes of deformation. 

The element is incorporated within a co-rotational framework, upgrading its applicability to large displacement 

geometric non-linear analysis. Numerical examples are included concerning the pinched hemisphere benchmark 

problem for both linear and geometrically non-linear behaviour. Results are included regarding the convergence 

of the radial displacements of the loaded points, and distributions of stress-resultants. All results from the hybrid 

models are compared with those from similar meshes of 9-noded conforming elements. 

 

Keywords: finite elements; equilibrium; shells; large rotations. 

 

1. Introduction  

The formulation of equilibrium shell elements is not so well suited to curved elements, either with 

curved boundaries or with curved surfaces, as are conforming elements. However, the general use of 

faceted models for curved shells is widely accepted as a valid simplification, and it thus seems 

justified to investigate the use of flat straight-sided equilibrium shell elements in this context. In 

general, the motivation for the use of equilibrium models is the expectation that, compared with 

conforming models, much stronger forms of equilibrium are determined without loss of accuracy 

concerning displacements, albeit that displacements are only determined at the sides of elements. 

Recent work [4] has indicated good results can be obtained with such elements to model linear elastic 

behaviour of a folded plate and a curved shell having zero Gaussian curvature. In this paper we extend 

the formulation to model cases where small strains can be assumed and local behaviour continues to 

be linear elastic, but displacements become large enough to produce non-linear behaviour in a global 

sense.  
 

2. Hybrid equilibrium quadrilateral flat shell element 

We consider a co-rotational formulation of a quadrilateral hybrid equilibrium flat shell macro-element 

which combines four triangular primitive elements [4]. We assume moment fields and side rotations 

of degree 2, together with membrane and transverse shear force fields and side translations of degree 

1. The plate bending behaviour is governed by Reissner-Mindlin theory, and the sides are assumed to 

be initially straight. The 12 kinematic parameters associated with a side include its 6 rigid body 

freedoms plus 6 additional modes of deformation. The conjugate static parameters consist of 6 

resultant forces/moments plus 6 self-balanced distributions of stress-resultants. Thus each side has a 

separate rigid body drilling degree of freedom, but the transverse fibres are not free to rotate 

independently, as would be the case with micropolar theory, or at the nodes of an element which 

exploits Allman’s incompatible  shape functions to interpolate drilling rotations [5]. 

Special consideration needs to be given at the interfaces between elements which are not coplanar. 

Without additional distributions of drilling rotation, the twisting rotations of fibres cannot necessarily 

be transferred to an adjacent element. Two alternative assumptions are made: (a) the additional modes 

of twisting are assumed to be free to occur and the conjugate torsional moments are released at an 
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interface; or (b) the additional modes of twisting are assumed to be transferred between elements even 

though their axes of rotation are in different directions. In case (a) we have a strictly equilibrated 

model in terms of stress-resultants, but in case (b) where torsional moments are not released, the self-

balanced modes of torsion are not codiffusive, and we have a so-called quasi-equilibrium model. Of 

course in the case of modelling curved shells, their shapes are only approximated by a facetted model, 

and equilibrium must be understood to be with reference to that model. 

When the response of a model involves large displacements, including large rotations, the co-

rotational formulation follows a similar procedure as in [1,2]. Global  and local element Cartesian 

axes are used as indicated in Figure 1, where the effective nodes of the element are located at the 

midpoints of the sides. The local coplanar ( ),x y  axes bisect the lines joining nodes (42,13) and 

(13,24) respectively, and the z axis is normal to the plane of the element. 

 

3. Analysis of the pinched hemisphere benchmark problem 

The performance of the element is assessed when either small or large rotations occur for the 

benchmark problem [6] of the pinched hemisphere, radius 10m, thickness 40mm, with an 18° 

opening. The hemisphere is modelled by the quadrant in Figure 2 by using appropriate symmetry 

conditions on the boundary. Solutions are compared with those produced from models based on 9-

noded curved conforming elements [1], which models are susceptible to locking. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: global and local Cartesian reference            Figure 2: Plan view of quadrant of 

axes for the flat quadrilateral element.                        hemisphere with radial pinch loads. 

 

The convergence of the radial displacements of the pinch points are compared in Figure 3(a) for a 

small load P = ±1kN with regular meshes containing 4, 8, 16, and 32 elements uniformly distributed 

along each boundary curve. It should be noted that the theoretical value of 94mm is based on linear 

elastic theory [6], and this amounts to nearly 2.5 times the shell thickness.  

  

 

 

 

 

 

 

 

 

 

 

 
(a) approximately linear behaviour with loads  ±1kN               (b) non-linear behaviour with loads  ±160kN 

Figure 3: convergence of the radial displacements at the pinch points.  
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Figure 3(b) includes results for both the equilibrium and the quasi-equilibrium models, and it can be 

seen that they are both giving upper bounds to the radial displacements. However, it must be noted 

that these results refer to facetted model geometries that change as the mesh is refined. The vertices of 

the quadrilateral elements always lie in the midsurface of the shell, but the structural nodes are offset 

from the midsurface as a result of the facetted approximation.  Clearly, the quasi-equilibrium models 

tend towards the true solution as the mesh is refined and adjacent elements approach being coplanar. 

However, the equilibrium models remain too flexible due to the release of the torsional moments at 

element interfaces. The conforming models represent the shape of the shell more precisely, but, as 

expected, are too stiff with a tendency towards membrane locking in the coarser meshes. 

 

 

 

 

 

 

 

 

 

 

 
(a) Mxy  (blue: 0 to red: 0.60kNm/m) quasi-equilibrium model    (b) Mxy central element at bottom edge 

 

 

 

 

 

 

 

 

 

 

 
(c) quasi-equilibrium model                                                            (d) conforming model 

 Ny tension (blue: 0 to red: 20kN/m), patch of 7x10 elements adjacent to the outward pinch force 

 

 

 

 

 
  (e) quasi-equilibrium model                                                         (f) conforming model 

Ny compression (blue: -100 to red: 0kN/m), patch of 2x10 elements adjacent to the outward pinch force 

Figure 4: contours of moment and membrane force stress-resultants from 64x64 meshes; axes x,y refer to 

longitudinal and latitudinal directions respectively.  

 

The contours of moment stress-resultants are generally in agreement in both types of model, e.g. Mxy 

in Figure 4(a), with an important exception. The conforming model shows Mxy to be at its maximum 

value on the bottom edge of the hemisphere, whereas the quasi-equilibrium model indicates high local 

gradients in Mxy, which moments correctly become zero, as prescribed, on the bottom edge as 

indicated in Figure 4(b). The gradient in Mxy also correctly reflects the presence of a boundary layer 

which contains concentrations of transverse shear forces Qzy. 

The distributions of membrane forces, e.g. circumferential forces Ny, are better recovered from the 

quasi-equilibrium model, as indicated in Figures 4(c to f), where the results from the conforming 

model tend to oscillate in a typical, but unrealistic, way. 

The results from the models when P = ±1kN contain small differences between the inward and 

outward displacements of the loads, as well as small differences from expected symmetric or 

y 

x 
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antisymmetric contours of stress-resultants. These differences indicate that geometric non-linear 

behaviour is already present at this load. 

When the load P = ±160kN, geometric non-linear behaviour is very evident, as indicated in Figure 5, 

and in the convergence towards different magnitudes of radial displacement at the pinch points, as 

shown in Figure 3(b). The converged values agree with those in [3] to within 0.5% for the quasi-

equilibrium model, and within 3.6% for the conforming model with 32x32 meshes. 

 

 

 

 

 

 

 

 

 

 

 
(4x4 mesh)                                                                           (32x32 mesh) 

Figure 5: deflected shapes of the quasi-equilibrium model at ±160kN. 

 

As with the linear case, the quasi-equilibrium model gives apparent upper bounds to the magnitudes 

of both radial displacements, with even the coarsest 4x4 mesh providing excellent results in this 

respect. This is in stark contrast with the conforming model which is far too stiff for coarse meshes. 

However it is observed that for the 4x4 mesh, some of the facetted elements become quite distorted 

and warped out of their planes. A consequence of this is that local equilibrium of nodal forces and 

moments can be violated without a non-linear formulation of the local element response. 

 

4.  Conclusions 

 

The radial displacements of the pinch points from the quasi-equilibrium hybrid models converge 

monotonically as upper bounds to the reference solutions of the benchmark problem for both linear 

and geometrically non-linear forms of behaviour. The equilibrium model which releases the self-

balanced modes of torsion gives greater upper bounds, and appears to converge to a more flexible 

solution. As expected, unlike the conforming model, there is no evidence of locking in either form of 

hybrid model. The distributions of stress-resultants from the quasi-equilibrium models tend to 

converge more rapidly towards useful forms for the design engineer compared with the conforming 

models. Future research is required to investigate the formulation of a non-planar macro-element. 
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ABSTRACT 

In this paper a stochastic finite element model is developed to investigate the probability of failure of 

cementitious buried sewer pipes under combined effects of corrosion and stresses. Using the developed model, 

the effects of different random variables including traffic loads, pipe material and corrosion on the remaining 

safe life of the cementitious sewer pipes are explored. A numerical example is presented to demonstrate the 

application of the proposed model in evaluating the effect of the contributing parameters to the probability of 

failure of concrete sewer pipes. The stochastic finite element model provides a practical tool for both designers 

and asset managers to predict the reliable service life of the system. 

Keywords: Stochastic finite element method; cementitious sewer pipes; probability of failure; concrete 

corrosion; random variables 

1. Introduction

Underground sewer pipes are important and vital infrastructures that play a crucial role in the 

economy, prosperity, quality of life and especially the health of a country. These essential structures 

are designed to resist and operate safely under various external loads and environmental conditions. 

However the degradation of sewer pipes over their service life in combination with the effect of 

overlaying soil and surface traffic loads can sometimes cause failures in sewer pipes. It is known that 

for cementitious sewer pipes, corrosion is the main cause of degradation [1]. The corrosion can cause 

reduction in structural strength of the pipeline, leading to pipe collapse. Therefore considering the 

effect of corrosion in the analysis and design of cementitious sewer pipes is essential for developing 

advanced model(s) to predict the likelihood of collapses of sewer systems. In order to provide an 

accurate prediction of remaining safe life of the sewer pipes, all the parameters that affect and control 

the process of deterioration and failure of pipes, the interaction of different mechanisms of failure, and 

their effect on remaining safe life of sewer pipes should be considered. Due to the large degree of 

uncertainty relating to the factors that are involved in the operation of underground sewer systems - in 

particular corrosion - it is more rational to model the failure of sewer pipes as a stochastic process. To 

fulfil this, a comprehensive model has been developed and is reported in this paper that takes into 

consideration all parameters contributing towards the failure of cementitious sewer pipes using 

stochastic finite element method (SFEM). SFEM can determine the prospect of failure of sewer pipes 

throughout their intended service life. Particular attention is paid to simulate the corrosion using the 

stochastic finite element model and to investigate its interaction with other mechanisms of failure and 

their effect on the remaining safe life of sewer pipes.  The results provided by the proposed stochastic 

finite element model can help asset managers and owners to make risk-informed and cost-minimised 

decisions with respect to when, where, what and how interventions are required to ensure the safety 

and integrity of existing pipelines during their whole life of service. 

2. Stochastic Finite Element Method

The stochastic finite element method (SFEM) is a powerful numerical tool in computational stochastic 

mechanics. SFEM can be classified as an extension of the classic deterministic finite element 

approach to the stochastic framework i.e. to the solution of static and dynamic problems with 

stochastic mechanical, geometric and/or loading properties [2]. The general formulation of a SFEM 

can be written in the following form [3]: 
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  ( ) ( )   ( ) 1 

where   is the global stiffness matrix,   and   represent the nodal displacement and force vectors and 

  represents the randomness of the parameters. The above equation is the stochastic representation of 

the static finite element problems and the uncertain response of structure (i.e.  ( )) and other 

quantities of interest such as stresses  ( ), and strains  ( ) can be obtained by solving Equation 1. In 

this paper a stochastic finite element model based on the Monte Carlo simulation (MCS) technique is 

developed to analyse the probability of failure of underground cementitious sewer pipes. In the MCS-

based SFEM, a deterministic finite element problem (Equation 1) is solved a large number of times 

and the response variability is calculated using statistical relationships. The MCS method does not 

involve any simplification or assumption which makes it a robust and universal technique to treat 

complex stochastic problems. The developed code is employed incrementally over the time in order to 

account for the degradation of the sewer pipe and predict the probability of failure of the sewer pipes 

throughout their service life. In the MCS code, for every simulation, the limit state function(s) is 

checked using the finite element method (i.e. if the resultant stress has exceeded the yield stress) and 

the probability of failure is obtained using the following equation [4]: 

   
  

  

 
 2 

where Pf 
i
 is defined as the probability of failure of each limit state function, Nf is the number of 

simulations when the limit state function is violated, and N is the total number of simulations. In a 

series system, where more than one limit state function exist, the failure of any of the limit state 

functions implies the failure of the system. If the individual failures are mutually independent, then 

the probability of the system can be obtained from Equation 3 [4]. In this equation Pf is the probability 

of failure of the system, and   is the number of limit state functions defined for the system. 

        ∏(  

 

   

  
 ) 3 

Effect of Corrosion 

Concrete corrosion due to sulphuric acid attack is known to be one of the main contributory factors in 

the degradation of concrete sewer pipes. In this study it is assumed that the corrosion of concrete 

sewer pipes is dependent on the age of the pipe and can be presented using a power law model. The 

power law model to predict the biogenic sulphuric acid corrosion of concrete pipes can be presented 

in the form of the following equation: 

          4 

where   is the corrosion of the pipe,   is a multiplying coefficient,   is an exponential coefficient, and 

  is the age of the pipe. The data provided in Meyer [5] are utilised to estimate the coefficients in 

Equation 4 using an exponential regression. Due to a large degree of uncertainty of corrosion process, 

the corrosion and consequently the coefficients in Equation 4 are considered as stochastic parameters. 

At every finite element simulation the amount of corrosion is obtained using Equation 4 and the finite 

element input file is updated via re-meshing the pipe domain using the new coordinates after 

considering the corrosion. The strength of the concrete pipe is expected to be reduced as a result of the 

reduction of pipe wall thickness. 

 

3. Numerical Example  

In this section a numerical example is considered to evaluate the performance of the developed SFEM 

in predicting the probability of failure of concrete sewer pipes subject to stresses and corrosion. The 

finite element (FE) model of the problem consists of a concrete pipe with a circular section buried 

underground and surrounded by a homogenous soil. The model is subjected to self-weight and an 

external traffic load applied on the surface of the model. The FE model is assumed to be two 
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dimensional with plane strain geometrical condition. In order to draw conclusions that are not affected 

by a particular example, the problem is scaled with respect to the external diameter of the pipe and the 

variations of different normalised parameters are investigated. Figure 1 shows the geometry and 

normalised parameters of the problem. 

 
                    Table 1: Random variables used for the SFEM 

               
 
Figure 1: Geometry and parameters used in the FE model 

 

In addition to the deterministic parameters such as diameter and thickness of the pipe, there are some 

parameters that are considered as stochastic or random parameters. Using the existing studies on the 

reliability analyses of underground pipelines and performing a number of pilot simulations, five 

parameters were chosen as random variables. The normal distribution has been adopted for these 

random variables since only means and variances were available. These parameters, their mean and 

their coefficient of variation (cv) are presented in Table 1. 

Results and discussion 

After choosing the type of each parameter (deterministic or stochastic) and creating the FE models, 

the time-dependant SFEM were performed for different values of scaled parameters in order to study 

their effect on the probability of failure of concrete sewer pipes. Figure 2 shows the results of the 

SFEM on probability of failure of the example sewer pipe under various normalised traffic loads over 

its service life. It can be seen that as the traffic load increases the probability of failure of sewer pipes 

grows rapidly. In addition it can be noted that initially the probability of failure is zero or very small 

for all cases; however as the effect of corrosion emerges (usually after the first 20 years) the 

probability of failure increases rapidly. To further investigate the effect of traffic load on the service 

life of concrete sewer pipes subject to stresses and corrosion, the following analysis was also carried 

out. Let us assume that the acceptable probability of failure (  ) is 10%, or 20% or 30% (equivalent of 

a remaining safe life of 90%, 80% and 70% respectively). The service life of each FE model (each 

model has a different normalised traffic load) can be evaluated using the results provided by the 

SFEM (Figure 3). It can be seen in Figure 3 that the service life of the sewer pipe is reduced 

significantly with a non-linear trend as the traffic load increases. For example if the traffic load is 

doubled (i.e.    increases from 10 to 20) then the service life of the sewer pipe is reduced from 60 

years to zero years for the acceptable probability of failure of 10%.  A similar trend can also be seen 

for other presumed acceptable values of probability of failure (i.e.        and       ). 

 

t* 

F* 

D 

h* 

Symbol Description Mean 
Coefficient of 

variation 

𝑓𝑐  
Concrete maximum 

compressive strength 
35 MPa 0.1 

   Traffic load 20 0.25 

𝐼𝑓  Load impact factor 1.5 0.15 

  
Corrosion multiplying 

coefficient 
3.5 × 10 5 0.1 

𝜆 
Corrosion exponential 

coefficient 
1.5 0.15 

 

F* 
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4. Summary and Conclusions 

In the present study a stochastic finite element model was utilised to predict the probability of failure 

of concrete sewer pipes under combined effects of internal corrosion and stresses. Uncertainties 

involved in pipe material, traffic load and corrosion are considered to develop the stochastic finite 

element model. A nonlinear time-dependent model was chosen to predict the corrosion in concrete 

sewer pipes. A normalised numerical example was employed to investigate the effect of both 

deterministic and probabilistic parameters on the probability of failure of sewer pipes. Two 

mechanisms of failure (i.e. corrosion and shear failure) were adopted to define the limit state 

functions. The results of the numerical simulations revealed a nonlinear relationship between most of 

the parameters and the probability of failure of sewer pipes. The results of the developed stochastic 

finite element model can be used to improve the performance and planning of existing sewer systems, 

by providing better predictions for the probability of failure of sewer pipes compared to the existing 

approaches. The model can bring together the effect of contributing parameters in the probability of 

failure of the system being studied in a numerical framework with high precision. Using the stochastic 

finite element model it is possible to study the effect of each parameter on the failure of the system 

and their interaction with each other. The SFEM also provides a time-dependant reliability analysis 

for predicting the remaining safe life of sewers, which provides a means to better manage the existing 

sewers and plan resources during their whole life of service. Further improvement in the predictions 

provided by model can be achieved by collecting additional data on the corrosion rate of concrete 

sewer pipes. 
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ABSTRACT 

A 9-noded co-rotational shell element based on a layer-wise theory is proposed for the nonlinear analysis of 

three-layered sandwich plates/shells with soft core. The cross-sectional zigzag effect of planar displacements is 

considered by assuming a layer-wise linear zigzag function specific to stiff/soft/stiff sandwich construction. A 

novel zigzag function is introduced into the Reissner-Mindlin element formulation leading to seven 

displacement freedoms per node. Meanwhile, a piecewise linear-constant-linear distribution of the transverse 

shear stress through thickness is also assumed, which leads to three stress parameters per node. By employing 

the Hellinger-Reissner variational principle at each layer, stress parameters can be expressed in terms of 

displacement parameters and thus eliminated, and the governing equations can be obtained. The proposed shell 

element is formulated in a co-rotational framework allowing for large displacement analysis. For computational 

efficiency, additional displacement fields related to the zigzag effect are defined in a shell coordinate system so 

that co-rotational transformations of nodal forces and stiffness associated with these freedoms are excluded. To 

address the locking issue of the proposed shell element, an optimisation approach is adapted to the sandwich 

shell element. Two nonlinear examples are used to illustrate the effectiveness of the proposed element. 

 

Keywords: sandwich plates/shells; zigzag function; locking; assumed strain; shell coordinate system 

 

1. Introduction  

Sandwich structures, which comprise a relatively flexible core sandwiched by stiff face sheets, have 
been widely used in engineering practice. These are characterised by zigzag displacements and 
interlaminar continuity of transverse stresses due to the large face-to-core modular ratio. In this work, 
a 9-noded sandwich shell element is proposed for nonlinear analysis of sandwich plates and shells. 
 

2. Zigzag Planar Displacement Fields  

A 9-noded sandwich shell element based on a layer-wise theory has been developed and implemented 
in ADAPTIC [1], which assumes that planar displacement fields are layer-wise linear through 
thickness. The element is an extension of a previous 9-noded shell element [2,3] to a 3-layered 
application, which is formulated in a co-rotational framework to allow for nonlinear analysis. The 
optimisation approach proposed by Izzuddin [3] has been adapted to this element to address locking. 
The transverse displacement field is assumed to be constant through the thickness, while planar 
displacement fields are derived by adding a zigzag-shaped component to the original Reissner-
Mindlin displacement terms, which are expressed as: 

x x0

y y0

( , ) ( , )( , )( , , ) h
( )

( , ) ( , )( , )( , , ) 2

uu

vv

                   
            

                   

   (1) 

where ( , , )    is the element natural coordinate system, in which 1    at the top/bottom surface; 

0
u  and 

0
v  are planar displacement fields of the middle surface; ( x, y)


    is the rotation in  - 

direction of the cross-section with reference to initial geometry; ( x, y)


    is the additional 
displacement field; ( )   is the zigzag-shaped function. For three-layered sandwich plates/shells 
whose faces are stiffer than the core, the zigzag effect is dominated by the mode that has identical 
rotations in the faces. Therefore, the mode in Figure 1 is used as the zigzag function ( )  . 

 

3. Shell Coordinate System  

The proposed sandwich shell element has seven freedoms per node (five Reissner-Mindlin freedoms 
plus two additional freedoms associated with sectional warping). The five Reissner-Mindlin 
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displacement variables are local co-rotational freedoms transformed from their global counterparts. 
Since external loading is usually associated with traditional freedoms only, it is unnecessary to define 
the additional freedoms in the global coordinate system as those Reissner-Mindlin freedoms. Instead, 
a specific local shell coordinate system independent of the co-rotational framework is proposed within 
which additional freedoms are defined. The orientations of the shell coordinates are obtained by 
rotating the element coordinates by an angle   extracted at that point. This angle   is a function 
varying throughout the shell surface, which is defined such that at a node shared by two or more 
elements, the orientations of the shell coordinate systems at that node are exactly or close to identical. 
Despite possible second-order violation of continuity, this shell coordinate system is computationally 
efficient with mesh refinement, hence excluding co-rotational transformations related to the additional 
freedoms. By denoting  x y

,   the additional displacement fields defined in the shell coordinate 
system, the following relationship is obtained: 

x x

y y

cos sin

sin cos

          
              

.     (2) 

Substituting Equation (2) into Equation (1) gives: 

x x0

y y0

( , )( , )( , , ) cos sinh
( )

( , )( , )( , , ) sin cos2

uu

vv

                   
                                

  (3) 

 

 
Figure 1: Schematic plot of the zigzag function. 

 
Figure 2: Assumed distribution of transverse shear 

stress through thickness. 
 

4. Assumed Transverse Shear Stress Fields 

If the face-to-core modular ratio is relatively large, distribution of the transverse shear stress through 
the thickness exhibits a piecewise linear-constant-linear pattern. Therefore, a shear stress distribution 
as shown in Figure 2 is assumed. For computational efficiency, transverse shear stresses at the three 
layers are assumed to be mutually independent, though resulting in possible violation of C0 continuity 
at laminar interfaces. The assumed transverse shear stresses are expressed as: 

 

 

(1)

0(1) (1) (1)

3 (1)

13 ,AS ( 2 ) ( 2 ) ( 2 )

AS α3,AS 3

23,AS
( 3 )

0( 3 ) ( 3 ) ( 3 )

3 ( 3 )

2
1

;

2
1

  

  

  

    
        

 
 

  
          

  
   
       
 

  

τ   (4) 

where  
T

(k) (k) (k)

13 23
,  ω  is the vector of stress variables for Layer (k); ( k ) ( k ) ( k )

 
      ; ( k ) ( k )

and
 

   
are values of   at the top and bottom of Layer (k); ( k )

0
  is the value of   in the middle of Layer (k). 

 

5. The Hellinger-Reissner Variational Principle 

Consistently with layer-wise theories, each individual layer is regarded as a pseudo Reissner-Mindlin 
shell. The vector of 45 pseudo freedoms at Layer (k),

(k)

ps
U , can be expressed in terms of the vector of 

the 45 local freedoms
C

U  and the vector of 18 additional freedoms 
A

U : 
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(k) (k) (k)

ps ps,C C ps,A A
 U T U T U      (5) 

in which (k)

ps,C
T  and (k)

ps,A
T  are transformation matrices. With the use of pseudo freedoms (k)

ps
U , strains at 

Layer (k) are obtained via von Karman’s equations.  
The Hellinger-Reissner principle is employed at each individual layer, which gives both the 
relationship between the stress and displacement parameters and the weak form of equilibrium. At 
Layer (k), the Hellinger-Reissner variation of the model is expressed as 

 

(k) (k)

(k) (k)

h h

(k) T (k) (k) T (k) (k) T (k) (k) T (k) (k)

R m m b b s AS AS s s,AS

h h
A

A

(k) (k)
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d dA d dA

0 , ,

z z

W

 

 

   
            
   
   

    

 

 
 
 

 ε σ ε σ ε τ τ ε ε

U U ω

 (6) 

where terms with subscripts ‘m’, ‘b’, and ‘s’ represent respectively the membrane, bending and 
transverse shear stresses/strains; 

(k)

s,A S
ε  are transverse shear strains obtained from assumed stress fields. 

The stress parameters 
(k)

3
  can be expressed in terms of displacement parameters by the use of the 

second integral in Equation (6). Further manipulation of Equation (6) gives the weak form of 
equilibrium at Layer (k): 

           
T T T T T

T (k) T (k) (k) (k) (k) (k) (k) (k) (k) (k) (k)

C ps,C A ps,A m m m b b b s s s

A

(k)

ext C A

dA

0 ,W

    

   




U T U T B D ε B D ε B D ε

U U

 (7) 

where (k)

m
B , (k)

b
B , and (k)

s
B represent respectively the first derivative of (k)

m
ε , (k)

b
ε , and (k)

s
ε with respect to 

(k)

ps
U ; (k)

m
D , (k)

b
D , and (k)

s
D are generalised constitutive matrices, in which (k)

s
D  incorporates the effect 

of the assumed transverse shear stress distribution. 
 

6. Nodal Forces and Tangent Stiffness Matrices 

Using Equation (7), the nodal forces 
C

f and 
A

f can be obtained:  

 
3

(k) T (k) T (k) (k) (k) T (k) (k) (k) T (k) (k)

C ps,C m m m b b b s s s

k 1 A

dA



   f T B D ε B D ε B D ε               (8) 

 
3

(k) T (k) T (k) (k) (k) T (k) (k) (k) T (k) (k)

A ps,A m m m b b b s s s

k 1 A

dA



   f T B D ε B D ε B D ε    (9) 

The element tangent stiffness matrices related to
C

U and 
A

U are also readily available: 

 
TC CA

C A CA ACT T T

C A A

; ; .
 

   
  

f ff
k k k k

U U U
     (10) 

The co-rotational transformation of local nodal forces 
C

f and tangent stiffness matrices are: 

T

G C
f T f       (11) 

2 T

T T TG C G

G C C GA AG CAT T T

G G G A

; .
  

     
   

f U f
k f T k T k k T k

U U U U
  (12) 

It is obvious that co-rotational transformations regarding 
A

f and 
A

k are excluded, which enhances the 
computational efficiency of the element. 

 

7. Examples 

Two nonlinear examples are provided to examine the effectiveness of the proposed shell element 
(SS-AO3). Equilibrium paths are plotted in Figure 4 and 6. Results with the first order shear 
deformation theory (FSDT-AO3) are also plotted for comparison. Solution of 3D models (i.e. BK20 
in Example 1, and SOLSH190 in Example 2) are used as reference solution. In each example, the 
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result with FSDT-AO3 elements deviates from the reference solution, which gives a stiffer response, 
thus showing the importance of incorporating the zigzag effect in these examples. On the other hand, 
the equilibrium path of a relatively coarse mesh with SS-AO3 elements coincide with the reference 
solution, which verifies the adopted zigzag function, the assumed transverse shear stress distribution, 
and the defined shell coordinate system. It is also clear that the proposed element is free of shear and 
membrane locking with the application of the optimisation approach to each individual layer. 
Therefore, the results of the coarse meshes with SS-AO3 elements prove the computational efficiency 
and accuracy of the proposed 9-noded sandwich shell element. 

   

 
Figure 3: Cylindrical sandwich shell under point load 

(Example 1). 

 
Figure 4: Comparison of equilibrium paths of Example 1 

with different elements. 

 

 
Figure 5: Annular sandwich plate under end shear with 

(0/0/0) layup (Example 2). 

 
Figure 6: Comparison of equilibrium paths of Example 2 

with different elements. 
 

8. Conclusions 

This paper presents a 9-noded shell element for nonlinear analysis of sandwich plates/shells. A novel 
zigzag displacement function specific to sandwich structures is introduced, and a simple distribution 
of transverse shear stresses through thickness is also assumed in the formulation. Additional freedoms 
associated with the zigzag effect are defined in a specific shell coordinate system for computational 
efficiency. Numerical examples have verified the accuracy and effectiveness of the proposed element. 
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ABSTRACT 

The dynamics of cable-stayed bridges are complex, in particular because of the complex interaction between the 
deck and all the cables. The whole bridge is difficult to model and to reproduce in the laboratory, moreover, the 
presence of many cables complicates the modeling process. As a result, the substructuring technique often 
represents an efficient solution for capturing its behaviour. The cable available at the Earthquake Engineering 
Laboratory of the University of Bristol (UK) is representative of a full scale cable on the Second Severn 
Crossing, a cable-stayed bridge in United Kingdom. Using this example several parameters can be considered in 
order to extend the developed theory to a general cable for cable-stayed bridges. The 5.4m long steel cable has 
been experimentally observed interacting with the deck that has been modelled numerically as a single degree-
of-freedom system. The cable is excited at the bottom through a vertical actuator that transfers the input force, 
generated by the numerical model, to the physical structure. A time lag exists due to the latency in the acturator 
and the input is effectively applied later than expected. Delay compensation has been optimized in the range of 
the exciting frequencies and several values have been found and correlated to the magnitudes of the applied 
forces. Various tests have been conducted in order to compare the response of the system in the absence of delay 
compensation, and optimizing delay compensation. It has been shown that both the accuracy of the results and 
the detection of the stability boundaries of the cable are sensitive to the delay compensation process. 
 
Keywords: cable-stayed bridge, cable-deck interaction, delay compensation, hybrid tests, substructuring 
technique, time lag. 

1. Introduction  

Real-time dynamic substructuring (RTDS) is a kind of hybrid testing technique. Essentially, the whole system is 
divided into two parts. One part of the system is physically built in the laboratory. The remaining part is 
modelled in the computer and it interfaces with the physical model - see [1,2,5]. RTDS technique has been 
adopted for the present research, to conduct tests on a cable representative of a full scale cable for a cable-stayed 
bridge, that interacts with the deck [3-4].  
The numerical model (deck) generates the input signal. The latter is acquired by the transfer system, which is an 
actuator that in turn excites the physical model (cable). The signal is then acquired and closes the control loop 
by feeding back to the numerical model, and a new input signal is generated. The response of the physical model 
depends on the effective input signal, which is affected by delay.  
Several approaches have been proposed to compensate for the transfer system error in RTDS tests - see [7-8] 
and reference therein. The authors, beside those approaches already in use, consider the online adaptive forward 
prediction (AFP) technique. The AFP algorithm is adopted to create a new reference signal in the time domain. 
The reference signal is used as the transfer system demand, then eliminating the response delay and obtaining 
nominally zero synchronization error between each transfer system and its numerical model [7]. 
This paper is concerned with the significant effects of delay compensation on the reliability of the results in 
RTDS tests. Section 2 is devoted to the experimental setup of the cable-deck system. In Section 3, the online 
adaptive forward prediction algorithm is presented. Section 4 is concerned with the effect of delay on the 
reliability of the results in RTDS tests conducted on the cable-deck system.  

2. Cable-deck experimental setup  

The theory on the cable-deck interaction considers a single degree-of-freedom system [3-4]. The mass-spring-
damper model simulates the behaviour of a bridge deck, which is connected at the lower end of an inclined 
cable. The angle of inclination of the cable, θ, is measured from the horizontal line in the gravity plane. The 
cable is vertically excited at its lower (deck) support at a frequency close to its second natural frequency, which 
leads the cable to experience in-plane and out-of-plane vibrations. The purpose of exciting the inclined cable is 
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to identify its nonlinear dynamics and to mark the stability boundary of the semi-trivial solution. The latter 
physically corresponds to the point at which the cable starts to have an out-of-plane response when both input 
and previous response were in-plane.  
The cable, available at the Earthquake Engineering Research Laboratory of the University of Bristol, UK, (Fig. 
1) is a single wire steel cable with diameter 0.78⋅10−3m and length L=5.4m, inclined at an angle θ = 22.6°. The 
cable interacts with the numerical model of the deck through a vertical actuator. It has been designed to 
reproduce the behaviour of a real cable on the Second Severn Crossing, a motorway bridge in the South West of 
the UK [3]. In accordance with this purpose, 21 lead masses have been attached, spaced at 0.25m, except the 
one on the top and the one on the bottom that distance 0.20m by the ends of the cable [5]. The parameters that 
significantly influence the similitude of the scaled cable with the real cable have been non dimensionalised. This 
approach enables to extend the theory to a general inclined cable interacting with the deck, with the same 
nondimensional parameters. 
The tension in the cable is measured by a single axial esse shape load cell, which is connected to the cable at the 
upper end. At the bottom of the cable, a multiaxial six-degree-of-freedom load cell measures the applied force, 
and a linear variable displacement transducer (LVDT) with limit displacement of ±10mm, measures the vertical 
displacement corresponding to the applied force. The hydraulic actuator, in displacement control, is able to 
apply a maximum force of 10kN and a maximum displacement of ±150mm. The acquisition system consists of 
two cameras, one along the cable that records in-plane modes, and one in front of it that records out-of-plane 
modes. The vibrations of 21 discretised points of the cable, which correspond to the added lead masses, are 
tracked by the Imetrum Video Gauge System (VGS). Each test has been performed, ensuring consistency of the 
initial setting parameters since they are considerably sensitive to the external conditions.  
Moreover, free vibration tests on the cable have been conducted to measure the viscous-damping ratio ξn and, a 
reasonable damping ratio of ξn=0.02% has been assumed for the first four considered modes.  

3. Delay in RTDS tests conducted on a cable-deck system  

Experimental tests on the cable-deck system have been performed to mark the stability boundaries, such as 
when the cable is excited in the second in plane mode and it responds with either of the other modes. The 
investigation has been restricted to four modes, such as the first and the second both in plane and out of plane 
modes. 
The tests conducted to identify the cable-deck interaction are carried out in real-time, so that the complex 
dynamic behaviour is captured as accurately as possible. Whereas, when RTDS tests are performed, the transfer 
system introduces into the desirable displacement signal a delay, τ, which will significantly affect the feedback 
force.  
Delay in hybrid tests can be represented by two components. One, e1, is a function that describes the accuracy of 
the numerical models compared to the appropriate variable in the complete emulated system. The other, e2, 
represents the degree of synchronization between each transfer system and its numerical model. Both terms, e1 
and e2, are coupled and, when substructuring complex systems, the only measure of accuracy is the degree of 
synchronization, e2, which in practice is never equal to zero in RTDS tests - see [7] for the full derivation.  
The effectiveness of the control algorithm is measured by using the subspace plots approach. The design 
interface displacement of the numerical model is plotted versus the actual position of the transfer system. Thus, 
the amount of delay is online predicted and a new reference signal is generated to ideally eliminate the response 
error. The ideal delay compensation corresponds to narrow the ellipse that plots the desirable input displacement 
versus the acquired input displacement, to the maximum axis inclined at 45° and the minimum axis close to 
zero. Any introduced delay in substructuring tests transforms the ideal straight line into an ellipse.  
 

 
Figure 1: Cable-deck experimental setup at EERL, University of Bristol, UK. 

161



 

Online procedures of delay estimation and adaptive mechanisms have been used to correct the delay parameter 
and to account for the system dynamics, which in fact may be varying during the test. Those procedures include 
the online adaptive forward prediction technique that is used by the authors to conduct RTDS tests on the cable-
deck system. The AFP algorithm removes the need for tuning both the magnitude of the forward prediction and 
the amplitude gain for each different excitation condition. This tuning is a need for the basic Forward Prediction 
(FP) algorithm. Moreover, the AFP algorithm achieves high levels of synchronization for frequency dependent 
and transient plant conditions by closing the control loop and using the feedback dynamics of the transfer 
system [7]. This technique can appropriately be used when there is no knowledge of the plant dynamics and 
when there is transient or frequency dependent plant behaviour.  
The approach used here follows the AFP technique, which is based on a polynomial estimation algorithm to 
compensate for the delay present in the transfer system [7]. The prediction algorithm is:  

δ(t)′ = (PN,n, Δ [δ])(t + ρ)       (1) 

where δ is the target displacement coming form the substructuring, PN,n, Δ[δ] is the least squares fitting Nth-order 
polynomial through the n time-point pairs (t, δ(t)), (t− Δ, [δ(t− Δ)),...., (t−(n−1) Δ, δ(t−(n−1) Δ)); ρ is the amount 
of the FP. The sampling time step, Δ, used in the RTDS tests is 1ms for experimentation.  

4. Estimation of delay and effect on RTDS tests 

A number of RTDS tests has been conducted on the cable-deck system to observe the cable’s behaviour [6]. The 
ratio q=ωg/ω2, between the deck’s natural frequency and the cable’s second natural frequency, has been fixed as 
q = 0.98.  Further tests have been conducted for q = 1 and q = 1.04, aiming to develop a general theory. The 
cable has been observed in the range of the excitation frequencies of -0.03≤ µ ≤+0.03, where µ=Ω/ω2-1 is a 
parameter accounting for the oscillator’s frequency, and the second in-plane frequency of the cable. 
Figure 2a shows the synchronization subspace plot for tests conducted when the cable is excited and it responds 
in the second in-plane mode, Z2: then it is stable. Delay has been evaluated by essentially measuring the shift 
time between two sine wave excitations in the time domain and the value of τ=12ms has been assessed (Fig. 2b).  
Panels c and d in Fig. 2, state the response of the cable shacked by sine waves, which are exciting its second in-
plane mode for µ=+0.01. The top panel shows the results from a typical test performed in the absence of delay 
compensation: the response of the system is substantially away from the ideal response, which is recognisable 
when the ellipse condenses in a line (Fig. 2d). 
Steady state RTDS tests have been performed on the cable-deck system to mark the stability boundaries. Figure 
3 shows the Z2 stability boundary of the cable interacting with a deck for µ=+0.03. The cable has been excited in 
the second in-plane mode and the maximum displacement of the quarter point has been recorded by the VGS, 
before that the cable vibrates in either of the out-of-plane modes.  
The analytical curve shown in Fig. 3, plots the normalised amplitude of the quarter point, Z2, against the 
normalised applied displacement, Δ. The curve has been defined by following the theory on the nonlinear 
dynamics of the cable as discussed in [4]. The parameter µ=+0.03 has been chosen because the S-shape is more 
distinguishable then the comparison with the experimental results is appreciable. The experimental results from 
tests conducted with delay compensation of 12ms - stars in Fig. 3 -, follow the lower boundary branch of the S-
shape curve and capture the second branch of the Z2 response. The experimental points upon the third higher 
branch of the S-shape curve state the presence of higher Z2 stability branches, which have been  defined in [5]. 
Whereas, the experimental results from tests conducted in the presence of delay, partially catch the first lower 
branch and do not predict possible higher branches of the Z2 response of the cable interacting with the deck - see 
the circles in Fig. 3.  
 

 
Figure 2: Estimation of delay compensation. 

(a) (b) 
(c) 

(d) 
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Figure 3: Second in-plane stability boundary affected by delay compensation. 

 
Moreover, neither the second nor the third branch of the Z2 response in the range of 2⋅10−4 ≤ Δ/L ≤ 3⋅10−4 is 
captured by the circle points. It is evident that the presence of delay, in the form as afore discussed, has a 
significant effect on the prediction of the cable behaviour. 

5. Conclusions 

This work is concerned with the significant effect of delay on the reliability of real-time dynamic substructuring 
tests performed on a cable-deck system. The cable is physically present at the Earthquake Engineering Research 
Laboratory of the University of Bristol, UK, and the deck is modelled numerically, as a single-degree-of-
freedom system. The singularity of the real-time susbstructuring technique is that the characteristics of the 
numerical model, which simulates the deck, can be changed in real-time, without any physical change. The 
cable is observed interacting with different decks and a general stability theory is experimentally validated. 
The adaptive forward prediction technique has been used to compensate for the delay error, which is present in 
the transfer system when real-time dynamic substructuring tests are performed. It is based on a polynomial 
estimation algorithm that removes the need for tuning both magnitude of the forward prediction and amplitude 
gain for each different excitation conditions. The experimental tests conducted with compensated delay of 
τ=12ms capture significant aspects of the behaviour of the cable-deck system. A discrepancy between the 
analytical model and the experimental data is still evident for high combination of excitation force and 
frequency. On of the reasons of such discrepancy is that the analytical model in fact does not include the 
dynamic effect of the cable on the deck, which is included in the performed RTDS tests. 

Acknowledgements 

The author would like to acknowledge the support from the Engineering and Physical Sciences Research 
Council (EPSRC), under the grant EP/F030711/1. 

References 

[1] A. Blakeborough, J. Sieber, S. Neild, D. Wagg, B. Krauskopf. The development of real-time substructure 
testing. Philosofical Transaction of the Royal Society of London A, 34(15), pp.1869–1891,2011. 

[2] O. Bursi and D. Wagg. Modern testing techniques for Substructural System. Springer-Verlag, 2008. 

[3] V. Gattulli, L. Martinelli, et al. Non-linear oscillations of cables under harmonic loading using analytical 
and finite element models. Comput. Meth. Appl. Mech. Eng., (193) pp.69–85, 2004. 

[4] J. Macdonald, M. Dietz, S. Neild, A. Gonzalez-Buelga, A. Crewe, D. Wagg. Generalized modal stability 
of inclined cables subjected to support excitations. J. Sound & Vibr, (329), pp.4515–4533, 2010.  

[5] M.R. Marsico, V. Tzanov, D. Wagg, et al. Bifurcation analysis of parametrically excited inclined cable 
close to two-to one internal resonance. J. Sound & Vibr, 24(330), pp.6023-6035, 2011. 

[6] M.R. Marsico, D. Wagg, et al. Real time dynamic substructuring tests on a cable-deck system in absence 
of delay, Network Earthq Eng Simulation, Dataset, 2013, DOI:10.4231/D3VX0635F. 

[7] M. Wallace, D. Wagg, S. Neild. An adaptive polynomial based forward prediction algorithm for multi-
actuator real-time dynamic substructuring. Proceedings of the Royal Society, 461, pp.3807–3826, 2005. 

[8] B. Wu, Q. Wang, et al. Equivalent force control method for generalized real-time substructure testing with 
implicit integration. Earth Eng & Str Dynamics, 36, pp.1127–1149, 2007.  

163



Proceedings of the 22nd  UK Conference of the 

Association for Computational Mechanics in Engineering 

2 – 4April 2014, University of Exeter, Exeter

Dynamic Modeling and Analysis for Flexible Space Web 

*Zhang Qingbin¹, Feng zhiwei
1
 and Yang tao

1

1
 College of Aerospace Science and Engineering, University of National University of Defence Technology, 

410073, Deya Rd. 109, Changsha, Hunan, P. R. China 

*qingbinzhang@sina.com

ABSTRACT 

As a new type of structure for advanced concepts in space exploration, flexible web system shows the important 

and potential applications in various space explorations. The dynamic behaviour of flexible web is investigated 

by using finite segment method. The flexible web is modelled as a set of semi-damp springs with masses 

lumped at appropriated nodes. The internal forces produced by the semi-damp springs are modelled based on the 

experimental result of cables. The motion equations of each node are derived by Newton’s law with considering 

internal elastic force and external forces including the aerodynamic force and gravity. Then a flexible multibody 

systems model is build to predict the dynamics behaviour of the space web. The effective area, flight rang, and 

web shape in the orbital environment is compared with the one in ground for various size of web and 

deployment velocity. The results can be used to the design and analysis of the future space web application 

system.  

Keywords: dynamic modelling; Newton’s law; flexible web 

1. Introduction

Flexible net system which can be used to capture failed satellites is of increasing interest in many aerospace 

applications. Several on-going studies indicate the potential. ROGER sponsored by ESA employed flexible 

tether-net to capture the target, which could be a satellite or an upper stage or another debris part. With funding 

from the DARPA, Star Inc. revealed plans for a spacecraft equipped with nets called Electrodynamics Debris 

Eliminator (EDDE). University of Tokyo has been proposing a large space membrane structure named “

Furoshiki Satellite” as a promising candidate for the future structure for those missions requiring large area in 

space, such as a solar cell or a large communication antenna [1]. 

Flexible net systems can be regarded as complex tethers system, and there are two basic approaches which are 

often used to model general tethers system. Recently, some numerical and experimental investigations were 

performed for this new type of spacecraft. Mattias employed the commercial software LS-DYNA to 

demonstrate a robust method for space webs spinning deployment [2]. Onoda investigated a constant angular 

velocity-deployment and stabilization of a spinning solar sail [3]. Zhai developed a capture error compensate 

strategy using feedforward control method [4]. 

This paper aims to build a high-fidelity simulation model for flexible net system, which can predict the 

behaviours for space debris removal. In the presented mathematical model, the flexible net is modelled as a 

series of point mass connected by semi-spring-dampers. Meanwhile, the tether properties such as stiffness and 

damp ratio are obtained from experiment data, the aerodynamic force of each segment is considered for ground 

test. The dynamic model is firstly verified by ground test. The simulation results are in well agreements with 

experiment data. Then, characteristics of space flexible net, such as shape and strain distribution, are 

investigated for the given mission of orbital capture. 

2. Space net system

As shown in Fig.1, the space net capture mechanism is generally consisting of some flying weights, a container 

and a flexible net. The flexible net can be stowed in a canister, which is in the mid of the four flying weights. 

Once it has the task to capture the target, each flying weight would be firstly accelerated by a spring or 

explosive device, and immediately pull out the net. After some time, the flexible net along with the flying 

weights would unwrap and fly to the target until that it hit the target at some speed and tangle around it totally. 

There are three aspects to model this process, namely, deployment, free flying and terminal covering. This paper 

focuses on the dynamic modelling of deployment and free flying. 

164



As shown in Fig.2, there are two manners for ejecting nets. One method is that the net is deployed by the flying 

weights located the corner of nets, another method is that the net is firstly deployed from the center point, and 

then opened by the flying weights. 

n o d e s

n e t

s p r i n g s  a n d  d a m p e r s

f l y i n g  w e i g h t s

Fig.1: Scene of orbital capturing   Fig. 2:  Finite segment model of flexible net 

3. System model

As shown in figure 3, the segment ijl  conect the thi  and thj  mass point. Each tether segment is 

assumed to be a semi-spring and damper, which can only afford tension. 
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Fig. 3:  Semi-spring model for tether segment  Fig. 4:  Aero force acted on tether segment 

For the sake of simplicity, the aerodynamics and gravitational force are lumped to each point mass by 

taking half from adjacent segment. Then the equations of motions of thi  tether node can be given by 

( ) ( ) ( ) ( )

1 1 1

2 2 2

D L

i i ij ij ij ij

j R i j R i j R i j R i

m
   

      r T G F F (1) 

Where ( )R i  is the index set related with thi  node. It should be noted that all the above-mentioned 

equations of motion for flying weights and tether nodes are nonlinear, and the nonlinearity is 

obviously caused by the rigid body motions and the aerodynamic forces. 

In this work, the forces on each tether segment include the gravity, lift and drag. Gravities which act 

on both flying weights and tether nodes are assumed to be invariant with altitude, can be obtained by 

i imG g (2) 

For the aerodynamic forces acting on the tether segment can be determined from cross flow principle. 

As shown in figure 4, each tether segment is treated as an ideal cylinder with no porosity. The 

aerodynamic lift and drag coefficients are defined as functions of the segment angle of attack ij . The 

lift and drag coefficients D

ijC , L

ijC  for an inclined cylinder are given 
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Where f

ijC  and b

ijC  are skin-friction and cross flow drag coefficient. Hence, the drag and lift vectors 

can be written as 
2

0

2
0

1

2
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2

D air D r D

ij ij ij ij ij ij

L air L r L

ij ij ij ij ij ij
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





F υ e

F υ e

(4) 

where r

ijυ  is the wind velocity of the center of segment ijl , D

ije  and L

ije  are drag and lift vectors 

respectively.  

The elastic forces of tether segments are due to the spring and damper characteristics of the tether, 

these forces are parallel to the direction of the tether segment. There are certain circumstances where 

the tether loses tension. However, a tether cannot sustain compression forces. The elastic force in 

segment ijl  is thus given by 

0

0

0

( )

ij ij

ij

ij ij ij ij ij

l l
T

p c l l 

 
 

 
(5) 

Where ij the strain in segment is ( , )i j , ij  is the strain rate, ijk  is the elastic constant, and ijc  is the 

damping constant. 

4. Simulation Results

It is very important to do a lot of ground tests for verifying and improving the dynamic model, since it is very 

expensive and difficult to do experiments in space environment. The space net mechanism for ground tests is 

illustrated in figure 5. The mechanism is constructed by ejecting device and net storing chest. The net for tests is 

rectangular with for  

Two characteristic parameters are very important for the orbital capture operation, one is the effective area 

which is determined by four flying-weights, and the other is the range of flying-weights. Therefore, numerical 

simulations were compared with the experiments results in figure 5 and figure 6. It is clear that the solutions 

obtained by mathematic model consist with those by ground test. The difference between numerical simulation 

and ground test is caused by wind gust, which is stasis in magnitude and orientation. The above-mentioned 

simulation results show the variety of the presented dynamics model. 
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Fig. 5: Area of net during deployment 
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Fig. 6 Flight range of net during deployment 

 
Error! Reference source not found.Figure 7 shows the shapes of space net at various instants, along with the 

tension in each tether segments.  Note that it is very difficult to obtain the positional information of nets due to 

its painful thickness, and the position information of flying weights can be accurately obtained using optical 

instruments. It should be emphasized that there is a remarkably difference between the orbit and ground 

environment, meaning that an important issue is to correct the modeling for orbital capture mission. The 

aerodynamic forces can be neglected for the case of orbital capture, while the gravity of GEO is very smaller 

than ground. 
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(a) Ground simulation     (b) Orbital simulation 

 
Fig. 7: The shape of space nets during deployment 

 

In practice, the effective area of flexible net which is mainly determined by initial ejection velocity is very 

important for the design of orbital capture. A set of numerical results are obtained to assess the effect of ejection 

velocity for flying weights. The ejection speed used is 10m/s, then behaviour of net are investigated for the 

ejection angle of 15°and 30°respectively. As illustrated in figure 8, a bigger speed of ejection of flying 

weights result in a larger projection area of flexible net, along with a shorter range. For another case, the two 

different ejection angles with same speed are investigated. The comparison of projection area of the net is 

plotted in figure 9. All these simulations highlight that it is very important to select an appropriate ejection 

velocity for the given capture mission. 
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Fig. 9: The curve of effective area 

 

5. Conclusions 

Lightweight flexible net systems have potential applications for space debris removal, and require 

appropriate modeling techniques. Deployment of space nets is a contemporary issue for advanced 

concepts in space exploration. A nonlinear model was developed using a lumped-mass approach, 

along with a variable-mass tether segment to describe deployment. The simulation results match well 

with experiment data, which demonstrated the variety of the presented model. Because of its 

generality, this model would be useful for other investigators working with nets or webs in space. 
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ABSTRACT 

Recent studies in structural health monitoring have shown that bridge response to temperature effects masks 

effects of live loads and critical defects on structural behaviour in measurements collected from long-term 

monitoring. This paper aims to resolve this challenge by applying kriging surrogate models for compensating 

thermal response in measurements. Initially kriging models are trained for thermal response prediction from 

distributed temperature and response measurements collected over a period when the structure is known to 

behave normally. Later these models are used to predict thermal response from real-time measurements of 

distributed temperatures. The proposed approach is studied on a continuously-monitored laboratory truss 

structure exposed to accelerated temperature variations in healthy and damaged conditions. Results show that 

kriging surrogate models accurately predict thermal response and thereby offer support for detection of 

anomalous structural behaviour. 

 

Keywords: structural health monitoring, kriging surrogate model, thermal response, data interpretation 

 

1. Introduction  

Accurate understanding of structural behaviour of bridges can assist bridge managers and owners in 

optimal maintenance of these valuable assets. Structural health monitoring (SHM), which is seen as a 

means to identify real structural behaviour, is often limited by the difficulty in inferring structural 

performance from measurements. Commonly employed model-based methods are resource-intensive 

requiring experts to create complex finite element (FE) models. In contrast, data-driven methods, 

which are solely based on the interpretation of collected measurements, show promise for revealing 

previously unseen structural behaviour without requiring expensive modeling [5]. However, the 

sensitivity of both model-based and data-driven methods is severely limited by the effects of 

continuously changing environmental conditions, which can neither be fully captured nor accurately 

modeled using current approaches.  

 

Of the various environmental parameters, temperature variations are increasingly recognized as the 

key factor governing quasi-static structural response of bridges [3,10,12]. Consequently, accounting 

for thermal response is critical in understanding long-term measurements from bridge monitoring. For 

most bridges, measured structural response can be approximated as its thermal response [1,8]. This 

premise is validated in previous research [9] in which regression algorithms such as support vector 

regression and artificial neural networks are employed for generating statistical models capable of 

predicting response from distributed temperatures.  

 

This study investigates if kriging surrogate models can provide more accurate and reliable estimates 

of thermal response compared to other previously studied statistical regression models. Kriging 

models are widely used as surrogates for complex finite element models in computationally expensive 

tasks such as design optimization and have the potential to accurately capture the relationship between 

distributed temperature measurements and structural response. This paper presents preliminary results 

from a study undertaken to evaluate this hypothesis on measurements collected from a continuously 

monitored laboratory truss. 
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2. Surrogate Models  

Figure 1 illustrates our approach of using surrogate models to understand measurements from 

structural health monitoring (SHM). The concept is similar to many existing data-driven strategies for 

measurement interpretation. However, the novelty is in its capability to systematically compensate for 

thermal effects. This paper is mainly concerned with two stages - surrogate model generation and 

real-time model application. Measurements from a monitored bridge are collected and communicated 

for storage and processing. They are initially treated for noise and outliers in data-sets. Subsequently, 

principal component analysis (PCA) is employed to reduce the dimensionality of data-sets. 

Specifically, this research uses PCA to transform correlated temperature inputs into a set of 

uncorrelated variables, often referred to as principal components (PCs) [6]. 

  

 
 

Figure 1: Structural health monitoring paradigm with surrogate model 

 

The optimal size and period of training sets for surrogate models is dependent on the nature of 

measurements. For generating reliable models, training sets must cover the full range of variability 

expected in measurements [15]. However, decreasing the number of individual measurement time-

points in the training set only marginally reduces prediction accuracy of surrogate models [9]. 

Therefore, even though large data-sets may be available, a small subset may be sufficient for model 

training. While many regression algorithms evaluate the accuracy of prediction models on a subset of 

the training set, in this study we use measurements collected after the training period to evaluate the 

prediction accuracy. Root mean square deviation (RMSD) is employed to measure the difference 

between time-series of predicted and measured response. The overall accuracy of the model, i.e., the 

performance with respect to all sensor locations, is evaluated in terms of its RMSD and accuracies at 

individual sensor locations are taken into account by considering its range of measurements. 

 

3. Kriging Modeling and Prediction 

Kriging is a powerful interpolation and spatial averaging tool originally developed for spatial analysis 

in geostatistics and hydrosciences [4,13]. Conceptually, kriging is a regression-based approach, where 

a model is created from optimal interpolation between given data points, which are weighted in 

accordance to their spatial covariance [2]. A description of the mathematics behind kriging analysis 

can be found in [14]. In this study DACE: A Matlab kriging toolbox [11] is chosen to create 

surrogates. The construction of surrogates is a one-step process requiring input and output data, 

selection of regression and correlation functions [11] and a kriging hyper-parameter (θ) [7]. 

 

4. Case Study: Laboratory Truss 

A truss, composed of aluminium sections and monitored in the structure lab at the University of 

Exeter, serves as a test-bed for the study. The layout of the truss is shown in Figure 2 (left). It is 0.5m 

heigh and spans 3.2m. Double channel sections are form top and bottom chords and outer diagonals, 

and flat bars are used for other elements. All joints are connected with six bolts. Three infrared 

heaters, located 0.5m above and 0.2m behind the truss, are employed to alter temperature across the 

entire truss. Heaters are automatically switched on for 45 minutes every 1½ hours thus emulating 

diurnal temperature cycles. Measurements are collected every 10 seconds with 540 measurements in a 

full simulated diurnal cycle. Structural response closely follows temperature variations as shown by 
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plots of temperature and strain variations over a diurnal cycle in Figure 2 (right).  

 

    
 

Figure 2: Sketch of the truss (left) showing the location of strain gauges (S-i, i = 1, 2, …, 10), thermocouple 

(black dots) and damage location (circled joint); Plots of temperature (top right) and strain (bottom right) 

measurements collected at the bottom chord of the truss over a simulated diurnal cycle. 
 

The truss is monitored under normal and damaged conditions. Damage is introduced abruptly by 

removing bolts from joints. The performance of surrogate models is evaluated on measurements 

collected over a period of 64 simulated days. In this period two-stage damage is introduced. D-1 

corresponds to the first stage when three bolts are removed from the joint located left to the strain 

gauge S-4 (Figure 2 (left) - circled joint) and D-2 to the second stage when two additional bolts are 

removed from the same joint. D-1 and D-2 are introduced on the 36
th
 and 52

nd
 simulated days. 

Measurements from the first twelve simulated days form the training set and those from the next four 

simulated days form the test set.  

 

5. Results 

Kriging models are trained and tested for a number of model parameter settings. Prediction accuracy 

depends on choice of pre-processing methods, training and test periods, and number of input time-

points. The best prediction accuracy is achieved when = 10, and first-order polynomial regression 

and exponential correlation models are chosen.  

 

RMSD of less than 2% of measured range of each sensor for the test period is achieved using a small 

number of PCs. The range of response depends on the location where measurements are taken. Figure 

3 (left) shows that there is good agreement between measured and predicted strain time-histories. The 

overall performance of kriging surrogate models is demonstrated in Figure 3 (right), where RMSDs 

for each sensor are evaluated versus the number of PCs. This study aims to find surrogate models 

capable of predicting response with high accuracy while, at the same time, being computationally 

inexpensive by limiting the number of PCs. As can be observed from Figure 3 (right), minimum 

RMSD is obtained when using 14 PCs. However, the accuracy only improves marginally when the 

number of PCs is increased beyond 7. 

 

6. Conclusions 

The following conclusions can be drawn from this study: 

 Kriging surrogate models accurately predict thermal response from distributed temperatures. 

 Prediction accuracy is high even if only the first few PCs of temperature measurements are 

used as input to surrogate models. 

Future work will (i) investigate the interpretation of PE signals for anomaly detection using signal 

processing techniques and (ii) compare obtained results with previously employed approaches. 
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Figure 3: A portion of predicted and measured strain time-series of S-4 (left) and a surface plot of prediction 

accuracy of measurements for each sensor and number of PCs. 
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ABSTRACT

Base isolation is a well-consolidated technology, normally used in buildings to reduce the damages from

seismic events. The elastomeric bearings are the most common base isolation devices, essentially con-

sisting of vulcanised layers alternately of rubber and thin steel, and they typically have steel plates at

the top and at the bottom. They are stiff in the vertical direction, to carry the vertical load that a struc-

ture imparts, whereas they are flexible in the horizontal direction to allow for movement during ground

oscillations. Multilayer rubber bearings can experience a form of instability called buckling, which is

significantly affected by the properties of the rubber. For instance, the bulk compressibility of the rubber,

despite being a hard parameter to measure, reduces the effective compression modulus of the rubber-steel

composite. As a consequence, it reduces the buckling load of the bearing. This effect is much consider-

able when the dimensionless measure of the aspect ratio of the single layer of the elastomer - the first

shape factor - increases up to 30-40, which is an ordinary range for commercial bearings. Extensive

research has been conducted into the design of base isolation bearings to optimise their performances,

resulting then in saved lives and in reducing the damages inflicted on buildings during a seismic event.

In order to characterise the stability behaviour in multilayer bearings when the rubber properties vary,

an analytical investigation was conducted. Three shear moduli have been considered and the effect on

the buckling load in both circular and square bearings has been observed. The bulk compressibility has

been also included for the bearings with shape factor greater than 10. Further, a finite element model was

used to validate the analytical model and to investigate the effects that the rubber properties have on the

bearings coping with a seismic event.

Key Words: Elastomeric Bearing; Buckling Load; Shear Modulus; Bulk Compressibility; Finite Element

Model

1. Introduction

The elastomeric bearings are the most common base isolation devices, which have been used for build-

ings especially in earthquake prone areas, since the early 1980s [5]. They essentially consist of vulcanised

layers alternately of rubber and thin steel, and they typically have steel plates at the top and at the bottom.

They are stiff in the vertical direction, to carry the vertical load that the superstructure imparts, whereas

they are flexible in the horizontal direction to allow for movement during ground oscillations.

A significant aspect of a rubber bearing design is the prediction of its instability. The buckling load of

a base isolation bearing, together with the concept of the effective reduced area due to the horizontal

displacement, have been comprehensively studied by Kelly and Konstantinidis in [5]. They suggest that

the effect of bulk compressibility should be included into the design of the traditional rubber bearings,

which have the shape factor S >10, where S is a dimensionless measure of the aspect ratio of the single

layer of the elastomer. A relevant study on the tension buckling in the rubber bearings was conducted by

Kelly and Marsico [6] that investigates the effects of the cavitations in the rubber.

The rubber used for seismic isolators is typically categorised into either high or low damping rubber.

Especially when concerning high damping rubber, it is difficult to accurately estimate the bulk modulus

of the rubber. Moreover, high damping rubber can express nonlinear behaviour and the assumption that

the rubber is incompressible overestimates the buckling load [5].
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2. Analytical model of rubber bearing

The analytical model adopted to predict the buckling instability load in multilayered elastomeric bearings

is based on the theory proposed by Haringx, and later applied by Gent [5, 4] on the problem of the stability

of multilayered rubber compression springs. The buckling load, Pcrit, is defined as:

Pcrit = (PS · PE)1/2 . (1)

PS is given by PS = G · A · h
tr

, where G is the shear modulus, A is the area of the bearing, tr is the total

thickness of the rubber in the bearing and h is the total height of the bearing (rubber plus steel). PE is

the Euler buckling load for the standard column and it is given by PE =
π2

h2 ·
1
3
· Ec · I ·

h
tr

, where I is the

moment of inertia of the cross section of the bearing, about the axis of bending. Ec is the instantaneous

compression modulus of the rubber-steel composite - see [5] for an extensive discussion.

2.1. Effect of horizontal displacement and bulk modulus

The critical load, as defined in Eq. 1, provides acceptable values when either the bearing states in the

undeformed position or it is slightly horizontally displaced. It is essentially controlled by the horizontal

stiffness of the bearing, KH, which is defined as KH =
GA
tr

. However, structural bearings are always

required to support vertical loads, P, which reduces the horizontal stiffness to:

KH =
GAS

h
·















1 −

(

P

Pcrit

)2














, (2)

where the effective shear area, AS= A · h/tr. In addition, the horizontal displacement experienced by a

bearing during a seismic event, reduces the bearing cross sectional area that effectively supports the load,

to Ar. As a consequence, the horizontal stiffness even reduces.

Although Kelly et al. [5] suggest that complex non linear analysis is required for the bearings that, during

a seismic event, experience peak vertical load combined with peak horizontal displacement, the following

approximation for the critical load is reasonably acceptable:

Pcrit(Ar) = Pcrit

Ar

A
. (3)

In the simplified analytical model, the deformation of the rubber is typically assumed as a constant

volume one and the rubber is considered incompressible. Those assumptions are valid in most of the

applications and give reasonable results in the prediction of the buckling load. However, studies on the

bearings agree that the effect of the rubber bulk modulus, K, should be taken into account in the definition

of the critical load in the bearings with shape factor S>10 [5]. Then, the formula for the critical load for

circular and square bearings becomes respectively:

Pcrit(K) =
GS πAr

tr
·

[

2 ·

(

1 −
3GS 2

K

)]
1
2

Pcrit(K) =
GS πAr

tr
·

[(

6.73

3
−

6.73GS 2

K

)]
1
2

. (4)

2.2. Low and High Damping rubber

The parameters of the rubber that significantly influences the buckling behaviour are the shear modulus,

G, and to a certain extent the bulk modulus, K. The hardness of the rubber is measured on the Shore

durometer scale by using the International Rubber Hardness Degree (IRHD), which varies between 0

for liquid and 100 for hard plane surface. Lindley [7] gives a range of K values, based on IRHD values

varying from 30 to 75 IRHD, from 1000 to 1300 N/mm2, whereas Fuller et al. [3] give values ranging

from 2000 to 3500 N/mm2.

The amount of damping in base isolation bearings has a significant effect on the amplitude of the struc-

ture’s oscillations. Low damping rubber is either natural rubber or a synthetic rubber such as neoprene.

Low damping rubber shows linear behaviour up to shear strains of 100% and normally has damping in

the range of 2-3% of the critical one, along with not being subject to creep. Conversely, high damping

rubber consists of natural rubber with the addition of particulates filler increasing the damping up to

almost 20%. Nevertheless, it exhibits nonlinear behaviour at shear strains less than 20% [5].
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3. Buckling load varying the rubber’s properties

The buckling behaviour of a rubber bearing was firstly investigated analytically through a linear analysis.

Two models have been considered. The geometry of the circular model has been defined by considering

existing manufactured bearings with S<10 [2] and the square bearing has been modelled by equating

the bearing cross sectional areas, stating the other dimensions the same in both bearings. Three different

shear moduli G, respectively equal to 0.294N/mm2, 0.55N/mm2, and 1.1N/mm2, as representative of

low, medium and high damping rubbers have been chosen. The influence of the applied load on the

horizontal stiffness, KH , for the three rubbers is shown in Fig. 1, where it is evident that bearings with

high initial KH have a more rapid reduction in the horizontal stiffness as the load reaches the critical load.

The effect of the horizontal displacement on the buckling load was investigated by introducing the con-

cept of the reduced area, as afore stated in Eq. 3. The reduced area has been evaluated for the horizontal

deflections, expressed as a function of the side length (a) or diameter (φ) of the bearing. Figure 2 shows

the effect of the horizontal displacement on the buckling load. For the square bearing - thin lines - a

linear reduction in buckling load is shown, whereas for the circular bearing - thick lines - the reduction

is apparently nonlinear. It is also shown that the buckling load is zero when the horizontal deformation

of the bearing is equal to the width of the bearing. On the contrary, studies demonstrated that the bearing

has still the capacity to resist a load under large horizontal deformation and that the concept of reduced

area underestimates the critical load at high strains [8]. The plausible reason of this incongruity is that

the analytical model does not take into account the nonlinear behaviour of rubber, that can occur at high

strains and can be more prevalent in high damping due to the addition of fillers.

The bulk effect on the buckling load has been investigated on two new rubber bearing models, circular and

square, with S=30. The dimensions have been chosen to be comparable with the commercial bearings’

ones [5]. Both bearings shown in Fig. 3 have been modelled by using a commercial software package

Abaqus [1]. The steel layer was modelled as an elastic material and the rubber layer was modelled by

using a hyperelastic model, which is normally valid for materials that show instantaneous elastic response

up to large strains. The buckling load is investigated by varying the rubber properties of the bearings.

The buckling load was investigated by using the eigenvalue buckling prediction procedure, along with

the Modified Riks Algorithm, MRA. The eigenvalue buckling prediction works by estimating the elastic

buckling by an eigenvalue extraction. It gives appreciable values when concerning the behaviour of stiff

structures, where the response before buckling is linear. Negative eigenvalues indicate that the analysed

model would buckle if the load was applied in the opposite direction.
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Figure 1: The influence of a vertical load on the hor-

izontal stiffness for three different rubbers.
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4. Results and Conclusions

The finite elements models predict the buckling load in compression to be larger than the one predicted

analytically, Pcrit, for both square and circular bearings - see Tables 1 and 2. However, the finite elements

analysis validates the analytical model by showing that any increase in G will result in an increase in

Pcrit.

In addition, the buckling analysis conducted with the software Abaqus produces some negative eigen-

values, which indicates that the bearing would buckle if the load was reversed, i.e. a tensile load not a

compressive load. For both square and circular bearing the buckling load in tension, Pcrit(λ:T ), is less than
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(a) Square bearing (b) Circular bearing

Figure 3: Finite Element model of the bearings. The grey layers represent the steel shims and the black layers

represent the rubber layers.

the buckling load in compression, Pcrit(λ:C). This agrees with the theory developed by [6], who found that

the tensile buckling load is always less than the compressive load.

Table 1: Critical buckling load for square bearing

G (N/mm2) Pcrit(kN) Pcrit(λ:T )(kN) Pcrit(λ:C)(kN)

0.29 198.86 389.32 440.41

0.55 364.53 475.44 554.64

1.10 729.06 698.76 891.14

Table 2: Critical buckling load for circular bearing

G (N/mm2) Pcrit(kN) Pcrit(λ:T )(kN) Pcrit(λ:C)(kN)

0.29 202.89 409.07 457.62

0.55 379.53 500.20 575.58

1.10 759.05 741.96 921.63
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ABSTRACT

In this paper, a new computational framework is presented for the analysis of large strain electromechan-
ics. The framework is not restricted to either energy harvesters or smart actuators, but it is applicable
to the wide spectrum of piezoelectric polymers. In nonlinear elasticity, the condition of polyconvexity
characterises admissible strain energy functionals in the large strain regime. The objective of this work is
the extension of this condition to the field of electromechanics, where a new energy functional is intro-
duced as a polyconvex combination of both strain and electric field variables. A series of valid variational
mixed formulations will be presented and discretised in space with the Finite Element Method, where the
resulting system of nonlinear algebraic equations is solved via the Newton-Raphson method after consis-
tent linearisation. Finally, a series of numerical examples are presented in order to assess the capabilities
of the new formulation.

Key Words: Energy harvesting; Piezoelectricity; Polyconvexity; Large deformations; Electro-mechanics;
Finite Element Method

1. Introduction

The earliest piezoelectric materials to be discovered, i.e. crystals, have shown limited applicability due
to their high stiffness and brittleness. The recent advent of piezoelectric polymers has meant a turning
point in the development of piezoelectricity. The circumvention of the drawbacks associated with their
crystal predecessors has broadened considerably their applications as actuators, power generators and
energy harvesters.

Piezoelectric polymers have traditionally been used as smart actuators in microelectromechanical sys-
tems. However, their ability to emulate the functioning of biological muscles as well as their large strain
capabilities, have recently triggered the emergence of new exciting applications, such as artificial mus-
cles. The large strain capabilities and large piezoelectric coefficients associated to piezoelectric polymers,
confer them also with attractive properties within the field of power generation and energy harvesting.
There is currently a growing need for these kinds of applications. For instance, piezoelectric eels are used
as part of submarine devices in long endurance military missions. The energy-harvesting eel is designed
to extract energy from the wake of a bluff body in an ocean current. The basic configuration is a leading
bluff body trailed by a thin flexible piezoelectric eel. The bluff body generates vortices which excite a
flapping motion of the eel. The eel deformation results in strain of the piezoelectric membrane, which in
turn generates a voltage across the material.

The existing framework for the numerical simulation of piezoelectric materials requires an enhancement
as a result of the development of these new polymers, capable of undergoing large deformations. Unlike
crystals, the classical linearised theory can no longer be applied for a reliable computer simulation. In
this paper, a nonlinear variational formulation for piezo-hyperelastic materials is introduced with the help
of an extended internal density functional U constructed on the basis of strain and electric field variables.
A variety of energy functionals can then be introduced by exploiting the properties of the piezoelectric
polymer under investigation.
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2. Mathematical requirements: Polyconvexity.

Polyconvexity is nowadays well accepted as a fundamental mathematical requirement that must be satis-
fied by admissible strain energy functionals used to describe elastic materials in the large strain regime.
Essentially, the strain energy Ψ per unit of undeformed volume must be a function of the deformation
gradient F via a convex multi-valued function U of F, its cofactor H and its determinant J as

Ψ (∇0x) = U (F,H, J) , (1)

where ∇0x is the gradient operator of the spatial configuration with respect to the initial undeformed
configuration. The three strain measures F, H and J have work conjugate stresses ΣF, ΣH and ΣJ ,
respectively, defined by

ΣF =
∂U
∂F

, ΣH =
∂U
∂H

, ΣJ =
∂U
∂J

. (2)

In electro-mechanics, above expression (1) must be extended in order to account for electric field vari-
ables. An enhanced energy density functional Ψ is defined as a function of the deformation gradient F
and the material gradient of the electrical potential ϕ via a convex multi-valued function U of F, H, J
and the electric displacement vector D0 as

Ψ (∇0x,∇0ϕ) = U (F,H, J, D0) . (3)

Analogously to formulae (2), a new conjugate vector of D0, the material electric field E0, is defined as

E0 =
∂U
∂D0

. (4)

The set of conjugate variables enables the directional derivative of the combined electro-mechanical
internal energy density to be expressed as

DU [δF, δH, δJ, δD0] = ΣF : δF + ΣH : δH + ΣJδJ + E0 · δD0. (5)

3. Variational principles in nonlinear electromechanics.

Numerous authors have previously incorporated the concept of polyconvexity for solid mechanics into
computational models for both isotropic and non-isotropic materials for a variety of applications [3].
The standard approach consists of ensuring that the strain energy density satisfies first the polyconvexity
condition and then proceed towards a computational solution by re-expressing the energy density in terms
of the deformation gradient alone.

A mixed formulation can be derived in which the deformation gradient, its cofactor and its determinant
are retained as fundamental problem variables by means of a Hu-Washizu mixed variational principle
[4]. Moreover, we can generalise this concept to the electromechanical problem by including the electric
displacement as a new variable in the variational principle. The resulting formulation opens up new
interesting possibilities in terms of using various interpolation spaces for different variables, leading to
enhanced formulations.

A possible variational principle can be introduced in terms of the total potential energy ΠU as follows,

ΠU(x, ϕ, F,H, J,ΣF,ΣH,ΣJ , D0) = min
x,F,H,J,D0

 max
ϕ,ΣF,ΣH ,ΣJ


∫
V

U(F,H, J, D0) dV+

∫
V

ΣF : (Fx − F) dV +

∫
V

ΣH : (Hx − H) dV +

∫
V

ΣJ(Jx − J) dV −
∫
V

D0 · ∇0ϕ dV − Πext(x, ϕ)



(6)

where Fx, Hx and Jx represent the deformation gradient, the cofactor and the determinant of the spatial
configuration x. In addition, Πext (x, ϕ) represents the external work generated from mechanical and elec-
trical body and surface effects. Alternatively, a different ordering in equation (6) leads to the following
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variational principle,

ΠΥ(x, ϕ,ΣF,ΣH,ΣJ , D0, E0) = min
x,D0

 max
ϕ,ΣF,ΣH ,ΣJ ,E0


∫
V

Υ(ΣF,ΣH,ΣJ , E0) dV

+

∫
V

ΣF : Fx dV +

∫
V

ΣH : Hx dV +

∫
V

ΣJ Jx dV −
∫
V

D0 · (∇0ϕ − E0) dV − Πext(x, ϕ)




(7)

where the energy density functional Υ is defined by means of the Legendre transform as

Υ (ΣF,ΣH,ΣJ , E0) = ΣF : F + ΣH : H + ΣJ J + D0 · E0 − U (F,H, J, D0) (8)

Two alternative variational principles could also be defined leading to saddle-point type problems, ob-
tained from the internal energy U by means of the Legendre transform as follows,

Γ (F,H, J, E0) = U (F,H, J, D0) − D0 · E0

Σ (ΣF,ΣH,ΣJ , D0) = U (F,H, J, D0) + ΣF : F + ΣH : H + ΣJ J

(9)

4. Constitutive models for piezo-hyperelastic materials.

The convex nature of the internal energy density U (F,H, J, D0) makes this energy the most suitable for
the definition of constitutive laws. The definition of constitutive laws based on saddle-point functionals
(i.e Γ (F,H, J, E0) and Σ (ΣF,ΣH,ΣJ , D0)) is a cumbersome task, specially in two an three dimensional
problems.

Although the energy density Υ (ΣF,ΣH,ΣJ , E0) is convex, it is not as trivial as in the case of the energy
density U (F,H, J, D0) to impose physical restrictions, as for instance material frame indifference by cre-
ating invariants of the conjugate stresses ΣF,ΣH and ΣJ . Therefore, we propose formulating constitutive
laws using the internal energy density U satisfying the polyconvexity restriction. However, this energy
only appears in the variational principle associated to the total potential energy functional ΠU defined in
equation (6). The use of the alternative variational principles requires to express the derivatives of the
associated internal energies in terms of the internal energy U by exploiting their relations through the
appropriate Legendre transforms.

As an example, we present a simple isotropic constitutive law for the internal energy U which satisfies
the polyconvexity restriction (3), namely

U (F,H, J, D0) =
µ

24

(
(F : F)2 + (H : H)2 + 72

(D0 · D0)2

µ2ε2 + 6
FD0 · FD0

µε
+ 6

HD0 · HD0

µε

)
+ f (J) .

(10)
The function f is added to guarantee the stress and electric displacement free conditions in the origin,
namely

∂U
∂F

∣∣∣∣∣
F=I,D0=0

= 0;
∂U
∂H

∣∣∣∣∣
F=I,D0=0

= 0;
∂U
∂J

∣∣∣∣∣
F=I,D0=0

= 0;
∂U
∂D0

∣∣∣∣∣
F=I,D0=0

= 0. (11)

A typical expressions for the function f can be

f (J) = −
3µ
2

lnJ +
λ

2ε2

(
Jk + J−k

)
. (12)

The coefficients µ, ε, λ and k are material parameters necessary for the characterisation of the material.
This is achieved by performing a match in the origin, i.e. F = I, D0 = 0, between the constitutive tensors
derived from the proposed energy functional and the experimentally obtained tensors available in the
linearised regime (i.e. small strains and small electric field)

C|F=I,D0=0 = c; P|F=I,D0=0 = p; H |F=I,D0=0 = H; A|F=I,D0=0 = ε, (13)

where C, P, H and A are the elastic, piezoelectric, electrostrictive and dielectric material tensors, re-
spectively. From the previous match, the necessary material parameters can be obtained either by identi-
fication or optimisation.
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5. Numerical results.

The resulting variational formulations are discretised in space with the help of the Finite Element Method,
where the resulting system of nonlinear algebraic equations are solved via the Newton-Raphson method
after consistent linearisation. A series of numerical examples will be presented in order to demonstrate
the robustness and applicability of the formulation. Figure 1 shows an example in which an electric field
applied across the thickness of a composite shell leads to an electrically induced buckling configuration.
Figure 2 shows an example in which a composite transversely anisotropic slab is subjected to an electric
field in the plane of the undeformed configuration leading to an out-of-plane deformation.

(a) Initial configuration (b) Stress σzz in deformed configuration

Figure 1: Composite shell subjected to transverse electric field: electrically induced buckling.

(a) Initial configuration (b) Electric displacement Dz in deformed configuration

Figure 2: Anisotropic composite slab subjected to potential gradient in the plane of the undeformed configuration.

6. Conclusions and further research.

A nonlinear variational framework for the numerical simulation of piezo-hyperelastic polymers has been
presented. An extended energy density functional has been introduced satisfying the physical and math-
ematical requirements established by polyconvexity. A mixed variational formulation has been imple-
mented in which the deformation gradient, its cofactor, its determinant and the electric displacement
field are retained as fundamental problem variables by means of a Hu-Washizu type variational prin-
ciple. Application of the Legendre transform on the internal energy or, equivalently, rearrangement of
the terms in the variational principle allows to derive alternative mixed variational formulations. The re-
sulting different formulations are resolved numerically with the aid of the Finite Element Method, using
suitable interpolations for the newly introduced variables.
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ABSTRACT 

The aim of this paper was to analyse the state of the thermal stresses in brake disc caused by the transient 
temperature field during the braking process. The study is a continuation of the previous investigations of the 
author concerning finite element analysis of the temperature distributions in a pad-disc brake system. Knowing 
the transient temperature field, the FE model to determine the corresponding quasi-static stresses in a such 
tribosystem was proposed. A numerical simulation of a single braking process for the axisymmetric (2D) and 
3D arrangements of the disc brake was carried out. It was assumed that the contact pressure on the friction 
surfaces is constant and uniformly distributed, and the angular speed decreases linearly. The calculations do not 
take into account any mechanical loads. The evolutions and the spatial distributions of the components of the 
stress tensor and the equivalent Huber-Mises stress in the brake disc are analysed. Based on the results of 
calculations some conclusions have been drawn. Both computational models show similar trends of the changes 
in equivalent Huber-Mises stress. The axisymmetric model does not reveal the changes in stress caused by the 
periodic heating by friction zone and it can be used to determine the average values of stress during a single 
rotation of a disc at high rotational speeds. The highest Huber-Mises stress occurred near the mean radius of the 
pad (3D FE model) shortly after the start of braking and on the inner edge of the disc at the end of the braking 
process (both of the computational models). 
 
Keywords: frictional heating; temperature; thermal stresses; pad-disc brake system; finite element method 
 

1. Introduction  

During braking the stationary pads are pressed to the rubbing path of the rotating disc and the 
mechanical energy is converted into heat. Friction elements of a brake are exposed to mechanical and 
thermal load. The temperature on the contact surfaces rises rapidly, which results in temperature 
gradients and the stress due to thermal expansion. Interactions between the temperature and the stress 
are coupled. In calculations this relationship is often omitted analysing the heat conduction and the 
thermoelasticity problems separately [1-3]. 
Under certain conditions, the modelling of the brake disc heating during braking process can be 
implemented as an axisymmetric problem. The heat flux which is variable in time and depends on the 
radius, acts in this case on the entire surface of the rubbing path of the disc. Then the size of the heat 
flux is reduced as many times as the surface area of the pad is smaller than area of the friction path. 
This calculation scheme works well when determining the average temperatures reached on the 
friction surfaces. An assumption of the axisymmetric state of the thermal loads in the brake disc is 
obviously simplification, since in the real process the brake disc is heated by moving zone under the 
brake pad. The remaining area is cooled through heat conduction into the disc and convection to the 
environment. However during a single braking the effect of heat exchange with the environment can 
be omitted [4]. The axisymmetric model can be considered at high rotational speed, at low speed the 
three-dimensional model should be used. This study is a comparison of two computational models, 
the axisymmetric and the three-dimensional for calculation of thermal stresses occurring in the brake 
disc during braking. 
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2. Statement of the problems 

Consider a single braking process from the initial angular speed ω0 to standstill during ts = 3.96 s, for 
the pad-disc brake system shown in Tab. 1. The displacement of the pads induces on the disc working 
surfaces the constant and uniformly distributed pressure p0 = 1.47 MPa. The angular speed due to 
friction decreases linearly. It is assumed that the material of the disc is uniform, isotropic, and its 
physical properties as well as operating parameters (e.g. coefficient of friction f) are temperature 
independent. The heating process is described by the linear theory of heat conduction (parabolic type). 
The heat transfer through convection and thermal radiation is neglected. The corresponding thermal 
stresses are determined from the solution of the linear system of equations of uncoupled 
thermoelasticity [5] and due to the symmetry of the disc about the mid-plane, the computational 
region is restricted to the half of its thickness. It was assumed that at the initial time moment, the 
temperature of the disc is constant and equal to the ambient temperature T0 = Ta = 20ºC. 
The dimensions and the properties of materials of the pad and the disc are given in Tab. 1.  
 

Table 1: Dimensions of the disc brake and operations parameters from 
 

Parameter 
disc 

(ChNMKh) 
pad 

(FMC-11) 

inner radius, rd, rp [mm] 66 76.5 

outer radius, Rd, Rp [mm] 113.5  

pad arc length, 0 [deg]  64.5 

thickness,  [mm] 5.5 10 

thermal conductivity, K [W/(mK)] 51 34.3 

density, [kg/m3] 7100 4700 

thermal diffusivity, 510K [m2/s] 1.44 1.46 

Young’s modulus, E [GPa] 99.97  

Poisson’s ratio 0.29  

thermal expansion coefficient, T [ 1K  ] 1.08 10-5  

initial angular speed,  [
1s ] 88.464  

braking time, ts [s] 3.96  

contact pressure, p0 [MPa] 1.47  

coefficient of friction, f 0.5  

 

Two computational models using the finite elements were developed: the axisymmetric and the three-
dimensional. In solving the problem of heat conduction the boundary conditions shown in Fig. 1a and 
1b were applied. The heat flux density of the heating brake disc has been determined on the basis of 
the relationship: 

     0, , , 0     d p p sq r t f t rp r r R t t , (1) 

where γ is the heat partition ratio: 

 d d d

d d d p p p

K c

K c K c




 



. (2) 

In the case of axisymmetric problems (Fig. 1a), the intensity of the heat flux was additionally reduced 
by a factor incorporating a real contact area between the pad and the disc. Implementation of the 
calculation of these problems is described in detail in [1] and [2]. 

To solve the problems of thermoelasticity, the boundary conditions shown in Fig. 1c were used. The 
nodes placed in the plane of symmetry of the disc (z = -) is fixed in a z direction. The 3D model 
requires additional constraints in order to avoid the mechanism. Boundary conditions imitate the 
supports of the floating brake disc, which can expand under the influence of temperature without 
hindrance. 
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Figure 1: Boundary conditions for heat conduction problem: a) axisymmetric model; b) 3D model; 
c) thermoelasticity problem 

 
3. Numerical analysis 

The numerical calculations were carried out by using the finite element method based on the software 
package MSC.Patran/Nastran [6]. The developed computational models were tested using the finite 
element mesh with different densities. Finally, the disc region of the axisymmetric model was divided 
into 209000 triangular three-node axisymmetric linear finite elements ‘CTRIAX6’ and 105561 nodes. 
The 3D model consisted of 86040 ‘CHEXA8’ type elements and 102960 nodes. At the first stage of 
the analysis, the solution of the transient heat conduction problem, allowed to obtain the distribution 
of the temperature fields for the specific time steps. The results of these calculations were then used as 
the boundary conditions for the solution of the thermoelasticity problem. This process has been 
automated by the developed of the original software, written in Python. Sample results are shown in 
Fig. 1 and Fig. 2. 

 

Figure 2: Temperatures and corresponding Huber-Mises thermal stress σHM on the disc surface during braking  
at various radii. 
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Figure 3: Equivalent Huber-Mises stress σHM changes on the disc surface during braking: a) axisymmetric 
model, b) 3D model 

 

4. Conclusions 

Based on the obtained results general conclusions about the usefulness of both computational models 
can be formulated. The axisymmetric model reveals the trends of the average level of thermal stresses 
induced in the disc. It is easier to use and quicker to set up calculations. The model correctly 
identified the most strenuous disc areas (between the medium and the outer radius of the rubbing path 
at the beginning of braking and the inner radius of the disc at the end of braking). However, the 
maximum stress values obtained are lower than in the 3D model. The axisymmetric model is not 
suitable for predicting of the fatigue cracking processes occurring on the surface of the brake disc. 
The periodic heating and cooling of the surface layer of the brake disc results in the cyclic changes in 
the thermal stress with the amplitude of about 40 MPa, which gives the basis for using the fatigue 
cracking criteria. The full thermal and mechanical stress state can only be given using a three-
dimensional model. 
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ABSTRACT 

In this paper an approach to modelling of heterogeneous materials is presented. It is based on incorporating the 

concept of Wang tilings in microstructure compression and reconstruction techniques. Unlike the Periodic Unit 

cell approach, where a complete microstructural information is stored within a single cell, the set of simpler 

domains, so called Wang tiles, is used, thereby allowing for breaking the periodic nature of reconstructed 

microstructure representations. A potential of the concept in synthesis of microstructure-informed enrichment 

functions for Generalized Finite Element environments is also discussed and accompanied with preliminary 

results. 

 

Keywords: microstructure synthesis; Wang tiling; enrichment strategy 

 

1. Introduction  

The sustainable environmental tendencies lead to a highly optimized design of majority of consumer 

products. In Materials Engineering, this is mirrored by a race towards miniaturization, top product 

performance, and optimal energy consumption. A potential solution to these contradicting 

requirements is brought by custom designed composite materials, which finds the use of virtual 

laboratories to link the knowledge of characteristic physical processes taking place at the level of 

constituents with macro-scale behaviour. 

To contribute this goal, the generalization of a popular periodic unit cell approach to modelling of 

heterogeneous materials is presented. It rests on the idea of stochastic Wang tilings to represent 

random material microstructures or fine scale local field patterns that can be used as the 

microstructure-informed enrichment functions in Generalized Finite Element environments. 

Preliminary result are outlined and discussed. 
 

2. Wang tilings  

The concept of Wang tiles was introduced by Hao Wang in 1961 as a method to decide whether an 

arbitrary representative of a certain class of logic statements can be proven by means of axioms of 

mathematical logic [1, 2]. Since, Wang tiles, sets, and tilings have been the subject of vigorous studies 

in Discrete Mathematics [3], Theory of quasicrystals and Biology [4, and references therein]. From 

the perspective of Computer Graphics and Game industry, the ability of Wang tiles to produce non-

periodic planar representations of arbitrary sizes was first noticed by Stam [5]. This work then 

inspired our current research which brought the concept to Materials Engineering community [4]. 

Wang tiles can be described as square, dominoe-like pieces, alternatively called tetraminoes, with 

codes assigned to edges [1]. The edges are denoted by codes with respect to cardinal directions as W-

west, N-north, E-east and S-south, δ, α, γ, α – tile 1 in Figure 1a. The tiles and edges are designed 

such that a tiling morphology can be recovered for arbitrarily large plane, including infinitely large 

ones, by placing the tiles in a regular square lattice while controlling the conformity of adjacent edge 

codes. 

For the purpose of Materials Engineering the stochastic sets [7] seem to be the optimal choice [4]. 

These tile sets are not strictly aperiodic from the definition (can produce periodic tilings), however, 
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provide more freedom in the sense of their design while better preserving random nature of 

synthesized microstructures. 

With the term valid tiling we understand such a tiling in which no empty spots in the tilling lattice are 

allowed and all edge codes are conforming, sometimes called “ground state” [6]. In order to assemble 

tiles into a valid tiling the stochastic algorithm proposed by Cohen at al. [7] was used. It works as 

follows. The tiles from the set are placed in column by column, row by row order in the lattice. In 

each step the subset of tiles that satisfy the edge constrains given by the previously placed tiles is 

filtered out of the entire set and a tile from the subset is randomly chosen and placed, an illustration of 

this procedure is shown in Figure 1b. The stochastic nature of the procedure is determined by the 

random choice of the tile to be placed yielding the condition that at least two different tiles for each 

admissible north-western combination of edges must be contained in the set. 

 

  
(a) (b) 

 
Figure 1: a) Example of Wang tile set consisting of 8 tiles, b) single step of stochastic tiling algorithm 

 

3. Tile morphology design 

Contrary to our previous work [4], the tile morphologies used in this contribution were designed by 

means of the automatic procedure proposed by Cohen at al [7]. This approach makes use of samples 

subtracted directly from the reference microstructures, squares 1-4 in Figure 2a. In particular, each tile 

is created as a square cut rotated by π/4 from the four partially overlapping samples that are 

positioned with respect to the edge codes of the manufactured tile, see Figure 2b. The straight 

diagonal cuts within the four-sample conglomerate ensure compatibility of the microstructure 

morphology across the edges. So far, the procedure seems fairly straightforward, however, its uneasy 

part is to fuse the samples within the overlapping region without any visible defects in the 

morphology along the quilting paths, red curves in Figure 2b. Here we have employed the modified 

version of the Freeman’s [10] Image Quilting algorithm that prefers the quilting path running through 

a fully percolated phase, i.e. the phase for which the two-point probability and the two-point cluster 

functions are identical. [8]. 

 

  
(a) (8) 

 
Figure 2: Schematic of automatic tile design 

 

Moreover, in order to substantially reduce parasitic long-range orientation order artefacts while 

keeping a low number of tiles in the set we employed the idea of patches added to the centre of each 
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tile [9]. To determine the optimal design parameters the sensitivity of the choice of the sample edge 

length h and the overlap width p was tested. The objective of the analysis was to determine the 

smallest dimensions of tiles that are representative to the choice of a set diversity and type of the 

reference microstructure. The ability of sets, in other words “compressed systems”, to approximate 

reference microstructures was quantified by means of statistical descriptors, in particular, the two-

point probability and two-point cluster functions. 

 

4. Results 

In Figure 3a, we show the reference microstructure of a random hard-disk monodispersion. The 

appropriate synthesis of the microstructure made up of the 12-tile set is depicted in Figure 3b. It 

consists of only 9 tiles (separated by green dashed lines) due to the visualization purposes, however, 

can be extended to arbitrary sizes with apparent repetitive effects. These are mirrored by means of 

secondary extremes in the two point probability function which are displayed in Figure 3c (including 

data for sets of higher diversities). 

   

(a) (b) (c) 

Figure 3: Hard-disk monodispersion, a) reference specimen, b) synthesis - a tiling consisting of 9 tiles, c) spatial 

statistics of the reconstructed (synthesized) microstructure 

 

Another two target material systems along with their synthesized representations are shown in Figure 4.  

 

    
(a) (b) (c) (d) 

Figure 4: Alporas® and permeable-disk monodispersion, a, c) reference specimen, b, d) synthesized 

representations consisting of 9 tiles 

 

The last example of synthesized morphology patterns contains a single component of the local displacements in 

hard-disk monodisperse medium from Figure 3. The reference patterns of displacement perturbation field are 

obtained as the Eshelby solution to multiple inhomogeneity problem with a unitary strain excitation in x 

direction while the remaining two vanish, Figure 5a. We can observe a clear discontinuities along the tile 

boundaries in the synthesized patterns displayed in Figure 5b. The local relative error is displayed in Figure 5c. 

It shows the error magnitude locally less than 20%, and less than 5% overall. 
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ux, reference ux, synthesis ux, rel-error 

(a) (b) (c) 
Figure 5: Local displacements, a) reference solution, b) synthesized solution, c) local relative error 

 

5. Conclusions 

In this contribution we have outlined a method for synthesis of microstructural patterns that goes 

beyond periodic representations based on a single Periodic Unit Cell. It rests on the concept of Wang 

tiles. It can be useful in compression and reconstruction techniques for heterogeneous random 

materials. Moreover, the above results show that the approach can be used in order to reconstruct 

microstructure-informed local fields that can be exploited in enrichment numerical strategies.  
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ABSTRACT

This paper presents numerical modelling of braided fibre, to be used as concrete reinforcement. Ulti-
mately, a corrosive and fire resistant concrete will be produced.

A Cubit script (geometry and mesh software) was created to mesh braided yarns under different geomet-
ric parameters. Fibres were represented using elastic transversely isotropic materials, for which the fibre
directions for every yarn were precisely determined from the gradients of the resultant stream functions
of potential flow problems. Applying an elastic interfaces between yarns to preventing penetration and
having free sliding, convergence studies were conducted on a coarse and fine mesh, using hierarchical
higher order approximation [1] for uniform p- and hp-refinement.

Key Words: Fibre Reinforced Concrete; Composite; Bond Strength; Interface Cohesion Elements;
Hierarchical Refinement

1. Introduction

This paper presents a numerical investigation into the modeling of braided carbon fibre ropes. These
ropes can provide an alternative to steel reinforcement in concrete, whereby the braiding can provide
good bond adhesion between the fibre and concrete [2] and mitigate the need for weak resin binders
[3]. In order to realize this ambition and to develop an appropriate modeling framework, a number of
modeling challenges need to be overcome. First, an accurate geometrical representation of the com-
plex geometry of the braided rope needs to be achieved. Second, the fibre direction during deformation
needs to be accurately determined. Third, the interface between fibre yarns needs to be modeled. Novel
hierarchic approximation functions [1] are also adopted and the paper demonstrates the convergence per-
formance of h, p and hp-refinement. The fibres are modeled as transversely isotropic, although restricted
to linear elasticity in this paper.

2. Numerical Modelling Approach

2.1. Mesh Modelling

Due to the lack of tools for modelling braided geometries, a flexible Python/APERPRO script was written
in Cubit to generate 12-strand plaited sinnet geometry as shown in Figure 1. The algorithm of this script
is as follows: a) sets of vertices representing the centre of axis for every yarn were created following
the pattern of braiding, b) axis splines were formed along every set of vertices, c) circular surfaces were
extrude along the same splines to form the braiding geometry. The input parameters were: i) the diameter
of the yarn, ii) permissible tolerance between the yarns, iii) pitch and iv) the number of turns required.
The interfaces between the yarns were created by subtracting one yarn from the overlapping adjacent one.
Two square clamps were modelled at both ends of the braided model. Tetrahedral mesh was generated
using Cubit mesh generator. The respective boundary conditions and material parameters were assigned
in Cubit and directly read by MoFEM (Mesh Oriented Finite Element Method, our group’s open-source
FEM software).
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Figure 1: Type of Braided Fibre
Modelled

Figure 2: 5 Material Parameters
for Transversely Isotropic Mate-
rial (with reference to fibres)

Figure 3: Flow Direction Vectors
in Rope Model

2.2. Transversely Isotropic Material

A suitable material to represent fibre yarns was chosen to be transversely isotropic material. This material
is described by 5 independent material parameters, which are the principal stiffness Ez, and poisson’s
ratio νz along the transverse direction (z-axis) of the fibre and the stiffness Ep, poisson’s ratio νp and
shear modulus Gzp in the plan of orthotropy (xy plane) as shown in Figure 2.

The fibre directions can be determined from the spline axes of the yarns. However, this is inaccurate
when non-uniform cross-section are considered and/or rapid change of direction exists. An alternative
way of obtaining the fibre directions is to solve a steady laminar incompressible potential flow problem,
where the gradients of the stream function ψ are the resultant flow velocities defining the fibre directions
F at every Gauss point as shown in Figure 3. By using a higher order approximation for the potential
flow solution very accurate stream functions are computed for coarse meshes.

To transform the material response between the local fibre direction and global axes, the axis of rotation
is expressed as A = F×Z, where Z is the unit vector (0, 0, 1) representing the global z-axis and the angle
of rotation is expressed by θ = cos−1 F.Z

‖F‖ ‖Z‖ . This rotation matrix can be computed from R = I + sin θN +

(1− cos θ)N2, where I is the identity matrix, N = Ω
ω , ω = +

√
A2

1 + A2
2 + A2

3 and Ω =

 0 −A3 A2

A3 0 −A1

−A2 0 0

 .

2.3. Interface Elements

Interface elements represented by prism elements in the FE mesh, were inserted between yarns, and
an elastic cohesive model was used for its formulation [2]. Orthogonal penetration/separation of the
interface was controlled using a stiffness about thousand times the principal material stiffness, while no
stiffness was used to control shear movement, i.e. fibre were free to slide.

2.4. Convergence Study

A convergence study was conducted using p, h and hp-refinement on the problem described in Section
2.1. Hierarchical higher order (HO) approximation was used to perform uniform p-refinement up to 4th

order polynomial, where a minimum of 45 Gauss points were necessary for the numerical integration.
Hierarchical HO shape functions for edges, faces and volumes were constructed using standard linear
nodal shape functions (used in linear FEs) and legendre polynomials, as described by Ainsworth [1].
This allows local p-refinement, which is computationally cheaper that global p-refinement. However, the
work presented here is restricted to global p-refinement.

Two meshes were considered: coarse mesh (49,624 elements) and a fine mesh (396,992 elements). The
coarse mesh was analysed using 1st, 2nd, 3rd and 4th order approximations. The fine mesh was analysed
using 1st, 2nd and 3rd (5,823,150 DOF) order approximation.

190



The error was computed as |uz − uh
z |, where uz is the displacement of a random node, and uh

z is the
displacement at the same location on the coarse mesh with 5th order approximation. The 5th order p-
refined mesh is assumed to provide the reference solution.

3. Results

Creating the geometry and mesh using a Python/APRPRO script has proven to be an effective dynamic
solution to generate braided type geometries. The flexibility of this script is not only the capability of
varying the parameters of such braiding, but could be easily adopted for other types of braiding. Loose
braiding was formed and hence pre-stressing using nonlinear geometry (large rotations and small strains)
is required at a later stage.

Figure 4: Linear Elastic Material
with interface between yarns
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Figure 5: Convergence Results for Coarse and Fine Mesh with dif-
ferent order of approximation

Isotropic steel material was used for the clamps (not shown in fig. 4), and carbon fibre transverse isotropic
material properties was used for the yarns. Figure 4 shows the deformed shape of the braided rope.
Negligible penetration between yarns was observed.

P-refinement on the coarse and fine mesh resulted in similar rates of convergence (Figure 5). This reflects
the theoretical rates of convergence for both the energy and displacement norms [4].

P-refinement on the coarse mesh is found to be the optimal refinement, achieving accurate results with
the least number of DOFs. Hence uniform hp-refinement is not recommended in this case, although one
might investigate the use of adaptive p and/or hp-refinement, where the theory suggest an exponential
rate of convergence would be achieved.

4. Conclusions

An effective method was achieved to model and mesh complex geometries such as braided ropes. Me-
chanical modelling of such geometries, required the implementation of an appropriate material, i.e. trans-
verse isotropy, that well represent the behaviour of the individual fibre yarns. Although such a material
could be orientated using the centre axis of the yarns as a mean of representing the fibre directions, this
would lead to problems when the model is subject to large deformations and yarn cross-sections do not
remain uniform. An effective solution for this problem, was to solve a potential flow problem, where
by the velocity vectors at every gauss point (later used as the fibre directions) were computed using the
gradients of the resultant stream function (ψ). Furthermore, convergence studies, shows that although a
local error was computed (a nodal displacement was used to compute the error), linear convergence holds
with the theory, achieving about 93% of accuracy for 2nd order of approximation with the coarse mesh.

After this initial study, the process to investigate the bond behaviour between the fibre rope and concrete
will be as follows:
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• Include a non-linear interface between the yarns.

• Pre-stress the rope model using large rotations/small strains.

• A better representation of the geometry using higher order elements.

• Implement the potential flow solution for every iteration of the nonlinear mechanical analysis,
hence fibre direction will be updated every time the geometry changes.

• Encase the pre-stress ropes in concrete and use a suitable cohesive damage law for the interface

• Investigate the pull-out bond strength for plain and ribbed braided ropes

• Implement concrete fracture to investigate cracking induced by reinforcement
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ABSTRACT 

A group of constitutive equations have been presented for cytoskeletal contractility of idealized one-dimensional 

smooth muscle cells, which capture the main features of biochemical responses and mechanical responses 

induced by a rise in the intracellular calcium ion level. The constitutive equations are employed to simulate 

shortening induced deactivation for smooth muscle cells. The results obtained by simulation agree well with 

experimental measurements reported in references [1]. A model is developed to extend the 1D constitutive 

equations for two-dimensional and three-dimensional cytoskeletal networks of SMCs. The 2D version of the 

model has been incorporated, as the user defined subroutine (UMAT), into commercially finite element package 

ABAQUS Standard. The UMAT is used to investigate swine carotid media strips under electrical stimulation 

and contraction of a hollow airway and a hollow arteriole buried in a soft matrix subjected to multiple Ca2+ 

stimulations.  

 

Keywords: Smooth muscle cell; finite element simulation; bio-chemo-mechanical modelling; cytoskeletal 

contractility  

1. Introduction  

As the contractile component of hollow organs such as the intestines, the airways and blood vessels, 

smooth muscle cells react to stimulations, such as electrical field and calcium ion (Ca2+) transients, 

by contracting the hollow organs. Abnormal contractility of smooth muscle cells is an important cause 

of many diseases, such as asthma, incontinence and hypertension. For example, airway 

hyperresponsiveness is a characteristic of asthma and generally ascribed to the excessive contraction 

of airway smooth muscle cells. In past decades, significant progress has been made in developing 

experimental techniques to measure mechanical responses, mainly contraction, of smooth muscle cells 

or smooth muscle cell based tissues under various conditions. As the recent development, Tan et al. 

[2]has measured the distribution of force exerted by a smooth muscle cell by seeding the smooth 

muscle cell on a bed of poly (dimethylsiloxane) (PDMS) micro-posts and determining the deflections 

of the posts. Alford et al.[3] has employed vascular muscular thin film (vMTF) method to measure the 

dynamic stress generation during contraction of microfabricated tissues of vascular smooth muscle 

with differing tissue and cell-level architecture. Due to complexity of the problem, most experimental 

investigations focus on details of individual elements regulating contractility of smooth muscle cells, 

but an integrative understanding of how the different regulatory elements function together remains 

elusive. Hence, interpretation on experimental measurements at cell or tissue level remains a 

challenge. The aim of the article is to develop a constitutive model that is capable of describing the 

bio-chemo-mechanical features in contractility of smooth muscle cells. 

2. Constitutive model for one-dimensional smooth muscle cells 

(i) Bio-chemical model  

Let max and represent the maximum shortening strain rate and strain rate of a smooth muscle cell, 

respectively. The biochemical model can be written as  
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where , M[ ] , MP[ ] , AMP[ ] and AM[ ] are non-negative and non-dimensional quantities with 

M[ ]+ MP[ ]+ AMP[ ]+ AM[ ] =1, representing fractions of free unphosphorylated , phosphorylated 

, attached dephosphorylated and attached phosphorylated myosin, respectively,  phosphorylation 

level of myosin,    MP AMP    and 1 10k , ... , k  are the rate constants which can be obtained by 

fitting the model behavior against experimental data . 

 

(ii) Relation of active contraction stress versus strain rate   

Following the Hill’s equation and considering the effect of phosphorylation of myosin, the relation 

between active contraction stress s  and strain rate  of the smooth muscle cell under isotonic 

contraction can be given as 
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where o is a reference strain  rate, 0o  . The value of attached cross bridges, h = AM[ ]+ AMP[ ] , 

can be related to isometric contraction stress, s o
, of a smooth muscle via  

  s o =
s max

h[ ]
max

h             (8) 

where s max
 is the maximal tension corresponding to the maximal number of attached cross bridges 

h[ ]
max

= max AMP[ ]+ AM[ ]( )  that is permitted by biochemistry .   

3.   Constitutive model for 2D/3D cytoskeleton of smooth muscle cells 

Let σ and D  denote macroscopic Cauchy stress and rate-of –deformation, respectively.  Employing 

compatibility, the true strain rate 
( )k  along axis of the kth stress fiber can be related to D  

                                    
( ) ( ) ( )k k k

ij i jD n n        (summation over i and j)                            (9) 

 For well-developed stress fibers, i.e., m , we have  
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where angles  ,    and    are defined in Fig.1 and pσ  is the  Cauchy stress  for passive behaviour 

of the  cell. The passive elasticity, provided mainly by intermediate filaments, nuclei and cell 

membrane, need to be included in the contractile response of a cell. As shown in Eqs. (10) and (11), 

additive decomposition of the active stress and passive stress is assumed as the stress fibers act in 

parallel with intermediate filaments and the cell membrane. Here, for simplicity, the passive 

component of a cell is assumed to behave like a neo-Hookean solid. The 2D version of the 

constitutive model described above has been implemented into commercially available finite element 

software ABAQUS


 Standard via user-defined subroutine UMAT to solve plane strain/plane stress 

problems.     

    

Figure 1 Two-dimensional (2D) representative volume element (RVE) and three-dimensional (3D) 

representative volume element (RVE) employed to analyse a two-dimensional cytoskeleton network and a 

three-dimensional cytoskeleton network, respectively, in a smooth muscle cell.                                  

4.  Simulation for 2D smooth muscle cells 

In this section, six-node quadratic plane stress triangle element (CPS6 in ABAQUS notation) and 

plane strain triangle element (CPE6) are employed to analyze plane stress and plane strain problems,  

respectively, under finite deformation setting, i.e. the effects of geometry changes on momentum 

balance and rigid body rotations are taken into account.   

Several authors have experimentally examined the contraction of hollow organs subjected to Ca
2+

 

stimulation , which has motivated the finite element simulation on the contraction of a hollow airway, 

with internal radius 100 mm and external radius 140 mm, and a hollow arteriole, with internal radius 

40 mm and external radius 66.6 mm, buried in a 400 mm × 640 mm passive matrix material, clamped 

at two opposite edges with remaining edges free, subjected to multiple Ca
2+

 stimulations.It is assumed 

that the out-of-plane dimension is much longer than the in-plane ones. Therefore, the problem can be 

simplified as a plane strain boundary value problem. No attempt was made to calibrate material 

properties or intracellular Ca
2+

 concentration against existing experimental studies in this paper. The 

passive matrix material was treated as a neo-Hookean solid with 
2

7800 N/m  and 
2

9360 N/mE  representing soft tissues such as lung. The material properties of bovine tracheal 

smooth muscle [4] are employed in the simulation for both the airway and arteriole. The rate constants 

of k1, k6 are chosen to represent three consecutive stimulations, namely, as shown in Fig.2. The 
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passive property of bovine tracheal smooth muscle was assumed to be same to that of swine carotid 

media, i.e., 
2

7840 N/m  and 
2

4704 N/mE   . The sensitivity of 8k and 9k is studied with 8 9k k .  

The time evolutions of relative areas, defined as the area of hollow organ at current configuration 

normalized by that at initial configuration, of the airway and the arteriole are shown in Fig.2d and e 

for selected values of k8, k9
. The contours of maximum principle true strain at t=300 s for selected 

values of k8, k9
is shown in Fig. 2 a, b and c. These figures show (i) lower values of 

k8, k9
correspond to more reduction of areas in hollow organs, (ii) if the same values of k8, k9

were 

applied to the airway and the arteriole, the relative areal changes of the airway and the arteriole are 

almost identical, (iii) the deformed shapes of hollow organs may be sensitive to the strain field in the 

matrix material and (iv) even though the values of k1, k6
decline to zero after each stimulation, these 

hollow organs still keep in contracted state.   

 

 

Fig.2 Contours of maximum principle true strain at t= 300 s with 
1

8 9
, 0 sk k


 (a) and 

1

8 9
, 4 sk k


  (b) for 

both airway and arteriole and 
1

8 9
, 4 sk k


  for airway and 

1

8 9
, 0 sk k


  for arteriole (c).Time histories of 

relative areas of both the airway and the arteriole for selected values of k8 and k9 (d) and (e).  The time history 

of 1 6k ,k   is shown in (d). 
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ABSTRACT

In this contribution, we present a phenomenologically motivated magneto-viscoelastic coupled fi-
nite strain framework for simulating the curing process of polymers in the presence of a magneto-
mechanically coupled load. In the fabrication of magneto-sensitive polymers, micron-size ferromagnetic
particles are used in the uncured stage. Chemical reactions during curing impart a continuous change of
stiffness properties that can be modelled by an appropriate constitutive relation where the temporal evo-
lution of material parameters is considered. Here few numerical examples are demonstrated in the case of
a magneto-viscoelastically coupled load which predict some common features in polymers undergoing
curing processes in finite strain regime.

Key Words: magneto-sensitive polymers; curing; coupled problem; magneto-viscoelasticity

1. Introduction

In recent years the so-called smart materials have been invented where the magnetorheological elas-
tomers (MREs) or magneto-active elastomers are a relatively new group of smart materials. The me-
chanical properties such as the shear modulus of MREs can be enhanced by the application of an exter-
nally applied magnetic field. Applications of MREs include different components in automotive industry,
civil engineering devices, e.g. suspension bushing, brakes, smart springs in dynamic vibration absorber,
building vibration isolation, noise barrier system and sensors. During curing process, the application of
a magnetic field results in anisotropic elastomers where the magnetic particles are aligned strictly in a
particular orientation. In the curing process of polymers, a series of chemical reactions occur which trans-
form a viscoelastic fluid into a viscoelastic solid. Due to successive reactions, polymer chains cross-link
to each other. Hence, the formation of new chemical bonds allows the chains to come closer. Such pack-
ing of chains will yield a decrease in specific volume which is noted as the volume or curing shrinkage.

Several publications reported experimental works both on isotropic and anisotropic magneto-sensitive
polymeric composites that were obtained either by the application of an externally applied magnetic
field or without a magnetic field. A considerable amount of literature is devoted to address the modelling
and simulation issues of isotropic and anisotropic magneto-active elastomers in large deformation frame-
works. However, there is no constitutive model, to the best of the authors’ knowledge, that can predict
material parameter evolution as well as stiffness gain during curing process in the presence of a magnetic
field or a magnetic induction. Therefore, a finite strain framework, since elastomeric matrix can undergo
large deformations when excited by an external magnetic induction, is essential to predict the curing
process behaviour under the application of a magneto-mechanically coupled load. The proposed mod-
elling framework is within the hypoelastic concept of our previously published purely mechanical curing
model [3]. In order to capture the magneto-mechanically coupled load, a phenomenologically motivated
convolution integral type energy potential is proposed that consists of three parts, i.e. a pure mechanical
part, a pure magnetic part and a magneto-mechanically coupled part.

2. Curing-dependent viscoelastic model

Continuous chain cross-linking occurs due to chemical reactions in the curing process of polymers. Such
chemical cross-linking yields increasing stiffness of a material under curing which can be conceptualised
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as the addition of more and more spring-like elements to the already formed network.This stiffness
changing process can be realized with the following potential function

Φ(t) =
1
2

∫ t

0

[

A
′(s) : [E(t)−E(s)]

]

: [E(t)−E(s)]ds +
1
2

∫ t

0

[

K
′(s)·[B(t)−B(s)]

]

·[B(t) − B(s)] ds

+

∫ t

0

[

C
′(s)·[B(t)−B(s)]

]

: [E(t)−E(s)]ds. (1)

In Eqn (1)A′(s) = dA(s)/ds,K′(s) = dK(s)/ds andC′(s) = dC(s)/ds, whereE is the Green-Lagrange
strain tensor andB is the magnetic induction vector in the material configuration. The three tensors
A,C,K are time-dependent fourth order, third order and second order magnetoelastic moduli tensors,

respectively, i.e.A(t) = ∂2Ω(t)
∂E∂E , C(t) = ∂

2Ω(t)
∂E∂B , K(t) = ∂

2Ω(t)
∂B∂B
, whereΩ(t) is a coupled energy func-

tion for magneto-elastic polymers with time dependent material parameters. Obeying the second law of
thermodynamics and after rigorous calculations following relations are obtained

Ṡ(t) =
1
2
A(t) : Ċ(t) + C(t) · Ḃ(t), Ḣ(t) =

1
2
C

t(t) : Ċ(t) +K(t) · Ḃ(t). (2)

The classical approach in viscoelastic rubber-like material modelling is the multiplicative decomposition
of the deformation gradient into elastic (Fe) and viscous (Fv) parts which motivates a similar approach of
deformation decomposition in the case of a magnetic induction into elastic and viscous internal variables
Be andBv, respectively, such that

F = FeFv, B = Be + Bv. (3)

Following the analogy of a multiplicative decomposition of the deformation gradient and an additive
decomposition of the magnetic induction vector, the total magneto-mechanical energy stored in a body
can be decomposed into an equilibrium part and a non-equilibrium part

Ω (C,Cv,B,Bv) = Ωeq(C,B) + Ωneq (C,Cv,B,Bv) (4)

where the equilibrium part is

Ωeq =
µ

4

[

1+ αe tanh

(

I4

me

)]

[

[1+ n] [ I1 − 3] + [1− n] [I2 − 3]
]

+ qI4 + rI6 +
1
8
κ [lnI3]2

−
1
2
µ ln I3, (5)

andthe non-equilibrium part is

Ωneq(C,Cv,B,Bv) =
µv

2

[

C−1
v : C − 3

]

+ qv
[

[B − Bv] ⊗ [B − Bv]
]

: I

+rv

[

[

C [B − Bv]
]

⊗
[

C [B − Bv]
]

]

: I +
1
2
κv [lnJe]

2
− µv ln Je. (6)

In the above equationsI1, I2, I3, I4, I6 are the standard scalar strain invariants in magnetoelasticity,
µ, αe,me, n, q, r, κ, µv, κv, qv, rv are material parameters andJe = detFe. Two thermodynamically con-
sistent evolution equations for the viscous internal variables are

dBv

dt
=

2µ0
Tm

[

qvI + rvC2
]

[B − Bv] ,
dCv

dt
=

1
Tv

[C − Cv] , (7)

seeSaxena et al. [2] for details. Now the stress and the magnetic field are decomposed as

S = Seq + Sneq, H = Heq +Hneq. (8)

To extend the cure-dependent magneto-elastic constitutive framework developed in Eqn (2), we blend
the idea of a fully-cured magneto-viscoelastic modelling as in Saxena et al. [2] and the idea of a purely
mechanical viscoelastic cure-dependent model as in Hossain et al. [3]. Henceforth, the blended idea will
be to add the non-equilibrium responses (stress and magnetic field) in Eqn (8) with the magneto-elastic
curing formulations developed in Eqn (2), i.e.

Sn+1 = Sn
eq +

1
2
A

n+1 : [Cn+1
− Cn] + Cn+1

· [Bn+1
− B

n] + Sn+1
neq (9)

H
n+1 = H

n
eq +

1
2
C

t,n+1 : [Cn+1
− Cn] +Kn+1

· [Bn+1
− B

n] +Hn+1
neq . (10)
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Now the non-equilibrium part of the energy function is required for the derivation of the non-equilibrium
stress and magnetic field, i.e.

Sneq = µv[C−1
v − C−1] + κv ln JeC−1 + 2rvBe ⊗ [CBe] + 2rv [CBe] ⊗ Be, (11)

Hneq = 2qvBe + 2rvCBe, (12)

whereCv andBv are mechanical and magnetic internal variables, respectively. To get the current state of
the mechanical and magnetic internal variables, Eqns (7)1 and (7)2 need to be integrated.

3. Numerical Examples

In this section, we present some numerical examples to show the capability of the proposed cure-
dependent magneto-viscoelastic model. To obtain current states for the total stress as well as for the
magnetic field the relations need to be integrated. For simplicity, we use an Euler-backward type implicit
integrator resulting following updates for the algorithmic stress as

Sn+1 = Sn
eq +

1
2
A

n+1 : [Cn+1
− Cn] + Cn+1

· [Bn+1
− B

n] + Sn+1
neq , (13)

and the algorithmic magnetic field vector is as follows

H
n+1 = H

n
eq +

1
2
C

t,n+1 : [Cn+1
− Cn] +Kn+1

· [Bn+1
− B

n] +Hn+1
neq . (14)

In Eqns (13) and (14), [•]n = [•](t n) , tn+1 = tn + ∆t and∆t is a time step. The deformation gradient
F and the magnetic induction vectorB are input variables for the mechanical and magnetic load cases,
respectively. As per definition of a uniaxial tension test, the specimen is elongated only in one direction,
i. e. λ1 = λ, while the other two lateral directions are free to move. In a three-dimensional setting, the
complete deformation gradient (F) reads

F =





















λ1 0 0
0 λ2 0
0 0 λ3





















(15)

and the magnetic induction vector (B) is as follows

B =





















B1

0
0





















. (16)

For the particular numerical experiments presented below, the following numerical values of the material
parameters are used unless otherwise stated to have a different value for individual computation

αe = 0.3,me = 1 T2, n = 1, ν = 0.4, µ0 = 4π× 10−7 N/A2, q = 1/µ0,

µv = 5× 105 MPa, qv = 5/µ0, rv = 1/µ0. (17)

Firstly it is required to verify whether the developed cure-dependent magneto-viscoelastic model can
capture few important phenomena that happen during the curing process, i.e. the stiffness gain due to the
continuous chain crosslinking with an advancement of time and the stress relaxation during a holding
period under a purely mechanical or a purely magnetic load. Moreover, it is also essential to check if
the model can provide a correct behaviour in the case when the mechanical strain rate becomes zero
and/or the magnetic induction rate is zero. A four-step mechanical and magnetic load is applied to assess
the capability of the model. Several homogeneous numerical tests show that the framework can capture
relevant phenomena observed in a magneto-mechanical coupled curing process, e.g. two of them are
presented in Figs (1) and (2). Figure (1,a) which shows the mechanical stress over curing time indicating
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the stress increment in the second deformation phase (during 45-50 sec) is higherthan the first defor-
mation phase (0-5 sec). It is more vivid if we plot the mechanical stress over stretch which basically
illustrates the stiffness gain during the holding time, cf. Fig (1, b). Figure (2) shows that the increment of
the magnetic field is larger in the second load step than the first step. Moreover, the model can capture
the physical phenomenon upon which it is based, i.e. if the mechanical strain rate becomes zero and/or
the magnetic induction rate is zero, there are no increments in total stress and in magnetic field.

0 20 40 60 80 100
0

5000

10000

15000

Time [ sec ]

N
om

in
al

 S
tr

es
s 

[ M
P

a 
]

a

1 1.005 1.01 1.015 1.02
0

2000

4000

6000

8000

10000

12000

14000

Stretch [ − ]

N
om

in
al

 S
tr

es
s 

[ M
P

a 
]

b

Figure 1: Magneto-viscoelastic curing model : (a) Purely mechanical stressover curing time as produced
from a four-phase purely mechanical loading (b) Purely mechanical stress vs stretch that highlights stiff-
ness gain in successive loading phases. The stress relaxation is decelerated in the second holding phase
due to a time-evolving characteristics of the mechanical relaxation parameter,Tv
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Figure 2: Magneto-viscoelastic curing model: (a) Magnetic field over curing timewith respect to a four-
phase purely magnetic load (b) Magnetic field vs magnetic induction that highlights stiffness gain due to
continuous chain crosslinking. However, the stress relaxation in the two holding phases are the same due
to a constant value of the magnetic relaxation parameter,Tm
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ABSTRACT 

Results of experimental-calculated investigations on development of mathematical models of forecasting of 

composition and obtaining new protective coating (CrAlPtV) for gas turbine blades on the basis of correlation-

regression analysis, analysis of quantitative ratio and physical-chemical characteristics in view of nuclear radius 

and type of crystal lattice of elements are presented. The number of experiments, time and temperature was 

determined by the method of experiment planning. On the basis of the differential thermal and X-ray analysis 

results was confirmed absence of phase transitions and phase stability of alloys in temperature 20÷1500°C. 

 

Keywords: aviation gas turbine engines; blades; protective coating; CrAlPtV; phase and thermal analysis 

 

Introduction 

The durability of high-temperature aviation gas turbine engines (GTE) blades in many respects 

depends on a right choice of protective coating. Coatings allow improving flight-technical 

characteristics of engines, to reduce a consumption of air on cooling, to save fuel, to increase 

temperature of a gas stream on 100-150K. The coating should be at the same time heat-resistant and 

thermal barrier, i.e. capable is considerable to reduce temperature on the surface of details and to 

resist high-temperature oxidative corrosion [1]. 

Level of reliability of the turbine blade is connected with creation of efficient composition "superalloy 

– corrosion-resistant coating". Applied the modern nickel superalloys for GTE blades possess 

necessary level of long strength, however have low corrosion resistance to products of combustion 

and don't provide requirements imposed to lifetime of blades [2]. Therefore, for ensuring necessary 

durability of protective coating, along with a right choice of composition, is necessary to consider also 

the processes, occurring on border of blade and coating, directly influencing their operational 

reliability. The purpose of work is development of scientific-methodical bases of a choice of 

composition and obtaining new protective coatings for gas turbine blades, providing durability and 

extension of aviation GTE lifetime. 
 

Thermal protection problems of gas-turbine engines  

Researches demonstrate that base shortcomings of protective coatings are possible because of the 

incomplete take into consideration structural characteristics of blades and coatings alloys. Therefore, 

at choice of coatings composition is necessary based from the principle "structure-property" [2]. For 

this purpose is necessary taking into consideration nuclear radiuses and crystal structure of coating 

elements and protected surface. 

To increases operational reliability of coatings it is necessary to achieve bilateral diffusion with the 

main metal of blade. Bilateral diffusion can be achieved at observance of size factor, when nuclear 

radiuses of coating elements differ no more than 15% from nuclear radiuses of basic element of 

protected alloy and if elements of coating and alloy have identical type of a crystal lattice. 

Determination of the maximum and minimum value nuclear radiuses of elements entering into 

composition of coating is calculated by: 
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met.mainmet.mainminmax/ R,RR 150                                         (1)                              

When nuclear radiuses of elements are close to each other, at synthesis atoms in knots of crystal 

lattice are replaced with other atoms and internal energy of crystal lattice practically doesn't change, 

i.e. connection behaves as a unit. 

Along with a right choice of composition, for providing necessary durability of coating also take into 

consideration the processes, occurring on border of blade and coating, directly influencing their 

operational reliability. It promotes getting the solid solutions unlike usual chemical compounds of 

metals with variable structure which can change over a wide range. 

For the purpose of concrete realization of the presented method - account of size factor, crystal 

structure of alloys elements with use of Darken-Gurry method were carried out analysis of physical-

chemical characteristics of the metals consisting basis of gas turbines elements and protective 

coatings, used for vanes and blades [3]. On the basis of this analysis is shown, that existence of 

numerous phases negatively influences to operational characteristics of alloys.  

For carrying out the analysis nuclear radiuses, electronegativity and crystal structures data of 

considered alloys of gas turbine blades were collected. 

For reliability of the above we will consider solubility nature of the elements, which are part of alloys 

with Darken-Gurry method. For the creation of the diagram, we used nuclear radius of elements, 

corresponding to coordination number 12 (CN12) and value of electronegativity. It should be noted 

that electronegativity has the strongest impact on composition and a structure of alloys and dominates 

over geometrical factors and an arrangement of energy levels. The high difference of electronegativity 

has impact on composition of a being formed phase and depends on effective number of valence 

electrons. The diagrams for an alloy IN738 of blade and for protective coating CoCrAlY respectively 

are given in Fig.1.  

 

 
 

Figure 1: Darken-Gurry diagrams for alloys IN738 and CoCrAlY 

 

For definition of ellipse area are calculated upper and lower bounds of electronegativity (±0.4) and 

nuclear radius (±15%) of solvent element. From the analysis of Fig.1a follows that elements Co, Cr 

and W located in an ellipse, will form wide areas of solid solutions with Ni, but elements Ti, Nb, Al, 

Zr, Ta, Mo, C and B, which didn't get in an ellipse form only very limited solid solutions. In a coating, 

at which solvent is Co, not all elements get to an ellipse. In an ellipse there are only elements, Co, Cr 

and Al, but Y is out of an ellipse (Fig. 1b). Thus, metals - Co, Cr and Al will form unlimited, but Y 

limited solid solutions. As Y is located rather far from ellipse border, even can not form solid solution 

with these elements. However, according to the fundamental requirements imposed to alloys of blades 

and coatings of the gas turbines, it is necessary to consider the above factors, especially size factor 

and uniformity of structure, which has an important role in formation of structure of alloys, diffusion 

between an alloy of blade and coating alloy [4]. 
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Modeling and Analysis  

Searches of new high-temperature coatings are connected, first of all, with optimization of chemical 

composition of new compounds with use essentially new physical effects, also with development of 

new technological processes and again created coatings. Problems of properties forecasting and 

synthesis of alloys are especially difficult and at the present time are formulated only on which 

obtaining necessary information is expected. 

At mathematical modeling of composition of the heat-resisting coating with use of physical-chemical 

characteristics of the alloy elements, at the first stage was decided the problem of a choice of the 

factors defining solubility in each other of elements and the most perspective components of an alloy. 

For this purpose is created new approach to a problem of forecasting of composition of the protective 

coating for gas turbine blades. This problem decides methods of statistics of straight lines by means of 

the correlation and regression analysis.  

For the solution of this problem is created the database on chemical composition of the protective 

coatings containing data more than 504 alloys, published in various sources of search more than 50 

years. For carrying out researches of structure and physical-chemical properties of alloys, and also the 

analysis of possibility of obtaining some solid solutions was collected information on various 

microscopic characteristics of the coating elements, such as radius of atoms, types of a crystal lattice, 

density, electron configuration and arrangement of energy levels of atom, ionic radius and 

electronegativity by Pauling, ionization energy of atom, etc.     

By means of STATISTICA 6.0 program are analyzed primary and intermediate phases of solid 

solution, carried out the forecast of substitutional and interstitial solid solutions and executed the 

assessment of quality of empirical parameters. 

Basis of the database STATISTICA 6.0 is the databank, containing data on atoms of 23 elements – 

Co, Cr, Ni, Al, Y, Ta, W, Si, Hf, Mn, Mo, Ti, Zr, Pt, C, La, Re, Nb, Fe, V, Sn, Ru, Ir, which were 

used as parameters of the model developed at the following stage.  

On the basis of the correlation analysis were obtained coefficients at pair interactions of elements. The 

results on importance of linear dependences between elements of coating were calculated by estimates 

of values of correlation coefficients. 

The most significant communications exist between independent variables x2 and x1, which makes 

0.31, between x2 and x4 is 0.52, between x2 and x5, which makes 0.06, between x2 and x9 is 0.05, 

between x2 and x14 is 0.24, between x2 and x20, which makes 0.67 and between x2 and x22 is 0.36. 

Thus, the analysis of the results obtained has demonstrated that the correlation coefficients 

considerably differ from zero and have rigid positive dependence.  

On the basis of the regression analysis is obtained the multidimensional linear model for forecasting 

of composition of protective coatings: 

2220149541 278603905421210148206003029450024701836623 x.x.x.x.x.x.x..y     (2)        

After obtaining the regression formula, adequacy of model is checked on coefficient of determination 

and multiple correlations, and also by Fischer's criterion [5]. The determination coefficient for 

considered model is R
2
=0.8549, coefficient of multiple correlation is R=0.924648, significant by 

Fischer's criterion F=50.702. 

Such approach allowed to effectively use the correlation-regression analysis on formation of 

composition and quantitative ratios of elements of the protective coating as a first approximation, that 

was very important for experiment planning. On the basis of the elements choice, having the greatest 

correlation communications with definition of intervals of their percentage, the analysis of physical-

chemical characteristics taking into account the nuclear radius, type of crystal lattice and on Darken-

Gurry method is offered method and is created composition for new four-component high-

temperature protective coating on the basis of chrome (CrAlPtV) for gas turbine blades [6]. 

 

Experimental investigations 

For carrying out researches was used the method of experiment planning, on the basis were specified 

ranges of temperatures, time and number of experiments. The results of calculation are given in Table 

1. 
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Table 1: Main results of experiment planning 

 

Composition 
Temperature of 

experiments, 
0
C 

Time of 

experiments, 

hours 

Annealing 

temperature, 
0
C 

Annealing 

time, hours 

Number of 

experiments 

Cr-Al-Pt-V 1000÷1500 6 1100 60 16 

                               

Application of a method of experiment planning at investigation and synthesis of protective coating 

alloys allowed reducing time and material inputs. At synthesis of components in a solid condition was 

a need of control not only chemical composition of alloy, but also the organization of its 

microstructure. It is caused by strong dependence as chemical and many physical properties from 

characteristics of the structural organization of a solid body at various hierarchical levels. 

Experimental studies were applied ceramic synthesis method. Synthesis was carried out under vacuum 

in corundum crucibles in order to avoid the reaction of metals with quartz at high temperatures. 

Results of X-ray of the obtained samples showed that all maximums appear under the same corner 

(Fig. 2). To obtain more accurate maximums or more perfect structure of alloys, samples are sustained 

till 60 o'clock at 1100
0
C temperature (annealing). From X-ray diffractions of the samples after 

annealing was shown, that structure of alloys has not changed, and even few stabilized. Thus, the 

results of XRD analysis showed that all samples of the alloys (solid solutions) regardless of the 

content of metals are single-phase system and have the same structure. 

 

 
 

Figure 2: XRD spectrum of obtained alloys (1 - 54Cr28.2Al11.3V6.5Pt, 2 - 59Cr26.7Al9.3V5Pt, 3- 

64Cr25.2Al7.3V3.5Pt, 4 - 69Cr23.7Al15.3V2Pt, 5 - 74Cr22.1Al3.4V0.5Pt) 

 

For studying thermal stability of the alloys was carried out the differential thermal analysis (DTA). 

The DTA results of samples of all 16 alloys show that in thermograms aren't observed the 

endothermic and exothermic effects, characterizing a difference of temperatures [7]. It means that 

when heating in studied samples of alloys aren't occurred physical or chemical processes and all 

alloys are stable in the temperature range 20-1500
0
C.  

Investigation of mechanical and physical properties of the alloys, interrelation of these properties with 

percentage of constituent elements, and also interrelation between these properties showed that 

between them there is an accurate regularity. Table 2 gives the mechanical and physical properties of 

obtained alloy. It means that the alloys have stable structure and obtaining stable structure is 

connected with a right choice of chemical composition of an alloy. The analysis of exploited coating 

alloys for blades of GTE showed that at a choice of their composition takes into account only physical 

properties of constituent elements, therefore are as a result obtained multiphase structures or in the 

majority cases mechanical mixes with those metals which didn't react. It is absolutely clear that 

various phases or mechanical mixes with various physical and mechanical properties in a working 

environment will behave differently. It finally can lead to formation of defects, cracks inside and on a 

surface of alloys and erosion and will influence to stability, durability of protective coatings for GTE. 
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Table 2: Mechanical and physical properties of obtained CrAlPtV alloy 

 

Material Hardness 
Density, 

kg/m
3
 

TLEC, 

K
-1

 

Thermal 

conductivity, 

W/m
2
K 

Heat capacity 

J/(g∙K) 

Cr-Al-Pt-V 3348 20.13 10.75 9.37 13.87 

                               

The results of calculations and experimental investigations suggest that offered protective coating for 

blades of GTE will have enough high durability, stability of composition at influence of high 

temperatures and hostile environment and the improved adhesion with the main materials of blades. 

It should be noted that the durability of coatings, except the listed factors still depends from a method 

of their applying, from a material of bond on which are applied this coating and from observed all 

main requirements. 

 

Conclusions 

For the purpose of increasing the thermal and structural resistant of GTE blade coatings is offered 

new approach to forecasting of protective coating composition on the basis of the analysis of physical-

chemical characteristics of alloys taking into account the size factor, type of crystal lattices and 

Darken-Gurry method. 

It is revealed that bilateral diffusion can be achieved at observance of a size factor when nuclear 

radiuses of coating elements differ no more than 15% from nuclear radiuses of basic element of a 

protected alloy and if coating elements and a protected alloy have identical type of crystal lattice. 

The mathematical model is developed for forecasting of coating composition on the basis of 

investigation of physical-chemical characteristics and the correlation-regression analysis of 

constituent elements. 

As a result of calculations and experimental investigations is offered the new four-component high-

temperature protective coating on the basis of chrome for the gas turbine blades. 

The Complex physical-chemical experimental investigations confirmed structural stability of an alloy. 

On the basis of DTA and XRD analyses corroborated lack of phase transitions and stability of the 

obtained alloys in the temperature range 20-1500
0
C. 
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ABSTRACT 

The realistic microstructure of the concrete has been reconstructed using X-ray tomography images and 

numerically simulated to obtain the effective elastic properties. The concrete under consideration was made of 5 

mm coarse aggregate and cement (includes three phases cement, aggregates and macro-pores). 3D reconstructed 

image of the concrete cube specimen of size 40 mm
3
 were converted to the finite element mesh. Also, five 

smaller cubical regions of size two times of coarse aggregate had been cropped to establish a statistical 

representative volume element (RVE) for concrete. Asymptotic homogenization technique along with periodic 

boundary conditions was used to obtain the elastic stiffness coefficients. Elastic stiffness matrices were obtained 

along with associated uncertainties for each case of RVE’s. The obtained stiffness matrices for all cases were 

fully populated. However the shear-extension and shear-shear coupling were very small as compared to 

extension – extension, hence can be neglected. The cubical symmetry was observed for all cases as expected for 

concrete and mean values of engineering constants were closer to the isotropic case, as anisotropy ratios are 

nearly 1. Hence the concrete can be considered as isotropic with effective values of E= 34 GPa and µ=0.2 

(Young’s modulus and Poison’ ratio respectively).  The investigation also revealed that a smaller RVE can be 

considered for the concrete provided the scatter in the properties should be minimum. Later the effect of cement 

damage was also studied by modelling the damage initiation and propagation using damage-plasticity model for 

cement stiffness degradation. The strength of the concrete in tension and shear is obtained as 3.72 and 1.65 MPa 

respectively. 

 

Keywords: Homogenisation of concrete; Statistical RVE; Image based modelling; Elastic properties of 

concrete; Fracture of concrete   

 

1. Introduction  

Recent developments in the field of non-destructive reconstruction techniques e.g. X-ray tomography, 

neutron radiography etc. have given a new insight to the material researchers for the exploration of the 

inherent material structure and flaws. Many applications of the X-ray tomography can be found in the 

area of biomedical, particulate composite, reinforced composites, ceramics and geological materials 

etc. [1]. Initial studies based on tomographic images are limited to the quantification of the inherent 

flaws such as micro cracks, voids and distribution of the phases [2]. Recently, the 3D images of the 

material obtained through tomography were used to study the mechanical behaviour by descritizing 

them into finite element meshes [1, 3]. In this way the effects of random size, shape and distribution 

of the different phases in the microstructure were modelled directly in finite element analysis. 

However, sometimes these studies were limited to a very small domain and the representation of the 

overall behaviour of the response differs with the domain selection. Therefore, an accurate measure to 

define the representative volume element (RVE) is very important, when the random quantities are 

associated to the domain. The window approach was generally adopted in the literature, where the 

size of the window was determined by optimizing the response for the domain and it was assumed 

that the same response is applicable for whole material [4]. Another approach of defining the effective 

response for material was taking the volume average of the responses obtained from different 

windows of different locations and also reporting the associated standard deviations [3]. A more 

efficient way to represent the randomness in the response is to report the mean and associated scatter 

for the different realisations. It is also shown by the Kanit et al. [5] that the scatter minimises for a 
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sufficient number of the realisations for a particular size of RVE. Therefore, a RVE can be considers 

with having sufficient numbers of the realisation associated to minimum scatter in the response.  

In present study the homogenous elastic properties were obtained for concrete by considering the 

statistical RVE. Asymptotic homogenisation technique with periodic boundary condition was used 

with finite element analysis.      
 

2. Material  

Material under the consideration in this study was concrete, made of 5mm coarse aggregate and 

ordinary Portland cement. A cubical specimen from a concrete plate of age 28 days was taken out for 

the investigations. X-ray computed tomography (XCT) facility available in the school of materials at 

the University of Manchester is used to scan the specimens. Details of the parameters used during the 

scan are given in Table 1. 
Table 1. XCT parameters used during the scan  

 

X-ray tube: 

energy/intensity 
Radiograph acquisition Volume reconstruction 

Voltage 

(kV) 

Current 

(mA) 

Angular 

displacement 

(°) 

Exposure 

time 

(ms) 

Pixel 

size (µm) 

Reconstructed 

volume (voxels) 

160 0.06 0.18 2000 37.2 1000 × 1000 ×1000 

 

3. Homogenisation  

Asymptotic homogenisation along with periodic boundary conditions was used to obtain the elastic 

homogenised stiffness matrix for the concrete. In this technique six loading cases were analysed using 

six boundary conditions in the finite element method to get the special average of the responses, 

which are referred as homogenous response [3]. The general constitutive relation in terms of 

asymptotic homogenization can be expressed as 

kl

H

ijklij C         (1) 

Here 
H

ijklC is the homogenised stiffness matrix. ij and ij  are the respective macro stress and 

strain tensors and can be expressed as 


v

dvij
v

ij 
1

     (2) 

and   
v

dvij
v

ij 
1

.     (3) 

The components of the 
H

ijklC  matrix are obtained by applying one by one six individual load cases of 

the strains by keeping one strain to unity and other equal to zero. In this way one can get one by one 

all six column of the stiffness matrix. The associated periodic conditions are given as 

0000   lzzzlyyyx wwvvu , and lxu lxx 11   (4) 

0000   lzzzylxxx wwvuu , and lyv lyy 22    (5) 

0000   zlyyylxxx wvvuu , and lzw lzz 33   (6) 

000,,0,,   ylyyzlzzlyylxxzyx wwvuu , and lzv lzz 23   (7) 

00,,0,,0   xlxxlzzlyylxxzyxz wwvvu , and lzu lzz 13   (8) 

0,,0,,00   lzzlyylxxzyxxlxxy wwvvu , and lyu lyy 12   (9) 
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The material properties for the aggregates and cement were taken from the literature. The aggregates 

were assumed elastic with Yong’s modulus as E=70GPa and Poisson’s ratio as µ=0.2 [1]. The elastic 

constants for cement were considered as E=25GPa and µ=0.2 [1]. The fracture parameters; fracture 

energy release rate and strength were as 100mJ and 3MPa respectively [6,1].  The results for the 

elastic stiffness matrix and effect of the cement damage are discussed in details in next section.  

 

4. Discussion on results 

The investigation was divided in two parts, first to get the homogenised effective elastic properties for 

the concrete along with associated uncertainties and second to establish the strengths of concrete for 

tension and shear loading by considering the cement damage on the established RVE. The RVE size, 

two times of the coarse aggregate has been investigated for 5 different microstructures from the 

domain of 40 mm
3
. Also the full domain was analysed to get the elastic constants. The obtained 

stiffness matrices were fully populated with the coupling terms as shown by one of them in Table 2.  

 

























14.231830.0626190.3177690.07653-0.0567490.08736-

0.10876114.171370.0017540.320430.2116750.513155

0.3928240.01300714.224950.0211410.2716450.171311

0.05446-0.234790.02975337.876679.4020979.436502

0.194740.1835410.3176949.40209638.275759.442842

0.01888-0.5415440.1406119.4365029.44284337.58839

H

ijklC  

 

However, shear-extension and shear-shear coupling terms are of one order less than the extension-

extension terms and hence can be ignored. The mean values of the coefficients of 
H

ijklC  along with 

standard deviations associated are given as below.  

 





































0.1714.22

0.2014.2

0.1614.11

6738.220.19.390.129.4

0.19.390.5437.980.129.36

0.129.40.129.360.6137.79

H

ijklC  

 

One can obtain the engineering constants for the concrete by considering the cubical symmetry of the 

stiffness coefficients as given in Table 2. 

 
Table 1. Homogenised effective engineering constants. 

 
E11 34.08 ± 0.58 GPa µ12 0.20 ±0.002 G12 14.11 ±0.17 GPa 

E22 34.26 ±0.51  GPa µ 13 0.20 ±0.003 G13 14.20 ±0.20 GPa 

E33 34.48 ±0.64 GPa µ 23 0.20 ±0.002 G23 14.22 ±0.17 GPa 

  

Also, the measure of the anisotropy in the planes can be determined as 

E
A

G )1(2 
        (10) 

A is anisotropy ratio and is equal to1for the isotropic material. The concrete can be considered as 

isotropic as A=0.99 for all the plans for the mean values. Hence the concrete is isotropic having 

engineering constants as E= 34 GPa and µ=0.2. The six load cases were also investigated for the 

effect of the cement damage during the loading history to determine the strengths of the concrete. The 

208



 

stress-displacements curves of all five RVE’s for normal loadings are given in Fig.1a and for the shear 

loading are shown in Fig.1b.   
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Figure 1: Stress-displacement curves for all six loading cases of RVE’s (here, (In σij-k) σij represents the stress 

tensor and –k, represents RVE number).   

 

The mean strength for all directions in tension loading condition is obtained as 3.72±0.37 MPa. Only 

in one case was observed below 3MPa and having a different trend in the post peak stress-

displacement curve. In this particular case, the specimen had failed form the vicinity of the y-

boundary due to the segregation of the coarse aggregates in the region of the domain. The shear 

behaviour was almost similar for all the cases and the average shear strength is obtained as 1.65±0.08 

MPa.     

 

5. Conclusions 

The realistic microstructure of the concrete has been investigated to obtain the homogenised stiffness 

and strength properties of the concrete. An RVE of the size of 10mm, which is 2 times of the size of 

coarse aggregate has been analysed with 5 different microstructure using periodic boundary 

conditions.  The concrete is observed nearly isotropic as the ratio of the isotropy is near to one. The 

Young’s modulus is obtained as 34 GPa and Poison’s ratio is 0.2. The strengths of the concrete in 

shear and normal direction are 3.72 and 1.65 MPa respectively.  
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ABSTRACT

Classical (local) elastic theories do not include micro-structural length scales of the material. To study
size effects in micro/nano materials, nonlocal/strain gradient elastic theories are proposed. These could
provide an efficient way to account for the important scale size effects. Within this paper a mixed-type
finite element formulation is presented using triangular elements of C0 continuity. Material behaviour of a
perfectly bonded bimaterial subjected to a shear stressσ∞21 is investigated. The finite element analysis was
implemented using a framework that provides an automated, efficient solution of differential equations
(FEniCS Project). Numerical results are presented and compared with analytical solutions.

Key Words: boundary layer problem; strain-gradient elasticity; mixed formulations; FEniCS

1. Introduction

Classical (local) elastic theories consider that stresses at a point are a functions of the strains at the same
point. This assumption is valid for most continuum/macro scale simulations but in general it does not hold
for micro/nano scales. To study the issue of size effects, theories which consider the material behaviour
at a point as a function of the deformation of the surrounding have been proposed, these are usually ref-
ered as nonlocal or strain gradient theories. Nonlocal theories state that the stress at a point depends on
the strain at all points in the continuum body [6]. In certain cases, there is a direct equivalence between
nonlocal stress theories and strain gradient theories. Of the two approches, strain gradient theories are
well known to be simpler to solve/implement. They have previously been considered in serveral pub-
lished works, using either the mixed-type finite element formulation [1, 8] or meshless methods [9]. The
difficulty of using numerical approximation of strain gradient elasticity with the finite element method
(FEM) is the continuity of strains that requires C1 continuity. In this paper, C1 continuous finite element
can be avoided by a mixed-type formulation. Establishing mixed formulations was also not an easy task
in the past. Fortunately, thanks to the FEniCS project [3], development of complex mixed finite element
formulations has become extremely easy. The present paper shows the advantages of using the FEniCS
environment to implement a mixed formulations of strain gradient elasticity with a wide range of element
types. Accuracy is assessed with a well known benchmark example.

2. Strain Gradient Elasticity

Mindlin [4] and Toupin [7] developed a theory of linear elasticity in which the strain energy density W
depends not only on the first derivative of displacement (strain, εi j) but also the second derivative of
displacement (strain gradient, ηi jk),

W = W(εi j, ηi jk) (1)

The second order deformation gradient (ηi jk) are defined in three differenct ways [1, 2, 4, 7]. In this paper,
Strain-Gradient Elasticity based on Type-I formulation is considered - which the strain gradient is the
second derivative of the displacement,

ηi jk = ∂i∂ juk (2)
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In 1965, Mindlin [5] derived that the stress σi j and double stress τi jk are conjugated with the strain and
the second order deformation gradient,

σi j =
∂W
∂εi j

, τi jk =
∂W
∂ηi jk

(3)

Applying the principle of virtual work, the equalibrium equation for a quasi static solid is [8, 2],

∂i(σik − ∂ jτ jik) − bk = 0 (4)

where bk is a body force vector. For a solid (the domain, Ω, shown in Fig.1), the solution of the displace-
ment field ui is investigated through the known boundary conditions on Ω, such as displacement ûi on
the surface dΓD, and traction ti on the surface dΓN .

Figure 1: Linear Elastic Domain Problem

The variational form of the total strain energy in a domain Ω can be written as

δ

∫
Ω

WdΩ =

∫
Ω

(σi jδεi j + τi jkδηi jk)dΩ (5)

Using the divergence theorem, the previous equation can be reformulated as a first variation of the strain
energy density, giving

δ

∫
Ω

WdΩ = −

∫
Ω

(∂iσik − ∂i∂ jτi jk)δukdΩ

+

∫
Γ

[n j(σ jk − ∂iτi jk)δuk + niτi jk∂ jδuk]dΓ

(6)

For the last term of the surface integral, a decomposition of ∂ jδuk on the boundary surface is defined as

∂ jδuk = D jδuk + n jDδuk (7)

where

ni = ith component of the unit surface normal vector
D(.) = nk∂(.)/∂xk = surface normal gradient operator
D j(.) = (δ jk − n jnk)∂(.)/∂xk = surface gradient operator

Using this definition and Stoke’s surface divergence theorem on a surface, Γ, it is possible to obtain∫
Γ

D j(niτi jkδuk)dΓ =

∮
Υ

nik jτi jkδukdΥ +

∫
Γ

(Dpnp)nin jτi jkδukdΓ (8)

Then the last term in the surface integral (Eq.6) then becomes,∫
Γ

niτi jk∂ jδukdΓ =

∫
Γ

[n j(σ jk − ∂iτi jk,i) + nin jτi jk(Dlnl) − D j(niτi jk)]δukdΓ

+

∫
Γ

nin jτi jkDδukdΓ + Σm

∮
Υ

4(nikiτi jk)δukdΥ

=

∫
Γ

tkδukdΓ +

∫
Γ

rkDδukdΓ + Σm

∮
Υ

pkδukdΥ

(9)

The final form of the principle of virual work can then be written as∫
Ω

[σi jδεi j + τi jkδηi jk]dΩ =

∫
Ω

bkδukdΩ +

∫
Γ

[tkδuk + rkDδuk]dΓ + Σm

∮
Υ

pkδukdΥ (10)
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3. Mixed-type Finite Element Formulation

From the principle of virtual work (Eq.10), the procedure of finite element requires C1 continuous ele-
ments. Due to the complexities involved with the implementation of C1 FEM formulations, it is common
to reformulate Eq.10 as a mixed formulation in which higher order terms (e.g. strains) are modelled as
independent variables. To derive the weak form of the principle of virtual work, kinematic constraints
are introduced by defining,

ψi j = u j,i (11)

By making use of divergence theorem, the strain energy density (Eq.10) on the domain Ω can be rewritten
as [8]∫

Ω

[σi jδεi j + τi jkδηi jk + τi jk,i(δuk, j − δψ jk)]dΩ =

∫
Ω

bkδukdΩ +

∫
Γ

[tkδψk + n jrkδuk, j]dΓ (12)

When applying a mixed finite element formulation, we have to enforce the first variational form of the
constraints by introducing Lagrange multipliers, defined as

ρ jk = −τi jk,i (13)

The constraints are enforced by writing Eq.11 as a variational form, using an arbitrary variation of the
Lagrange multipliers, δτi jk,i, giving a set of extra conditions,∫

Ω

(ψ jk − uk, j)δρ jkdΩ = 0 (no sum on j and k) (14)

After rewriting Eq.12 and Eq.14, the final modified virtual work formulation becomes∫
Ω

(σi jδεi j − ρ jkδuk, j) dΩ =

∫
Ω

bkδuk dΩ +

∫
Γ

tkδψk dΓ∫
Ω

(τi jkδηi jk + ρ jkδψ jk) dΩ =

∫
Γ

n jrkδuk, j dΓ∫
Ω

(ψ jk − uk, j)δρ jk dΩ = 0 (no sum on j and k)

(15)

4. Numerical Examples

The mixed formulation introduced above was tested with a well known benchmark example (bimaterial
system subjected to uniform shear stress). In the numerical model a domain with the dimension of 100l×
100l represents the bimaterial system. The boundary conditions are shown in Fig.2 and consist of a shear
stress on the upper and lower surfaces. To avoid the rigid body motion, the left-bottom corner is set
u = v = 0 and the right-bottom corner is set v = 0. The shear modulus and nonlocal paremeter of two
materials are assumed [8, 9]

µ1 = 2µ2 and l1 = l2 = l (16)

The results for triangular elements using different discretization are presented in Fig.3 and are compared
with the analytical soultion [8].

5. Conclusions

In this paper, a 2D mixed finite element formulation was presented based on strain gradient elasticity.
The numerical results using triangular elements in FEnicS show that the higher-order discretization is
in excellent agreement with the analytical solutions [8]. This suggests that more complicated problems
without analytical solutions can be solved accurately using this technique.Thanks to the features provided
by the FEniCS project, it has become extremly easy and fast to implement complex FEM formulations.
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ABSTRACT

This paper presents an initial computational multiscale modelling of the fibre-reinforced composite ma-

terials. This study will constitute an initial building block of the computational framework, developed

for the DURCOMP (providing confidence in durable composites) EPSRC project, the ultimate goal of

which is the use of advance composites in the construction industry, while concentrating on its major

limiting factor ”durability”. The use of multiscale modelling gives directly the macroscopic constitutive

behaviour of the structures based on its microscopically heterogeneous representative volume element

(RVE). The RVE is analysed using the University of Glasgow in-house parallel computational tool,

MoFEM (Mesh Oriented Finite Element Method), which is a C++ based finite-element code. A single

layered plain weave is used to model the textile geometry. The geometry of the RVE mainly consists of

two parts, the fibre bundles and matrix, and is modelled with CUBIT, which is a software package for

the creation of parameterised geometries and meshes. Elliptical cross sections and cubic splines are used

respectively to model the cross sections and paths of the fibre bundles, which are the main components

of the yarn geometry. In this analysis, transversely isotropic material is introduced for the fibre bundles,

and elastic material is used for the matrix part. The directions of the fibre bundles are calculated using

a potential flow analysis across the fibre bundles, which are then used to define the principal direction

for the transversely isotropic material. The macroscopic strain field is applied using linear displacement

boundary conditions. Furthermore, appropriate interface conditions are used between the fibre bundles

and the matrix.

Key Words: multiscale modelling; composite material; Transverse isotropy; MoFEM; CUBIT

1. Introduction

Conventional materials, e.g. steel, aluminium and metallic alloys can no longer satisfy the demands for

materials with exceptional mechanical properties and ultimately requires the design of new material [1].

These new materials are designed by changing their microconstituents at a scale, which is very small

as compared to the physical structures. Due to the complicated micro-structure of these materials, direct

macro-level modelling is not possible and requires a detailed modelling at the micro-level. Textile or fab-

ric composites is a class of these new materials which provides full flexibility of design and functionality

due to the mature textile manufacturing industry and is commonly used in many engineering applica-

tions, including ships, aircrafts, automobiles, civil structures and prosthetics [2]. Numerous analytical

and computational methods have been proposed to analyse textile composite materials, which includes

the calculation of the overall macro homogenised response and properties from the micro-heterogeneous

representative value element (RVE) [3] and is often referred as micro-to-macro transition or homogeni-

sation [4].

This paper presents the computational multiscale modelling of the textile composites, using the Univer-

sity of Glasgow in-house computational tool MoFEM. The RVE in this case consists of fibre bundles

and matrix, which is modelled and meshed in CUBIT using a Python parametrized script. CUBIT also

facilitates the insertion of interfaces between the fibres and matrix. Transversely isotropic material are

used for the fibres and isotropic martial are used for the matrix. Five material parameters are required

214



for the transversely isotropic material, i.e. Ep, νp, Ez, νpz and Gzp where Ep and νp are Young’s mod-

ulus and Poisson’s ratio in the transverse direction respectively, while Ez, νpz and Gzp are the Young’s

modulus, Poisson’s ratio and shear modulus in the fibre directions respectively. For the matrix part, only

two material parameters are required, i.e. Young’s modulus E and Poisson’s ratio ν. Although, periodic

boundary conditions [5, 6] gives better estimates of the homogenised response and properties as com-

pared to traction and linear displacement boundary conditions, linear displacement boundary conditions

are used in this paper due to its simple implementation. This will subsequently be extended to periodic

boundary conditions in future work. Fibre directions are calculated at each integration point by solving

a potential flow problem.

2. Theoretical background

Computational multiscale modelling is used in this paper to analyse the textile composite ma-

terials, in which a heterogeneous RVE is associated with each integration point of the macro-

homogenous structure as shown in Figure 1, in which B ⊂ R
3 and B ⊂ R

3 are macro and mi-

cro domains respectively. The calculation of the RVE boundary conditions from the macro-strain

integration point    

Strain

Stress

microstructuremacrostructure

Wwarp

hgap warp

HRVE

WRVE

LRVE

WweftWweft
Hweft

hgap weft

Vgap

Figure 1: Transition from macro-to-micro and micro-to-macro

ε =
[

ε11 ε22 ε33 2ε12 2ε23 2ε31

]T
at macroscopic integration point x =

[

x1 x2 x3

]T

is known as macro-to-micro transition, while subsequent calculation of the homogenised stress σ =
[

σ11 σ22 σ33 σ12 σ23 σ31

]T
and tangent moduli is known as micro-to-macro transition. The

macro-strain is applied as linear displacement boundary conditions, which leads to satisfaction of Hill-

Mandel principle [7], i.e.

ε : σ =
1

V

∫

V

ε : σdV, (1)

where V is the volume of the RVE, while σ and ε are stresses and strains associated with a point y =
[

y1 y2 y3

]T
of the RVE. The micro displacement field u =

[

u1 u2 u3

]T
, is written as

u = u∗ + ũ, (2)

where u∗ is known as Taylor displacements and ũ is the unknown displacement fluctuations. The Taylor

component is written as

u∗i = D
T
i ε, i = 1, 2, · · · n, (3)

where n is the number of nodes and Di is the coordinate matrix and is given as [4]

Di =
1

2
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Finally, the homogenised stress is calculated as

σ =
1

V

nb
∑

i=1

Dif
ext
i , (5)

where nb is the number of nodes on the boundary ∂B of the RVE, and fext
i

is the external nodal force

vector.

3. Numerical example

A sample RVE, which was used in [2], is used here with the same geometrical and material parameters,

as shown in Figure 1, where the subscripts warp and weft represent the corresponding directions of

fibre bundles. The geometrical and material parameters are defined in Table 1. This RVE is referred

Parameters Values Parameters Values

Wwarp 0.3 Wwe f t 0.3

Hwarp 0.1514 Hwe f t 0.0757

h gap warp 0.09 hgap we f t 1.2

LRVE 3.0 vgap 0.012

WRVE 0.8

HRVE 0.3

Fibres properties Matrix Properties

Ep Ez νp νz Gpz E ν

40 270 0.26 0.26 24 35 0.35

Table 1: REV geometrical and material properties (all dimensions in mm while E and G are in GPa)

(a) Textile RVE (b)  0/90 non-crimp RVE 
o o

(c) Fibres directions

x

y

z

Figure 2: Crimp and non-crimp RVEs and sample fibre directions

as unbalanced, where the dimensions of fibre bundles are different in warp and weft directions. The

manufacturing processes and crossing of the warp and weft yarn will lead to non-circular cross sections

of the fibre bundles; therefore, elliptical cross sections are used in this paper, which are then sweeped

over the cubic spline fibres’ path to generate the fibres. Four-node tetrahedral elements are used for both

the fibre bundles and the matrix, while six-nodes prism elements are used as an interface between fibres

and matrix.

The textile RVE is analysed using two different meshes with 41,193 and 106,011 DOFs and is subjected

to 1 % strain in x direction, i.e. εxx. The finest mesh and coordinates system are shown in Figure 2(a),

where x and z are warp and weft directions respectively, while sample fibre directions vector are shown

in Figure 2(c). The resulting homogenised stress σxx versus applied strain εxx for the two meshes and a

reference value from [2] are shown in Table 2, in which Mesh-2 with 106,011 DOFs provides satisfactory

results. The small difference between current and reference results may be due to the use of lenticular

cross-sections for the fibres, use of 8-node 3D linear brick element and 4- node linear tetrahedron ele-

ment for fibres and matrix respectively and the use of perfect bonding between fibres and matrix in [2].

Furthermore, The effect of fibres dimensions and crimp pattern are analysed, for which a new 0o/90o

non-crimp RVE with 103,095 DOFs (shown in Figure 2(b)) is generated and is subjected to the same

strain state. Comparison of the homogenised stress σxx for both crimp and non-crimp RVEs are given

in Table 3, where relatively lower value of homogenised stresses σxx in the crimp RVE is due to the

waviness of the fibre bundles. Furthermore, both crimp and non-crimp RVEs are subjected to 1 % strain

in z direction, i.e. εzz and comparison of their homogenised stress in the z direction, i.e. σzz are shown in
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Table 3, where again σzz is lower for the crimp RVE. Due to the small size and higher waviness of the

weft fibre bundles, the values of σzz are relatively smaller than the corresponding values of σxx.

σxx (MPa)

εxx (%) Mesh-1 Mesh-2 Reference

1 749.82 508.771 541.278

Table 2: σxx versus εxx for different mesh levels

σxx (MPa) σzz (MPa)

εxx (%) Crimp Non-Crimp εzz (%) Crimp Non-Crimp

1 508.771 751.507 1 83.9317 125.065

Table 3: Comparison of σxx versus εxx and σzz versus εzz for crimp and non-crimp RVE

4. Conclusions

This paper described an initial computational modelling framework for the DURACOMP project. Tex-

tile composite RVE geometry, which consists of two parts, i.e. fibre bundles and matrix is modelled and

meshed using CUBIT, where fibres are modelled using cubic spline with elliptical cross sections. The

University of Glasgow in-house computational tool MoFEM is used to analyse the RVE using trans-

versely isotropic material for the fibre bundles and isotropic material for the matrix. Linear displacement

boundary conditions and elastic interfaces between fibre bundles and matrix are used in this paper. Direc-

tion of the fibre bundles are calculated using a potential flow analysis. Two different level of meshes are

used to solve the RVE, and it is found that the homogenised stress calculated in the case of Mesh-2 are in

a good agreement with the reference solution. It is also found that homogenised stress in the case of the

crimp RVE is lower than the corresponding non-crimp RVE. Furthermore, it is also observed that due to

the relatively smaller dimensions and more waviness pattern for the weft fibre bundles, the homogenised

stress σzz is lower than the corresponding stress σxx in the warp direction.
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ABSTRACT

Timber is a naturally occurring material, with properties adapted to its local environment. Moisture has a
pronounced effect on the strength, stiffness and dimensional stability of timber. One particular concern in
moisture induced warping, both during the drying process and during construction and the lifespan of any
building. The current focus of the project is to model the viscoelastic response of the timber in reaction to
a change of humidity conditions. The model makes use of a Zener spring-dashpot method to model both
the instantaneous elastic response as well as the time dependent, poroelastic material behaviour. Flory-
Huggins Isotherm is used to model the interaction between molecular chains of amorphous cellulose
and the moisture influx while Ficks law of diffusion is used to assess the rate of diffusion through the
wood fibre. A finite difference scheme is to be used to model the constitutive equations over the length
of a single wood fibre. The results from the model will be compared to experimental results of sorption
kinetics of softwoods. Recent research into sorption kinetics has determined that the rate limiting step
in moisture sorption in timber could be due to substrate swelling rather than the process being diffusion
limited. The model will assess whether this is the case of if the moisture sorption is a more complex
interplay of the various processes. The current model will serve as the starting point in an attempt to
create a multi-scale model to create an accurate set of hygro-mechanical properties for softwood.

Key Words: Wood; Sorption; Viscoelastic; Finite Difference

1. Introduction

Wood is a highly complex heterogeneous material with a multi-scale hierarchical structure, incorporating
properties over many length scales. It is naturally occurring and thus the structure is adapted to its local
environment. This makes timber an inherently unpredictable material to work with. A major issue that
arises from the unpredictable properties is moisture induced distortion. During the drying process (or
after), changes in moisture content can lead to changes within the microstructure of the timber. This in
turn leads to dimensional changes that can be observed on the macroscopic scale. The key to mitigating
the issue of moisture induced distortion is to understand and be able to predict how moisture interacts
on the smallest length scales within the timber. The aim is to model the moisture sorption behaviour
of the cell wall and determine the rate determining step in sorption kinetics within wood i.e. whether
solvent migration is diffusion or mechanically limited. This information will be related to the macroscale
deformation effects by multiscale modelling in the future. The model will include the viscoelastic effects
of stress relaxation and creep which occur over time and their relationship with varying moisture content.

2. Cell Wall Structure

At the microstructural level softwood consists of three main polymers, cellulose, hemicellulose and
lignin. The wood cell wall itself is a multilayer composite structure (shown in figure 1) and consists
of a primary cell wall, a secondary cell wall (containing 3 layers denoted S1, S2 and S3 layers) and the
lumen contained within [3]. Both the primary and secondary cell walls contain cellulose, hemicellulose
and lignin.
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Figure 1: : Cell Wall Structure

In the secondary cell wall the cellulose chains form fibres which are embedded in a non-cellulosic poly-
mer matrix. The cellulose is split into both crystalline and semi-crystalline (amorphous) components,
and it is the amorphous component which interacts most strongly with water. This hygroscopic water is
bound to the cell wall by forming hydrogen bonds with the hydroxl groups within amorphous cellulose,
hemicelluloses and a small amount of hydroxyl groups within the lignin matrix. The amount of hygro-
scopic water within the cell wall is limited both by the number of sorption sites and the number of water
molecules that can be held per sorption site. When water enters the cell wall it causes a swelling of the
cell wall material. The water then accupies the space between the microfibrils, forcing them apart and
thereby opening up new sorption sites [2]. It is unclear yet whether it is this deformation of the cell wall
polymers or the rate of diffusion that is the rate determining step in sorption kinetics of wood.

3. Sorption Model

3.1. Model Outline

The aim is to create a sorption model of the wood cell wall due to interaction with water that incorporates
the viscoelastic behaviour of the cell wall. To do this a 1D model resolved in the direction of the water
flow across the wood cell wall is modelled. Experimental evidence has suggested that cellulose fibres
have amorphous zones connecting crystalline chains in series. The high stiffness of crystalline cellulose
constrains deformations of the crystalline sections in the direction of the fibre. The amorphous sections
contain the lignin and hemicellulosic matrix material. The organization of crystalling and amorphous
sections will be investigated by modelling both sections seperately. The corresponding sorption models

Figure 2: : Example of Amorphous and Crystalline polymers linked in series

will be combined in series, shown in figure 2, according to their relative volume fractions. This will
produce a predicted overall swelling response of the cell wall. A parallel arrangement of crystalline and
amorphous sections will also be investigated to determine which arrangement best relates to experimental
results for sorption isotherms. The model will intially focus on the S2 layer as this makes up around 80
percent of the mass of a wood fibre.

3.2. Constitutive Equations

Taking a similar approach to Hu and Suo’s study into elastomeric gels [5], the viscoelastic material
behaviour of the cell wall is described by a Zener model. Unlike the Kelvin-Voigt and Maxwell model,
the Zener model can accurately describe both stress relaxation and creep. We formulate the sorption
model in terms of the conservation of mass, kinetics of deformation and solvent migration and the balance
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of forces. The following relationship, representing a zener spring model, describes a dual process with
the elastic response represented by a single spring working in parallel with the viscoelastic response,
represented by a spring (elastic) in series with a dashpot (viscous):

σi j +
µ − µ0

Ω
δi j = 2Gα

[
εi j +

να

1 − 2να
εkkδi j

]
+ 2Gβ

[
(εi j − ε̂i j) +

νβ

1 − 2νβ
(εkk − ε̂kk)δi j

]
(1)

The strains within spring α are denoted by εi j and the strains within spring β are represented by εi j − ε̂i j.
Gα and Gβ represent the shear moduli of the two springs while να and νβ are Poisson’s ratio. The strain
rate of the dashpot is related to the viscosity by

∂ε̂i j

∂t
=

Gβ

Ĝβ

(εi j − ε̂i j) +
νβ − ν̂β

(1 − 2νβ)(1 + ν̂β)
(εkk − ˆεkk)

 (2)

where Ĝβ and ν̂β represent the constants that specify the viscous behaviour of the dashpot.

The Flory-Huggins theory for interaction within polymer solutions is used to model the energy of mixing
of wood with water, within the wood fibres, taking into account both entropy and enthalpy changes. It is
a statistical mechanical treatment of a polymer solution and in this case will be used as a starting point
for predicting a sorption isotherm from the various activation energies of the solutions and polymers. In
the theory of Flory-Huggins the change of Gibb’s free energy upon mixing is formulated as

∆Gm = RT [n1lnφ1 + n2lnφ2 + n1φ2χ12] (3)

where the terms n1 and φ1 represent the number of moles and volume fraction of the solvent (in this case
water) respectively while n2 and φ2 represent the same for the polymer. The term χ12 is the polymer-
solvent interaction parameter and is a material specific parameter. R is the gas constant and T is the
absolute temperature.

Fick’s 2nd law of diffusion is used to predict how the diffusion changes the concentration within the poly-
mer i.e. how the flux direction goes from an area of high concentration to an area of lower concentration.
We formulate Fick’s law in terms of chemical potential µ as the driving force

∂µ

∂t
= D

∂2µ

∂x2 (4)

where D represents the diffusion coefficient.

Molecular incompressibility is assumed and thus it is assumed that any uptake of solvent is accommo-
dated due to elastic deformation of the cell wall. This yields a relation between the volumetric strain and
the moisture concentration, depending on the molecular size of water.

4. Finite Difference Scheme

A finite difference scheme is used to obtain numerical solutions of the sorption model. An implicit
Euler (backwards time centred) scheme is used which gives better performance than an explicit scheme
in this case due to the slow rate of diffusion and the relatively long relaxation times making the time
steps relatively large. The high effort of solving an implicit system of time equations at each step pays
off as numerical stability is ensured. The following equation shows the backwards time centred space
relationship

µi, j+1 − µi, j

∆t
= D

µi+1, j+1 − 2µi, j+1 + µi−1, j+1

∆x2 (5)

where ∆t represents the time step and ∆x represents the distance between different spatial points. The
position in time is represented by j and the spatial position by i. µi, j is the known value for chemical
potential and the implicit scheme will solve for µi+1, j+1, µi, j+1 and µi−1, j+1 in the forward time step.

From the model, sorption isotherms will be predicted and will be compared with experimentally mea-
sured sorption idotherms. It is expected that in both adsorption and desorption, a sigmoidal shaped
isotherm will be obtained. Firstly the model will be validated against obtained sorption isotherms for
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cotton fibres [4]. Cotton fibres are almost purely made of cellulose. Thus, the amorphous matrix in the
model only consists of amorphous cellulose, which makes the identification of the required input param-
eters of the model easier.

The next step will be to compare model results for sitka spruce with similarly obtained results [1] for
sorption isotherms and to compare the rate determining steps observed within the cell wall sorption.
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ABSTRACT

The physical understanding of coupled electro-magneto-mechanics has long since been an important
topic for scientists. However, computational methods have only recently been applied to this field. In this
paper, we will focus on solving the fully coupled nonlinear magneto-fluid problem using thehp-finite
element method and a consistent Newton-Raphson linearisation strategy, for both conducting and non-
conducting magnetic fluids with magnetostrictive effects, extending our previous work in [1]. Numerical
results, including verification of the quadratic convergence of our Newton-Raphson implementation, are
presented.

Key Words: Coupled Magneto-fluid; Magnetostriction; hp-Finite Elements; Consistent Linearisation;
Magnetohydrodynamics

1. Introduction

Coupled magneto-fluid effects are important for a number of applications, including the industrial pro-
duction of aluminium and the restriction of blood flow during surgery. Understanding the mechanisms
that cause the magnetic field to influence the fluid flow and the flow patterns required to change the
magnetic properties of the medium are crucial for these applications. To do this cost-effectively, compu-
tational mechanics must be applied.

Our present research is focused on the solution of coupled magneto-fluid problems where the fluid is
Newtonian and incompressible. The presence of an electromagnetic field exerts stresses on the fluid
field. Meanwhile, the strain rate of the fluid flow alters the magnetic properties of the fluid by magne-
tostriction, resulting into a nonlinear fully coupled system. Further non-linearity can be introduced by
the constitutive behaviour of a ferro-magnetic fluid. The finite element method is employed to discretise
the problem and the resulting non-linear algebraic equations are consistently linearised via a Newton-
Raphson strategy. The complexity of the equations requires spatial discretisation of the velocity, pressure
and magnetic fields by different element types in order to satisfy the LBB constraint. High accuracy is
achieved by using high order (orhp-) versions of these finite elements.

In order to study the effectiveness and accuracy of our simulations, a series of benchmark problems,
including the flow around a rigid cylinder and the lid-driven cavity flow, are extended to consider their
behaviour for conducting and non-conducting fluids at low and high Reynolds numbers under the influ-
ence of a magnetic field of varying intensity.

2. Basic Formulations

The fluid motion can be described by the Navier-Stokes equations with the constitutive law for incom-
pressible viscous fluid and the electromagnetic field is governed by the Maxwell equations with appro-
priate electromagnetic constitutive laws. The stationary formulations are shown in Table 1. Here,ρ is
the fluid density,u is the fluid velocity, [σF] is the fluid stress tensor,f is the total body force,p is the
pressure, ˆµ is the viscosity, [I ] is the identity tensor and [d(u)] is the strain rate tensor.E and H are
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Table 1: Navier-Stokes equations and Maxwell’s equations andthe corresponding constitutive laws

Navier-Stokes equations Maxwell’s equations

ρ (∇u) u − ∇ · [σF] = ρ f
∇ · u = 0

∇ × E = 0
∇ × H = J
∇ · D = ρe

∇ · B = 0

[σF] = −p [ I ] + 2µ̂ [d (u)]
B =
[

µr
]

H
D = [ǫr ] E

the electric and magnetic field intensity vectors, respectively. The vectorsD and B are the electric and
magnetic flux intensities, respectively. The electric current density is denoted byJ andρe denotes the
volume charge density. The relative permittivity and permeability tensors are denoted by [ǫr ] and [µr ],
respectively.

The existence of a magnetic field exerts a stress field [σH] on the fluid, which appears inf = ∇· [σH]+ f̃ ,
and the magnetic field properties, especially the permeability [µr ], are influenced by the fluid strain rate.
With this two way coupling, the Navier-Stokes and Maxwell equations result in a fully coupled non-
linear set of governing equations. The fully coupled equations, the coupling mechanisms and the suitable
weak variable spaces considered in this work are summarised in Table 2. We remark that the detailed
formulations for constitutive laws for magnetostrictive effects can be found in [2] and those for the
conducting fluid with conductivitysare available in [3] and [4].

Table 2: Coupling mechanisms, including the strong form for the fully coupled governing equations and the suitable
weak variable spaces for conducting and non-conducting fluids

J = 0 non-conducting fluid J = J(E, B) conducting fluid
ρ (∇u) u − ∇ · ([σH] + [σF]) = ρ f̃
∇ · u = 0
∇ ·
([

µr
]

H
)

= 0
H = −∇φ, (∇ × H = 0)

ρ (∇u) u − ∇ · ([σH] + [σF ]) = ρ f̃
∇ · u = 0
∇ · ([µr ]H) = 0
∇ × s−1

∇ × H + ∇r − ∇ ×
(

u ×
[

µr
]

H
)

= g
[σH] = σ(H ⊗ H,H · H) [σH] = σ(H ⊗ H,H · H)

[

µr
]

= µr ([d (u)]) or
[

µr
]

= µr (H)
[

µr
]

= µr ([d (u)])

u ∈ H1(Ω), p ∈ L2(Ω), φ ∈ H1(Ω)
u ∈ H1(Ω), p ∈ L2(Ω),
H ∈ H(curl ,Ω), r ∈ H1(Ω)

The weak formulation can be derived from the strong form statedin this table and the resulting non-linear
system of equations are consistently linearised via a Newton-Raphson strategy. For full details we refer
to [2].

3. Numerical Discretisation

To ensure accuracy, thehp−finite element discretisation of Schöberl and Zaglmayr [5] is used for the
simplicial triangulation ofΩ in two–dimensions, with the suitable hierarchic conforming finite element
spaces for each of the variables shown in Table 2. For a non-conducting fluid, the magnetic field intensity
H can be described as gradient of a potential field. In this case, a discretisation ofH1(Ω),H1(Ω) and
L2(Ω) are required. For a conducting fluid, the curl-curl equation can not be simplified andH must be
discretised byH(curl,Ω) conforming edge elements. Note that in order to satisfy the LBB condition, the
polynomial degree must be chosen asPp,Pp−2 for fluid velocity and pressure, respectively.

The scheme for a non-conducting fluid is able to simulate magnetostrictive effects. It can also simulate
the more complicated non-linear constitutive behaviour of a ferro-fluid. The implementation has been
benchmarked using classic benchmark problems (lid-driven cavity and flow past a cylinder) without the
magnetic intensity and has been extended to include the behaviour under the presence of a magnetic field.
The benchmarking procedure and results for the coupled mechanic-fluid problems for single phase non-
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conducting fluid can be found in [2]. The scheme for a conductingfluid can be employed to simulate
magnetohydrodynamics (MHD) problems. The implementation has been benchmarked with the well-
known Hartmann flow problem, an L-shape domain problem with a smooth solution as well as an L-
shaped domain with a singular solution. These interesting results will be presented in the presentation.

4. Numerical Results

We focus on presenting the results that show how the flow patterns are influenced by the presence of a
magnetic field for conducting and non-conducting fluids with multiple phases.

The geometry of the background fluid is square in to which are placed fluid droplets with differing
electromagnetic properties. In our case, nine small cylinders are placed inside the square domain. The
background fluid and inner fluid are both either conducting or non–conducting, but with different param-
eters, depending on the problem being solved, as listed in Table 3. For both cases, the background fluid
is moving in a horizontal direction and a uniform magnetic field is then applied in either a horizontal or
vertical direction depending on whether a non-conducting or conducting fluid are considered.

Table 3: The parameters for inside and outside fluids (µ0 is permeability for free space)

Non conducting fluid (ferro -fluid ) Conducting fluid (MHD)
Parameters Inside fluid Outside fluid Parameters Inside fluid Outside fluid
ρ 1320 1000 ρ 2700 1000
µ̂ 80 1 µ̂ 810 100
µr 1.002 0.99 µr 1.002 0.99

s 2/µ0 1/µ0
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Figure 1: Multiple phase problem for non-conducting fluid (a), (b), (c) and for conducting fluid (d), (e), ( f ) with
increasing magnetic field.

In many applications, multiple phases with different magnetic properties must be taken into account
when considering conducting and non-conducting fluids. The behaviour of several ferro-fluid droplets
inside a non-ferro background fluid under the increasing magnetic field are simulated in Figure 1 (a),
(b), (c) by using our high order approach. This simulation is motivated by a biomedical application of
the treatment of retinal detachment and extends the examples of [6]. The corresponding behaviour of
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different conducting fluid under the increasing magnetic field is shown in Figure 1 (d), (e), ( f ). This
simulation is motivated by a MHD problem of the industrial production of aluminium [7].
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Figure 2: Quadratic convergence plots for a non–conducting and conducting fluid, cases (c) and (f ) from Figure 1.

Figure 2 shows the quadratic convergence plot for the relative residual for conducting and non-conducting
simulations for cases (c) and (f ) of Figure 1. The Newton-Raphson strategy clearly shows quadratic con-
vergence for both the non-conducting and conducting cases. The first case needs more steps to converge
due to the additional non-linearity arising from the ferro-fluid. The convergence is only limited by the
finite precision of our approach. Note that the convergence behaviour will be influenced by the parame-
ters in Table 3 and the magnitude ofH. In particular, for the same parameters, the larger the magnitude
of H, the more iterations that are required to reach convergence.

5. Conclusions

The coupled formulations for conducting and non-conducting fluids are implemented in a monolithic
manner and solved by means of a Newton–Raphson strategy in conjunction with consistent linearisation
for single and multiple phase problems. A finite element discretisation employinghp-finite elements has
been used to ensure high levels of accuracy. A series of well known benchmark problems are simulated
under the influence of an magnetic intensity field for the two–dimensional case. On going current work
includes the extension to three–dimensional problems and we intend to report on progress in this direction
during our presentation.
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ABSTRACT

In this paper, a general framework for the computational simulation of Fluid-Structure Interaction (FSI)
problems involving rigid/flexible solids and multiphase flows is presented. The proposed methodology
builds upon the Immersed Structural Potential Method (ISPM) developed by the authors [1, 2] for the
simulation of single-phase FSI problems. Several numerical examples are presented to showcase and
benchmark the proposed methodology in the solution of complex multi-body multi-phase problems.

Key Words: Immersed Structural Potential Method (ISPM); rigid body constrains; level set method;
augmented Lagrangian method

1. Introduction

The numerical solution of incompressible flexible/rigid/multi-phase flow interaction problems is ex-
tremely important and commonplace in many engineering applications: from costal engineering, civil
engineering to ship hydrodynamics. In general terms, two main families of methodologies have been
used in practice: body-fitted approaches [3] and immersed type methods [1, 2, 4]. Methods of each fam-
ily have some strengths and weaknesses, but within the body-fitted methodologies, the main disadvantage
is the cost of mesh update and re-meshing algorithms, a factor particularly important in the case of three-
dimensional simulations. As an alternative to such methodologies, Peskin [4] originally introduced the
Immersed Boundary Method (IBM) for the solution of heart valve problems, where the computation
is performed on a background Cartesian grid and a body force is added to the fluid to account for the
presence of a solid.

There have been several extensions of immersed methodologies since their inception. One such extension
to the original IBM is the Immersed Structural Potential Method (ISPM), introduced by the authors [1, 2]
for the solution of single-phase FSI problems with highly deformable structures, such as those present
in typical haemodynamic problems. In such scenarios, the methodology is robust and efficient, but the
consideration of rigid, or very stiff structures, can be a limiting factor. For such problems, the authors
have opted for extending the methodology by adding a Lagrange multiplier field to enforce the rigid
body constraints, and solve the arising mixed formulation using a Least Squares projection approach
[5]. Moreover, for the case of immersed structures with a density substantially different to that of the
surrounding fluid, an extension of the original methodology is required to avoid numerical instabilities.
In this work, both issues will be addressed and the original framework extended to allow for multi-
phase flows by means of the Level Set Method [6]. The efficient iterative solution of the corresponding
non-constant diffusion (anisotropic) pressure-Poisson equation that arises in the modified fractional step
method is then solved efficiently using a geometric multigrid solver in combination with segregation of
the rigid constraints.
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2. Methodology

In immersed techniques an underlying Eulerian mesh is employed to discretise the fluid. For the case of
an incompressible Newtonian fluid, the time-dependent Navier-Stokes equations tend to be solved (due
to computational efficiency) by means of a fractional step method that uncouples velocity and pressure
unknowns. In order to extend the methodology first for multiphase flows, we consider the continuum
domain Ω ⊂ Rn, n = 2, 3 and a partition into disjoint sets Ωi that will represent each of the possible
fluid phases, i.e. Ω = ∪iΩi, Ωi ∩ Ω j = ∅, i , j. The Level Set Method [7] is employed to “capture” the
interfaces of the different phases as they evolve in time. A regularised Heaviside function Hi, i.e. a smooth
approximation of the characteristic or indicator function χΩi , is evaluated for each phase Ωi by means of
the corresponding vector level set function φ, i.e. Hi = Hi(φ). Such regularisations are constructed so that
the partition of unity property that the true characteristic functions satisfy also holds, i.e.

∑
i Hi ≡ 1. This

identity allows us to consider the linear momentum conservation equation for a control volume V ⊂ Ω as∫
V

∂

∂t
(ρ(H)u) dv +

∫
∂V

(
ρ(H)u ⊗ u + pI − σ′(H)

)
· nda =

∫
V

gdv

where Hi = [H]i is the vector of regularised Heaviside functions, ρ(H) is the (non-constant, space-
varying) density of the fluid as a function of the regularised Heaviside vector H and σ′(H) is the devi-
atoric component of the stress tensor of the corresponding continuum phase. In addition, for an incom-
pressible fluid, the following constraint has to be satisfied

∇ · u = 0.

Upon solution by means of a fractional step method, the following non-constant diffusion (anisotropic)
Poisson equation has to be solved to determine the pressure field

∇ ·

(
1

ρ(H)
∇ψ

)
= div(u∗),

where ψ is an increment to the pressure field and u∗ is an intermediate stage, non-divergence free, ap-
proximation to the velocity field. This is accomplished efficiently by use of a geometric multigrid Poisson
solver. The above methodology allows for the simulation of multi-phase flows with high ratios of physical
phase properties (e.g. density or viscosity).

For the inclusion of a deformable structure with initial domain Ωs
0 immersed in the fluid domain Ω,

the body force g above is computed using the ISPM [1, 2], based on a Marker and Cell (MAC) spatial
discretisation. A deviatoric energy functional Πs corresponding to the deformable structure is integrated
using a quadrature rule with integration points ap and weights Wap , thus “tracking” in a Lagrangian
fashion the mechanical response of the flexible structure

Πs(ϕ) =

∫
Ωs

0

Ψ̂s(ϕ)dV ≈
∑
ap

Ψ̂s(ϕap)Wap ,

where ϕ is the solid mapping and Ψ̂s is the deviatoric strain energy density. The FSI forces term g can
be computed then as

f Ai
i =

∫
Ωs

0

τ
′s
i · ∇ζ

Ai(xs)dV ≈
∑
ap

Wapτ
′s,ap
i · ∇ζAi(xap), gAi

i = f Ai
i /(

j=n∏
j=1

∆x j) i = x1, . . . , xn

where ζAi is a suitable interpolating kernel function [2] centred at edge Ai. In the original methodology
[1], the FSI interaction force g included both the deviatoric contribution to the interaction forces and the
inertial term, due to the different densities of solid and fluid phases. Unfortunately, in the case of explicit
time integration algorithms, the inertial contribution can lead to unstable computations for large density
ratios. In the proposed extension, the ISPM is used to compute only the deviatoric component, leaving
the inertial contribution to be dealt with in an Eulerian manner by the above multi-phase fluid solver.

Another limitation of the original ISPM is the modelling of very stiff or rigid structures, as the corre-
sponding interaction term dominates the stability of the fluid solver and forces extremely small time-
steps. For a rigid body occupying ΩRB ⊂ Ω, the following additional constraint on the velocity field has
to be fulfilled

u = ω × (x − x0)
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where x0 is the instant centre of rotation and ω is the angular velocity. The rigid body is “tracked” in a
Lagrangian way using a collection of integration points, in a similar fashion to the ISPM. A Lagrange
multiplier field λ is added to the formulation to enforce the above constraint. In order to simplify the
enforcement of such constraint, a weighted Least-Squares projection of the velocity field is performed.
The spatial semi-discretisation is carried out using a staggered Finite Volume scheme on a Cartesian
standard Marker-and-Cell (MAC) grid, where the level set and the pressure field are defined at the cell
centres and the normal component of velocities, Lagrange multipliers and forces are defined at the cell
faces, arriving at

M

∆t
Un+1 + GPn+1 +Hλn+1 =

M

∆t
Un − C(U)n+1/2(ρ(φ)U) −V(Un+1) + G(Un+1),

DUn+1 = 0,

AUn+1 = UR,

φn+1 − φn

∆t
+ C(U)n+1/2(φ) = 0,

whereM, G, C,V,D andA denote the discrete mass, gradient, convective, viscous term, divergence and
Least-Squares projection operator respectively, and Un, Pn and λn denote the discrete velocity, pressure
and Lagrange multiplier at time tn. Note thatD andH are the adjoint operators of G andA respectively.
The above discrete system is solved by means of the fractional step method in conjunction with an
Uzawa-type algorithm.

3. Numerical examples

In this section we present the numerical simulation of the sinking and fluttering of a rigid body in a vis-
cous fluid with the framework presented above. The physical domain is the rectangle 15×40, discretised
with a series of Cartesian meshes, the finest of which is composed of 240×640 cells, filled with a Newto-
nian viscous fluid of viscosity µ = 10−5 and density ρ = 103. A rigid rectangle of size 5×0.5 m is rotated
clockwise an angle of π/3 and translated such that its geometrical centre is at position (3.4665, 35.96)
with respect to the bottom left corner of the fluid domain (see Figure 1a). The rigid solid has a density
1.5 times that of the fluid and is discretised using 5760 integration points. The total run-time for the
case with the finest mesh is 1 hour using a 2.4 GHz Intel Core 2 Duo CPU. In Figure 1b and 1c we can
observe convergence of the evolution over time of the position and velocity of the bottom left corner of
the rectangle for a series of discretisations. In Figure 2, in a series of snapshots of the solution, it can be
observed how the rigid solid sinks and flutters as it creates vortices in its wake.

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

Posit ion

 

 

60 × 160 grid : p osi t ion in X

120 × 320 grid : p osi t ion in X

240 × 640 grid : p osi t ion in X

60 × 160 grid : p osi t ion in Y

120 × 320 grid : p osi t ion in Y

240 × 640 grid : p osi t ion in Y

! "! #! $! %! &! '! (!
!!)"

!!)!&

!

!)!&

!)"

!)"&

!)#

!)#&

!)$

ve loc i ty

 

 

60 × 160 grid : v e loc i ty in X

120 × 320 grid : v e loc i ty in X

240 × 640 grid : v e loc i ty in X

(a) (b) (c)

Figure 1: (a) Geometry of the problem; (b) Evolution with respect to time of the x and y position of the bottom left
corner of the rigid rectangle for a series of mesh discretisations; (c) Corresponding velocity of the same point with
respect to time for a series of meshes.

4. Conclusions

In this work, we presented a general unified framework for the simulation of incompressible
rigid/flexible/multi-phase flow problems that offers a series of advantages. First, the use of a novel
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Figure 2: Snapshots of the solution for the problem of a rigid solid sinking and tumbling in a viscous fluid.

weighted least square projection scheme allows for the easy incorporation of complex rigid body mo-
tions. Second, all constraints are segregated in the system, combining fractional steps and the augmented
Lagrange Method, reducing the overall computational cost. By means of an efficient geometric multigrid
Poisson solver, it is shown that the framework can also be used to simulate scenarios with large density
ratios between phases and/or solids.
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ABSTRACT 

Computational simulations are used in an increasing range of applications for coastal environments. Despite 

their advantages in comparison to other methods, there are still some uncertainties over the features involved, 

sometimes connected to the complexity of the large scale physical processes.  

A 2D numerical simulation based on a Finite Volume Method (Mike21 by DHI) has been developed to study the 

hydrodynamic behaviour of the flow in the Solway Firth as a basis for the optimisation of tidal farms. The aim is 

to find a configuration with the maximum energy extraction and the minimum impact on flood risk. The 

boundary conditions applied in the model consisted of the highest tides and a storm surge. The results for the 

maximum water levels and velocities identified the areas with high risk of flooding and the potential locations 

for the tidal farms, respectively. 

Due to the lack of observed data for turbulence in the estuary, a sensitivity analysis has been carried out to 

determine how the hydrodynamic results would be affected by this parameter. Regarding the integration of 

turbines in the estuarine model, results from a detailed 3D Computational Fluid Dynamics (OpenFoam) model 

of individual turbines and groups of them are used to account for the interactions within the farm and with the 

surrounding environment. Different configurations of tidal farms will be included in the simulations and 

optimised by means of nature-inspired genetic algorithms and advanced methodologies, such as artificial neural 

networks. 

Keywords: CFD; FVM; Hydrodynamics; Optimisation;Turbines 

1. Introduction

Computational simulations are used increasingly in different applications for coastal environments, 

ranging from representations of the near-field effects of structures deployed in a certain location up to 

the far-field effects of marine energy extraction at ocean scales. The current study is focused on 

computational simulations related to the environmental interactions of tidal farms in estuaries. 

Although there are some advantages in the simulations in terms of the balance between accuracy of 

results and computational costs in comparison to other methods, like simplified analytic approaches or 

physical models, the connection between different scales (in this case, tidal farm and estuary) within 

the model results in a high complexity. This project integrates both scales with the aim of providing a 

better understanding of the effect of tidal farms in estuaries. 

The current study is focused on the Solway Firth area, which is a highly energetic estuary located in 

the West coast of Great Britain, between England and Scotland. The purpose is to optimise the layout 

of tidal farms in terms of maximum energy extraction and minimum environmental impact. The latter 

is represented by the influence that turbines could have on the existing water levels in the area. Flood 

risk is preferred here to other environmental parameters, such as suspended sediment concentration or 

changes in the morphology of the seabed, because it can be directly assessed with the same model 

used to calculate the extracted power. On the other hand, the cost of damages caused by flooding is 

very important from a social perspective. 

2. Methodology

In order to achieve the integration between the different scales involved in the study, two kinds of 
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models have been used: a Computational Fluid Dynamics (CFD) model and a Finite Volume Method 

solver. The detailed three-dimensional (3D) CFD modelling will provide results about the interactions 

of turbines within the farm. On the other hand, the computational demand of the CFD is very high to 

be used directly in the optimisation process. Therefore, a 3D FVM model (Mike3 by DHI) with a 

lower computational time is being compared with the CFD in the same cases. These models will be a 

basis for the optimisation of the energy output in the scale of the farm. In relation to the estuary, a 2D 

FVM system (Mike21 by DHI) has been used to assess the flood risk in the situation without turbines 

and these results will be compared with the cases including the optimised configurations of tidal 

farms. Finally, the comparisons will be used to find the solution which minimises the flood risk in the 

estuary. 

 

3. Turbines and tidal farms modelling 

CFD models have been developed to provide detailed information about wake formation and 

interactions between turbines. In this project the design of the turbines is based on the horizontal 

transverse flow type called Momentum Reversal Lift turbine, as can be seen from figure 1. Several 

situations have been performed in OpenFOAM, including individual turbines and groups of them [5, 

6, 7, 8]. Currently, a model is being created to represent a group of thirty turbines in two different 

configurations, related to the experimental testing that will be carried out in the Allwaters tank in 

order to validate the results of the CFD models. The Allwaters facility is a curved tank located in the 

University of Edinburgh with the ability of recreating currents in any direction and situations with 

waves and currents at the same time. [11] 

 

 
 

Figure 1: MRL turbine 

 

In order to compare the aforementioned models with an application which can gives similar results 

with a reduced computational demand, Mike3 models have been developed consisting of three 

vertical layers. The central layer is referred to the turbine position and the upper and lower layers are 

related to the by-pass flows, according to the Linear Momentum Actuator Disk Theory, which allows 

studying the losses from turbulent wake mixing [4]. 

 

4. Estuary modelling 

A numerical model of the Solway Firth Estuary has been defined by means of Mike21. The domain of 

the model is delimited by the inland boundary to the North-East, close to convergence of the rivers 

Esk and Eden, and by the open sea boundary at the South-West, between Head Abbey 

(Kirckcudbright Bay) and St Bee’s Head (Workington). The domain is covered by an unstructured 

flexible mesh created through the interpolation of bathymetry and terrain data. The former were 

obtained from the Celtic Seas dataset, provided by the British Oceanographic Data Centre [2], with a 

resolution of 30 arc seconds and 1 arc minute for the latitude and longitude, respectively. The terrain 

in the coastline was included between the shoreline and the 10 m elevation isoline and it was 

represented by points from the Profile Contour dataset, provided by the Ordnance Survey, with a 

vertical resolution between 5 and 10 m. The domain was divided in several subdomains with different 

refinements according to the areas where a higher accuracy was necessary 
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The duration of the preliminary simulation consisted of four tidal cycles and it was referred to an 

extreme scenario based on the 1 in 200 years return period event for the highest tide plus the 

atmospheric surge. The water elevations for this event were calculated following the guidance of the 

Environment Agency for the design of flood defences presented by McMillan et al. [1] and the data 

from the Admiralty Tide Tables 2013 and included as a boundary condition in the open sea boundary. 

Wind data have been obtained from Carlisle airport. 

 

The value of the bed resistance was set to a constant value of the Manning’s roughness coefficient 

according to the existing sediments in the seabed and varying according to Land Cover values in the 

Coastline, taken in ArcGis format from the UK Land Cover Map (LCM2007). The land cover indexes 

were converted into Manning’s roughness coefficients for natural floodplains. Due to the lack of data 

about turbulence in this area, a sensitivity analysis was carried out and the results showed that there 

was little influence of this parameter on the results. Therefore, a value of 0.28 for the Smagorinsky 

coefficient was adopted. 

 

Figure 2 shows the results for the initial hydrodynamic model for the mean water levels and current 

velocities in the estuary. The maximum values give an idea about the areas at risk of flooding and the 

potential locations of tidal farms, respectively. These results are in good agreement with the 

information showed by the flood risk maps provided by the Environment Agency [3] and the Scottish 

Environment Protection Agency [10], as well as with the annual velocities from the UK atlas of 

marine renewable energy resources [12]. 

 

 
 
Figure 2: Mean water elevations and velocities from Mike21 model in the Solway Firth estuary, averaged over 

four tidal cycles. 

 

The model has been calibrated according to the observed sea levels from the gauge station, with 

coordinates 54   44.0ˈN and       .0ˈ W, on 30th April 1977, being this dataset provided by the British 

Oceanographic Data Centre [2]. Data for the river flows on the previous date have been provided by 

the National River Flow Archive [9]. 

 

The model will include the main rivers along the boundary represented as sources. The peak flows for 

the 1:200 years return period are being obtained through the Environment Agency and the Scottish 

Environment Protection Agency. Further work will also include the evaluation, in terms of damages 

and monetary costs, and the comparison of flood risk levels from the model without and with the tidal 

farms in order to be introduced in next stages of the optimisation process. For that purpose the data 

about urban areas in the estuary are being collected. 

 

5. Optimisation 
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Optimisation techniques based on genetic algorithms, will be applied to get the best configuration of 

tidal turbines within the farm in terms of the maximum power output. These configurations will then 

be included in the estuary model to assess the flood risk. Advanced techniques such as artificial neural 

networks will be used at this stage to improve the layout of the farm in order to have the minimum 

impact on flood risk. 

 

6. Conclusions 

Further work will focus on Mike3 models of individual turbines and groups of them and the 

comparison with OpenFOAM results, which are being validated through experimental testing. These 

models will be integrated in the optimisation process in order to determine the configuration that 

could extract maximum energy from the flow.  

 

Results from the 2D estuarine model without tidal farms show good agreement with the official data 

sources and give an idea about the locations with high levels of flood risk and the potential locations 

for the tidal farms. Turbines will be included in a direct way as drag forces against the flow and the 

model will be used as a basis to provide the layout of the tidal farm with the minimum induced flood 

risk. 
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ABSTRACT 

Parachute inflation has a sophisticated fluid-structure interaction (FSI) dynamic behaviour. This paper describes 

the simulation technique for life saving parachute inflation in a finite mass scenario. Combing with the 

CFD/CSD and FEM techniques, the computational FSI models were developed by Arbitrary Lagrangian Euler 

coupling method embedding in the LS-DYNA transient dynamic code. Prior to 2012, the infinite mass inflating 

simulation of parachute was analyzed by us, where the parachute does not influence the freestream air velocity; 

such models can be compared with the tests conducted in a wind tunnel. In finite mass scenario, a more complex 

inflation phase and FSI dynamics of parachute was investigated. The 3D visualization of canopy deformation, as 

well as the variability of dropping velocity and overload was obtained. Specifically, the evolvement of vortex in 

fluid field was analyzed to understand the FSI mechanism of parachute inflation. This technique could be further 

used in the parachute’s airdrop test as a true prediction.  

Keywords: fluid-structure interaction; parachute inflation;Arbitrary Lagrangian Euler

1. Introduction

As a kind of decelerator, parachute has been widely used in recovery and life-saving system. During parachute’s 

working process, inflation is a critical step for the decelerating, and has always been a challenge work for a long 

period since 1960s’[1]. Fluid mechanics is unsteady, viscous often compressible flow about a porous body with 

large shape changes, the parachute is a tension structure that undergoes large transient deformations constructed 

by nonlinear materials with complex strain, and all of the above disciplines are strongly coupled. So it’s difficult 

to converge the computation of FSI coupling equations for parachute inflation, thus people have built some 

simplified dynamic inflation models for parachute to predict filling time and drag forces[2, 3], some are also 

integrated with ballistic fight-path equations to compute the trajectory and stability for parachute-load 

system[4], for the trajectory computation of parachute-load system, the initial conditions is determined by the 

performance of parachute opening process. 

The aim of this paper is to discuss the use of the LS-DYNA Explicit Finite Element Analysis (FEA) tool for 

simulation of parachute inflation dynamics.  

2. Fluid-structure interaction approach

The applications described in this paper involve the modeling of a channel air flow interacting with a porous and 

inflatable structure. The fluid here is solved by utilizing a Eulerian formulation on Cartesian grid that overlaps 

the structure, while the latter is discretized by Lagrangian shells and cables. The parachute we investigated in 

this paper is a life saving slot-parachute with 24 suspension lines, and 8 radial gaps are placed symmetrically on 

connecting area of 8 gores (as shown in figure 1).  
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Figure 1: Slotted canopy layout.   

 
The parachute opening velocity of airdrop process is commonly relative low, although the fluid field during 

parachute inflation is typical time-variant spatial domain, it can be considered as incompressible viscid flow. Let 

f and (0, T) be the spatial and temporal domains, f denote the boundary of domain. Introducing the ALE 

formulation, the finite mesh can be freely moved and the fluid particles coordinates are Xi(t), (i=x, y, z)，where 

t∈(t, T), thus the N-S governing equations of incompressible flow in reference coordinates are 

 
1

ft 


   



v
v - w v σ g             (1) 

Where v and 
f  is the fluid velocity and density, w is the mesh velocity in reference coordinates. If w = 0, 

Equation (1) is the Euler formulation, and if v = w, it’s the Lagrangian formulation. 

In FSI problems, the computation of coupling interface is a key technique for the conversation of energy must 

be ensured. Generally, it’s impossible to implement the total matching between structural and fluid mesh. Here 

we implemented the Multi-Material ALE method (MMALE) in LS-DYNA code for solving this problem. LS-

DYNA code allows running models with non-coincident structure and fluid meshes. The MMALE method 

combines Lagrangian and Eulerian methods. Which means for Lagrangian step, the mesh moves with the 

material in the first part of the step, while for Eulerian step, the mesh is smoothed out to minimize the element 

distortion and material flow between elements, the fluid characteristics are re-computed at the initial node 

locations by a procedure called “advection”. 

For Newton fluid, the stress tensor can be defined as  

       T
p      σ I v v              (2) 

Here, p is pressure, I is 2 rank unit tensor, and μ is dynamic viscosity coefficient, both the Dirichlet and 

Neuman-type boundary conditions are accounted for, represented as 

          tv = g  on  
1

f        (3) 

 tn σ = h on 
2

f  `          (4) 

Where
1

f denotes the velocity boundary of fluid field, and
2

f denotes attached boundary, which is just the 

boundary of the interaction between flow and canopy structure. The initial fluid velocity condition at intake 

boundary is 

  0,0xv = v  on 0      (5) 

Here we move the bottom layer elements as the pressure inlet elements, as depicted in figure 2, and the 

velocity boundary is easily to be imposed and p=0, on the outflow boundary. 

235



 

 
 

Figure 2: Fluid boundary profile 

 

Solid elements with momentum advection advantage are suitable for solving the N-S equations of fluid, and 

second order van Leer MUSCL scheme is used to calculate the values of the solution variables in the transport 

fluxes to achieve second order accurate monotonic results, this algorithm is accurate, stable, conservative, and 

monotonic. To improve the computation efficiency, we choose the single point integral of ALE multi-material 

method rather than the total volume integral. 

 

3. Numerical models  

Both the structure and fluid domain can be meshed independently. Initially, the parachute is already developed 

from the package, and constructed in conical profile with simplified fold of each gore in radial direction. The 

structure meshes were constructed by the canopy and suspension lines and the parachute model were meshed by 

2D tetrahedral shell and 1D discrete beam elements (as shown in figure 3).  

 
 

Figure 3: Initially folded canopy mesh    Figure 4: Fluid domain mesh 

 
The fluid was meshed by 3D hexahedron elements (as depicted in figure 4). The statistical information of FE 

model is illustrated in table 1. 

 

Table 1: Statistic information of parachute system numerical model 

 

 Elements Materials Parts 

Types Numbers 

Canopy Tetrahedral Shell  14888 *MAT_FABRIC Part1~6 

Fluid Hexahedral Solid  649440 *MAT_IDEAL_GAS Part7 

Ropes Discrete Beam  1872  *MAT_CABLE  Part8 

Total                  666200 3 8 

 

4. Results  
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The coupled numerical model simulates the FSI performance of finite mass inflation and trajectory motion of a 

typical slot-parachute that either is used for personnel/cargo or being used in airdrop experiments. Numerical 

results from a sum of several computation cases with different initial free dropping velocity will be presented 

and compared to the experimental results.  

4.1 Opening process 

Parachutes are stochastic systems with large scatter of their performance characteristic, and various parameters 

can affect the inflating performance of parachute dramatically, and the influence of stochastic wind is not 

considered in this paper. Figure.5(a)~(f) shows the 3-D deformation of canopy shape from the initial stretched 

shape at time equal to 0.0 s up to time equal to about 2.0s when canopy fully inflated. 

 

 
(a)           (b)       (c) 

 
 (d)                                         (e)      (f) 

 

Figure 5:  3-D canopy shape during inflation vs time: (a) 0.18, (b) 0.54, (c) 0.62, (d) 0.95, (e) 1.6, (f) 2.0 

 

4.2 Inflation performance 

Figure 6 plots the numerically predicted load acceleration vs time curve and experimental curves from airdrop 

test. The weight of load is 300 kg, so the peak overload of simulation and experiment is 23.44g and 21.36g, it 

can be seen from the figures that these two curves are very close considering the approximations used in the 

model. 

 
 

Figure 6: Drag force vs time (numerical and experimental) 

 
The instant velocity when canopy is stretched equal to the initial velocity of opening, figure 7 shows the change 

of velocity of parachute-load system, the velocities reduced rapidly at the beginning of opening for the high 

overloads, and then tend to keep steady as the balance between the drag forces and aerodynamic forces on 

canopy. 
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Figure 7: Parachute-load system’s velocity comparison vs time 

 
4.3 Fluid-structure interaction  

Figure 8 illustrates the details of fluid domain around parachute during inflation process, the FSI model also 

predicts a phenomenon known as wake recontact. Wake recontact can occur in finite mass openings during or 

soon after the load has undergone maximum deceleration. The wake trailing the opening canopy is moving close 

to the speed of the load. As a result, when the load undergoes its maximum deceleration, the wake contacts the 

apex of the canopy. The recontacting wake results in a negative differential pressure that indents the apex of the 

canopy. This phenomenon can also be seen in figure 5(e). 

  
 

  
 

Figure 8: CFD pressure distributions and velocity vectors during opening 

 
The structure response of canopy under the act of aerodynamic pressure can also be seen from fig. 10, from the 

distribution of von mises stress and equivalent plastic strain on the canopy, we can know that the red area near 

the top of canopy experience high levels of fabric strength, the central area of each gore also suffer higher 

tensile than the average level of whole canopy. 
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Figure 9: Von mises stress and equivalent plastic strain distributions during opening (left is von mises stress 

results, right is equivalent plastic strain results) 

 

5. Conclusions 

This paper presented a study on FSI phenomenon of parachute during finite mass inflation process in low speed 

and altitude, the results of the numerical model were compared with experimental results obtained from the 

airdrop test, and curves from different work conditions of the numerical models were also compared and 

investigated. The ALE technique is capable of reproducing the FSI phenomenon of parachute during opening 

process, both the structure dynamics of canopy and fluid field evolvement around parachute were simulated 

visually and analyzed. The changing rules of canopy’s shape and overload were in good agreement with 

experimental data, which prove the good inflating performance of this kind of slots parachute. As mentioned in 

Introduction, this numerical approach can be part of integrated simulation system of parachute airdrop, and is 

now being increasingly applied in parachute research field. Future study should consider much more 

uncertainties and probability in environmental factors like gust. 
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ABSTRACT

A higher resolution unstructured finite-volume method is presented for subsurface reservoir simulation.
The flow equations involve an essentially hyperbolic convection equation coupled with an elliptic pres-
sure equation resulting from Darcy’s law together with mass conservation. The focus is on the convective
flux approximation on unstructured grids, based on Barth-Jespersen and Darwish et al. The governing
equations are discretized by a standard cell-centred finite volume scheme in space and by multi-stage
Runge-Kutta scheme in time. The numerical flux approximations are of second order Godunov-type,
with a flux-limiter for higher resolution with accompanying maximum principle. A comparison of per-
formance between first order and higher resolution methods applied to two phase flow problems in porous
medium is presented.

Key Words: Two-phase flow; unstructured grids; maximum-principle; TVD; positive scheme

1. Introduction

Key aspects of subsurface reservoir flow simulation include capture of fluid flow fronts and shock fronts
which involve steep flow gradients in saturation and concentration. The geometric complexity of many
reservoirs requires that the flow equations be approximated on unstructured grids. Standard methods
involve use of the single-point upstream weighting (first order upwind) scheme for convection. The first
order scheme is highly diffusive and introduces a large amount of numerical diffusion into the solution
causing spreading of crucial flow fronts and consequent flow variables. Following the previous work by
Michael G. Edwards[4, 5], this work presents the development of higher resolution methods[1, 2, 3, 6, 7,
8] that can reliably compute flow solutions in porous media with steep fronts while ensuring a maximum
principle is maintained, so as to prevent spurious oscillations in the solution.

1.1. Governing Equations

The equations governing two phase flow involve:
the pressure equation:

−∇ · (λK∇p) = q (1)

where λ,K,∇p are the mobility, permeability and pressure gradient respectively and the saturation equa-
tion:

φ
∂s
∂t

+ ∇ · fw(s)~uT = qw (2)

where s and fw(s) are the aqueous saturation and fractional flow, and ~uT = −Kλ∇p is the total velocity
and φ is porosity.
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2. Description of The Unstructured Solver

2.1. Positive Scheme for Hyperbolic Equation

Lemma 1: A positivity criterion
The semi-discrete approximation of equation (2), with Ui representing discrete saturation at node i, is
expressed in the form:

dUi

dt
= L(U) = biUi +

∑
j,i

b jU j , (3)

where all the b j, j , i, are non-negative and bi ∈ R. Then the corresponding explicit first-order scheme
preserves positivity under an appropriate CFL-like condition.

The first-order positive scheme for the ith cell is written in the form

ai
dUi

dt
= −

∑
j∈V(i)

(~Vi j · ~ηi j)+Ui −
∑
j∈V(i)

(~Vi j · ~ηi j)−U j (4)

where ai is the ith cell area, Ui the conservative variable, ~Vi j is the jth cell face flux and the superfixes
denote the local upwind sign dependent coefficients.

Lemma 2 The upwind scheme (4) is positive under the CFL condition:

∆t
ai

∑
j∈V(i)

(~Vi j · ~ηi j)+ ≤ 1 (5)

The formulation of the limited higher resolution scheme is given by

ai
dUi

dt
= −

∑
j∈V(i)

(~Vi j · ~ηi j)+(Ui +
1
2

Li j(U)) −
∑
j∈V(i)

(~Vi j · ~ηi j)−(U j +
1
2

L ji(U)) (6)

where Li j(U), L ji(U) are the respective slope-limited gradients used for higher order reconstruction at
edge j of cell i and edge i of cell j respectively.
Two types of limiter are considered below.

2.2. The Barth-Jespersen Scheme

Here we review the Barth-Jespersen scheme[7]. The gradient ∇Ui is computed via least squares of lo-
cal subtriangle gradients. The limiter proposed by Barth and Jespersen is designed to make sure the
reconstructed values (e.g. Ui j = Ui + 1

2 Li j(U)) satisfy:

A: The reconstruction must not decrease below the minimum or exceed the maximum of the neighbour-
ing cell averages;

B: The difference in the interpolated values at the i-th edge and the difference in the corresponding
cell-averages should have the same sign.

Barth-Jespersen Limiter:

Φ j =


min(1.0, Mi−Ui

Ui j−Ui
),Ui j > Ui

min(1.0, mi−Ui
Ui j−Ui

),Ui j < Ui

1.0, otherwise
(7)

where
mi = min j∈NiU j,Mi = max j∈NiU j,

Ni is the set of direct neighbours of cell i, Φi = min j∈Ni[Φ j].

And then the modified slope Li j(U) = Φi∆xi j · ∇Ui.

To satisfy the property B, an edge-by-edge check is performed on the reconstructed values. If condition
B is violated, the reconstructed values will be substituted by the cell-average constants. However the best
results are obtained without property B which causes some spreading of the solution.
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2.3. The TVD Scheme

Implementation of a TVD based method on an unstructured grid requires the definition of a virtual
upwind node. Based on the work of A. Jameson[1] and Darwish et al.[2], the information in the upwind
direction depends either on the extrapolations or interpolations of values on neighbouring cells and the
cell geometry. Here we extend the TVD based scheme directly to a cell-centred finite volume method on
unstructured grids by interpolation of the known data.

See figure 1 as examples of the grids, the local formulation for the reconstruction U f = UC + 1
2 L f (U).

L f (U) = Φ(r f )∆U f

r f =
UC−UU
UD−UC

=
2∇UC ·rCD

∆U f
− 1

∆U f = UD − UC

(8)

where Φ(r f ) is any known slope or flux limiter, which can be described by Sweby diagram.

Figure 1: Left: stencils for flux limiting in unstructured mesh; Right: advection node notation in unstructured mesh

3. Results

Due to space limitation only one case is presented, which involves quarter five spot flow. A triangle mesh
with union-jack type pattern is used and CFL = 0.2.

Test Case : Quarter-five spot
Initial conditions:
saturation:

S 0(~x) = S wc = 0.001, ~x ∈ [0, 2] × [0, 2], (9)

permeability has a unit matrix.
Boundary conditions:
An injection well( bottom LHS), where flow rate and saturation are specified, with q = 100, s = 1 , and
at the production well (top RHS), pressure is specified as p = 0.
For the saturation equation, ghost cells are used with reflected values. Neumann conditions are imposed
for pressure with zero normal flow on the solid walls, output time 0.5.
The results for linear and nonlinear fluxes are shown in Figure 2.

4. Conclusions

We have presented an unstructured cell-centred finite-volume framework for higher resolution methods
for porous media flow computation. Our current results indicate that the Barth-Jesperson (BJ) method
yields higher resolution results with significant improvement in front and shock resolution compared to
the standard first order method. Further formulations are being investigated. A Darwish based method is
also included however BJ proves to be the most robust to date.
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Figure 2: : upper case: linear; bottom case: nonlinear case; left: first order; centre: Darwish scheme(minmod) +

RK3; right: BJ scheme + RK3
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ABSTRACT

Surface acoustic wave devices are being used in more and more areas, especially within the food and
medical industries. Prototypes of such devices are expensive and time consuming to produce but are a
necessary requirement for physical testing. However, the need for physical prototypes can be reduced
through the use of a computational framework developed for the prediction of micro-scale fluid droplets
subject to surface acoustic waves. This paper continues the work already undertaken by the authors by
predicting the period of oscillation, and experimenting with different forms of excitation to reproduce
data from the laboratory.

Key Words: surface acoustic waves; surface tension; Updated Arbitrary Lagrangian Eulerian formula-
tion

1. Introduction

This paper presents a computational framework for modelling fluid droplets, including surface tension,
using an Updated Arbitrary Lagrangian Eulerian (UALE) formulation. This approach permits accurate
tracking of the fluid surface and reduces the need for remeshing, compared to traditional approaches.
The paper specifically builds on the work presented by the authors in [1]. The governing equations are
based upon an axisymmetric weak form of the Navier-Stokes equations for incompressible Newtonian
fluids. Additional contributions from the surface tension force and contact line force are assembled into
the force vector and stiffness matrix, following the work of Saksono and Perić [2]. These additional con-
tributions arise from the Laplace-Young equation and thus are directly related to the curvature of the
fluid-air interface. The use of equal order interpolation functions for pressures and velocities leads to
oscillations in the pressure field. These oscillations are overcome by the use of the pressure Laplacian
stabilisation (PLS) technique proposed by Oñate et al. [3]. This technique leads to a pressure Laplacian
term as seen in many other stabilisation techniques, and, in addition, a boundary term calculated over the
boundary of the fluid domain only. The resulting computational framework showed a good correlation
to analytical solutions for problems involving the prediction of the equilibrium shape of sessile droplets
subject to gravity alone.
Laplacian mesh smoothing and a simple mesh refinement algorithm is replaced by the approach de-
scribed in [4], and the results of this are discussed.
Further work has been undertaken to predict the period of oscillation of droplets floating in zero-gravity
and experimentation with different forms of excitation to reproduce laboratory results of droplet attenu-
ation via surface acoustic waves.

2. Dynamic Analysis of Floating Droplets

Of the examples examined in [1], only the equilibrium shape was determined as dynamic oscillations
were removed via artificially increasing the fluid viscosity. However, if the computational framework is
to be successful, it must also be able to examine problems involving oscillations. The work of Rayleigh
[5], calculated an analytical period of oscillation for water droplets floating in zero-gravity, assuming
no viscous effects and small amplitude oscillations. Following [5], the calculated analytical period for
the first three modes (n = 2, 3, 4) with an unperturbed spherical radius R = 0.0125cm and amplitude
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A = 0.2R, giving an approximate volume of 8.3nL, are T = 3.63 × 10−4sec, T = 1.87 × 10−4sec,
and T = 1.21× 10−4sec respectively. In zero-gravity environments, droplets will conform to near perfect
spheres as this is the shape with the smallest surface area. The surface area is minimised to reduce the out-
of-balance forces due to surface tension. In 2D, droplets will conform to near perfect circles, therefore,
the initial non-equilibrium geometry of each droplet provides the potential energy. A FE mesh is created
consisting of 580 nodes and 1067 triangular elements for each mode of oscillation; the geometric centre
of each droplet is fixed. The parameters listed in Table 1, water at 20◦C, are used in each case.

Table 1: Parameters for analysis of floating droplets

Parameter Value Parameter Value
Fluid viscosity, µ 1.01 × 10−2dyne · s/cm2 Stabilisation, β 1.0
Fluid density, ρ 0.998g/cm3 Mesh viscosity, µmesh 1 × 10−3dyne · s/cm2

Surface tension, γ 73dyne/cm Time step, ∆t 1 × 10−7sec

A point on the surface of each droplet is traced in time and the computed period, as shown in Figure
1(a) for the first three modes of oscillation are T = 3.74 × 10−4sec, T = 1.92 × 10−4sec, and T =

1.23×10−4sec respectively. The computed period of oscillation is slightly larger than the analytical, with a
difference of less than 3% in each case. This difference can be attributed to the fact that Rayleigh neglects
viscous effects and assumes small amplitude oscillations, whereas the computational framework includes
viscous effects and assumes large deformations. For the droplets under investigation, the computational
framework out-performs the computational model based upon a purely Lagrangian mesh developed by
Saksono and Perić [6]. Figure 1(b) depicts the geometric evolution for the fourth mode.
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Figure 1: Geometric evolution and calculated period

3. Mesh Optimisation
Laplacian smoothing works from the premise that a high quality mesh is uniform and has nodes separated
by equal distances. However, the opposite is not true, a good mesh need not have equidistant nodes. Due
to this premise, Laplacian smoothing induces excessive and unnecessary nodal displacements in mesh
initially deemed good. Every nodal displacement produces non-linearities which have negative effects
on the rate of convergence and the efficiency of the solution. The form of Laplacian smoothing adopted
utilises a mesh viscosity parameter; poor choice of this parameter can cause severe mesh distortion, see
Figure 2. Additionally, although somewhat effective in 2D, Laplacian smoothing is not effective in 3D
and causes mesh shrinkage after repeated iterations. With this in mind, an alternative mesh improvement
approach that is driven by a quality measure q is proposed that uses a log-barrier as an objective function
and expresses every angle φ as a function of the worst angle ϕ in the solution space.

q =
sin2 (φ)

2 (1 − ϕ)
− log (sin (φ − ϕ)) (1)
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Figure 2: Poor choice of mesh viscosity parameter when using Laplacian smoothing

Several examples have been undertaken to compare the outcomes using Laplacian smoothing and the
new mesh improvement approach. Whilst there are fewer mesh-related problems using the new mesh
improvement approach, simulations using this alternative method have taken much longer to complete.
However, with the current aim to extend the framework from axisymmetric to 3D, and therefore changing
from triangular elements to tetrahedral elements, the new mesh improvement approach will provide much
better quality results than Laplacian smoothing.

4. External Excitation

Collaborating with the Bioelectronics Group at the University of Glasgow, the computational framework
is used to predict the response of a 10µL water droplet with a 65◦ contact angle sitting on a vibrating
speaker oscillating at 100Hz. A velocity is applied to the nodes on the base of the droplet to replicate the
vibrating speaker. This velocity is calculated from the measured displacement of a point marked on the
speaker in the laboratory. Results from the computational framework show good correlation to the high-
speed video data, with the form of oscillation and the amplitude of oscillation approximately equal, see
Figure 3(a) where the modelled droplet geometry is overlaid with the geometry as seen in the laboratory.
Whilst the motions are not the same initially, due to a difference in momentum, the modelled droplet
very quickly oscillates in phase, and with the same amplitude, as seen in the laboratory.
An alternative approach to this problem examined a time-dependent contact angle of the form in Equation
2:

∆α = α0 + A sin (ωt) (2)

Using amplitude A = 25, frequency ω = 1000Hz and initial contact angle α0 = 65◦, produces the
response as shown in Figure 3(b). Whilst this response is very different from that seen in the laboratory,
very interesting behaviour occurs in the form of violent oscillations followed by ejection of material from
the main droplet. The two ejected droplets are near-perfect circles in shape and are ejected at speeds in
excess of 3.5m/s.

5. Conclusions

The computational framework successfully predicts both the equilibrium geometry and period of oscil-
lations of sessile droplets and floating droplets, giving confidence in the model to move toward more
complex behaviour.
An alternative mesh optimisation method has been examined and whilst results are somewhat improved,
computational time is vastly increased, However, when the framework is extended to 3D, the Laplacian
smoothing will be ineffective and the new quality measure will be utilised.
Replicating a water droplet on a speaker produced good results in terms of the form and amplitude of
oscillation.
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[3] E. Oñate, S.R. Idelsohn and C.A. Felippa. Consistent pressure Laplacian stabilization for incom-
pressible continua via higher-order finite calculus. International Journal for Numerical Methods in
Engineering, 87 (1-5):171-195, 2011.

[4] A.Kelly, Ł. Kaczmarczyk and C.J. Pearce. ALE Mesh Updating using Mesh Optimisation. Pro-
ceedings of the 22nd International Meshing Roundtable (2013).

[5] L. Rayleigh. On the Capillary Phenomena of Jets. Proceedings of the Royal Society of London,
29(196-199):71-91, (1879).
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ABSTRACT

Current physical understanding of the evolution of stellar interiors is drawn from one-dimensional cal-
culations. In these simulations, nonlinear anisotropic processes like turbulent convection, shear, rotation,
and MHD are modeled using simple phenomenological approaches. In order to understand the high qual-
ity data produced from recent space-missions like CoRoT, Kepler, and GAIA, it is necessary to develop
multi-dimensional hydrodynamical simulations. We describe the three dimensional, time implicit, fully
compressible, hydrodynamical code MUSIC, developed to address early stages of the evolution of stellar
interiors in unprecedented detail. MUSIC solves the hydrodynamical equations in a spherical geometry
using a finite volume method. We present early results of turbulent convective flows.

Key Words: implicit time integration: finite volume methods: turbulence simulation: convection:
compressible hydrodynamics

1. Introduction

The evolution of stellar interiors is characterized by three dimensional nonlinear processes that develop
over a wide range of temporal and spatial scales. The MUlti-dimensional Stellar Implicit Code (MUSIC),
currently under development as part of the ERC project TOFU, will provide a detailed picture of long-
term stellar development. This project is intended to fill the gap between sophisticated stellar formation
simulations that examine short periods of time and simple one-dimensional calculations that follow the
complete stellar evolution process.

The European Space Agencies’ current missions CoRoT[1] and GAIA[2] monitor stellar motion and
will produce massive amounts of stellar seismology data over the next few years. The NASA mission
Kepler[3] will produce similar data targeted to stars in our galaxy. Each of these observational programs
accumulates data on stellar pulsation by closely observing the changing brightness of many stars. Pul-
sation frequency depends on the internal sound-speed, density structure, rotational profile, and magnetic
field structure of a star. The amplitude and phase of stellar pulsation are directly impacted by turbu-
lent convection in the stellar interior. Turbulent convection underlies the fundamental processes of heat
transport, mixing, rotation, shear, and the stellar dynamo.

2. Simulation

Turbulent convection is typically modeled using one of three approaches: the Boussinesq hydrodynamic
equations[4], the anelastic hydrodynamic equations[5], or the compressible hydrodynamic equations[6].
The Boussinesq approximation neglects differences in density except in the buoyancy force and equa-
tion of state. This is an accurate approximation for convection when the extent of the simulation volume
is much less than the density and pressure scale heights. Realistically, Boussinesq simulations can be
performed either to examine large physical domains where the pressure and density do not change dra-
matically: the ocean, planetary cores or mantles [7, 8], atmospheres [9], or in the cores of massive stars.
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Boussinesq simulations are often also performed to examine a small part of the convection zone of a
star[10, 11].

Because density typically varies by several orders of magnitude in a star, the Boussinesq approximation
cannot accurately treat the expansion of fluid convecting through the whole star; either an anelastic
or a compressible model is needed. The anelastic approximation assumes that the stellar flows remain
subsonic, but a compressible simulation makes no such assumptions[12]. Because our ultimate goal is
to study a wide range of Mach number scales 10−8 . M . 1, and to simulate a whole star, MUSIC has
been developed as a compressible hydrodynamic simulation. MUSIC can operate as an implicit large eddy
simulation to study a large section of a star, or as a direct numerical simulation to study a small portion
of a star.

In its current form, the MUSIC simulation evolves the inviscid compressible hydrodynamic equations for
density ρ, momentum ρu, and internal energy ρe:

∂

∂t
ρ = −∇ · (ρu) (1)

∂

∂t
ρu = −∇ · (ρuu) − ∇p + ρg (2)

∂

∂t
ρe = −∇ · (ρeu) + p · u + ∇ · (χ∇T ). (3)

Here g is the gravitational acceleration vector. The thermal conductivity χ = 16σT 3/3κρ is defined using
the Stefan-Bolzmann constant σ and the Rossland mean opacity κ. At high temperature, opacity is inter-
polated from the OPAL tables [13]; at low temperature opacity is calculated from the tables of Ferguson
et al. [14]. The compressible hydrodynamic equations (1-3) are closed by determining the gas pressure
p(ρ, e) and temperature T (ρ, e) from a tabulated equation-of-state appropriate for a mixture of hydro-
gen, helium and solar metallicity. These tables were calculated by solving the Saha equation and taking
into account partial ionization of atomic species. Because an initial state for MUSIC is extracted from
one-dimensional data, the equation of state used is identical for the one-dimensional stellar evolution
code.

The compressible hydrodynamic equations (1-3) are solved in a spherical wedge. In our current simula-
tions, this wedge covers 80% of the stellar radius, excluding only the stellar core. MUSIC uses spherical
coordinates: radius r, colatitude θ, and longitude φ. To enable direct comparison between two and three
dimensional flows, MUSIC also includes the possibility of performing two dimensional calculations on a
wedge where symmetry in φ is assumed. Two and three dimensional simulations can be performed on
the same initial state of a star.

The equations are discretized on a staggered grid, using a finite volume approach. Physical quantities are
interpolated to the grid using an upwind limited interpolation similar to the monotone upwind schemes
for conservation laws (MUSCL) method [15].

2.1. Implicit time integration

Our objective is to study processes in stellar evolution that develop on scales much longer than the
dynamical time-scale. To allow time steps larger than the Courant-Friedrich-Lewy (CFL) limit permits
in time-explicit methods, time integration in MUSIC is implicit. Obtaining convergence of an implicit
scheme can be delicate and computationally demanding. In MUSIC, the system of equations is discretized
with the Crank-Nicholson scheme.

To solve the compressible hydrodynamic equations we standardly use an inexact Newton method. We
solve the linearized system for the Newton direction, and apply each new direction iteratively until a
specified error tolerance is reached. We use an algebraic preconditioner, typically an ILU preconditioner
[16], to speed up the convergence of this scheme.

The inexact Newton solver with an algebraic preconditioner calculates and stores an approximate Jaco-
bian. A low-storage alternative is the Jacobian free Newton Krylov (JFNK) solver [17] that has recently
been implemented in the MUSIC framework. Instead of storing a Jacobian, JFNK methods use matrix
vector products that can be estimated efficiently with finite difference methods. Our JFNK solver uses
a physics-based preconditioner [18] designed to target precisely the physical processes that cause the
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system to become stiff. By using a semi-implicit solution as a preconditioner a JFNK method can be
designed to converge for a large range of CFL numbers. A basic preliminary comparison [19] of iterative
solvers against direct solvers using MUMPS[20] has been performed. A thorough study of the results of
the Jacobian free Newton Krylov solver is underway in MUSIC, and will be discussed in this contribution.

Figure 1: (Left) contours of radial velocity (cm/s) during developing convection in a low resolution 3D young sun
calculated using a JFNK solver. (Right) a snapshot of velocity magnitude during steady-state turbulent convection
in a 2D young sun calculated using an ILU preconditioner.

2.2. Boundary conditions

We impose periodicity on the boundary conditions in θ and φ. Radial boundaries require more sophisti-
cated treatment, and several possibilities have been implemented in MUSIC. Because the choice of bound-
ary conditions can dramatically affect the physical outcome of the simulation, we work towards more
realistic surface boundary conditions. Currently the radial boundary can be (1) non-penetrative, ur = 0
(2) stress-free, ∂

∂r (ur/r) = 0 (3) constant energy flux (4) energy flux set to the black-body radiation of
the Stefan-Boltzmann law, σT 4, where T is the temperature and σ is the Stefan-Boltzmann constant.
Boundary condition (4) makes sense only at the surface of the star.

3. Results

At an early stage in its evolution the interior of the sun was fully convective from the central regions
to the surface, making it an ideal setting to study large-scale, strong convection. This large convection
zone is shown in Figure 1 for a sun a few million years in age. Understanding convective overshooting
[21], turbulent mixing, and dynamo action are the ultimate goals for our study of turbulent convection in
the young sun. In this contribution we present the first steps in this work. We evaluate how successfully
MUSIC captures large-scale compressible phenomena like the expansion and contraction of convecting
fluid.
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ABSTRACT 

Hydraulic model is widely used to simulate and predict the behaviour of water distribution system. Model input 

parameters shall be adjusted to ensure the simulation results to meet field measurements. This procedure is 

referred to as model calibration. Typical hydraulic model parameters include pipe sizes, lengths, friction 

coefficients and water demands. Pressure gauges and flow meters can be used to calibrate pipe friction 

coefficients. However, high manufacturing and installation costs prohibit the application of flow meters. This 

paper provides a novel approach to minimize the quantity of pressure gauges used for the calibration of pipe 

friction coefficients. Three questions are investigated. (1) What is the minimum number of pressure gauges 

needed? (2) Where to put them? (3) How many combinations of pressure gauge placement are available? 

Preliminary investigation shows that at least three pressure gauges are needed to calibrate one pipe friction 

coefficient. Based on this principle, the mathematical expressions of the pipe friction coefficients between any 

two pressure gauge locations are developed and two-dimension relationship matrices are generated. Then, mixed 

integer programming (MIP) algorithm is developed to solve the three questions. The model frame is 

demonstrated in a hypothetical pipe network which has four pipe friction coefficients. Calculation shows that at 

least five pressure gauges are needed to calibrate this network and totally 58 location combinations are obtained. 

 

Keywords: water distribution system; pipe friction coefficient; sampling design; mixed integer programming 

1. Introduction  

Drinking water is produced at water treatment facilities and delivered to end users through water distribution 

system, which typically consists of pipes, valves, storage tanks, fire hydrants, pump stations and control 

equipments. Water distribution system hydraulic model is a digitized representation of the water network. 

Model input parameters shall be adjusted so that the simulated results match field measurements. The 

parameters normally include pipe length, diameters, pipe friction coefficient, valve status and water demands. 

The calibration of pipe friction coefficients has been studied extensively. Pressure gauge is inexpensive 

instrument for the calibration of pipe friction coefficients. The purpose of optimization of pressure gauge 

placement is to provide the best trade-off between pressure gauge cost and model prediction accuracy. 
Walski [1] was among the first to suggest where to observe pressure heads and flows to collect data for model 

calibration. Bush [2] developed three simple, yet efficient methods for sensor placement design: the max-sum, 

weighted sum, and max-min methods. These methods were based on a Jacobian matrix and inspired by D-

optimality criteria. Most of the current methodologies used for sensor placement design are based on the 

sensitivity matrix analysis. The paradox of this method is that the true value parameters are not known 

beforehand. An iterative method is normally used to address this puzzle: first, the parameters are estimated 

based on a combination of historical information, reconnaissance-level data collection, and the experiences of 

engineers and operators; second, these pre-assumed parameter values are used to develop the sensitivity matrix 

and generate a suboptimal sensor placement design; and third, the suboptimal sensor placement design is used to 

collect data and evaluate the initial parameter estimations. This procedure is repeated until differences between 

the updated parameter estimations and previous estimated values are minimized. The literature review shows 

that existing approaches cannot provide a definitive guide to practitioners on how to balance the modeling and 

calibration with the quality of decisions that could be made based on calibrated models. Therefore, most utilities 

still rely on a set of simple and pragmatic rules based on previous experiences [3]. This paper presents an 

innovative approach on sensor placement design, the originality of this methodology lies that a prior knowledge 

or estimation of pipe friction loss coefficients is not necessary. 
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2. Methodology  

A hypothetical pipe network is presented in Figure 1 to illustrate the methodology. It has 29 demand nodes and 

36 pipes. The pipe parameters are listed in Table 1. The pipes fall into four groups, and each group has same 

friction coefficient. Only pressure gauges are allowed to be installed; and flow meter is not used in the research. 

This is to simulate the field condition that all the pipes are buried underground and the only way of calibration is 

attaching pressure gauges to fire hydrants, which are above ground and easily accessible. The placement of 

pressure gauges is limited to 29 locations, which are named as SP-1 and SP-29.  

 
 

Figure 1 - Schematic pipe network (TIFF) 

 
Pipe 21.2 in Fig. 1 is selected to illustrate the calculating of pipe friction coefficient. To calibrate pipe friction 

coefficient C1 of this pipe, following information shall be obtained: pressures at junctions SP-4 and SP-5, and 

flow of this pipe. The math expression is shown in Eq. 1. However, the flow of pipe 21.2 is not measurable. A 

third pressure gauge has to be installed in SP-3. A new math formula; Equation 2 is created.  
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Where P3 is the pressure at SP-3 (m of water); L is the pipe length (m); Q is the flow inside pipe (m3/s); and, d 

is the pipe diameter (m). These two equations contains two independent variables, Q21.2 and C1, Therefore, 

unique solutions are obtained. Since the pipe friction coefficients are not known, flow directions in the pipes are 

not determined either. However, this does not affect the calculation of pipe friction coefficients. When pipe 

friction coefficient of Pipe 21.1 is not C1, three pressure gauges are still sufficient. However, a new flow 
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condition, such as increasing water consumption at SP-5, shall be performed to create two more equations. 

Therefore, at least three pressure gauges are needed to calculate one pipe friction coefficient; this is referred to 

as Three Point Principle in this paper.  

 

Table 1. Water distribution system pipe data 

 

ID 

Length 

(m) 

Dia. 

(cm) Type ID 

Length 

(m) 

Dia. 

(cm) Type ID 

Length 

(m) 

Dia. 

(cm) Type 

P1 61 40.64 3 P15.1 110 20.32 2 P28.1 90 20.32 4 

P2 111 25.4 2 P15.2 67 20.32 2 P28.2 21 20.32 4 

P3.1 40 25.4 4 P16.1 61 20.32 2 P29 79 20.32 4 

P3.2 43 25.4 4 P16.2 129 20.32 2 P30 81 20.32 3 

P4.1 42 25.4 1 P17.1 67 20.32 2 P31.1 61 20.32 1 

P4.2 152 25.4 1 P17.2 12 20.32 2 P31.2 152 20.32 1 

P4.3 61 25.4 1 P18 85 20.32 3 P31.3 52 20.32 1 

P5 140 25.4 2 P19 61 20.32 3 P32.1 92 20.32 1 

P6 79 20.32 3 P20 91 20.32 3 P32.2 152 20.32 1 

P7 126 20.32 1 P21.1 122 20.32 1 P32.3 69 20.32 1 

P8 82 20.32 3 P21.2 122 20.32 1 P33.1 76 20.32 2 

P9 81 20.32 2 P22.1 122 20.32 4 P33.2 40 20.32 2 

P10 79 20.32 3 P22.2 84 20.32 4 P34.1 152 20.32 4 

P11.1 61 20.32 1 P23.1 67 20.32 4 P34.2 113 20.32 4 

P11.2 152 20.32 1 P23.2 61 20.32 4 P35 70 20.32 3 

P11.3 73 20.32 1 P24 57 20.32 4 P36 81 20.32 3 

P12 109 20.32 1 P25.1 55 20.32 4     

P13 78 20.32 2 P25.2 21 20.32 4     

P14.1 73 20.32 1 P26 82 20.32 4     

P14.2 136 20.32 1 P27 85 20.32 4         

 
Based on this priciple, 29 two-dimension matrices are generated. Each represents one potential location for 

placing pressure gauge. Each matrix has the dimension of 29 rows and five columns. Columnes one through 

four correspond four pipe friction coefficients repsectively. Matrix 5 is taken as example to demonstate how 

these matrices are created. The fourth row in this matrix is [1 0 0 0 1], which shows that relationship when 

placing pressure gauges in SP-4 and SP-5. It is observed that puting pressure gauges in this two locations can 

not solve C1, but it is directly helpful to solve C1. Therefore, element in the first column is assigned with “1”. 

Meanwhile, the element in fifth column is assigned with “1” too. Therefore there are two variables in one 

equation. This embodies the inability of solving one pipe friction coefficients when placing only two pressure 

gauges. The second through the fourth columns are all filled with “0”, this suggests that placing pressure gauges 

in these two points provides no help to the solutions of C2 through C4. To solve C1, one more pressure gauge 

shall be installed in a third location, such as SP-3. The third row in Matrix 5 is [2 0 0 0 1]. Two equations will 

be created when pressure gauges are placed in these three points, where C1 can be solved. Using the same logic, 

29 matrices are created.  

Mixed integer programming (MIP) optimization algorithm is developed in the research. The objective of the 

MIP algorithm is to minimize sampling points selected from the 29 allowable locations, as follows: 




29

1i

ix                                                                                   (3) 

Where xi is a binary variable used to represent whether pressure gauge is placed at point i; it takes 1 when 

pressure gauge is installed at this point, and zero otherwise.  

To compute four pipe friction coefficients, four independent equations are needed, which constitute the 

constraints for the MIP algorithm. A collection with five locations, e.g., SP-4, SP-5, SP-8, SP-9, and SP-16, is 

used to explain how the constraints are formulated mathematically. Placing pressure sensors in these five points 

means selecting Matrices 4, 5, 8, 9, and 16 and rows 4, 5, 8, 9, and 16 from each matrix. This constitutes a set of 

5*4/2=10 equations. If by linear combination, i.e., multiplying with certain coefficients, these 10 equations 

generate an equation that contains only C1, written as a unit row vector [1 0 0 0 0 0]. This sampling combination 

is said to be able to solve C1. Similarly, if this selection of sampling points can generate four equations, each is 
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the function of C1 through C4, respectively; this selection of locations is said to be able to solve the four pipe 

friction coefficients. Mathematically, these constraints of MIP algorithm are expressed as: 

  ]01000[,,,,
29

1

29

1

4321, 
 i j
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The nonlinear formulation is converted into a mixed integer linear programming question (MILP). Linear 

programming is classified as exact algorithm because it is guaranteed to find an optimal solution and to prove its 

optimality. The MILP is implemented by GAMS (General Algebraic Modeling System), a high-level 

mathematical programming and optimization modeling system [4]. The linear programming solver CPLEX 12.1 

is employed to solve the model.  

 

3. Results and discussions 

The calculation results reveal that the answer to the first question is 5. Additionally, the solver can also find 

where the five points are located in the WDS in each calculation. By restricting the solution different from 

existing ones, a new solution, i.e., a new combination of sampling points can be derived. Finally, 58 sets of 

solutions were obtained, as shown in Table 2. 

Table 2. List of pressure gauge placement locations  

Solutions Pressure Gauge Locations 

1 22 25 26 27 29 

2 24 25 26 28 29 

--- --- --- --- --- --- 

58 4 5 8 9 17 

 

Using the pressure measurement at any location combinations shown in Table 2, four pipe friction coefficients 

can be obtained. When the hydraulic model is absolutely accurate and field measurement contains no errors, all 

these sensor location combinations are equivalent. In practice, however, errors exist in field measurements and 

model construction. These errors lead to the inaccuracy in calculation of pipe friction coefficients. As a result, 

these location combinations are not equivalent. Some provides more accurate estimation of pipe friction 

coefficients. This will be investigated in the next phase of study.   

 

4. Conclusions 

This paper presents a novel approach to pressure sensor placement design for calibrating pipe friction 

coefficients. The advantage of this method, compared to the traditional iterative sensitivity matrix method, is 

that a prior knowledge or estimation of pipe friction loss coefficients is not necessary. 

This technique was applied in a pilot water distribution system; it can be used in large-scale WDS without any 

changes in the algorithm since a large distribution system can be divided into several small systems, and each 

small system can be calibrated individually. 
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ABSTRACT 

The analysis of the dynamic response of a deep karst aquifer to precipitation is a complex problem, due to the 
structure of the aquifer, which may origin non-linear variations of the groundwater table. However, karst 
aquifers may be one of the main water resources for those regions characterized by poor presence of shallow 
water and medium-high permeable soils. This work presents an analysis of the dynamic response of the large 
aquifer of central Apulia, south Italy, based on a data-driven approach, namely Evolutionary Polynomial 
Regression. Four wells were monitored, and for each of them about 15 years of monthly average levels are 
available. In particular, the dynamic response of the aquifer is modelled in terms of prediction of the 
groundwater levels as function of total monthly precipitations and past measured groundwater levels. A single 
model, as closed-form equation, is obtained for each well and then these models are compared, highlighting the 
differences and the similarities among the responses of each well. 
 
Keywords: data-driven; groundwater levels; dynamic response; Evolutionary Polynomial Regression; karst 
aquifer. 
 

1. Introduction  

Karst aquifers are complex systems characterized by heterogeneous infiltration paths, which can be 
preferential direct flow paths as well as denoted by manifold interlayers with variable hydraulic 
conductivities. For these reasons, the time evolution of the groundwater table levels of a deep karst 
aquifer cannot be linear and with a short lag with respect to rainfall as expected. It may show multiple 
lags, as well as non-linear behaviours.  
Data-driven modelling constitutes an appealing alternative to physically based modelling for 
investigating the aquifer dynamics, whereas timeseries of groundwater data are available. This work 
presents the outcomes of the use of the multi-objective evolutionary modelling technique, Multi-
objective Evolutionary Polynomial Regression (EPRMOGA) [5], for groundwater level fluctuation 
prediction. EPRMOGA is a multi-objective evolutionary modelling technique successfully applied to 
multiple problems related to natural systems [2][4][6]. It proved quite effective at modelling the 
dynamic relationship between groundwater levels and rainfall heights for specific cases, related to 
porous aquifers [3][6]. The main practical advantage of EPRMOGA is its ability of returning closed-
form polynomial equations, allowing for conjecturing on the physical relationship between the main 
variables of the investigated phenomena. In particular, here the relationship between water table levels 
and rainfall is investigated, for a deep karst aquifer hosted by the Apulian limestone basement in 
south-east Italy. In particular, four timeseries ranging on about 15 years of monthly data are available. 
Starting from these data, four equations are here identified and discussed, in terms of differences and 
similarities of the structures and of the selected inputs. 
 
2. The deep karst aquifer of central Apulia – southeast  Italy 

The investigated aquifer is located in the central part of Apulia region, figure 1, namely Murgia, it is a 
large Mesozoic carbonate platform constituted by a sequence of detrital and bistromal limestones and 
dolomitic limestone, karstified, sometimes severely. This wide platform is a large asymmetric horst, 
with a NW-SE direction, its morphostructural features were superimposed by tectonics with direct 
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fault having their main orientation according NW-SE and NE-SW directions. Wide folds with a large 
curvature radius gently deform Murgia. The morphology is normally quite flat, and the limestone 
layers are normally sub-horizontal with small inclination rarely higher than 10°-15°. Toward the 
Adriatic sea side, Murgia gently slopes, with a sequence of little terraces and scarps parallel to the 
coast, while the lower zones are overlain by discontinuous and thin upper Pliocene to lower 
Pleistocene transgressive calcarenites, deposited in shallow and agitated marine waters [8][9]. The 
limestones and dolomitic limestones are karstified and originating a characteristic hydrogeological 
domain [1], where the hydraulic base level of groundwater circulation corresponds to sea level. The 
permeability of this karst aquifer is due to fractures and karst phenomena, which allow rainfall to 
infiltrate quite easily and reasonably quickly. This implies that quick responses to rainfall are 
expected, while the recharge period starts from September/October of each year ending at the 
following February/March. Figure 1 shows the sampling wells from which four timeseries of 
phreatimetric data are available. These are named in the order: A, B, C and D. Data are available for 
the years ranging between 1975 and 1990. Finally, for each sampling well a timeseries of monthly 
total data, covering the same time interval of phreatimetric data is available. It is noteworthy that 
rainfall data are collected nearby the wells, this assumption is reasonable since due to the medium-
high permeability of soils, infiltration conditioning the groundwater levels is supposed to be mostly 
local. 

 
Figure 1: The region hosting the aquifer and location of the sampling points. 

 
3. Multi-Objective Evolutionary Polynomial Regression - EPRMOGA 

EPRMOGA is a two-stages methodology: it is firstly made a structural model identification based on 
a Genetic Algorithm [7], afterwards an estimation of the constant values is made, based on a least-
square approach. In this the preliminary contribute of the user is particularly valuable, since she/he 
can broadly assume the main structure of the model, potentially involved functions, maximum length 
of the polynomial structures, candidate exponents and objective functions. This does not mean the 
user has to assume an equation, but just some assumptions about the structures of the equations, in 
order to set a limit to the evolutionary search, i.e. to the space of solutions. During the search for the 
equations, EPRMOGA can simultaneously optimize three objective functions at most. These are the 
minimization of the Sum of Squared Errors, the minimization of the number of monomial terms and 
the minimization of the percentage of input selected among the candidates given by the user. This 
constitutes a multiobjective approach, where three conflicting functions are simultaneously optimized. 
EPRMOGA already proved to fit particularly to those cases where the input to the process and the 
boundary conditions are not completely clear or known a-priori [2][4][6], as for the problem at stake. 
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The comparison between the models found the four wells will show how EPRMOGA is able to return 
reasonably good predictions of water table levels as well as models consistent with the dynamics of 
the aquifer and with their different response to rainfall due to local different hydrogeological 
characteristics. 

4. Results and discussion

EPRMOGA returned a set of models for each sampling wells. Among these, an equation is chosen for 
each well. These are in the order for A, B, C and D: 

Ht = 9.2147 ⋅10
−5⋅Pt−3

2 +1.7567 ⋅10 −5⋅Pt−2
2 Pt−5

0.5 + 0.00010327Pt−1
2 + 0.95456Ht−1 + 3.9395   (1) 

Ht = 0.00031945Pt−1
0.5Pt−3Pt−4

0.5 +8.9153⋅10−6Pt−1
0.5Pt−2Pt−5Pt−6

0.5 + 0.90301Ht−1 + 4.9879  (2) 

Ht = 2.6457 ⋅10
−6 ⋅Pt ⋅Pt−1

2 + 0.9884 ⋅Ht−1
 (3) 

Ht = 0.00056017PtPt−1
0.5Pt−2

0.5 + 0.27321Ht−2 + 0.48127Ht−1 + 0.05312 (4) 

Where H is average monthly the piezometric height and P is the total monthly rainfall. The subscripts 
represent the time delay in months. These models show some differences, which denote behaviours 
not typical of fractured karst aquifers. In fact, the response of the aquifer varies among the wells, even 
if the aquifer is the same. Moreover, there are lags between rainfall and level variations. Equation (1) 
shows the term of persistence, as well as terms related to rainfall up to 5 months before the level to be 
predicted. This hybrid behaviour seems to be between a karst and a porous aquifer and then this may 
be related to a local poor fracturing of limestones. Equation (2) shows a persistence term, which 
actually has a lower influence on the output than the previous models, as well as rainfall terms 
ranging between 1 to 6 months before the output. Similarly to equation (1) this is a hybrid behaviour, 
typical of complex flow paths and of the presence of poorly permeable layers. Equation (3) is 
reasonable for a karst aquifer, it shows a strong persistence term, Ht-1, while the rainfall terms rely on 
the precipitations of the same month or the month before the level prediction. Rainfall does not show 
exponents lower than 1, this implies a direct effect of rainfall on groundwater levels, as expected by 
fractured media. Equation (4) shows a peculiar behaviour, the most influencing rainfall terms are 
those of the same month of the prediction and those of the two months before, even if these have 0.5 
as exponent. This is typical of a karst aquifer, since the temporally closer precipitations are the most 
determining on the level variations. A further interesting but difficult to be interpreted characteristic is 
the persistence: there are two terms Ht-1 and Ht-2, their presence may be relate to the inertia of the 
aquifer or to unknown extra inputs as well as to a pressurized flow of the aquifer, which is consistent 
with the high oscillations of the levels. The following figures 2a-2d show the time plot of the 
measured levels and of the predicted levels at 1, 6 and 12 months ahead, for the test set of data, i.e. 
data not used by EPRMOGA for model identification. 

5. Conclusions

The dynamic response of the deep karst aquifer of Murgia, southeast Italy, was here investigated, by 
identifying four models, starting from four timeseries of available data. The wells are located 
relatively far from each other, in order to cover as much as uniformly the hydrogeological catchment 
of the aquifer. Similar models were expected, however this is not the case, since the returned models, 
corresponding to the local behaviours of the aquifer are different from each others. This may be 
related to local flow paths or local permeability variations. In this scenario, the use of a data-driven 
approach as EPRMOGA was very important, since on the one hand it allowed to model the 
groundwater levels variations and on the other hand, it returned closed form equations, which permit 
to advance some physical speculations on the aquifer. Finally, it is important to emphasize that like 
for all the data-driven approaches, EPRMOGA returned interpolative equations, with good 
generalization abilities. However, since these are interpolative models, their physical interpretation 
cannot be considered exhaustive, it should be coupled with direct physical observations and possibly 
by physically based analysis. 
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Figure 2: Time plot of the groundwater levels and of their predictions – test set. 
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ABSTRACT 

Digital elevation models processing is a hot topic for identifying the main topographic features of an area. In 
particular, medium resolution digital elevation models are of particular interest for analysing regional 
phenomena, like geomorphological evolution and ongoing or past tectonic processes. The key point of these 
analyses is the extraction of these features from elevation models. In this context, an effective approach is 
constituted by 2D discrete wavelet transforms. These allow for a multi-scale decomposition, which permits to 
extract details of digital elevation models, normally not clearly evident looking just at the topography. These 
details are often associable to anomalies or singularities of the topography, which may be related by a careful 
geomorphological interpretation to regional tectonic processes or, more in general, to landscape evolution 
phenomena, i.e. big landslides, erosion, etc.     

Keywords: Digital elevation model; 2D discrete wavelet transform; landscape evolution; tectonics; 
geomorphology. 

1. Introduction

Identification and delineation of anomalies of the topographic surface can be of support in delineating 
morphological shapes due to tectonics or landscape evolution processes. The numerical analyses 
applied to Digital Elevation Models (DEM) constitute a valid methodology to this kind of studies, 
allowing for a detailed and relatively accurate identification of topographic anomalies, which may be 
related to large or local geomorphological phenomena. The reasonable availability of DEMs 
encourages these analyses, since DEMs are matrixes of elevation values suitable for signal processing 
[10]. Global or quasi-global medium resolution DEMs, such as ASTER GDEM Ver. 2, SRTM, etc., 
allow for regional studies, which provide an overview on processes involving large areas. 
This work introduces a numerical analysis of DEM based on 2D Discrete Wavelet Transform (DWT) 
[2]. This aims at decomposing DEMs into high and low frequencies, the earlier representative of 
details and the latter representing a lower resolution approximation of the DEM itself.  In particular, 
2D DWT allows for identifying high-frequency components of elevation data, by a progressive data 
filtering. The localization of high-frequency components is of support to the identification of 
topographic anomalies, such as scarps, faults, streams, etc. [5]. The methodology here presented is 
applied to a relatively large area, of south Italy, the central Apulia foreland, where a large calcareous 
highland called Murgia outcrops. This is characterized by peculiar morphologies, which, even if 
apparently uniform, may be related to deep geological structures [3][7]. 2D DWT is here used in order 
to outline the anomalies of the topographic surface of Murgia area in order to highlight them by using 
a numerical technique and to advance geological interpretations. 

2. Background to the methodology

Wavelet transform is decomposition into space–frequency space of a data series. This permits for the 
analysis of localized variations within data. Different frequency components can be studied and 
analysed with the proper resolutions matching to their scales [2]. This approach can be easily adapted 
to distributed data, in particular elevation data coming from a grid-based description of earth surface, 
i.e. a DEM, thus providing accurate spatial information in terms of slope variations, being sensitive to 
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minimal variations. Discrete Wavelet Transform (DWT) is an orthogonal function applied to a finite 
set of data. DWT is orthogonal: a signal passed twice through the transformation is unchanged, and it 
is assumed the input signal as a set of discrete-time samples. DWT is based on a set of functions 
defined by a recursive difference equation: 

 φ x( ) = ckφ 2x − k( )
k=0

M−1

∑  (1) 

M is the specified number of nonzero coefficients, which is arbitrary, and referred to as the order of 
the wavelet. The values of the coefficients are not arbitrary; they are determined by constraints of 
orthogonality and normalization. The area under the wavelet is required to be one. This class of 
wavelet functions is bounded to be zero outside of a small interval. This allows the wavelet transform 
to operate on a finite set of data, i.e. compact support. The commonly used functions for transforms 
are a few sets of well-defined coefficients resulting in a function provided with a discernible shape. 
Manifold mother wavelet functions exist, the specific choice of a mother wavelet depends on data to 
be analysed. The choice of a proper mother wavelet for DEM analysis is dependent on the resolution 
of the DEM, conditioning the description of terrain detail. Regional analyses of medium-low 
resolution DEMs can be based on the biorthogonal 1.3 wavelet [2]. Biorthogonal wavelets use two 
scaling functions, these generate different multiresolution analysis and then two wavelets, one for 
decomposition and the other for reconstruction. Detail coefficients of 2D DWT applied to a DEM are 
here analysed, since their variations represent discontinuities of DEM. Moreover, 2D DWT can be 
exerted to further levels, assuming a higher scale number of the transform. This may return further 
results, in terms of identification of the anomalies of land surface. Differently from an analysis based 
of slope, curvature and aspect mapping, this approach returns sharp maps of variations of elevations at 
high scale, even minimal, which can be used as a starting point for successive and more localized 
analysis, based traditional methodologies [4][5][8]. 
 
3. General description of the investigated region 

The introduced methodology is tested on Murgia area. This is a highland located in the central part of 
Apulia region, extreme southeast of Italy. Murgia highland is a large Mesozoic carbonate platform 
made up by a sequence of limestones and dolomitic limestone often karstified, sometimes to a severe 
degree. This wide platform is like a large asymmetric horst, with a NW-SE direction. Its 
morphostructural features depend on regional tectonics, in fact direct faults developing along NW-SE 
direction exist [7]. Wide folds, characterized by large curvature radii, gently deform Murgia highland. 
Its morphology is diffusively flat, while limestone layers are normally sub-horizontal with inclination 
rarely higher than 10°-15°. Towards the Adriatic sea side, north-east of the highland, Murgia is gently 
sloping, with a sequence of small terraces and scarps parallel to the coast. Lower elevated areas, i.e. 
relatively close to the coastline, are overlain by discontinuous and thin upper Pliocene to lower 
Pleistocene transgressive sandstone. 
 
4. Results of the analysis and discussion 

The 2D DWT is applied to the medium resolution ASTER GDEM v2 [11], a 30 m grid raster DEM. 
This DEM is processed by 1.3 biorthogonal 2D DWT, returning some potentially interesting results. 
The following figure 1a shows the used DEM and the location of the investigated region, while figure 
1b represents the map of detail coefficients of level 3 biorthogonal 1.3 2D DWT evaluated along N-S 
direction. Higher values of detail coefficients are associated with discontinuities of DEM or sudden 
variations in terms of elevation or slope. Therefore, if for some reasons the topography locally varies, 
detail coefficients will increase their moduli. However, the map of these local variations may be 
helpful in giving objective evidences, by numerical values of the detail coefficients of 2D DWT, of 
large-scale anomalies or structures. In fact, detail coefficients of 2D DWT are sensitive to variations 
of elevation, thus allowing for delineating patterns contained in topography that may be potentially 
related to geological or tectonic structures. These otherwise would be hardly detectable, even looking 
at slope or aspects maps.  
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Figure 1: a) hillslope of the used DEM; b) Detail coefficients of level 3 biorthogonal 1.3 DWT, along N-S 
direction and location of the region. 

Looking at figure 1b, higher values of detail coefficients correspond to the west side of Murgia, at the 
bound between the Apulian foreland and the Bradanic foredeep domain. The southeast side shows a 
zone, between the Ionian and Adriatic coast, where detail coefficients are quite scattered, with high 
values diffusively spread. Central and north of Murgia show polarized stripes of high values, along 
NW to SE direction, in particular where there are the steps of elevation increment. Finally, high 
values of detail coefficients show on the south and northeast bound of Murgia. Here the high values of 
detail coefficients are concentrated along well-defined directions, which permit to outline the main 
ephemeral stream network and particularly the deep valleys, namely Gravine. These particularly are 
on the south side of Murgia tableland, directed towards the Ionian coast [1][6]. Despite figure 1b 
provides information about the main structural features of Murgia, it is still quite complex, since detail 
coefficients widely range thus making their interpretation difficult. The next step of this analysis is 
then to filter the detail coefficients, assuming a threshold value under which they are no more 
mapped. This is supposed to highlight those discontinuities of the topography, which are meaningful 
and of certain interpretation. Figure 2 show the maps of the filtered detail coefficients superimposed 
to the DEM and to the map of the main tectonic structures. 

Figure 2: Filtered detail coefficients of level 3 biorthogonal 1.3 DWT, threshold value 30 and main tectonic 
structures. 
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Starting from an initial range of variation of detail coefficients comprised between 0 and 358, two 
new maps are constructed, assuming in 30 as threshold value. This new map is interesting, since 
clearly delineating the variations of elevation data, which may correspond to more relevant macro 
phenomena. On the one hand, the central area of Murgia, east and north-east, does not show high 
detail coefficients, thus highlighting a relative uniformity of the topography. On the other hand, the 
zones characterized by high values of detail coefficients are quite interesting since these may be 
interpreted as consequence of stresses, which diffusively disturbed the bedrock causing cracks and 
changes of elevations and slopes. It is noteworthy that the singularities highlighted by the presented 
approach barely correspond to the main structural features of Murgia highland reported by [7] in a 
past study based on traditional geostructural analyses. 
For this reason, these areas are worth of further investigations, since apparently biased by geological-
structural phenomena. 
 
5. Conclusions 

The results of an investigation on the effects of regional tectonics on topography based on the 2D 
DWT applied to a DEM are here presented. The analysis focuses on Murgia highland in Apulia 
foreland, south east of Italy. The results of the proposed approach are interesting, since they evidence 
how it is possible to delineate the main discontinuities and singularities, possibly due to tectonic 
stresses or ongoing processes, by processing a DEM. Even if this analysis cannot be considered 
exhaustive for providing a certain interpretation to the discontinuities of a DEM, it is of support for 
starting further geomorphological investigations as well as to clean a DEM from the excess of 
information they provide. Moreover, the 2D DWT is a numerical technique, then the returned results 
allow for a numerical classification of the discontinuities of a DEM and then for extracting common 
patterns from elevation data. Finally, mapping the spatial variability of detail coefficients is a further 
important advantage of this approach, since it allows for spatially delineating the details of DEM.   
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ABSTRACT 

In this research work an evolutionary approach is proposed to develop a structured polynomial model for 
predicting the lateral load bearing capacity of piles in undrained conditions. The proposed polynomial regression 
technique is an evolutionary data mining methodology that generates a transparent and structured representation 
of the behaviour of a system directly from raw data. It can operate on large quantities of data in order to capture 
nonlinear and complex relationships between contributing variables. Field measurement data from literature was 
used to develop the proposed model. Comparison of the proposed model predictions with the field data shows 
that the EPR model is capable of capturing, predicting and generalising predictions to unseen data cases the 
lateral load bearing capacity of piles with very high accuracy. The merits and advantages of the proposed 
methodology are also discussed. 
 
Keywords: load bearing capacity, piles, cohesive soils 
 

1. Introduction  

Some research contributions have revealed that solving equations of static equilibrium can be an 
effective way of designing axially loaded piles, whereas, design of laterally loaded piles will only be 
possible by solving nonlinear differential equations. Poulos and Davis [1] implemented a 
methodology based on elasticity, by adopting a previously developed soil model to analyse the 
behaviour of piles. However, their proposed approach was not suitable for the nonlinear analysis of 
behaviour of soil and pile systems. The analysis of nonlinear soil behaviour has been conducted by 
Matlock and Reese [2] and Portugal and Seco e Pinto [3]. Portugal and Seco e Pinto [3] also utilized 
the finite element method for numerically predicting the behaviour of laterally loaded piles. This 
methodology is widely used in analysis and design of deep foundations despite the presence of 
uncertainties in such predictions due to the variability of soil properties. Semi-empirical methods were 
also suggested for analysis and design of laterally loaded piles and for predicting their load bearing 
capacity (e.g., Hansen [4], Broms [5] and Meyerhof [6]).  
Lee and Lee [7] utilized neural networks to predict the ultimate bearing capacity of piles based on 
data simulated using previously suggested models and also in situ pile loading test results. Abu-Kiefa 
[8] used a probabilistic neural network model, generalized regression neural network (GRNN), to 
predict the pile load bearing capacity considering the contributions of the tip and shaft separately and 
also the total load bearing capacity of piles driven into cohesionless soils.  
Artificial neural networks have mostly been used to predict the vertical load bearing capacity of piles 
and their performance is usually measured based on the coefficient of correlation (R). 
The results of previous works have shown that artificial neural network offers great capabilities and 
advantages in modelling the behaviour of materials and systems. However, it is generally accepted 
that ANNs also suffer from a number of shortcomings. One of the main shortcomings of the neural 
network based approach is that the optimum structure of the neural network (e.g., the number of input 
layers, hidden layers and transfer functions) needs to be identified a priori through a time consuming 
trial and error procedure. Another main drawback of the neural network approach is the large 
complexity of the structure of ANN. This is because the neural network stores and represents the 
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knowledge in the form of weights and biases which are not easily accessible to the user. Artificial 
neural networks are considered as black-box systems as they are unable to explain the underlying 
principles of prediction and the effect of inputs on the output [9].  
In this paper an evolutionary-based data mining approach is proposed to model the bearing capacity of 
laterally loaded piles in undrained conditions. EPR provides a structured and transparent 
representation of the model in the form of mathematical (polynomial) expressions to describe the 
complicated behaviour of systems. The proposed methodology overcomes most of the issues and 
drawbacks associated with the neural network modelling approach by providing clear insight into the 
behaviour of the system and the levels of contribution of the influencing parameters in the developed 
models. 
 
2. Evolutionary Polynomial Regression (EPR) 

EPR is a data-driven method based on evolutionary computing, aimed to search for polynomial 
structures representing a system. A general EPR expression can be presented as [10]: 
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where y is the estimated vector of output of the process; aj is a constant; F is a function constructed by 
the process; X is the matrix of input variables; f is a function defined by the user; and n is the number 
of terms of the target expression. The general functional structure represented by F(X, f(X), aj ) is 
constructed from elementary functions by EPR using a Genetic Algorithm (GA) strategy. The GA is 
employed to select the useful input vectors from X to be combined. The building blocks (elements) of 
the structure of F are defined by the user based on understanding of the physical process. While the 
selection of feasible structures to be combined is done through an evolutionary process, the 
parameters aj are estimated by the least square method. This technique uses a combination of the 
genetic algorithm to find feasible structures and the least square method to find the appropriate 
constants for those structures. In particular, the GA allows a global exploration of the error surface 
relevant to specifically defined objective functions. By using such objective (cost) functions some 
criteria can be selected to avoid the overfitting of models, push the models towards simpler structures 
and avoid unnecessary terms representative of the noise in the data. An interesting feature of EPR is 
in the possibility of getting more than one model for a complex phenomenon. The user physical 
insight can also be used to make hypotheses on the elements of the target function and on its structure. 
Selecting an appropriate objective function, assuming pre-selected elements based on engineering 
judgment, and working with dimensional information enable refinement of final models. The level of 
accuracy at each stage is evaluated based on the coefficient of determination (COD) i.e., the fitness 
function as: 
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where Ya is the actual output value; Yp is the EPR predicted value and N is the number of data on 
which COD is computed. If the model fitness is not acceptable or the other termination criteria (in 
terms of maximum number of generations and maximum number of terms) are not satisfied, the 
current model goes through another evolution in order to obtain a new model. Detailed explanation of 
the method can be found in [10]. 
 
3. Database  

Field measurements from literature were used to develop and evaluate the proposed EPR model. From 
among 38 data cases [11] 80% were used to train the EPR model and the remaining cases were kept 
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unseen to EPR during the model development process and were used in the model evaluation stage to 
examine generalization capabilities of the created model.   
 
4. EPR Model  

Among developed models provided by EPR, the shortest model with the least possible number of 
terms and with the highest value of coefficient of determination was selected to represent the lateral 
load bearing capacity of piles (the following equation): 
 

                        
  (3) 

where Q is the lateral load bearing capacity of piles, D is the diameter of the pile, L is the depth of 
embedment of the pile in soil, e is eccentricity of load and Su is the undrained shear strength of the 
soil. 
After training, the performance of the trained EPR model was examined using the validation dataset 
which had not been introduced to EPR during training. Figures 1 and 2 compare the predicted values 
of the lateral load bearing capacity by the proposed model with the actual field measurement data 
used for training and validation stages respectively. The figures show a very good correlation between 
the predictions of the EPR model and the actual data both for modelling and validation datasets. Table 
one also shows the coefficient of determination values for training and testing data cases used to 
develop the proposed model.  
 

 
 

Figure 1: EPR predictions against field measurement values for lateral load bearing capacity values  
(Training data) 

 
 

                                 
 

Figure 2: EPR predictions against field measurement values for lateral load bearing capacity values 
(Testing data) 
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Table 1: training and testing COD values for the EPR model 

Model 
COD (%) 

Training data 
COD (%) 

Validation data 

Evolutionary polynomial regression (EPR) 85 86 

 

5. Discussion and conclusions 

In this paper, a new approach was presented to develop an evolutionary-based model for predicting 
lateral load bearing capacity of piles. An EPR model was developed and validated using a field 
measurement database from literature, created based on tests on model piles. The model prediction 
results were compared with the actual measured data. Comparison of the results showed that the 
developed EPR model provides accurate predictions for lateral load bearing capacity of piles with the 
interesting capability of generalising the predictions to unseen data cases. The developed model 
presents a structured and transparent representation allowing a physical interpretation of the problem 
that gives the user an insight into the relationship between the lateral load bearing capacity and its 
various contributing parameters. Another interesting feature of EPR is that as more data become 
available the model could be retrained to produce more accurate and comprehensive predictions. 
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ABSTRACT 

An In this research work the complicated phenomena of swelling behaviour of expansive soils is 
modelled using an evolutionary approach proposed to develop a structured polynomial model for 
predicting the lateral swelling pressure of soils on retaining structures considering the effect of EPS 
geofoam implemented to control the transmitted lateral swelling pressures to the structures. The proposed 
evolutionary polynomial regression technique possesses the capability of generating a transparent and 
structured representation of the behaviour of a system from raw data. Field measurement data from 
literature was used to develop the proposed model. Comparison of the developed model predictions with 
the field measurement data revealed that the proposed model is robustly capable of capturing, predicting 
and generalising predictions to unseen data cases. The merits and advantages of the proposed 
methodology are also discussed.  

Keywords: lateral swelling pressure, expansive soils, retaining structures 
 
1. Introduction  

Damages to constructions and structures of different types induced by expansive soils are extensive and 
are described in detail in civil and geotechnical engineering literature [1]. Due to the non-homogenous 
nature of soils and also contribution of a variety of parameters to their swelling behaviour no 
mathematically and theoretically comprehensive models has been presentenced so far to be able to 
completely predict the swelling aspect of the behaviour soils. Different materials with high 
compressibility characteristics of different types have so far been used in geotechnical engineering 
structures to deal with the swelling pressure problems related to expansive soils including bales of hay, 
glass-fiber and cardboard [2]. Due to the nature of these materials, in general, their stress–strain and 
volume change behaviour is not completely predictable for engineers. In fact, using some of these 
materials might result in potential explosion hazard because of the generation of methane gas due to 
anaerobic decomposition of organic materials in confined conditions [3]. Geofoam is one of the materials 
with desirable compressibility characteristics for engineers to be used as an expansion induced stress 
absorbent material. The great advantage of this material is that it does not have the hazardous nature as 
some other materials with similar compressibility properties. There are different types of geofoam with 
the potential of application to construction industry; however, selecting a suitable type of geofoam must 
be done considering engineering characteristics and also cost and environmental implications. Experience 
indicates that most useful geofoam material is EPS geofoam from compressibility point of view [4]. 
According to literature, geofoams and particularly EPS are widely implemented in geotechnical 
engineering applications including roads and pavements [4], embankments [5] and retaining structure [6]. 
In this paper a new approach is presented to develop a model to predict the lateral swelling pressure of 
expansive soils on adjacent structures considering the effect of EPS geofoam. The proposed evolutionary 
polynomial regression technique introduces a new unified, clear and physically plausible framework in 
which different aspects of soil behaviour can be directly captured from experimental data and be 
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represented in the form of mathematical expressions. The developed models are capable of satisfactorily 
explaining the physics of the problem. The capabilities of the suggested methodology are demonstrated in 
this study by applying it to experimental data from literature [7]  and developing a model to predict the 
controlling effect of EPS in swelling pressure transmission to structures.   
 
2. Modelling technique 
 
Evolutionary polynomial regression is a data-driven method based on evolutionary computing, aimed to 
search for polynomial structures representing a system. A general EPR expression can be presented as [8]: 
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where y is the estimated vector of output of the process; aj is a constant; F is a function constructed by the 
process; X is the matrix of input variables; f is a function defined by the user; and n is the number of 
terms of the target expression. The general functional structure represented by ���, ����, �	
 is 
constructed from elementary functions by EPR using a Genetic Algorithm (GA) strategy. The GA is 
employed to select the useful input vectors from X to be combined. The building blocks (elements) of the 
structure of F are defined by the user based on understanding of the physical process. While the selection 
of feasible structures to be combined is done through an evolutionary process, the parameters aj are 
estimated by the least square method. This technique uses a combination of the genetic algorithm to find 
feasible structures and the least square method to find the appropriate constants for those structures. In 
particular, the GA allows a global exploration of the error surface relevant to specifically defined 
objective functions. By using such objective (cost) functions some criteria can be selected to avoid the 
overfitting of models, push the models towards simpler structures and avoid unnecessary terms 
representative of the noise in the data. An interesting feature of EPR is in the possibility of getting more 
than one model for a complex phenomenon. A further feature of EPR is the high level of interactivity 
between the user and the methodology. The user physical insight can be used to make hypotheses on the 
elements of the target function and on its structure. Selecting an appropriate objective function, assuming 
pre-selected elements based on engineering judgment, and working with dimensional information enable 
refinement of final models. The level of accuracy at each stage is evaluated based on the coefficient of 
determination (COD) i.e., the fitness function as: 
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where Ya is the actual output value; Yp is the EPR predicted value and N is the number of data on which 
COD is computed. If the model fitness is not acceptable or the other termination criteria (in terms of 
maximum number of generations and maximum number of terms) are not satisfied, the current model 
goes through another evolution in order to obtain a new model. Detailed explanation of the method can be 
found in [8], [9]. 
 
3. The proposed model 
 
Thirty six cases of data from experimental measurements [4] were used to develop the proposed model in 
this study. Data was divided into training and validation cases. Two input parameters were used to 
develop the suggested EPR model for predicting the swelling behaviour of expansive soils with 
application of EPS geofoam as a stress absorbent material.  The two input parameters were considered to 
be the time (T) in minutes and the thickness (t) of the EPS geofoam implemented to control swelling 
effects on the structure adjacent to the heaving soil in millimetres. The output parameter was the lateral 
swelling pressure (LSP) in kPa transmitted to the structure. 
 
��
 = 4.6 × 10��� − 3.6 × 10���. � + 1.5 × 10���. �� − 1.8 × 10�!�. �� − 2.3 × 10�#���         (3) 

269



 

Table 1 represents the values of the coefficient of determination (COD) for training and testing sets of 
data. Figures 1 shows comparison between the suggested evolutionary polynomial regression-based 
model predictions with experimental measurements for training data. After completing the training stage, 
the developed model was validated using a second set of data that was kept unseen to EPR in the training 
time. This was done to examine the generalisation capabilities of the developed model to cases that have 
not been seen by EPR in the model training and development process. Figure 2 shows the result of 
comparisons made between the EPR model predictions for testing (unseen) cases of data and the 
experimental measurements. It can be seen that the suggested model is capable of predicting swelling 
pressure for testing cases of data to a high level of accuracy. The results shows that the EPR methodology 
has robustly and accurately been capable of capturing, reproducing and generalising the relationship 
between the contributing parameters to the swelling pressure development and transmission in expansive 
soils considering the controlling effect of EPS geofoam.  
 

  
 
Figure 1. Comparison between the predicted swelling 

    pressure values and the actual data (training) 
Figure 2. Comparison between the predicted swelling 
      pressure values and the actual data (testing) 

Table 1: COD values for the developed prediction model 

EPR model COD values (%) 

Train 96 

Test 98 

      
Figure 3. EPR predictions and experimenttal 

     measurements for different EPS thicknesses 
     (Mes=Measurement; Th= EPS thickness mm) 

Figure 4. Model predictions of the swelling 
     pressure (effects of time and EPS thickness) 

Figure 3 shows the swelling pressure against the time graph for different thicknesses of the EPS geofoam 
and also for the case that no geofoam is used between the soil and structure, for both experimental data 
and EPR model predictions. A close consistency can be easily noticed between the developed model 
predictions and experimental measurements. Figure 4 shows EPR predictions for all 4 tested cases (no 
geofoam, 9mm, 25mm and 50mm EPS geofoam). According to the test results, by using EPS geofoam the 
swelling pressure is largely taken by the EPS and the amount of pressure being transmitted to the 
structure is substantially reduced [7]. From figure 4 it is evident that the expected effect of EPS geofoam 
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(as seen in tests [7]) is correctly captured by EPR and accurate predictions are also produced by the 
developed model. According to figure 4, also the positive effect of increasing thickness of the EPS 
geofoam layer in controlling the transmitted lateral pressures to the structure is correctly foreseen. 

4. Summary and conclusion 
 
An EPR model was developed and validated using a database of experiments involving 36 cases of test 
data. The model predictions were compared to the experimental data. Comparison of the results shows 
that the developed EPR model provides accurate predictions of the swelling pressure transmitted to the 
structures from the cohesive soils surrounding them due to heaving. The data used to develop the model 
included the thicknesses of EPS geofoam material, a highly compressible material, placed between the 
structure and the soil to absorb the heaving pressure from the soil side with the aim of reducing the 
transmitted swelling pressures to the structures. The developed model was also shown to be able to 
correctly and accurately predict the effect of presence of EPS geofoam in controlling the swelling 
pressures being passed to the structures. According to the model, as expected, placing even a thin (9 mm) 
layer of EPS hugely affects the swelling pressure applied by the soil to the structure. Increasing the 
thickness of the EPS geofoam layer increases the pressure control effect of the material and helps reduce 
the lateral compressing effect of the cohesive soil on the structure. The developed model presents a 
structured and transparent representation of the swelling control effect of EPS geofoam on structures 
allowing a physical interpretation of the problem that gives the user an insight into the relationship 
between the swelling behaviour of soil and contributing/controlling parameters. From practical point of 
view, the EPR models presented in this paper is very accurate and easy to use. In the EPR approach, no 
pre-processing of the data is required and there is no need for normalization or scaling of the data. 
Performance of the model is being validated using an unseen set of data. This allows examining the 
generalization capabilities of the developed model. Thus, an unbiased performance indicator is obtained 
on the real capabilities of the model. Also, as more data becomes available the quality of the prediction 
can be easily improved. This can be done by retraining EPR using the more comprehensive set of data to 
achieve more general, effective and accurate models. 
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ABSTRACT 

Advanced fibre placement (AFP) composite manufacturing technology offers a means to tailor the fibres for 

complex loading environments and significantly improve the overall structural efficiency. This paper introduces 

a new method to optimise the continuously varying fibre paths using a level set method. The paths of the fibre 

tows are defined by constant level set function values, describing a series of continuous equally spaced fibre 

paths. Sensitivity is derived and used to update the level set function. This optimises the fibre paths to minimize 

structural compliance, while maintaining the continuous fibre paths, producing a solution that can be 

manufactured using AFP. The optimisation method is demonstrated on a test problem of an out of plane loaded 

plate. It is then applied to design an inter-tank plate of a space shuttle propellant tank structure. 

 

Keywords: composite fibre path optimisation; advanced fibre placement; level set method; 

1. Introduction  

The orientation of the fibres of composite laminates can be optimized to significantly improve 

structural performance over the traditional quasi-isotropic fibre construction without increasing the 

weight [1]. Advanced fibre placement (AFP) manufacturing technology offers a greater flexibility in 

tailoring the structure of composite panels by laying down fibre tows in curved and continuously 

varying paths. However, how to design the optimal fibre paths for a composite structure remains an 

unresolved research problem.  

 

One approach is to optimise the fibre angles of piece-wise constant finite elements however, the 

continuity of fibre angles between elements is not easily enforced, often leading to solutions with 

large changes in fibre orientation between elements [2, 3], that cannot be manufactured using AFP 

techniques. The problem is also non-convexed so this approach is dependent on the initial solution 

[3]. Lamination parameters can be used to optimise stiffness properties of an anisotropic element [4]. 

However the suitability of the solution for AFP manufacture depends on the construction of 

continuous fibre paths from the lamination parameters, [5]. Another approach is to represent the fibre 

paths as a curvilinear function, optimising their coefficients [1, 6]. This ensures the continuity of fibre 

angles in the final solution, but reduces the design space and may lead to a sub-optimal solution [3].  

 

The level set method has fast become a popular approach to moving boundary and front tracking 

problems in a wide range of fields such as image processing, interface motion tracking, and topology 

optimisation, due to the flexibility in describing complex change of boundaries [7, 8]. This paper 

introduces a new optimization method for composite fibre paths using the level set method. This 

method directly optimizes the fibre paths ensuring continuity of the fibre angles between elements 

like the curvilinear parameterization, but with a greater flexibility in fibre path definition.  
 

2. Method 

The level set function (lsf) is an implicit signed distance function, with values stored at the finite 

element nodes. The path of the primary fibre path is defined by the path of the locations where the lsf 

function is equal to zero (φ=0).  The other fibre paths are defined by constant level set function 

values, describing a series of continuous equally spaced fibre paths through the laminate, shown in 

figure 1. 
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Figure 1: Fibre paths defined by lines with constant integer level set function values. 

 

Since the fibres follow the constant lsf path, the elmental fibre orientation can be defined to be 

perpendicular to the maximum gradient of the level set function over the element, as shown in figure 

2. The elemental fibre orientation can be calculated in each element using Eq. (1), where x and y are 

the global coordinates, i is the local node number and Ni is the element shape functions for each node. 
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Figure 2: Definition of the fibre orientation within a finite element from the level set function. 

 

The level set fibre path optimisation method to minimise structural compliance, E, is as follows.  

1. Initialise the level set function values to describe the initial fibre paths of a laminate. 

2. Calculate the element fibre orientation, θe, from the nodal level set function values. 

3. From the element fibre orientations calculate the stiffness and solve the linear elastic problem. 

4. Calculate the sensitivity of the global compliance to changes in the element fibre orientation 

using the energy based sensitivity analysis from Luo & Gea (1998) [3]. 

5. Calculate the sensitivity of the element, e, fibre orientation to change in lsf value of node i, 

using Eq.(2). 
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6. Use the Hamilton Jacobi formulation and the sensitivities to update the local lsf values around 

the primary fibre path using Eq.(3), where Δθmax is the move limit set for stability, and ne is 

the number of elements that neighbour node i and are intercepted by the primary tow path. 
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7. Update the level set function values for the rest of the nodes using the fast marching method 

[8]. The level set function now describes a set of improved evenly spaced fibre paths. 

8. Check for convergence, if change in structural compliance is less than a user set critical value. 

9. If procedure hasn’t converged return to step 2 to begin the next iteration. 

 

3. Test Model: Plate Under Out of Plane Load  

As an example the fibre paths of a square plate, with four simply supported corners and an out-of-

plane load applied at the centre, will be optimised, figure 3A.  The plate is modelled by 30 × 30 four-

(2) 
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node bilinear Kirchoff shell elements. The material properties are EL=137.9GPa, ET =10.34GPa, νLT = 

0.29, νTL = 0.021, GLT = GLW = 6.89GPa and GTW = 3.7GPa. The initial fibre paths, figure 3B, are 

obtained from the lsf function of an isotropic topology optimisation solution [7]. The level set 

optimisation procedure is applied to these initial fibre paths with the move limit, Δθmax, set at 5°. 

 

 
 

Figure 3: A, Definition of the out of plane loaded plate optimisation problem. B, Initial solution of the out of 

plane loaded plate for level set tow paths optimisation. C, Optimised tow paths solution. The solid line in figures 

B and C indicates the primary fibre path where the level set function, φ=0. 

 

The optimisation procedure converges after 1500 iterations, producing the result shown in figure 3C. 

The anisotropic level set fibre paths optimisation refines the orientation of the fibre paths to reduce 

the overall compliance by 20%.  

 

4. Application: Shuttle Inter Tank Plate Optimisation 

A realistic design problem is now optimised, the inter-tank plate from the external fuel tank of the 

shuttle orbiter launch system. The inter tank plate transfers the load from the solid rocket boosters to 

the fuel tank. A simplified model of the inter-tank plate is to be optimised, assuming that it is a curved 

plate of uniform thickness with no holes. Symmetry is assumed so only half the plate is modelled. The 

model was meshed using a 66×28 four-node bilinear Kirchoff shell elements. The loading conditions 

and mesh are shown in figure 4. The composite material properties are the same as the Plate model in 

section 3. 

 

 
Figure 4: Shuttle inter-tank plate model mesh in 3D. B, Shuttle inter-tank plate model mesh and loading 

conditions represented in 2D. 

 

The level set function is initialised manually by observation of an unconstrained element based 

optimisation solution for the same problem, to describe the fibre paths shown in figure 5A. Multiple 

primary level set paths are used in this model to satisfy the regional demands on the orientation of the 

fibre paths. When multiple primary fibre paths are used the element fibre orientation is controlled by 

the primary fibre path it is closest too. Using fibre cutting and tow drop techniques, regions of 

different fibre paths can be constructed in the same laminate using AFP manufacturing [1]. The initial 

fibre path orientation is optimized using the level set optimisation procedure with the move limit, 

Δθmax, set at 5°. 
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Figure 5: A, Initial tow paths of the shuttle inter-tank plate model for level set tow paths optimisation with 

multiple level sets. B, Optimum fibre paths solution for shuttle inter-tank plate. The solid line in figures B and C 

indicates the primary fibre path where the level set function, φ=0. 

 

The optimisation procedure converges after 440 iterations, producing the result shown in figure 5B. 

An 8.28% reduction in the structural compliance from the initial design is achieved by the level set 

optimization method’s refinement of the fibre paths. The compliance of the optimal level set solution 

is 5.4% higher than the unconstrained elemental solution of the same problem, as would be expected 

given the greater constraint on the level set optimal solutions. However the element solution could not 

be manufactured due to discontinuities in the element fibre orientations. The extra constraints upon 

the level set solution produce continuous fibre paths that could be manufactured using AFP. 

 

5. Conclusion 

In the test cases the level set method was able to optimize the orientation of the fibre paths to 

significantly reduce the overall compliance of the structure and produce a solution that could be 

manufactured by the AFP technique. However it is evident that the solution is dependent on the initial 

solution. Also the level set fibre path optimisation is slow; a small move limit is required to achieve a 

stable convergence. Further research is needed to reduce the dependency of the level set optimisation 

method on the initial solution and to obtain faster convergence. However this work demonstrates the 

feasibility of using a level set method to optimise composite fibre paths. 
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ABSTRACT  

A goal driven optimisation process has been undertaken for a Venturi-type premixer.  Premixers are used to 

supply the correct mixture of fuel and oxidiser to a premix burner; providing the correct quantity of excess air 

results in a reduction of nitrogen oxides (NOx).  A computational fluid dynamic (CFD) simulation has been 

undertaken using FLUENT 14.0, verified by experimental data.  This CFD model has been used in Ansys 

workbench’s  “Design Exploration” software to establish an optimised design of the premixer, considering four 

geometrical parameters and their effect on two Objective Functions; the completeness of mix of the fuel and 

oxidiser, and the correct quantity of excess air. 

 

Keywords: Premix; Venturi; CFD; Optimisation  

1. Introduction  

Natural gas processing facilities require gas pressure reducing stations; where, the high pressure at 

which gas has been transported through pipelines is reduced to a lower pressure for processing.  As 

the pressure is reduced, due to the Joule Thompson effect, the temperature also reduces i.e. 

isenthalpic.  Therefore, in order to keep the gas temperature elevated above 0°C, a shell-pipe heat 

exchanger is utilised; the radiant section of which can employ a premix burner, supplied by Venturi-

type entrainment premixers (Figure 1). 

  

Figure 1: Venturi-type entrainment mixers (left image) supply a premix burner (right image) 

 

In premix burners the fuel and oxidiser are completely mixed prior to the initiation of combustion.  

Increasing the excess air results in a leaner mix, lower flame temperature and reduced levels of 

nitrogen oxides (NOx) emissions.  Minimising pollutant emissions such as NOx is a desired outcome 

due to the health risks that these pollutants pose.  Considering the pressure let down system, optimal 

combustion conditions require that the burner should be supplied with a mixture containing 30% 

excess air.  If a premixed flame is termed stoichiometric when the fuel and oxidiser consume each 

other completely, producing only carbon dioxide and water; then, a lean premixed flame involves an 

excess of oxidiser in the reaction, with an additional oxygen component found in the combustion 

products [1].  The stoichiometric air-to-fuel ratio (AFR) can be calculated from the reaction equation 

and can be quoted in terms of mass or volume. 

 

Considering this design of entrainment premixer, which operates utilising the law of conservation of 

momentum; the fuel stream is used to inspirate the oxidiser.  The fuel is supplied at a high velocity 
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after passing through a very small orifice.  At this orifice, the oxidiser is made available as an 

(initially) stationary source.  As the fuel’s velocity is dissipated through expansion, to maintain the 

momentum of the motive fluid, additional air must be entrained into the flow [1, 2].  The passage of a 

fluid through a constriction, causing a pressure drop and subsequent increase in velocity is termed the 

Venturi effect; and is why this type of premixer can be referred to as Venturi-type. 

The primary objective of the current work is to utilise computational fluid dynamics (CFD) to 

undertake a 2D axisymmetric analysis of the premixer.  The model is to be compared to experimental 

results, prior to utilising a Goal Driven Optimisation (GDO) process in the Ansys Workbench 14.0, 

“Design Exploration” software [3]; establishing if the premixer’s geometry is optimised.  Two 

Objective Functions have been identified, which consider both the premixer’s ability to draw in the 

correct quantity of excess air; and, the completeness of mix between the fuel and air.   

2. Experimental procedure 

In order to establish confidence in the CFD results and subsequent optimisation of the premixer, 

experimental work was undertaken to establish the effect of adjuster plate position (see Figure 2) and 

pressure on the velocity of the flow through the mixer.  Intrusive methods of velocity measurement 

were utilised, including both a vane anemometer, 65mm in diameter, providing a measurement range 

of 0.4 to 30 m/s (  2%), Figure 2; and a thermoanemometer  straight probe (i.e. a hot wire 

anemometer), with a velocity range of 0 to 50 m/s (  3%).  Different devices were used to ensure 

accurate, repeatable readings were established at critical locations within the flow.  Several readings 

were taken with the thermoanemometer at the mixer outlet, to establish a velocity profile.    At the 

measurement locations, flow disruptions were not expected e.g. shock waves; therefore, intrusive 

methods were deemed acceptable and the timeliest approach to implement [4].   

 

  

Figure 2: Adjuster plate position was altered (left image) and the average velocity was recorded (right image) 

3. Computational model 

Several previous CFD based investigations of other designs of premixers have been undertaken [2, 5-

8.  A review of these works enabled the most appropriate simulation methodology to be identified.  

The CFD for this study was undertaken using the commercially available FLUENT v14.0 software 

[3].  FLUENT utilises a cell-centred finite volume method and the governing equations were 

discretised with a second order upwind scheme, using the SIMPLE algorithm to couple the 

momentum and pressure equations [3].  After assessment of several turbulence models, including the 

Standard κ-ε [5], Realisable κ-ε [6], Enhanced κ-ε [7] and the κ-Ω [8] models; the first one was 

identified as the most appropriate.  A full convergence and mesh sensitivity study was undertaken, 

with the steady state solution considered converged when data extracted from the mixer’s outlet was 

found to differ by no more than 1%.  Several meshes were constructed, each with elements focussed 

in the region of the issuing jet and at the walls.  Mesh independence was achieved with a mesh 

consisting of 46,000 elements, i.e. element dimension of δ; with meshes having been considered in the 

range of 4δ to δ/4.   

The boundary conditions are labelled in Figure 3, the gas was supplied at a pressure of 1.4bar (gauge); 

the pressure at the air inlet and at the mixer’s outlet was set as atmospheric.  When simulating the mix 

between natural gas and air, the percentage mass of each constituent was required as a boundary 

condition.  The species transport model in FLUENT predicts the local mass fraction of each 
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species   , by solution of a convection-diffusion equation (1) for the  th
 species [3]: 

                                         
 

  
                               

                                               (1) 

Where,    is the net rate of production of the species   by chemical reaction (discounted if no 

reaction) and     is the rate of creation plus any user-defined sources.   

  

Figure 3: Boundary conditions (Left image) and the optimisation parameters (Right image) 

There are four parameters under consideration for the optimisation of the premixer, clearly identified 

in Figure 3: (1) position of the adjuster plate, which controls the inspirated air; (2) length of the gas 

jet; (3) radius of the venturi chamber’s throat; and (4) length of the chamber.  In a general 

optimisation problem, the aim is to minimise a function, the “Objective Function”.  For this problem 

two Objective Functions have been identified: the mass AFR value being representative of a mixture 

of 30% excess air; and, completeness of mix, by attaining a standard deviation value of zero for the 

mixture constituents at the outlet.  The goal driven optimisation process in Ansys workbench provides 

several options for Design of Experiments and Response Surface generation [3]. On consideration of 

the options available, the Optimal Space Filling with central composite design (CCD) sampling and 

the Kringing Meta model have been used to generate the design space.  The multi-objective genetic 

algorithm (MOGA) [3] was used for the optimisation of the defined Objective Functions. 

4. Results 

4.1 Experimental results and comparison with the model 

Area average velocity readings were measured at the mixer’s outlet at an operating pressure of 1.4bar 

(gauge). These were compared with the simulation results. As clearly shown in Figure 4 below, a 

similar trend was captured, where pulling back the adjuster plate beyond a certain distance from the 

venturi chamber inlet, no longer had any effect on the quantity of air inspirated.  The average velocity 

values maximised to approximately 18 m/s (experimentally), and 16.5 m/s (simulated); a less than 

10% difference.  Additionally, the straight probe velocity values measured at various locations and at 

different operating pressure values also compared favourably, with the model generally found to over 

predict by no more than 10%.  In particular, the velocity values at the air inlet were found to be 

simulated very accurately (< 5% error).  Subsequently, it can be concluded that the simulation has 

accurately captured the fluid dynamics of the premixer. 

 

Figure 4: Experimental and CFD results showing the effect of adjuster plate position on velocity at the mixer’s 

outlet (vertical error bars of   2% quoted for device and horizontal error bars of   10% for parallax error). 
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4.1 Optimisation 

The optimisation process was undertaken by considering parameters (1) to (4) over restricted ranges 

based on the limitations of size of the premixer, due to restricted space for installation in the gas 

pressure reducing station.  Figure 5, shows the quantified effect of the four parameters on the 

Objective Functions: the mass AFR value associated with 30% excess air; and, the extent of 

mixedness, measured by the standard deviation values provided for methane (the main constituent of 

natural gas) and air.  It is evident that the radius of the throat is the most influential design parameter 

on both mixedness and air-fuel ratio and that the length of the jet (2) has no effect on the quantity of 

air drawn in by the mixer, but does affect the quality of mixing. 

 

Figure 5: Local sensitivities of the four parameters considered for optimisation of the premixer 

The optimisation process provided three “Candidate Points”, which were all verified against simulated 

values.  Generally, the optimisation suggested a 4.55% increase in the length of the chamber (4); a 

3.3% increase in the radius of the throat; a 150% increase in the length of the jet (2); with the adjuster 

plate located at approximately a mid-location. 

5. Conclusions and Future work 

A numerical model of a venturi type premixer has been shown to be comparable to experimental data, 

to within 10% of velocity values measured, illustrating similar trends of flow behaviour.  Based on 

this, a goal driven optimisation has been undertaken which has suggested minor modifications to the 

premixer’s geometry that will improve the completeness of mixing between air and natural gas whilst 

achieving the correct ratio of fuel to oxidiser for cleaner combustion.  Potentially, future work could 

consider a more radical alteration to the premixer’s design, to assess if further improvements could be 

attained.   
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ABSTRACT 

Maintaining adequate chlorine residual in the water distribution system is crucial to the health of end users and 

the integrity of system. Depleting un-chlorinated water from pipe line via automatic flush device (AFD) is a 

feasible measure to maintain water quality. This paper presents an innovative optimization method to minimize 

the discharge volume for 24-hr horizon through AFD. Three constraints are imposed: maintaining minimum 

chlorine residual, minimum system pressure, and maximum amount of AFD starts per day. Two parameters are 

used to describe AFD working conditions: opening extent and open/close status. Accordingly, the single 

objective optimization problem is solved in two stages: 1) determining the base discharge rate of each AFD; 

and, 2) developing operation pattern of each AFD. In the first stage, each AFD opens all the time, discharge 

flow rates of AFD are the decision variables. A reduced gradient algorithm is used to reduce the discharge rates. 

In the second stage, decision variables are the discharge patterns of these AFD. One day is divided into certain 

time intervals. AFD is either open or closed in one time interval. Simulated annealing is used to search global 

optimum. EPANET 2.0 is used as hydraulics and water quality simulator. Matlab code is developed to guide the 

searching of optimal solution. The method is applied to the water network located at the south Pinellas County.  

 

Keywords: water distribution system; water quality; automatic flushing device; optimization 

1. Introduction  

Drinking water distribution system typically consists of pipes, valves, storage tanks, fire hydrants and control 

equipments. Sufficient chlorine residual helps to maintain water quality and the integrity of the water system 

[1]. One of the most widely used methods is to flush distribution pipes to deplete un-chlorinated water by 

opening automatic flush device (AFD) or manually opening fire hydrant, blowoff valves. Operating AFD needs 

less labour than manually opening fire hydrants. Therefore, AFD is gaining popularity in water utilities.  

AFD can be initiated either by timer or chlorine sensor, installed in the distribution system. Due to financial and 

technical reasons, chlorine sensor is not widely used to control AFD. The prerequisite of AFD operation 

optimization is to determine the chlorine residual in the pipe network; a well calibrated water quality model is 

needed. Therefore, using timer controlled AFD working in concert with well calibrated water model is a feasible 

method to minimize AFD discharge. Currently, most AFD in water utilities controlled by timers are 

programmed empirically.  

Literature review shows that no studies have been directly aimed at minimizing AFD discharge. Similar 

researches, such as operation optimization of pump schedules to minimize energy costs, were reviewed. A 

variety of optimization algorithms have been developed. Examples include Boolean integer nonlinear 

programming [2], evolutionary algorithm [3], ant colony algorithm [4] and linear programming greedy (LPG) 

algorithm [5], to name a few. This paper presents an EPANET-simulation based method to minimize the 

flushing volume in water distribution system. This is formulated as a single objective operation optimization 

problem where AFD flushing volume is minimized through optimized AFD opening extent and open/close 

control strategy.  

 

2. Methodology 

Consider a water distribution system with M junction nodes, N automatic flush devices, which are operated for 

T time intervals. The objective function is the minimization of the total AFD discharge volume 
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where Qn,t = the discharge rate of AFD n at time t (L/min); L = the length of time interval (min). This 

optimization problem is subject to three constraints: water quality, hydraulics and operation respectively. They 

are given as 

MmCC tm  1min,                                                        (2) 

MmPP tm  1min,                                                       (3) 

NnSS on  1
                                                                  (4) 

where Cm,t = the chlorine residual of node m at time t (mg/l); Cmin = the specified minimum chlorine 

concentration (mg/l); Pm,t  = the pressure at Node m at time t (m of water); Pmin = the minimum allowable 

pressure in the water distribution system (m of water); Sn = the number of starts for AFD n; and, So = the 

maximally allowable AFD starts per day, it is determined by the AFD characteristics.  

Accordingly, discharge rate Q for each AFD is decomposed as a base discharge rate multiplying the open/close 

status of the AFD. It is given as 

                           tnBntn DQQ ,,, 
                                                     (5) 

where Qn,B = the base discharge rate for AFD n, which describes AFD open extent; and, Dn,t = the open/close 

status of AFD n at time t. Accordingly, this research is formulated as a two stage optimization problem. The first 

stage is to determine the base discharge rate QB for each AFD. It is a continuous control optimization problem 

since its solution space is continuous. The second stage is to determine the AFD flow patterns. It is formulated 

as a discrete-time control optimization problem.  

To calculate base discharge rate, each AFD is initially turned on to its full extent and all the time in the 

EPANET simulation. Discharge rate Q for each AFD is controlled to decrease at a pace proportional to the 

concentration difference between AFD and the chlorine concentration lower limit until the chlorine residual 

limit is violated. The calculated discharge rates are the minimum open extents of these AFD. They are used to 

calculate the initial open time in next stage of study. 

 
 

Figure 1. Searching global optimum (TIFF) 

 
Initial open duration for each AFD is calculated using a simple reverse proportion method. The results are 

shown in the third column in Table 1. The procedure of searching global minimum is described as a ball rolling 

downhill and jumping valley to valley as shown in Figure 1. The ball trajectory shows the evolution of objective 

function. AFD open time length is reduced slowly to reach local minimum. Sensitivity analysis is used to 

detemine which AFD shall be selected, at which moment, and how long the AFD open time length shall be 

reduced during the rolling downhill operation. Simulated annealing method is used to determine the availablity 

of jumping valley to valley. Simulated annealing is an optimization approach for searching the global minimum 

of a highly nonlinear problem that may possess several local minima [6]. Simulated annealing has been reported 

to be used in optimizing pump scheduling in water distribution systems [7], and water network design [8]. In 

addition, it has been applied in water resource engineering [9] and irrigation water system design [10], to name a 

few. The procedure will find mumerious local minima, the lowest of them is global minimum.  
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3. Model Application 

Gulf Beach pump station service area in south Pinellas County, Florida, is selected for case study. It serves a 

small city with 6,500 residents and a park with 8,800 visitors per day. 14 AFD are installed in the pipe network. 

Approximately 48% of the outflow from the pump station, 2,550 m
3
/d, is discharged through AFD. EPANET is 

used to simulate chlorine residuals. The optimization methodology is programmed into Matlab code. EPANET 

simulation time length is 10 days. The hydraulic and water quality time steps are both set at five minutes. The 

simulation results of last 24 hours are saved for analysis. The minimum chlorine residual is 2.0 mg/l. Water 

pressure shall be no less than 14 meter of water everywhere in the pipe network. Each AFD starts at most four 

times every day. 

 

4. Results and discussions 

The AFD discharge volume calculation is presented Fig. 2. There are two curves in this figure. The upper curve 

shows the evolution of AFD discharge volume, and the lower curve records the minimum values from the first 

to the most recent iteration. It is observed that AFD discharge volume, i.e. the objective function, stabilizes after 

fifteenth iteration of calculation. From utility engineer and operators’ viewpoints, this is a near optimum with 

sufficient accuracy. The results reveal that the minimum discharge volume is 120 m
3
/d, which is significantly 

less than the current discharge rate of 2,550 m
3
/d. The AFD open schedules are presented in Table 1. It shows 

that all the AFD open less four times per day. The minimum pressure of the pipe network is 36 meter of water.  

 
Table 1. Automatic flush devices optimal open schedules when they are opened at full extents 

 

      Open (min)   

AFD # Flow (L/min)   Initial Length Optimal Length Optimal Open Schedule 

AFD-37 458  115 0  

AFD-38 443  130 0  

AFD-39 447  80 25 (00:00-00:25) 

AFD-40 435  115 30 (00:00-00:15) (10:00-10:15) 

AFD-41 428  100 20 (00:00-00:20) 

AFD-42 432  110 30 (23:45-00:15) 

AFD-43 420  95 15 (01:45-02:00) 

AFD-44 379  175 35 (0:00-0:20) (02:00-02:15) 

AFD-45 397  105 20 (00:00-00:20) 

AFD-46 375  130 35 (08:00-08:15) (23:40-24:00) 

AFD-47 356  200 60 (23:00-24:00) 

AFD-48 310  150 0  

AFD-49 310  145 0  

AFD-50 238   210 55 (23:05-24:00) 
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Figure 2. Optimal AFD discharge volume (TIFF) 

 

5. Conclusions 

This paper provides an insightful approach on AFD operation optimization in the water distribution system. This 

methodology has two stages. In the first stage, the solution space is continuous, reduced gradient method is used 

to determine base AFD discharge rates. In the second stage, the feasible region to the optimization problem is 

discrete, simulated annealing is used to search AFD operation patterns. Originality of this research lies in the 

approach of using gradient-based method to quickly explore and narrow down the solution space; and 

employing heuristic method to intensively exploit the optimal solution. We applied this method to a 

chloramined water system. The results suggest that water flushing volume calculated by optimal AFD operation 

configuration is much less than current field practice. Since this methodology is developed based on EPANET 

simulation, it can be readily applied to chlorinated or any other water distribution system that EPANET can 

simulate.  
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ABSTRACT 

Structural weight optimization is a very important issue that has to be considered in construction. Structural 

optimization of the design is such that compliance with both the technical aspects of the implementation cost is 

minimal weight. Due to the weight of the structures, especially buildings and structures used in aerospace 

industry can Volume fraction in the layer can be made of composite materials and structures so that the 

minimum weight is required to satisfy certain conditions. Such composites can be characterized as having low 

density, good thermal stability, high fatigue resistance, high mechanical strength noted. These plates consist of 

alternating thin paste is obtained. Therefore, due to the increasing use of mechanical behavior of materials is 

essential. In this study, the minimum weight beam made of ceramic composite materials - metal is specified as 

the natural frequency of the structure is satisfied. Natural frequency of the structure is obtained using the 

Generalized Differential Quadrature (GDQ). After using evolutionary genetic algorithm, the weight of the 

structure is optimized to achieve maximum natural frequency of the structure. 

 Keywords: Optimization; Genetic Algorithms; Laminate Composites ; Weight; Frequency 

1. Introduction

The beam structures occupy a leadership position in civil, architectural, aeronautical, and marine engineering, 

since they give rise to optimum conditions for dynamic behaviour, strength and stability. in other words, these 

structures support applied external forces efficiently by virtue of their geometrical shape. The study of the 

vibration of beam of revolution is an important aspect in the successful applications of these structures. Due to 

high strength and resistance to temperature change, the composite beam can be applied to military aircraft 

propulsion system, structures of civil. Tornabene  (1) has used four-parameter power law distribution to study 

the behavior of moderately think functionally graded conical and cylindrical shells and annular plates. 

Optimization is implemented for various objective functions in mechanical problems, such as buckling Loads 

(2), weight (3,4) fundamental frequencies (2), deflection (3), etc. The aim of this study is to optimize 

generalized power-law distribution for maximizing the first natural frequency with constraint on the density of 

composite beam using genetic algorithm. The Frequency of beam is obtained by numerical technique termed the 

generalized differential quadrature (GDQ) method based on the DQ Technique (5). This research to minimize 

the weight of the composite beam made of ceramic - metal. It is stated that the natural frequency of the structure 

so that it can satisfy. Genetic Algorithms is applied to optimize the weight of the composite beam. 

2. Laminate Composites

In this study, a Multi -Layer Composite beam are studied ceramic - metal mechanical properties. 
Gradual Changes is in the properties of the laminated beam volume fraction of material changes to the beam 

axis. 

Figure - 1 show on elastic foundation
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Where ρm , Em , ѵm ,Vm and ρc , Ec , ѵc ,Vc   represent  mass  density, Youn's modulus , Poisson's ratio 

and volume fraction of the metal and ceramic constituent materials respectively . 

In the present work, Vc is considered as follow: 
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To obtain the natural frequency of vibration of the beam as a function of the eigenvalues is written in 

the mode shape of the transverse momentum. 
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3. GDQ  solution of governing  equations

The  GDQ approach was developed by Shu and Coworkers (7,8) that approximates the spatial 

derivative of a function of given grid point as a weighted linear sum of all the functional value at all 

grid point in the whole domain. In GDQ method, the nth order partial derivative of a continuous 

function f(x,z) with respect to  x at a given point xi can be approximated as a linear sum of weighting 

values at all of the discrete point in the domain of x ,i.e. 
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Where N is the number of sampling points, and 
n

ikc   
is the xi dependent weight Cofficients. 

4. Genetic Algorithm

GA are probably the best-known EA, receiving substantial attention in recent in years. The first 

attempt to use EA took place in the sixties by a team of biologists (3) and was focused in building a 

computer program that would Simulate  the process of evolution in nature. However, the GA model 

used in this study and in many other structural design applications refers to model introduced and 

studied by Holland and co-workers (3). In general the term genetic algorithm refers to any population-

based model that uses various operators (selection-crossover-mutation) to evolve. In the basic genetic 

algorithm each member of this population will be a binary or a real valued string, which is sometimes 

referred to as a genotype or , Alternatively, as a chromosome. 

5. Structural optimization

The term optimal structure is very vague. This is because a structure can be optimal in different 

aspects. These different aspects are called objectives, and may for instance be the weight, cost or 

stiffness of the structure. A numerical evaluation of a certain objective is through an objective 
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function, f, which determines the goodness of the structure in terms of weight, cost or stiffness [11]. 

Of course, the optimization has to be done within some constraints; otherwise it’s a problem without a 

well defined solution [9]. Firstly, there are design constraints, like a limited geometrical extension or 

limited availability of different structural parts. Secondly, there are behavioral constraints [9] on the 

structure that denotes the structural response under a certain load condition. Here may, for instance, 

limits on displacements, stresses, forces and dynamic response be sorted. Finally, there is one obvious 

demand that is valid for all structures, and it is kinematical stability, otherwise they are mechanisms 

[10]. This can be seen as a behavioral constraint. Structures that lie within the constraints are called 

feasible solutions to the optimization problem. 

6. Optimization Procedure

The objective of optimization in this paper is to find best values of the parameters, ( Vc1 , Vc2 ,Vc 3 ,Vc 4 ,

 h1/h, h2/h,h3/h). In generalized power low distribution so that to maximize fundamental frequency 

parameter of composite beam. There is an important point that considered parameters must be 

obtained so that the ceramic volume fraction is between zero and one (0≤vc ≤1). Also, Therefore, the 

constrained optimization problem is defined as: 

Minimize         f( h1/h , h2/h , h3/h ,V1 ,V2 ,V3 ,V4 )=ρ 

Subject  to 
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If GDQ method is applied for frequency parameters, the optimization process becomes so 

complicated and time consuming. 

Figure 2: convergence of the GA to the optimal solution 
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Table 1: comparison of  the  Genetic Algorithm 

Optimum  parameters

h1  h2  h3  Vc1  Vc2  Vc3  Vc4  ρ  (kg/m
3
 )       -Ω  

0.79  0.01  0.451  0.815  0.318  0  0  2780.6058  -32.5760

7. Conclusion

With proper alignment layer and changes in the volume fraction of material using a genetic

algorithm can be more frequency the lower the density of a ceramic beam reached 100%.

Because the result of many factors involved including elastic substrate, the volume fraction

,thickness.
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ABSTRACT

In this work a hybrid IGAFEM/IGABEM coupling is presented to solve a stationary magnetic field
problem. IGABEM is used to model the free space while IGAFEM is applied to a magnetisable solid
with a heterogeneous structure. The solution of the stationary magnetic field problem is then utilised to
solve a magneto-mechanical field problem with IGAFEM. With this approach, meshing of the infinte
free space is not necessary for solving both field problems.

Key Words: NURBS; BEM; FEM; hybrid methods; magneto-mechanics

1. Introduction

The concept of isogeometric analysis [1] has already been implemented to solve field problems using
Finite Element (FEM) and Boundary Element Methods (BEM) but coupling of both methods has not
been applied. In the current work, an isogeometric FEM/BEM coupling is proposed and applied to two-
dimensional stationary magnetic field problems. While FEM is used to model bodies with magnetisable
particles, the BEM domain accounts for the free space surrounding these bodies, see Fig. 1. Both methods
are coupled on the surface of the bodies. Due to this hybrid IGAFEM/-BEM approach, the free space
does not have to be meshed and truncation errors are avoided for problems to be solved on open, infinite
or semi-infinite domains. Once the solution for the stationary magnetic field problem is obtained using
the isogeometric FEM/BEM method, IGAFEM is used to solve a one-sided coupled magneto-mechanical
field problem in the domain of the bodies with magnetisable particles. This one-sided coupling is realised
by a magnetic stress tensor computed from the solution of the field variable for the stationary magnetic
field problem. To summarise, the following staggered solution procedure is used:

(i) Hybrid IGAFEM/IGABEM is applied to compute the magnetic field in Ω∞, i. e. within and outside
of the magnetisable solid.

(ii) IGAFEM is used in a mechanical analysis step in ΩFEM considering magnetic loads resulting
from the magnetic field obtained in step (i) to simulate magneto-mechanical interactions in the
magnetisable body which covers only ΩFEM.

For more details see also [2].

2. Continuum formulation of the boundary value problems

2.1. Stationary magnetic boundary value problem

The stationary magnetic problem is given by the Poisson equation

A,ii = −µ J in Ω∞ . (1)

With the definition of the normal derivative of the magnetic potential Q = A,ini, jump conditions across
an interface Γ can be written as

[[A]] = 0 and
[[

Q
µ

]]
= −K on Γ . (2)
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Figure 1: Modelling problems on infinite or semi-infinite domains Ω∞ using a hybrid approach by coupling FEM
and BEM on the common boundary Γ. While FEM can be used to model heterogeneous materials with complex
history dependent constitutive relations in ΩFEM, BEM is applied to account for fields in the free space ΩBEM.

2.2. Magneto-mechanical boundary value problem

The coupled magneto-mechanical problem can be carried out in ΩFEM only. The mechanical balance of
equilibrium is formulated in terms of the symmetric total stress tensor ttot

kl = ttot
lk

ttot
i j,i + ρ f j = 0 in ΩFEM , [[ttot

i j ]]ni = −p j on Γ. (3)

As discussed in more detail in [3], the symmetric total stress tensor

ttot
i j = Eti j + t̂i j (4)

can be decomposed into the symmetric pseudo-mechanical stress Et and the pseudo-magnetic stress ten-
sor t̂, which is entirely defined by magnetic quantities

t̂i j = HiB j − BiM j − 1
2

(
1
µ0

BqBq − 2MqBq

)
δi j. (5)

Boundary conditions have to be set-up for Γ as follows

ui = ūi on Γu and ttot
i j ni = p̄ j on Γp. (6)

In this work, no mechanical surface tractions are considered. Hence, the effective surface traction

p̄ j = t̂ BEM
i j nFEM

i (7)

reduces to purely magnetic contributions of the surrounding free space. To compute the pseudo-magnetic
stress tensor t̂ BEM from equation (5) on the boundary Γp, the magnetic induction B or equivalently the
necessary gradient of the magnetic potential can be calculated by solving[

nBEM
1 nBEM

2
x1,ψ x2,ψ

] [
A,1
A,2

]
=

[
QBEM

A,ψ

]
. (8)

3. Numerical formulation for the two field problems

3.1. Hybrid IGABEM/FEM formulation for the stationary magnetic field problem

Coupling of the IGABEM/-FEM formulations for the stationary magnetic field problem using the jump
conditions

AFEM
∣∣∣
Γ

= ABEM and
1

µFEM|Γ
QFEM = − 1

µBEM
QBEM (9)

yields the following system of equationsKA
µFEM |Γ
µBEM

T
H̃ G

 [AFEM
QBEM

]
=

[
PA
AS

]
(10)

which can be solved for the unknowns AFEM and QBEM.
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3.2. IGAFEM formulation for the magneto-mechanical field problem

Since we consider a non-linear stress-strain relation for the magneto-mechanical field problem, the non-
linear system of equations

fint
u = fext

u (11)

with

fint
u =

E⋃
e=1

∫
Ωe

FEM

BeT

u Ete dΩe and fext
u =

Ẽ⋃
ẽ=1

∫
Γẽ

p

NeT

u p̄ẽ dΓẽ −
E⋃

e=1

∫
Ωe

FEM

BeT

u t̂e dΩe (12)

defining the discretised magneto-mechanical field problem is solved iteratively for uFEM using a Newton-
Raphson scheme.

4. Demonstration

4.1. Magnetisable cylinder in an inhomogeneous magnetic field

The first demonstration problem is illustrated in Fig. 2(a) and has been investigated in more detail in
[3]. Contour plots for the solution of the magnetic potential are shown in Fig. 2(c). For the stationary
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Figure 2: (a) Setup of the demonstration problem, (b) NURBS mesh for the magnetisable cylinder and (c) contour
plot of the magnetic potential obtained from the numerical solution of the stationary magnetic BVP

magnetic field problem, the normalised error norm ||A||L2 in the domain ΩFEM is calculated. In order to
assess the quality of the solution of the coupled magneto-mechanical field problem, the relative error for
the force |∆F1| is evaluated.
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Figure 3: Results of the convergence analysis: (a) normalised error norm of the magnetic potential ||A||L2 in the
domain ΩFEM (b) relative error |∆F1|

4.2. Heterogeneous magnetoactive material in an external field

The following example illustrates the modelling of magnetostriction by the hybrid IGAFEM/-BEM ap-
proach. It considers an elliptic sample which consists of magnetisable particles embedded in a soft poly-
meric matrix according to Fig. 4.
Two principal loadings are considered. The horizontal orientation of the coil generates a magnetic field
B̄ =

[
B̄1, 0

]T
(red in Fig. 4 (a)), while the vertical arrangement leads to B̄ =

[
0, B̄2

]T
(blue in Fig. 4 (a)).
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(a) (b)

Figure 4: Heterogeneous magnetoactive sample consisting of magnetisable particles and a polymeric matrix: (a)
model arrangement with two possible external magnetic fields and (b) NURBS mesh.

While the particles are modelled isotropic linear elastic, a viscoelastic material model is used to represent
the polymeric matrix. The magnetic potential as well as the deformation of the sample at the end of the
simulation are illustrated in Fig. 5 for both orientations of the magnetic field B̄. It can be seen that the
magnetically induced attractive or repulsive interactions of the particles cause either an elongation or
contraction of the sample, i.e. a magnetostrictive effect can be observed.

(a) (b)

Figure 5: Local magnetic stray field resulting from the particle magnetisation and magnetically induced deforma-
tion of an elliptic sample for (a) a vertically, and (b) a horizontally aligned magnetic field B̄.

5. Conclusion

Isogeometric analysis has been used to solve two-dimensional stationary magnetic and coupled magneto-
mechanical field problems. The magnetic problem was handled by a hybrid IGAFEM/-BEM approach.
While the IGAFEM was utilised to model the magnetisable body, the IGABEM was used to account for
the infinite domain representing the free space surrounding the magnetisable body. As a consequence,
no meshing of the free space was required. The subsequent solution of the magneto-mechanical field
problem was obtained from applying IGAFEM to discretise the domain of the magnetisable body, hence,
allowing for inelastic material behaviour. Magnetic contributions to the total stress as well as to the
surface traction acting on this body were obtained from the solution of the stationary magnetic field
problem provided by the hybrid IGAFEM/-BEM method.
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ABSTRACT

The objective of this contribution is to investigate the performance of isogeometric analysis when applied
to cohesive zone problems with existing interfaces under dynamic loading. An application of interest is
earthquake engineering, and in particular the dynamic rupture of geological faults. We use non-uniform
rational B-splines, together with Bézier operators, which allow to model complex fault geometries. The
fault discontinuity is inserted by locally increasing a knot multiplicity. The traction at this interface is
modelled with a slip-weakening friction law. Some features of this preliminary work are presented on an
idealised example, where spurious traction oscillations are reported at the interface.

Key Words: Isogeometric analysis; slip-weakening friction; plasticity; dynamics

1. Introduction

Seismic events are particularly complex phenomenon, overlapping a number of branches in mechanics
such as dynamics, fracture, poro-elasticity and plasticity. Although the holy grail of earthquake predic-
tion, with regard to both time and location, seems out of reach today [4], computational models can
provide valuable insight to describe earthquake processes such as initiation and propagation.
This work represents the first step toward the modelling of earthquake rupture dynamics. The double
objective is to participate to the current and active exploration of the performances of isogeometric anal-
ysis, but also to provide an alternative framework to existing models, which tend to use finite differences
or boundary integral element methods.

2. Model

In this paper, we focus on an idealised 2D representation of the fault Γd and surrounding bulk Ω as shown
in Fig. 1. The pre-defined interface Γd is assumed to run across the whole body, and is created by the
insertion of a knot value with multiplicity p + 1 at the desired location, where p is the polynomial order
(see example on Fig. 2a). For more details, refer to [6] and [2].

The linear momentum balance is:

divσ = ρü x ∈ Ω, (1)

where σ denotes the Cauchy stress in the bulk, ρ the bulk density and ü the acceleration of a material
point.

The strong form is completed with the boundary conditions at the external boundaries and the disconti-
nuities (where the jump [[u]]d defines the relative displacement between both sides of the discontinuity):

u = ū x ∈Γu, (2a)

σn = t̄ x ∈Γt, (2b)

σn = t([[u]]d) x ∈Γd. (2c)
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Figure 1: Schematic representation of the fault Γd and surrounding body Ω

The discretised weak form of Eqs. (1)-(2) can then be derived to obtain the internal force vector in
matrix-vector notations:

fint =

∫
Ω

BTσ dΩ +

∫
Γd

MTt([[u]]d) dΓd. (3)

In the above, the standard operator B is defined as to obtain the infinitesimal strain vector by the product
ε = Bue

b, with ue
b the element vector of nodal displacements in the bulk. The operator M is defined so

that the jump vector at the discontinuity results from the product [[u]]d = Mue
d, with ue

d the element
vector of nodal displacements at the interface Γd (see [6] for more details). The operator B contains the
derivatives of the bivariate NURBS basis, while M aggregates the univariate NURBS parametrisation of
the interface.

At the interface, the elastic stress-slip relationships are defined in the local coordinate system of the
discontinuity Γd

td([[u]]d) = tnn + tss (4)

= kn[[u]]nn + ks
(
[[u]]s − [[u]]p

s

)
s. (5)

The parameters kn and ks are dummy stiffnesses modelling a rigid interface. [[u]]n and [[u]]s respectively
represent the normal and tangential jumps (i.e. [[u]]d = [[u]]nn + [[u]]ss), while [[u]]p

s is the plastic slip
along the shearing direction s.

A plastic slip weakening model is used, with the yield function defined as:

f (ts, κ) = ‖ts‖ − τ
y(κ), (6)

where the slip-weakening function τy decreases as the accumulated plastic slip κ (where, for each incre-
ment, κ̇ = | ˙[[u]]p

s |) increases, as proposed in [1]:

τy(κ) =

τp −
τp − τr

Dc
κ κ ≤ Dc

τr κ > Dc.
(7)

In Eq. 7, τp is the peak shear strength and τr the residual shear strength, i.e. the shear strength once the
accumulated plastic slip has reached the critical slip-weakening distance Dc.

We use an associated flow rule to relate the increment of plastic slip ˙[[u]]p
s to the incremental plastic

multiplier λ̇:

˙[[u]]p
s = λ̇

∂ f
∂ts

= λ̇ sign(ts). (8)

Finally, the plastic problem is fully defined by the addition of the usual Kuhn-Tucker complementary
conditions:
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λ̇ ≥ 0 f (ts, κ) ≤ 0 λ̇ f (ts, κ) = 0. (9)

3. Results

3.1. Earthquake initiation

Initial tests are performed on the idealised 1x2mm2 plate (see Fig. 2a), where the fault is aligned with
the y-axis. The following parameters, which have no physical relevance, have been arbitrarily chosen.
The elastic constants are E = 20GPa and ν = 0.25, while the density is ρ = 4000kg/m3. Along the fault,
the peak and residual shear strengths are τp = 20MPa and τr = 1MPa and the critical slip-weakening
distance is Dc = 0.01mm. The sample is sheared vertically using the ramp event shown in Fig. 2b. In
order to initiate early slipping within the geometry, two interface elements at the centre of the fault have
their peak shear strength reduced to τp = 5MPa.
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Figure 2: (a) Quadratic (p=2) mesh in the physical space. Solid lines represent the edges of the Bézier
elements. Control points are interpolatory at the boundary and at the interface where repeated control
points lie. The knot vectors are ξ = [0, 0 , 0, 1/8, 1/4, 3/8, 1/2, 1/2, 1/2, 5/8, 3/4, 7/8, 1, 1, 1] and η = [0,
0, 0, 1/8, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8, 1, 1, 1] (b) Ramp shear traction applied to the right edge

Due to inertia, the shear wave σxy = 5MPa only reaches the fault at time t = 5s, which initiates plastic
slip across the weakened elements (Fig. 3a). At t = 9s, the shear along the remaining of the interface
attains its yield value of τr = 20MPa, and plastic slip occurs along the whole interface (Fig. 3b). As the
plastic slip increases, the shear strength at the interface weakens, e.g. to 15MPa on Fig. 3c.

(a) (b) (c) (d)

Figure 3: Deformed mesh magnified 40 times with shear stress contour plot (a)-(b)-(c) and normal stress
σyy (d)

As a result of local internal slip, normal stresses build up at the crack tips (see Fig. 3d), as reported in
[5]. These tend to give rise to off-fault rupture, which will be accounted for in subsequent models.
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3.2. Spurious traction oscillations at the interface

In Eq. 5, penalty stiffnesses kn and ks were introduced to model the initially rigid interface. It is well
known that for standard FEM, this may give rise to spurious traction oscillations (see e.g. [3]). As re-
ported in [2], the Bézier interface elements suffer from similar deficiencies. This can be seen on Fig. 4,
where the traction along the interface is depicted at the end of the plastic step for various values of the
dummy stiffness ks. In this case, oscillations occur when ks = 1e8 MPa/mm and ks = 1e9 MPa/mm.
The solutions for ks = 1e7 MPa/mm and ks = 1e10 MPa/mm are identical, while the traction is slightly
different when ks = 1e6 MPa/mm due to the larger elastic jump resulting from the low dummy stiffness.
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Figure 4: Traction distribution along the interface Γd for various values of the dummy stiffness ks.

4. Conclusions and future work

In the first step of this ongoing work, a dynamic frictional slip weakening model was implemented in
an isogeometric framework. It was shown that numerical integration at the fault interface requires more
attention, as the Gauss quadrature gives rise to spurious oscillations for the traction. This model is still
at an inceptive stage and a number of features still need to be implemented in order to model realistic
seismic events. First, non-reflecting infinite elements will be used to absorb bouncing elastic waves at the
boundaries; these will also allow to properly describe the initial static equilibrium. In a following step, a
plastic model will be implemented to take off-fault rupture into account.
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ABSTRACT

Active piezoelectric materials are widely used for noise-cancelation devices, to suppress unwanted vi-
brations, or to control the shape of high precision devices, such as optical instruments and measuring
devices. Piezoelectric ceramics, e.g. made of lead-zirconate-titanate (PZT), serve both as actuators and
sensors to fulfil the aforementioned goals. Nowadays, another important area of application of piezoelec-
tric materials is the development of structural health monitoring (SHM) systems. One common approach
uses a network of piezoelectric ceramics. These ceramics are surface-mounted on or embedded into the
structure to excite and to receive ultrasonic guided waves. In thin-walled structures these waves are called
Lamb waves and have complex physical properties. In order to gain a deeper insight into the underlying
physics efficient and powerful numerical tools are needed. A viable means are finite element schemes
based on higher order polynomial shape functions. Consequently, the objective of the paper is the de-
velopment and the evaluation of isogeometric finite elements (electro-mechanical coupling). They are
capable of reducing the computational effort noticeably and at the same time they offer very accurate
results. The advantages of this higher order finite element is demonstrated using different numerical ex-
amples, highlighting the static as well as dynamic properties of higher order finite element methods.
In the case of a wave propagation analysis the authors focus on three different higher order methods.
Therefore, the spectral element method (SEM), the p-version of the finite element method (p-FEM) and
isogeometric analysis is scrutinized and compared with standard elements.

Key Words: isogeometric analysis; piezoelectricity; smart structures; structural health monitoring
(SHM)

1. Introduction

One focus of current research activities in aerospace, marine, automotive and civil industry applications
is on incorporating networks of (smart/intelligent) components (actuators, sensors) into new lightweight
designs [4]. These transducer networks typically made of piezoelectric ceramics can be either surface-
mounted on or embedded into the structure. In doing so, one is given the chance to actively alter the
structural response of a system.
Another important research area investigates concepts of SHM systems. The idea is to receive precise
information about the structural health by analyzing measured signals. Therefore, a robust SHM system
can provide life cycle health monitoring to avoid extended periods of inspections, reduce maintenance
costs and avoid unexpected catastrophic failures. A widely used SHM approach applies ultrasonic waves,
in thin-walled structures so called Lamb waves, as basis of damage detection devices. Lamb waves are
mainly excited and sensed by surface-bonded piezoelectric actuators and sensors, respectively. Further-
more, the simulations of Lamb waves need a fine spatial and temporal resolution. These examples show
the wide range of branches, where smart systems can be applied. In conjunction with the mentioned
application new questions arise, such as finding the optimal placement of actuators/sensors in a network
and ensuring an efficient energy supply.
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In order to cease the opportunities presented by utilizing smart structures a powerful numerical tool to
predict their behaviour is needed. In engineering applications, the finite element method (FEM) provides
an efficient means for the numerical analysis wide range of ”real life” problems.

Normally about 80% of the overall process time to solve an engineering problem is required to generate
a good quality mesh [1]. Consequently, the efficiency can be drastically increased when the geometrical
description given by a CAD-software can be directly imported to a FEM-software and used to generate
an optimal mesh. The isogeometric approach presented in this article is very flexible and is applicable to
a vast class of problems arising in engineering practice.
In the following, the theoretical background for the creating isogeometric piezoelectric finite elements is
presented. First, the isogeometric NURBS shape functions are introduced, and the finite element equa-
tions of the piezoelectric element are presented. Then, the constitutive equations of an electromechani-
cally coupled piezoelectric material in the low-voltage range are given.

2. Isogeometric analysis for piezomechanical material

A B-spline basis is comprised of piece-wise polynomials joined with prescribed continuity conditions.
To define a B-spline of polynomial order p in one dimension one needs to understand the notion of a
knot vector V. A knot vector is a set of coordinates in a parametric space, written as

V = [β0, β1, β2, .., βncont+p, βncont+p+1] with βi ≤ βi+1 , (1)

where i is the knot index, i = 0, 1, ..., ncont+ p+1, βi is the ith knot and ncont is the total number of control
points [3]. There are various ways to define B-spline basis functions, but for computer implementation
the application of a recurrence formula is the most common way [3]. The first order basis functions
N(β)i,0 of polynomial degree p = 0 are

Ni,0(β) =
{

1, if β ∈ [βi, βi+1)
0, otherwise.

(2)

The basis functions Ni,p(β) of higher order p > 0 are defined as

Ni,p(β) =
β − βi

βi+p − βi
Ni,p−1(β) +

βi+p+1 − β
βi+p+1 − βi+1

Ni+1,p−1(β) , (3)

where the indices i and p denote the ith basis function of polynomial order p. Utilizing the B-spline basis
functions Ni,p(β), the NURBS basis function Rp

i (β) and the position vector X of the position vector of the
described curve are defined as

Rp
i (β) =

Ni,p(β)wi
ncont∑
j=1

N j,p(β)w j

and X(β) =
ncont∑
i=1

Rp
i (β)Pi , (4)

where wi are weights corresponding to each function Ni,p. An arbitrary NURBS curve can be described
as shown in [3] with control points in global cartesian coordinates [x1, x2, x3] and weight parameters wi.
The derivatives of the NURBS basis functions as well as the formulation in 2D or 3D are given as [3].
Based on Ikeda [2] the equation of motion easily can be derived. For the development of a finite element
the displacements u and the electrical potential Φ in a local domain (element) can be expressed in terms
of the nodal displacements and the nodal electrical potentials (Ucont, ϕcont) and the matrices of the
mechanical and electrical interpolation functions (Hu, Hϕ) as [8]

u = HuUcont and Φ = Hϕϕcont. (5)

This formula is similar to the geometrical description of NURBS shown in Eq. (4). In isogeometric finite
elements the nodal displacements and the nodal electrical potentials correspond to those at the control
points. The deflections and the electrical potentials at any point of the finite element of the structure
can be obtained using Eq. (5). Substituting Eq. (5) into the variational formulation [2], results in the
discretized form of the equations of motion of a piezoelectric continuum [7]

MuuÜcont +KuuUcont +Kuϕϕcont = fext (6a)

KϕuUcont −Kϕϕϕcont = qext . (6b)
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The indices uu, ϕϕ and uϕ denote the coupling between displacement - displacement, electrical potential -
electrical potential and displacement - electrical potential, and M, K are the mass matrix and the stiffness
or coupling matrices. The vectors fext, qext, Ücont, Ucont and ϕcont are the mechanical forces, the electrical
charges, the accelerations of the control points, the displacements of the control points and electrical
potentials of the control points, respectively.

3. Numerical examples

In the following two models are presented to illustrate the performance of isogeometric finite elements.
First, a clamped piezoelectric bimorph beam with a simple geometry is studied and second the conver-
gence of Lamb wave propagation problem is investigated.

3.1. Bimorph ring actuator

The clamped bimorph ring actuator consists of two piezoelectric layers [7]. The material of both layers
is PIC 151 [7]. The height of the layers is h/2 = 0.254 mm. Both layers are poled in opposite directions
and an electrical potential difference of ∆Φ = 200 V between the top and the bottom surface is applied,
which activates both actuators. The opposite polarization introduces a bending moment. Due to the
symmetry of the problem only a quarter of the ring is modelled with NURBS elements as well as
with standard finite elements (C3D20E). This simplifies the application of the boundary conditions in
comparison to any smaller segment, which could also be used. Results calculated with ABAQUS by
applying a very fine mesh (C3D20E, dof=676404) are taken as reference values.
In Fig. 1 the evolution of the relative error of the maximum u3-displacements with respect to the
degrees-of-freedom is illustrated. The simulations utilizing the isogeometric piezoelectrical element
concept are performed with three different polynomial degree templates. The polynomial degree is
changed only in x1- and x2-direction (p1 = p2 = p). In x3-direction for all isogeometric NURBS
elements a quadratic polynomial (p = 2) has been prescribed.
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Figure 1: Convergence of three NURBS (p1 = p2 = p, p3 = 2) and one ABAQUS solution (p=2).

Increasing the number of degrees of freedom results in a decreasing error for both numerical models. As
expected, the accuracy increases using higher polynomial degrees. The convergence rate of the quadratic
ABAQUS elements and the quadratic NURBS elements are identical, because an equal polynomial order
of the shape functions is used. The convergence rate only depends on the polynomial degree [7] and
not on the polynomial type. NURBS elements are nevertheless better due to the exact approximation
of the geometry. This can also be seen in Fig. 1, where the NURBS curve (p = 2) and the ABAQUS
solution have the same convergence rate, but the NURBS solution is more accurate due to the exact
description of the geometry. The solution with isogeometric NURBS elements needs only one half of the
degrees-of-freedom to get the same accuracy as the ABAQUS solution.

3.2. Lamb wave propagation problem

In this section the convergence of a wave propagation problem is studied. A two-dimensional model is
used as illustrated in [6]. The polynomial degree in thickness direction is p = 4 for all higher order
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approaches. The isogeometric approach is compared to a p-FEM and a spectral finite element (SEM)
approach [6, 5].
The Figures 2 display the results of the convergence study for the A0-mode with respect to a varying
polynomial degree in global x1-direction. The polynomial degree in thickness direction is chosen as
px2 = 4. To obtain a converged solution the finite element mesh is refined in x1-direction. χA0 is the
number of ”nodes” per wavelength.
The curves are steady except for small peaks experienced in the convergence curves of SEM and p-FEM.
This behavior can be attributed to local element eigenfrequencies. All curves converge faster for higher
polynomial orders.
It has to be noted that the convergence rate of the N-FEM elements is significantly higher than for SEM
and p-FEM ones. The latter two approaches show a very similar convergence behavior. Additional studies
concerning the convergence rate of C1- and C0-continuous isogeometric finite elements are conducted
in [5].
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Figure 2: Convergence curve for the A0-mode.

4. Conclusions
In the paper the development of a new isogeometric piezoelectric finite element is presented. For the
simulation of complex structures the isogeometric analysis has great advantages.
The illustrated tests have demonstrated that the use of higher order polynomial degrees in isogeometric
elements results in a reduction of the required total number of degrees-of-freedom in static as well as
dynamic simulations. Furthermore, it is shown that a better geometrical approximation with isogeometric
elements, e.g. if circular piezoelectric patches are used, results in more accurate solutions in comparison
to standard isoparametric finite elements.
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ABSTRACT

An isogeometric boundary element method based on NURBS is used to find solutions to the Helmholtz
equation. The method is extended in a partition-of-unity sense, multiplying the NURBS functions with
families of plane waves; this new method is called the eXtended Isogeometric Boundary Element Method
(XIBEM). When compared to non-enriched boundary element simulations, using XIBEM significantly
reduces the number of degrees of freedom required to obtain a solution with a given error.

The extension used here (and in similar Trefftz methods) requires a set of wave directions to be spec-
ified. Ideally, these directions are uniformly spaced points over the unit-sphere. Simple schemes (e.g.
latitude/longitude and discretised cube methods) have been proposed previously. However, while these
schemes provide adequate spacing of wave directions, they do not allow an arbitrary number of wave
directions to the be chosen. The authors use a novel algorithm, based on a physical analogy of charged
particles held in static equilibrium on a spherical surface.

The XIBEM formulation will be described, including a focus on the novel method of choosing a uni-
formly spaced set of plane wave directions for the enrichment. Numerical results show the reduction in
degrees of freedom required to obtain approximations of engineering accuracy.

Key Words: acoustics; Helmholtz; boundary elements; isogeometric; wave scattering

1. Introduction

The boundary element method (BEM) is an effective tool for analysing homogeneous acoustic scattering
problems: it inherently includes the conditions of infinite domains and only requires the boundary of a
scatterer to be meshed.

Recently, in general BEM research, various authors have explored the possibility of taking the basis
functions used to describe a geometry in CAD and using them directly in a numerical analysis [1, 2, 6].
This concept is known as isogeometric analysis (IGA).

The papers above have shown that an IGA-BEM approach is viable and produces accurate results. How-
ever, simulations in acoustics are still limited by an old heuristic rule that dictates that 10 degrees of
freedom per wavelength per coordinate direction are required to obtain approximations of engineering
accuracy. A number of enriched (or Trefftz) methods have been developed to overcome this. In particular,
the authors are interested in the partition-of-unity BEM (PU-BEM) [5]. In this, the approximation basis
of the boundary elements is enriched by a family of plane waves. This greatly reduces the numbers of
degrees of freedom that are required to solve a problem of a given wavelength.

When using the PU-BEM, it has been found important to use an analytical description of the geometry.
This has only been available a few geometries, thus far. However, by using the basis functions used in
CAD, this requirement is automatically fulfilled. This paper shows how the combination of IGA-BEM
and partition-of-unity enrichment provides for an accurate and computationally efficient algorithm that
can interface well with a CAD environment.

The authors have successfully used a partition-of-unity enrichment with 2D isogeometric BEM
simulations—a combination termed the eXtended Isogeometric Boundary Element Method (XIBEM)
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[3]. This conference paper considers the advance to 3D simulations. The authors focus on a novel ap-
proach to determine the directions of propagation of the enriching waves. Some initial results of 3D
XIBEM simulations are given.

2. XIBEM
2.1. Analytical formulation

Ω ⊂ R3 is an unbounded, homogeneous domain containing a smooth scatterer of boundary Γ := ∂Ω.
Acoustic waves, considered in the frequency domain with exp(−ιωt) time dependence, are governed by
the Helmholtz equation:

∇2φ(p) + k2φ(p) = 0, φ ∈ C,q ∈ Ω, (1)

where ∇2(·) is the Laplacian operator, φ is a complex wave potential, and k the is wavenumber—directly
related to the wavelength λ = 2π/k. ι is used to denote the imaginary number, to avoid confusion with
subscripts i and j later. The scatterer is impinged by an incident plane wave,

φinc(p) = Ainc exp
(
ιkdinc · p

)
,

∣∣∣dinc
∣∣∣ = 1, (2)

where Ainc is the incident wave amplitude and the unit vector, dinc, is the direction of propagation.

To solve this problem using boundary elements, a boundary integral equation is required. The derivation
of the conventional BIE is well-known and yields:

1
2
φ(p) =

∫
Γ

[
∂φ(q)
∂n(q)

G(p,q) − φ(q)
∂G(p,q)
∂n(q)

]
dΓ(q) + φinc(p), p,q ∈ Γ, (3)

where p is an evaluation point, q is an integration point, and n is an outward-pointing, unit normal.
Further, G(p,q) is the fundamental solution or Green’s function, representing the field effect experienced
at q due to a source radiating at p. The potential at any point p can be evaluated with (3) if φ(q) and
∂φ(q)/∂n(q) over the entire the boundary is found.

2.2. Numerical implementation

Non-uniform rational B-splines (NURBS) are ubiquitous in CAD software and so it is NURBS basis
functions that the authors use to discretise the scatter boundary, Γ. Another current development in IGA
is T-splines, a superset of NURBS. Regardless of using NURBS or T-splines, both can be decomposed
into their constituent Bézier patches. It is this decomposed mesh that the current authors use in the
simulations of this work.

The boundary, Γ, is discretised into E + 1 boundary elements which provide the analytical geometry of
the scatterer. On each element, Γe, the variation in φ is expressed in terms of the rational Bézier basis
functions, Re

i j,

φe(q(ξ1, ξ2)
)

=

p∑
i=0

q∑
j=0

Re
i j(ξ1, ξ2)φe

i j, (4)

where φe
i j is the potential associated with each NURBS basis function. A partition-of-unity enrichment

is introduced, multiplying each basis function by a linear expansion of plane waves; (4) is rewritten

φe(q(ξ1, ξ2)
)

=

p∑
i=0

q∑
j=0

Re
i j(ξ1, ξ2)

M∑
m=0

Ae
i jm exp

(
ιkde

i jm · q
)
,

∣∣∣∣de
i jm

∣∣∣∣ = 1, (5)

where there are M+1 plane waves expanded on each basis function; each wave has a prescribed direction
of propagation, de

i jm ∈ R
3, and unknown amplitude, Ae

i jm ∈ C.

Substituting (5) into (3) and, for compact presentation, applying the sound hard boundary condition,
∂φ(q)/∂n(q) = 0, gives

1
2
φ(p) +

E∑
e=0

p∑
i=0

q∑
j=0

M∑
m=0

∫ 1

−1

∂G
(
p,q(ξ1, ξ2)

)
∂n

(
q(ξ1, ξ2)

) Re
i j(ξ1, ξ2) exp

(
ιk de

i jm · q(ξ1, ξ2)
)
|J| dξ Ae

i jm = φinc(p) (6)

where |J| is the Jacobian of transformation of the mapping from global coordinates to local (ξ1, ξ2)
coordinates.

(6) is collocated at a sufficient number of points to yield a linear system of equations can can be solved
to find the unknown values of Ae

i jm.
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3. Equal spacing of de
i jm about the unit sphere

Works in plane-wave enriched FEM and BEM approaches most commonly involve a uniformly spaced
set of directions de

i jm. In 2D, it is a simple procedure to take equally spaced points about the unit circle.
In 3D, the same process for the unit sphere is more complex.

The authors have developed an algorithm based upon the physical analogy of an arbitrary num-
ber of charged particles held in static equilibrium on a spherical surface [4]. M + 1 particles
of unit mass and electrical charge lie on the surface S of a unit radius sphere at locations de-
scribed by vectors ui. At time t, the Coulomb force vector acting on each particle is given by

Figure 1: Converged solution of Coulomb
force algorithm [4]; M = 151.

Figure 2: Scattering by a sphere at k = 20.
Real-part of acoustic potential are shown.

Ft
i = A

M∑
j=0

(1 − δi j) × r
|r|3

, (7)

where where A is a scalar multiplier, δi j is the Kronecker
delta, and r = ui − u j. Ft

i will be oriented away from S , so
the vector ft

i is defined as the projection of Ft
i on S , given

by
ft
i = (Ft

i × ut
i) × ut

i. (8)

The acceleration, üi, of each particle is

üt
i = ft

i − cu̇t
i, (9)

where c is a viscous damping coefficient and u̇i is the ve-
locity of the particle. The velocity and position at the sub-
sequent time, t + ∆t, are given by

u̇t+∆t
i = u̇t

i + üt
i∆t, (10)

ut+∆t
i =

ut
i + u̇t

i∆t∣∣∣ut
i + u̇t

i∆t
∣∣∣ , (11)

where (11) normalises the position vectors to relocate the
particles back onto S . Equations (7) to (11) are repeated in
a time-stepping scheme to reach a converged solution, such
as the one seen in Figure 1. Suitable values of A, c and ∆t
can be found in [4].

4. Numerical results

Here, numerical results from simulations of a plane wave
scattering on the surface of a sound hard sphere (radius a =

1) are presented. The incident wave has unit amplitude and
propagates in the direction dinc = [1, 0, 0]. An analytical
solution exists such that the scattered acoustic potential φscat

can be found at any point x(r, θ) by

φscat(r, θ) =

∞∑
n=0

−
in(2n + 1) j′n(ka)

h′n(ka)
Pn(cos θ)hn(kr) (12)

where jn is the spherical Bessel function of the first kind, hn is the spherical Hankel function of the first
kind, and Pn is the Legendre function of the first kind. A visual representation of the real part of the
potential over the surface of the sphere can be seen in Figure 2.

Figure 3 shows a comparison of the number of degrees of freedom required to obtain an L2 error of
engineering accuracy (1%) using a conventional BEM scheme and the proposed XIBEM scheme. It
shows that far fewer degrees of freedom are required with XIBEM simulations. With a conventional
BEM scheme, approximately 10 degrees of freedom per wavelength in each coordinate direction are
required on each element. With the XIBEM, only 3 degrees of freedom per wavelength are required.
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Figure 4: L2 errors of XIBEM of medium wavelength
simulations of unit sphere problem.

Figure 4 shows the errors of XIBEM simulations using 3 degrees of freedom per wavelength in each
coordinate direction for shorter wavelengths than Figure 3. All simulations exhibit reasonable levels of
accuracy, with all but two achieving the 1% target accuracy. A small increase in the number of degrees
of freedom used would guarantee that all simulations were below this threshold. The last simulation on
the figure, for ka = 60, uses 10,322 degrees of freedom; a similar conventional BEM simulation would
require Ndof = 114, 608.

5. Conclusions

The PU-BEM reduces the number of degrees of freedom required to solve a Helmholtz problem such as
the example in this paper. However, until now, only a few geometries have been considered due to the
requirement of an analytically described geometry.

Using the functions used to describe geometry in CAD directly in a BEM simulation and enriching
this basis in a partition-of-unity fashion—a combination termed XIBEM—has dramatically reduced the
number of degrees of freedom required, per wavelength per coordinate direction, to solve a problem to
engineering accuracy.

Using only 3 degrees of freedom per wavelength means that XIBEM needs approximately 9% of the
number of equations that conventional BEM schemes need and the resulting matrix is < 1% of the size
of the conventional BEM system matrix. This means, for a fixed computational resource, problems of
much shorter wavelengths can now be solved.
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ABSTRACT 

In this paper, the numerical homogenization technique and morphological analysis are used in order to compute 

the thermal conductivity in microscale of porous materials. The objective is to quantify the difference between 

microstructures with overlapping and non-overlapping pores. The relationships between their morphological 

parameters and their macroscopic effective thermal conductivities are proposed. Statistical parameters such as, 

covariance and integral range are introduced for morphological characterization. The microstructure volume is 

related with all microstructure parameters. The equivalent morphology concept for thermal conductivity is 

introduced after development of some relationships between morphological parameters. 

 

Keywords: Numerical and statistical homogenization; porous materials; morphological analysis; effective 

thermal conductivity; equivalent morphology concept.  

 

1. Introduction  

Heat transport through porous media is of great interest in chemical, mechanical, geological, 

environmental and petroleum applications. For these reasons, the determination of the effective linear 

thermal conductivity (ELTC) for various porous media is of great practical interest in the efficient 

design of industrial equipment. Generally, two techniques of homogenization are available in this 

topic, existing analytical estimates or computational numerical methods. The homogenization refers to 

the process of considering a statistically homogeneous representation of the heterogeneous material, 

called deterministic representative volume element (RVE).  

 

To study the real effect of the morphology porous media, it is necessary to develop other techniques 

based on microstructure morphology analysis by statistical methods. The numerical results are 

coupled with statistical parameters in order to obtain some morphological and thermal properties.  

This is the case of El Moumen et al. [1] and Torquato [2] for composite structures. 
 

In this study, the computation of effective thermal conductivity in porous materials is proposed using 

numerical and statistical approaches. The first microstructure containing spherical pores without any 

contact between neighbouring pores, and the second morphology with overlapping spherical pores. 

The covariance notion and the integral range are used for morphological characterization. The 

equivalence between porous microstructures with overlapping and non-overlapping spherical pores is 

proposed for different morphological parameters. The obtained relationships between two used 

microstructures are introduced to define the concept of equivalent morphology.   

 

2. Microstructures and meshing   

In this investigation, thermal numerical computations of porous materials, containing a random 

distribution of identical spherical or ellipsoidal pores are presented. Two types of microstructures are 

considered: microstructure 1 with non-overlapping spherical or ellipsoidal pores and microstructures 2 

with overlapping pores, based on the Boolean model of spheres. The microstructure is generated by 

using the Poisson process, see figure 1.a. The regular finite element (FE) mesh is superimposed on the 

image (figure 1.b) of the porous microstructure using the so-called multi-phase element technique. 

Indeed, an image of the microstructure is used to attribute the phase property to each integration point 

of a regular mesh, according to the color of the underlying voxel. Figure 1.c gives an example of the 
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used FE mesh in this study.   

 

                                                                                                                                          
                                 (a)                                            (b)                                                          (c) 

Figure 1: Microstructures meshing: (a) implantation of particles, (b) initial image and (c) mesh of the image. 

 

Both phases are considered as linear thermal conducting. The considered thermal conductivities for 

matrix phase m and pores i  are:  

 Case 1: 0.3 / .m W m K  and 0.024 / .i W m K   with contrast / 12.5m ic    .  

 Case 2: 0.5 / .m W m K   and 0.024 / .i W m K   with contrast / 20.8m ic    . 

 Case 3: 0.6 / .m W m K   and 0.024 / .i W m K   with contrast / 25m ic    .  

 

3. Computational thermal simulations   

3.1 Realizations generation 

Apparent properties were defined as the FE calculation macroscopic results of volumes smaller than 

RVE. For each elementary volume V  of considered porous material, containing N  pores, n  

different realizations were created and Periodic boundary conditions were applied. The number of 

realizations n , considered for each fixed volume V containing N  pores is given in table 1. As a 

result, an increasing volume V  means an increasing the number N . 

 
Table 1: Number of realizations n used for each fixed number of pores N. 

N  2 5 20 50 100 200 250 

n  216 40 20 15 9 3 2 

 

3.2 Fluctuations of pores volume fraction and thermal conductivity. 

The objective of this part is to determine the relationship, an equivalence, between apparent volume 

fractions af  of non-overlapping pores obtained by N particles and real volume fractions f obtained 

by the same N but in overlapping case.  In the case of non-overlapping spheres, the apparent pore 

volume fraction is evaluated by: /a
sphere totalf NV V . It is noted that, in the case of non-

overlapping spheres
af f  and 

af f  for overlapping spheres case. Figure 2.a shows the 

variation of the relative pores volume fraction / af f  versus N  in an example of porous material 

containing N  pores. The objective here is to obtain a relationship between f  and 
af  for larger 

volumes. This figure shows an asymptotic value equals to 0.28. One can write for larger volumes:  

                                                      0.28 af f                                                                 (1) 

For thermal conducting homogenization of porous materials, an example of the obtained numerical 

results is presented in figure 2.b for different realizations. The same results are obtained in other 

cases. This figure shows the average values and its intervals of confidence as a function of the volume 

size. It shows that the dispersion of results decreases when the size of the domain increases. The error 
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which means standard deviation of the ELTC is represented with vertical bars. This error decreases 

when the volume size increases, and tends to zero for RVE. 

 
(a)                                                                              (b)  

Figure 2: Fluctuation of macroscopic properties: (a) pores volume fraction and (b) example of estimated thermal 

conductivities versus volume size for f=0.23. 

 

4. Benefits of identifying and using statistical parameters  

Identification of the statistical parameters by using mathematical morphology yields a number of 

benefits relevant for porous microstructures. The mathematical morphology methods combined with 

numerical results are used to study the representativity and the anisotropy of porous microstructures. 

The statistical laws of the mathematical morphology can be used to relate between morphological, 

statistical and thermal parameters of random microstructures. In geostatics, it is well known that for 

thermal properties, this relation can be written versus V or N  as:  

2 2( ) (1 )( )i m
A

D V f f
V             Or     

2 2( ) (1 )( )i m
A

D N f f
N                            (2) 

Where 2 ( )D V  is the variance of the volume V  and A  is the integral range.  

 

 The obtained numerical results by set realizations, presented in table 1, of each volume sizeV N , 

are used to determine the numerical variance
2( )D N for each N . The fitting methods according to 

Eq.(2) between volume size N  and its numerical variance 2 ( )D N , obtained by set n  different 

realizations, give us the value of integral range noted FA . The obtained values of FA for each 

microstructure are compared to / RVEf N  (the volume of one pore in RVE). Table 3 gives the 

different obtained values of FA  for microstructures 1 and 2 and for each studied case.   

 
Table 2: Comparison between integral ranges of two microstructures for f=0.23. 

 Microstructure 1: non-overlapping pores Microstructure 2: overlapping pores 

cases Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 

RVEN  15 20 20 15 15 15 

* / RVEA f N  0.015 0.012 0.012 0.016 0.016 0.016 

FA  0.015 0.012 0.013 0.13 0.135 0.145 

FA / *A  1 1 1 8 8 9 

 

The relationship between volume fractions of two used porous microstructures, is given by Eq.(1). It 

is possible to make other relationships between morphological parameters of two microstructures, 

such as pores number N  and radius R  of spherical pores. From results of table 3, the relationship 

between integral ranges of two microstructures is:  
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                                                              8o hA A                                                              (3) 

Where
oA is the integral range defined as the volume of one pore in overlapping spherical pores

oN  

and
hA for non overlapping pores

hN case. The Eq.(3) can be written as following :  

                                                    8
a

o h
RVE RVE

f f

N N
                                                               (4) 

The combination between Eq.(1) and Eq.(4) gives the relation between pore number N :  

                                                              28

h
RVE
o
RVE

N

N
                                                 (5)                                               

According to Eq.(5), it appears that the RVE of the porous microstructures with non-overlapping 

spheres is larger 28 times than RVE of its equivalent in porous microstructures with overlapping 

spheres. Defining as A  the volume of one pore in two microstructures, and developing the Eq.(3), it 

is possible to make a relationship between pore size of two microstructures as following:  

                                         
3 34 4

8 2
3 3

o o hh
A R R R R                                                      (6) 

Where oR is the radius of overlapping spheres in original morphology and hR  is the radius of non-

overlapping spheres in its equivalent morphology. As the pore volume fraction case, it appears that 

the number N and radii of overlapping pores accept an equivalent one in non-overlapping case. 

Therefore, in the equivalent morphology, the radius of one pore is 2 times the radius of one pore in 

overlapping spheres case (original morphology). Using these conditions, the equivalent morphology 

concept can be proposed for thermal conductivity of porous media as shown in figure 3. 

 

 
 

Figure 3: Equivalent morphology concept in porous media. 

 

5. Conclusion 

The principal objective of this study is to quantify the difference between porous microstructures with 

overlapping pores and porous microstructures with non-overlapping pores. The FEM coupled with 

statistical laws is used for morphological and numerical characterizations. Some relationships 

between morphological parameters of two microstructures, like pores number N , porosity f  and 

radii, were determined. It appears for conductive properties, any isotropic mixture of overlapping 

pores is equivalent to certain pores volume fraction, radius, and pores number in non-overlapping 

case. These results suggest us to define the concept of equivalent morphology. 
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ABSTRACT 

A Stochastic Thermoelastic Finite Element Method with a Direct Monte Carlo procedure is proposed to predict 

the mechanical behavior of Gilsocarbon nuclear graphite.  The spatial variability of material properties of 

different types of nuclear graphite has been studied between billets, between lots and in some cases within a 

billet. However, the influence of these random fluctuations on the mechanical behavior of nuclear graphite is 

limited. For this study in particular the coefficient of thermal expansion was selected as a random variable. In 

order to test the influence of spatial variability on nuclear graphite, the open source software ParaFEM is being 

extended to interface with third party software libraries that can generate spatially variable 3D random fields for 

any particular material property. 

 

Keywords: Probabilistic Analysis, Finite Element Method, Nuclear Graphite 

 

1. Introduction  

Nuclear energy is one of the main sources of electricity for members of the OCDE [1]. There are several types 

of technologies to produce nuclear energy, several historical, geographical and political factors created very 

different types of nuclear reactors. All reactors share the same physical principles. However, the main 

differences between reactors are the materials that are used to moderate the nuclear reactions. In the United 

Kingdom nuclear graphite was selected as the moderator and carbon dioxide as the coolant for the first and 

second generation of nuclear reactors; Magnox and Advanced Gas-Cooled Reactors (AGR) respectively. 

Thousands of stacked graphite bricks form the graphite core of the reactor. The graphite bricks are configured to 

form several pathways and round channels to place the fuel and other instruments. The graphite components 

produced for nuclear applications require a high purity and density, and isotropic material behavior to assure a 

long lifetime and good performance of graphite subjected to neutron irradiation. Nevertheless, the processes of 

neutron irradiation and radiolytic oxidation, a reaction between the carbon dioxide and graphite, constantly 

damage the nuclear graphite core. Weight loss, strains and cracking can produce distortions on the channels 

impeding the loading and unloading of fuel and also reduce the capacity of the reactor to produce electricity. 

Moreover, the nuclear graphite core cannot be replaced, so the graphite core is considered to be one of the 

limiting components of the usable lifetime of the reactor.  

 

Periodical inspections track the ageing effects on graphite caused by nuclear irradiation. A device explores the 

surface of the graphite core to measure the ovality and dimensions of the core channels. In addition to these 

tests, samples can be taken from the graphite core [2]. However, this type of inspection cannot predict the 

ageing effects at the exterior of the bricks. The state of the graphite bricks is estimated using finite element 

models that predict the strain produced by the thermal loading, nuclear irradiation and radiolytic oxidation.  

 

A new approach is being investigated by the authors that may help engineers better understand the behaviour of 

nuclear graphite subjected to the conditions of an operating reactor. This approach is the inclusion of random 

material properties in the finite element models. To test the influence of the variability of material properties on 

nuclear graphite behaviour, a hypothesis is proposed: that tiny spatial variations in “initial” material property 

values have a significant effect on the mechanical performance of nuclear graphite during its in-service lifetime. 

308



 

This hypothesis is proposed because the structure of graphite can widely vary depending on the process of 

manufacture [3]. The spatial variability of material properties of different types of nuclear graphite has been 

studied between billets, between lots and in some cases within a billet [4,5]. However, research into the 

influence of these fluctuations on the mechanical behaviour of nuclear graphite is limited. Here, the initial 

variability in graphite properties of manufactured bricks is represented in the finite element models using 

random fields. In this paper the coefficient of thermal expansion (CTE) was selected as the random variable. 

 

To test our hypothesis, the open source software for parallel finite element analysis, ParaFEM, is being extended 

to interface with third party software libraries that can generate spatially variable 3D random fields for any 

particular material property. These random fields are used to characterize and distribute the random fluctuations 

of a material in each finite element. However, a single realization is not capable of representing the whole nature 

of a random system, thus several realizations of a random field are created following a Monte Carlo Simulation 

scheme. The cost of analysing multiple realizations and the inclusion of the random fields highly increases the 

computational power required to analyse a system. To overcome this, the software ParaFEM employs several 

techniques that distribute the useful computations on parallel platforms to reduce solution time. ParaFEM is 

written in modern Fortran and is based on the book by I.M. Smith, D.V. Griffiths and L. Margetts [6]. 

 

2. Methodology 

The Monte Carlo Simulation methodology was chosen to characterize and study the random fluctuations of 

material properties of nuclear graphite. This approach merges the simulation technique of Monte Carlo and the 

deterministic finite element analysis. The Monte Carlo Simulations are considered to be the most general 

approach for probabilistic finite element modelling. Moreover, the Monte Carlo Simulation strategy does not 

require major modifications to existing deterministic software and is very suitable for parallel computation. The 

general procedure of this method follows: (1) Determine the set of random and deterministic variables; (2) 

characterize the density function and correlation parameters of the random variables; (3) use a random field 

generator to produce a set of random fields; (4) calculate the solution of each realization with the deterministic 

finite element program; (5) gather and analyse the information of the simulations; (6) verify the accuracy of the 

procedure (Figure 1) [7]. 

 

 
 

Figure 1: Description of the general procedure of the Direct Monte Carlo Simulation 

 

3. Random field – Local Average Subdivision Method 

The random field generator chosen to distribute the values of the coefficient of thermal expansion (CTE) is the 

Local Average Subdivision (LAS) Method [8,9]. The procedure for a one-dimensional implementation employs 

a top-down recursive method. To start the procedure, a general average value is obtained from experimental 

data. In the first stage, the region is subdivided into two equal subdomains; the subdomains are assigned with 

new values that have to fulfil a condition, the values of each subdomain have to be the average of the global 

value or parent. This process is repeated over and over until the desired refinement of the mesh is achieved. 
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The input values to calibrate the random are the mean, standard deviation and the correlation length of the 

variable of interest. The mean and standard deviation are obtained from experimental values and the correlation 

length is a variable that relates the values of the variable in a given length. In this length the average values 

returns the mean value of the chosen variable. Examples of different correlation lengths for the CTE are given in 

Figure 3.   

 

 
 

Figure 2: Comparison of 3 different scales of fluctuation 

 

4. Finite Element Analysis 

Thermal stresses are generated when a temperature change together with certain conditions are present. Several 

factors can cause thermal stresses such as temperature gradients, when the object of study is constrained in some 

way that the free expansion cannot occur, and also when there are material incompatibilities [10]. The latter is 

the one that is of interest to this study. In order to represent these material incompatibilities the random field 

generator described in Section 3 was selected to generate random fields for the CTE of graphite. A brick of an 

AGR reactor was chosen as the geometry to perform the analysis. The values of the material properties of 

Gilsocarbon a semi-isotropic graphite used for the simulations and for the random fields are given in Table 1.  

 

Table 1: Common values for virgin isotropic graphite Gilsocarbon 
 

Material properties of isotropic graphite Mean Values Standard Deviation 

Mean coefficient of thermal expansion 4.35 x 10 
-6

 (°C)
-1

 8.7 x 10 
-7 

(°C)
-1

 

Poisson’s ratio 0.2  

Dynamic Young’s modulus 10 GPa  

 
Free expansion was allowed in all the regions of the brick. Two sets of temperature fields were chosen as an 

example. In Case 1, the first temperature field is a homogenous increment of temperature of 100 °C. In Case 2, 

the temperature field takes the form of a linear gradient, where the temperature outside of the brick is 20 °C 

rising to 120 °C in the bore. The temperature distribution for a typical realization for Case 1, its corresponding 

random field for the CTE, and results of a typical analysis are shown in Figure 3.  

 

 
 

Figure 3:  Case 1 (homogenous temperature distribution), material properties of a random field of the CTE, 

displacement field and stress analysis of a typical realization for the first analysis (from left to right) 

 
The corresponding images for Case 2, the temperature distribution for the linear gradient, random field, 

displacements and stress analysis are presented in Figure 4.  
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Figure 4: Case 2 (linear gradient for the temperature distribution), material properties of a random field of the 

CTE, displacement field and stress analysis of a typical realization for the second analysis (from left to right) 

 

5. Conclusions 

The analyses show that even in the early life of a graphite core, some unexpected stresses can be generated by 

the inhomogeneity of the material properties of graphite, even with a homogenous temperature gradient. These 

initial stresses are usually neglected (set to zero) and may years later contribute to the early cracking of a brick. 

To more accurately account for material inhomogeneity and its influence on the thermo-mechanical behaviour 

of nuclear graphite, it is necessary to consider the relationship between Young’s Modulus and the CTE. The 

relationship between these two material properties is going to be considered in future work.  

 

A methodology is proposed to incorporate random material variation into nuclear graphite. These random 

variations are represented by random fields that can be incorporated into open source deterministic finite 

element software. In this paper only single realizations are given to illustrate the concept. In the conference 

presentation, the speaker will present results from a full Monte Carlo Simulation and show how this can be used 

to obtain an accurate estimation of the response variables.  

 

Acknowledgements 

The authors wish to thank the support and resources provided by the Mexican National Science and Technology 

Council (CONACYT). This work made use of the facilities of N8 HPC provided and funded by the N8 

consortium and EPSRC (Grant No.EP/K000225/1). The Centre is co-ordinated by the Universities of Leeds and 

Manchester. 

References 

[1] International Energy, A., Technology Roadmap: Nuclear Energy [electronic resource]. IEA Technology 

Roadmaps,2218-2837. 2010, Paris: OECD Publishing. 

[2] Yang, E., et al. Model-based estimation and filtering for condition monitoring of AGR nuclear graphite 

cores. 2010. 

[3] Yoda, S. and K. Fujisaki, An approximate relation between Young's modulus and thermal expansion 

coefficient for nuclear-grade graphite. Journal of Nuclear Materials, 1983. 113(2–3): p. 263-267. 

[4] Preston, S.D. The effect of material property variations on the failure probability of an AGR moderator 

brick subject to irradiation induced self stress. [electronic resource]. 1989. 

[5] Strizak, J.P., Spatial variability in the tensile strength of an extruded nuclear-grade graphite. . 1991, 

Technical Information Center Oak Ridge Tennessee  

[6] Smith, I.M., et al., Programming the finite element method. Fifth edition / I. M. Smith, D. V. Griffiths, L. 

Margetts. ed. 2014, Chichester, West Sussex, United Kingdom: John Wiley & Sons Inc. xiv, 664 pages. 

[7] Haldar, A. and S. Mahadevan, Reliability assessment using stochastic finite element analysis. 2000, New 

York ; Chichester: John Wiley & Sons. xvi, 328. 

[8] Fenton, G.A. and D.V. Griffiths, Risk assessment in geotechnical engineering. 2008, Hoboken, N.J.: 

Chichester : John Wiley & Sons. xvii, 461. 

[9] Fenton, G.A. and E.H. Vanmarcke, Simulation of Random-Fields Via Local Average Subdivision. Journal 

of Engineering Mechanics-Asce, 1990. 116(8): p. 1733-1749. 

[10] Manson, S.S., Thermal stress and low-cycle fatigue. 1966, New York,: McGraw-Hill. xi, 404 p. 

311



Proceedings of the 22nd  UK Conference of the 
Association for Computational Mechanics in Engineering 

2 – 4April 2014, University of Exeter, Exeter 
 

 

TEMPERATURE DATA ANALYSIS FROM FIELD SCALE THERMAL 
MONITORING 

*Majid Sedighi¹, Daniel P. Bennett¹, Shakil A. Masum¹, Hywel R. Thomas¹, Erik Johansson² 
and Topias Siren³  

¹Geoenvironmental Research Centre, School of Engineering, Cardiff University, The Queen’s Buildings, 
Newport Road, Cardiff, CF24 3AA, UK  

²Saanio & Riekkola Oy, 4 Laulukuja, Helsinki, FI-00420, Finland 
³Posiva Oy, Olkiluoto, Eurajoki, FI-27160, Finland 

 
*SedighiM@cf.ac.uk 

 

ABSTRACT 

This paper presents the results of an investigation into the thermal behaviour of a site proposed for the deep 
geological disposal of high level radioactive waste in Finland. Temperature data have been collected through a 
monitoring programme carried out at the site and the ONKALO Underground Rock Characterisation Facility 
(URCF). Various computational methods and approaches have been adopted to provide an insight into the 
ground’s thermal behaviour at the site and facilities constructed in the ONKALO. A Non-uniform Discrete 
Fourier Transform (NDFT) analysis has been carried out on the data collected from the access ramp and surface 
datasets. The methodology adopted for the NDFT analysis and results obtained are described in this paper. The 
results achieved provide an improved understanding of the thermal evolution in the rock, the repository facility 
and the subsurface soil at the site. 
 
Keywords: ONKALO; Olkiluoto; thermal monitoring; data analysis 
 

1. Introduction  

This paper presents the results of a thermal monitoring programme carried out at a site in Finland, 
where a geological repository for the disposal of high level nuclear waste is being considered. The 
site, which is located in the Gulf of Bothnia, has been selected for the possible disposal of the spent 
fuel produced by two nuclear power plants on the Olkiluoto Island.  
An Underground Rock Characterisation Facility (URCF), named ONKALO, has been constructed at 
the site, which comprises approximately 5km of access tunnel to the 420m disposal depth[1]. Figure 2 
presents the ONKALO. The ONKALO URCF allows for the testing of the design concept as the 
construction is developed and provides on-site information of rock conditions [1]. 
As part of a multidisciplinary monitoring programme, data related to geological, thermal, rock 
mechanics, hydrogeological and hydrogeochemical processes have been collected by Posiva Oy 
[2,3,4]. Temperature data collected at the Olkiluoto site and ONKALO at various locations have been 
studied and analysed including the three categories of temperature datasets as follows: i) data 
collected from the 57 deep boreholes, ii) measurements in the ONKALO, iii) surface data obtained 
from four weather stations and four measurement ditches [5].  
This paper presents a description of the investigation and analysis undertaken on temperature datasets 
relate to the ONKALO measurements which include temperature data recorded at 11 tunnel 
stations/chainages [4,5]. The methodology adopted for analysing the temperature time series from the 
monitoring programme at these locations is discussed. Temperature evolutions with time at 11 
chainage points along the ONKALO access ramp, i.e. CH0 to CH4580, have been collated during the 
monitoring programme. The time series data of the outside temperature and three stations located 
close to the entrance of the ONKALO ramp are presented in Figure 2. 
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Figure 1: The ONKALO Underground Rock Characterization Facility [1]. 

 

  
(a) (b) 

  
(c) (d) 

 
Figure 2: Time series data related to the station outside of the ONKALO ramp (a) and chainges CH0000 (b), 

CH0208 (c) and CH1970(d)  which are the first three chainages along the ONKALO ramp [4,5]. 
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2. Analysis of time series of the ONKALO ramp 

In order to obtain the characteristics of the time series data from 11 chainages in ONKALO ramp, a 
Fourier Transform analysis has been carried out for each data point/series. The analysis was carried 
out using the toolkit developed at the Geoenvironmental Research Centre, i.e. NUDAT [5,6]. The 
main data analysis features incorporated into the NUDAT include: i) Frequency domain analysis, ii) 
Long-term trend determination, iii) Aberrant point identification (spike detection), iv) 
Smoothing/averaging/down-sampling functions and v)  Second order event candidate detection [5]. 
The quantitative identification of the frequency content of a time series is calculated by applying a 
Non Uniform Discrete Fourier Transform (NDFT). The implementation of the NDFT capability in 
NUDAT provides the option to automatically remove the zero frequency component from the input 
time series.  
The frequency content and amplitude of the time series have been obtained by the application of the 
NUDAT toolkit. Example results of the NDFT analysis of data related to the ONKALO ramp are 
presented in Figure 3.  
The annual cycle (365-day wavelength) has been found to contain the largest amplitude of 
temperature recorded at most tunnel chainage locations.  
The temperature amplitude for a 365 day cycle calculated at different chainage locations is shown in 
Figure 4. As shown in Figure 4, the largest variations of the temperature amplitude correspond to the 
two locations nearest to the surface. The variations in temperature for these two locations were found 
to be approximately 14 oC and 10.5oC. The variations in the temperature amplitude for the other 
stations are approximately 3oC or less and associated with 365 days cycle.   
 

  
(a) (b) 

  
(c) (d) 

Figure 3: Temperature cycle amplitude versus wavelength calculated from the NDFT analysis of time series 
related to the station outside of the ONKALO ramp (a) and chainges CH0000 (b), CH0208 (c) and CH1970(d). 
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Figure 4: Temperature cycle amplitude versus wavelength calculated from the NDFT analysis related to 

chainges CH0000 to CH0208. 
 

3. Conclusions  

The results of an investigation into the thermal behaviour of an Underground Rock Characterisation 
Facility, i.e. ONKALO, for a site proposed for the deep geological disposal of high level radioactive 
waste in Finland have been presented. Non Uniform Discrete Fourier Transform (NDFT) have been 
successfully applied to provide an improved understanding of the thermal regime of the ONKALO 
and access ramp.    
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ABSTRACT 

This study presents the finite element based solution for tractive rolling contact between a rolling rigid cylinder 

and a fixed graded coating foundation which has been attached on the elastic plane body. The graded coated 

roles as load transmitter in contact surface, causes significant enhancement in the contact surface properties and 

consequently the fatigue life, so has undeniable extension in industrial applications. As In this paper, the rigid 

cylinder rolls with constant velocity on the graded coating foundation, so the proposed solution implemented in 

steady state case. At results this paper investigates the effects of the coating thickness and the coefficient of 

friction on the surface contact tractions and the stick zone length which are performed analytically by some 

researchers at recently. 

Key words: Graded coating, rolling contact, steady state rolling contact 

1. Introduction

Todays Rolling contact problem has wide extention the in fabrication of  rollers in printing machines, 

ball bearings present in rotating machines, railway and etc. In this application in order to achieve an 

optimum tribological system, one may use one of the three lubrication, design and materials options to 

significant enhancement in the contact surface properties and consequently increasement in the 

fatigue life.  The new materiel Graded coating is one of the best choice for these purposes. In the 

contact applications the graded coating play roles as load transfer components. The elastics properties 

of this material may vary continuously and gradually in some directions which results the reduction in 

the elastic mismatch at coating and substrate interfaces. The recent analytical research on graded 

coating focus on the behaviour of the FGM coatings under various loading conditions (i.e. under 

normal, sliding and rolling loading conditions) by the some assumption in elastic properties variation 

such as exponentially or power law functionally and etc.[7]. the rolling contact problems have been 

invesigeted experimantaly in details, however the modeling of this phonomena in analitical and 

numerical done by some reachers. Numerical methods which are introduced in this field may be 

classfy as local analysis contact domain based on half space assumptions which numerically 

discretized which are solved by boundary element methods and global methods based on the general 

continuum mechanics approach which are solved by a finite element method [9].  local analysis 

contact domain due to the use of  half space assumptions encountered with restirictions in general 

applications. the Finite element method for the rolling contact  based on some assumptions have been 

extendened three decade.  At First  in 1986 J.T. Oden et all [5] Published solution for  rolling contact 

problem for finite deformations of a viscoelastic cylinder and R. Kennedy [8] extended the Finite 

element analysis for the steady and transiently moving/rolling nonlinear visceoelastic structures. At 

1987 the formulation and computational results for Three-dimensional finite deformation, rolling 

contact of a hyperelastic cylinder implemented  by J.M. Bass [4] and along this thay modeled the 

three-dimensional rolling contact  for a reinforced rubber tire[6]. J.J. Kalker [3] introduced the rolling 

contact based on the hertzian assumption in the Three-dimensional for Elastic Bodies and at following 

this approach was modeled numerically with non hertzian assumption by K.P. singh and B.paul [2]. 

G. Hu and P. Wriggers [1] in order to imporove the numerical solution via an itrative solution 

procedure end finite element mesh refinement, published an addaptive Finite element of steady-state 

rolling contact for hyperelastic in finite deformation based on residual based a posterior error 

estimator for rolling contact problem with coulomb friction. Due to nature of rolling contact in some 

problem, some reasercher  [1,2,3], solved and simlify the the rolling contact in stationary point and 

steady state case. Along this an arbitrary Lagrangian Eulerian (ALE) formulation of bodies in rolling 
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contact based on the Theoretical foundations and finite element approach have been introduced by U. 

Nackenhorst[9] in 2004. in the ALE discretization the motion of body are decompose in two purely 

rigid body motion by   mapping and deformation by   mapping which described separately by 

Eulerain and Lagrangian framework respectively. Rolling contact problems in nature are dynamic 

problems. Each particale that enter in the Contact patch and leave it,  may experiment various state 

such as sliding or sticking case in an instant. This process is in different stages for different parts of 

the contact area. If the overall motion of the bodies be constant at all time, then an overall steady state 

may be attained. Here the state of each surface particle is varying in time, but the overall distribution 

can be constant. This is formalised by using a coordinate system that is moving along with the contact 

patch. The solution  of rolling contact depends on the history of the contact. In the rolling contact of 

two deformable bodies by 1 and 2 attachment with velocity of v1 and v2 respectly there are two 

possibilities: if two body have an equal velocites, its called rolling, else if we faced with reletive 

velocity in contact zone which has been called sliding or rolling with sliding. In general The dynamic 

contact problems have transeint nature where the overall motion of bodies in contact varies with time. 

However the steady-state case is rarely true in reality, especially  in acceleration and braking phase of 

motion for moving vehicles. While the transient case are approperiate for modeling of dynamic 

contact problems under time-varying velocity conditions. In the result section in order to show the 

robustness of presented numerical model, an example have been solve. In this example the tractive 

rigid cylinder which is rolling on deformable coated FGM foundations have been modelled and 

validated with analytical solutions recently done by M. A. Gulera and et all [7]. In order to verification, 

the effects of the coating thickness and the coefficient of friction on the surface contact tractions and 

the stick zone length have been investigated and compared with analytically results.  

2. Formulation

2.1 contact conditions 

In this section we will drive the contact conditions and finite element discretization of boundary value 

problem for rigid rolling cylinder on the deformable coated FGM foundation. We denote 
2
c for rigid 

rolling cylinder as current mortar (or master) surface which penetrate in to the coated foundation as 

current non-mortar (or salve) surface 
1
c  and use averaged non-mortar side normal for contact 

discretization. 
2.1.1 Normal contact condition 

We introduce e as normal distance between two adjacent particles on mortar (master) and non-mortar 

(slave) contact surfaces. Now the conditions for normal contacts with respect to e may be defined as: 

{ ( 0)

( ) 0

( 0)

( ) 0 }

( ( ) & )

n

n

c

if e

conctact occur in the contac zone C p

eles if e

dont conctact accur and in the exterior zone E p

where C E A potential contact area C E



  



 

   

(1) 

2.1.2 tangential contact condition 

suppuse that 
1x  and 

2x  are vector position (with reference to global coordinate system) of two 

adjacent particles on non-mortar(slave) and mortar (master) surfaces respectively. For these particles 

in rolling contact we introduce some definitions as: 
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1 2

1 2

1 2

( ) ( )
2

( ) ( )

c x x creep

x x
v x rolling velocity for small displacements

u u u displacement difference

u u
s c v slip relative velocity of two particle in contact

x t

 


  

 

 
   

 

(2) 

Now if c, u and v are independent of the time t, the steady state rolling will be occur, eles the non-

steady state rolling will be dominant as follows: 

( )

( ) ( )

u
s c v steady state rolling

x

u u
s c v non steady state or transient rolling

x t


 



 
   

 

(3) 

Finally the local tangential components of traction pt at the position of contact particles will be 

defined as following:   

{ ( 0)

( )
( )

( )}

( ( ) & )







   

  

   

t

n t
t

t

t n

if s

f s
p in slip zone H

s

eles

p f in stick zone T

where T H C contact zone T H

(4) 

Where st and fn are tangential slip and total normal force components respectively and   is 

coulomb’s friction.  

2.2 Finite element discretization 

In this section the discretized finite element formulation of the contact problem will be implemented. 

We define the discrete initial displacement and velocity vector as follows: 

0 0 1 0 2 0( ( ) , ( ) ,..., ( ) )T T T T

nU u x u x u x (5) 

And 

0 0 1 0 2 0( ( ) , ( ) ,..., ( ) )T T T T

nU v x v x v x (6) 

And the matrix form of Lagrange multipliers in normal and tangential directions will be 

writing as following matrix notation: 

1
( ) ( ( ), ,..., ( )) 1: ( )        

N

T

n n n ct t t i N t T total time  (7) 

1
( ) ( ( ), ,..., ( )) 1:

N

T

t t t ct t t i N t T         (8) 

Now the general equation of motion for two bodies in contact can be difined as follows: 

0 0

( ) , ( ), ( )

( ) ( ) ( ) ( ) ( )

(0) , (0)

n t

T T

n n t t

find U t t t such that t T

M U t K U t L t B t B t

U U U U

 

 

 

   

 

 
(9) 

Where K is the total tangential stiffness matrix without contact, M is total math matrix, B is addetive 

sitffness due to the contact presense and L is the extenal force matrix in each time step. 
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2.2.1 steady state condition 

 in the steady state condition, The all time derivatives of the displacement are zero and  the overall 

motion of the bodies is constant at all times. so it is sufficeint to solve steady state problem just at any 

arbitrary time 
0t . On the other hand no need to perform any time discretization process in dynamic 

modeling of rolling contact. However the momentom equatiom of motion at any arbitrary time 
0t

may be simplified as:  

0 0 0 0

0 0 0 0

0 0 0 0

( ) , ( ), ( )

( ) ( ) ( ) ( )

(0) ( ) , (0) ( )

n t

T T

n n t t

find U t t t such that t T

K U t L t B t B t

U U t U U U t U

 

 

 

  

   

 
(10) 

and by linearization of qu(10) in space dicription, we have:  

0 0 0 0

0 0 0

00 0

( ( ), ( ), ( )) ( )

( ( ), ( )) 0 ( ) 0

( )( ( ), ( )) 0

n n t

n n n n

t t n t t

UU Uu n t

n U n

tt

K K KR U t t t U t

R U t t K K t

tR U t t K K
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   

    

      
     

        
          

(11) 

Where ,  n tuR R and R are residual forces will drive form the variation of total energy with respect to 

the U,
n tand  respectively. 

3. Results

Example:regid Cylinder rolling on deformable graded coating plane foundation 

This section presents a numerical solution of tractive rolling contact between a rigid cylinder and a 

deformable graded coating plane foundation in the steady state case. This study investigates the 

effects of the coating thickness and the coefficient of friction on the surface contact tractions and the 

stick zone length. In this example the external force (P and Q), surface contact tractions and the stick 

zone length are estimated based on the predetermined H/R,  and t values. Where the H is distance 

from cylinder to the surface of foundation without any deformation, R is the radius of cylinder, 

 frictional coefficient and t is the thickness of coated foundation.  
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ABSTRACT 

The coupling between the temperature dependence of the coefficient of friction and the angular speed of the disc 

during braking was studied. The numerical calculations using the finite element method (COMSOL 

Multiphysics 4.4) were performed based on the equation of motion and the thermal problem of friction. Both 

axisymmetric (2D) and spatial (3D) FE models were developed, assuming that the corresponding temperatures 

on the working surfaces of the pad and the disc are equal. In order to compare the results obtained for different 

values of the contact pressure it was established that kinetic energy transferred into heat in the form of the heat 

flux densities is also equal. A single braking process was simulated for two cermet materials of the pad with 

noticeably different thermal conductivities combining with cast-iron brake disc. The results were determined for 

the temperature dependent-coefficient of friction as well as its constant value at the room temperature. The 

comparative analysis revealed that even the slight change in the coefficient of friction at the studied contact 

pressures and the materials affects significantly the braking time (12÷40%), speed and slightly the maximum 

temperature of the sliding components of the brake (1÷4%). 

 

Keywords: temperature; disc brake; temperature-dependent coefficient of friction; finite element method 

 

1. Introduction 

The heating of the friction elements of the disc brake being in sliding contact may lead to the change 

in the coefficient of friction, contact pressure, thermophysical and mechanical properties of the 

materials, cause excessive wear, brake fluid vaporization, deformations/cracks of the disc, degradation 

of the pad material, etc. [1]. Numerical calculations of temperature in disc brake employs either 

axisymmetric [2, 3] or three-dimensional models [3, 4]. The first arrangement is used when the sliding 

speed is high (uniform temperature distribution in the circumferential direction) or the coefficient of 

mutual overlap of the pad and disc is close to the unit. The three-dimensional model reveals possible 

to occur non-uniformities on the rubbing path of the disc due to relative motion of the sliding 

components. 

In this paper both 2D and 3D non-linear models of frictional heating in disc brakes were 

developed to study the influence of the fluctuations of the coefficient of friction on the braking time, 

angular speed of the disc and the temperature distribution in the pad and the disc. 

 

 
 

Figure 1: 3D finite element mesh of the pad-disc brake system 
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2. Basic equations 

Consider a braking process of a vehicle from initial speed 0V  to standstill. A deceleration of 

the vehicle is performed using four disc brake systems, assuming equal distribution of the braking 

force. In calculations the disc is restricted to the half of its thickness due to geometrical symmetry 

about the mid-plane (Fig. 1). At this assumptions, the equation of motion at braking has the form [5]: 
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where m  is the mass, V  and   are the forward and angular speed of the vehicle, accordingly, f  is 

the coefficient of friction, T  is the temperature, const0 p  is the contact pressure, padA  is surface 

area of the pad, t  is the time. Approximation of the integral in Eq. (1) with the pad’s area leads to: 
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where wr  is the average radius of the wheel, mr  is the equivalent radius of the pad. After integration 

of the ordinary differential equation (2), we find the rule change of the speed during braking: 
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The time of braking st  (time of a stop) is found from the equation (3) as 0)( stV . 

On the other hand, the specific capacity of friction during braking, and hence, the total 

intensity of the heat fluxes directed to the pad and the disc is given by [5]: 
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(4) 

The separation of heat between the pad and the disc during braking is governed by the 

condition of equal temperatures on the contact surfaces of the sliding bodies. Thus, the proposed 

mathematical model of the frictional heating during braking takes into account the relationship 

between the speed and the temperature. 

 

3. Numerical analysis 

A single braking process from initial vehicle speed V0 = 100 km/h (wheel radius rw = 0.314 m, 

initial angular speed of the disc 0 = 88.464 s
–1

) to standstill is analysed using the finite element 

method (COMSOL Multiphysics 4.4). The two FE models of the disc brake were developed: 2D 

(axisymmetric) and 3D (three-dimensional) based on the same dimensions (Tab. 1) apart from the pad 

arc length 0 (Fig. 1) [4]. In the 2D axisymmetric model the pad arc length was 0 = 360°, whereas in 

the three-dimensional model the pad covered the rubbing path partly 0 = 64.5°. In order to obtain 

equal braking times for these two computational cases (at the constant coefficient of friction), 

different values of kinetic energy proportional to the surface areas of the pads were considered  

(Ek = 2.213 MJ for 2D and Ek = 396.5 kJ for 3D model). Those values corresponded with the vehicle 

mass of 5736.7 kg and 1027.8 kg, respectively. The properties of materials are shown in Tab. 2. 

The 2D FE model consisted of 3423 axisymmetric quadrilateral elements (1998 for the pad 

and 1425 for the disc). Fixed number of 95 of elements in the disc was used in radial direction giving 

the dimension of about 0.0005 m. In the axial direction the dimension of an element both in the pad 

and the disc increased with the distance from the contact surface, approximately from 0.000025 m to 

0.0005 m, respectively. The grid was consistent (the dimensions of elements) with the mesh 

developed in article [3]. The total overall number of the hexahedral elements of the 3D model of the 

pad-disc system was equal 3678 (576 for the pad and 3102 for the disc). The disc area in axial 
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direction was divided into 3 elements with the element ratio of 0.5, whereas the pad into 4 elements 

with the element ratio of 0.25, due to lower thermal conductivity in relation to the disc material. In the 

radial direction 8 elements for the pad and 11 elements for the disc were established, which gave 94 

elements in the circumference of the disc. The numerical calculations of the temperature fields in the 

pad and the disc were performed at constant f(20°C) and temperature-dependent coefficient of friction 

(Fig. 2). 

 
Table 1: Dimensions of the pad and the disc [4] 

 

 Pad Disc 

Inner radius, rp,d [m] 0.0765 0.066 

Outer radius, Rp,d [m] 0.1135 

Thickness [m] 0.01 0.0055 

 
Table 2: Thermophysical properties of materials of the pad and the disc [4] 

 

 
Cermet 

FC-16L (pad) 

Cermet 

FMC-16 (pad) 

Cast iron 

ChNMKh (disc) 

Thermal conductivity, K [W/(mK)] 0.79 34.3 51 

Specific heat, c [J/(kgK)] 961 500 500 

Density,  [kg/m
3
] 2500 4700 7100 

 
a) 

 

b) 

 
 

Figure 2: Temperature dependencies of the coefficient of friction for: a) FC-16L/ChNMKh; 

b) FMC-11/ChNMKh [4] 

 
a)

 

b) 

 
 
Figure 3: Temperature evolutions at the pad-disc interface (maximum radius Rd = Rp = 0.1135 m) obtained using 

2D model a) FC-16L/ChNMKh; b) FMC-11/ChNMKh; f(T) dashed lines; f(20°C) solid lines 
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a) 

 

b) 

 
 
Figure 4: Temperature evolutions at the pad-disc interface (maximum radius Rd = Rp = 0.1135 m) obtained using 

3D model: a) FC-16L/ChNMKh b) FMC-11/ChNMKh; f(T) dashed lines; f(20°C) solid lines 

 

The evolutions of temperature at the pad-disc interface calculated at the constant (solid line) 

and the temperature-dependent (dashed line) coefficient of friction using 2D and 3D models are 

shown in Fig. 3 and Fig. 4, respectively. The braking time for the friction pair FC-16L/ChNMKh at 

the constant coefficient of friction is either shorter or longer depending on the maximum temperature 

achieved (Fig. 3, 4),  which stems from the temperature dependencies of the coefficient of friction 

(Fig. 2a). For the pad made of FMC-11 and cast-iron brake disc, the braking time is underestimated at 

every studied contact pressure due to almost linear decrease in the coefficient of friction with the 

increase in temperature (Fig. 2b). As can be seen the maximum attained temperature from 3D model 

is several times lower than the temperature calculated using axisymmetric model (2D) due to different 

values of the kinetic energy (Ek = 2.213 MJ for 2D and 396.5 kJ for 3D model). 

 

4. Conclusions 

In this paper FEA of temperature distributions in the disc brake using 2D and 3D numerical 

models was carried out. Based on the obtained results it was concluded that neglecting the 

temperature dependence of the coefficient of friction may lead to significant change in the braking 

time (up to 40%), whereas the maximum temperature was almost unchanged. The direct comparison 

of the results calculated using 2D and 3D models at the condition of equal temperature on the contact 

surfaces of the pad and the disc was not possible, since the geometries were different (in 3D model the 

pad covers the rubbing path of the disc partly). The three-dimensional model allowed to identify the 

distribution of the coefficient of friction at the pad-disc interface, however the computational time was 

about 1000 times longer than using the axisymmetric model. 
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ABSTRACT

Based on a finite element (FE) model, we study the self-cleaning effect, also known as the lotus effect,
which is observed on hydrophobic surfaces. The interaction between these surfaces, liquid droplets, and
pollutant particles is investigated through a force analysis. Some forces such as the capillary force and
the contact line force, require the computation of the liquid droplet membrane deformation, governed by
the Young-Laplace equation. Based on this analysis, we compute the net force governing the behaviour
of a particle in contact with a 2D liquid droplet. This work provides answers to the following questions:
In a quasi-static framework, does the self-cleaning mechanism work for given surface and droplet param-
eters? I.e: would a particle be lifted off by the water droplet or not? How do the model parameters affect
the net force acting on the particle? The parameters considered in this study are: volume and density of
the liquid droplet, and size, density and contact angle of the pollutant particle.

Key Words: Self-cleaning mechanism, contact angle, static wetting, nonlinear finite element analysis,
droplet membranes

1. Introduction

The self-cleaning phenomenon, also called the lotus effect, is observed in some natural and artificial
surfaces. These are hydrophobic surfaces which minimize the surface contact with water, thus splitting
it into small spherical droplets. This allows a smooth rolling/sliding over the surface while sweeping
away pollutant particles. The mechanical principles behind this mechanism are complex as they involve
the coupling of several problems; contact on multi-scale rough surfaces, fluid flow inside the droplets,
droplet membrane deformation, wettability and contact angle, and the interaction between droplet
and pollutant particles. In this work, we discuss some aspects of the last three problems, and provide
solutions based on FE computations.

Liquid droplets can be treated computationally as a structural membrane governed by the Young-Laplace
equation, and an internal liquid flow governed by the Stokes equation. Different approaches can be used
to solve the two problems. A simple approach is solving the two problems in a decoupled manner, where
each problem is solved separately [1]. For quasi-static droplets, an internal bulk pressure substitutes the
flow, as in Sauer et al. [2] and Sauer [3], where stabilized formulations are presented for modelling of
liquid membranes in static contact, based on the finite element method (FEM). Osman et al. [1] studies
dynamic contact of droplets on rough surfaces, considering Stokes model for the internal liquid flow. The
interaction between solid particles and air bubbles inside liquids is investigated by Schulze [4]. Osman et
al. [5] and Kralchevsky et al. [6] discuss the force analysis involved in attachment/detachment of small
pollutant particles to/from large liquid droplets under the assumption of a pre-defined location of the
contact line as a boundary condition, and flat non-deformable liquid surface. Here we extend this study
to provide solutions for arbitrary sizes of droplets and particles. Furthermore, the contact line is obtained
from the numerical solution of the deformed liquid membrane.
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2. FE Model

2.1. Governing equations

A system of a quasi-static liquid droplet, a flat rigid surface and a spherical pollutant particle is consid-
ered. The difference between the internal and the external pressure on the liquid membrane interface 4p
is balanced by the surface curvature 2H, through the Young-Laplace equation,

2HγLG = 4p [N/m2], (1)

where γLG is the surface tension at the gas-liquid interface. The pressure difference across the interface
can be expressed as

4p = p f − pc, p f = p0 + ρwgy, (2)

where p f is the fluid bulk pressure comprising the capillary pressure p0 and the hydrostatic pressure in
terms of the liquid density ρw, gravity g and the surface height y. A contact pressure pc appears where
interactions between the membrane and other surfaces take place. For normalization, we multiply Eq.(1)
by L/γLG to obtain the dimensionless quantities marked with tilde,

2H̃ = p̃ f − p̃c, p̃ f = λ + B ỹ, B =
ρwgL2

γLG
, (3)

where λ is the Lagrange multiplier accounting for the capillary pressure, B is the so called Bond number,
and L is the characteristic length, usually taken as the droplet diameter. The contact lineLc is the location
where the three phases co-exist, forming a specific contact angle θ with the particle surface, denoted as θp

(θs in case of contact with the substrate surface). The force equilibrium at the contact line is expressed in
terms of the interfacial tractions tS G, tLG and tS L at the solid-gas, liquid-gas and solid-liquid interfaces,
respectively, as,

tS G + tLG + tS L + qn = 0, (4)

where qn is the force which counterbalances the normal projection of tLG w.r.t the substrate surface
(particle). The normal and tangential components of Eq.(4), respectively read,

γS G − γLG cos θ − γS L = 0, (5)

qn − γLG sin θ = 0, (6)

where γS L , γS G and γLG denote the surface tension at the three interfaces. Eq.(5) is known as Young’s
equation. The FE implementation of the above equations can be found in [3].

2.2. Force balance

The considered spherical pollutant particle of radius rp and density ρp, is subjected to four forces shown
in Fig.(1): particle weight FG, contact line force FCL, hydrostatic force FH , and buoyancy force FB,
defined as follows:

FG =
4
3
πr3

pρpg, (7)

FCL =

∮
Lc

tLG dLc, (8)

FH =

∫
aw

p f n daw ≈ p0AwN, (9)

FB = ρwgVwN, Vw =
πb
6

(3a2 + b2), (10)

where n is the normal to the wetted area Aw, while Vw is the wetted volume of the particle, N is the
normal to the contact line along the particle axis, and a & b are distances defined in Fig.(1). The effective
force Fe is the summation of all forces. Among the above parameters, the location of the contact line
Lc, the traction along the liquid-gas interface tLG, and the internal pressure p f require computation of
the membrane deformation. Friction and surface adhesion between the particle and the substrate are not
considered in this work.
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Figure 1: Schematic of the forces acting on a particle in contact with a liquid droplet.

3. Results and Discussion

Computations here are based on the stabilized FE formulation for liquid membranes [3]. In the following
examples, we consider quasi-static droplets in contact with a super-hydrophobic flat surface (θs = 180◦)
and a spherical pollutant particle with various contact angle (θp = 30◦−180◦). The particle is considered
fixed to the substrate surface at different locations, and the membrane deformation is computed for dif-
ferent parameters such as the volume and density of the droplet and the particle, as well as θp. Knowing
the location of the contact line and the associated membrane surface tangents, the force balance can be
obtained, and thus the effective force Fe. The vertical component of Fe determines whether the particle
is lifted to the droplet or not.

3.1. Example 1

We consider a weightless spherical droplet (B = 0), of radius R = 2L, with Dirichlet boundary conditions
at the upper half, in contact with a spherical rigid pollutant particle fixed at three different locations along
the vertical axis of symmetry of the droplet. These locations are distinguished by the vertical distance yp,
measured from the centre of the particle to the horizontal level (marked with dotted line in Fig.(2)), which
is tangent to the undeformed droplet from the bottom. Although the contact angle of the particle is fixed
to θp = 120◦, the direction of the effective force Fe alters as the particle penetrates into the droplet (i.e yp

increases), as shown in Fig.(2). This is due to the membrane deformation, which causes a change in the
direction of the contact line force, which is dominant in the case of relatively light particles (ρp = ρw).

Figure 2: FE solution of a weightless droplet (B=0) in contact with a pollutant particle of contact angle θp = 120◦

and radius rp = 0.05L, fixed at a distance yp = −0.025, 0, and 0.05L (left to right). Black arrows show the direction
of the effective force Fe.

3.2. Example 2

In the second example we consider an axisymmetric water droplet (B = 0.1316, R = 2L) on a flat surface
with θs = 180◦, and in contact with a spherical rigid pollutant particle ( ρp = ρw, rp = 0.05L) fixed at a
point on the substrate surface where the droplet membrane is just touching the particle at θp = 180◦ (see
Fig.(3)). Dirichlet boundary conditions in the horizontal direction are applied to the droplet membrane at
the axis of symmetry. The droplet deformation is shown for the range of θp = 30◦ − 180◦ in Fig.(5). The
particle is lifted towards the droplet when the sign of Fe · g is negative, which means Fe points upwards,
at a critical θp. A smaller particle is lifted to the droplet at a higher contact angle, as observed in Fig.(4).

326



Figure 3: FE solution for a droplet in contact with a flat
surface (θs = 180◦) and a spherical rigid particle with
θp = 180◦.

Figure 4: Equilibrium force at various contact angles θp

of the pollutant particle.

Figure 5: FE solution of a deformed water droplet (B=0.1316) in contact with a flat surface, and a pollutant particle
(rp = 0.05L) of contact angle θp = 180◦, 120◦, 90◦ and 30◦ (left to right). Black arrows show the direction of the
tangential contact line force.

4. Conclusions

A force analysis for the interaction of pollutant particles with quasi-static liquid droplets is presented.
A numerical treatment of the droplet deformation is required to determine the contact line force. A
particle is lifted up to the droplet if the contact line force is large enough to overcome the other forces.
The direction of the contact line force depends on the contact angle and size of the particle, membrane
deformation at the contact line, the droplet volume, and the penetration of the particle into the droplet.
The first example showed that a detachment is possible if the particle is further penetrated, for example
by other forces, into the droplet. The second example showed that smaller particles are lifted at higher
contact angles, compared to larger particles.
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ABSTRACT 

This paper presents the space-time discretization for frictional rolling contact of deformable bodies based on 

finite element and finite difference methods. Due to the some difficulties in convergency and dissipate in kinetic 

energy at the contact nodes the dynamic modelling of contacts encounter with some restrictions. In this paper in 

order to overcome of these restrictions, the space-time discretization implemented based on Roth’s method. At 

results based on recent works two examples have been investigated for deformable cylinder which rolls on the 

deformable foundation based on steady state and transient assumptions. Results show that this method has good 

convergency for modelling of dynamic rolling contact problems. 

 

Keywords: rolling contact; transient and steady state contact; dynamic contact 

 

1. Introduction  

Rolling contact problem has wide extention in industrial applications such as rollers in printing 
machines, ball bearings present in rotating machines, railway and etc. fatigue problem in railways and  

ball bearings and dynamic instability in rolling printing causes some problems in practics for material 
design of these components. the rolling contact problems have been invesigeted experimantaly in 
details, however the modeling of this phonomena in analitical and numerical done by some reachers. 
Numerical methods which are introduced in this field may be classfy as local analysis contact domain 
based on half space assumptions which numerically discretized and solved by boundary element 
methods and global methods based on the general continuum mechanics approach which are solved 
by finite element method [8].  local analysis contact domain due to the use of  half space assumptions 

encountered with restirictions in general applications. the Finite element method for the rolling 
contact  based on some assumptions have been extendened in three decades.  At First  in 1986 J.T. 
Oden et all [5] Published the solution for rolling viscoelastic cylinder with finite deformations and R. 
Kennedy [7] extended the Finite element analysis for the steady and transiently moving/rolling 
nonlinear visceoelastic structures. At 1987 the formulation and computational results for Three-
dimensional finite deformation, rolling contact of a hyperelastic cylinder implemented  by J.M. Bass 
[4] and along this thay modeled the three-dimensional rolling contact  for a reinforced rubber tire[6]. 
J.J. Kalker [3] introduced the rolling contact based on the hertzian assumption in the Three-

dimensional for Elastic Bodies and at following this approach was modeled numerically with non 
hertzian assumption by K.P. singh and B.paul [2]. G. Hu and P. Wriggers [1] in order to imporove the 
numerical solution via an itrative solution procedure and finite element mesh refinement, published an 
addaptive Finite element for hyperelastic in finite deformation based on residual based posterior error 
estimator for rolling contact problem with coulomb friction. Due to nature of rolling contact in some 
problem, some reasercher  [1,2,3], solved and simplified this in the stationary point and the steady 
state case. Along this an arbitrary Lagrangian Eulerian (ALE) formulation of bodies in rolling contact 

based on the Theoretical foundations and finite element approach have been introduced by U. 
Nackenhorst[8] in 2004. In the ALE discretization the motion of body are decompose in two mapping. 

the purely rigid body motion by   and the deformation by   which described separately by Eulerain 

and Lagrangian framework respectively. Rolling contact problems in nature are dynamic problems. 
Each particale that enter in the Contact patch and leave it,  may experiments various state such as 
sliding or sticking case instantaneously. If the overall motion of the bodies will be constant at all time, 
then the overall steady state assumption may be acceptable. The solution  of rolling contact depends 
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on the history of the contact. In general, The dynamic contact problems have transeint nature i.e. the 
overall motion of bodies in contact varies with time. However steady-state case is rarely true in 
reality, especially  in acceleration and braking phase of motion for moving vehicles. While the 
transient case are approperiate for modeling of dynamic contact problems under time-varying velocity 

conditions. In this section in order to model the general dynamic contact problems in numerical 
framwork, the weak formulations have been presented. The time derivative of the displacement is 
replaced by its finite difference and the initial boundary value problem is converted to a sequence of 

static problems which have been solve by finite element method. In the numerical modleing of 
dynamic contact there are two difficulties which causes failure in ruslts. First there is  may not 
uniquness in sulotion of contact dynamic for two bodies and second the dissipation in kinetic energy 
at contact nodes causes oscillations of the energy on the contact boundary. In this paper in order to 
overcome of these difficulties the Rothe’s method  have been used in time and space discritization. In 
the result section in order to show the robustness of presented numerical model, two examples have 
been solved and the dynamic contact of two deformable bodies with transient and steady state motions 

investigated numerically. 

2. Formulation

In this section the formulation we will drived in spatial discretization based on semi-discrete Galerkin 
method. By ’semi-discrete  the time dimension remains continuous at this moment. in the Galerkin  
Method, the arbirary functions such as displacment and its time varients combinations over the two 
bodies express as a linear combination of the basis function: 

1 1

( , ) ( ) ( ), ( , ) ( ) ( )
n n

i i i i

i i

u x t U t x v x t V t x 
 

    (1) 

Where 
1 2{ ( ), ( ),..., ( )}nx x x    are the set of Courant basis functions for bodeis in contact over 

where 2

1 2{ }R    while the matrix form of coefficients on eq (1) can be written as: 

1 1( ) ( ( ), ( ),..., ( ), ( ))T

n nU t U t V t U t V t (2) 

2.1   Discretization of the contact forces 

Let { ( )}c i ci x contact area    be the set of indexes of the contact nodes. select the { }
ci i 
and 

{ }
ci i   such that ( ) ( )i j i j ijx x    as basic functions for the approximation of the normal 

and tangential displacements and stress respectively. So we can write: 

1 1( , ) ( ) ( , ) ( )

c c

n i i i n ix t x n ds n x t x ds   
 

 

2 2( , ) ( ) ( , ) ( )

c c

n i i i n ix t x n ds n x t x ds   
 

 

(3) 

Where n is the approximation of the normal contact stress and 1 2( , )T

i i in n n  is the normal 

vectors at the contact nodes. At following the matix form of eqation (3) with contact conditions will 

be drive. over domain of contact we can write:  

( , ) ( , ). ( ) .T

n i i i i cu x t u x t n U t N i t T       (4) 

where iN contains on appropriate positions  the coordinates of the unit outward normal vector in  at 

,i cx i I  and zeros elsewhere. By this discritzation the contact for non-penetration condition will be 

written as follows: 

( ) . 0 ( )T

i cU t N i t T overall time      (5) 

And 

( , ) ( ) ( ) 0

c

n i ni cx t x ds t i I t T 


      (6) 
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Finally, since the condition 0

c

n iu ds


  one can write: 

( ) . ( ) ( ) . ( ) 0
cc c c

T

n i n i i i n i

i I i I

u ds U t N x ds U t N x ds    
  

     (7) 

its matrix form is given by: 

( )( ( ) . ) 0
i

T

n i ct U t N i t T      (8) 

Similarly, in the tangential direction we may define ( ) ( , ) ( )

c

ni t it x t x ds


   and the vectors 

iT such that: 

( , ) ( ) . ,T

t i i cu x t U t T i t T     (9) 

By using  ( )
c

t t i ii
w w x 


 as test funtion and by assuming positive and constant value for 

coefficient of friction   over the whole contact boundary and denote  ( ) ( ) .T

t t iU t U t T , the 

contact candition in tangential diriection will be write as follwing: 

( ( ) ( )) ( ( ) ( ) ) 0
i

c

t t i t i n t i t i cw x U t ds w x U t ds i t T    
 

        (10) 

Finally equation (10) is equivalent to: 

( ) 0 ( )

( ) 0 ( ) ( )sgn ( )

i i i

i i i i

t t n c

t t n t c

U t t i t T

U t t t U t i t T





          


        

(11) 

2.2 finite element discretization 

In this section the semi-discrete matrix formulation of the contact problem will be implemented. We 
define the discrete initial displacement and velocity vector as follows: 

0 0 1 0 2 0( ( ) , ( ) ,..., ( ) )T T T T

nU u x u x u x (12) 

And 

0 0 1 0 2 0( ( ) , ( ) ,..., ( ) )T T T T

nU v x v x v x (13) 

And the matrix form for Lagrange multipliers in normal and tangential direction write as 

following matrix notation: 

1
( ) ( ( ),,..., ( )) 1:

N

T

n n n ct t t i N t T         (14) 

1
( ) ( ( ),,..., ( )) 1:

N

T

t t t ct t t i N t T         (15) 

the matrix notation of the momentom equation for two bodies in contact can be difined as follows: 

0 0

( ) , ( ), ( )

( ) ( ) ( ) ( ) ( )

(0) , (0)

t

T

n n t t

find U t t t such that t T

M U t K U t L t B t B t

U U U U

 

 

 

   

 

 
(16) 

Where K  is the total tangential stiffness matrix without contact, M  is total math matrix, B is 

addetive sitffness matrix due to the contact presense and L is the extenal force matrix in each time 

step. by linearization of equation(16) in space dicription, we have: 

0 0 ( ) ( ( ), ( ), ( )) ( )

0 0 0 0 ( ( ), ( )) 0 ( ) 0

0 0 0 0 ( )( ( ), ( )) 0

n n t

n n n n

t t n t t

UU UUU u n t

n U n

tt

K K KM U t R U t t t U t

R U t t K K t

tR U t t K K

  

   

    

         
    

           
                

(17) 
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2.3   Time-stepping algorithms 

in the section 2.2 we have drived the spatially discretized form of the problem while the time 
dimension kept continuously at all time. So at following via the timestepping procedures the total time 
discretization will be accomplished. So we divide the time interval T into subintervals with non-

overlapping and equal lengths as following: 
1

1
0
[ , ]

L

k k
k

T t t





   
(18) 

Where 
0 0, .Lt t T   and

1kk t   and 
1 .k kt t t    for simplicity one can may use the of these 

notations ( ), ( ), ( )k k k

k k ku U t U t a U t   . At this process  the solution satisfying equation 

(16) only in a finite number of time-steps defined by tk. Thus in order to find the other solutions the 
totally discretized problem defines as follows: 

  1 1 1

1 1 1 1 1

0 0

0 0

0,1,..., 1 , ,

,

k k k

n t

k k k T k T k

n n t t

k L find a such that t T

Ma K u L B B

u U U

 

 



  

    

    

   

 

(19) 

For the solution of this problem the direct integration algorithms have been proposed which may be 

derived from Taylor’s expansion of the displacement U and the velocity U at kt  With respect to 

time. 
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