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PREFACE 

 

 

These Proceedings contain more than 70 extended abstracts of the work presented at the 19
th

 

Annual Conference of the UK Association for Computational Mechanics in Engineering 

(ACME) held at the Heriot-Watt University in Edinburgh on 5
th

 and 6
th

 April 2011. 

The Association was founded with the aims of promoting research in computational 

mechanics in engineering within the UK, and establishing formal links with similar 

organisations in Europe and the International Association for Computational Mechanics 

(IACM). 

The principal activity of ACME involves the organisation of the annual conference. The first 

such conference took place at the University College of Wales Swansea in 1993. The 

conferences have provided a forum for reviewing research activities in many areas of 

mechanics, with an emphasis on interdisciplinary aspects. 

The conferences have proved to be particularly useful events for drawing together researchers 

from different disciplines, and especially for providing young researchers with opportunities 

for presenting their work. 

The organisers of the 19th ACME Conference took the initiative to organise the 1
st
 ACME 

School, initially proposed by Professor Nenad Bicanic and other AMCE members. Many 

thanks to the lecturers of this School: Professor Harm Askes, Professor Jon Trevelyan and Dr. 

Charles Augarde, who made it happen. It is hoped the ACME School becomes part of the 

future annual ACME Conferences. 

I would like to express my gratitude to the three invited speakers for their contribution to the 

conference and the time and effort they put. 

I would like to acknowledge the assistance of Ms Anne Ormston who has played an 

invaluable role in organising the Conference. 

I hope you enjoy your stay in the historic city of Edinburgh and the ACME meeting. 

 

 

Omar Laghrouche 

Vice-Chairman of ACME 2010/11 
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ABSTRACT 

Significant progress has been made over the last decade in the effective modeling of the failure and 

transition from continuum to discontinuum of quasi-brittle materials in many defence, mining and geo-

mechanical applications. However, in several problems, the presence of an additional phase, either 

gaseous, liquid or both, often controls the behaviour of multi-fracturing material systems.  Examples of 

such interaction include fracture induced in rock masses by the presence of fluid flow and the generation 

of gas pressure fields due to explosive detonation which drives the fracturing process in rock blasting.  

Although a generic modelling strategy can be developed for a broad range of such problems, nevertheless, 

some applications require an individual approach to solution.  The main objectives of the presentation is 

to (i) consider the essential issues related to an effective computational implementation of a continuum-

discontinuum formulation of quasi-brittle materials under various loading conditions, particularly 

involving fluid interaction and (ii) model the subsequent flow of fragments within such a secondary 

medium. 

Introduction 

Key issues that need to be addressed for the successful modeling of continuous/discontinuous 

transformation of quasi-brittle materials include (i) the development of constitutive models which govern 

the material failure; (ii) the ability of numerical approaches to introduce discontinuities such as shear 

bands and cracks generated during the material failure and fracture process and (iii) the effective 

simulation of contact between the region boundaries and crack surfaces both during and after the failure 

process. The numerical treatment of multi-fracturing solids necessitates a blend of continuous and discrete 

computational processes to provide adequate solution. Modeling aspects related to continuum mechanics 

include the development of constitutive models for a range of materials under a variety of loading 

conditions, element technology for near-isochoric deformation conditions, adaptive mesh refinement and 

damage modelling for prediction of the onset of fracture (de Souza Neto et al. 1998, Klerck et.al 2003, 

Owen et al. 2004). With the development of fractures, the domain becomes discontinuous in nature and 

computational issues include strategies for discrete crack insertion that preserve the system energy, 

adaptive remeshing to accommodate the fracture distribution, global search algorithms to monitor contact 

between the resulting particle system, development of appropriate contact interaction models and time 

integration of the system equations. Implementation of the entire solution strategy within a parallel 

processing environment is a further issue.  

Failure Strategies Several fracture criteria available in the literature have been previously employed to 

predict material failure that may result from the gradual internal deterioration associated with high 

straining. These predictions remain, to a great extent, relegated to post-simulation analyses. The adoption 

of a methodology, whereby the coupling between material behaviour and deterioration is considered at 

the constitutive level during the process simulation offers a more scientifically based alternative to 

empirical methods with a potential improvement in predictive capability (de Souza et al. 1998). Fracture 

in quasi-brittle materials is generally an anisotropic phenomenon, with the coalescence and growth of 

micro-cracks occurring in the directions that attempt to maximise the subsequent energy release rate and 
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minimise the strain energy density. The optimum propagation paths maintain an orientation normal to the 

maximum extension strains. The localisation of micro-cracking into effective crack bands results in 

softening normal to the crack direction. On a continuum basis, fracture is considered in the form of a rate 

dependent rotating smeared-crack model utilising tensile strain-softening to represent material 

degradation. The smeared crack model provides a mechanism for directional softening within a 

continuum framework by envisaging a cracked solid as an equivalent anisotropic continuum with 

degraded properties in directions normal to crack band orientation. After initial yield the rotating crack 

formulation introduces anisotropic damage by degrading the elastic modulus in the direction of the 

current principal stress invariant. The model enforces coincident rotation of the principal axes of 

orthotropy and the principal strain axes. For the description of material degradation and subsequent 

discrete fracturing of quasi-brittle materials under multi-axial stress states the Mohr-Coulomb failure 

criterion, capped Drucker-Prager models or other laws can be coupled with the fully anisotropic tensile 

smeared crack model (Klerck et al 2003) in which an explicit coupling is introduced between the inelastic 

strain accrued by the Mohr-Coulomb, or other, yield surface and the anisotropic degradation of the 

mutually orthogonal tensile yield surfaces. 

Although energy dissipation in the crack band model is rendered objective by normalising the softening 

curve with respect to the specific fracture energy, the spatial localisation is necessarily arbitrary. 

Localisation occurs in individual elements, resulting in the width of localisation and the crack band 

spacing depending on the mesh discretisation. Consequently, a non-local averaging of the damage 

measure is adopted in each orthotropic direction to ensure discretisation objectivity by introducing a 

length scale to govern the width of the localisation zone. (Klerck et al 2003). When the unloading process 

within a localisation zone is complete, a discrete (and physical) crack is inserted as described below. 

Discrete Crack Insertion  The process of inserting a discrete fracture into a continuum based finite 

element mesh follows three key steps: (i) the creation of a non local failure map that is based upon the 

weighted nodal averages of the damage within the finite element system; (ii) the failure map is used to 

determine the onset of fracture within the domain; and (iii) a numerical scheme is employed to perform 

the topological update whereby a fracture is inserted into the domain, and any additional nodes are 

inserted and necessary elemental connectivities updated. 

The so-called failure factor is typically defined as the ratio of the inelastic fracturing strain and the critical 

fracturing strain or the ratio of damage and the critical damage. Discrete fracture is realized through the 

failure factor reaching unity when a discrete fracture of the given orientation is inserted into the finite 

element mesh, passing through the associated nodal point, which necessitates local mesh refinement in the 

vicinity of the newly introduced crack in order to provide an adequate element topology. 

Contact and Post-Failure Modelling The particles generated under multi-fracturing conditions are highly 

angular and are represented by multi-faceted solid entities. It is well accepted that such particle angularity 

is a crucial factor in governing flow characteristics. Due to the large diversity of entity shapes, a two-

stage strategy is employed for contact detection (Owen et al., 2004). In the first stage, all objects are 

approximated by simple rectangular bounding boxes and a list of potential candidates for contact is 

identified. In the second stage, each potentially contacting pair is locally resolved on the basis of their 

kinematic relationship, employing the actual geometric shapes involved. 

The global contact search can be conducted using either tree-based detection schemes, such as the 

Augmented Spatial Digital Tree (ASDT), which generally have complexity O (N Log N). Their 

performance can be improved by incorporating the spatial coherence of objects within successive time 

instants in the algorithmic framework. More recent developments in this research have focused on cell-

based approaches that display O (N) complexity. Contact interaction laws have been implemented within 

the framework of penalty methods for all contact pairs. The most challenging aspects of the contact 

treatment include modeling of sharp corner-to-corner contact and maintaining total energy conservation. 

Borehole Breakout As a test of the ability of the model to capture the contrasting failure mechanisms 

exhibited by strong and weak rocks under different confining pressure conditions, Figure 1 illustrates the 

problem of borehole breakout modeled as a 2D problem. The initial continuum mesh is shown and the 
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horizontal confining pressure is maintained at a constant value whilst the vertical pressure is 

incrementally increased at the rate indicated. The properties that describe the behaviour of the material are 

provided in Owen et al. 2007, where the parameters required are readily identified from standard triaxial 

and tension tests. In addition to the usual elastic properties, the essential parameters are the tensile 

strength, compressive strength, fracture energy release rate and the standard Mohr-Coulomb data. An 

additional parameter is the frictional sliding coefficient on newly created discrete cracks. The material 

parameters employed correspond to Lac du Bonnet granite (Lee et al. 1993) and the weak sedimentary 

rock Cardova cream limestone (Haimson et al. 1993). 

 

 

 

  

 Figure 2: Comparison of experimental and 

numerically predicted failure patterns for Granite 

(upper)and Limestone (lower) 

 

Figure 2 illustrates the fracture patterns developed for the two materials where it is seen that 

fundamentally different mechanisms are involved. For the granite specimen, Figure 2(a), failure takes 

place by the development of sub-vertical fractures at the regions indicated and very good agreement is 

evident between the experimental observations (Lee et al. 1993) and the numerical predictions. In Figure 

2(b) similar comparison is made for the Cardova cream limestone, for which failure takes place by the 

development of fracture shear bands. In the computational model these manifest themselves as distinct 

crack bands formed by en-echelon systems of tensile fractures. Again, there is a strong correspondence 

between the experimental failure mode (Haimson et al. 1993) and the numerical simulation. It is 

important to note that the computational model has been able to reproduce these two fundamentally 

different failure mechanisms by only changing the relevant material parameters. 

 

Fluid flow within fracturing rock masses 

Throughout the geomechanics community there is considerable interest in modelling groundwater flow 

through fracturing rock masses. Application areas include slope stability problems and hydraulic 

fracturing in the oil recovery industry. The essential features of such problems are the flow of water both 

Figure 1. Borehole breakout example: 

Geometry and mesh. 
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through individual rock blocks and along joint systems.  Consequently, there is a need to model Darcy 

type seepage within the continuous rock and pipe (sheet in 3D) network flow along the joint planes.  This 

fluid response is strongly coupled to the deformation of the rock arising from loading and progressive 

fracturing, which in turn is driven by the fluid pressure imposed on the rock.  Computationally, these 

problems can be treated by employing the same mesh that is used to model fracture within individual 

blocks to represent seepage flow and using compatible joint elements to simulate inter-block fluid flow. 

In order to understand the complex interplay between fluid and fractured rock, several approaches and 

theories have been proposed. One strategy aims to model the flow through cracks without taking into 

account the flow within the material itself. This simplification is reasonable for soils or rock-like 

materials with low permeabilities, since the flow along the fractures is dominant. However, an accurate 

analysis of the in situ stress field can only be obtained if the rock material itself is treated as a porous 

medium. This is particularly important for rock masses that contain a high degree of small scale fractures 

resulting in high permeabilities so that the seepage behaviour becomes prominent. The main modelling 

issues are briefly discussed below. 

Constitutive & governing equations for porous materials 

The widely used “effective stress” in porous media employs the Biot number which is introduced to take 

into account the volumetric deformability of the particles. It is related to the bulk modulus of the skeleton 

and the bulk modulus of the grains. The effective stress is related to the incremental strain and rotation by 

means of an incremental constitutive relationship involving the rotational stress in the Green-Naghdi rate 

and a fourth order tensor defined by state variables and the direction of the increment. The governing 

equations can be written in a u-p formulation that involve (i) the total momentum equilibrium equation for 

the partially saturated solid-fluid mixture where the acceleration of the fluid relatively to the solid and the 

convective terms are neglected. This assumption is valid for medium speed and dynamics of lower 

frequency phenomena, (ii) an equation that ensures mass conservation of the fluid flow in the seepage 

field and (iii) a mass conservation equation based on a cubic law for the flow within the fracture where an 

individual fracture is treated as a single confined aquifer. The system defined by the above three 

governing equations and appropriate boundary conditions describes a well-defined problem which can 

then be discretized by standard finite elements in space and by a central difference approximation in time. 

 

 

 
 

 

Figure 3. Vertical stress profile in the plane of the                         Figure 4. Influence of the leak-off on the size of the  

fracture for elastic and elasto-plastic simulations.                                        fracture.
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Numerical example The numerical model presented here is validated against the experimental results 

published by van Dam et al. 2000. The experiment consists of cubic blocks 0.30m in size, which are 

loaded in a true triaxial machine to simulate in-situ stress states. After reaching the desired stress state, a 

high-pressure pump injects fluid to propagate the crack. Artificial rock samples made of cement, plaster 

and diatomite have been used. The fracturing fluid employed was silicon oil, which approximately 

behaves as a Newtonian fluid. Further details of the experiments can be found in van Dam et al. 2000. 

Three different cases have been considered: elastic, elastoplastic and poroelastic analyses. In the elastic 

and elastoplastic cases the vertical stress (σyy) profile has been compared with the ones provided in van 

Dam et al (2000). In the poroelatic case, different permeabilities for the rock were evaluated in order to 

verify the influence of the leak-off upon parameters such as length and aperture of the fracture. The 

permeability varies from 0 to 50000 miliDarcy (mD). The mechanical behavior of the rock is described 

through a Mohr-Coulomb model which employs the Newton-Raphson method in the return mapping 

scheme. The cohesion and friction angles are assumed to be given functions of the effective plastic strain. 

An interface law based on a cohesive-zone model has been used to describe the rupture process at the 

fracture tip. In this model, the softening curve is obtained through the fracture energy release rate. Within 

this framework, the fracture is opened when the tensile strength and fracture width reach a critical value. 

Figure 3 shows that the vertical stress of the current model (σyy) agrees well with the results of van Dam 

et al (2000). The aperture in the elastoplastic case is larger than the elastic case due to the inelastic 

deformations. Also, the net pressure necessary to propagate the fracture in the elastoplastic case must be 

higher than in the elastic case. This can be seen in the vertical stress profile, where an increase in (σyy) is 

experienced near the fracture tip, which is at the same position in both analyses. Figures 4 shows the 

aperture profiles in the poroelastic analyses for rocks with different permeabilities. It can be seen that in 

rocks with higher permeabilities, the length and width of the fracture reduces due to an increase in the 

leak-off from the fracture to the porous rock. 

 

Rock blasting.  

In this application coupling takes place through interaction between the gas pressure due to explosive 

detonation and the progressively fracturing rock.  The most appropriate route to solution is provided by 

superposing a background Eulerian grid over the Lagrangian mesh used for fracture modelling (Owen et 

al. 2004).  Within this regular Eulerian grid the gas pressure modelling is based on the mass conservation 

and momentum equations for gas flow employing directional porosities derived from the rock fracture 

simulation. The coupling takes place through an interdependence between the evolving gas pressure 

distribution driving the fracturing process which, in turn, provides the porosity distribution which controls 

the gas pressure.  Computationally, solution can be effectively provided through use of a staggered 

solution scheme based upon time integration of the two fields with partitioned time stepping. The theory 

of gas flow through rock cracks involves a mass conservation equation in which the component velocities 

of the gas are related to the gas density and the local directional porosities of the rock mass. The gas 

velocities are obtained through the momentum equation as a function of the pressure gradients. Since the 

gas pressure arises from the detonation process, the initial time/pressure relation is obtained using the 

equation of state for the explosive. 

Numerical results are presented below for a HPE test. This is a plan view (plane strain) test case where a 

borehole of 165 mm diameter, containing an ANFO explosive charge, is located at the centre of a 3m x 

3m square rock mass. The meshes employed for the rock fracture and gas pressure development are 

shown respectively in Figure 5 (a) and (b) and the crack patterns developed at 1000µs are illustrated in 

Figure 5 (c), where the surface cracking due to reflection of the compressive pressure pulse as a tensile 

wave is readily apparent. 
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(a) Finite element mesh (b) Gas mesh (c) Fracture patterns at 

1000µs. 

Figure 5.  Rock blasting – HPE benchmark test. 

Particle transport. The treatment of particle transport problems crucially depends of the size of the 

particles in relation to the domain size.  For small particle sizes, as occur in fluidised beds for example, 

effective methods have been developed based on background fluid grids in which fluid forces can be 

computed and applied to particles residing within a particular grid cell. However, for problems in which 

the particle sizes are large and extend over several grid sizes, alternative solution strategies must be 

adopted. One option, which is considered here, is to employ a Lattice-Boltzmann (LB) procedure to 

model the fluid flow. This has the advantage that large particle sizes can be accommodated and moving 

boundaries of the fluid domain can also be incorporated. Furthermore, employing the Discrete Element 

Method (DEM) to account for the particle interaction in the problem leads naturally to a combined LB-

DEM solution procedure. Key modelling issues involved in this coupled solution strategy (Feng et al. 

2007) include the standard LB formulation for fluid flow, the interaction between fluid flow and 

boundaries and moving particles, incorporation of a turbulence model for high Reynolds number cases, 

and the interaction between solid particles in the DEM. The powerful modelling ability of the LB-DEM 

approach is illustrated by an example where a submerged bed of spherical particles of varying sizes are 

extracted through a vertical column by a vacuum action. An excellent comparison was obtained between 

experimental measurements and numerical predictions for the mass of excavated material as well as for 

the profile of the particle bed shown in Figure 6. 

 

  

 

Figure 6.  Comparison of numerical prediction and experimental measurement of the excavated bed 

profile. 
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Conclusions 

The paper highlights the numerical issues related to the modelling of multi-fracturing materials under 

general mechanical loadings and particularly describes the numerical frameworks necessary to account 

for the interaction between (fractured) solid masses and fluid/gas phases. It is emphasised that different 

modelling strategies may need to be applied in order to effectively deal with specific coupling 

phenomena. Examples have been presented to demonstrate the applicability of the proposed methodology. 

Other application areas in which Lattice-Boltzmann approaches can also be effectively used include the 

modelling of heat transfer between a moving particle system at elevated temperatures and a surrounding 

pressure driven gas environment, using a double population LB formulation to describe the gas velocity 

distribution and thermal energy balance (Owen et al. 2008). Additionally, an important issue in block 

cave mining operations is fines migration in which fine particles that are several orders of magnitude 

smaller than the main rock fragments flow through the moving particle system. In this multi-scale 

problem the fines can again be modelled within a LB setting (Owen et al. 2011) using a power law fluid 

or Bingham plastic formulation to describe the quasi-continuum flow involved, which is then coupled to 

the DEM modelling of the larger rock fragments. 
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ABSTRACT 

Presented in the paper is new approach that has recently appeared in the literature founded on transport 

equations and the concept of non-physical variables.  The approach can be applied to both mesh and 

meshfree methods (although restricted here to meshes) and can cater for multiple discontinuities.  The 

non-physical approach permits the precise removal of weak discontinuities arising in the governing 

transport equations. In order to facilitate the application of the approach the FE equations are presented in 

the form of weighted transport equations.  The method utilises non-physical forms of the physical 

variables and these forms possess a remarkable source distribution like property at a discontinuity.  It is 

demonstrated in the paper that it is through this property that multiple discontinuities can be exactly 

removed from an element so facilitating the use of continuous approximations. 

1  INTRODUCTION  

The development of efficient mesh-based and meshless methods for modelling moving boundary 

problems continues to be of interest to the research community.  Moving boundary problems and material 

discontinuities offer substantial challenges and many numerical approaches have been proposed.  In this 

paper the method presented in reference [1] and [2] is further investigated and extended to cater for multi-

physics typically present in phase change and solid-liquid coupling problems.  The focus here is on 

transport equations rather than the governing partial differential equations or their variational equivalents 

as these offer advantages hitherto neglected by the research community.  Although it is well appreciated 

that governing partial differential equations can be obtained from transport equations the direct use of 

transport equations appears at first sight to be limited to finite volume type formulations.  However, the 

recent arrival in the literature of weighted forms of transport equations along with equivalent equations 

provides a route for numerical formulation that captures desirable conservation properties and 

discontinuous physics. 

2  CONSERVATION LAW FOR A MOVING CV 

A conservation law for a moving domain Ω  defined by the diffeomorphism ( )t,∗χχχχx , is 

( ) ∫∫∫∫
ΩΓΓΩ

ρ+Γ⋅−=Γ⋅−ρψ+ρψ bdVdnJdnvvdV
tD

D *

*

*

     (1) 

where ρ  is density, v  is material velocity, nJ ⋅  is a flux and b is a source term, and where Ω  is a 

control volume which is transported at velocity tDDv
***

x= , i.e. Ω  is time dependent and is a portion 

of the physical space and moves relative to the physical material. 

It is possible to consider a reference control volume 
*Ω  and define a mapping between points 

** Ω∈χ  

and points Ω∈x , i.e. form ( )t,**
χxχ ֏ , so that ( ) tt,tDDv ***

∂∂== *
χxx , where the time partial 

derivative is partial in the sense that 
*
χ  is held constant when performing the derivative.  This concept is 

essentially identical to that used when defining the material derivative DtD  and material velocity 
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( ) tt,DtDv ∂∂== Xxx  but material points are not necessarily tracked in the case of the mapping 

( )t,**
χxχ ֏ .  Note the use of tDD **

 rather than the ordinary derivative dtd  in equations (1) even 

though these are identical when applied to a function of t.  Although the integrals ∫Ω
ρhdV  and ∫ΩρdV  

are functions of t the derivative tDD **
 is used to immediately relay the notion that Ω  is a control 

volume transported through 
*

v .  Although 
*

v  is present in equations (1) it cannot influence the value of 

ψ  as this would be physically meaningless.  Typical transport equations are: 

( ) 0dnvvdV
tD

D *

*

*

=Γ⋅−ρ+ρ ∫∫
ΓΩ

        (2) 

( ) ∫∫∫∫∫∫
ΩΩΓΓΓΩ

⋅ρ+ρ+Γ⋅−Γ⋅σ⋅=Γ⋅−ρ+ρ dVbvQdVdnqdnvdnvveedV
tD

D *

*

*

  (3) 

( ) ∫∫∫∫
ΩΓΓΩ

ρ+Γ⋅σ=Γ⋅−ρ+ρ dVbdndnvvvdVv
tD

D *

*

*

     (4) 

( ) ∫∫∫∫
Ω

−

Γ

−

ΓΩ

ρ+Γ⋅−≥Γ⋅−ρ+ρ QdVTdnqTdnvvssdV
tD

D 11*

*

*

     (5) 

for transport of mass, energy, momentum, and entropy, where vvue
2

1 ⋅+= , u and s are internal energy, 

and entropy per unit mass, nq ⋅  is heat flux, Q represents a heat source, σ  is the Cauchy stress tensor 

and b  is a body force.  The equality arising in equation (5) is as a consequence of irreversibly arising 

from finite temperature differences and dissipation. 

3  MECHANICAL ENERGY EQUATIONS AND DISSIPATION 

A particular interest here is the splitting (if possible) of the energy equation (3) into thermal and 

mechanical parts.  To achieve this partition it is shown here that a necessary and sufficient condition is 

that the solid possesses an entropy function that is dependent on temperature only.  Consider for 

demonstration purposes the deformation of a hyperelastic material. 

 
Theorem 3.1  A hyperelastic material dependent on state variables temperature T and the independent 

strain components 
ijE  of the Green-Lagrange strain tensor E  has internal energy in the form 

ETu u u= + , where 
Tu  and 

E
u  are functions of T and 

ijE , respectively, if and only if its entropy is 

dependent on temperature only. 

 

Proof 3.2: The central equation of thermodynamics for the solid is RTds du dw= − , where reversible 

differential work 
1 1

R 0 0 0dw d S: dE− −= ρ ω = ρ , and where strain energy ( ) E:SE
~

dSE
2

1
E

0
ijijij0

ij

==ω ∫ , E  is 

the Green-Lagrange strain measure, which is work conjugate to the 2
nd

 Piola-Kirchoff stress S .  Here 0ρ  

represents the density in a material reference configuration and by construction E:S:0
ɺɺ ρ=εσρ , where 

Eɺ  represents material strain rate and εɺ  is the Eulerian strain-rate tensor.   

Consider internal energy of the form ( )iju T,E  with the central equation of thermodynamics 

( ) ( )1

ij 0 ij ijTds dT u T dT u E S dE
−− ∂ ∂ = ∂ ∂ − ρ  under the assumption ( )s s T=  and it immediately 

follows that 
2

iju E T 0∂ ∂ ∂ =  hence 
ETu u u= +  is obtained on integration.  Similarly, conversely, 

assuming internal energy to be of the form 
ETu u u= +  gives  
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( ) ( )ET 1

ij ij 0 ij ijT s T du dT dT u E T s E S dE−∂ ∂ − = ∂ ∂ − ∂ ∂ − ρ  and heat-mechanical decoupling requires 

ijs E 0∂ ∂ = , i.e. entropy is a function of T only.      �
 

Setting 
ET 1

2
e u u v v= + + ⋅  for the case of a hyperelastic solid, equation (4) readily decouples and yields 

the mechanical equation, 

( ) ( ) =Γ⋅−
ρ

ω
ρ+Γ⋅−⋅ρ+

ρ

ω
ρ+⋅ρ ∫∫∫∫

ΓΓΩΩ

dnvvdnvvvvdV
tD

D
dVvv

tD

D *

0

0

2

1*

2

1

0

0

*

*

2

1

*

*

  

     ∫∫
ΩΓ

⋅ρ+Γ⋅σ⋅ dVbvdnv     (6) 

and the heat equation, 

( )
*

*T T

*

D
h dV h v v nd q nd QdV

D t
Ω Γ Γ Ω

ρ + ρ − ⋅ Γ = − ⋅ Γ + ρ∫ ∫ ∫ ∫      (7) 

where strain energy ( )E1 1
0 0 ij 2

u E S: E
−ρ = ω = , 0ρ  represents the density in a reference configuration, 

Th  is specific enthalpy, and where use is made of 
T Tdu dT dh dT T ds dT c= = = . 

The Clasius-Duhem inequality (5) occurs as a result of irreversibility present in the medium undergoing 

deformation and heat transfer.  In the case of a plastic flow for example the appropriate transport equation 

including irreversibility is 

( )
*

* 1 1

* 2

q T:D
sdV s v v nd T q nd T QdV dV

D t T T

− −

Ω Γ Γ Ω Ω

⋅∇σ ε 
ρ + ρ − ⋅ Γ = − ⋅ Γ + ρ + − 

 
∫ ∫ ∫ ∫ ∫

ɺ
   (8) 

where the inequalities : 0σ ε ≥ɺ  and 
2T q T 0−− ⋅∇ ≥  lead to inequality (5). 

The term :τ εɺ  is dissipative giving rise to thermal energy and the term 
2T q T 0−− ⋅∇ ≥  represents a loss 

arising from temperature gradients present in the medium. 

4  DEFINITION OF NON-PHYSICAL ENTITIES 

Transport equations are utilised to define non-physical enthalpy ψ
⌢

.  The prime motivation for the 

definition of these variables is source-like behaviour that can result at a discontinuity in the associated 

physical variable [1].  The transport equation definition for ψ
⌢

 is: 

( )
* *

*

* *

D D
dV dV v v nd J nd bdV

D t D t
Ω Ω Γ Γ Ω

ψ = ρψ + ρψ − ⋅ Γ = − ⋅ Γ + ρ∫ ∫ ∫ ∫ ∫
⌢

    (9) 

The concept of an equivalent governing equation is introduced in reference [1] and extended to multi-

discontinuities in [2] but limited there to solidification modelling. The idea is to form alternative transport 

equations that can be more readily solved using numerical techniques.  Unfortunately non-physical 

variables are found to be dependent on the velocity of the control volume, so careful consideration must 

be given to their determination.  For example, standard control volume methods for the description of a 

discontinuity travelling through Ω  do not apply as the solutions obtained can depend of the front 

velocity.  The problem is that the control volume tracking a discontinuity will in general not be moving 

with velocity 
*

v  and consequently the nature of the non-physical variable is changed.  Techniques for the 

analysis and determination of physical variables on a different moving control volume are required and 

these are discussed in references [1] and [2].  A discontinuity in ψ  at iΓ  gives rise to a source term in 

non-physical ψ̂  and is described by the transport equation 

( ) ( ) ] [
i i i i

*' 'D
dV v v tn d v v n d J n d

D t

+
+ +

+

Γ ∑ Γ Γ

∑  ψ + ψ − ⋅ = ρψ − ⋅ Γ = − ⋅ Γ
 ∫ ∫ ∫ ∫

⌢ ⌢
   (10) 
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where iΣ  is the boundary for phase boundary iΓ , and it is assumed that shh
⌢⌢

ℓ
= , which is a continuity 

condition invoked by 
'

h
⌢

 satisfying equation (10).  The jump terms in equation (10) are 

] [ ( ) ( )ssJ n J n J n⋅ = ⋅ − + ⋅ −
ℓℓ

 and ( ) ( ) ( ) ( ) ( )sss sv v n v v n v v n
+ + + ρψ − ⋅ = ρ ψ − ⋅ − + ρ ψ − ⋅ −

  ℓℓℓ ℓ
 , 

where subscripts s and ℓ  denote different phases.  

 

5  WEIGHTED TRANSPORT EQUATIONS 

Consider the following weighted-transport equation, 

( ) ( )
*

* *

*

D
W dV W v v nd v v WdV WJ nd W JdV WbdV

D t
Ω Γ Ω Γ Ω Ω

ρψ + ρψ − ⋅ Γ− ρψ − ⋅∇ = − ⋅ Γ+ ∇ ⋅ + ρ∫ ∫ ∫ ∫ ∫ ∫  (11) 

where W is transported invariantly with Ω , i.e. 0tDWD ** = . 

The equation is arrived at by the introduction of W into the integrals in equation (1) but also by 

subtracting associated domain integrals involving a derivative of the weighing function for each boundary 

integral appearing in (1).  The form the additional terms take is as a consequence of the divergence 

theorem applied to the weighted boundary terms.  Note also that spatial and temporal derivatives of ψ  is 

avoided, making (11) applicable when a discontinuity is in Ω .  Moreover note that on setting 1W = , 

equation (2) is returned, which is in an appropriate form for the finite volume method (FVM).  Note 

however that on applying (11) to an element domain eΩ  and adopting a standard Galerkin weighting 

gives a finite element formulation in transport form.  The full system of FE transport equations with 

multiple discontinuities removed are: 

{ }e k e e e e

*

i i i i*

:k K

D
N dV N JdV N J nd N bdV

D t
Ω Γ ∈ Ω Γ Ω

ψ = ∇ ⋅ − ⋅ Γ + ρ −∫ ∫ ∫ ∫
⌢

    

         ( )
e e

e e
k k

*' 'k
ki i

k K k Kk

D
N dV N v v tnd

D t

×
×

×
∈ ∈Γ Σ

ψ − ψ − ⋅ Γ∑ ∑∫ ∫
⌢ ⌢

   (12) 

where { }eke Kk:/ ∈ΓΩ  signifies that integration is in the sense of Lebesgue, and where 

{ }∅≠Γ∩Ω= kee :kK  which is a subset of { }K:1k:k = .  The velocity fields kv
×

 track 

discontinuities in elements but for convenience match movement of the element boundary. Note that the 

LHS of equations (12) is continuous and consequently so is the RHS, so discontinuities have been 

annihilated.  The evolution of the source term is determined with the following source transport equation: 

( ) ( ) ] [
e e e e
k k k k

*' 'k
k k

k

D
d v v tn d v v n d J n d

D t

×
× ×

×

Γ ∑ Γ Γ

 ψ Γ + ψ − ⋅ Σ = ρψ − ⋅ Γ = − ⋅ Γ
 ∫ ∫ ∫ ∫

⌢ ⌢
   (13) 

CONCLUSION 

The temporal derivatives of ψ
⌢

 and ψ  are avoided, making the governing equations applicable when a 

discontinuity is in Ω . The continuous and source like behaviour of ψ
⌢

 facilitates the precise removal of 

discontinuities from the governing system of transport FE equations.  It is early days for the theories 

presented but the transport equations possess conservative properties and capture discontinuous 

behaviour.   
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ABSTRACT

Micro- and nano-scale fluid systems can behave very differently from their macro-scale counterparts.
Remarkably, there is no sufficiently accurate, computationally efficient, and — most importantly —
generally agreed fluid dynamic model that encapsulates all of this important behaviour. The only thing
that researchers can agree on is that the conventional Navier-Stokes fluid equations are unable to capture
the unique complexity of these often locally non-thermodynamic-equilibrium flows. Here, we outline
recent work on developing and exploring new models for these flows, highlighting, in particular, slip
flow as a quintessential non-equilibrium (or sub-continuum) phenomenon. We describe the successes
and failures of various hydrodynamic and molecular models in capturing the non-equilibrium flow
physics in current test applications in micro and nano engineering, including the aerodynamic drag of a
sphere in a rarefied gas, and the flow of water along carbon nanotubes.

INTRODUCTION

The set of Navier-Stokes-Fourier (NSF) equations, with no-velocity-slip and no-temperature-jump con-
ditions at bounding surfaces, is the traditional model for the transfer of heat and momentum in fluid
flows. While it has proven successful for flows ranging from liquids in capillaries to the atmosphere
of planets, remarkably it can be a poor predictor when the flow system is either very small (i.e. in
micro/nano devices) or very low pressure (e.g. high-altitude air vehicles, spacecraft re-entry), or if the
process depends on interactions at the molecular level (e.g. protein folding). This is despite the flows
being very typically laminar in such conditions, so simpler in a conventional sense. For example, mea-
sured gas flow rates in micro channels are typically a factor of two larger than expected, and drag on
a micro sphere is a similar factor smaller [1]. At the nano scale, surface effects such as hydrophobic-
ity, wetting and electrokinetics dominate, and lead to unexpectedly high liquid transport rates in, e.g.,
carbon nanotubes that different experimentalists not only cannot fully explain but also fail to agree on.

These predictive failures arise from a limiting assumption underlying conventional fluid mechanics:
scale-separation — macroscopic flow behaviour is assumed to be independent of the microscopic dy-
namics of the fluid material [2]. The conventional fluid mechanical model of near-instantaneous local
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equilibration of heat and momentum throughout the fluid follows from this, and provides a powerful
tool for treating most macro scale flows. However, scale-separation is not always guaranteed in micro
and nano scale flows: in these cases we often need to account for the effect of the fluid’s molecular na-
ture on the overall (macro) flowfield. Micro- and millisecond effects are important for micro and nano
scale flows, but depend on the outcome of pico- or nanosecond molecular processes [3, 4]. The design
of future technologies that exploit micro and nano scale flow components will require the ability to
resolve phenomena across scales of at least 8 orders of magnitude in space, and 10 orders of magnitude
in time — a formidable multiscale problem.

In this paper we describe some of our most recent computational and theoretical tools we are bringing
to bear on this problem. We examine slip flows in microscale gas and nanoscale liquid applications
as quintessential non-equilibrium or sub-continuum phenomena that are still not properly understood.
We tackle gas and liquid flows alternately in this paper, because we wish to highlight the interesting
commonalities between non-equilibrium gas and sub-continuum liquid flows at these small scales.

Thermodynamic non-equilibrium in gases

In dilute gas flows, molecules travel in free-flight between brief (binary) collisions with each other or
bounding surfaces. The Knudsen number, Kn, indicates the degree of scale independence; in terms of
the molecular mean-free-path, λ, and a characteristic length scale, L, of the system (or the local gradient
of a relevant flow quantity, Q):

Kn =
λ

L
∼= λ

Q

∣
∣
∣
∣

dQ

dl

∣
∣
∣
∣
. (1)

If Kn > 0.01, physical scales are no longer clearly separated, and non-local-equilibrium flow behaviour
arises: the flow velocity at a surface takes on a finite “slip” value, and the temperature of the gas near
the surface also differs from the surface temperature. At higher Knthe linear NSF constitutive relations
themselves become inappropriate. Air flowing at atmospheric pressures in a device with a characteristic
length scale of 1μm has Kn ≈ 0.1 and will show these non-equilibrium (rarefaction) effects. Gas
flows in, e.g., micro-pumps or micro-turbines of complex geometry will have a range of Kn: the NSF
equations cannot, therefore, be expected to be generally applicable to these flows.

While a molecular-level description of the gas is available through the classical Boltzmann equation
— or other kinetic models, such as BGK or ES-BGK — direct solution is computationally expensive.
Even the cost of indirect methods, such as the direct simulation Monte Carlo (DSMC) technique, makes
complex 3D full-field flow simulation impractical: to resolve micro flow velocities of the order of
0.01 m/s in DSMC, we need roughly 500 million statistical samples of the flowfield at any point [2].
However, variance reduction techniques can be applied to conventional DSMC to create a powerful and
more economical method for generating molecular distributions at the most critical points in a flow.

A computationally-efficient gas flow method, but one which has had only modest success to date, is to
establish either a Kn-series or a Hermite polynomial approximation to the distribution function in the
Boltzmann equation. To first order, i.e. for near-equilibrium flows, both approaches yield the NSF set,
but the solution methods can be continued to second and higher orders to incorporate more and more
of the salient characteristics of a non-equilibrium flow. Specifying the additional boundary conditions
required for the derived higher-moment and higher-order extended hydrodynamic equation sets remains
a critical problem. In any case, the complexity of most of the models (Burnett, Grad 13-moment, R13,
R26, etc.) is overwhelming, particularly when considering the only modest improvement in accuracy
they provide. While they have particular difficulty in resolving strong non-equilibrium phenomena,
e.g. the Knudsen layer close to bounding surfaces [5, 6], they may have some use in the “near near-
equilibrium” regime [7, 8].
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Figure 1: Micro gas flow examples.

Thermodynamic non-equilibrium in liquids

Non-equilibrium phenomena analogous to that in gases (i.e. slip and non-linear constitutive behaviour)
dominate liquid flows at the nanoscale. But identifying and modelling non-equilibrium in liquids is sig-
nificantly more difficult than for gases: a Knudsen number cannot be ascribed because liquid molecules
are constantly moving within each others’ potentials, and the length scale for equilibrium breakdown is
similar to that at which the continuum-fluid model itself fails. The complexity of material-dependent ef-
fects at interfaces cannot be treated by simple phenomenological parameters or by “equivalent fluxes”
[9]. Direct molecular simulation of the liquid, however, can simultaneously model these phenomena
with minimal simplifying assumptions, and some recent results will be presented below.

Molecular dynamics (MD) simulations calculate the intermolecular forces between molecules (based
on their configuration in space) and then integrate the classical equations of motion using the net force
on each molecule. Intermolecular force models can be empirically fitted to experimental data, or derived
from first principles. The dynamics of real molecules in collision with real surfaces can then be inves-
tigated by accumulating the properties of individual molecules colliding with a (rough) surface lattice
of molecules. The major problem again is that, like DSMC, MD is computationally very intensive. For
example, to simulate 1μs of water flow in a 10×20×100 nm channel would require up to 10 years on a
modern PC. However, much of this time is spent in calculating unnecessary molecular detail in parts of
the flow that are near to equilibrium [10]. Ultimately, a hybrid framework is called for, which dynam-
ically couples the efficient NSF model in near-equilibrium regions to the detailed molecular dynamics
model elsewhere.
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(a) Molecular dynamics simulation of water molecules (red
and white) transported through a short (7,7) carbon nanotube
(green lines), shown in cutaway, that is fixed between two
graphene membranes (thin gold lines). The water is moving
from an upstream to a downstream reservoir.

 0

 1

 2

 3

 4

 5

 0  5  10  15  20  25  30

Fl
ow

 v
el

oc
ity

 (m
/s

)

CNT length (nm)

(b) Molecular dynamics calculations of variation of water
flow velocity with CNT length under 200 MPa pressure dif-
ference. The flow enhancement factors (relative to contin-
uum flow expectations) are 71, 126, and 353 for the 5 nm,
12.5 nm and the 25 nm lengths, respectively.

Figure 2: Water transport in carbon nanotubes.

[3] Borg, M. K., Macpherson, G. B. and Reese, J. M., 2010, Controllers for imposing continuum-to-
molecular boundary conditions in arbitrary fluid flow geometries, Mol. Sim., 36, 745-757.

[4] Macpherson, G. B. and Reese, J. M., 2008, Molecular dynamics in arbitrary geometries: parallel
evaluation of pair forces, Mol. Sim., 34, 97-115.

[5] Lockerby, D. A., Reese, J. M. and Gallis, M. A., 2005, The usefulness of higher-order constitutive
relations for describing the Knudsen layer, Phys. Fluids, 17, 100609.

[6] Lockerby, D. A., Reese, J. M. and Gallis, M. A., 2005, Capturing the Knudsen layer in continuum-
fluid models of non-equilibrium gas flows, AAIA J., 43, 1391-1393.

[7] Lockerby, D. A., Reese, J. M. and Struchtrup, H., 2009, Switching criteria for hybrid rarefied gas
flow solvers, Proc. Roy. Soc. A, 465, 1581-1598.

[8] Gu, X. J. and Emerson, D. R., 2009, A high-order moment approach for capturing non-equilibrium
phenomena in the transition regime, J. Fluid Mech., 636, 177-216.

[9] Brenner, H. and Ganesan, V., 2000, Molecular wall effects: are conditions at a boundary boundary
conditions? Phys. Rev. E, 61, 6879-6897.

[10] Macpherson, G. B. and Reese, J. M., 2006, Molecular dynamics for near surface flows in nano liq-
uid and micro gas systems, 4th ASME Intl Conf Nanochannels, Microchannnels & Minichannels,
ICNMM2006, 96170.

[11] Lockerby, D. A., Reese, J. M., Emerson, D. R. and Barber R. W., 2004, Velocity boundary condi-
tion at solid walls in rarefied gas calculation, Phys. Rev. E, 70, 017303.

16



Proceedings of the 19th UK Conference of the
Association for Computational Mechanics in Engineering

5 - 6 April 2011, Heriot-Watt University, Edinburgh

NON-INVASIVE AND INVERSE PROPERTY ESTIMATION
OF ARTERIAL ELASTICITY

*Amarpal S. Kapoor1, Perumal Nithiarasu1 and Raoul Van Loon1

1Civil & Computational Engineering Centre, College of Engineering, Swansea University,
Singleton Park, Swansea, SA2 8PP

*A.S.Kapoor.568964@swansea.ac.uk

Key Words: arterial elasticity; non-invasive; inverse property optimization; blood flow

ABSTRACT

A non-invasive, patient-specific method for the determination of in-vivo arterial elasticity is
proposed here. Inverse property optimization, incorporating a 1D blood-flow model and Lev-
enberg Marquardt Optimization render the possibility of accurately estimating the stiffness of
arteries. We begin with a steady state analysis as a starting point, gradually implementing
more realistic transient state conditions to finally result in a fully spatial and fully transient
scheme. Various meshes representative of healthy and diseased arteries have been simulated
successfully. Although the current methodology cannot be directly employed as a clinical prac-
tice at this point in time, it provides impetus to carry out work on an advanced level, i.e. 4D
(3 spatial dimensions plus time).

1 INTRODUCTION

A brief motivation for the above work is presented in this section.

To have an accurate estimate of arterial elasticity is known to have an important significance
in the medical fraternity. It has been long discovered that there is a direct relation between
the stiffness of arteries and risk of cardiovascular events [1]. A prior knowledge of arterial
elasticity can thus prove to be very important and there has been a rediscovery of this insight
with the advent of modern computing framework. A variety of methods have been developed
for assessing arterial properties [2]. Most of these methods rely on measuring the pulse wave
velocity and assessing the arterial pressure waveforms. These methods provide a single value
for the stiffness, which is not always true. Also there are several other factors like age, gender,
disease states, smoking habits and possibly others which are not always taken into consideration
with these methods. There is another class of methods for arterial elasticity estimation which
rely on mechanical testing of specimens, taken from the body. There is an inherent change in
material properties as the arteries are removed from the body and is not feasible as a clinical
technique, owing to the invasive nature of this method. Moreover, classic risk factors fall short of
making accurate predictions of cardiovascular diseases. This is therefore an attempt to develop
an engineering based solution to the medical problem being discussed.
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Figure 1: Proposed methodology for arterial elasticity estimation.

2 METHODOLOGY

The methodology employed for the arterial property estimation algorithm is broadly classified
into the following stages as shown in figure 1.

Stage 0 deals with the real-time patient specific data acquisition via dynamic MRI, which
captures the displacement of arteries due to distending pressure as the blood flows. Data
acquired here acts as a benchmark against which the results of the CFD model are compared.
This stage is not included in the current work but is essential in establishing the link between
the human body and the CFD model.

Stage 1 constitutes the solution for the forward problem, which employs an explicit scheme
to solve the governing 1D equations (1),(2) applied to flow through compliant tubes [3]. The
arterial deformation in response to the cardiac output of the heart is artificially obtained from
the blood-flow model in terms of the nodal area. The solution procedure also results in the nodal
velocity of blood and the nodal pressure is finally evaluated using area and velocity values. The
Locally Conservative Taylor-Galerkin method (LCG) that is employed in the solution scheme
helps reduce computational effort as it prevents the need to invert huge matrices originating
from the conventional assembly process, by treating each element as a separate sub-domain
with its own boundaries. Also, the incorporation of discontinuities is simplified in LCG as
co-located nodes are permitted to have different properties.

∂A

∂t
+

∂(Au)

∂x
= 0 (1)

∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂p

∂x
+

1

ρ

∂τ

∂x
= 0 (2)

It should be noted that for the solution of the forward problem in stage 1, arterial stiffness
was assumed to be known, but in real life problems the stiffness is actually not known a priori
and its estimation is the hallmark of this work. Even though the forward problem solution
is obtained only after using stiffness as an user input, inverse property estimation can be
employed to yield the actual stiffness of arteries by making comparisons between the model
predicted and experimental data. The Levenberg Marquardt (LM) optimization is used here
[4, 5]. It is an iterative technique that locates a local minimum of a multivariate function that is
expressed as the sum of squares of several non-linear, real-valued functions. It has been adopted
in various data-fitting applications and has become a standard technique for non-linear least
squares problems. As a starting point, an objective function incorporating just nodal areas is
considered. It is the least square error between the actual and model predicted area (nodal
basis). The objective function is as expressed in equation (3).

f =
n∑

j=1

(Aj − Aj)

2

(3)

where, Aj is a vector of actual nodal areas (experimental data), Aj is a vector of model pre-
dicted nodal areas and j corresponds to the number of nodes. The LM algorithm operates by
minimizing this objective function which in a physical sense is equivalent to repeating the for-
ward run in an intelligent manner until the measured displacements equal the model predicted
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Figure 2: Results for an open artery with different starting values for β = β0 .

Figure 3: Results for an open artery with linearly distributed values for β .

displacements, which would be indicative of the fact that the current stiffness equals the actual
stiffness. It must also be noted that the experimental data here is generated by surrogate means
and that no patient data is used for the purpose of this work. The LM algorithm also requires
computation of the Jacobian and Hessian matrices (first and second order partial derivatives
of area with respect to stiffness respectively) for incrementing/decrementing β (function of
Young’s Modulus) in every iteration depending on the errors in the current and previous itera-
tion. Analytical evaluation is not possible, hence a numerical finite difference approximation is
resorted for, by exploiting the method of perturbations. At every iteration the stiffness values
are perturbed slightly (1% of current value) and a forward run is then executed at this value
to generate the input arguments required in the forward difference approximation.

3 RESULTS

The proposed methodology is demonstrated to be working very well for 1D simulations con-
sidered here. Various meshes indicative of several healthy and diseased states of the artery are
considered for the simulations and the errors in the actual and model predicted nodal stiffness
are found to be less than 1% (correct β = 100,000). The variations of the objective function
(e lm) and β with iteration number are illustrated for the two cases in figures 2 and 3.

The results shown in the previous section were for a steady pressure pulse applied at the inlet
of the artery. The input pressure applied was therefore invariant with time and maintained at a
certain constant value. The sampling of variables involved in the objective function evaluation
for the optimization routine were based on the values at the end of the cycle time (i.e.last
iteration of the forward run). Application of a more realistic input pressure pulse (transient)
on the other hand, owing to the inherent iterative nature of the forward run, calls for a need to
monitor the variables at the end of every iteration of the forward run. This has a direct effect on
the amount of data to be sampled and analyzed by the optimization routine. Several methods
like fully transient localised routine, fully transient & fully spatial routine, semi-transient &
fully spatial routine and modifications in the objective functions are being worked upon to have
a solution to 1D transient property optimization problem.
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4 CONCLUSIONS

The following conclusions were derived from the current work:

• Inverse parameter optimization seems to be a feasible technique for material-parameter
estimation of human arteries.

• Non-invasive procedures can be employed for determining the arterial material properties.

• A high degree of agreement was observed between the experimental and model predicted
values obtained from the Levenberg-Marquardt optimization routine and the error in
most cases was found to be less than 1%.

• This study provides the motivation to implement non-invasive and patient-specific arterial
material property estimation in multi-dimensions (up to 4D).

Currently, most CFD studies on blood flow simulations rely on an assumed value of elasticity

for the arterial walls. Hence, the primary accomplishment of this work was to illustrate the

possibility of having a well-defined model for non-invasively extracting the properties of human

arteries via inverse optimization.

It is aimed to work towards the development of a new and advanced methodology that could
act as a substitute to the current risk assessment and diagnostic procedures being implemented
in health care. The evaluation of arterial stiffness can therefore be used as a marker to predict
the onset of such disease states (CVD) at a very early stage and could assist in decreasing
cardiovascular mortality and increasing life expectancy. With a broader sense, blood vessel
elasticity is also important to physiology, clinical problems involving surgery, angioplasty, tis-
sue remodelling, tissue engineering, hypertonology, nephrology, neurology, gynaecology and
diabetology.
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ABSTRACT

Total Hip Arthroplasty is a surgical procedure that reforms the hip joint, replacing the pathological joint
with an artificial prosthesis. Due to post-operative joint instability, complications such as dislocation are
still a significant problem. This research aims to develop a realistic numerical model of a healthy hip
joint including Hill-type muscle models and examine its stability. An initial model of the hip joint sim-
ulating stance has been developed and two separate material models have been examined. In addition,
the effect of including articular cartilage in the model has been investigated.

1 INTRODUCTION

Total Hip Arthroplasty (THA) has progressed considerably over the past 50 years since the late Sir John
Charnley ushered in the modern era of low-friction arthroplasties, however significant difficulties still
persist. One of the most common complications of THA is the dislocated hip, occurring in up to 10%
of primary THAs [1, 2]. This research will focus on improving joint stability, hence lessening risk of
dislocation. When a THA is performed, muscles and other soft tissues must be cut to allow insertion
of the artificial prosthesis. Following insertion of the prosthesis, these damaged muscles are repaired,
and their position can be adjusted to help stabilise the reconstructed joint. As is understandable, it is not
possible or ethical to experiment with different muscle positions on patients. By constructing a realistic
artificial hip model, the hip stability can be numerically examined. The position and strength of the hip
muscles can be altered, and the subsequent effect on hip stability can be examined.

2 METHODS

A 23-year-old male subject was chosen with no congenital or acquired pathology of the hip joint. Com-
puted tomography (CT) and magnetic resonance imaging (MRI) images of the subject’s hip joint were
acquired. The 3D bone surface geometry was extracted from the scans using open-source software 3D
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Slicer [3]; 3D Slicer allows the registration and fusion of CT and MRI data enabling the user to more
accurately extract soft and hard tissue. The bone surface meshes were smoothed using a volume pre-
serving Laplacian algorithm [4], before a volume mesh was created. Various different volume meshing
software was explored and Ansys ICEM CFD was chosen due to its ability to produce high quality
meshes of complex geometry.

Figure 1: Sandwich model (a) material distribution and (b) boundary conditions

3 RESULTS

Two separate numerical approaches are employed to model the hip joint: the finite element approach
and the finite volume approach. Commercial software Abaqus is employed using the finite element
approach, and open-source software OpenFOAM (Open Field Operation and Manipulation) using the
finite volume approach. OpenFOAM is a general 3D based, open source, object-oriented C++ library
and was selected due to its ease of customisability.

Two different material properties were considered for the model: a homogenous model and a sandwich
model. The homogenous model assumed bone be a homogenous isotropic linear-elastic material with a
Young’s modulus of 500 MPa and a Poisson’s coefficient of 0.2. The sandwich model assumed bone to
be composed of a flexible cancellous core sandwiched inside a stiffer cortical shell, as shown in figure
1(a). The variable cortical bone thickness was segmented directly from CT scans. The thickness of the
cortical bone ranged from almost 10 mm in the femur shaft to less than 1 mm in the ilium and the
femur head. Cortical bone was given a Young’s modulus of 17 GPa and a Poisson’s coefficient of 0.3
[6]. The effect of including a layer of 1 mm constant thickness cartilage on the articular surfaces was
examined. The articular cartilage was assumed to have a Young’s modulus of 25 MPa and a Poisson’s
coefficient of 0.45 [5]. The Abaqus homogenous model without cartilage contains 384,843 linear C3D4
solid tetrahedral elements. The cartilage volume comprises 17,036 linear C3D6 wedge elements. The
Abaqus sandwich model uses the same mesh as the homogenous model with the appropriate elements
assigned cortical bone properties. The OpenFOAM homogenous model contains 10,073 polyhedral
cells.

Initially the stance phase of gait has been simulated; a force of 1000 N (approximately 1.2 times body
weight) was applied to the distal end of the femur corresponding the ground reaction force experienced
by the hip during the stance phase of the gait analysis. The distal femur was fixed in the two directions
orthogonal to the applied vertical force. The pelvis was fixed at the iliopubic joint and the iliosacral

22



(a) Abaqus model von Mises stress
(Pa)

Figure 2: Sandwich model stress results

joint corresponding to physiological conditions. The model boundary conditions are shown graphically
in figure 1(b). The contact was assumed to be frictionless.

When the homogenous model including articular cartilage was simulated, both the Abaqus and the
OpenFOAM models gave comparable results with a maximum contact pressure of 10 MPa. When the
layer of articular cartilage was excluded from the model, the maximum contact pressure rose consider-
ably to 50 MPa. This increase in contact pressure is due to the absence of articular cartilage to distribute
the joint force, resulting in a much lower contact area.

Examining the initial results obtained from the Abaqus sandwich model, as expected the stiff cortical
bone shell supported the majority of the load. The sandwich model with cartilage gave a maximum
contact pressure of 14 MPa. Von Mises stress results from the Abaqus sandwich model are shown in
Figure 2(a). Figure 2(b) shows the region of maximum contact pressure and maximum contact area.
When the layer of articular cartilage was excluded from the sandwich model, the contact pressure
increased appreciably to over 100 MPa. This sizable and unrealistic increase in pressure is due to stiff
cortical bone surfaces coming into contact producing a smaller contact area. The OpenFOAM sandwich
model is currently being developed.

When the Abaqus sandwich model was compared with the OpenFOAM and Abaqus homogenous mod-
els, it was observed that higher stresses are experienced by the articular cartilage in the sandwich model.
The maximum von Mises stress in the homogenous model was 5 MPa, while a maximum von Mises
stress of 8 MPa was found in the sandwich model. This increase in cartilage stress is due to the cartilage
being constrained considerably more by the cortical bone in the sandwich model than by the less stiff
cancellous bone in the homogenous model.

4 CONCLUSIONS

A procedure has been developed to create a patient-specific 3D hip joint model from CT and MRI scans.
Cortical bone is segmented separately from cancellous bone, preserving the interface between the two
types of bone. Articular cartilage was assumed to have a constant thickness, which has been shown to
be a valid assumption [7]. Numerical analysis was performed using both finite element based software
Abaqus and finite volume based software OpenFOAM. The stance phase of gait has been simulated
using a homogenous material model and a sandwich material model. The homogenous models pre-
dicted maximum contact pressures of 10 MPa, while the sandwich model predicted maximum contact

23



pressures of 14 MPa; both models agree well with the range reported in literature of 1–20 MPa [6, 8].
Only the homogenous model was simulated in OpenFOAM but the results agree well with the Abaqus
homogenous model. It has been noted in literature that cortical bone thickness considerably affects the
predictions of a numerical model of hip joint mechanics [9]. If cortical bone thickness is over-estimated,
it can produce an unrealistically stiff hip joint model. A method to examine the accuracy of the current
cortical bone segmentation procedure will be investigated.

In the future, a CT-based material model will be implemented in both Abaqus and OpenFOAM. The
Young’s modulus of each mesh cell using an empirical relationship based on the Hounsfield intensity
of the corresponding pixels in the CT images. The CT-based models will then be compared with the
homogenous and sandwich models to examine how sensitive the stress results are to material property
selection. In addition, the Hill-type muscle models will be incorporated to simulate the mechanics of a
full gait cycle. Electromyographical signals obtained from gait analysis will be the primary input to the
Hill-type muscle models.

The authors wish to acknowledge the SFI/HEA Irish Centre for High-End Computing (ICHEC) for the
provision of computational facilities and support.
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ABSTRACT

A 3D biphasic swelling model has been derived using mixture theory for soft, hydrated and charged tis-
sues to capture the salient characteristics of the intervertebral disc’s behaviour. The model fully couples
the solid matrix under finite deformations with the ionised interstitial fluid. The nucleus is assumed to
behave isotropically while the fibres in the annulus fibrosus are modelled with a transversely isotropic
model. The effects of the fixed negative charges of the proteoglycans, which induce an osmotic pres-
sure responsible for the swelling characteristics of the disc, are accounted for. Preliminary results are
presented on an idealised model.

1 INTRODUCTION

The intervertebral disc is a complex multi-phase deformable solid mainly comprised of the nucleus
pulposus and the annulus fibrosus (Fig. 1a). The nucleus pulposus is the gelatinous core of the disc,
which consists of a charged and hydrated matrix of collagen fibres and an ionised interstitial fluid (up to
85% at the centre). It is enclosed in the annulus fibrosus that is formed by concentric layers of aligned
collagen fibre sheets, oriented in an alternating fashion (Fig. 1b).

(a) (b)

Figure 1: (a) Idealised geometry of the intervertebral disc - (b) Fibre distribution in the annulus fibrosus

The disc also consists of proteoglycans. These are negatively charged and relatively large molecules
trapped in the network of collagen fibres, which gives rise to osmosis, resulting in additional mechanical
stiffness for the disc under compression and allows it to re-imbibe fluid overnight.
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2 MODEL

In an effort to keep an acceptable balance between the model’s complexity and the salient features it
is able to capture, an anisotropic hyperelastic biphasic swelling model is derived for the intervertebral
disc. As the proteoglycans undergo the same deformations as the solid matrix, the osmotic pressure
is constitutively determined from the deformation rather than a distinct phase. This offers the advan-
tages of requiring less material parameters than tri- and quadri-phasic models and keeps the number
of degrees of freedom relatively low while still accounting for the fluid flow, finite deformations and
electro-chemomechanically driven effects.

The biphasic swelling model is based on Ehlers’s theory [2]. The linear momentum and mass balance
equations are derived for both the fluid and solid phases and then combined together using the principles
of mixture theory for saturated and intrinsically incompressible materials. We subsequently obtain Eq.
(1) that reflects the coupled nature of the system (solid stress σe coupled with the osmotic pressure ∆π
and the fluid pressure p in the momentum equation; solid velocity coupled with relative fluid velocity
in the mass balance equation). {

div (σe − (∆π + p) I) = 0
div
(
vsolid + w

)
= 0

(1)

The fluid flow is described using Darcy’s law in its classical form (Eq. 2), with a strain-dependent
permeability [5]. The constitutive model of the osmotic pressure is an isotropic generalisation of recent
experimental work [3]; because the osmotic pressure is directly related to the concentration of the
negative charges that are ”attached” to the solid phase, it is inversely proportional to the volume change
J = det (F) of the mixture (Eq. 3).

w = −k∇p with k = k0e
M(J−1) (2)

∆π =
∆π0
J

(3)

An additive split between the matrix and fibre contributions is adopted for the solid phase:
Wsolid(C, I4, I6) = Wiso(C) + Waniso(I4, I6), where the 4th and 6th invariants of the right-Cauchy-
Green tensor measure of the square of the fibre’s stretch (Iα = C : (a⊗ a) where aα is the direction
of fibre α in the reference configuration). In a first approach, the solid phase is defined using a Neo-
Hookean material while the fibres are described using an exponential model [1], which accounts for the
fact that the fibres provide stiffness in tension only: Waniso(I4, I6) = 0 if Ii ≤ 1, i ∈ {4, 6}

Waniso(I4, I6) =
∑
α

k1
2k2

(
exp

[
k2 (Iα − 1)2

]
− 1
)

if Ii > 1, i ∈ {4, 6} (4)

Material properties for this model were obtained from an iterative best-fit of Holzapfel’s experimental
results [4]. The 1D stress-stretch curve of a single lamellar sample are plotted on Fig.2. It is interesting
to notice that the fibre’s stiffness depends not only on the fibre stretch but also the polar angle (Fig. 2).

The set of coupled nonlinear equations is discretised in space (noting the Babuska-Brezzi condition)
and in time using a finite difference scheme. The consistently linearised problem is finally implemented
in a three-dimensional finite element scheme for high performance computing. An incremental solution
scheme is adopted.
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Vle Vli De Di
k1 (MPa) 8.34 2.11 1.12 0.23

k2 339.57 67.55 43.88 10.88

Figure 2: Experimental results from [4] with best parameters to fit Eq. 4 (Vle: Ventro-lateral external,
Vli: Ventro-lateral internal, De: Dorsal external and Di: Dorsal internal)

3 PRELIMINARY RESULTS

Initial validation of the nucleus pulposus were performed against a previously developed 1D model,
validated against experimental confined compression data. Qualitative results on an idealised disc are
presented, where the geometry, material parameters and boundary conditions are as follows:

1. The idealised geometry is presented in Fig. (1a). The main simplifications are the flat and parallel
endplates and straight fibres. The fibre orientation is realistically modelled as a function of the
polar angle [4]: |ϕ| = 23.2 + 0.13θ.

2. Although material parameters vary within the disc (e.g. Fig. 2) a single parameter set is used for
the nucleus and the annulus across the continuum.

3. The disc is connected, top and bottom, to vertebral bodies that are significantly stiffer than the
disc and more permeable than the annulus. Therefore in the current model, the disc is laterally
sealed and its top and bottom surfaces cannot expand laterally.

3.1 Compression test

The disc is subjected to compression (5% strain at a rate of 10µm.s−1) in order to verify trends observed
with the 1D model. The low permeability (order of 10−15mm/(N.s)) hinders the fluid flow. Hence,
when loaded, fluid is initially only lost near the boundaries, resulting in localised strains, while in the
centre there is an increase in fluid pressure.

(a) Pressure contour inside the disc (b) Pressure and stretch distribution along the segment
in figure (a)

Figure 3: Idealised disc under 5% compressive strain
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3.2 Twisting test

In order to verify that the fibres are correctly implemented, the disc is subjected to a torque θ = 3◦, with
both endplates enforced to remain parallel. The deformations are therefore proportional to the distance
from the centre of rotation, which is reflected in Fig. 4a for the fibres experiencing tension. The other
family of fibres experiencing compression is not active.

(a) Family of fibres in tension (b) Family of fibres in compression

Figure 4: Fibre stress contour plot in the mid-sagital plane for the twisted disc

4 CONCLUSION

A 3D biphasic swelling, anisotropic and hyperelastic model has been formulated. It captures the salient
features of the intervertebral disc such as ionic, stiffening and swelling effects and phase coupling.
The early stage results show qualitatively good results. Work is under progress to utilise more realistic
geometries and define physiologically correct initial conditions.
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ABSTRACT 

The effect of including a fusiform aortic aneurysm into an arterial network is studied and the differences 

in the waveforms are identified. An existing one-dimensional (1D) model is modified to include the 

aneurysms and the waveforms are computed using a realistic ventricular pressure. The 1D fluid flow 

equations are solved using the locally conservative Galerkin (LCG) finite element method. This method 

provides an explicit element-by-element conservation and naturally incorporates vessel branching, where 

arteries with different discontinuities are permitted to share the same location at the start of the branch. 

An example of fusiform thoracic aortic aneurym with three different sizes, but remain in the same 

location, is studied and the flow waveforms are compared against a normal adult waveform. 

 

1  INTRODUCTION  

Aortic aneurysm is generally a balloon-like bulge formed through weakened arterial wall of the aorta and 

can be of saccular or fusiform in nature. Fusiforms can be found in the upper or the abdominal part of the 

aorta. An aneurysm at the upper part is referred to as Thoracic Aortic Aneurysms (TAA) and the one at 

the lower part is known as Abdominal Aortic Aneurysms (AAA). Aortic aneurysm incidents have steadily 

increased over the past few decades. Nonetheless, there are still no known precise reasons which affect 

the weakening of the aortic wall. However, many believed that a number of factors have been related to 

this disease [1]. Aneurysms often cause no symptoms and are rarely noticed before rupture. To overcome 

this crisis, aneurysms need to be detected at an early stage [1, 2]. Some studies have been carried out by 

[2] to investigate the effect of an AAA on the wave propagation both experimentally and using a 1D 

arterial network model. Nevertheless, if this effect can be evaluated through common pulse sites such as 

common carotid artery, radial artery and many more, there might be an opportunity for diagnosing 

aneurysms. 

The 1D arterial network models have been used extensively in recent years, primarily to provide a better 

understanding of the blood flow in the arterial tree. They offer a good compromise between accuracy and 

cost (computational time) [3]. In this paper, the existing 1D model of [4] with an additional fusiform 

aneurysm embedded is used to compute the waveforms in the human arterial system using a realistic 

ventricular pressure as an input. The main objective is to study the effect of blood flow in the presence of 

an aortic aneurysm in a human arterial network and identify the differences in waveforms. 

The governing equations are solved using the LCG finite element method. This method provides explicit 

element-by-element conservation and reintroduces an interface flux in each element. The element-by-

element solution, which is independent of the surrounding elements, offers controlled flexibility thus 

allowing the introduction of discontinuities along the element boundary [5, 6]. This property is useful in 

the consideration of vessel branching points such as bifurcations or trifurcations. Arteries with different 
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discontinuities are permitted to share the same location at the start of the branch in human arterial tree [4]. 

 

2  METHODOLOGY  

The 1D first order hyperbolic governing equations of an elastic cylindrical vessel of incompressible and 

Newtonian fluid, based on the mass and momentum conservation laws can be written as [4]: 

 
  

  
 

     

  
   

 

  

  
 

 

  
 
  

 
 

 

 
  

 

 

  

  
 

where A is the cross-sectional area of the vessel, u is mean velocity of the fluid, p is the internal pressure 

of the cross-section ,   is the blood density (assumed to be constant due to incompressibility of blood) and 

             is the shear stress where   is the dynamic viscosity (constant), r is the radial direction in 

3D cylindrical coordinates and R is the vessel radius. In the shear stress term, the inertia component will 

be neglect while the viscous component is assumed as a fully developed Newtonian steady flow with a 

parabolic velocity profile (Poiseuille flow) which can be expressed as: 

 
  

  
 

  

  
  

    

 
 

In order to close the system, equations (1) and (2) have to be supplemented with a commonly used 

pressure-area relation [7] which takes the form: 
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where      is the external pressure from the surrounding tissues,    is the unstressed cross-sectional area 

of the vessel,   is the material properties of the elastic vessel, h is the vessel wall thickness, E is the 

Young’s modulus and   is the Poisson’s ratio. 

The explicit semi-discrete form can then be achieved by using the standard second-order Taylor series 

expansion and the partial differential equation is used to replace the time derivatives with spatial 

derivatives which can be shown as: 

 

       

  
    

   

  
 

  

 
 
 

  
 
   

   
   

   

   

   

  
  

   

   

   

  
 

   

   
    

where U, F and S are vectors of the primitive variables, conservative variables and source term 

respectively. The semi-discrete form will then be further discretised using the LCG finite element method. 

As with the global Galerkin method, each of the variables is approximated by the standard finite element 

spatial discretisation. The interface flux can be reintroduced via integration by parts and contained 

contributions from convective component. In order to achieve local conservation, a simple averaging 

post-processing procedure is introduced at each time step. The post-processing procedure uses the nodal 

values from the continuous solution obtained from the previous time-step to provide an accurate interface 

flux and also establishes connectivity between elements at the next time-step. Full discrete form of the 

governing equations is shown in [4, 5, 6]. 
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3  RESULTS AND DISCUSSIONS 

In this paper, fusiform thoracic aortic aneurysms of size 5cm, 10cm and 15cm as seen in Figure (1) are 

used to replace the normal aorta of an arterial network [4]. The reason to use such unrealistic size is 

mainly to justify that aneurysm can affect the blood flow in human body. The blood density and dynamic 

viscosity were taken to be             and         poise respectively [4]. A realistic ventricular 

pressure will act as an input to the model and a detailed description can be found in [4]. Results are 

computed for one cardiac cycle (0.8s) ‘at rest’ state using all the three different aneurysm sizes stated 

previously.  

 

 

 

 

 

 

Figure 1: Geometry visualisation of aneurysm sizes of (a) 5cm, (b) 10cm and (c) 15cm respectively. 

Figure (2a) shows various waveforms plotted. The first plot compares input pressure, the afterload-

corrected left ventricular pressure and the ascending aortic pressure. The second and third plots show the 

pressure difference and ascending aorta flow respectively. Fourth and fifth plots visualise the left and 

right coronary flow. The first and second plots of Figure (2b) show the pressure and flow along the aorta 

respectively. The impact of aneurysm can be shown by the disturbance in waves and similar phenomenon 

can be found in [2]. Positive and negative wave reflections are found due to the sudden widening of the 

aorta and they increase significantly as the widening gets larger. The coronary arteries are affected as the 

distance between the coronary arteries and the location of the aneurysm is small.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2a: Simulations of normal and various aneurysm sizes for one cardiac cycle (0.8s) where the medical terms can be shown in [3].  
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Figure 2b: Simulations of normal and various aneurysm sizes for one cardiac cycle (0.8s) where the medical terms can be shown in [3]. 
 

4  CONCLUSIONS AND FUTURE WORK 

A 1D model of the human arterial system using the LCG finite element method is presented for normal ‘at 

rest’ state, for aneurysm sizes of 5cm, 10cm and 15cm. It should be noted that the aim of this paper is to 

identify arterial waveforms in the presence of a TAA. The example above showed that wave reflections 

occur when there is a sudden widening in an artery. Future work includes studying the influences of 

different aneurysm and stenosis shapes. 
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ABSTRACT 

This paper presents a three-dimensional energy-based solution for the time-dependent creep response of a 

deeply embedded and unsupported tunnel, of circular cross-section. Rock behaviour is described in the 

Laplace domain using Burger’s viscoelastic model. The differential equations governing the 

displacements of the tunnel-rock system and appropriate boundary conditions are obtained using the 

principle of minimum potential energy. The method produces results with accuracy comparable to that of 

a finite element analysis but requires much less computation effort.  

1  INTRODUCTION  
 

When tunnelling in salt rock or potash in a mining environment, significant time-dependent tunnel closure 

can occur, as the deformation of these weak rocks is dominated by creep. Creep is also the prime 

mechanism causing ground squeezing in sheared or faulted rock masses containing mylonite or clay 

gouge. The efficient and accurate prediction of the time-dependent performance of tunnels located in such 

rock is a main concern in the design. However, the full three-dimensional (3D) interaction between a 

tunnel and the surrounding creeping rock is complex. Finite element (FE) analysis with advanced 

constitutive models can be used to accurately predict the time-dependent response (e.g. [1]), but such 

analyses are computationally expensive for routine practice. An alternative approach is to idealise the 

problem as a two-dimensional (2D) plane-strain problem using empirical relations based on field 

measurements or 3D FE analyses to predict the stresses and displacements in close proximity to the 

tunnel face (e.g. [2]). However, there are significant uncertainties in extrapolating these empirical 

relations to different design situations and rock behaviour. 

 

Here we present a 3D approximate solution for the time-dependent response of a semi-infinite and 

unsupported tunnel which is excavated quasi-instantaneously from a homogeneous, isotropic, 

viscoelastic, infinite rock body. The rock is assumed to behave volumetrically linear elastic and to exhibit 

exclusively deviatoric creep which is modelled by the classical Burger’s model. The initial in-situ stresses 

are taken to be isotropic. The potential energy of the tunnel-rock system is expressed in terms of an 

assumed displacement field. The principle of minimum potential energy is used to obtain the differential 

equations governing the ground deformation and appropriate boundary conditions.  

 

Burger’s model is the simplest linear viscoelastic model that can be used to trace primary and secondary 

creep deformation.  According to Goodman [3] this model is preferable for many practical purposes. This 

model can be characterised by linear elastic volumetric behaviour and viscoelastic deviatoric behaviour. 

The relationship between the deviatoric stress ijs and deviatoric strain ije  in the Laplace domain is: 
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where       

 

 

and where a Kelvin unit is characterized by its shear modulus G1 and viscosity 1, and a Maxwell unit is 

characterized by its shear modulus G2 and viscosity 2. These creep model parameters can be obtained 

from laboratory creep experiments. 
 

The differential equations for the rock displacements can be expressed in the Laplace domain and the 

solution can then be back-transformed into the time domain. 

 

2  ANALYSIS 
 

We consider a tunnel of circular cross-section and radius r0 (Figure 1(a)). We focus here on the prediction 

of creep behaviour after the creation of the cylindrical cavity, thus the excavation of the tunnel is assumed 

to take place instantaneously. The rock surrounding the tunnel is divided into three zones (Figure 1(a)). 

 

 

 

 

 

 

The displacement field around the cavity is expressed as the product of two separate variables r and z 

(Table 1), where ru  and zu  are the radial and the longitudinal displacements, respectively. The terms 

are functions describing the variation of the radial and the longitudinal displacement in the z-direction. 

The  terms are functions describing the attenuation of rock displacement away from the tunnel axis. As 

z→-∞ the plane-strain condition can be assumed, therefore
dz

d 1r =0 and )z(1z =0. At a far distance ahead 

of the tunnel face the displacement reduces to zero, therefore )z(2r =0 and )z(2z =0 as z→∞. It is 

assumed that )r(1 =1 and )r(2 =1 at r=r0 and )r(1 =0 and )r(2 =0 as r→∞ (to ensure that rock 

displacements decrease with radial distance away from the tunnel wall). Finally, it is assumed that 

)r(3 =0 at r=0 and )r(3 =1 at r=r0 (to ensure compatibility ahead of the tunnel face).  
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Figure 1: (a) Model geometry and location of zones in which energy is dissipated; (b) Applied pressure. 

 

Table 1: Displacements ur and uz for each of the rock zones. 
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The potential energy U of the tunnel-rock system for a linear elastic rock is given by: 

0

0

r

0

2

0 0

zrzrzzzzrrrrzrzrzzzz

r

2

0

rrrr drrdzd)(
2

1
drrdzd)(

2

1
U  

where the first integral term represents the internal potential energy of the rock in zones I and II and the 

second term represents the energy in zone III. Stress-strain relations and strain-displacement relations in 

cylindrical coordinates, along with the assumed displacement field can then be used to obtain an 

expression for U in terms of the displacements. Variational principles are then used to obtain expressions 

for δU and δW. The variation in the external work W is given by:  
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The governing deformation equations can be derived by minimising the energy in the tunnel-rock system:                    

0WU       
                                       

Setting the first variable of the total energy Π equal to zero produces an equation of the form: 

 
0])(G[])(F[])(E[])(D[])(C[])(B[])(A[ 2z2z2r2r1z1z1r1r332211  

 

Since the variations 2z2r1z1r321 ,,,,,, are independent, the terms associated with each 
variation must be equal to zero (e.g. 11)(A 0) to satisfy δΠ = 0. Collection of these terms over the 
related rock domains (e.g. collecting the 1 terms for rr0 ) forms the differential equations which 
govern the displacements of the tunnel-rock system. Since the variations are non-zero over the rock 
domains, the coefficients of the terms must be equal to zero (e.g. )(A 1 0 as shown in equation 7).  
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Expressions for the boundary conditions are formed by collecting the terms associated with each variation 
at the appropriate boundaries (e.g. collection of the 1 terms at r=r0 and at r=∞). Similarly the remaining 
governing equations and boundary conditions can be formulated by collection of the other variations. An 
iterative scheme (Figure 2) is used to solve the governing equations in the Laplace domain. The γ1 to γ5 
terms in the equations must be sought. Solutions to the differential equations are obtained analytically and 
numerically using a one-dimensional (1D) finite difference (FD) technique.  
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Figure 2: Flowchart of solution procedure for each value of time t. 
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Displacements are then back-transformed into the time domain using de Hoog’s efficient numerical 

inversion algorithm [4]. A computer program was written using MATLAB to carry out these calculations.  
 

 

3  RESULTS 
 

The parameters used in the analyses presented here are r0=4.57 m, q1=q2=6.897 MPa, ν=0.2, G1=344.86 

MPa, η1=239486.1 MPa Day, G2=3448.6 MPa and η2=47897222.2 MPa Day. Figure 3 compares the 

radial displacement of the proposed energy-based solution with other methods. Figure 3(a) shows that in 

the plane-strain condition the proposed solution has good agreement with the closed form solution 

derived by Fahimifar et al. [2]. Figure 3(b) shows that in the region close to the tunnel face the proposed 

analysis yields results that are comparable with FE analysis and field data. 

 

 

Figure 3: Comparison of radial displacement with: (a) closed form solution; (b) FE analysis and field data 

(t=0). 

 

4  CONCLUSION 
 

A 3D approximate solution for the time-dependent convergence of a deeply embedded and unsupported 

circular tunnel, driven in a linear viscoelastic rock, was presented. This new approach is comparable with 

FE analysis, but is faster. In addition the input to our method is accomplished through a simple text file, 

while the geometry and optimal meshing for an FE analysis requires considerable time. Here Burger’s 

model has been used to describe rock behaviour, however a wide range of constitutive models can be 

incorporated into this analysis. This new method can be used for the initial design of tunnels. 
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ABSTRACT

Discontinuity layout optimization (DLO) is a recently developed analysis procedure which has been
successfully used to obtain highly accurate limit analysis solutions for a wide range of two-dimensional
problems. Here the changes necessary to allow three-dimensional analysis problems to be tackled
using DLO are briefly outlined. The resulting formulation involves the use of polygonal potential
discontinuities connecting any set of co-planar nodes, along which velocity jumps are permitted.
Compatibility is enforced along the edges of the polygonal discontinuities and the minimum collapse
load for a given nodal discretization, together with the corresponding collapse mechanism, can
be obtained using efficient second order cone programming algorithms. The mechanism produced
comprises rigid blocks bounded by the potential discontinuities. In order to validate the formulation,
and to demonstrate the potential of the method, the well-known problem of a rough punch bearing on a
weightless cohesive material is solved. Despite the use of comparatively coarse nodal discretizations,
it is shown that the solutions obtained compare well with published results.

1 INTRODUCTION

Limit analysis is concerned with determining the collapse load of a body or structure. Bounds on the
exact collapse load can be obtained by assuming a rigid-plastic material model. Lower bounds can
be obtained by enforcing stress equilibrium and yield criteria whilst upper bounds can be obtained
by imposing compatibility constraints and the flow rule. Whilst a wide range of computational limit
analysis procedures have been developed over the years, here the extremely promising Discontinuity
Layout Optimization (DLO) procedure is considered. Originally presented by Smith & Gilbert [?] as
a means of obtaining upper bound solutions for plane strain limit analysis problems, DLO has not yet
been applied to three dimensional problems. However, in the current contribution the potential for DLO
to be applied to three dimensional problems is explored, with the procedure applied to an example
problem involving a rough square based punch resting on a weightless cohesive (Tresca) material.
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2 DLO FORMULATION

A basic explanation of the plane strain DLO formulation will initially be given with reference to the
simple example problem shown in Figure 1; the alterations necessary to permit three dimensional anal-
ysis will then be briefly outlined. In Figure 1, a surcharge is applied to a block of soil close to a vertical
cut. The area occupied by the block of soil is first populated with nodes as shown in Figure 1(b), with
each pair of nodes then interconnected with potential linear discontinuities as shown in Figure 1(c). The
critical failure mechanism for the given nodal discretization can then be identified, Figure 1(d).

Figure 1: Stages in DLO procedure: (a) starting problem (surcharge applied to block of soil close to a
vertical cut); (b) discretization of soil using nodes; (c) interconnection of nodes with potential discon-
tinuities; (d) identification of critical subset of potential discontinuities using optimization (giving the
layout of slip-lines in the critical failure mechanism) (after Gilbert et al. [?])

Bearing Capacity Factor
Reference Other Lower bound Upperbound

Skempton [?] 6.17a

Gourvenec et al. [?] 6.41
5.91b

Michalowski [?] 6.56
Salgado et al. [?] 5.52 6.22

Present study (DLO) 6.42

a. Empirical
b. Elasto-plastic finite element

Table 1: Selected published results for a rough square based punch on weightless cohesive (Tresca)
material

From Smith & Gilbert [?], the primal kinematic DLO formulation can be written as:

minλfTL d = −fTDd+ g
Tp

subject to

Bd = 0 (1)

Np− d = 0

fTL d = 1

p ≥ 0
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where the problem is formulated in terms of the change in velocity across the potential disconti-
nuities dT = {s1, n1, s2, n2, . . . , nm} and plastic multiplierspT = {|s1|, |s2|, . . . , |sm|}, where si
and ni are the shear and normal changes in velocity across discontinuityi andm is the number
of discontinuities.B is a matrix enforcing compatibility at each node whileN enforces the flow
rule (associated to the yield criteria).fL and fD are vectors of live and dead loads respectively and
gT = {c1l1, c2l2, . . . , cmlm} wherec1 and li are the cohesive strength and length of discontinuityi.
(A dual equilibrium formulation can also be derived; the reader is referred to Smith & Gilbert [?] for
further information.)

The goal is to identify the minimum load factorλ and its associated mechanism, which can be obtained
using a suitable linear programming package. The mechanism must consist of rigid blocks bounded by
potential discontinuities along which changes in velocity are permitted as illustrated by Figure 1(d).The
changes necessary to the formulation for three dimensional analysis are summarized below.

1. Potential discontinuities must now be polygonal rather than linear in form.

2. Three variables per potential discontinuity are now necessary to fully specify the change in ve-
locity at each potential discontinuity (one normal and two shear components).dT now becomes
{s11, s12, n1, s21, s22, n2, . . . , nm}, wheresi1 andsi2 are the two shear components of change in
velocity across discontinuityi.

3. The resultant of the shear components at each discontinuity must now be calculated in or-

der to find the energy dissipated. This can be done using a conic restraint,sir ≥
√
s2i1 + s

2
i2;

wheresir is the resultant shear change in velocity across discontinuityi. pT now becomes
{s1r, s2r, . . . , srm}.

4. gT now equals{c1a1, c2a2, . . . , cmam}, whereai is the area of discontinuityi.

5. Compatibility is now conveniently enforced along each edge rather than at each node.

6. A cone programming package must now be used to obtain the minimum.

3 3D PUNCH INDENTATION PROBLEM

To investigate the efficacy of the DLO formulation the well known 3D punch indentation problem is
now considered. A rough square based punch, 2 units width, resting on a block of weightless cohesive
material, 4 units width and 2 units depth, was analysed though by taking advantage of symmetry only
a quarter of the original problem needed to be modelled. The problem was aligned with thex, y andz
axis populated with nodes at 1 unit spacings in thex, y andz directions. An optimization problem was
then set up using the formulation described previously using MATLAB 7.3.0. The MOSEK optimizer
[?], was used to obtain the minimum load factor, equal to the bearing capacity factor. The associated
failure mechanism is shown in Figure 2. A bearing capacity factor equal to 6.424 was obtained, which
compares reasonably well with the published results for this problem presented in Table 1. This is
perhaps slightly surprising considering the very low nodal resolution adopted in this initial study.
(Note that the best upper bound solution in the literature was obtained by Salgado et al. [?] using finite
element limit analysis.)
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(a) opaque discontinuities (b) translucent discontinuities

Figure 2: Deformed mechanism for rough square based punch (showing a quarter of the square punch)

4 CONCLUSIONS

DLO has been used to obtain upper bounds on the bearing capacity of a rough square based footing rest-
ing on weightless cohesive material. The upper bound solution obtained compares reasonably well with
the best published upper bound solution, which seems remarkable considering the low nodal resolution
employed in this preliminary study. The potential for DLO to be used to obtain upper bound solutions
for three dimensional problems has therefore been established and further work is now necessary to
ensure this potential is properly realised.
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ABSTRACT

Submarine landslides are not only a hazard for the offshore oil and gas industry or telecommunication
cables at continental shelves, slopes or deeper water, but also have the potential to trigger tsunamis.
They are much larger than their counterparts on land and occur on extremely low slope angles (typically
1− 2 ◦). Initiation mechanisms for these slides are vital for their prediction but are poorly understood,
and in-situ investigations are restricted by a hundreds of meters thick water column. One idea is that
rapid asymmetric deposition of sediment on the sea floor causes high rates of overpressure in a low
permeability and low stiffness material as typical for marine sediments. We use transient, coupled finite
element analysis to predict how the stress state of a submerged finite 2 ◦ slope that is subjected to slow
continuous, asymmetric loading, changes over time as well as to assess the stability of the slope. The
model is used to investigate the emergence of slope instability for different hydraulic conductivities,
giving insights into the field conditions necessary for the development of submarine slope failure by
overpressure alone.

1 INTRODUCTION

Submarine slope failures that occur at the transition from continent into the deep sea can be far larger
than any terrestrial slope failure on land (the Storegga Slide offshore Norway is more extensive than
Scotland and contains 300 times the annual sediment load from all of the worlds rivers). Perhaps
the most remarkable feature of these huge continental slope failures is that they occur in locations
worldwide on gradients of just 2 ◦ or less. We are yet to monitor one of these huge underwater landslides
in action, and the reason(s) for such large-scale failure on such low gradients are contentious. Scientific
drilling in the Gulf of Mexico recently confirmed that high excess pore pressures can be generated
in areas of rapid (up to 360 kPa per 1,000 years) sediment accumulation. Low permeabilities prevent
sufficiently rapid dewatering and excess pore pressures are produced that are up to 70 % of the lithostatic
weight [3]. It might therefore be proposed that rapid sediment accumulation generating high excess pore
fluid pressures is a major reason for large-scale submarine slope failure on low ( 2 ◦) gradients. However,
large-scale slope failures also occur on continental margins with much slower sediment accumulation
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rates, such as off the coast of Northwest Africa [1]. Deposition rates in this area do not exceed 1.8 kPa
per 1,000 years.

Here we undertake a sensitivity analysis of how sediment accumulation rate and permeability influence
the stability of low-angle submarine slopes. For this we use a 2D plane strain finite element slope stabil-
ity model set up in ABAQUS. The model operates on extremely large spatial and temporal scales (mod-
elling several hundreds of kilometers over geological time periods) and includes progressive asymmetric
loading. Specific material properties for marine sediments are applied, where necessary via FORTRAN
subroutines.

2 FINITE ELEMENT MODELLING

We use the Modified Cam Clay model [8] that is provided in ABAQUS. The slope of the critical state
line, M , is calculated from the friction angle, φcrit, assuming a purely compressive stress path in plane
strain conditions [7]. The sediment is cohesionless and its coefficient of Earth pressure, K0, is given by
K0 = 1− sinφcrit [5]. Table 1 lists independent parameters defining the constitutive model.

Notation Value Reference
κ Swelling index 0.027 [9, 2]
ν Poisson ratio 0.3 [6]
λ Compression index 0.28 [9, 2]

φ′crit [◦] Friction angle 28 [9]

M Slope of critical state line 0.87 M = sinφ′crit·6·
√

1−b+b2

3+sinφ′crit·2b−sinφ′crit
, b = 0.5, [7]

γw [kN/m3] Specific fluid weight 10.24
g [m/s2] Gravity 9.81

Table 1: Spatially and temporarily constant input parameters used in the Modified Cam Clay constitutive model.

A simplified continental margin geometry is adopted (Fig. 1). The area is modelled as one layer without
abrupt material changes and only vertical (not lateral) density and permeability gradients. The model
domain is partitioned into two regions for meshing purposes. Region 1 comprises the upper 500 m of
the sea floor and region 2 covers the deeper part. The mesh consists of 76,050 rectangular plane strain
elements and 238,347 nodes. Elements have a size of 10 x 10 m at the sea floor, whilst a coarser mesh
size (100 x 100 m) was adopted in region 2 as changes in mechanical properties are less pronounced at
these deeper levels [4, 6]. Element sizes further increase towards the model’s bottom as well as towards
the side boundaries.

Sea floor sediments have an initial void ratio, e, of 3.0 (75 % volume porosity). Sediment porosity, φ,
and void ratio are related by φ = e/(1 + e). In region 1 φ is defined by φ = 0.75 − 0.987z + 0.83z2,
where z [km] is the depth below the sea floor. This is based on [4]’s empirical porosity relationship for
calcareous sediments. In region 2 porosity decreases linearly from 40 % at 500 m below the sea floor, to
10 % at 5000 m below the sea floor. Permeability depends linearly on void ratio and is anisotropic. The
horizontal sediment permeability, kx for e = 3.0, i. e. at the sea floor before burial, is 10−8 m/s based on
oedometer measurements of calcareous sediments compiled by [2]. [10] found vertical permeabilities,
ky, as low as 10−13 m/s for mudstones with 40 % porosity,which we use as the lower limit for ky

variations. In order to explore model sensitivity we keep the permeability at the sea floor and in region 2
constant (kx = 10−8 and kx = 10−12, respectively) and vary k at 500 m as well as the anisotropy
coefficient, kx/ky. Dry density, ρdry, is directly linked to e as well. At the sea floor ρdry = 670 kg/m3,
corresponding to a specific weight, γ, of 1.2 kN/m3. For e = 0.67 ( 500 m below sea floor) ρdry =
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Figure 1: 2D slope
model geometry (not
to scale) with boundary
and loading conditions.
Sediment deposition
decreases from the
shallow end towards the
deep sea (grey vertical
arrows). Grey shadings
represent the initial void
ratio (logscale) on which
permeability and density
depend linearly.

1400 kg/m3 and e = 0.1 (bottom of model) ρdry = 1760 kg/m3. The sediment is assumed fully
saturated and normally consolidated. To account for an overconsolidtion rate of 1 the size of the yield
locus, pc, is calculated based on the stress state of each node.

The bottom boundary is impermeable and fixed in the vertical and horizontal directions. The landward
edge is impermeable as it represents a flow divide, assuming groundwater influence nearer to the conti-
nent. The pore pressure at the deep sea side boundary is hydrostatic so that flow into or out of the model
is allowed. Both side boundaries are fixed in the horizontal. The sea floor is free to move in any direc-
tion and is permeable. However, as deposited sediment is simulated as a surface load the flow normal to
the surface is governed by the pore pressure gradient and the vertical permeability. We include gravity
and consequently model total pore pressures. The water column is represented as a hydrostatic pressure
load on the sea floor, such that there is zero effective stress at the sea floor. Sedimentation is simulated
by progressively adding a vertical surface load that decreases from the shelf edge towards the deep sea.
Along the shelf the rate is uniform. The decrease is exponential (e−0.032x, where x [km] is the distance
from the shelf edge), based upon thinning rates of seismic sequences in [1]. γ = 12 kN/m3 was as-
sumed for the newly deposited fully saturated sediment corresponding to a dry density of 670 kg/m3.
The peak sedimentation rate at the shelf edge is 0.15 m/ka which equals 1800 kPa over 1 Ma.

3 RESULTS

Several numerical experiments with different vertical permeability gradients and anisotropy ratios were
run for 1 Ma. Slope stability is evaluated by analysing vertical effective stress, σ′v, overpressure ratio
(excess pore pressure normalised to σ′v), u∗, and Factors of Safety (FoS, ratio of available to mobilised
strength). In summary, all models are stable. All simulations show an expected increase in vertical
effective stress and pore pressure due to overburden. Fluid flow patterns vary within the different models
and lateral flow is observed in the models with permeability anisotropy but does not generate significant
overpressure ratios at the lower slope. Where permeability is isotropic, fluid flow is purely vertical.
To give an example, Fig. 2 shows the model with lowest permeability (kx decreasing from 10−8 to
10−11 m/s at 500 m depth, kx/ky = 10) and a maximum load of 1800 kPa. The maximum overpressure
ratio u∗ is 0.074 near the shelf edge and at a sub-sea-floor depth of about 1500 m (Fig. 2a). However, in
the top 500 m u∗ is significantly lower. Fluid flow has a small component towards the foot of slope but is
predominantly vertical (as shown by black vectors in Fig. 2a). The FoS is as low as 1.27 below the shelf
edge, coinciding with a high overpressure ratio, and at the foot of the slope (Fig. 2b). The FoS contour
lines along the slope converge towards the lower slope indicating that the lower slope is less stable than
the upper slope. Nevertheless, FoS is > 1 everywhere in the model and so no failure mechanism could

43



be identified. σ′v (not shown) is higher at the left and becomes smaller towards the right edge due to
asymmetric loading. σ′v does not show any abnormal pattern and is nowhere near zero.

Figure 2: 2D FE solu-
tion for (a) overpressure
ratio u∗ with flow veloc-
ity vectors normalised to
their absolute magnitude
and (b) Factor of Safety
calculated at each node
after continuous loading
with 1800 kPa for a pe-
riod of 1 Ma. Vertical ex-
aggeration is 5.

4 CONCLUSION

Our work suggests that large-scale failures of slope made of homogeneous low-permeability sediment
are in at least some cases not generated by rapid sediment loading alone. It appears that high perme-
ability layers would be needed to allow more rapid lateral fluid flow, or weak layers must be present
that are not included in our modelling. The effect of such features on the stability of submarine slopes
is where our work is now focussing.
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ABSTRACT 

An Evolutionary approach is used for prediction of maximum dry density (MDD) and optimum moisture 
content (OMC) as functions of some physical properties of soil. Evolutionary polynomial regression 
(EPR) is a data-driven method based on evolutionary computing aimed to search for polynomial 
structures representing a system. In this technique, a combination of the genetic algorithm (GA) and the 
least square method is used to find feasible structures and the appropriate parameters of those structures. 
EPR models are developed based on results from a series of classification and compaction tests from 
literature. Standard Proctor tests conducted on soils made of four components, bentonite, limestone dust, 
sand, and gravel, mixed in different proportions. The results of the EPR model predictions are compared 
with those of a neural network model, a correlation equation from literature and the experimental data. 
Comparison of the results shows that the proposed models are highly accurate and robust in predicting 
compaction characteristics of soils. Results from sensitivity analysis indicate that the models trained from 
experimental data have been able to capture the physical relationships between soil parameters. The 
proposed models are also able to represent the degree to which individual contributing parameters affect 
the maximum dry density and optimum moisture content. 

1  INTRODUCTION  
Many research works have been conducted to relate compaction characteristics of soils to their physical 
properties. The physical properties used generally include plasticity characteristics, specific gravity, and 
grain size distribution that are easily attainable from relatively straightforward laboratory tests. However, 
specific index properties used in the various correlation equations differ considerably. Among the most 
recent contributions are the work of Wang and Huang [1] who developed regression equations for 
predicting maximum dry density, optimum water content, and permeability for two levels of compaction 
degree (90 and 95%). Najjar et al [2] used neuronets to determine the optimum moisture content and 
maximum dry density of soils. Sinha and Wang [3] proposed models based on the artificial neural 
network (ANN) to predict permeability, maximum dry density, and optimum moisture content. 
This paper introduces a new approach to predict maximum dry density (MDD) and optimum moisture 
content (OMC) of soils using EPR. EPR is a new data mining technique that overcomes the shortcomings 
of ANNs by providing a structured and transparent model representing the behaviour of the system. EPR 
models are developed to relate MDD and OMC to physical properties of the soils. The results of EPR 
model predictions are compared with those from literature and the experimental data. A parametric study 
is conducted to assess the level of contribution of each parameter in the developed models.  

2  Evolutionary Polynomial Regression (EPR) 
EPR is a data-driven method based on evolutionary computing, aimed to search for polynomial 
structures representing a system. A general EPR expression can be presented as [4]: 
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where y is the estimated vector of output of the process; aj is a constant; F is a function 
constructed by the process; X is the matrix of input variables; f is a function defined by the user; 
and n is the number of terms of the target expression. The general functional structure 
represented by ���, ����, �	
 is constructed from elementary functions by EPR using a Genetic 
Algorithm (GA) strategy. The GA is employed to select the useful input vectors from X to be 
combined. The building blocks (elements) of the structure of F are defined by the user based on 
understanding of the physical process. While the selection of feasible structures to be combined 
is done through an evolutionary process, the parameters aj are estimated by the least square 
method. This technique uses a combination of the genetic algorithm to find feasible structures 
and the least square method to find the appropriate constants for those structures. In particular, 
the GA allows a global exploration of the error surface relevant to specifically defined objective 
functions. By using such objective (cost) functions some criteria can be selected to avoid the 
overfitting of models, push the models towards simpler structures and avoid unnecessary terms 
representative of the noise in the data. An interesting feature of EPR is in the possibility of 
getting more than one model for a complex phenomenon. A further feature of EPR is the high 
level of interactivity between the user and the methodology. The user physical insight can be 
used to make hypotheses on the elements of the target function and on its structure. Selecting an 
appropriate objective function, assuming pre-selected elements based on engineering judgment, 
and working with dimensional information enable refinement of final models. The level of 
accuracy at each stage is evaluated based on the coefficient of determination (COD) i.e., the 
fitness function as: 
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where Ya is the actual output value; Yp is the EPR predicted value and N is the number of data on 
which COD is computed. If the model fitness is not acceptable or the other termination criteria 
(in terms of maximum number of generations and maximum number of terms) are not satisfied, 
the current model goes through another evolution in order to obtain a new model. Detailed 
explanation of the method can be found in [4, 5]. 

3  EPR model for maximum dry density (MDD) 
Five input parameters were used for the EPR model for MDD including dry density of solid 
phase γ s expressed in (kg/m3), fineness modulus (Fm), effective grain size (D10) expressed in 
(mm), plastic limit (PL) expressed in (%), and liquid limit (LL) expressed in (%). The only 
output was the maximum dry density. The EPR model developed for maximum dry density is: 
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Figure 1 shows a comparison between the results of the EPR model predictions for testing data 
(20% of the whole data) that are not seen by EPR in the training stage and the actual 
experimental data. Table 1 presents the values of the coefficient of determination (COD) for 
different MDD models. 
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Figure 1. Comparison between the predicted maximum 
dry density and the actual data 

 
 

Table 1 
COD values for MDD prediction models 

Model COD values (%) 

EPR 
96 

 (for testing data ) 

ANN 98 

Wang and Huang (1984) 95 
 

4  EPR model for optimum moisture content (OMC) 
Three input variables were used to develop the EPR model for OMC. These are the fineness 
modulus (Fm), coefficient of uniformity (U), and plastic limit (PL). The EPR model developed to 
predict the optimum moisture content is: 
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The optimum moisture content of soils predicted using the EPR model is compared with the 
experimental data (Figure 2). The values of the coefficient of determination for the different 
models are shown in Table 2.  

Figure 2. Comparison between the predicted optimum 
moisture content and the actual data 

 
 

Table 2 
COD values for OMC prediction models 

Model COD values (%) 

EPR 
94 

 (for testing data ) 

ANN 92 

Wang and Huang (1984) 89 
 

 
The results indicate very good performance of the proposed EPR models. Figure 3 shows the 
sensitivity analysis results conducted. As the fineness modulus increases (the grains get coarser), 
the optimum moisture content decreases [6]. Increasing the coefficient of uniformity causes the 
maximum dry density to increase, and the optimum moisture content of the soil decreases 
accordingly [7].The results also show that optimum moisture content is greatly affected by 
fineness modulus and uniformity coefficient and plastic limit appears to have the least effect on 
optimum moisture content. 
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Figure 3. Parametric study results of the optimum moisture content model against; (a): fineness modulus of the 
soil, (b): uniformity coefficient, and (c): plastic limit 

5  Summary and conclusion 
Two separate EPR models were developed and validated using a database of experiments 
involving test data on compaction characteristics of a number of soils. The results of the model 
predictions were compared with the experimental data as well as results from other perdition 
models including a neural network. A parametric study was conducted to evaluate the effects of 
different parameters on compaction characteristics of soils. Comparison of the results shows that 
the developed EPR models provide very accurate predictions. They can capture and represent 
various aspects of compaction behaviour of soils directly from experimental data. The developed 
models present a structured and transparent representation of the system, allowing a physical 
interpretation of the problem that gives the user an insight into the relationship between the soil 
compaction behaviour and various contributing physical properties. From practical point of view, 
the EPR models presented in this paper are very accurate and easy to use. In the EPR approach, 
no pre-processing of the data is required and there is no need for normalization or scaling of the 
data. Performance of the models is being tested on a set of unseen data. This allows examining 
the generalization capabilities of developed models. Thus, an unbiased performance indicator is 
obtained on the real capability of the models. Another major advantage of the EPR approach is 
that as more data becomes available, the quality of the prediction can be easily improved by 
retraining the EPR model using the new data. 
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ABSTRACT

Over the last 30 years there has been considerable interest in the extension of the modifed Cam Clay
constitutive model to include anisotropic material behaviour. Many formulations have been proposed
that allow the elliptical yield (or bounding) surface to rotate off the hydrostatic axis, thereby introduc-
ing anisotropy. Several of these extensions have included one or more inner yield surfaces that produce
inelastic behaviour within the outer surface. However, a Lode angle dependency (LAD), essential for
reproducing the behaviour of particulate media, has not been introduced in a satisfactory way in the ex-
isting models. Rotating a LAD yield surface has presented challenges for earlier workers, such as main-
taining convexity of that surface and uniqueness of the Critical State (CS) cone for differing degrees
of anisotropy [1]. This paper overcomes the above difficulties by presenting a two surface anisotropic
hyperplasticity model that includes a deviatoric section with a dependency on both (i) the Lode angle
and (ii) the intermediate principal stress whilst maintaining a convex yield surface and a unique CS cone
for any degree of anisotropy. The model is derived from free-energy and dissipation functions which
provide the hyperelasticity law, yield function and direction of plastic flow without any additional as-
sumptions [2]. Through the use of a target anisotropic hardening law, as proposed by Wheeler et al. [3],
the model allows for a unique level of CS anisotropy, in agreement with recent findings from discrete
element analyses [4]. An efficient implicit backward Euler stress integration algorithm and derivation
of the algorithmic consistent tangent (for both small strain and finite deformation analysis) allows the
model to be used in practical boundary value simulations.

1 CONSTITUTIVE FORMULATION
Particulate geomaterials typically demonstrate a dependence of the elastic bulk modulus on the current
effective pressure, or equivalently on the current elastic volumetric strain. One common approach in
the development of elasticity relations is to specify the elastic shear modulus directly from the bulk
modulus, assuming a constant Poisson’s ratio. However, this leads to a non-linear elasticity model in
which energy can be generated from certain loading cycles [7]. Here we use a variable bulk modulus
with a constant shear modulus by adopting an elastic free-energy function of the form

Ψ1 = κpr exp
(

εe
v − εe

v0

κ

)

+ G
(

tr
(

[γe][γe]
))

(

with εe
v = tr[εe] and [γe] = [εe] − 1

3
εe

v[1]
)

, (1)

where κ is the elastic compressibility index, G is the shear modulus, pr is the reference pressure, εe
v0 is

the elastic volumetric strain at that reference pressure and [1] is the third order identity matrix.

The rate of dissipation for the two-surface model presented here is given by

Φ̇ =
√

( ˙εp
v1 + βij γ̇

p
ij1

)2A2 + ( ˙εp
γ1B)2

︸ ︷︷ ︸

Φ̇1

+
√

( ˙εp
v2 + βij γ̇

p
ij2

)2A2
f + ( ˙εp

γ2Bf )2
︸ ︷︷ ︸

Φ̇2

, (2)
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where ε̇
p
γ = tr

(

[γ̇p][γ̇p]
)

and the plastic strain rates ε̇
p
v and {γ̇p} are equivalent to the elastic definitions

in (1). The two components of dissipation Φ̇1 and Φ̇2 are associated with the outer bounding (F = 0)
and inner yield (f = 0) surfaces, respectively. Following the procedure for developing hyperplastic
constitutive models in [8], we obtain the inner-surface yield function as

f = (p − pχ)2B2
f + {sβ}T {sβ}A2

f − A2
fB2

f = 0, with {sβ} = {s} − {sχ} − (p − pχ){β} (3)

where p = tr[σ]/3, [s] = [σ] − p[1],

Af = (1 − γ)(p − pχ) + (2 − γ)γRpc/2 and Bf = ρ̄(θ) M
(

(1 − α)(p − pχ) + γRpc/2
)

. (4)

{β} is a traceless measure of the inclination of the yield surfaces’ major axis off the hydrostatic axis, pχ

and {sχ} are the hydrostatic and deviatoric components of the centre of the inner yield surface, {σχ},
see Figure 1. α and γ control the shape of the yield surfaces1 and ρ̄(θ) defines the LAD of the model.
M is the classical isotropic gradient of the CS line, R is the relative size of the inner surface to that of
the bounding surface; pc = pr exp

(

ε
p
v/
(

λ − κ
))

. The direction of plastic flow is given by

{g,σ } =
2
3

(

B2
f (p − pχ) − A2

f{sβ}T {β}
)

{1} + 2A2
f{sβ}, (5)

and the inner surface translates according to

{σ̇χ} = Cχ||ε̇p||
{

(1 − R){σ} + Rpcγ
{

{1} + {β}
}

/2
}

+ {σχ}
(

ε̇p
v/(λ − κ) − Cχ||ε̇p||

)

+ pχ{β̇}. (6)

The first term translates the inner surface towards the image point (see Figure 1), {σ̂}, on the outer
surface at a rate controlled by Cχ. This translation rule means that the inner surface can touch the
outer surface but never intersect it. The second and third terms ensure that the projection centre remains
consistent with the isotropic evolution and anisotropic shearing of the outer surface, respectively.

Figure 1: Two surface anisotropic model in p-q stress space.

2 ANISOTROPIC CRITICAL STATE

The two surface model allows for the axes of both the inner yield and outer boundary surfaces to
become non-parallel to the hydrostatic axis via a non-zero {β} (as shown in Figure 1). Here we use the

1See Coombs and Crouch [8] for more details on the specification and influence of α and γ.
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following anisotropic hardening relationship, initially proposed by Wheeler et al. [3]

{β̇} = Cβ

({

aβ{r} − {β}
}

< ε̇p
v > +xβ

{

bβ{r} − {β}
}

ε̇p
γ

)

, (7)

where < (·) > is the ramp function of (·). The local stress ratio, {r}, controlling the direction of
anisotropy evolution, is defined as the deviatoric to volumetric stress ratio measured from the apex of
the inner yield surface (see Figure 1). It is given by

{r} =
(

p − pχ + Rpcγ/2
)−1 {

{s} − {sχ} + Rpcγ{β}/2
}

. (8)

aβ ∈ [0,M ] and bβ ∈ [0,M ] act as target values for the evolution of anisotropy from volumetric and
deviatoric plastic strains, respectively. xβ controls the relative contribution from these two strains and
Cβ governs the absolute rate of evolution. Unlike some anisotropic hardening laws that depend purely
on plastic volumetric strains [5,6], (7) gives a unique level of anisotropy at the CS. When approaching
the CS, the plastic volumetric strain diminishes and the level of anisotropy tends towards the deviatoric
target value bβ{r}. The inclination of the yield surface at the CS is independent of the initial anisotropy
and the stress path taken to the reach this state. It is dependent only on the stress state at the CS. This
unique level of fabric anisotropy at the CS results in a unique CS line in the void ratio-ln(p) plane.

Figure 2: Development of the isochoric plastic flow point with anisotropy using α = 0.6, γ = 0.9 and
M = 1: (i) p-q stress space and (ii) the ηε̇

p
v

= 0 stress ratio variation with the level of anisotropy.

The introduction of a non-zero {β} results in a change of the position of zero volumetric plastic flow
on the inner yield and outer bounding surfaces. Setting {g,σ }T {1} = 0 and using the condition that
F = 0, we obtain a quartic in p/pc for the position of zero volumetric plastic strains on the bounding
surface. The stress ratio of the point on the yield surface with isochoric plastic flow (ηε̇

p
v

= 0) for

β =
√

tr
(

[β][β]
)

between 0 and M is given in Figure 2 (ii). Figure 2 (i) shows the location of these
points in normalised p-q stress space. As β increases, ηε̇

p
v=0 under triaxial compression also increases.

However, the ηε̇
p
v=0 under triaxial extension initially reduces but then increases to a stress ratio above

that of the original CS. When approaching the CS, the volumetric component of plastic flow reduces
and the evolution of {β} is controlled by the deviatoric plastic strains. In the limiting case where ε̇

p
v = 0,

{β̇} becomes
{β̇}ε̇

p
v=0 = Cβxβ

{

bβ{r} − {β}
}

ε̇p
γ . (9)
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Under continued plastic shearing with no change in state, {β̇} → {0} and {β}cs = bβ{r}, where
(·)cs denotes a quantity at the CS. If bβ = 0, anisotropy disappears when approaching the CS and
(p/pc) = γ/2 at a stress ratio η = q/p = M . When bβ 6= 0, the value of M to obtain the required
stress ratio at the CS, ηcs, is given by

M = ηcs

(

bβ ± bM

A(p/pc)

√

γ(p/pc)(2 − γ)
(

1 − (p/pc)
)
)−1

,

where bM =
(

(1 − α)(p/pc) +
αγ

2

)

(10)

By defining the stress ratio and the level of anisotropy at the CS, we can obtain the appropriate M to
maintain the unique asymptotic ηcs.

3 STRESS INTEGRATION AND LINEARISATION

The constitutive model was integrated using the fully implicit backward Euler method and linearised
to obtain the consistent algorithmic tangent2. The model was subsequently implemented within a finite
deformation finite-element code developed at Durham University (see [9,10] for more details on the
numerical framework). This implementation included the derivation of the spatial algorithmic tangent
to allow asymptotic quadratic convergence of the global Newton-Raphson solution algorithm.

4 CONCLUSION

The two-surface model presented in this paper incorporates a LAD within an anisotropic yield surface
which remains convex and has a unique CS surface. The yield surface anisotropy is introduced via
deviatoric shearing. This pressure-dependent translation maintains the convexity of the original surface.
When approaching the CS, the volumetric plastic strains reduce to zero and the material moves to
a constant state with unbounded deviatoric plastic shearing. At this state the inclination of the yield
surface converges to a unique target level of anisotropy. This allows the classical material constant M
to be specified such that a the appropriate stress ratio is obtained, maintaining a unique CS.
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ABSTRACT

This paper presents the theory for the Lagrange co-rotational (CR) formulation of finite elements for the
geometrically nonlinear analysis of 3D structures. In thispaper strains are assumed to be small while
their is no restriction on the magnitude of rotations from the reference configuration. A new best fit
rotator and consistent spin filter are derived. Lagrange CR formulation is applied to the Hybrid Trefftz
Stress elements, although the methodology presented can beapplied to other discretization techniques,
e.g. finite volume methods, lattice models, discrete element methods. Efficiency of CR formulation can
be exploited in post-buckling stability analysis, damage and fracture mechanics, modelling of dynamic
fragmentation of bodies made from quasi-brittle materials, solid fluid interactions, analysis of post-
stressed structures, discrete body dynamics.

1 INTRODUCTION

The Lagrangian kinematics description for Finite Element Method of geometric nonlinear structures is
utilized mainly in two solution techniques, i.e. Total Lagrangian Formulation and Updated Lagrangian
Formulation. In this paper we investigate a less common solution technique for geometrically nonlinear
problems known as the Lagrange Co-rotational (CR) formulation. In this paper we investigate a less
common solution technique for geometrically nonlinear problems, i.e. the Lagrange Co-rotational (CR)
formulation.

Key features of the Lagrange CR formulation are efficiency and robustness, i.e. computation of tan-
gent matrices is cheap, the method is easy to parallelize andcan be used with various discretization
techniques. Large class of problems with finite rotations but small strains, e.g. post-buckling stability
analysis, damage and fracture mechanics, modelling of dynamic fragmentation of bodies made from
quasi-brittle materials, solid fluid interaction, analysis of post-stressed structures or discrete body dy-
namics can be solved efficiently with the use of the Lagrange CR formulation.

In this paper, the CR formulation is applied with Hybrid Trefftz Stress (HTS) finite elements. Ap-
plication of the CR formulation together with HTS elements results in a powerful synergy, which is
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exemplified on a case study problem presented in the paper. Although the presented methodology is ap-
plied to solid mechanics, the presented method can also be applied to image recovery, where extraction
of rigid body motion from image is required.

This paper follows earlier contributions [1, 2, 3], with a full literature review in [3]. Despite the large
body of literature on co-rotational formulations, how to construct a best-fit rotation functional remains
an open research question. In this paper we introduce a new general best-fit rotation functional in
order to derive the rotation operator. Additionally, a new Spin-Filter operator, mapping increments of
degrees of freedom into increment of rotation vector, consistent with new best-fit rotation functional is
determined.

2 BEST-FIT ROTATION OPERATOR

Computation of the rotation operator for a given displacement field is at the heart of the co-rotational
formulation. In our view, an ideal co-rotational formulation should address the following objectives:

• Versatility. It must work for static and dynamic problems, with arbitrarydiscretization of dis-
placements.

• Rigid bodies.For rigid body motion, no spurious deformations should develop. Enforcing this
will simplify the coupling of FEM-CR methods with multibodydynamics codes [3].

• Finite stretch and pure shear.If a element is subjected to a uniform finite stretch or pure shear,
no spurious rotation should develop.

In order to find the rotation operatorR, a new functional is proposed here. Stationary points of this
functional determine rotation, which complies with the above objectives.

We note, that for a rotation free deformation, the antisymmetric part of the displacement gradient dis-
appears. With that observation at hand, assuming that the rotation is constant in the element domain,
the antisymmetric part of the volume averaged deformational displacement (ud) gradient is used to
construct the best fit rotation operator.

Z

Ω

([
∂ud

∂X

]

−

[
∂ud

∂X

]T
)

dΩ = 0 (1)

Noting that the antisymmetric part of the displacement gradient has only three non-zero linearly inde-
pendent components, it can be uniquely expressed by a pseudo-vector~h. Utilizing that and applying
integration by parts, a pseudo-vector~h can be expressed by the boundary integral

~h =
Z

Γ
n×uddΓ =

Z

Γ
Spin[n]uddΓ (2)

wheren is the spatial normal vector field on the element boundaryΓ. This integration can be undertaken
in the current or reference configuration (since the motion is roughly rigid we can assume the Jacobian
to be nearly one). A length of the pseudo-vector~h is used to formulate the best fit functional. Utilizing
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that
R

Γ Spin[N]XdΓ = 0, the functional takes form

J(R) =
1
2
[~h]T[~h] =

1
2

[
Z

Γ
Spin[n]uddΓ

]T [Z

Γ
Spin[n]uddΓ

]

=
1
2

[
Z

Γ
Spin[RN](u−ur)dΓ

]T [Z

Γ
Spin[RN](u−ur)dΓ

]

=
1
2

[
Z

Γ
Spin[N]RTxdΓ

]T [Z

Γ
Spin[N]RTxdΓ

]

(3)

whereN = RTn. We note, that the functional expressed in the above form canbe applied to problems
where displacements are only known on elements boundaries (and can be discontinuous).

The stationary point of this functional lead to a system of non-linear algebraic equations, from which
the current rotation operator can be calculated by means of aNewton iterative scheme. It should be
noted, that the above procedure permits the the rotation to be calculated independently of the motion
history. However, in order to avoid problems with multiple minima and to correctly trace the history of
rotation, it is appropriate to initialize the iterative procedure with the most recent value of rotation.

3 Numerical example

In order to present one of the many potential applications ofthe Lagrange CR formulation we investigate
deformation of a hypothetical foam. The mesh was obtained from a high-resolution 3D scan, included
as a case study in the Simpleware software [6]. The mesh comprised 95956 tetrahedrons and 40725
nodes. The constitutive parameters of the model were chosenarbitrarily, i.e.E = 1×104 andν = 0.25.
On the left plate a fully fixed boundary condition was applied. At the right plate tractions in the normal
direction were applied. On the front, back, top and bottom sides, displacements in the normal direction
are restricted.

Displacement and stress field were approximated using Hybrid-Trefftz finite elements. Two cases were
considered with linear and quadratic approximation of displacements. For the first case, second-order
polynomial Trefftz functions were used to approximate stresses. For the second case, third-order poly-
nomial Trefftz functions were used to approximate the stress field. This led to models with∼ 5 million
DoFs and∼ 10 million DoFs, respectively.

During the analyses, large rotations resulted in local buckling of the foam struts which had a negative
impact on the convergence of the Newton method. In order to improve efficiency, arc-length control
was introduced.

The Trefftz displacement field is adjoint to the stresses calculated to fulfill equilibrium, hence the dis-
placement vectoru approximation associated with stress functions do not carry any information about
translations and rotations. In Figure. 1, displacements are determined using the Trefftz displacement
functionu, supplemented with rigid body rotationur . By visual inspection of the figures in this exam-
ple and in Figure. 1 we can verify an excellent consistency ofthe calculated rotation operator with the
overall deformation.

4 Conclusions

This paper presents a geometrically nonlinear Lagrange co-rotational formulation applied to Hybrid
Stress Trefftz Elements. The FE code developed utilises thePortable Extensible Toolkit for Scientific
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Figure 1: Distribution of magnitide rotations vector.

Computation (PETSc) [4] and A Mesh-Oriented datABase (MOAB) [5]. A new best-fit rotation oper-
ator for continuum elements is developed. The best-fit rotation functional is constructed by utilizing
a boundary integral over a deformable element/body. Stationary points of the functional lead to a set
of three nonlinear equations, solved by means of the Newton method. Formulation of best-fit rotation
operator, load vector and tangent matrices was verified by a numerical example of the large deformation
of a foam.
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ABSTRACT 

In this paper, a new approach is presented for modelling behaviour of soils under cyclic loading. This 

involves development of a unified approach to modelling of complex materials using evolutionary 

polynomial regression (EPR) and its implementation in the finite element method. EPR is a data mining 

technique that generates a transparent and structured representation of the system being studied. The main 

advantage of an EPR-based constitutive model (EPRCM) over conventional models is that it provides the 

optimum structure and parameters of the material constitutive model directly from raw experimental (or 

field) data. The development of the method will be presented followed by the application to study the 

behaviour of soils under cyclic loading. The results of the analyses will be compared with those obtained 

from standard finite element analyses using conventional constitutive models. It will be shown that the 

EPR-based constitutive models offer an effective and unified approach to constitutive modelling of 

materials with complex behaviour in finite element analysis of boundary value problems. 

1  INTRODUCTION  

Finite element method has, in recent years, been widely used as a powerful tool in the analysis of 

engineering problems. In this numerical analysis, the behaviour of the actual material is approximated 

with that of an idealized material that deforms in accordance with some constitutive relationships. 

Therefore, the choice of an appropriate constitutive model that adequately describes the behaviour of the 

material plays an important role in the accuracy and reliability of the numerical predictions. During the 

past few decades several constitutive models have been developed for various materials including soils. 

Despite considerable complexities of constitutive theories, due to the erratic and complex nature of some 

materials such as soils, rocks, composites, etc., none of the existing models can completely describe the 

real behaviour of these materials under various stress paths and loading conditions.  

In this paper a fundamentally different approach is presented for constitutive modelling using 

Evolutionary Polynomial Regression (EPR) that overcomes some of the shortcomings of the other 

approaches. In the proposed EPR approach the optimum structure for the material constitutive model 

representation and its parameters are determined directly from raw data. Furthermore, it provides a 

transparent and structured representation of the constitutive relationships that can be readily incorporated 

in a finite element code. Javadi and Rezania 2009, and Javadi et al. 2009 presented the application of the 

EPR-based constitutive models in material modelling under monotonic loading situation [1, 2]. However, 

this paper focuses on the application of the EPR-based constitutive models, to the simulation of behaviour 

of soils under cyclic loading and its integration in a FE model.  

In what follows, the main principles of EPR will be outlined. The application of EPR in modelling of 

nonlinear constitutive relationships and the implementation of developed EPRCMs in FE analysis will be 

illustrated. An EPR model will be trained with data from results of a series of synthetic triaxial cyclic 

loading tests. The trained EPR model will then be incorporated into a finite element model which will in 

turn be used to analyse the behaviour of the soil under cyclic loading. The training and generalization 
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capabilities of the EPR in extending the learning to cases of multiple cycles will be investigated. 

2  EVOLUTIONARY POLYNOMIAL REGRESSION (EPR) 

Evolutionary polynomial regression (EPR) is a data-driven method based on evolutionary computing, 

aimed to search for polynomial structures representing a system. A general EPR expression can be 

presented as [3] 

 
0

1

y ( , ( ), )
====

= += += += +∑∑∑∑
n

j

j

F X f X a a  (1) 

where y is the estimated vector of output of the process; a0 is a constant; F is a function constructed by 

the process; X is the matrix of input variables; f is a function defined by the user; and n is the number of 

terms of the target expression. The general functional structure represented by F is constructed from 

elementary functions by EPR using a GA strategy. The GA is employed to select the useful input vectors 

from X to be combined. The building blocks (elements) of the structure of F are defined by the user, 

based on understanding of the physical processes. While the selection of feasible structures to be 

combined is done through an evolutionary process the parameters are estimated by the least square 

method.  

EPR is a technique for data-driven modelling. In this technique, the combination of the genetic algorithm 

to find feasible structures and the least square method to find the appropriate constants for those structures 

implies some advantages. In particular, the GA allows a global exploration of the error surface relevant to 

specifically defined objective functions. By using such objective functions some criteria can be set in 

order to (i) avoid overfitting of models, (ii) push the models towards simpler structures, and (iii) avoid 

unnecessary terms representative of the noise in data [3]. Application and capability of EPR in modelling 

and analysing different civil and geotechnical engineering problems have been investigated by the 

authors, [4, 5]. Detailed explanation of the method is out of the scope of this paper and can be found in [3, 

6]. 

3  EPR FOR CONSTITUTIVE MODELLING 

In constitutive modelling using EPR, the raw experimental or in-situ test data are directly used for 

training the EPR model. In this approach, there are no mathematical models to select and as the EPR 

learns the constitutive relationships directly from the raw data it is the shortest route from experimental 

research to numerical modelling. In this approach there are no material parameters to be identified and as 

more data become available, the material model can be improved by re-training of the EPR using the 

additional data. Furthermore, the incorporation of an EPR in a finite element procedure avoids the need 

for complex yield/failure functions, flow rules, etc. An EPR equation can be incorporated in a finite 

element code/procedure in the same way as a conventional constitutive model. It can be incorporated 

either as incremental or total stress-strain strategies [2]. In this study the incremental strategy has been 

successfully implemented in the EPR-based finite element model. 

3-1: Input and output parameters 

The choice of input and output quantities is determined by both the source of the data and the way the 

trained EPR model is to be used. A typical scheme to train most of the neural network based material 

models includes an input set providing the network with the information relating to the current state units 

(e.g., current stresses and current strains) and then a forward pass through the neural network yielding the 

prediction of the next expected state of stress and/or strain relevant to an input strain or stress increment 

[7]. The same idea has been utilized in this work. Thus depending on the problem and the available data, 

typically the mean stress, deviatoric stress, volumetric strain and shear strain are used as the input 

parameters representing the current state of stress and strain in a load increment i, and the devatoric stress  

and/or volumetric strain corresponding to the input incremental deviatoric strain are used as the output 

parameters. The database is divided into two separate sets. One set is used for training to obtain the EPR 

model and the other one is used for validation to appraise the applicability of the trained model. 
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4  INCORPORATING EPRCM IN FEA 

The developed EPRCMs are implemented in the widely used general-purpose finite element code 

ABAQUS through its user defined material module (UMAT). UMAT updates the stresses and provide the 

material Jacobian matrix for every increment in every integration point (ABAQUS). In the developed 

methodology, the EPRCM replaces the role of a conventional constitutive model. The source of 

knowledge for EPR is a set of raw experimental (or in situ) data representing the mechanical response of 

the material to applied load. When EPR is used for constitutive description, the physical nature of the 

input–output data for the EPR is determined by the measured quantities, e.g., stresses, strains, etc. The 

constitutive relationships are generally given in the following form: 

 σ D ε∆ ∆====              (2) 

where D is material stiffness matrix, also known as the Jacobian. For an isotropic and elastic material, 

matrix D is given in terms of Young’s modulus, E, and Poisson’s ratio, ν. Therefore the function of an 

EPR-based constitutive model in a FE model (at every element’s integration point) is to define E, and ν as 

follows: 
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5  NUMERICAL EXAMPLE 

The application of the method to the analysis of the behaviour of soil under cyclic loading is presented in 

the following example. In this example, the behaviour of a soil is studied in triaxial tests under cyclic 

axial loading. The test data for this example were generated by numerical simulation of triaxial 

experiments. The data for training and validation of the EPR were created by finite element simulation of 

triaxial cyclic loading tests at constant cell pressures using the modified Cam clay model. The generated 

data were used to train and test EPRCMs. The EPRCMs were then incorporated in the EPR-based finite 

element model to represent the soil behaviour under cyclic loading. The results of the EPR-based finite 

element analyses were compared with those attained using conventional finite element method. The 

selected EPR models for q and  are presented in equations 5(a) and 5(b). After training and validation, 

the EPRCMs were incorporated in the EPR-based finite element model. The model was then used to 

simulate the behaviour of the soil in triaxial cyclic loading test at a confining pressure 250 kPa (that has 

not been used during the training process). The results of the EPR-based finite element analysis are 

compared with those attained using the conventional FE simulation in Figs. 1(a) and 1(b). It is seen that 

the results of the EPR-based FE model are in close agreement with those of the conventional FE 

simulation. It can be seen from the figure that, the EPR-based FE model is capable of solving boundary 

value problems involving cyclic loading with a good accuracy. 

5  DISCUSSION AND CONCLUSION 

This paper presented a fundamentally different approach to constitutive modelling of materials in finite 

element analysis. An EPR-based finite element method was presented for modelling engineering 

problems. The method is based on the integration of an EPR-based constitutive model in the finite 

element procedure. In the developed methodology, the EPRCM is used as a unified framework for 

constitutive modelling of materials in finite element analysis. The model was used to study the behaviour 

of soils under cyclic loading. It was shown that EPR can learn the complex behaviour of soils under 
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cyclic loading taking into account the loading history of the soil. It should be noted that, for practical 

problems, the data used for training of EPRCM should cover the range of stresses and strains that are 

likely to be encountered in practice. This is due to the fact that EPR models are good at interpolation but 

not so good at extrapolation. 
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Fig. 1: Comparison between the results of the EPR-based FEA and a conventional FEA for multiple 

regular loading cycles. 

References 

[1] A.A. Javadi and M. Rezania. Applications of artificial intelligence and data mining techniques in soil 

modelling. Geomechanics and Engineering: An International Journal, 1(1), 53-74, 2009. 

[2] A.A. Javadi, M. Mehravar, A. Faramarzi and A. Ahangar-Asr. An Artificial Intelligence based finite 

element method. Transactions on Computers and Intelligent Systems 1(2), 1-7, 2009. 

[3] O. Giustolisi and D. Savic. A symbolic data-driven technique based on evolutionary polynomial 

regression. Journal of Hydroinformatics 8(3), 207-222, 2006. 

[4] A. Ahangar-Asr, A. Faramarzi and A.A. Javadi. New Approach for Prediction of the Stability of Soil 

and Rock Slopes, Engineering Computations, 27(7), 878-893, 2010. 

[5] M. Rezania, A. Faramarzi and A.A. Javadi. An evolutionary based approach for assessment of 

earthquake-induced soil liquefaction and lateral displacement, Engineering Applications of Artificial 

Intelligence, 24(1), 142-153, 2011. 

[6] A. Doglioni, O. Giustolisi, D. Savic and B. Webb. An investigation on stream temperature analysis 

based on evolutionary computing, Hydrological Processes, 22(3), 315–326, 2008. 

[7] J. Ghaboussi, D. Pecknold, M. Zhang and R. Haj-Ali. Autoprogressive training of neural network 

constitutive models, International Journal for Numerical Methods in Engineering, 42(1), 105–126, 

1998. 

60



Proceedings of the 19th UK Conference of the 
Association for Computational Mechanics in Engineering 

5 – 6 April 2011, Heriot-Watt University, Edinburgh 
 

 

Material plastic properties characterization by coupling experimental and 
numerical analysis of small punch beam tests 

Xingguo Zhou1, Wenke Pan1*, Donald Mackenzie1  
1Department of Mechanical Engineering, University of Strathclyde, UK.75 Montrose Street, Glasgow, G1 1XJ 

*wenke.pan@strath.ac.uk 
 

Key Words: small punch beam test; plasticity; material characterization; genetic algorithm 

ABSTRACT 

The small punch test method of characterizing material properties was introduced about thirty years ago. 
It has an advantage over conventional tensile test methods in that only a small sample of material is 
needed. A disadvantage of the method is that manufacture of the small hemispherical punch head is 
difficult and expensive due to the high dimensional accuracy requirements. Here an alternative design of 
punch is presented: a small punch beam test system consisting of a top die, a bottom die and a flat punch 
with semi-circular cross-section head. By coupling the numerical modelling and experimental results, a 
genetic algorithm has been used to characterize the material plastic properties.  

1  INTRODUCTION  

The small punch testing (SPT) technique was developed to characterize material properties in the late 
1970s[1]. In the test, a cylindrical punch with a hemispherical head deforms a thin disc shape specimen, 
which is clamped between two co-axial hollow cylindrical dies. The punch force and the specimen central 
displacement are recorded and material properties evaluated through comparison with theoretical or 
numerical models of deformation. Material properties that have been evaluated by SPT include elastic 
modulus, plastic deformation properties such as yield stress and tensile strength[2], creep properties[3] and 
fracture properties[4].  Comparison of SPT results with conventional tensile testing (CTT) method is very 
encouraging.  

One practical advantage of SPT over CTT is that the specimen size is very small and therefore only small 
samples of material are required for testing. This is particularly useful when testing material from 
operating plant for life extension programs, as the small amount of material required can often be 
removed from the surface of components without plant shutdown and intrusive welded repairs are not 
required afterwards. One disadvantage of SPT is the difficulty and expense of manufacturing the 2.5mm 
diameter hemi-spherical head punch to the required dimensional accuracy. To overcome this problem, an 
alternative Small Punch Plane Strain (SPPS) test system with a cylindrical punch contact surface and 
rectangular test specimen was designed[5]. The new system has been successfully used to characterize 
material’s plastic properties, with Ramberg-Osgood constitutive relationship employed. Recently, instead 
of using rectangular specimens, Sehgal et. al[6] used small beam samples for their punch tests. The yield 
strength and fracture toughness of die steel D3 and Chromium steel H11 were evaluated and compared 
with the values obtained from standard tests. Their simulated load vs. displacement curves were in good 
agreement with the results obtained experimentally. 
  
In this paper, a small punch testing system based on a small beam shape specimen and punch similar to 
that of SPPS is presented. Material properties are evaluated from the deformation through comparison 
with multi-linear strain hardening Finite Element models of specimen deformation and a genetic 
algorithm that uses a cost function based on the relative difference between the experimental and testing 
forces at the top centre of the beam.  
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2 SMALL PUNCH BEAM TESTING TOOL DESIGN 
 
The small punch beam testing tool system is shown in Figure 1. Similar to conventional small punch test, 
this tool system includes a punch, a top die and a bottom die. Instead of thin disc shape sample, a beam 
with rectangle cross-section shape is used. The hollow cylindrical top and bottom dies of the conventional 
SPT are replaced by top and bottom blocks, each with a narrow through slot. A shallow slot with depth of 
1.5mm and width of 2mm is designed for the test beam specimen to sit in.  The punch is a rectangular bar 
with a half-cylinder profile contact surface, overcoming manufacturing difficulties associated with a 
hemispherical punch. The radius of the punch head is 1.25mm and the width of the punch is 8mm.  
 
 

Figure 1 The small punch beam testing tool components 

Top die 

Bottom

Punch 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To ensure the specimen is held tightly during the testing, the depth of the slot is 0.2mm less than the 
height of the beam, therefore sufficient clamping pressure will be applied to the ends of the beam to 
prevent slip when tightening the screws connecting the top and bottom blocks. 

3 FEM NUMERICAL MODELLING 
Figure 2 shows a typical three dimensional ABAQUS/implicit finite element model, which consists of 
punch, top and bottom die and beam specimen. The specimen is Aluminum and the punch high strength 
steel, which is much stronger than the specimen. The simulation is therefore simplified by assuming the 
punch to be a rigid body.  The dies are modeled using ABAQUS three dimensional 8-node brick element 
with reduced integration, assuming a linear elastic material. The specimen is modeled using the higher 
order C3D20R because of the large deformation of the specimen at the centre and near the die shoulder 
areas. Friction between punch and specimen, specimen and top die and specimen and bottom die is 
modeled, assuming a friction factor of 0.3. Both top and bottom die surfaces are constrained with no 
movement allowed along the loading direction. A reference point is defined for the rigid punch and all 
degrees of freedom of the reference point are constrained apart from the displacement control in the 
loading direction.   
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No distinct yield point is observed in stress-strain curves of this type of Aluminum alloy, therefore, the 
yield stress is defined as the stress corresponding to 0.2% plastic strain. A multi-linear strain hardening 
material model, as shown in Figure 3, is assumed for analysis. There are three material hardening 
parameters S1, S2 and S3 to be identified, where S1 and S2 representing stress at the beginning of yield 
and plastic strain of 0.2%, while S3 representing the ultimate tensile strength. Both material and 
geometrical nonlinearity are considered in the simulation.  

Figure 3 Multi-linear stress strain curve with 
parameters S1, S2 and S3 to be identified  

Strain 

Stress, MPa 

S2

S3 

S1

 

Figure 2 Finite element model 

 
 
 
 
 
 
 
 
 
 
 
4 GENETIC ALGORITHM  
 
A Genetic Algorithm (GA) method is applied to characterize the material nonlinear parameters. The flow 
chart of a general GA optimization procedure is given in Figure 4. Equation 1 shows the formulation of 
the objective function Φ, which is defined as the square root of the average of the summation of the 
square of the relative difference between the experimental and numerical results. The fitness is simply 

chosen as the inverse of the objective function, i.e. 
Φ
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Figure 4 Flow chart of the genetic algorithm 
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Smaller values of the objective function correspond to the larger values of the fitness. The general GA 
procedure consists of selection, crossover and mutation, with a higher fitness seed having more chance to 
be selected and one of the fittest off-spring at each generation always being kept. The GA procedure stops 
when the convergence criterion is satisfied.  
 

5 RESULTS  
Force, N  

The cross-head speed of the press machine 
used for the test is very slow and the problem 
is treated as a static problem. Mesh 
convergence was investigated first, with three 
cases having different mesh sizes being 
studied. The results from the finest mesh are 
used for all the data analysis as the relative 
error of the calculated displacement at the 
central point on bottom surface is less than 
1.5% if compared with the coarser mesh 
having roughly twice the mesh size of the 
finest mesh.  
 

         Figure 5 Comparison between the numerically    
            predicted force vs beam top surface central   
 displacement and experimentally obtained curve

After 20 generations of GA evolution, the best 
value of the objective function is 6.5%. The 
values of the material parameters S1, S2 and 
S3 are 102.2MPa, 219.9MPa and 509MPa 
respectively. Figure 5 shows the comparison 
between the numerically predicted force 
versus beam top surface central displacement and that of experimentally obtained force. From this figure, 
it can be seen that the numerical results are in good agreement with that of experimental results. Due to 
the fluctuation of the experimental results, it is difficult to obtain better results after 20 iterations. The 
tested Aluminium has no obvious yield point, but the ultimate tensile stress identified from this GA 
procedure is very close to 483MPa (relative error is 5%) obtained through conventional tensile testing.  

Displacement, mm 

 

6 CONCLUSIONS AND FUTURE WORK 
 
A small punch beam testing system has been designed and GA method coupled with experimental and 
numerical results to characterize the material plastic properties. The relative error between the predicted 
ultimate tensile strength and those obtained by conventional tensile testing method is about 5%. The 
advantages of this method include the lower cost of manufacturing of the punch, the smaller volume of 
material required for testing and the GA method predicts the material properties automatically. Future 
work will be extension of this method to material damage parameters and fracture toughness 
identification. 
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ABSTRACT

A constitutive model based on the combination of damage mechanics and plasticity is developed to
analyse concrete structures subjected to dynamic loading. The aim is to obtain a model, which requires
input parameters with clear physical meaning. The model should describe the important characteristics
of concrete subjected to multiaxial and rate-depending loading. This is achieved by combining an ef-
fective stress based plasticity model with an isotropic damage model based on plastic and elastic strain
measures. The model response in tension and multiaxial compression is compared to experimental re-
sults in the literature.

1 INTRODUCTION

Concrete is a strongly heterogeneous material, which exhibits a complex nonlinear mechanical be-
haviour. Failure in tension and low confined compression is characterised by softening which is defined
as decreasing stress with increasing deformations. This softening response is accompanied by a re-
duction of the unloading stiffness of concrete, and irreversible (permanent) deformations, which are
localised in narrow zones often called cracks or shear bands. On the other hand, the behaviour of con-
crete subjected to high confined compression is characterised by a ductile hardening response; that is,
increasing stress with increasing deformations. Furthermore, high loading rates are known to signifi-
cantly increase the strength in tension and compression. These phenomena should be considered in a
constitutive model for analysing the dynamic behaviour of concrete structures.

In the present work, the combined damage-plasticity model presented in [2, 3] (CDPM1) is revisited
to develop a constitutive model for the rate dependent failure of concrete, which is characterised by
its numerical stability, well defined input parameters and flexibility to be adapted to newly developed
concrete based materials, such as fibre reinforced concrete. As this model can be seen as an augmenta-
tion of CDPM1, it is called here CDPM2. The stress-based plasticity part of the model is based on the
effective stress. It includes hardening in the post-peak regime, which is used to model the strain rate
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dependence of strength by delaying the onset of damage. The plasticity part is combined with a dam-
age model, which is based on elastic and plastic strain measures and distinguishes between tensile and
compressive stress states using an approach similar to those proposed in [6, 7, 1]. The damage model
is used to describe the complex strength envelope of concrete. With this combination of plasticity and
damage mechanics, it is aimed to provide a computationally efficient model for the dynamic behaviour
of concrete. The present extended abstract illustrates some of the features of the model. For a more
detailed description, see [4].

2 CONSTITUTIVE MODEL

The damage plasticity constitutive model is based on the following stress-strain relationship:

σ = (1− ωt) σ̄t + (1− ωc) σ̄c (1)

where σ̄t and σ̄c are the positive and negative parts of the effective stress tensor σ̄, respectively, and
ωt and ωc are two scalar damage parameters, ranging form 0 (undamaged) to 1 (fully damaged). The
effective stress σ̄ is defined as

σ̄ = De : (ε− εp) (2)

where De is the elastic stiffness tensor based on the elastic Young’s modulus E and Poisson’s ratio ν,
ε is the strain tensor and εp is the plastic strain tensor. The positive and negative parts of the effective
stress σ̄ in Eq. (1) are determined from the principal effective stress as σ̄pt = 〈σ̄p〉+ and σ̄pc = 〈σ̄p〉−,
where 〈〉+ and 〈〉− are positive and negative part operators, respectively, defined as 〈x〉+ = max (0, x)
and 〈x〉− = min (0, x). In addition, a scalar measure αc is defined which distinguishes between tensile
and compressive stress states. It has the form

αc =
∑
i

〈σ̄pi〉−
(
〈σ̄pi〉+ + 〈σ̄pi〉−

)
‖σ̄p‖2

(3)

where 〈σ̄pi〉+ and 〈σ̄pi〉− are the components of the compressive and tensile part of the principal
stresses, respectively. The parameter αc varies in the range from 0 to 1.

The plasticity model is based on the effective stress and thus independent of damage. The model is
described by the yield function, the flow rule, the evolution law for the hardening parameter and the
loading-unloading conditions.

The damage part of the present damage-plasticity model is related to elastic and plastic strain measures.
The geometrical interpretation of these strain measures for uniaxial tension, hardening plasticity and
linear damage evolution are shown in Fig. 1. The part ω (ε− εp) is reversible and εp is irreversible.

3 MODEL RESPONSE

The response of the constitutive model is illustrated by several idealised load cases. Firstly, a quasi-
static strain cycle is considered, which results in a stress-strain response shown in Fig. 1. The strain
is increased from “0” to “1”, where the tensile strength of the material is reached. Up to point “1”,
the material response is elastic-plastic with small plastic strains. With a further increase of the strain
form “1” to “2”, the effective stress part continues to increase, as the model exhibits hardening, whereas
the nominal stress decreases, since the tensile damage variable ωt increases. A reverse of the strain at
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Figure 1: (a) Geometrical meaning of the inelastic strain εi for the combined damage-plasticity model.
The inelastic strain is composed of reversible ω (ε− εp) and irreversible εp parts. The dashed lines
represent elastic unloading with the same stiffness as the initial elastic loading. (b) Cyclic response
obtained with the constitutive model.

point “2” results in an reduction of the stress with an unloading stiffness, which is less than the elastic
stiffness of an elasto-plastic model, but greater than the stiffness of an elasto-damage mechanics model.
At point “3”when the stress is equal to zero, a further reduction of the strain leads to a compressive
response following a linear stress-strain relationship between the points “3” and “4” with the original
Young’s modulus E of the undamaged material. This change of stiffness is obtained by using two
damage parameters, ωt and ωc. At point “3” ωt > 0, but ωc = 0. Up to “4” no further plastic strains
are generated, since the hardening from “0” to “1” has increased the elastic domain of the plasticity
part so much that the yield surface is not reached at “4”. A further decrease of the strain activates
the compressive damage variable which leads to a reduction of the nominal stress. At point “5”, the
plasticity surface is reached and a subsequent increase of strain results in hardening of the plasticity
part. However, the nominal stress, shown in Figure 1b, decreases, since ωc increases. A second reversal
of the strain direction (“6”) changes the stress from tension to compression at “7”, which is again
associated with a change of the stiffness.

The second example consists of several tensile loading cases with constant strain strain rates of 1×10−6,
1, 10 and 100 1/s. The corresponding stress strain responses are shown in Fig. 2a. An increase of the
loading rate results in a delay of the onset of damage. The initial stiffness is modelled to be independent
of the strain rate.

Finally, the model response in triaxial compression is compared to the experimental results reported
in [5] (Fig. 2). The material constants for this test are E = 25 GPa, ν = 0.2, fc = 28 MPa, ft =
2.8 MPa, GFt = 100 J/m2, GFc = 15000 J/m2. Overall, the agreement of the model response with the
experimental results is very good. The model is able to represent the strength of concrete in multiaxial
compression. In addition, the strains at maximum stress agree well with the experimental results.
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Figure 2: (a) Rate effect in tension: Stress strain response for four tensile strain rates. (b) Confined
compression: Model response compared to experiments reported in [5].

4 CONCLUSIONS

The present damage plasticity model combines a stress-based plasticity part with a strain based damage
mechanics model. The model response is in good agreement with experimental results for a wide range
of loading from uniaxial tension to confined compression. In the next steps, the model will be applied
to boundary value problems to evaluate its performance to describe failure processes of concrete mesh-
independently. It is expected that the model will perform well for these problems since the softening
response is formulated so that the crack band approach can be applied, which is known to lead in many
cases to mesh-independent results.
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ABSTRACT 

In the past few decades, steel plate shear walls (SPSW) have been used in numerous tall buildings as a 

resistant system against lateral loads. The perceived advantages of these systems in seismic resistant 

structures include enhanced stiffness, strength and ductility, and stable hysteretic characteristics. Various 

researchers have studied the behaviour of SPSW under cyclic loading and proposed different models in 

order to predict the behaviour of these structures under complex loading conditions. In this paper a new 

approach based on evolutionary polynomial regression (EPR) is proposed, for the prediction of the 

behaviour of SPSW under cyclic loading using data from laboratory tests on scaled samples of SPSW. It 

is shown that the EPR model is able to predict the behaviour of SPSW under cyclic loading.  

1  INTRODUCTION  

A steel plate shear wall (SPSW) consists of steel infill plates bounded by a column-beam system. For the 

past few decades, experimental and analytical studies have been performed on the use of steel plate shear 

walls as primary lateral load resisting elements in buildings. Steel plate shear walls have been proposed as 

viable structural alternatives to resist lateral loads in medium- and high-rise steel construction, 

particularly in areas of high seismic risk.  

Many researchers have studied the behaviour of SPSW under cyclic loading and presented different 

analytical and numerical models to predict their behaviour. Timler and Kulak (1983) reported a number of 

static and quasi-static cyclic tests that were performed on large- and small-scale specimens, accompanied 

with analytical models [1]. Driver et al. (1998) performed a test on a large-scale four-story test specimen 

of SPSW and developed a nonlinear finite element model for this specimen [2]. They observed a good 

agreement between the results of the finite element analysis and those of the experiment. Moreover they 

offered an analytical method based on tension strips for monotonic behaviour. Elgaaly et al. (1993) 

developed the analytical models that were capable of predicting accurately the behaviour of the wall in 

the post-buckling domain under monotonic and cyclic loads [3]. Lubell et al. (2000) presented a study on 

the performance of un-stiffened thin plate shear walls for medium- and high-rise buildings [4]. They 

performed experimental testing on two single- and one four-story steel shear wall specimens, under cyclic 

quasi-static loading. The experimental results were then compared with simplified tension field analytical 

models, based on recommendations in the Canadian code for limit-states design of steel structures. Rezai 

et al. (2000) carried out a numerical study using different strip models and compared the results with 

results of two cyclic tests on single story and one four-story specimens tested at the University of British 

Colombia [5]. This proposed model predictions illustrated improved correlation with the envelope of 

cyclic test results achieved from the experimental studies at the University of British Colombia. Alinia 

and Dastfan (2006) presented a numerical study to investigate the effect of stiffening on the ultimate 

strength of shear panels [6]. They studied cyclic behaviour of stiffened and unstiffened shear panels. Park 

et al. (2007) performed an experimental study to investigate the cyclic behaviour of framed steel walls 

with thin infill plates. They tested five specimens with a single bay and three stories under cyclic lateral 
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loading and investigated the effects of plate thickness and the strength and compactness of the column 

[7]. Sabouri-Ghomi and Gholhaki (2008) studied the ductility of thin steel plate shear walls based on 

ATC-24 protocol and Popov’s definition. They tested two three-story unstiffened steel plate shear walls 

under cyclic loading [8].  

On the other hand, in the past few decades, the use of artificial neural networks (ANN) has been 

introduced as an alternative approach to predict the cyclic behaviour of materials. Yun et al. 2008 (a) 

presented an approach for ANN-based modelling of the cyclic behaviour of materials [9]. They focused 

on the issue of hysteric behaviour of material where one strain value may correspond to multiple stresses. 

In order to overcome on this issue, they introduced two new internal variables in addition to the other 

ordinary inputs of the ANN-based constitutive material models to help the learning of the hysteretic and 

cyclic behaviour of the material. The ANN models trained in this way were implemented in a FE model 

to analyse a boundary value problem (steel beam-column connection) under cyclic loading. Yun et al. 

2008 (b) extended the ANN-based cyclic material model developed by Yun et al. 2008 (a) to beam-

column connections by adding the mechanical and design parameters as inputs of the ANN model [10].  

In this paper, a different approach is presented for modelling cyclic behaviour of SPSW using 

evolutionary polynomial regression (EPR). In the proposed EPR approach the optimum structure for the 

model representation and its parameters are determined directly from raw data. Furthermore, it provides a 

transparent and structured representation of the relationships. In what follows, the main principles of EPR 

will be outlined. The application of EPR in modelling the cyclic behaviour of SPSW will be illustrated 

through an example. 

 

 

2  EVOLUTIONARY POLYNOMIAL REGRESSION 

 
Evolutionary polynomial regression (EPR) is a data-driven method based on evolutionary computing, 

aimed to search for polynomial structures representing a system. A general EPR expression can be 

presented as [11] 

∑
=

+=
n

j
j aaXfXFy

1
0)),(,(  

where y is the estimated vector of output of the process; aj is a constant; F is a function constructed by the 

process; X is the matrix of input variables; f is a function defined by the user; and n is the number of terms 

of the target expression. The general functional structure represented by ���, ����, �	� is constructed 

from elementary functions by EPR using a genetic algorithm (GA) strategy. The GA is employed to select 

the useful input vectors from X to be combined. The building blocks (elements) of the structure of F are 

defined by the user based on understanding of the physical process. While the selection of feasible 

structures to be combined is done through an evolutionary process, the parameters aj are estimated by the 

least square method. 

EPR is a technique for data-driven modelling. In this technique, the combination of the genetic algorithm 

to find feasible structures and the least square method to find the appropriate constants for those structures 

implies some advantages. In particular, the GA allows a global exploration of the error surface relevant to 

specifically defined objective functions. By using such objective (cost) functions some criteria can be 

selected to be satisfied through the search process. These criteria can be set in order to (a) avoid the 

overfitting of models; (b) push the models towards simpler structures; and (c) avoid unnecessary terms 

representative of the noise in data. An interesting feature of EPR is in the possibility of getting more than 

one model for a complex phenomenon. A further feature of EPR is the high level of interactivity between 

the user and the methodology. The user physical insight can be used to make hypotheses on the elements 

of the target function and on its structure (Equation 1). Selecting an appropriate objective function, 

assuming pre-selected elements in Equation (1) based on engineering judgment, and working with 

dimensional information, enable refinement of final models. One of the most outstanding features of EPR 

is that it learns the material behaviour directly from raw experimental data; so the EPR based constitutive 

model is the shortest route from experimental research (data) to numerical modelling, which is very 

advantageous especially in modelling of materials with complex behaviour. Furthermore, as more data 
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becomes available, the material model can be improved by re-training EPR. Detailed explanation of the 

method can be found in [11]. 

 

3.  CYCLIC BEHAVIOR MODELLING USING EPR 
 

Data from an experimental test performed by Veladi et al. 2007 were utilized to develop the EPR model 

[12]. The test was carried out by applying lateral loads through the steel brackets connected to the top 

beam. In development of the EPR model, δi , Fi , ∆δi , ξδi, △△△△ηδ,i  were used as input and Fi+1 as the output 

where the subscript i indicates i
th

 incremental step and δi , Fi , ∆δi are drift, lateral force and the rate of 

drift in the i
th
 step respectively. As stated before Yun et al. 2008 (a) introduced two additional variables to 

overcome the issue of hysteresis modelling where one drift value may correspond to multiple lateral 

forces. This has also been used in the presented study and the following variables have been introduced. 

 

 ξδ,i = Fi × δi ,         △△△△ηδ,i  = Fi  × △△△△δi+1 
 

At the end of the training process, the selected best EPR model representing the cyclic behaviour of 

SPSW is: 

 

F�� � 0.99	F� � 1.8� 10��F� △ η�,� � 3.9� 10���F� △ η�,�
� � 3.3� 10���F�

� △  !�"#,! � 1.5�

10�% !
� △ η�,�  

 
Figure 1 shows a comparison between the results obtained from the EPR model and the experimental data 

used for training of the EPR. It can be seen that the EPR model can give an excellent prediction of the 

cyclic behaviour of SPSW. 

 

 

Fig. 1 Results of validation of the EPR model 

 

4. SUMMARY AND CONCLUSIONS 

A new approach was introduced to predict the behaviour of steel plate shear walls under cyclic loading 

based on evolutionary polynomial regression (EPR). EPR models were trained by the data from a cyclic 

test on a SPSW specimen. In development of the EPR models 5 inputs were used in which two of them 

were internal variables. EPR models were compared with experimental data and the best EPR model is 

presented. It was shown that a suitably trained EPR is able to predict the behaviour of SPSW under cyclic 

loading with a high degree of accuracy. 
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ABSTRACT

In this paper, a new local arc-length method has been introduced to follow the snap-back at the mi-
croscale as well as in the macroscale for a multiscale problem. First order multiscale computational
homogenization (FE2) approach has been employed to study the behaviour of a one dimensional (1D)
bar with cohesive cracks in the both scale. The macroscale material properties and constitutive equa-
tions are unknown. The local macroscopic constitutive response is determined by solving the related
microscale Representative Volume Element (RVE). Each RVE has cohesive cracks whose damage pa-
rameters are a function of the displacement jump. The non-damaged part of RVEs are assumed to be
linear elastic. In FE2 multiscale methods, the arc-length method is used in the macroscale and the dis-
placement control method is used in the microscale, however, the displacement control cannot follow
the snap back. The comparison of the new local arc-length method and conventional local arc-length is
presented.

1 Introduction

Almost all materials can be considered as heterogeneous at a specific scale. For example, composites,
functionally graded materials, metals, biological materials and materials including micro-cracks can be
called heterogeneous at some scales. Multiscale methods are used to solve the problems where infor-
mation at the macro-level cannot simulate the response of the material The first order computational
homogenization method [1] have been implemented as a multiscale method for the analysis of materi-
als with arbitrary non-linear behaviour at the fine scale. In this method, the macroscopic deformation
gradient tensor is used to prescribe the essential boundary conditions on a micro-structural RVE. From
the solution of the microscopic RVE, the macroscopic stress tensor and the corresponding tangential
stiffness matrix are derived based on the Hill-Mandel condition. In this paper, a 1D bar with cohesive
cracks in microscale has been solved by the FE2 method [2]. The macroscopic domain is discretized by
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Figure 1: One dimensional bar with cohesive cracks in the microlevel

linear elements. For each integration point, an RVE which includes cohesive cracks has been defined.
The following constitutive equation is considered for the damaged zones in the RVE:

fc = k E0 (1− d) [[u]] (1)

d = min(1,max(d0, [[u]]))

where fc is the internal force in the cohesive zone, k ∈]0, 1] is a constant coefficient, E0 is the modulus
of elasticity for the non-damaged zone, d0 is the damage parameter for the last state of equilibrium, and
[[u]] is the displacement jump in the cohesive crack zone.

Three different path-following techniques: displacement control, classic arc-length method [4] and local
arc-length method [5], have been applied to study the behaviour of the bar in softening regime. Whereas
none of these methods are able to follow the equilibrium equation path completely [6]. A new local arc-
length method has been introduced which can track the equilibrium equation in both coarse and the fine
scales.

The main difference between the local arc-length and the new local arc-length method is the scale in
which the constraint equation is being applied. In the previous local arc-length, the constraint equation
enforces the maximum strain of macroscale to remain below some predefined value, but in the new
local arc-length method, the constraint equation is applied to the microscale to limit the maximum
displacement jump of the RVEs. To solve the equations in an iterative manner, we link the equation of
equilibrium in the macroscale to the constraint equation in the microscale through the localization of
the macroscale strain as boundary condition of the RVE. The equilibrium equation in the macroscale
and the constraint equation in the microscale have been assumed respectively as:

Rf = fin + λfe = 0 (2)

Rc = lg − cum = 0 (3)

where external force at the macroscale is defined as a load factor λmultiplied with a unit force vector fe.
lg is the maximum allowance of jump in the microscale displacement field, um, and lk+1

g = lkg + ∆lk+1

where ∆lk+1 is the increment step size for (k + 1)th step. c is formal boolean linear operator that
indicates the maximum jump in um. We linearise these equations to solve in an iterative fashion by
using a Newton-Raphson scheme: ∂fin

∂UM
fe

∂Rc
∂UM

0


δUk+1

M

δλk+1

 = −

Rk
in

Rk
c

 (4)
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Figure 2: Load-displacement curve for a bar with 2 cohesive cracks

where ∂fin
∂UM

is the macroscale tangential stiffness matrix which is obtained from homogenization of
the microscale RVE, and the UM is a displacement vector at the macroscale. ∂Rc

∂UM
can be calculated

by using the linear relations between the RVE displacement boundary condition, ub , and macroscopic
strain, εM (ub = DbεM , where Db = [xl xr]

T is the vector position of the RVE boundary nodes).
This is written as

∂Rc

∂UM
= −c ∂um

∂UM
= −[ci cb]K̄mDbLcM (5)

where [ci cb] is the modified form of c. L is the matrix of shape function derivatives at the macroscale,
and cM is a boolean matrix that indicates the nodal displacement of macroscale element that corre-
sponds to the RVE with the maximum jump. In Eq. (5), the matrix K̄m and Db are given by

um = K̄mub , K̄m =

[
−K−1

ii Kib

Ibb

]
(6)

where Ibb is identity matrix.

2 Results and discussion

Figure 2 shows the comparison of the load-displacement curves of a bar with two cohesive cracks (in
one scale) achieved by three different equilibrium path following techniques: displacement control,
conventional arc-length method and local arc-length method. According to this figure, the displacement
control technique cannot trace the load displacement curve in the snap back. The classic arc-length
technique has passed through the limit point, but it could not trace the load-displacement curve correctly.
The local arc-length method can trace the load-displacement curve completely, even in the snap back
regime. But in the multiscale method, when we use the local arc-length procedure, it cannot follow the
snap-back in the RVE. Since we have to use the displacement control procedure in microscale, the local
arc-length fails in the macroscale.

A comparison of the result of local arc-length method and new local arc-length method for the mul-
tiscale problem is shown in Fig. 3. It can be seen that the new local arc-length method can trace the
equation of equilibrium in snap-back regime for a multiscale problem.
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ABSTRACT

This paper presents a micromechanics-enhanced finite element formulation that accurately cap-
tures the mechanical behaviour of heterogeneous materials, yet realized in a computationally
efficient manner. The main feature of the technique is that the finite element mesh does not
explicitly resolve the heterogeneities. The strategy exploits analytical micromechanics derived
by Eshelby for ellipsoidal inclusions in order to determine the mechanical perturbation fields
associated with the underlying heterogeneities. Approximation functions for these perturbation
fields are then incorporated into a finite element formulation to augment those of the macro-
scopic fields. In this paper, hybrid-Trefftz stress finite elements are utilised and performance of
the proposed formulation is demonstrated with a numerical example.

1 INTRODUCTION

The objective of this work is to develop a Finite Element formulation for modelling the macro-
scopic mechanical problem that is enhanced to capture the influence of the underlying hetero-
geneities. In our approach, the Finite Element mesh is not required to explicitly resolve the
heterogeneities. Closed-form expressions for the perturbation of the mechanical fields due to the
presence of the heterogeneities are determined and these are then utilised to enhance the Finite
Element formulation.

The ability to capture the effect of features independently of the underlying finite element mesh,
has been an ongoing challenge in computational mechanics research. Partition of Unity meth-
ods [1, 2] provide a potential solution to this problem, without mesh refinement, by extending
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a given solution space with additional functions and has been successfully applied to problems
such as cracks and material interfaces. However, the main focus of this paper is an alternative
approach, centred on the Hybrid-Trefftz stress element formulation [3]. This method does not
result in additional degrees of freedom, although it does involve an additional, albeit relatively
minor, computational overhead.

The heterogeneities, although currently restricted to simple shapes (ellipsoids), can be randomly
sized and randomly distributed without reference to the finite element mesh. Therefore, the pro-
posed approach has the potential to be applicable to a wide range of composite materials, such as
fibre reinforced composites, porous media, functionally graded materials, etc. Moreover, it can
be extended to general inclusion shapes by evaluating the perturbation functions numerically [4].

2 METHODOLOGY

To calculate the perturbation of mechanical fields due to a heterogeneous microstructure, we
exploit the Equivalent Inclusion Method in conjunction with analytical micromechanics. Our
objective is to convert the heterogeneous problem into an equivalent homogeneous problem and
to derive analytical expressions for the perturbations of the stress, strain and displacement fields
that we can then utilise within a finite element formulation.

Consider a body consisting of clearly distinguishable heterogeneities in a matrix subjected to
a displacement and traction field. As a result of the heterogeneities, the mechanical fields (dis-
placement, strains, stresses) experience a perturbation for which can derive closed-form expres-
sions based on analytical micromechanics. It is worth noting that, traditionally, in analytical
micromechanics, the macroscopic fields are assumed to be uniform across the domain. Here it is
assumed that they can be position dependent functions of the Neumann and Dirichlet boundary
conditions.

The perturbation fields are determined by employing the equivalent inclusion method for a single
heterogeneity embedded in a matrix and then extended here for multiple heterogeneities. In the
equivalent inclusion method, the heterogeneous solid is replaced by an equivalent homogeneous
solid with uniform material stiffness everywhere and suitable stress-free eigenstrains applied in
the inclusions so that the homogeneous equivalent solid has the same mechanical fields as the
original heterogeneous solid. It can be shown that the stress perturbation depends on the stiffness
of the different material phases, the macroscopic strain field and the geometry of the heterogene-
ity. This closed-form expression for the stress perturbation is at the heart of the proposed finite
element enrichment.

In the case of multiple inclusions, it is necessary to introduce an iterative self-balancing proce-
dure to ensure that the solution correctly reflects the influence of multiple inclusions. This proce-
dure iteratively modifies the eigenstrain inside any given inclusion, to account for the influence
of the remaining inclusions. This methodology can then be utilised to formulate an enhanced
Finite Element formulation, whereby appropriate approximation functions for the mechanical
perturbation fields based on the analytical micromechanics briefly described above, which can
then augment the standard FE macroscopic field approximations.
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Practicallly, the perturbation field approximation functions are determined a priori as a lin-
ear combination of the perturbation fields evaluated analytically for six load cases, with self-
equilibrium enforced by means of the self-balancing algorithm discussed above. Each load case
corresponds to a unit component of the macroscopic strain vector.

3 NUMERICAL EXAMPLE

The proposed modelling strategy is also demonstrated on an example with a large number of
inclusions. A 3D L-shaped specimen with fully fixed boundary conditions on the right surface
of the right-hand arm and normal traction applied on the top surface of the left-hand arm is anal-
ysed, see Fig. 1. The length of the plate is 300 in both x and y direction, the depth is 150 in z
direction. The Young moduli were chosen as E = 1 and E = 2 for matrix and inclusion respec-
tively. Poisson’s ratio was � = 0.1 for both material phases. The microstructure comprised 2,523
spherical inclusions varying in size between 4 and 8 with a normal distribution (Figure 1(b)).
All units are consistent.

The solution for three different mesh densities are compared in Figures 1(c)-(d). These results
show that the complex stress distribution resulting from the heterogeneities can be captured and
that the solution is converging with mesh refinement. Further local mesh refinement near corners
and stress concentrations is possible, although this was not undertaken in this case.

4 CONCLUSIONS

A new micromechanics-enhanced finite element formulation has been presented for modelling
the influence of a large number of heterogeneities in composite materials in a computation-
ally efficient manner. The strategy exploits analytical micromechanics derived by Eshelby for
ellipsoidal inclusions in order to determine the mechanical perturbation fields as a result of
the underlying heterogeneities. Approximation functions for these perturbation fields are then
incorporated into a finite element formulation to augment those of the macroscopic fields. A
significant feature of this approach is that the finite element mesh does not explicitly resolve
the heterogeneities. The proposed technique has been implemented into a hybrid-Trefftz stress
(HTS) element formulation and it has been shown that the resulting enhanced elements (C-HTS)
require significantly fewer degrees of freedom to capture the detailed mechanical response com-
pared to standard finite elements.
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ABSTRACT 

This paper is concerned about an efficient algorithm for the automatic generation of realistic 3D 
mesostructure for concrete-like materials. A geometric concept, called convex hull, is adopted for the 
representation of aggregates, and this makes it possible to utilize the relevant theorems and algorithms in 
the field of computational geometry. A take-and-place procedure is employed to facilitate the generation 
of the complete mesostructure. Associated techniques are developed for fast detection of particle 
inclusion-intersection. The formation of the ITZ as well as the meshing of the whole mesostructure is also 
briefly discussed, together with an example of FE simulation. 

 

1  INTRODUCTION  

Numerical modelling at the mesoscale for heterogeneous materials such as concrete has attracted great 
interest in the scientific community due to its various advantages for investigating into the mechanisms 
governing the bulk behaviour of such materials.  

The mesostructure of concrete is complex and includes three phases: aggregates, mortar matrix, and 
the interface transition zone (ITZ). Different levels of mesoscale models have been proposed in the 
literature depending on the choice of the aggregate geometry and the material laws for individual phases. 
Simple shapes such as round, ellipse and sphere have been commonly used to represent the aggregates, 
while a better approximation with polygon has also been applied in some 2D models [1-2].  

For 3D mesoscale modelling of concrete, a common approach is to use spheres or mixed spheres and 
ellipsoids to represent aggregates. Polytopes is obviously a better approximation but their use in 3D is 
much more difficult. In the present study, a geometric concept called convex hull is adopted to represent 
the geometry of aggregates. This makes it possible to utilize the relevant theorems and algorithms in the 
field of computational geometry for the generation of individual aggregates. A take-and-place procedure 
is employed to facilitate the creation of complete mesostructure for a sample object. Meshing of the 
mesostructure of the sample object is carried out using a Delaunay-refinement based mesh generator. 
Subsequent FE analysis is performed using a general purpose transient analysis code. 

2  AGGREGATE PARTICLE GENERATION  

Typically, the particle shape and surface texture of aggregates can be classified as: rounded or well-
rounded, irregular (naturally), flaky (thickness is much smaller than the other two dimensions), elongated 
(length is considerably larger). A classic approach to model the shape of gravel aggregates is based on the 
morphological analysis developed by Beddow and Meloy [3]. In this approach, the trace of aggregate 
shape is represented as a Fourier series: 

 ∑
∞

=
++=

1
0 )(cos)(

m
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where r0 is average radius. The second term on the right hand side reflects the characteristic of the particle 
contour where Am represents the magnitude and m represents frequency. Based on this rule, the shape of a 
gravel particle can be approximated by a series of short straight line segments [1]. The approximation of 
2D angular particles using polygons is straightforward, as can be seen in applications such as [1, 2].  

In the present study, we use a geometric concept called convex hull, which is the minimum convex 
set containing a series of randomly generated points, to represent 3D aggregate particles. Flaky and 
elongated shapes can subsequently be created by shrinking and elongation.  

2.1 Generating Regular aggregate particle 

The generation of a random-shaped convex hull starts from a set of random points. Each point in the list is 
represented in the spherical coordinates by radius r, inclination angle θ and azimuth angle ψ, which are all 
random numbers from a uniform distribution: 

],0[~

]2,0[~

]2/,2/[~ 00

πϕ
πθ

U

U

drdrUr +−
     (2) 

where r0 is the nominal size discretised from a specified aggregate grading curve (such as Fuller curve) 
and d is the discretization length. The spherical coordinates are then transformed to Cartesian coordinates. 
There is no clear criterion for the choice of the number of random points. More points tends to result in a 
shape closer to quasi-sphere, while fewer points gives a simpler polytope. Experience from many trials 
shows that a number between 10 and 20 is appropriate.   

The so-called beneath-beyond method, which is a classic algorithm for the generation of convex hull 
[4], is used to construct a particle. Fig. 1 depicts the above procedure and a resulting particle shape. 

 
Fig. 1. Formation of a convex hull from 10 random points 

2.2 Generating flaky or elongated aggregates 

A flaky or elongated aggregate can be created on the basis of the regular convex hull generated in section 
2.1. Both flaky and elongated shapes may be implemented by introducing a shrinkage (or elongation) 
factor s on one dimension. To keep the volume constant during shrinking or elongation, the remaining 
dimensions are adjusted in the opposite way. This process may be described by 

xx RsR *=′    sRR yy /=′   sRR zz /=′    (3) 

where R is the coordinates of each vertex and the ratio s is taken as a random number between 0.5 and 
1.5. To ensure shrinkage is done in a random orientation, the coordinates are rotated to a random direction 
after shrinking through a rotational transformation matrix. 

Fig. 2 gives a few examples of individual aggregate shapes generated with 10 random points.  
 

 
Fig. 2. Illustration of variation of aggregate particles 
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3 SIMULATING CONCRETE MESO-STRUCTURES 

Different methods exist for the generation of a complete 3D meso-structure for a given sample volume 
such as a cube. Herein the so-called take-and-place procedure is employed. In this procedure, individual 
particles are generated (taken) and iteratively placed in the bounded space until a target volumatric ratio is 
satisfied. The procedure has been used to generate concrete structure in 2D  and sphere-shaped 3D 
aggregates in the literature. To improve the efficiency in the inclusion-intersection check, a pre-detection 
algorithm and a fast inclusion detection method are incorporated.  

The inclusion check is to avoid the inclusion or intersection of the currently generated aggregate 
particle with any existing particles. This is traditionally done by checking the current particle against all 
existing ones. Herein a pre-detection algorithm is used to identify the existing polytopes that may 
“possibly” intersect with the current one, such that more detailed checking is only required on these 
limited number of particles. This is done by introducing the concept of bounding sphere, which is defined 
as a sphere that shares the same centre with a convex hull and covers all vertices, as shown in Fig. 3(a). 
The inclusion or intersection between bounding spheres can be identified easily by checking the relation 
between the summation of the radii and distances of centres involved. Subsequent inclusion-intersection 
check only needs to be carried out for polytopes whose bounding spheres intersect with that of the current 
particle. 

A linear time algorithm, proposed by Dobkin [5], is employed for determining the distance between 
two convex hulls. The algorithm is based on a hierarchical representation of convex hulls. Once the 
hierarchy representation is constructed, the detection of intersection can be done by iteratively calculating 
the distance between two particles. Fig. 3(b) shows an illustrative example of the structure of aggregate 
particles for a 50 mm cube sample.  

 
(a)                                       (b) 

Fig. 3. (a) particle with bounding sphere; (b) aggregate structure with fixed size 
 

In the present mesoscale model, the ITZ phase is represented by a thin layer of solid elements around 
individual aggregates. A shrinking strategy is employed to generate the ITZ layer. The shrinking of each 
aggregate is done with respect to the centre of the particle. The layer between the boundaries before and 
after shrinking forms the ITZ for each aggregate.  

4 FINITE ELEMENT MESHING AND EXAMPLE ANALYSIS 

After the generation of the ITZ domain, the remainder of the space in the sample cube automatically 
forms the mortar matrix. Due to the existence of randomly shaped aggregate particles, the mesostructure 
is highly unstructured. Triangle and tetrahedral meshing techniques are the most common forms of 
unstructured mesh generation in 2D and 3D. Available algorithms for meshing an unstructured domain 
include Octree, advancing front and Delaunay refinement. The meshing code used in this research, 
TetGen [6] is one type of Delaunay refinement. An example of the 3D structure and meshing result is 
shown in Fig.4.  

As an illustration, a standard concrete compressive test is simulated after the complete generation of 
the finite element mesoscale model. Loading is applied through a velocity boundary imposed to the top of 
the cube while the bottom is fixed. Both friction-free and infinite-friction conditions on the loading and 
reaction faces are simulated, respectively. The material parameters used in the simulation are the same as 
in our previous pseudo 3D study [7]. The transient dynamic analysis code LS-DYNA is employed to 
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perform the simulation using an explicit time integration procedure, which enables an easy realisation of 
dynamic loading. 

              

Fig.4. (a) aggregate particles on the bottom of the cube; (b) mesh for all three phase 

Fig. 5 shows the predicted stress-strain relations with a loading rate of 10/s, and the final damage 
contours under the two end face friction conditions, respectively. The results resemble well typical 
experimental observations. It can be seen that in the friction-free case, the loading surface is severely 
damaged, while in the fully constrained case the loading face remains intact due to confinement effect.   
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Fig.5.  Stress and strain relation (left) and damage contours (right) 

5 CONCLUDING REMARKS 

3D mesostructure of concrete-like heterogeneous materials can be effectively generated using the 
proposed methodology. 3D mesoscale finite element model can then be developed on this basis. 
Implementation of the 3D mesoscale model with a general-purpose finite element code allows for the 
analysis under complex and dynamic loading conditions. 
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ABSTRACT 

The purpose of this paper is to examine the capabilities of continuum based and discontinuum based 
(discrete) models to describe the continuous – discontinuous transition involved during crack propagation. 
It aims to capture the size effect for different specimen geometries and their different boundary effects. 
For this purpose, size effect tests have been performed on three point bending specimens with different 
notch lengths. Such a comparison involving different initial notch lengths is unique mainly because the 
experimental test data were not available previously. The macroscopic description fails to reproduce size 
effects whereas the mesoscopic model is able to recover them for each tested configuration. The 
microstructure intrinsically incorporated into the meso-model allows the evolution of non local 
interactions whereas these interactions are homogenized in the continuum model through the internal 
length in a way which seems too simplistic. 

1  INTRODUCTION  
In quasi-brittle materials, cracks exhibits a finite size fracture process zone (FPZ). Macro-cracking is the 
result of progressive material damage in which micro-cracks appear first in a rather diffuse way into a 
fracture process zone, and then coalescence occurs in order to form the macro-crack. A consequence of 
the existence of such a FPZ is the structural size effect explained as the dependence of the nominal 
strength on the size of structure. 

This work aims to examine the performances of continuum based and discontinuum based (discrete) 
models to describe the process of concrete fracture through their capabilities of describing structural size 
effect. For this purpose size effect tests have been performed on three point bending specimens with 
different notch lengths [1]. 

2  MACROSCOPIC MODEL 
The strain-softening material is supposed to be isotropic described with a scalar damage model. 
Temperature and time-dependent effects are neglected. Therefore, the stress-strain relation is classically 
written: 

 εD)C(=σ :1−  (1)

where σ, C, ε are respectively the stress, stiffness and strain tensors and D is the damage scalar variable 
( 10 << D ) which represents the material degradation. 
 
Damage evolution is based on Mazars’ definition and is governed by the Kuhn-Tucker loading-unloading 
conditions. 
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In this paper we shall be interested in damage due to tension loads only and D is estimated through:   
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Whereεeq is the equivalent strain, 
+iε the positive part of the principal strains,εD0 is the damage 

threshold, κ  is the history variable, the largest ever reached value of the equivalent strain. tA , tB are 

model parameters representing the exponential softening of the material. Classical values of the model 
parameters are provided in (Mazars, 1986) and (Pijaudier-Cabot et al., 1991). 
 
The non-local formulation is based on integral-type non local damage models proposed by Pijaudier-
Cabot and Bažant (1987): 
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whereΩ  is the volume of the structure, 
rΩ is a representative volume introduced in a way that the 

non-local operator does not affect the uniform field,
eqε is the non-local strain,ψ0 is a Gaussian weight 

function andlc0 is the internal length of the non-local continuum which is related to the fracture process 
zone size.  

3  MESOSCOPIC MODEL 
At the mesoscopic scale, the aggregates, the mortar and the interfacial transition zones are modelled as 
different phases with different materials properties. The aggregates are assumed to be linear elastic and 
stiffer than the matrix and the interfacial transition weaker than the matrix with a random distribution of 
tensile strength and fracture energy. 

(a) (b) 

Figure 1. (a) Special arrangement of lattice elements. (b) One lattice element in the global coordinate system. 
 
The mechanical response of the heterogeneous material is determined by discrete lattice elements 
combined with a local damage model, as described in Figure 1. 

Each lattice node possesses three degrees of freedom: two translations vu,  and one rotationφ . Thus, the 

displacement discontinuities at point C , ( )T
cccc vuu φ,,= , are linked to displacements at the nodes 

( )T
e vuvuu 222111 ,,,,, φφ= . The displacement discontinuities are transformed into strains 

( ) huc
T

sn /,, == φεεεε and then the nominal stresses is calculated as ( )Tsn φσσσσ ,,= . Whereas the stress-

strain relation and the damage evolution are the same as the ones introduced in the macroscopic model, 
here the equivalent strain is not computed from Mazars’ law but it corresponds to an elliptic envelope in 
the sn σσ − stress plane, as proposed in [3].  
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Where γ is the Poisson’s ratio of the material and c is ration of the compressive strength to the tensile 
strength (

cf and
tf ). The softening curve of stress-strain response in uniaxial tension is defined by the 

relation  
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where cw  is considered as an equivalent crack opening under monotonic uniaxial tension, h the distance 

between lattice nodes and fw  determines the initial slope of softening curve and is related to meso-level 

fracture energy.  

4  DESCRIPTION OF EXPERIMENTS  
Three different geometries were analysed. Three notch lengths 0,2.0,5.0 DDa = and four beam depths 

mD 05.0,1.0,2.0,4.0=  were studied. The thickness was kept constant for all sizes and equal to mb 05.0= . 
The distance between supports was DL 5.2= . All the characteristics of the beams are detailed in Figure 2. 
The materials properties=E 37 MPa, =γ 0.21, =tf 3.9 MPa, =cσ 42.3 MPa were identified by compression 

and splitting tests. 

 
Figure 2. Beam specimen geometries. 

 
Three points bending tests were then performed on each beam. This type of experiments has, to our 
knowledge, never been carried out before. The main aim of this campaign was the establishment of an 
important database of curves Force vs. Crack opening mouth. More details about the experiments can be 
found in [1]. 

5  NUMERICAL ANALYSIS 
The macroscopic analysis has been performed using the finite element code Cast3m [4]. The 
computations at the mesoscale were performed with a cohesive model developed by Grassl (2009). 
Parameters

tf and 
fG are the mean values of the random fields of tensile strength and fracture energy 

respectively. 

The results of both mesoscopic and macroscopic approaches have been compared to the experimental 
ones. Figure 3 shows the results in term of size effects for long notched and unnotched beams. It is 
important to note that each curve in Figure 3 (b) corresponds to an average of 100 computations with 
different mesostructures and random fields. We can observe that mesoscopic results are in good 
agreement with the experimental datas whereas the macroscopic approach is not able to represent the size 
effect. The same holds for the two others geometries tested, for beams with a small notch and for beams 
without notch. 
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(a) (b) 

(c) (d) 

Figure 3. Load versus CMOD for the beams with the notch Da 5.0=  and 0=a  (a) and (c)  results with 
macroscopic model. (b) and (d)results with mesoscopic model. 

 

7   CONCLUSIONS 

In this paper, original experimental data has been used for determining size and geometry effects in 
quasibrittle materials. The experimental results have been used as reference results for comparison 
between two numerical models. The macroscopic approach based on finite elements combined with a 
continuum non local formulation failed to reproduce size effects whereas the mesoscopic approach, based 
on lattice method was able to recover them for each configuration tested. The microstructure intrinsically 
introduced into the meso-model allows the evolution of non local interaction whereas these interactions 
do not evolve in the continuum model which seems to be a too simplistic approximation. 
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ABSTRACT

We present an adaptive model order reduction for paramatrised nonlinear fracture mechanics. Efficient
corrections of the intial reduced space, provided by the proper orthogonal decomposition, are performed
on-the-fly during the solution process. The proposed strategy establishes a bridge between model or-
der reduction and full-scale augmented Newton-Krylov solvers. We demonstrate its efficiency through
numerical examples.

1 INTRODUCTION

The simulation of failure in complex materials has been one important issue throughout engineering.
Micro and mesoscale models have demonstrated their ability to predict complex phenomena such as
crack initiation and propagation. However, these models usually describe the material at a very fine
scale compared to the size of the structure, which leads to large numerical problems. Various multiscale
computational strategies have been developed to tackle this important issue, such as enrichment tech-
niques, homogenization strategies [2], domain decomposition methods, or model order reduction[3, 6].

Among them, the Proper Orthogonal Decomposition-based (POD) is a valuable tool for deriving ef-
ficiently a multiscale computational method, in the sense that no a priori physical understanding of
the different scales involved is required. It consists in using a set of potential solutions to the initial,
potentially large problem (snapshot) and extracting, by a spectral analysis, a few basis vectors spanning
a space of small dimension in which the solution to the, initially large, numerical problem is well ap-
proximated [6]. This technique is efficient when speed is more important that accuracy, for instance in
the case of early stage design.

In the context of structural problems involving plasticity or damage, a severe drawback limit the direct
application of POD-based model order reduction. The initial snapshot might be too poor to represent
accurately the solution of the damaged structure. This can happen if: (i) The “a priori” mechanical un-
derstanding of the structure is too poor, which might result in a bad choice of the snapshot simulations.
(ii) The number of parameters involved is too important, the snapshot needed to compute a relevant
reduced basis might being too large or (iii) strong topological changes in the structure occur.

We propose here a novel strategy that couples these two approaches. Our vision is that if complex
changes in the topology of the structure appear (local crack initiation for instance), they can only be
accurately predicted by solving the fine scale model, at least locally. This can be done, for instance,
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by adding the finite element shape functions to the snapshot, or by using relocalisation techniques.
However, the long-range effects of these topological changes do not require the fine description, and
can be obtained by coarsely solving the full system of equations. Therefore, when the global residual
exceeds a given threshold value, we propose to obtain a loose solution on the full system. The new
vector obtained is used to enrich the reduced basis.

This strategy can be interpreted as a bridge between “exact” preconditionned Newton-Krylov strategies
[5], and projection-based model order reduction methods (like the POD) for nonlinear problems. Indeed,
setting the residual threshold to a low value leads to the former strategy, while setting it to a high value
leads to the latter. An intermediate value yields an adaptive model order reduction method with control
of the global residual. We show that this method permits to obtain an “on-the-fly”, cheap, correction to
the reduced model in the case of parametrised nonlinear fracture mechanics.

2 Projection-based Model order reduction.

We consider the generic problem of quasi-static evolution of irreversible damage processes in a de-
formable solid. The rate-effects are neglected and the solution field (displacement) is looked for under
the assumption of small perturbation. We introduce a classical finite element space descritization for the
spatial derivatives. A time discretization scheme is performed to intergrate the resulting semi-descrete
problem over the time interval [0, T ]. The procedure consists in finding a set of consecutive solutions at
times (tn)n∈J0,ntK. At any time tn+1 of the analysis , one needs to solve a nonlinear vectorial equation
of the form:

FInt

(
∆U,

(
U|tm

)
m∈J0,nK

)
+ FExt = 0 (1)

where the vector of increment in the nodal displacement unknowns ∆U ∈ Rnu (nu is the number of
nodal unknowns introduced in the finite element discretization) is defined by ∆U = U|tn+1

−U|tn ,
FInt ∈ Rnu and FExt ∈ Rnu are respectively the classical internal and external force vectors.

The increments in the solution vector are searched for in a space of small dimension (several orders
smaller than the number of finite element degrees of freedom). Let us call C the matrix whose nc

columns (Ck)k∈J1,ncK ∈ (Rnu)nc (also called Ritz vectors) form a basis of this space. Applied to the
reduction of problem (1), the increment in the solution field is approximated by:

∆U = Cα (2)

where we introduced the reduced state variables α ∈ Rnc . Problem (1) is classically modified by
introducing a Galerkin orthogonality condition: the residual R = FInt(U|tn + Cα) + FExt of equation
(1) is required to be orthogonal to any test vector δU? = C δα? belonging to the space spanned by the
Ritz vector. The reduction of problem (1) takes the following form:

CT
(
FExt + FInt(U|tn + Cα)

)
= 0 (3)

This nonlinear problem can be solved by a Newton solution strategy.

The reduced basis used in the paper is computed prior to the actual simulation by the classical Snapshot
Proper Orthogonal Decomposition approach [6].

3 ”On-the-fly” corrections of the Ritz basis based on Krylov iteration

Updating the reduced space is done during the Newton algorithm used to solve (3) at current time
step tn+1. At iteration i of the Newton solver, if the solution to the reduced problem (3) is sufficiently
converged, one can evaluate the residual of the full problem (1). If the norm of this residual is larger
than a certain tolerance (i.e.: an error criterion), the following linear system is considered to compute a
correction to the current Ritz basis Ci:

K̄
i

T
¯δU = Ri (4)
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K̄
i

T
is an approximation of the consistent tangent stiffness Ki

T
=

∂FInt(U)
∂U

∣∣∣
U=Ui

of the full problem,

while Ri is the residual of the initial system of equations (1) for U = U|tn + Ciαi. An approximate
solution to this problem is searched for in two supplementary spaces:

¯δU = ¯δUC + ¯δUK where

{
¯δUC ∈ Im(Ci)

¯δUK ∈ Im(Ci)
⊥

K̄i
T = Ker(CiT K̄

i

T
)

(5)

⊥
K̄i

T denotes the K̄
i

T
− orthogonality. ¯δUC is the exact solution of the linearisation of reduced problem

(3). ¯δUK is a correction searched by a Krylov solver projected in space Ker(CiT K̄
i

T
) and set to a

loose tolerance (10−1 is a typical value for the stopping criterion). The resulting solution, which is
K̄

i

T
−orthogonal to the current reduced space by construction, is used to update the Ritz basis:

Ci+1 =

(
Ci

¯δUK

‖ ¯δUK‖

)
(6)

Newton iteration i + 1 is solved using the corrected reduced basis. Successive corrections may be
performed until the tolerance on the norm of the residual of the full problem is reached [4].

4 Results
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Figure 1: Reference problem and associated solutions (left), where darker colours correspond to higher
value of damage, and Young’s modulus cosinusoidal distribution (right), where darker colours corre-
spond to higher values of the stiffness parameter.

The structure under consideration is an elastic damageable lattice structure represented in figure 1. The
load is parametrised by its angle. An other parameter is introduced to control the spatial distribution of
the material stiffness.

We want an approximation of the response surface of the total dissipated energy at failure as a function
of the two parameters of the model. This surface is made by performing 16 simulations, the response
surface being linearly interpolated between these points. 4 of these simulations are performed on the
initial system of equations, until failure of the structure. The solution vectors are sorted by a singular
value decomposition, and the 12 remaining simulations are performed by the proposed corrective model
order reduction.

The results are plotted in figure 2. The error in the dissipated energy monotonically decreases when the
correction threshold decreases. This justifies our statement that the strategy establishes a bridge between
model order reduction methods and full-scale preconditonned Newton/Krylov solvers. The additional
CPU time is low compared to a basic POD method, which predicts the dissiption with an average error
greater that 100%. The computational time increases with the distance of the current solution to the
snapshot space (larger number of corrections required), and can be reduced by a better choice of the
initial simulations ([1]).
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CPU times with respect to the ones obtained by applying hyperreduction).
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ABSTRACT

Recently proposed approaches for the development of cohesive-zone models which account for the
interaction between interface damage, friction and dilatancy are reviewed in this paper. After a brief
illustration of the main ideas behind the models and of some numerical results validating their effec-
tiveness some open issues for future research are discussed.

1 INTRODUCTION

The interaction between damage and friction along structural interfaces is a complex problem which is
strongly dependent on how microcracks grow and coalesce and how much energy is dissipated because
of frictional slipping at the micro-scale. The geometry of the microstructure or of the interface itself
can also play an important role particularly when a dilatant response is observed at the macro-scale.
An accurate description of all these processes could be obtained through an adequate micromechanical
model, which is computationally very expensive. On the other hand, when the overall behaviour of a
structural interface is the main interest, a cohesive-zone model (CZM) may be effective enough to cap-
ture the mechanics of crack initiation and growth. In particular, a number of CZMs have been proposed
in which the effect of friction is somehow accounted for, see [1,2] among many others. In these models
the interaction between frictional slips at the microscale and the damage evolution at the meso-scale is
mainly derived on a phenomenological basis, which makes their range of applicability somehow lim-
ited. To overcome such limitations a more general approach was presented in [3]. It hinges on a strictly
meso-mechanical interpretation of the cohesive-zone concept in the framework of damage mechanics,
which makes the derivation of interface constitutive laws conceptually simpler, physically well moti-
vated and easy to generalise. The model was enhanced to account for dilatancy firstly in [4] and then,
using an alternative original approach, in [5]. The latter method is based on a small-scale description of
the geometry of the interface in the form of a periodic arrangement of distinct micro-planes, the inter-
action within each of these surfaces being governed by the CZM proposed in [3]. In this paper, after a
brief illustration of the the main ideas behind the models presented in [3–5] some numerical results will
be reviewed and open issues for future research are discussed.
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2 CZM FORMULATION AND NUMERICAL RESULTS

They key idea behind the CZM proposed in [3] is that at the meso-mechanical scale an infinitesimal
representative interface area (RIA) can be partitioned into an ‘undamaged’ part dAu and a ‘damaged’
part dAd; on the ‘undamaged’ part the interface is fully bonded while on the ‘damaged’ part a unilateral
contact with friction occurs. Denoting by dA the area of the RIA and by D the ratio dAd/dA it results
that dA = dAu + dAd, where dAu = (1−D) dA and dAd = D dA (Figure 1.a).
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Figure 1: Meso-mechanical modelling of interfaces: (a) RIA and (b) interface response to a prescribed
slip history and constant confining stress.

The damaged area is the meso-scale interpretation of a high number of micro-cracks at the micro-
structural scale within an interface layer with a small but finite thickness and the assumption is made
that the the relative displacement s is constant along the entire RIA. Therefore, an interface model
can be easily derived by following 4 steps: (i) introducing a relation between the stress σu acting
on the undamaged part and s which reflects the behaviour of the material in the real finite-thickness
interface; (ii) introducing a unilateral contact relation between the stress σd acting on the undamaged
part and s which can incorporate friction; (iii) recovering the overall stress σ by using the simplified
homogenisation formula σ = (1−D) σu+Dσd; (iv) postulating an evolution law forD which reflects
the physics of crack growth for the specific case under consideration.

In Figure 1.b the shear stress is plotted against the mode-II relative displacement for different prescribed
normal components of the normal stress σ when a linear elastic model is used on dAu and a Coulomb
friction model with no dilatancy is used on dAd. The curves show that the model well captures (i) the
residual tangential stress due to friction after complete decohesion, (ii) the increase of the peak load
with a higher confining stress whereby the energy dissipated because of internal friction increases even
before complete decohesion occurs and (iii) the recovery of mixed-mode behaviour for a tensile normal
stress.

The same model was used to simulate the failure of a masonry wall under combined compression
and shear and a push-out test for fibre-reinforced composites, the latter being schematically described
in Figure 2.a, with the obtained load-displacement curve reported in Figure 2.b and compared with
available experimental results. For more details on the input data and on the results of these and other
simulations the reader is referred to [3].

In many problems dilatancy plays a fundamental role. Therefore, in [4] the model presented in [3] was
enhanced by simply including dilatancy in the frictional contact law used on dAd. However, in some
cases the dilatant behaviour is linked to a specific geometry of the interface, which led the authors
of this paper to propose a different method in [5], which is essentially multiscale. This consists of (i)
defining a macro-scale problem with a smooth (for example, flat) interface; (ii) defining a micro-scale
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Figure 2: Push-out test: (a) geometry/loading and (b) numerical and experimental load vs -displacement.

problem by considering a representative unit area (RUA) of the interface made of a number of micro-
planes, each one characterised by its normalised length and its normal direction; (iii) assuming that the
dimension of the RUA is significantly larger than the dimension of the RIA of Figure 1.a and that on
each microplane the model by Alfano and Sacco [3] is used (i.e. no dilatant behaviour on each micro-
plane); (iv) assuming that the same relative displacement with respect to the common reference system
of the macro problem is used on each microplane; (v) solving the problem for each micro-plane at the
integration point level and recovering the total homogenised stress as a suitably weighted sum of all the
stress components on the microplanes.
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Figure 3: Pull-out test: (a) geometry, loading and constraints and (b) numerically [5] and experimentally
[6] computed load-displacement curves.

Figure 3.b reports the load-displacement curve obtained by simulating the pull-out test of a steel bar
from a concrete block schematically dscribed in Figure 3.a compared with the experimental results
reported in [6]. For more details on the input data and on the results of these and other simulations the
reader is referred to [5].

3 DISCUSSION AND OUTLOOK FOR FUTURE RESEARCH

The reported numerical results show good agrement with experimental data, which shows the effective-
ness of the proposed approaches. In the case of the pull-out test the agreement is good but not excellent,
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which indicates that some aspects of the physical behaviour are not perfectly captured. One aspect that
is not simulated in our model in the case of the bond-slip between concrete and ribbed steel bars is
localised crushing of concrete, which plays a non-negligible role. However, the generality of the frame-
work is demonstrated by the fact that localised concrete crushing can be accounted for by introducing
an elasto-plastic relationship on dAu, an improvement which will be explored in future work. This
flexibility of the formulation also results in a quite wide range of potential applications. For example,
some authors report an experimentally observed dilatant behaviour of the fibre-matrix interface during
push-out tests. In such a case, the agreement with the experimental results would have not been so good
in [3] but the enhanced models proposed in [4] or [5] could be accurate enough.

More generally, the procedure briefly summarised in Section 2 and fully reported in [3–5] can be con-
sidered the key-stone to build any CZM. Any constitutive law can be introduced on the dAu (e.g.,
elastic, elastoplastic, rate-dependent, etc.) and any contact law (with or without friction, with or with-
out dilatancy) can be introduced on dAd. In this respect, to introduce dilatancy, the use of a dilatant
friction model on dAd, as done in [4], seems easier. On the other hand, an issue of length scale can be
raised: is the dilatant response due to roughness within microcracks at the microscale, or is it due to the
roughness of the actual geometry of the interface, i.e. at a larger scale with respect to the RIA of Figure
1.a? One answer could be that in the former case the best approach is the one used in [4] whereas in
the latter, for example in the case of the bond-slip interaction between a ribbed steel bar and concrete,
the new method proposed by the authors in [5] seems superior. In fact, the above question seems to be
related to a deeper theoretical issue regarding the multiscale nature of the approaches. In [3] two scales
are involved, the meso-scale, where the interface is a zero-thickness surface and the micro-scale, where
micro-cracks grow and nucleate. In [5] a third scale appears, that is the scale of the interface rough-
ness generating interlocking. Therefore, future work can revisit these models within the more rigorous
framework of multi-scale computational homogenisation.
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ABSTRACT 

The paper presents a new analytical model and numerical simulations to study the evolution of radial 

cracking around a corroding steel reinforcement bar embedded in concrete. The concrete cover for the 

corroding rebar is modelled as a thick-walled cylinder subject to axisymmetrical displacement constraint 

at the internal boundary generated by expansive products due to reinforcement corrosion. A bilinear 

softening curve reflecting realistic concrete property, together with the crack band theory for concrete 

fracture, is applied to model the residual tensile stress in the cracked concrete. A governing equation for 

directly solving the crack width in cover concrete is established for the proposed analytical model and the 

general solution is obtained. The analytical predictions are examined by comparing with the published 

experimental data and nonlinear finite element analyses are also performed for the problem to verify the 

developed analytical model. Validations show that the experimental and finite element simulation results 

agree with the results predicted by the proposed analytical model. 

 
1.  INTRODUCTION  

The serviceability and durability of concrete structures may be seriously affected by the corrosion of 

steel reinforcement in structures that are exposed to aggressive environments. Reinforcement corrosion 

consumes original steel rebar, generates much lighter rust products and creates expansive layer at the 

interface between the reinforcement and the surrounding concrete cover. As corrosion progresses, the 

expansive displacement at the interface generated by accumulating rust products causes tensile stress in 

the hoop direction within the concrete cover, leading to radial splitting cracks in the concrete. Although 

many investigations have been undertaken during last two decades regarding the influence of 

reinforcement corrosion and concrete cracking on the performance of reinforced concrete structures, 

limited work has been done on the theory of cracking evolution in cover concrete during the progress of 

reinforcement corrosion with reference to realistic concrete material properties such as tensile softening 

behaviour of the cracked concrete and crack band spacing in the concrete cover. 

The paper presents a new approach for studying the evolution of cover concrete cracking due to 

reinforcement corrosion, based on the thick-walled cylinder model for the concrete cover and the 

cohesive crack model for the cracked concrete, which is examined by reported experimental 

measurements and non-linear finite element simulations.  

 

2. THEORETY 

In the thick-walled cylinder model for cover concrete cracking induced by reinforcement corrosion, as 

shown in Figs. 1(a) and (b), the reinforcing steel bar has an initial radius bR  embedded in concrete with a 

clear cover thickness C. The restraint at the internal boundary of the concrete cover could be represented 

by a prescribed displacement caused by expansive steel rebar corrosion products. Liu and Weyers [1] 

estimated the mass of rust products rM over time t from  

( )2

1
2102.4)( tiRtM corrbr π−×=                                                           (1) 

where corri  is mean annual corrosion current per unit length. To accommodate the volume increase due to 

steel corrosion, the prescribed displacement at the interface over time )(tub  is given by  

br
m

bbrb RtMRRRtu −+=−= )()(
2

π

γ                                                      (2) 
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where coefficient mγ  is associated with densities of original steel and corrosion rust. The prescribed 

displacement will be considered as the internal boundary condition of the boundary-value problem for the 

evolution of cover concrete cracking. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Based on the assumption that the steel rebar has uniform corrosion at the surface, the thick-walled 

cylinder model for cover concrete cracking can be considered as an axisymmetrical problem and further 

treated as a plane stress problem. When the hoop stress reaches the tensile strength of concrete, the radial 

splitting cracks propagate from the bond interface (Rb) in axisymmetrical directions to the same radius (ry) 

until reaching the free surface of concrete cover (Rc), as shown in Fig. 1(b). 

On the other hand, concrete cracking could be modelled as a process of tensile softening if the 

cracking is considered as cohesive and the crack width does not exceed a limited value [2]. The function 

(softening curve) can be determined from experiments and may be utilised to replace the stress-strain 

relations in the theories such as plasticity. The bilinear softening curve adopted in the present study and 

expressed as  

)( bWaf tw −=σ                                                                   (3) 

where wσ  is the tensile stress crossing cohesive cracks, coefficients a and b are defined in the CEB-FIB 

Model Code and associated with normalised critical and ultimate crack widths Wcr and Wu,  ft is the tensile 

strength of concrete, and W is dimensionless variable that normalises actual crack width w(r) to a non-

dimensional form and defined as 

)(rw
G

f
W

F

t=                                                                          (4) 

where FG  is the fracture energy of concrete. From the crack band theory for the fracture of concrete, the 

total number of cracks cn  separating cracking bands appearing at cover surface (Rc) is estimated from 

c

c
c

L

R
n

π2
=                                                                             (5) 

in which cL  is minimum admissible crack band width estimated from ac dL 3≈  in which ad  is 

maximum aggregate size of concrete. From the defined constitutive equation and relationship between 

strain and the radial displacement u, the governing equation of displacement can be obtained from stress 

equilibrium equation by  

0
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=−+
r

u
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β                                                                  (6) 

where the reduction factor of residual tensile stiffness β is defined as   
1
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The total hoop strain θε  of the cracked concrete consists of fracture strain
f

θε  and linear elastic strain 

between cracks 
e

θε , defined, respectively, as 
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From the total hoop strain θε , the radial displacement u of the cracked concrete is calculated from 

  [ ]WblrbWa
E

f
ru t

0)( +−== θε                                                         (9) 

where material coefficient blnl chc π2/0 =  in which chl is characteristic length 
2

/ tFch fEGl = . The 

governing equation (6) now can be rewritten for directly solving normalised crack width W as  

   0
1
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2
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r
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rl                                                         (10) 

The general solution to the second-order linear homogeneous differential equation is  
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where constant coefficients 1C  and 2C  in the general solution can be determined from two boundary 

conditions of the boundary-value problem. 

In the case of crack propagation before crack width at rebar surface reaches critical value, the thick-

walled cylinder is now divided into two zones, an intact outer ring ( cy Rrr ≤≤
+

) and a cracked inner 

ring (
−

≤≤ yb rrR ). In the intact outer ring, the tensile hoop stress reaches the concrete tensile strength 

tf  at the crack front (
+

yr ) and the external surface (Rc) remains free, expressed as 

trr
f

y

=+=
|θσ  ,   0| == cRrrσ                                                           (12) 

From the boundary conditions, the normalised crack width over the cracked inner ring is given by  
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where a crack width function associated with material coefficient 0l  and radius r is defined as 
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and the normalised crack width at the rebar surface is calculated from 
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and crack front ( yr ) can be determined by the continuity condition of radial stress crossing the intact and 

cracked zones, expressed as  

[ ]
cr

cr

b

yc

yc

b

cr

y

cr

y

cr

y
W

W

rR

rR
Rlrlrlr )1()1()1( ),(),()(

22

22

2

000 αυυδδ −=












+

−
−++−−            (16) 

The radial stress at the external boundary of the cracked zone (
−

yr ) is given by  
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When the crack front reaches the concrete cover surface ( cy Rr = ), the displacement at the internal 

boundary of the thick-walled cylinder at time cT  can be determined from 
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Consequently, the time to cracking cT  can be estimated from Eqs. (2) and (1), which is a function of 

concrete cover dimensions, material properties of cover concrete and reinforcement corrosion rate. 

The above procedure can be further used for the full development of cracking in the cover concrete 

such as the cases when crack width at rebar surface exceeds critical value and when the concrete cover is 

completely cracked, where the boundary conditions at internal and external surfaces are different. 
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3. NUMERICAL EXAMPLE 

A numerical example is utilised to demonstrate the cracking development in concrete cover due to 

reinforcement corrosion predicted by the proposed approach. The material properties for the specimens 

utilised in [1] are taken as tensile strength MPaf t 3.3= , elastic modulus of concrete GPaE 27= , 

fracture energy mNG f /83= , critical and ultimate crack widths mmwcr 03.0=  and mmwu 2.0= . The 

plot in Fig. 2 presents curves for the cracked front yr  propagating with time from the rebar surface to the 

concrete cover surface. The crack width at the concrete cover surface cw shown in Fig. 3 increases 

abruptly when crack front reaches the free cover surface due to sudden release of energy. After the time to 

cracking, the crack width cw  is close to that at the rebar surface bw  and becomes ultimate cohesive 

width at last. The theoretical predictions of the crack width over time are also compared with the 

experimental measurements by Andrade et al. [3], and the predicted results lie between the maximum and 

minimum measured crack widths and are in good agreement with the experimental data.  
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Fig. 2 Propagation of cracked front (ry) and critical 

crack front (rcr) with time t. 

 

 

 

 

 

 

 

 

 
 

Fig.  3  Crack widths at rebar surface (wb) and at 

cover surface (wc) with time t. 
 

The problem is analysed by finite element software DIANA where softening cohesive concrete model is 

adopted. The results of crack propagation from the interface to the cover surface and the crack width at 

the interface from FE simulations are presented in Fig. 4, which match with the theoretical results. 
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Fig.  4  Crack propagation in the cover concrete and predicted crack width from FE simulations. 
 
4.  CONCLUSIONS 

The proposed analytical method can effectively simulate the evolution of radial cracking around a 

corroding steel reinforcement bar embedded in concrete, which can be verified by existing experimental 

data and finite element simulations.  
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ABSTRACT 

New developments for simulating microcracking in cementitious composite materials are presented. A 

microcrack initiation criterion based upon the exterior point Eshelby solution which aims to model the 

onset of micro-cracking in the interfacial transition zone between aggregate particles and the cement 

matrix is proposed. The adopted solution captures tensile stress concentrations in the proximity of 

inclusion – matrix interfaces in directions lateral to a compressive loading path. The criterion is 

subsequently applied in a constitutive model - initially formulated by Jefferson and Bennett [1-2] - that 

employs micromechanical solutions of a two-phase composite comprising a matrix phase, spherical 

inclusions, penny-shaped microcracks randomly distributed in the matrix and combines these with a 

rough crack contact component. The effective properties of the two-phase composite are obtained using 

the Mori-Tanaka homogenization scheme. The two-phase formulation is able to predict the build-up of 

tensile stresses within the matrix phase under uniaxial compression stresses. However, it is the 

employment of the damage initiation criterion that positions the onset of micro-cracking in a region 

adjacent to the matrix-inclusion boundary and enables the use of realistic material properties for obtaining 

a correct cross-cracking response. Numerical results that demonstrate the potential of the model to capture 

key characteristics of the mechanical behaviour of concrete are presented. 

 

1  INTRODUCTION  

The development of an accurate and robust constitutive model for cementitious composite materials such 

as concrete has been a challenge for researchers for many years. Many macroscopic models based on 

damage and plasticity theories have been proposed and implemented in commercial FE codes with 

varying degrees of success however they often use parameters that are difficult to determine and thus far 

no one model has been able to fully simulate all aspects of the complex behaviour of concrete. 

An alternative approach to phenomenological models is offered through the development of models based 

on micromechanical theories which aim to relate the macroscopic behaviour observed in experiments to 

simple physical mechanisms modelled at micro and meso scales. In recent years several models have been 

proposed that employ a micromechanical solution of an elastic solid containing penny-shaped 

microcracks and various damage evolution laws [3-5].   

The present work follows on from the micromechanics based constitutive model formulated by Jefferson 

and Bennett [1, 2]. A crack initiation criterion based upon the so-called exterior point Eshelby solution is 

proposed for modelling the onset of micro-cracking in the aggregate-cement paste interface.  

2 MICROMECHANICS BASED CONSTITUTIVE MODEL 

The model simulates a two-phase composite comprising a matrix (m), spherical inclusions (Ω) and penny-

shaped microcracks with rough surfaces randomly distributed within the matrix phase. A brief summary 

with key equations is presented below. 
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The Eshelby inclusion solution and the Mori-Tanaka averaging scheme for a non-dilute distribution of 

inclusions were employed in deriving the elastic properties of the two-phase composite. The overall 

constitutive relationship for the composite is as follows 

( )am εεDσ −= Ω :           (1) 

where σ  and ε  are the average far-filed stress and the average far-field strain respectively, 

( ) ( ) 14ff:f:f
−

ΩΩΩΩΩΩ ++= s
mmmm ITDTDD is the elasticity tensor of a two-phase composite, 

( )[ ] ( )[ ]Ω
−

ΩΩΩΩ −+−+= DDDSDDSIT mmm
s :::

14 , mf  and Ωf represent the volume fractions of 

the matrix and inclusion phases respectively ( 1ff =+ Ωm ), ΩS  is the interior-point Eshelby tensor [6], 

DΩ and Dm are the elasticity tensors for the inclusion and matrix phase respectively and 
s4I  is the fourth 

order identity tensor.  

The added strain aε  due to a series of randomly distributed penny-shaped microcracks was derived in [1] 

based on Budiansky and O’Connell’s solution [6] in which the crack density function was interpreted in 

terms of a directional damage parameter ω (0≤ω≤1). Transforming and adding the contributions of 

microcracks from all possible directions gives: 
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In which CL is the compliance tensor in the local coordinate system of a microcrack and N the stress 

transformation tensor. The evolution of the damage parameter ω is essentially governed by the local 

strains [1]. 

A transition function Ξ was introduced in the model to simulate the fact that microcracking in early stages 

is controlled by the matrix stress whereas the later stages, in which cracking progresses towards macro-

crack formation, are governed by the average stress [2]. Hence, equation (1) becomes: 
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A rough crack closure component was then implemented to model the recovery of stress on microcracks 

that regain contact. In each direction the local stress was written as a summation of the average stress on 

intact material and the recovered stress on debonded material that regains contact.  

[ ] [ ]LLgLfLL mH εεΦεεDs :),()(:)1( ωωα +−=        (4) 

Hf is a reduction function that decreases from 1 to 0 as the potential for shear transfer reduces with 

increasing crack opening, Φ(mg, Lε ) is the contact matrix  in which mg is the slope if the interlock 

contact surface and describes roughness of the crack surface [1]. 
1−= LL CD  and Lε is the local strain 

tensor. Removing the elastic compliance from equation (4), the added compliance including contact Ccα 

becomes: 
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Replacing LC
ω

ω

−1
 with Ccα in equation (3) the average stress-average stress relationship is obtained: 
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The integration over a hemisphere in equation (6) is evaluated numerically by employing McClauren 

integration rule with 29 sample directions. 
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3 EXTERIOR POINT ESHELBY BASED CRACK INITIATION  

Experiments suggest that microcracking is initiated in the interfacial transition zone between aggregate 

particles and cement matrix and is caused by a build-up in tensile stresses, shear stresses or both [7]. In an 

attempt to simulate this particular mechanism a microcrack initiation criterion was formulated based upon 

the exterior point Eshelby solution which provides the expression of the total strain/stress field outside an 

ellipsoidal inclusion embedded in an infinite elastic matrix [8].  

*:)()( 0 εxSεxε Em +=Ω          (7) 

*:)(:)( 0 εxSDσxσ Emm +=Ω         (8) 

in which 0ε  and 0σ  are the applied far-field strain and stress respectively, *ε  is an inhomogeneity-

induced eigenstrain and SE(x) is the exterior-point Eshelby tensor. The explicit components of the exterior 

point Eshelby tensor are derived in [8] for spheroidal inclusion and in [9] for spherical inclusions. 

A full account of the development of the microcrack initiation criterion using the exterior point Eshelby 

solution for spherical inclusions is given in [10]. An illustrative diagram showing the lateral stress 

distribution outside a spherical inclusion for a uniaxial compressive load case is presented in Figure 1. 

The exterior point Eshelby solution is able to capture sharp gradients adjacent to an inclusion-matrix 

interface that generates a peak in the stress field.  

 

 
Figure 1. Lateral stress distribution outside a spherical inclusion 

 

The use of this peak tensile stress in the crack initiation condition (i.e. in simplified terms, damage is 

initiated when the peak stress becomes greater than or equal to the tensile strength of the interface) 

enables the use of realistic and meaningful material properties- i.e. elastic moduli of the two phases and 

measured aggregate-mortar interface strength parameters- to simulate lateral splitting in uniaxial 

compression, a primary damage mechanism [10]. Moreover, the above solution is able to place 

microcrack initiation at the matrix-inclusion interface without having to introduce a separate interface 

component into the model. 

4 RESULTS AND CONCLUSION  

Numerical results for a uniaxial compression strain path obtained with the micromechanical model 

including the exterior point Eshelby based crack initiation criterion and using realistic material data 

justified in [10] are presented in Figure 2. 

The micromechanical model and the crack initiation criterion presented are able to simulate successfully 

micromechanisms that lead to failure while employing realistic and meaningful material parameters. 

Many more examples and comparisons with experimental data are presented in the full description of the 

model [10].  
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Figure 2. Uniaxial compression prediction (compression +ve) 
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ABSTRACT 

The precise numerical modelling of fatigue is recognised to be computationally expensive and potentially 

can involve the analysis of many thousands of cycles.  A particular phenomenon of interest in this paper 

is the overload effect which occurs when increased loading is sporadically superimposed on constant-

amplitude fatigue loading.  The overload effect is an unexpected increase in the number of cycles to 

component failure.  The numerical analysis of the overload effect in fatigue-crack growth is presented in 

this paper. The simulation of a discontinuity on a predefined crack path under cyclic loading is achieved 

by means of a cohesive zone model incorporated into Code_Aster. The model introduces irreversibility 

into the constitutive relationships by means of damage accumulation with cyclic loading.  The traction-

separation relationship underpinning the cohesive zone model is not required to follow a predetermined 

path, but is dependent on irreversibility introduced by decreasing the critical traction value.  The results of 

computation demonstrate the model can capture the overload phenomenon.  It is demonstrated in the 

paper that a single overload can be sufficient to retard crack growth rate and under certain conditions can 

even arrest crack growth altogether.  The effects of boundary constraint are also presented in the paper. 

1  INTRODUCTION  
During service, many structures are occasionally subject to cyclic overload, which is observed to 

decelerate the fatigue crack growth rate. The cause of this deceleration is usually attributed to plasticity 

induced crack closure, strain hardening, crack tip blunting, and crack deflection. The plastic zone is 

thought however to be of major importance as its presence can result in the generation of compressive 

residual stresses which then act as a reduction factor contributing to crack growth retardation.  Various 

empirical models have been proposed each pertaining to relate to a particular phenomenon, i.e.  crack 

closure [1], compressive residual stress [1,2] and variants of the empirical model proposed by Wheeler 

[3,4]. Smilarly, exponential models have been developed that determine not only parameters related with 

overload but also residual life [5]. The difficulty with these empirical models is that they do not capture 

completely the physics of fatigue crack growth and have a limited range of applicability.  The phenomena 

of fatigue crack growth can in principle be described with the aid of a computational model. Adopting a 

mechanism-based approach rather than as empirical method should in principle provide greater insight to 

support the development of more realistic computational models although invariably at the price of 

increased complexity and computational cost.   

A particular mechanistic computational model that has been applied to model fatigue is that of the 

cohesive zone model. The cohesive zone model can capture the nonlinear behaviour occurring in the 

process zone and also can be paired with a plasticity model to account for bulk material deformation and 

is especially useful in simulating fatigue behaviour for materials that violate small-yielding assumptions 

at the crack tip.  Cohesive zone fatigue models are most commonly implemented in finite element codes 

and provide a mechanism for element interface separation.  In fatigue models, the traction-separation 

relationship underpinning the cohesive zone model is not required to follow a predetermined path, but is 

dependent on irreversibility introduced within the model. Various cohesive models have been proposed 

with some incorporating a degrading peak traction stress under cyclic  loading and unloading [6] along 

with incremental changes in stiffness [7]. In this work, the degrading peak-traction approach is 

incorporated along with the adoption of a irreversibility parameter. This model is implemented in 
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Code_Aster [8] but brief details are presented in the following section. 

2. Cohesive zone model 

In thecohesive zone model considered here the irreversible crack behaviour is controlled by an internal 

variable κ , which is defined as the accumulation of normal separation nδ  during loading cycles. The 

irreversibility results as a consequence of the growth of this parameter which is non-negative.  In an 

incremental form the relationship between κ  and nδ is defined as  1i
n

i
n

1ii −− δ−δ+κ=κ . 

The traction-separation relationship can be considered in three stages, which are: initial shape, damage 

processing and post fracture as illustrated in Figure 2.1.  In first stage (initial shape), the accumulation of 

normal separation is still zero( 01i =κ − ) the normal traction nσ  is a function of current normal 

separation, i
nδ , which can be expressed as  ( ) 
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where cδ  is the critical normal separation at which fracture ocurrs and cσ  is the critical normal stress, 

beyond which incipient separation begins.  For the second stage (damage processing), the normal 

separation 
iκ  increases during the cyclic process with c
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cc 1S  (see Figure 2.1). For the third stage (post fracture) when the 

crack is open, c

1i δ≥κ −
, the normal traction nσ  is zero for 

i

n0 δ<  and a contact condition is applied 

when ( ) 00n ≤σ .  The irreversible behaviour is illustrated in Figure 2.2 with vertical lines denoting 

loading and unloading. 
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Figure 2.1 Schematic of cohesive law 
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Figure 2.2 Evolution of traction during monotonic 

and cyclic loading with the cohesive law 

 

3. IMPLEMENTATION OF COHESIVE ZONE MODEL 

3.1 Model Description 

In the present work, a model consisting of 17.7 mm crack length with 50 mm of height (h) and 52 mm of 

width (w) is analysed.  The crack propagation is assumed to proceed along the axis of symmetry of the 

model. The assumed symmetry means that only half the model is simulated. The cohesive interface of 163 

elements are placed along the symmetry line from the initial crack tip to the outer boundary. The model is 

meshed with 12680 quadratic-triangular elements. The mechanical properties of the material used for 

linear-elastic analysis are: E = 72 GPa, ysσ = 300 MPa, 3.0=υ  and 5.9G IC =  N/mm.  The critical 

stress cσ  is taken as 350 MPa for plane stress and the plastic modulus 1.39ET = GPa to represent 

linear-kinematic hardening. In the case of constant amplitude loading (CAL), a stress loading of 15 MPa 
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is applied uniformly on the edge top of plate as a sinusoidal function as shown on Figure 3.1 (b). The 

model have three different boundary conditions, i.e.  

1. Constraint left edge, 0D x =  and  bottom edge, 0D y =  (LC) as shown in Figure 3.1 (a). 

2. Constraint right edge, 0D x =  and bottom edge, 0D y =  (RC).  

3. Constraint point A, 0D x = , 0D y =  and bottom edge, 0D y =  (NC).  

For single cycle overloading (SOL), a single stress overloading (Sol) of 30 MPa is applied at the first cycle 

and a stress loading (Smax) of 15 MPa is applied uniformly on the top edge of the plate as a sinusoidal 

function as shown on Figure 3.1(c).  A overload ratio 0.2S/SSOL maxol ==  and a load ratio 

0S/SR minmax ==  is applied for all tests.  The model has boundary conditions: constraint left edge, 

0D x =  and  bottom edge, 0D y = (LC) as shown in Figure 3.1 (a). 
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Figure 3.1 The schematics of models: (a) dimensions and boundary condition (LC) 

(b) constant amplitude cyclic loading (CAL) (c) single overload (SOL) 

 

 

crack length 

cohesive zone 

 
Figure 3.2 The cohesive element model in Code_Aster 

3.2 Results and discussion 

Figure 3.3 shows the effect of boundary conditions on crack propagation with the number of cycles (N). 

The NC constraint condition has the highest crack growth rate. This is caused by the lack of constraint in 

both edges which leads to higher stress levels at the crack tip when contrasted against the other constraint 

conditions. Constraints near the crack tip (LC) produces low stress levels ahead of the crack tip, which 

results in an increase in the number of cycles to failure.  
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Figure 3.4 The effect of various single overload 

(SOL) in crack growth rate 

The effect of a single overload (at N=1) in crack growth rate is presented in Figure 3.4. It is 

apparent on examination of this figure that the crack growth rate begins to retard once the 

overload is applied.  However it clearly decelerates after the first element fails then eventually 

follows a similar rate of  crack growth as seen with constant amplitue loading (CAL).  The 

numerical results are contrasted with Wheeler’s model utlising the material parameters found in 

reference [5]. This shows that both results are in broad agreement in general although errors are 

apparent immediately following the application of an overload.  In addition, as the number of 

cycles becomes large the crack growth rate predicted by Wheeler’s emprirical model is lower.  

This demonstrates the limitation of an empirical model to accurately account for all loading 

conditions. 

4. Conclusion 

The results of the computation demonstrate that a cohesive zone model can capture the overload 

phenomenon. It is demonstrated that a single overload can be sufficient to retard crack growth rate. The 

boundary constraint has an effect on crack growth rate by modifying stress levels at the crack tip. 
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ABSTRACT

The present work is part of a project on modelling corrosion induced cracking and spalling in reinforced
concrete structures. In the first step, the aim is to investigate the accuracy and robustness of lattice
approaches to modelling fracture in concrete. This paper presents a comparative study of the influence
of mesh size on predicted fracture trajectories which are also compared to experimental data. Two
separate problems were analysed using three mesh sizes for each. The results obtained from these
analyses are presented in this work.

1 INTRODUCTION

Lattice models have been used to study the behaviour of a number of softening materials, such as con-
crete. This work investigates the performance of one of these models when combined with an isotropic
damage law. The constitutive law used within this model is outlined in the following section. The in-
fluence of mesh size on the resulting fracture patterns and load-displacement curves is examined. The
results of the analyses are compared with those of experimental tests reported in the literature.

2 LATTICE MODEL

In the model outlined below, discretisation of the material continuum is based on Voronoi and Delau-
nay tessellations with random geometries [2]. Lattice elements correspond to the edges of a Delaunay
triangulation [2]. The edges of the Voronoi polygons are used to scale the stiffness of the elements. The
inelastic response of the lattice element is described by an isotropic damage approach, which corre-
sponds to a continuous reduction of the element’s stiffness [3]. The main equations of this constitutive
model are as follows. The stress-strain law is defined as

σ = (1− ω)Dε (1)
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where σ = {σn,σs,σφ}T is the nominal stress vector (comprising of normal, shear and rotational
stresses), ω is a damage parameter, D is the elastic stiffness and ε = {εn, εs, εφ}T is the strain vector
(comprising of normal, shear and rotational strains). The elastic stiffness is defined as

D =




E 0 0
0 γE 0
0 0 E



 (2)

and depends on the model parameters E and γ which are used to relate the continuum properties of the
specimen to the local properties of the lattice element. E and γ are calculated as follows

γ =
1− 3υ

υ + 1
(3)

E =
Ec

1− υ
(4)

Here, υ is Poisson’s ratio and Ec is the Young’s modulus of the continuum specimen. At present there
is no direct way of determining the tensile strength and fracture energy of the lattice elements from
the tensile strength and fracture energy of the continuum specimen. For the analyses carried out in
this work, it was initially assumed that the continuum and discrete tensile strength and fracture energy
were equal. However, comparsion with experimental data showed this assumption was incorrect and the
tensile strengths and fracture energies for both specimens were modified to achieve a better quantitative
agreement with the experimental load-displacement curve. An exponential softening curve was used to
describe the stress crack opening part of the model.

3 SIMULATION OF FRACTURE TESTS

Two tests were chosen to investigate the influence of mesh size on concrete fracture. Each fracture test
was analysed using three different mesh sizes and a comparison of the influence of the different mesh
sizes on the curved fracture pattern was carried out. The specimens modelled, the parameters assumed
and the results from the analyses are outlined in the following sections.

3.1 FOUR-POINT SHEAR TEST

The first simulation modelled the four-point shear test of a single-edge-notched (SEN) beam tested by
Arrea and Ingraffea [1]. The geometry of the specimen, along with the loading setup and the crack
trajectories obtained in the experiments are shown in Fig. 1. The material parameters chosen for the
lattice elements were as follows: E = 36.58 GPa, γ = 0.3898, f̄t = 2.8 MPa and GF = 112 J/m2.
The first two parameters correspond to elastic properties of the continuum model of Ec = 30 GPa and
v = 0.18. Figure 1 below shows the failure patterns obtained from the analysis. The displacement was
calculated as the difference of the vertical displacements at the bottom nodes on each side of the notch
(referred to as the Crack-Mouth-Shear-Displacement). The load-CMSD curves for the three meshes are
compared to the experimental results in Fig. 2.
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(a) (b) (c) (d)

Figure 1: Influence of mesh size on the crack trajectory in the SEN test: (a) Experimental setup and
crack trajectories [1], (b) Fine Mesh, (c) Medium Mesh, (d) Coarse Mesh.
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Figure 2: Load-CMSD curve.

3.2 DOUBLE-EDGE-NOTCHED SPECIMEN

The second simulation modelled the double-edge-notched (DEN) shear test performed by Nooru-
Mohamed [4]. The geometry and experimental setup can be seen in Fig. 3. The model parameters were
chosen as the following: E = 36.25 GPa, γ = 0.3333, f̄t = 1.95 MPa and GF = 71.5 J/m2. The first
two parameters correspond to the elastic material properties for the continuum specimen Ec = 29GPa
and v = 0.2. As with the previous analyses, three different mesh refinements were used to inspect the
influence of mesh size on the crack patterns. This test requires two stages of loading. During the first
stage, the specimen is loaded by an increasing shear force, Ps, until a value of 10kN is reached. For the
second stage, this shear force is kept constant and the specimen is stretched under displacement control
in the vertical direction which generates a reaction force P . The crack trajectories obtained during the
analyses are seen in Fig. 4 and a comparison between the load-displacement curve for each mesh and
the experimental results is shown in Fig. 3.

(a) (b) (c) (d)

Figure 4: Influence of mesh size on the crack trajectory in the DEN test: (a) Experimental crack pattern,
(b) Fine Mesh, (c) Medium Mesh, (d) Coarse Mesh.
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Figure 3: The DEN specimen (a) geometry and loading [4], (b) Load-Displacement Curves.

4 DISCUSSION OF RESULTS

The lattice model outlined in this work was used to successfully reproduce fracture patterns on two
concrete specimens. A reduction in the tensile strength and the fracture energy of the lattice elements
allowed for the load-displacement curves to be obtained in agreement with experimental tests while
calculating accurate crack trajectories of fracture patterns. It has been observed that the size of the mesh
can influence the trajectory of the crack pattern. The coarse mesh for the DEN specimen in particular
was poor at modelling the crack pattern, both in the extent and direction of crack, and was not able to
model continuity of the crack. However, load-displacement curves are mesh independent.
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ABSTRACT

This paper proposes to merge domain decomposition methods with model order reduction methods for
the first time in the context of fracture mechanics. On one side, domain decompositon methods are a
well-known way to divide a large mechanical problem into several smaller pieces easier to solve. It is
very suitable to parallel computing since those subproblems can be solved independently using a coarse
global problem to link the solutions together. On the other side, model order reduction methods are used
to reduce the size of a problem using usually projections of the space of unknowns onto spaces of much
smaller dimensions. This enables to solve problems faster while keeping accuracy. This is a critical
point in the field of virtual sugery or rapid virtual prototyping. In this paper, we propose to use the
balancing domain decomposition method coupled with the proper orthogonal decompostion method.
To save time for assembling the stiffness matrix, the hyper-reduction method will be used.

1 INTRODUCTION

When solving large non-linear mechanical problems, the discretisation using finite element method
leads to the resolution of linear systems of the type Ku = f , where K is the stiffness matrix, u the
displacement and f some force applied on the domain studied. The size of the mesh used is limited by
the computational power available. Domain decompostion techniques are one way to take advantage of
parallel computers, since the basic idea is to subdivide the main domain into a number of subdomains,
typically as many as the number of processors available. Description and use of those methods are given
in [1], [2], [3], [4]. The problem is reformulated so that we end up with a global coarse problem usually
solved in parallel using a Krylov-subspace method along with smaller easier sytems to solve on each
subdomain. One way to make it even more efficient will be to reduce the local problems using model
order reduction(MOR). This will allow us to solve even larger problems. MOR is used for example in
[5], [6], [7], [8].

In this paper we formulate the strategy using the balancing domain decomposition (BDD) technique
coupled with the proper orthogonal decomposition (POD). An issue arising form using the POD is
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the fact that despite the time we gain by solving smaller problems, the stiffness matrix is still fully
assembled and this operation takes most of the runtime. This issue can be tackled by using a technique
of hyper-reduction which consists of assembling only selected parts of the stiffness matrix which speeds
up significantly the algorithm.

2 BALANCING DOMAIN DECOMPOSITION

In the BDD method, first described in [9], the main domain is divided into several subdomains. The
continuity between the subdomains is guaranted by forcing the degrees of freedom to be equal on the
interfaces. The problem is formulated and discretised on each subdomain (E) in the form K(E)u(E) =
f (E). For clarity we will skip the superscript (E) in the following. By separating the internal degrees
of freedom from the interface degrees of freedom, the sytems can be rewritten in the form:

[
Kii Kib

Kbi Kbb

] [
ui
ub

]

=

[
fi
fb

]

(1)

In the usual BDD method the internal degrees of freedom are condensed on the interface with interven-
tion of the Schur complement. This leads to the system:

Spub = Fc with Sp = Kbb −KbiK
−1
ii Kib and Fc = Fb −KbiK

−1
ii Fi (2)

The Schur complement system (also called interface problem or coarse problem) can be solved in
parallel iteratively using a Krylov-subspace method such as the conjugate gradient or GMRes (or
BiCGSTAB) in a non-symmetric case.

The ui are then found on each subdomain using the equation: ui = Kbb − K−1
ii (Fi − Kibub). The

matrices Kii are relatively small and those problems are solved using direct methods.

3 INTRODUCTION OF PROPER ORTHOGONAL DECOMPOSI-
TION INTO THE BDD FORMULATION

The proper orthogonal decomposition is a model order reduction method. The idea is to first create a set
of simple solutions as representative as possible called the snapshot. With the use of the singular value
decomposition (SVD), an orthonormalised space of much smaller dimension is selected. It is on that
space that we will then look for the solution of our problem. A key point is how the snapshot is created.
One way to do that is for example to take solutions form previous time steps, orthonormalise them
and take that basis as the projection space. Some other strategies include solving a family of simple
problems related to the problem to be solved, orthonormalise the solutions and select only a few modes
through use of the SVD.

We are here trying to reduce the internal degrees of freedom so instead of looking for u =

[
ui
ub

]

, we

will be looking for u =

[
Ciα
ub

]

.

We are not reducing the degrees of freedom present on the interface, but only the internal ones. C is the
basis of the projection space. α is a dimensionless vector of small size.
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On each subdomain, we then have to solve:
[
Kii Kib

Kbi Kbb

] [
Ciα
ub

]

=

[
KiiCi Kib

KbiCi Kbb

] [
α
ub

]

=

[
fi
fb

]

(3)

This system is overdertermined since we still have the same number of equations but we reduced the
number of unknowns. We will take care of that using a Galerkin method which consists of saying that the

residual should be orthogonal to the solution space: ∀u∗ =
[
Ciα

∗

u∗b

]

,

[
Ciα

∗

u∗b

]T

(K

[
Ciα
ub

]

− Fc) = 0

This is equivalent to:

Kred

[
α
ub

]

− Fc = 0, with Kred =

[
CT
i KiiCi CT

i Kib

KbiCi Kbb

]

(4)

which is now a well-defined system of much smaller dimension than the original one in equation (1).

4 ASSEMBLING THE STIFFNESS MATRIX USING HYPER-
REDUCTION

A significant amount of the runtime is spent in assembling the stiffness matrix. The fact we reduced the
local problems, and hence made the resolution faster is wasted by spending much more time assembling
the stiffness matrix. This feels particularly wrong since, even though we calculate the full stiffness
matrix excatly, we reduce it then significantly using the POD. A way to handle that is called hyper-
reduction. It was first described in [10], and developed in [11]. The basic idea is to select only a little
number of equations so that only a little part of the stiffness matrix need to be assembled, reducing
significantly the execution time. Consider E a boolean operator that selects nh equations out of the ni
ones corresponding to the internal degrees of freedom. The POD reduced equations then become:

[
ET 0
0 Id

]

(K

[
Ciα
ub

]

− f) = 0 (5)

As before we use the Galerkin orthogonality condition to guarantee that the system we have is squared.
The space we want the residual to be orthogonal to is not the full space spanned by the reduced basis
C anymore, but the hyperreduced space of smaller dimension of it: CTE. We then obtain the following
system:

[
CT 0
0 Id

] [
E 0
0 Id

] [
ET 0
0 Id

]

(K

[
Ciα
ub

]

− f) = 0

which is equivalent to:
[
CT
i EE

TKiiCi CT
i EE

TKib

KbiCi Kbb

] [
α
ub

]

=

[
CT
i EE

TFi

Fb

]

(6)

In pratice the operator E is not computed. The effect of matrix EET on Kii is to replace some of its
lines by zeros. The matrix EETKii is assembled instead of Kii. This is a much faster operation since
many lines are zeros.

The choice we make for the selected equations can have a dramatical influence on the results. Choosing
well the equations means choosing the ones having the largest influence on the residual. This is a hard
task since we have to select those equations a priori. One simple strategy is to consider the values of
KCi and F at the beginning of the algorithm and keep the components having the highest absolute
value. Those are ones the most likely to have the largest influence on the residual.
When used with right parameters, we have expectations for this BDD-POD using hyper-reduction strat-
egy to speed up significantly the resolution of non-linear mechanical problems.
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ABSTRACT 

This study develops a scaled boundary finite element method (SBFEM) for modelling fast cohesive crack 

propagation in quasi-brittle materials subjected to transient dynamic loadings. In this method, the elastic 

bulk material is modelled by SBFEM subdomains and the cracks by nonlinear cohesive interface finite 

elements that are automatically inserted by a remeshing procedure. The global equation system is solved 

using an implicit time integration algorithm. Because all the solutions (displacements, stresses, velocities, 

accelerations) are semi-analytical in a subdomain, this method offers a few advantages over other 

methods, such as accurate calculation of stress intensity factors without using fine crack-tip meshes, 

simpler remeshing, more accurate yet efficient mesh mapping, and the need of much fewer degrees of 

freedom for the same accuracy. A concrete beam under mode-I fracture was modelled to validate the 

method. 

1  INTRODUCTION  

The scaled boundary finite element method (SBFEM), developed in 1990s [1], is a semi-analytical 

method combining the advantages of the finite element method (FEM) and the Boundary element method 

(BEM). It discretises subdomain boundaries only but no fundamental solutions and singular integrations 

are needed. Therefore, the FEM’s wide applicability and the BEM’s simplicity in remeshing are both 

retained. Another significant advantage is that stress singularities at cracks or corners are analytically 

represented by the stress solutions so that accurate stress intensity factors (SIFs) can be calculated directly 

by definition. As such, fine crack-tip meshes or singular elements as required by the FEM are not needed. 

In addition, discretising domains in the SBFEM can be much more flexible than in the FEM. These 

advantages of the SBFEM were recently exploited by the authors to develop models for linear and 

nonlinear fracture with single and multiple cracks subjected to quasi-static loadings [2-4]. These studies 

demonstrate that: (i) remeshing is very simple and only leads to slight increases in degrees of freedom 

(DOFs); (ii) the semi-analytical nature of SBFEM makes mesh mapping extremely simple but very 

accurate, which contributes greatly to numerical stability and convergence in solving highly nonlinear 

equation systems; and (iii) it also allows a structure to be modelled by much fewer DOFs than the FEM. 

These features appear to just overcome the challenges faced by FEM for modelling fracture problems.  

We recently developed a linear elastic fracture mechanics (LEFM)-based SBFEM procedure for dynamic 

fracture modelling with excellent results [5]. This study further extends the developed procedure to model 

nonlinear dynamic fracture problems by incorporating cohesive interface elements to model the fracture 

process zone which is characteristic to quasi-brittle materials.  
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1 METHODOLOGY 

1.1 The scaled boundary finite element method 

A domain of analysis is illustrated in Figure 1(a) as an example. The domain is divided into 3 

subdomains. Figure 1(b) shows the details of Subdomain 1. The subdomain is represented by scaling a 

defining curve S relative to a scaling centre. A normalized radial coordinate ξ is defined, varying from 

zero at the scaling centre and unit value on S. A circumferential coordinate η is defined around the 

defining curve S. A curve similar to S defined by ξ=0.5 is shown in Figure 1b. The coordinates ξ and η 

form a local coordinate system used in all the subdomains and simple coordination transformation 

equations exist for each subdomain. 

 

  
(a) Subdomaining of a domain (b) Subdomain 1 

Fig. 1 The concept of the scaled boundary finite element method 

 

The displacements of any point (ξ, η) in a subdomain are assumed as 

)()(),( ξηηξ uNu                                                                       (1) 

where u(ξ) are the displacements along the radial lines and are analytical with respect to ξ. N(η) is the 

shape function matrix in the circumferential direction.  

1.2 Time integration 

In elastodynamics, the dynamic equilibrium equation of a domain without damping is derived as [5] 

PKUUM                                                                                (2) 

where M and K are the global mass and stiffness matrices by assembling contributions of all subdomains, 

P the global load vector, U and Ü the nodal displacement and acceleration vectors, respectively. For 

nonlinear fracture problems, K includes stiffness matrices of cohesive interface elements and depends on 

U, i.e., K =K(U). The time integration algorithm of Hughes [6] based on the average acceleration method 

is used to solve Eq. 2 in this study. At time step n+1 

nnnn t UUUU   2/)( 11
  ,      

nnnn t UUUU    2/)( 11
                                (3) 

Substituting Eq. 3 into Eq. 2 leads to  

1111 )(   nnnn GPUFBU                                                            (4) 

where
111 )()(   nnn UUKUF is the internal force vector and 

2/4 t MB ,     
nnnn t UMUMBUG   /41
                                               (5) 

Eq. 4 can be solved using the Newton-Raphson iterative method. In the iteration (i+1) 
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where 
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nU  satisfies the linear equation 
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where UFK  /T  is the tangential stiffness matrix. Eq. 7 is repeatedly solved until the convergence 

criterion is satisfied 
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where ε is the error tolerance and a small number.  

Calculating KT in every iteration in Eq. 7 may be computationally costly. The initial stiffness matrix at the 

beginning of the time step is used instead in all the iterations (the modified Newton-Raphson method).   

After Un+1 is calculated from Eq. 4, the fields of displacement, velocity and acceleration in a subdomain 

are calculated by  
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                 (9) 

where N is the number of degrees of freedom of the subdomain, λi and φi are eigen values and vectors of 

an eigen problem for the subdomain, and ci, ic  and 
ic  are constants determined by nodal 

displacements, velocities and accelerations of the subdomain boundary, which are subsets of U, 

U  and ,U respectively. The stresses in the subdomain are calculated by 
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It is clear that all the state variables in Eqs 9-10 are analytical in the radial direction ξ. The stress 

intensity factors can be calculated from Eq. 10 by definition [5]. 

2 NUMERICAL EXAMPLE 

A three-point-bending concrete beam with material properties and dimensions shown in Fig. 2 

was modelled. The measured experiment load history for strain rate 1.48s
-1

 [7] was used in the 

analysis, with time step Δt=0.010ms and crack propagation length Δa=2.7mm. As in [7-8], a 

dynamic tensile strength 13.10MPa was used for crack initiation with a dynamic traction-

separation softening curve shown in Fig. 3 for cohesive elements to model crack propagation. 

 

 
 

Fig. 2 A concrete beam under three point bending Fig. 3 Dynamic softening curve for 

cohesive elements 

Fig. 4 shows the initial mesh and deformed meshes at three time instances. The number of 

subdomains and nodes in the final mesh increases to 221 and 562 from 76 and 272 in the initial 

mesh, respectively. It may be noted that 3999 nodes and 3840 integration cells were used to 

model the same problem by Belytschko et al. [8] using an Element-free Galerkin (EFG) method. 

Fig. 5 compares the predicted crack length history with experimental data and FEM results in [7] 

and EFG results in [8]. The present method predicted that the crack started to propagate at 

t=0.3ms, compared with 0.260ms in the experiment [7] and 0.278ms in [8], respectively. The 

predicted crack velocity history is shown in Fig. 6. The present method predicted a velocity 

plateau at 0.124cR, which is closer to the experimental value 0.122cR [7] than 0.15cR as predicted 

by EFG [8]. 
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(a) t=0ms (76 subdomains & 272 nodes) (b) t=0.4ms (141 subdomains and 406 nodes) 

  

(c) t=0.52ms (205 subdomains and 526 nodes) (d) t=0.58ms (272 subdomains and 582 nodes) 

Fig. 4 Modelled crack propagation process 

 

  
Fig. 5 Crack length histories Fig. 6 Crack velocity histories 
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ABSTRACT 

An effective and general approach to the derivation of cohesive-zone models for the analysis of crack 
initiation and growth in rate-dependent materials is described in this paper. The constitutive law of the 
interface material is enriched adding internal variables in the framework of thermodynamics of 
irreversible processes. Both the internal variables and their evolution laws are chosen considering the 
physics of crack formation, which is specifically exploited in this work for rubber-like materials. Some 
results of the interface response for a prescribed relative-displacement history are presented.  

1 INTRODUCTION  

Laminated materials are widely used in engineering practice. Their characteristic structure poses novel 
problems to the analyst, as they introduce some additional failure modes, when compared to 
homogeneous materials. Numerous investigations have focused on delamination, which represents a 
characteristic local failure mode, potentially leading to structural collapse, and many techniques have 
been developed to model the problem, a summary being provided in [1]. 
In this paper attention is devoted to the ‘cohesive zone model’ in which a traction - separation law is 
introduced which also provides, in the case of infinitesimal elastic deformations, the link to Linear Elastic 
Fracture Mechanics as its integral equals the critical energy release rate. 
The rate dependence of the mechanical response leading to crack initiation and / or growth can not be 
neglected for a wide class of engineering applications.  The complexity of the problem and the presence 
of numerous competing factors are evident from the fact the fracture toughness may not show a 
monotonic trend with respect to crack speed, even when the latter is small enough not to consider inertial 
effects [2-4]. Furthermore, even when such trend is monotonic, the fracture toughness can increase with 
crack speed for some materials and decrease for others [2-4]. It has been also suggested that "stick - slip" 
behaviour can depend from the rate dependence of the fracture mechanism in the process zone [5]. 
The overall rate dependence can arise as a consequence of the rate dependence of the interface in itself, of 
the bulk material, or of both. A number of cohesive zone models and modelling strategies have been 
presented covering these different assumptions and are reviewed in Ref. [6]. They are quite successful in 
capturing many of the aspects of the rate-dependent nature of the interface damage and debonding. On the 
other hand, it is the authors’ opinion that more work can done to develop a general, physically well based 
cohesive element, without resorting to any phenomenological law other than basic physical and 
engineering understanding. Such an attempt is made in [6] and in this paper we summarise the main ideas 
and provide some of the results which demonstrate the effectiveness of the proposed approach.   
Our aim is to capture the rate dependence within the process zone of the interface in itself regardless of 
the behaviour of the surrounding material. First, we postulate the existence of an intrinsic fracture energy 
of the material, which is not rate-dependent. This is related to an elastic energy threshold needed to break 
bonds at the micro or possibly, the atomistic scale. By using a general meso-mechanical approach to the 
development of cohesive-zone models which has been proposed in [7], the overall rate-dependence of the 
energy dissipation on the interface is simply the result of the rate dependence of the deformation on any 
infinitesimal parts of the interface where cohesion has not yet been lost. For the purposes of validating the 
concept, we will then restrict ourselves to linear visco-elasticity, but the overall formulation is presented 
for the most general case to underline its general validity. Also, the treatment is restricted to a pure mode-
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2 COHESIVE ZONE FORMULATION 

In the proposed mesomechanical approach the finite thickness process zone is replaced with a zero-
thickness interface over which a scalar field of the internal variable damage is defined . To this end, a 
‘representative infinitesimal area’ (RIA) dA of the interface is subdivided into an undamaged part dAu and 
a damaged part dAd. The damaged parameter is defined as D = dAd/dA and ranges from 0, for the 
undamaged points of the interface, to 1 for the fully damaged points (Figure 1.b). This decomposition is 
done on an infinitesimal area and does not correspond to a decomposition of the process zone into two 
different sub-zones.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: (a) micromechanical and (b) mesomechanical modelling..  
 
 
In this description any constitutive law can be used for the undamaged part of the interface. In addition, 
the formulation can be enriched with a further internal variable describing damage. In this way, following 
the classic definition of damage due to Kachanov, a general expression of the cohesive zone free energy 
ψ� can be introduced as follows: 
 

    ji  ,~ψd   (1)

 
where ψ~  represents a vector of free energies for the undamaged material, δi and δj represent observable 

and internal variables respectively and d  is a vector of internal variables associated with the evolution of 
damage. The choice of the number and type of the internal variables is arbitrary and depends of course on 
the phenomenon being addressed. 
The great flexibility and power of the procedure lies in that these variables can be chosen ad hoc to 
represent a vast range of physical phenomena occurring within the material. 
For the purposes of this work attention is devoted to rubber-like materials, and linear viscoelasticity has 
been chosen as a sufficiently accurate framework to model the process zone in first approximation. 
It has to be stressed that the presented formulation can be very simply enriched using more complex 
material constitutive laws for the undamaged portion of the interface. Bearing this in mind we deemed 
though appropriate, for the purposes of the proof of concept, to initially present results obtained resorting 
to the simplest available time-dependent law. On this instance we focused on a thin rubber interface. 
 The Standard Linear Model (see Figure 2) is chosen to describe the undamaged part of the interface. An 
internal variable e  is introduced, which represents the elastic part of the displacement on the Maxwell 

arm of the model. Hence, in our case and referring to Figure 2, the free energy can be written as follows: 
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                                                          Figure 2: Rheological model 
 
where   is the total relative displacement on the interface and 1

~  and 2
~  represent the free energies in 

the elastic arm and in the Maxwell arm, respectively. The damage variables are collected in the vector 

 TDD 21 11 d . For more details on the physical meaning of the damage parameters 1D and 

2D , as well as further insight into their micro-structural justification the reader is referred to Ref. [6]. In 

this context we limit ourselves to observe that 1D and 2D  represent the damage parameters in the elastic 
and in the Maxwell arm, respectively, and that the former can be regarded as representative of the load-
bearing chains in the rubber while the latter simulates the behaviour of the entangled chains. 
To close the problem evolution laws for the damage internal variables are needed. As far as 1D  is 
concerned, due to its physical nature we postulate that its evolution is related to the stored energy in the 
elastic arm. In particular, we chose an evolution law presented in [1], according to which a damage 
threshold for the free energy is introduced, dependent on 1D . Furthermore, as a result of the above 

interpretation we deem it acceptable to assume in first approximation that 12 DD  . 

 
3 NUMERICAL EXAMPLES  

The cohesive-zone model briefly described in Section 2 has been implemented as constitutive law for 6-
noded interface elements for its use within general non-linear finite-element analyses. We refer to Ref [6] 
for a validation of the proposed procedure against experimental tests for a double-cantilever specimen 
made of steel arms sandwiching a think rubber layer to which they are bonded with a strong adhesive. 
Here we report the results of a single-element test in which the relative-displacement history has been 
prescribed to linearly increase from t = 0 to t = 1 and different relaxation times  have been considered. 
Furthermore, the intrinsic fracture energy associated with the elastic arm is Gc = 10 N mm-1, the initial 
stiffness of the elastic and the Maxwell arms are 6 and 4 N mm-3 and the first-cracking relative 
displacement for the elastic arm is 0.75 mm. 
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Figure 3: Traction vs. Displacement for different relaxation times. 

 

4 CONCLUSIONS AND FURTHER WORK 
 
In this paper a general framework for the development of rate-dependent interface models has been 
presented which is based on a strict mesomechanical interpretation of the interface constitutive law and a 
thermodynamically based damage-mechanics formulation. The detailed micro-structural behaviour is 
accounted for through a priori homogenisation and in this first developments of the formulation, with a 
view to better presenting the proof of concept, the model has deliberately been kept simple by considering 
linear stiffness and viscosity and one single Maxwel arm. On the other hand, the generality of the 
formulation allows one to enrich the expressions of the free energies and the definition of evolution for 
the damage parameters as much as needed to increase the accuracy of the prediction and to account for 
the complexity of the material response, which together with the extension to mixed-mode analysis will 
be the subject of future work.  
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ABSTRACT 

The bond behaviour between fibre reinforced polymer (FRP) composite and concrete plays a crucial role 
in structures strengthened with externally bonded FRP. This bond behaviour has been extensively 
investigated experimentally but much less research has been concerned with the numerical simulation 
chiefly due to difficulties in accurately modelling the complex behaviour of concrete. This paper proposes 
a robust finite element (FE) model for simulating the bond behaviour in the entire loading process in the 
pull-off test. A concrete damage plasticity model based on the plastic degradation theory is proposed. It is 
shown that the model produces results in very close agreement with test data 

 

1  INTRODUCTION  

Extensive research on the bond behaviour between fibre reinforced polymer (FRP) composite and 
concrete in the last two decades because it plays a crucial role in structures strengthened with externally 
bonded FRP. The bond behaviour is typically investigated experimentally using the pull-off test of FRP-
to-concrete bonded joints (e.g. [1]). This paper is concerned with numerical modelling of the bond 
behaviour using the finite element (FE) method. 
Typical failure in the pull-off test occurs in the concrete a short distance away from the adhesive-concrete 
interface. The bond behaviour is thus controlled by the behaviour of the concrete. Existing FE studies on 
the problem may be classified into three approaches all of which do not explicitly model the thin adhesive 
layer: a) direct model where the behaviour of concrete is accurately modelled in a meso-scale with an 
appropriate constitutive model; b) interface model where the bond behaviour is modelled using a layer of 
interface elements; and c) crack band model which assumes that debonding takes place within a band in 
the concrete adjacent to the concrete-FRP interface and a modified constitutive law for the concrete in this 
band.  
The purpose of this study is to develop a general predictive model, using the aforementioned direct 
model, based on the concrete damage plasticity model available in FE software ABAQUS, incorporating 
a proposed plastic degradation model. 

2  MODELLING OF CONCRETE 

The smeared crack approach is adopted in this study as it is impossible to track multiple cracks, especially 
the numerous micro-cracks in the pull off test where failure occurs within a few millimetres in the 
concrete adjacent to the FRP. One of the drawbacks in the smeared concrete model is that it involves the 
strain localisation phenomenon due to strain-softening of concrete. This is overcome by adopting the 
crack band theory [2]: 

∫= cthw ε                                                                                  (1)  

where w is crack opening width, h is the width of the crack band and εct is the crack strain caused by the 
opening of micro-cracks. The crack band width h represents the effective width of the fracture process 
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zone over which micro-cracks are assumed to be uniformly distributed. In FE analysis, the cracking strain 
is assumed to be uniformly distributed over h which is in turn related to the element size, type and 
integration scheme. 
The concrete is modelled using the isotropic plasticity model available in ABAQUS and an isotropic 
damage model. Under uniaxial compression, it is described by the following stress strain relationship 
proposed by Saenz [3]: 
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where σ and ε are respectively the compressive stress and strain, σp and εp are the experimentally 
determined maximum stress and its corresponding strain which are taken to be the cylinder strength fc’  
(MPa) and 0.002 respectively. The elastic modulus of the concrete E0 is estimated from E0=4730

 
fc'  

(MPa) following ACI318. 
Under uni-axial tension, the problem involves tensile cracking. The fracture energy GF is treated as a 
material property of the concrete. The stress-crack opening displacement relationship proposed by 
Hordijk [4] is adopted: 
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where wt is the crack opening displacement, wcr is the crack opening displacement at the complete loss of 
tensile stress, σt is the tensile stress normal to the crack direction, ft is the concrete uniaxial tensile 
strength, and c1=3.0 and c2 =6.93 are constants determined from tensile tests of concrete. ft and GF may be 
estimated from the CEB-FIB model: 
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in which da is the maximum aggregate size which is assumed to be 20mm if no test data is available in the 
present study. Once the stress-crack opening displacement relationship is known, the stress-strain 
relationship can be determined for each element based on its size through Equation 1.The Poisson’s ratio 
ν=0.2 is assumed in the present model. 
The isotropic scale damaged stiffness in ABAQUS under uniaxial loading can be represented by : 

)()1( 0
pDd εεσ −−=                                                                                                                               (7) 

where σ, ε and pε are respectively the stress, total strain and equivalent plastic strain in the loading 
direction; D0 is the initial (undamaged) stiffness and d is the damage variable. The degraded stiffness is: 

0)1( DdD −=                                                                                                                                             (8) 
This is illustrated in Fig. 1 for the case of uni-axial tension. 
In the plastic degradation theory, the stiffness degradation is associated with the plastic deformation 
instead of the total deformation [5]. It is proposed in this study that the ratio of the plastic strain with 
stiffness degradation to that without stiffness degradation, ρ, is proportional to the cohesion of the 
material. In the case of uni-axial tension, this ratio is expressed as (Fig. 1): 
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For the case of uni-axial tension, the stiffness degradation variable dt can be found from the geometrical 
relationships between the variables in Fig. 1 as: 
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The same expression applies under uni-axial compression by replacing the tensile strength with the 
compressive strength. 

 

 

 

Figure 1. Stress-strain relationship of concrete 
under uniaxial tension 

Figure 2. FE model of pull-off test 

 

3  FE MODELLING OF PULL-OFF TEST  

A 45 mm thick concrete prism as shown in Figure 2 was modelled as a plane stress problem in the FE 
analysis. This thickness is smaller than most specimens used in the experiments but the rest of the 
concrete should have little effect on the FE results as the pull-off test commonly fails by debonding in 
concrete a few millimeters away from the FRP-concrete interface. The thickness of the FRP plate tp is set 
equal to 1 mm but the modulus of elasticity of the plate Ep is modified so that the plate has the actual axial 
stiffness Eptp. The concrete is modelled using mono-size square elements with four integration points. 
Rots’ [6] recommendation is adopted that the characteristic length for a square element with 4 integration 

points is e2  where e is the element side length. The FRP is modelled using the same element with 
matching mesh. Based on the results of a mesh convergence analysis, the 1mm mesh was used in the 
paper on the balance of accuracy and computational economy. 

4  COMPARISON OF FE PREDICTIONS WITH TEST RESULTS 

The proposed FE model has been used to simulate pull-off tests reported in [1], [7] and [8] failed by 
debonding. Figures 3 and 4 show the predicted and measured load-slip curve at the loaded end for two 
specimens: specimen II-5 in [1] and specimen No. 1 in [7]. Clearly the predictions are in close agreement 
with test data for both specimens in the whole loading range.  
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Figure 3. FE prediction versus test for 

specimen II-5 in [1] 
Figure 4. FE prediction versus test for 

specimen No. 1 in [7] 

5  CONCLUSIONS 

A plastic degradation model based the concrete damage plasticity theory has been proposed in this paper 
to simulate the bond behaviour between FRP and concrete. The proposed model has been implemented in 
ABAQUS to model the FRP-to-concrete bond behaviour in the pull-off test. It has been shown that the 
model can accurately predict the bond behaviour in the whole loading process and the numerical results 
are in very close agreement with test data from the literature. 
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ABSTRACT

In this work, the effect of the soil parameters on the ground induced vibration due to a high speed
moving train is numerically investigated through 3D finite element (FE) modelling. These include the
Rayleigh wave speed and the damping ratio at different train speeds in the sub-critical and super-critical
ranges. The developed 3D finite element model uses 20 noded brick elements for the track components
for the sleepers, the ballast and the sub-grade. 3D beam-column elements are considered to describe
the rail. The time integration is performed explicitly. The far field of the soil is truncated and absorbing
boundary conditions are incorporated. Preliminary validation in the case of a static point load acting
on homogeneous half space is carried out and results to study the vibration attenuation of the ground
response when harmonic point loading is applied on the free surface of a single layer overlying bedrock
are presented. The compression wave cut-off frequency is accurately estimated in terms of the frequency
content, as theoretically predicted. Parametric studies are also conducted to show the effect of ground
vibration when the train exceeds the Rayleigh ground wave speed.

1 Introduction

The study of the train induced vibration in railway and ground in civil and transportation engineering
aims mainly to ensure the safety of the train operations, prevent track geometry deterioration and also
protect the environment nearby buildings and the human comfort. In the soft ground areas, the train
speed may exceed the soil Rayleigh speed which produces strong vibrations due to the resonance of
the track structure. The design of safe and cost effective railway track requires a realistic track model
which can describe its actual behaviour under moving vehicle loading. An adequate model should take
into account the sleeper-ballast interaction, the spread of the moving load on the adjacent sleepers via
the rail and afterwards into the multi-layered sub-grade.
Most early works attempted to provide analytical or semi-analytical solutions of moving load induced
ground vibration. In ref. [1], Eason investigated a 3D steady-state problem, where a uniform half space
is subjected to moving load at uniform speed. Singh and Kuo [2] developed an analytical solution for
the response of an elastic half space under a moving circular load. Krylov [3], [4] derived an analytical
prediction model for train-induced ground vibration, the track being modelled as a beam on an elastic
foundation. Dieterman and Metrikine [6] investigated the steady-state response of a beam on an elastic
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half-space for the simulation of the track vibration under train moving loads. De Barros and Luco [5]
proposed a method giving the steady-state displacements and stresses within a multilayered viscoelas-
tic half-space due to a buried or surface point load moving along a horizontal straight line. Jones et al.
[7] gave the analytical solution of an elastic half space subjected to a moving rectangular harmonic.
Lefeuve-Mesgouez et al. [8] derived a semi-analytical solution of the half space ground response due
to a vertical harmonic moving strip load. A complete bibliography references of research works related
to the topic can be found in [9]. The obtained theoretical solutions are, however, mostly complex and
require the numerical evaluation of integral formulations, with restrictions on the geometry and the ma-
terial properties of the considered problem.
With the rapid progress of computer Technologies, numerical approaches based on the FE, the bound-
ary element methods or coupled together become powerful tools in solving soil dynamic problems.
However, there remain some difficulties with these approaches in dealing with the boundary and wave
reflection between interfaces.
In this paper, a 3D FE model is developed for simulating the dynamic response of railway track. Multi-
layered ground and material damping are incorporated. The model may also deal with material non-
linearity, especially of the ballast layer, and multi degree of freedom model for the vehicle. Lysmer
and Kuhlemeyee absorbing boundary conditions [10] are implemented to take into account the radia-
tion damping to infinity. The next section describes briefly the railway track model adopted to obtain
dynamic responses due to moving loads.

2 3D coupled train-track FE model

The developed model includes railway track components such as the rail, railpad, sleeper, bal-
last/suballast and multi-layered subgrades, as illustrated in Figure 1 (left). A linear constitutive soil

Figure 1: Schematic layout of 3D coupled train-track model.

model describing the wave propagation in a linearly isotropic medium is implemented. Viscous bound-
ary conditions are incorporated to overcome the artificial stress wave reflections inside the physical
domain.
The vehicle dynamic may be governed by quarter, fourth or full train model see Figure 1 (right). The
quarter train model consists of bogie, train body and the corresponding suspension systems. The sub-
grade is meshed into 20 noded brick elements and the beam column element is considered for the rail.
The resulting system of ordinary differential equations is approximated by an explicit time integration
scheme with mass lumping.
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3 Numerical results

Preliminary numerical validation dealing with uniform half space subjected to a constant point load
was conducted. The obtained results are shown in Figure 2. A test problem of constant harmonic point
load acting on a single layer overlying bedrock is also considered. The soil layer depth is H = 10m
and the material properties are: elastic modulus E ' 0.15GPa, Poisson ration ν = 0.35 and density
ρ = 1,500kg/m3. It follows that the shear velocity of the soil is CS ' 192m/s and the compressional
wave velocity is CP ' 400m/s. Since the vertical vibration results mainly from the compressional
waves, the resonance frequency should be roughly close to the compressional resonance frequencies
fP = (2n−1)CP

4H , n > 0. By virtue of this formula the cut-off frequency is 10 Hz. It is observed from
the results of Figure 2 that the numerical solution is in good agreement with the Boussinesq solution.
Moreover, the cut-off frequency is accurately reproduced by the 3D FE model (see Figure 3). Figures
4 and 5 show the response in time and frequency domain at an observation point and the displacement
magnitude for the coupled train-track model. It is clearly seen from the results that higher vibration is
observed at the supercritical Rayleigh speed.

Figure 2: FE vs. Boussinesq’s solutions.

Figure 3: Vertical displacement: (left) the time domain response and (right) the frequency content.

Figure 4: Vertical displacement: (left) the time domain response and (right) the frequency content.
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Figure 5: Displacement magnitude: (left) subcritical and (right) supercritical ranges.

In Figure 4 the damping is set to zero to illustrate the resonant response.
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ABSTRACT

A study of the non-linear and three-dimensional effects of a regular wave incident on a tidal turbine using Blade
Element Momentum Theory and Chaplins stream function wave theory. BEMT is a method of modelling the per-
formance of wind and marine turbines by combining one-dimensional momentum theory with rotational momen-
tum and blade element theory. Chaplins stream function uses linear wave theory in a moving frame of reference
to describe an incident wave front. The limitations and compatibility of BEMT and the stream function theory are
discussed. Results for a freely rotating turbine are presented in the frequency, time and Tip Speed Ratio (TSR)
domains. The turbine data used has been validated against tank testing by Bahaj et al.[1] and the Garrad Hassan
Tidal Bladed software [6].

1 INTRODUCTION

Blade element momentum theory (BEMT) is used within MatLab to simulate the performance of a tidal turbine
with low computational time when compared to traditional CFD codes. BEMT is derived for the general case of
a turbine with an infinite number of infinitely thin blades. The inclusion of corrections and wave theory adapts
BEMT to model the performance of a real turbine which can be used to validate the scheme against experimental
data. Blade element momentum theory combines one dimensional momentum theory with blade element theory.
In each case, two sets of equations are obtained for the turbines’ axial force and torque, dT and dFa. Blade
element theory partitions the rotor blades along their lengths into elements of length dr. Each is assumed to be a
two-dimensional foil, implying lift and drag characteristics produce all the loadings[2] which can be summed over
the blade length and number of blades N . The lift and drag coefficients,CL and CD, are found by interpolation
from a lookup table of these values for the specific blade dimensions.

One dimensional momentum theory with rotational momentum models the turbine as a frictionless permeable
actuator disc in a control flow stream bounded by a stream tube[8, 5] and uses Bernoulli’s equation to compare
pressure over the disc. It was first derived as a way of calculating the incoming velocity needed in blade element
theory. It takes the azimuthally averaged axial and tangential induction factors, a and b, over the whole blade and
so must be calculated with tip and hub loss corrections, combined together as a total loss F . This gives two sets
of equations both describing torque and axial force and derived from complimenting theories[2]. As there are the
four unknowns, dT, dFa, a and b, this is now a closed system. The system is resolved by using the least squares
method within the MatLab constrained minimum toolbox FMINCON for the function g, by changing a and b
such that,

g1 = (dT1 − dT2)
2 = (N

1

2
ρV 2cr(CLcosϕ− CDsinϕ)dr − 4bF (1− a) ρUΩr3πdr)2 (1)
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g2 = (dFa1 − dFa2)
2 = (N

1

2
ρV 2c(CLsinϕ+ CDcosϕ)dr − 4FπrρU2a(1− a)dr)2 (2)

g = g1 + g2 (3)

Where c is the element chord and V is the local blade element velocity which is effected on by wave theory. U is
the far upstream flow velocity and is taken as the hub height velocity and so is also effected by wave theory. By
minimising g the difference between the blade element and momentum theory results for axial force, dFa and
torque dT are minimised.

2 CHAPLIN’S STREAM FUNCTION WAVE THEORY

The stream function wave theory describes a 2D, irrotational, peri-
odic wave of permanent form in the wave frame of reference, i.e.
moving with wave speed C. Therefore the problem reduces to one
of steady flow. The stream function is ψ (x, y) where ∂ψ

∂y = v and
∂ψ
∂x = u − C. By normalising the constant in the dynamic free
surface boundary condition, the total head can be found, which is
constant for a given wave. It is defined as:

Q = y +
v2 + (u− C)

2

2g
on y = η(x) (4)

All conditions, apart from 4, can be satisfied by choosing a stream
function of order N with the form:

ψ (x, y) = −L
T
x+

N∑

n=1

ansinh
2πn(d+ y)

L
cos

2πnx

L
(5)

The first term is the wavelength multiplied by frequency and the x position in the frame of reference and repre-
sents the mean resulting flow from choosing a moving frame of reference. The summation represents the wave
disturbance. The numerical problem defined by this formulation of wave theory is to determine the unknown val-
ues of a1, a2, . . . , aN and L and ψ (x, η) such that the remaining condition of total head 4 is satisfied as closely
as possible. In Dean’s formulation[4], by specifying the mean water depth, total head and wave period, the pa-
rameters a1, a2, . . . , aN and L are found using least squares method to minimise the errors of 4. The unknown
parameter values are initially estimated and, from there, the solution progresses iteratively, using the modified
form of the Gauss Method. The sum of squares of the boundary condition errors are minimised for a solution[3].
Total head, Q, is unknown and so was interpolated by Dean using the input parameter of wave height. However,
most integral wave properties, such as total head, do not peak at maximum wave height, but before the maximum
wave height[3]. This fact increases with wave steepness and creates 2:1 mapping therefore Dean’s solution of
interpolation is increasingly inaccurate with wave steepness[3]. Chaplin suggests total head should be abandoned
as an input parameter and proceeds by creating a non-dimensionalised problem.

Ψ =
ψ (x, y)

ψ (x, η)
, X =

x

L
, D =

d

L
, S =

d+ y

L
, A =

a

ψ (x, η)
(6)

The new input parameters for the numerical problem are average water depth, d, wave period, T , and wave height,
H . The independent unknowns to be found are nowD and the surface height above the sea bed, S1, S2, . . . , SJ−2

at positions along the x axis, , x, x2, . . . , xJ−2, in the moving frame of reference, between a crest and a trough.
The non-dimensionalised stream function reads,

Ψ = AN+1X +
N∑

n=1

Ansinh 2πnScos 2πnX (7)
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The coefficients An cannot be derived directly by the method of Fourier analysis since the function
Ansinh 2πnSjcos 2πnXj and Xj are not orthonormal [3]. They are, however, linearly independent and so,
using the Schmidt process, a set of orthonormal functions can be generated. A series of orthonormal functions
ϕ1 (Xj) , ϕ2 (Xj) , . . . , ϕN+1 (Xj) can be defined by the matrix equation, with the dummy variable k:

ζn,j = Cn,kϕk,j where ϕk,j = ϕk(Xj) n = 1, 2, . . . , N + 1 = 1, 2, . . . , J (8)

Where C is a lower triangular matrix. The elements of the nth row of ϕ are then found from:

ϕn,j =
−∑n−1

k=1 Cn,kϕk,j + ζn,j
Cn,n

j = 1, 2, . . . , J (9)

This method is repeated until all the elements of the matrices ϕ and C are known. Unfortunately, the round up
error of this means that the component vectors of ϕ become progressively less orthogonal. Therefore a correction
by Davies is applied. The problem is now a system of J non-linear equations and J − 1 unknowns and can now
be directly solved using the Gauss non-linear least-squares method. Although this method is more complex than
Dean’s formulation, there is no interpolation error as the total head of the wave is calculated directly from the
input wave height. The Chaplin stream function theory is compatible with BEMT as the wave velocities are simply
coupled to the tidal velocities to give a combined flow velocity for a number of points in the x, y and z directions
which are stored in a velocity matrix. This can then be used to compute the exact flow velocity at the blade
element position in blade element theory, V and the upstream flow velocity, U , in momentum thoery. Although
Chaplin’s wave theory can accommodate a non-uniform tidal flow by altering the speed at which the moving
frame of reference propagates, this is not a realistic approximation. If the flow were to be non-uniform the fluid is
no longer irrotational and the Laplace equation is not valid. This complicates the expansion so that the formulation
is not easily incorporated into BEMT. The approach taken is suggested by Swan [10] and utilises Chaplin’s wave
theory purely to produce wave motion components of flow velocity without consideration for current effects.
Addition is then used to combine these components with the tidal flow velocity components, which are calculated
independently of the wave motion. The hydrodynamic force on the turbine due to the accelerative wave loadings
is implemented using Morison’s equation [9]. However, this approach is theoretically dubious as wave and tidal
flows do not act independently of each other. This model cannot capture the rotation of flow which may occur
and the effect of the current velocity on the dispersion of the waves.[7]

3 RESULTS

(a) The effect of wave motion with time (b) Frequency study

The Bahaj 1m diameter rotor was successfully simulated using this scheme and the specifics of the experiment are
outlined in [1]. The experimental data is corrected for blockage effects. The free stream tidal flow was 1.73m/s
for the case where the blades are pitched at 20◦ as compared here. However all conditions investigated in [1]
can be successfully simulated by this scheme. Figure 1(a) shows the force coefficients oscillate in the presence
of a wave. The wave period is 6s and the height 4m. The coefficients oscillate from positive to negative without
resistance. If the wave motion becomes more significant this could be undesirable as the rotor speed increases and
decreases with wave trough and crest affecting the TSR which can default the power coefficient from its peak at
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(c) TSR study with wave motion and compared to experimen-
tal data from the paper by Bahaj et. al. [1]

(d) Comparison with Bahaj experimental data and Garrad
Hassan Tidal Bladed software [6]

TSR=6.By using Fast Fourier Transformation the magnitude of axial force coefficient with wave frequency can be
shown as in Figure 1(b). As the simulated wave is of period 6 seconds a sharp peak is shown at the corresponding
wave frequency of 0.1667Hz. The magnitude of the peak corresponds to the magnitude of CFa oscillations. As
the regular, sinusoidal, Chaplin waves pass over the rotor the power and torque coefficients circulate up and down
the TSR curves repeatedly with each wavelength. Instead of operating at peak CP , TSR=6, the power is reduced
with every peak and trough down either side of the peak as in Figure 1(c). Finally the results are compared to
those of the Garrad Hassan Tidal Bladed turbine simulation software in Figure 1(d). It is shown that this scheme
agrees well with experimental data and the commercial Garrad Hassan scheme and that wave motion can be
incorporated into a BEMT model using Chaplin’s stream function theory.
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ABSTRACT

Recently, a new mixed formulation for explicit Lagrangian rapid dynamic analysis, based upon the
formulation of a first order hyperbolic system of conservation laws, hasbeen introduced [1, 2]. In this
paper, a new finite volume algorithm is proposed for the numerical solution ofthe formulation men-
tioned above. The methodology will be shown to be capable of alleviating volumetric locking both in
the analysis of nearly incompressible dynamics applications and in bending dominated situations. It is
worth noting that this finite volume discretisation, particularly based on constant quadrilaterals, leads
to second order convergence for velocities, displacements and stresses. A state-of-the-art shock captur-
ing technique [3] is introduced so as to avoid spurious oscillation in the vicinity of sharp gradients. To
this end, a number of numerical examples will be examined in order to demonstrate the robustness and
general capabilities of the proposed approach.

1 INTRODUCTION

In general, the traditional solid dynamics formulation, where its primary variable is the displacement
field, is solved by standard Finite Element(FE) spatial discretisation together with a family of Newmark
time integration schemes. However, the resulting space-time discretised formulation presents a series
of shortcomings. First, Newmark’s method has a tendency for high frequency noise to persist in the
solution and most importantly, its accuracy is remarkably degraded once artificial damping is employed.
Some minor modifications were introduced to improve the accuracy of numericaldissipation without
the inclusion of a discontinuity sensor [4], which consequently made the Newmark scheme unsuitable
for problems where shocks are present. Additionally, it is well known thatusing linear elements in
displacement-based FE leads to second order convergence for displacements but one order less for
strains and stresses.

It is also known that constant stress elements exhibit volumetric locking in incompressible or nearly in-
compressible applications; for instance, plastic flows involving large isochoric strains. In order to elim-
inate the locking phenomena, a variety of different approaches have been developed. First, p-refinement
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can be introduced where high order interpolating functions are adopted [7]. Another general approach
is to introduce a three-field Hu-Washizu type of variational principle, whichenables the use of inde-
pendent kinematic descriptions for the volumetric and deviatoric deformations[5]. In particular, the
mean dilatation technique, in which a constant interpolation for volumetric variables over an element is
involved, is widely accepted. This specific technique is alternatively knownas selective reduced integra-
tion, where the volumetric stress components are suitably underintegrated. Unfortunately, this scheme
cannot be applied within the context of low order elements such as linear triangles and tetrahedrons
as these elements have already used the simplest gaussian quadrature rule. In [6], Bonet and Burton
suggested that the volumetric strain energy is approximated by evaluating averaged nodal pressures in
terms of nodal volumes while the deviatoric component is treated in a standard manner. However, the
resulting solution behaved poorly in bending dominated cases. To circumvent this difficulty, Dohrmann
et.al [7] proposed a new linear tetrahedron by applying nodal averaging process to the whole small
strain tensor. Furthermore, Bonetet.al extended this application to large strain regime with the idea of
employing an averaged nodal deformation gradient tensor as the main kinematic variable [8].

This paper offers an alternative computational framework to prevent thedetrimental locking effects by
developing a mixed formulation that permits the use of any low order elements. Insofar as the formula-
tion is expressed as a system of conservation laws, where both the velocities and deformation gradient
tensor are the primary conserved variables, stresses converge at thesame rate as velocities and dis-
placements. Moreover, this system of equations can be discretised using aFinite Volume methodology,
typically based on the use of Riemann solvers and shock capturing schemes.

2 METHODOLOGY

The new formulation of Lagrangian explicit dynamics solid mechanics is crucially governed by two
physical laws, namely the momentum balance principle and the deformation gradient conservation prin-
ciple. Mathematically, they can be written as

∂p

∂t
−∇0 · P = ρ0b

∂F

∂t
−∇0 · (v ⊗ I) = 0,

(1)

wherep = ρ0v is the linear momentum per unit of material volume,ρ0 represents the material density,
v is the velocity field,b stands for the body force per unit mass,F indicates the deformation gradient
tensor,P describes the first Piola-Kirchhoff stress tensor and∇0 denotes a material gradient operator in
undeformed space. During irreversible processes, it is essential to solve for an additional state variable,
that is the first law of thermodynamics, which can be formulated as

∂E

∂t
+∇0 ·

(

Q− P Tv
)

= s, (2)

whereE is the total energy per unit of undeformed volume,Q describes the heat flux vector and
s represents the heat source. For simplicity, this paper only deals with an isothermal process where
the heat fluxQ and the energy source term,s, can be ignored. Hence, this process allows the energy
balance principle, Eqn. (2), to be uncoupled from the rest of the system(1). These conservation laws,
viz.(1) and (2), have to be supplemented by a constitutive law so as to close the coupled system, that
is,P = ∂ψ(F , α)/∂F . Here,ψ is the Helmholtz free energy function per unit of undeformed volume
andα denotes the hardening variable of the dissipative model.
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The spatial semi-discretisation is performed on a standard cell-centred cartesian grid, where the primary
variables are defined at the centroids of the cells. Under this circumstance, any control volume can be
identified with the existing grid and typically, the field variables are approximatedin every cell by means
of piecewise constant shape functions, which yield first order accuracy in space. Higher order spatial
accuracy can be achieved by introducing a suitable reconstruction procedure for variables within each
cell. The discontinuity at every cell interface motivates the use of a Riemann solver to evaluate the flux.
Inasmuch as the higher order spatial method does not prohibit unphysical oscillations in the vicinity
of discontinuities, a shock capturing technique which incorporates the VanLeer nonlinear limiter is
introduced [3]. Furthermore, the semidiscrete nonlinear evolution equations will be advanced forward
in time by using a TVD Runge-Kutta time stepping scheme.

3 NUMERICAL EXAMPLES

A series of examples will be examined in order to illustrate the performance of the proposed methodol-
ogy. The first example which will be considered is that of the wave propagation on a one-dimensional
elastic cable. The left end of the cable is fixed and any forcing function can be applied to its free right
end. By applying a step function force, Fig.(1a) presents the stress history of a square wave at fixed
end. A mesh convergence analysis is also performed where a sinusoidalforcing function is adopted; see
Fig.(1b). Moreover, we have chosen a simple example of cantilever beam subjected to a sudden con-
stant vertical load at its free end. The purpose of this example is to show thebehaviour of the proposed
algorithm in bending-dominated situations. Fig.(2) depicts the deformed configurations obtained with
standard Finite Element technique and the new Finite Volume method at a particulartime instant.
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Figure 1: One-dimensional elastic cable.

4 CONCLUSIONS

A new Finite Volume computational methodology in cartesian grids is presented for the numerical solu-
tion of a new mixed formulation based upon a first order hyperbolic system of conservation laws. This
new formulation, which is of mixed velocity-deformation gradient tensor, enables the stresses converge
at the same rate as velocities and displacements, and also permits the use of anylow order elements
without volumetric locking and bending difficulty. Furthermore, the use of constant stress elements
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Figure 2: Shear locking behaviour.

results in a faster and easy-to-implement code. In this paper, it is worth noting that the algorithm pro-
posed performs better than displacement-based model in the presence of shock waves. In addition, we
have also shown that the new Finite Volume algorithm presents a clear advantage over a traditional dis-
placement formulation in bending dominated problem. The overall numerical strategy provides a good
compromise between accuracy and speed of computations.
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ABSTRACT

The critical time step of conditionally stable time integrators, such as the explicit central difference
scheme, can be increased by incorporating micro-inertia terms in the governing equations. This is shown
for two types of micro-inertia, both of which are special cases of the 1964 Mindlin theory of elasticity
with microstructure. Closed-form expressions for the critical time step are derived for a number of
standard finite elements with micro-inertia enrichment.

1 INTRODUCTION

Explicit time integration is the most popular method to carry out time domain analysis in computational
mechanics. The advantages are its ease of implementation and the minimal computational efforts per
time step. However, the drawback is that explicit time integration schemes are only conditionally stable,
that is, the time step must be chosen smaller than a so-called critical time step, otherwise the numerical
solution can become unstable. The critical time step depends on the element size and on the speed of
sound of the material. The latter can be manipulated by employing micro-structural enrichments of
the usual equations of continuum mechanics. In particular gradient elasticity theories provide a simple
framework by which the classical equations of elasticity are extended with strain gradient and/or inertia
gradients. In particular, the use of inertia gradients has been shown to lead to increased critical time steps
[1]. The speed of sound of the higher frequencies is lowered by the long-range interaction introduced by
the higher-order inertia effects, and this affects the eigen-frequencies of the individual finite elements
which set the critical time step.

Section 2 starts with a brief review of the general gradient elasticity theory of Mindlin [3], which in-
cludes strain gradients as well as inertia gradients. Two particular cases of inertia gradients will be
considered, whereby in the discretised equations the micro-inertia terms are proportional to the diffu-
sivity matrix or to the stiffness matrix. Closed-form expressions for the critical time step are derived
in Section 3 for a number of standard finite elements, including three-noded triangles and four-noded
squares.
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2 ELASTICITY WITH MICRO-INERTIA

In the 1960s, Mindlin derived an elasticity theory whereby the microstructural effects were captured by
inertia gradients and strain gradients [3], that is

ρ üi −b1ü j,i j −b2üi, j j = (λ +µ)u j,i j +µui, j j −2(a1 +a2 +a5)u j,i jkk −2(a3 +a4)ui, j jkk (1)

where u are the displacements, ρ is the mass density, λ and µ are the Lamé constants, and standard
index notation is used. The parameters ai that accompany the strain gradients are irrelevant for the
purpose of this paper, hence we will take a1 + a2 + a5 = 0 as well as a3 + a4 = 0. The remaining two
parameters b1 and b2 are related to micro-inertia, but it is more convenient to rewrite them in term of
internal length scales ℓ1 and ℓ2 as b1 = ρℓ2

1 and b2 = ρℓ2
2. Thus, Eq. (1) is simplified as

ρ
(
üi − ℓ2

1ü j,i j − ℓ2
2üi, j j

)
= (λ +µ)u j,i j +µui, j j (2)

Two special cases of this equation will be considered, namely ℓ2
1 = 0 and ℓ2

1 = ℓ2
2 ·(λ +µ)/µ , which are

referred to as Type I and Type II micro-inertia, respectively. The first special case is obtained by taking
ℓ2

1 = 0. The weak form of Eq. (2) is written as∫
Ω

wwwT ρ
(
ü̈üu− ℓ2∇2ü̈üu

)
dV =

∫
Ω

wwwT LT CLuuu dV (3)

where C contains the elastic moduli, www is a generic test function, L and ∇ are the usual differential
operators, and ℓ2 is replaced by ℓ. Integration by parts results in∫

Ω

wwwT ρü̈üu dV +
∫
Ω

∑
ξ

∂wwwT

∂ξ
ρℓ2 ∂ ü̈üu

∂ξ
dV +

∫
Ω

(Lwww)T CLuuu dV = boundary terms (4)

with a summation over the three spatial coordinates x, y and z. Using finite element shape functions N
for the trial function uuu and the test function www yields[

M+ ℓ2D
]

ü+Ku = f (5)

where M and K are the standard mass matrix and stiffness matrix. Furthermore, the diffusivity matrix
D is defined by

D =
∫
Ω

∑
ξ

∂NT

∂ξ
ρ

∂N
∂ξ

dV (6)

Such a micro-inertia modification of the mass matrix was also suggested by [5].

The second special case is found by taking ℓ2
1 = ℓ2

2 · (λ +µ)/µ . The weak form of Eq. (2) can then be
written as ∫

Ω

wwwT ρü̈üudV =
∫
Ω

wwwT LT CL
(
uuu+ τ2üuu

)
dV (7)

where a time scale τ is defined via

τ2 = ℓ2
1

ρ
λ +µ

= ℓ2
2

ρ
µ

(8)

Integration by parts results in∫
Ω

wwwT ρü̈üu dV +
∫
Ω

(Lwww)T CL
(
uuu+ τ2üuu

)
dV = boundary terms (9)

and subsequent finite element discretisation results in[
M+ τ2K

]
ü+Ku = f (10)

Using the stiffness matrix to modify the mass matrix was suggested earlier in [2, 4].

142



3 CRITICAL TIME STEP INCREASED WITH MICRO-INERTIA

For explicit time integration algorithms, the critical time step ∆tcrit can be found from

∆tcrit =
2

ωmax
(11)

where ωmax is the maximum eigenfrequency of the finite element mesh, usually estimated by the largest
eigenvalue of a single element. Thus, a small eigenvalue problem must be solved, that is

det
(−ω2 [M+Mm]+K

)
= 0 (12)

whereby Mm = ℓ2D for Type I micro-inertia and Mm = τ2K for Type II micro-inertia. Symbolic op-
eration software can be be used to find closed-form expressions for the maximum eigenfrequency for
a range of simple, two-dimensional finite elements. However, certain assumptions about the element
geometry must be made to keep the resulting expressions simple and of practical use. The first exam-
ple concerns bilinear, four-noded square elements. The element size is denoted as h and a plane stress
assumption is used. Assuming Type I micro-inertia, Eq. (12) results in{

2E(3−ν)−ω2ρ(3h2 +8ℓ2)(1−ν2)
}2 ·{4E −ω2ρ(h2 +4ℓ2)(1−ν)

}
·{4E −ω2ρ(h2 +4ℓ2)(1+ν)

}2
= 0 (13)

where E and ν are the Young’s modulus and Poisson’s ratio, so that

∆tcrit =
h
ce

·
√

(1−ν)
(

1+
4ℓ2

h2

)
(14)

where ce =
√

E/ρ is the elastic bar velocity. The eigenvalue problem of Type II micro-inertia reads{
2E(3−ν)−ω2ρ

(
3h2(1−ν2)+2τ2c2

e(3−ν)
)}2

·{4E −ω2ρ
(
h2(1−ν)+4τ2c2

e
)}{

4E −ω2ρ
(
h2(1+ν)+4τ2c2

e
)}2

= 0 (15)

by which

∆tcrit =
h
ce

·
√

1−ν +
4τ2c2

e

h2 (16)

The second example concerns a right-angle linear three-noded triangle, whereby the two shortest sides
each have length h. The Type I micro-inertia eigenvalue problem reads{

E(6h2 +27ℓ2)−ω2ρ
(
h4 +12h2ℓ2 +27ℓ4)(1+ν)

}2

·{27E2 −ω2Eρ
(
12h2 +54ℓ2)+ω4ρ2 (h4 +12h2ℓ2 +27ℓ4)(1−ν2)} = 0 (17)

which gives

∆tcrit =
h
ce

·

√√√√√√ 4(1−ν2)
(

1+ 3ℓ2

h2

)(
1+ 9ℓ2

h2

)
6+ 27ℓ2

h2 +3
√

1+3ν2
(

1+ 3ℓ2

h2

)(
1+ 9ℓ2

h2

) (18)
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Conversely, the eigenvalue problem of Type II micro-inertia yields{
6E −ω2ρ

(
h2(1+ν)+6τ2c2

e
)} ·{27E2 −ω2Eρ

(
12h2 +54τ2c2

e
)

+ω4ρ2 (h4(1−ν2)+12h2τ2c2
e +27τ4c4

e
)}

= 0 (19)

and

∆tcrit =
h
ce

·

√√√√√4
(

1+ 3τ2c2

h2

)(
1+ 9τ2c2

h2

)
−4ν2

6+ 27τ2c2

h2 +3
√

1+3ν2
(20)

4 Discussion
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Figure 1: Effects of micro-inertia on critical time step

In this paper, micro-inertia exten-
sions of classical elasticity have
been explored as a means to in-
crease the critical time step of ex-
plicit time integration. Two types
of micro-inertia have been consid-
ered, whereby the modification of
the mass matrix adopts the format
of the diffusivity matrix (Type I) or
the stiffness matrix (Type II). Both
types can be interpreted as special
cases of Mindlin’s 1964 theory of
elasticity with strain gradients and
inertia gradients. Figure 1 demon-
strates the effects of micro-inertia
on the critical time step of four-
noded bilinear square and three-
noded linear triangular elements.
Important increases of the critical
time step can be observed, which are governed by the microstructural parameters ℓ and/or τ .
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ABSTRACT

A two-dimensional numerical model is used to simulate the propagation of waves in a homogeneous soil
deposit overlying bedrock. The finite element method is adopted in the frequency domain under plane
strain conditions. To simulate the infinite extent of the medium, in the lateral directions, the consistent
transmitting boundary developed by Waas [1] is implemented. The numerical model is validated by
checking the effectiveness of the transmitting boundary to radiate waves away towards infinity and by
considering the dynamic behaviour of a soil layer over bedrock.

1 INTRODUCTION

The finite element method has been widely used for engineering applications where the computational
domain is of finite extent. In problems dealing with unbounded media, such as wave propagation in
soils, special treatment is required at the boundary of the computational domain to allow waves to
radiate away towards infinity. If no treatment is used, incoming waves will reflect back from the domain
boundaries and the solution would be affected by spurious waves. Therefore, some type of absorbing
conditions must be applied at the artificial boundaries in order to overcome wave reflection and also
reduce the size of the problem.
Several authors have developed various absorbing boundaries to separate what they referred to as ‘the
soil box or the soil island’ from the infinite media. These boundaries prevent to some extent impinging
waves from reflecting back to the soil box. Waas [1] was among the pioneers who worked intensively
on developing transmitting boundary conditions for soil dynamic problems. They were implemented
for the study of the dynamic behaviour of various foundation types in soil media.

2 PROBLEM FORMULATION

Figure 1 shows a schematic diagram of a traditional dynamic soil-structure interaction problem. A
semi-infinite soil medium is divided into three regions. The central region I, overlying a rigid base,
may contain some kind of discontinuities such as foundations, tunnels or wave barriers. The left and
right-hand regions, II and III, are assumed to extend horizontally to infinity. The finite element method
is adopted to analyze the central region by discretizing the domain into 4-node bilinear finite elements
with two degrees of freedom at each node; horizontal and vertical displacements. A direct stiffness
method is used to formulate the element mass and stiffness matrices.
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Figure 1: Schematic representation of the problem and Finite Element discretization.

Both regions II and III are subdivided into horizontal layers where the displacements are assumed to
vary linearly with the depth and exponentially in the infinite direction, with a wave number k. Consid-
ering the free vibration of the domains and ensuring their dynamic equilibrium leads to the quadratic
eigenvalue problem

[

k2A+ ikB+G− ω2
M

] {U} = {0} (1)

where the matrices A, B, G, and M are obtained from the geometry and material properties of the
horizontal layers. The eigenvalue problem (1) of dimension 2n, where n is the number of layers, is
first reduced to a first order problem but with the dimension increased to 4n. Half of the eigenvalues,
with positive imaginary part, represent waves travelling in x ≥ 0 and the other half represents waves
travelling in x ≤ 0. The displacement field is therefore written as a combination of all mode shapes
which leads to nodal forces on the right and left sides of the central domain, respectively, of the form

{FR} = − [R] {UR} and {FL} = − [L] {UL} (2)

where UR and UL are the nodal displacement vectors of the right and left boundaries. They are parts
of the global displacement vector U. The matrices R and L are deduced form the eigenvalues and
eigenmodes of expression (1). Given that the diplacements UR and UL are unknown, the finite element
system of the central domain has the following form

[

(1 + 2iξ)K− ω2
M+R+ L

] {U} = {P} (3)

The global matrices K and M are obtained from assembling the element stiffness and mass matrices
of the central domain. The problem (3) is linear and a direct solver, such as the Gauss elimination
approach, is used for the solution. The time variable is omitted by considering a steady state problem.

3 NUMERICAL RESULTS

This section deals with numerical tests aiming at validating the above presented model. First, the ability
of the consistent transmitting boundary to allow the incoming waves to radiate away towards infinity is
checked by varying the horizontal extent of the computational domain. Then, the ability of the model
to capture the dynamic behaviour of a soil deposit overlying bedrock is checked against a 1D wave
propagation analytical model.
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Figure 2: Displacements at the surface of the domain, (left) vertical displacements, (right) horizontal
displacements.

A soil deposit of 4λR extent, where λR is the Rayleigh wavelength, is subjected at its surface to a
harmonic point load of 1kN with a frequency of 20Hz. For the same problem, the domain is extended
horizontally to 10λR, while keeping all other parameters unchanged. Figure 3 shows the vertical and
horizonal displacements at the surface of the domain for both extents. Obviously the results are in very
good agreement. This informs us about the ability of the consistent transmitting boundary used above
to make the artificial lateral boundaries transparent to the impinging waves. It is worth mentioning
that when the presented model is used without the consistent transmitting boundary, the results for the
domain extents 4λR and 10λR show significant differences. In all tests, a discretization level of at least
10 nodal points per λR is maintained to model the wave pattern.
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Figure 3: Theoretiocal results of the variation of surface displacements with frequency, (left) vertical
displacements, (right) horizonal displacements.

The following numerical tests deal with the dynamic behaviour of a soil layer of 10m thickness overly-
ing a rigid base. According to theory [2], resonance will occur at an infinite number of natural frequen-
cies. These are depicted in Figure 3 which shows the modulus of the transfer function, representing the
ratio between the maximum displacement at the surface and the maximum displacement near the rigid
base, for both vertical and horizontal displacements, in the case of damped and undamped soils. This
phenomenon is numerically shown by considering the maximum displacements at the surface of the
soil deposit for increasing frequency, such as shown in Figure 4. An example of resonance is shown in
Figure 5 where the vertical and horizontal displacements are shown for various frequencies. By consid-
ering the area A under the displacement curve, normalized with a unit area A0, the natural frequencies
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shown in Figure 4 are in very good agreement again with those predicted theoretically in Figure 3.
For example, the fundamental frequency of the vertical displacements is theoretically determined to be
7.03Hz. Numerically, it is estimated to be around 7Hz, which is very close.
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Figure 4: Numerical results of the variation of surface displacements with frequency, (left) vertical
displacements, (right) horizonal displacements.

Overall, the results show clearly that the presented model is capable of radiating the waves away to-
wards infinity in the horizontal direction. It is also capable of simulating the behaviour of a soil layer
over bedrock. More numerical tests are currently being carried out in order to further validate this model
by considering the efficiency of the consistent transmitting boundary when the external harmonic loads
are on the lateral artificial boundaries of the computational domain. Also, the effect of different dis-
cretization levels and use of unstructured mesh grids are to be studied.
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Figure 5: Vertical and horizontal displacements at the surface of a soil deposit overlying bedrock.
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ABSTRACT

The purpose of this paper is to propose a Lagrangian finite element formulation for solving solid dy-
namics problems based on a mixed approach where the unknowns are both momentum and deformation
gradient. This scheme is expressed as a first order conservation law which is then integrated in time and
discretized in space using the two-step Taylor-Galerkin developed in fluid dynamics [1, 2]. The pro-
posed algorithm allows the using of linear triangles elements without volumetric locking or difficulties
in bending applications. A viscous term is also introduced to eliminate high frequencies in the solution.
The performance of the algorithm is verified by solving some 1D and 2D test cases involving small and
large deformation problems. The numerical results have been compared to the analytical solution and
standard Newmark scheme. The results performed well and achieved second order of accuracy.

1 INTRODUCTION

Over the last decade, computational methods of solid dynamics have become a major field of interest
both at the research and industrial levels. The comprehensive understanding of many problems in solid
dynamics such as shock propagation, impact mechanics, large deformation, moving boundaries and
highly nonlinear waves has advanced significantly. In fast structural dynamics, the explicit Lagrangian
finite element formulation is often used to model the solid as it automaticallty satisfies mass conser-
vation. The classical finite element solid dynamics formulation is based on the central difference time
integration of the second order dynamic equilibrium equation for the displacements [3]. This approach
converges to second order accuracy for displacements but only to first order precision for stresses if
linear elements are used. The low order elements such as triangles and tetrahedra exhibit volumetric
locking and difficulties in bending application. Furthermore, the displacement based finite elements is
unsuitable for the shock propagation problem as it is related to the short wave propagation. This paper is
devoted to targeting these difficulties by proposing the formulation based on the first order conservation
laws very similar to the systems encountered in first order wave propagation problems.
The proposed scheme is integrated in time and discretized in space using the two-step Taylor-Galerkin
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which is well developed and widely used in fluid dynamics finite element formulation [1,2,4]. The
scheme has been succesfully applied in electromagnetic wave problems [5]. The algorithm allows the
use of triangular elements which can prevent the locking effects and perform well in bending appli-
cation. In this paper, the primary problem variables are based on the mixed formulation where the
unknowns are both momentum and deformation gradient.

2 METHODOLOGY

In this section, the governing equation of the first order equation are developed based on mixed for-
mulation. Similar mixed approach conservation law formulation have been used by other authors in
Eulerian system [6,7]. Three conservation laws or so-called balance laws related to the Lagrangian dy-
namic system are considered. They are the conservation of linear momentum, deformation gradient and
energy;

∂p

∂t
−∇0 · P = ρ0b (1)

∂F

∂t
−∇0 ·

(
1

ρ0
p⊗ I

)
= 0 (2)

∂E

∂t
+∇0 ·

(
Q− 1

ρ0
P Tp

)
= 0 (3)

where ρ0 is the density in the reference configuration, p = ρ0v is the linear momentum, P is the first
Piola-Kirchhoff stress tensor, b is the external body forces, F is the deformation gradient, E is the total
energy per unit initial volume and Q is the heat flux vector in the reference configuration.
The above equations can be combined into a general conservation law system of first order equations
as;

∂U
∂t

+
∂F I

∂XI
= S (4)

where U is the vector unknowns, F I is the flux tensor and S is the source term.
A two-step explicit Taylor-Galerkin finite element method is used to solve the above equations. A
general Taylor series expansion of t = tn+1 provides;

Un+1 = Un + ∆t
∂U
∂t

n

+
∆t2

2

∂2U
∂t2

n

(5)

Neglecting the source term, the first step or predictor step will obtain the piecewice linear unknowns in
the elements at intermediate time t = tn+

1
2 as;

Un+ 1
2 = Un − ∆t

2

∂Fn
I

∂XI
(6)

The second step or corrector step given as;

Un+1 = Un −∆t
∂Fn+ 1

2
I

∂XI
(7)

Let ∆U = Un+1 − Un. Proceeding with the standard Galerkin method, multiply the above equation
by a shape function Na and integrate over the domain V to get the following scheme;

M∆U = ∆t

∫
V
Fn+ 1

2
I

∂Na

∂XI
dV −∆t

∫
∂V
NaF

n+ 1
2

N dA (8)

where M is the lumped mass matrix and FN = F IN I .
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3 RESULTS AND DISCUSSION

Fig. 1a shows a cantilever bar under axial load. The bar is analysed using a one dimensional mesh
comprised of 100 elements using small strains constitutive relationship. Fig. 1b shows the velocity at
tip end of the elastic material bar under constant step-function load T=0.001 N. The result shows that
the two-step Taylor-Galerkin scheme predicts the correct time of the shock and having less oscillations
compared to the Newmark scheme.
Fig.2 shows the results obtained when the bar is analysed under the sine-function load T=0.001sin(0.1t)
N. The normal stress at mid-span of the bar is compared using the various number of mesh elements.
It can be observed that the solution converges as the mesh become finer and there is good agreement in
comparison with the analytical solution.
For 2D example, the cantilever beam is analysed under the step-function point load using linear trian-
gular mesh. Fig. 3b shows the deflected shape of the beam as well as the shear stress contour. The result
clearly shows that the using of triangular mesh did not cause any bending difficulties.
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Figure 1: (a) A 1D cantilever bar under axial load (b)Velocity evolution at the tip end
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Figure 3: (a) A 2D cantilever beam under point load (b) The deflected shape and shear stress smooth
contour

4 CONCLUSION

The preliminary numerical study of the performanced of two-step Taylor-Galerkin scheme has been
presented in this paper. The present method can be used in 1D and 2D without the difficulty in bend-
ing. The convergence study shows that the mixed formulation can achieved second order accuracy for
stresses. Further studies are ongoing to investigate the performance of the scheme on the large defor-
mation and plasticity problems.
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ABSTRACT 

Experimentally measured modal data of a structure play an important role in structural condition 

assessment.  In reality, the measured and theoretically predicted vibration characteristics of the structure 

are different. This paper presents a model updating methodology of a space frame building model to 

improve the correlation between physical and its mathematical model with the information of only 

measured eigendata available. Parameters for material properties and geometric properties are employed 

to represent the modifications of system parameters. A set of nonlinear equations have to be utilized to 

solve for the modifications of structural parameters because only a few number of modified eigendata are 

known. Neither model reduction nor mode shape expansion is required for modal updating because 

information about incomplete measured modal data can be directly employed. Computational procedures 

based on the derived nonlinear governing equations are presented for eigendata modification and model 

updating. This process is finally applied to a 4-story steel frame test structure. Modal parameters are 

extracted from the vibration measurements. The results from the experiment show that the analytical 

model is improved after model updating such that modified natural frequencies are closed to the 

experimental natural frequencies. 

 

Introduction 
Several methods for structural system identification have been developed in the past two decades. There 

are certain differences in modal parameters of the structure between the numerical analysis and the model 

testing. There is a need to modify the structural model in order to match the results of test and the 

analytical model. The finite element (FE) model updating methods are often utilized to adjust the 

mathematical model using the measured modal data to maximize the correlation between the numerical 

and experimental results. Model updating methods based on sensitivity analysis are usually employed for 

updating a numerical model, such that it can exactly reproduce an incomplete set of measured eigendata. 

In the studies of Fox and Kapoor [1], sensitivity analysis based on eigenvalue and eigenvector derivatives 

were utilized for the dynamic reanalyses of a structure. However, the efficiency of these sensitivity 

analysis methods is limited because these methods are complicated and suitable for small modifications of 

structural parameters. In this study, the new model updating technique, which was recently proposed by 

Chen [2] is utilized to modified structural and modal parameters. A four story steel frame building model 

is built for experimental purpose. Predicted modal parameters of the structure are required in such a way 

that the modification can be observed. The test structure is excited in several places by impact hammer. 

Accelerations are measured from the beam-column joints by a number of accelerometers for certain 

period of time. Modal parameters are extracted from the measured acceleration. Information on measured 

eigendata available are employed in model updating to represent the modifications of structural 

parameters. The results show that the model updating procedures discussed here can be utilized to adjust 

the analytical model correctly using information about only a limited number of modified eigendata.  

 

Model updating 
Numerical correlation and model updating techniques has been utilizing over the recent years. Modal 

parameters from vibration measurements are employed to represent the structural modification.  It is 

assumed that structural parameters characterize at element level. The perturbations of structural stiffness 

matrix and mass matrix are then defined as,  
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where  �� and �� are stiffness and mass matrix coefficient. In this study, measured eigendata from model 

testing are directly utilized in model updating. 

 

Model updating from only eigenvalue available  
In the case of modified eigenvalues are known and eigenvector are not available, nonlinear equations 

have to be used to solve for the modifications of structural parameters. The ith eigenvalue  ��∗ and the 

corresponding eigenvector  ��∗ for the modified structural system are expressed by Chen [2] as,  

 

 ��∗ = �� + ∆�� (2) 

 

 ��∗ = �� + Δ�� (3) 

 

 ∆��  and Δ�� are perturbations of eigenvalue and eigenvector respectively. They can be expressed as, 

 

 ∆�� = ����Δ� − ��Δ�{�� + ∆��}
1 + ���Δ{�� + ∆��}  (4) 
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where, ��� is mode participation factor. 
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 (  (6) 

   

Sensitivity coefficients associated with structural parameters and eigenvector are defined as,  

 

 #���$∗ = �������∗ , #���%∗ = ������∗ (7a) 

 

 #��'$ = ������' , #��'% = �����' (7b) 

 

Initial ��� is assumed to be zero. The estimates of both parameters �� and ��  are then computed from the 

following equation.  

 

 
�#���$∗
��

�	

�� − ��∗ �#���%∗

��

�	

�� − ∆�� = 0 (8) 

 

The Tikhonov regularisation algorithm incorporating with L-curve criterion is employed for general ill-

conditioned system to estimate the structural parameters �� and  �� . After the initial �� and �� are 

acquired from Eq (8), the next approximation for the mode participation factors  ���  can be calculated 

from Eq (6). Then, the modified eigenvectors  ��∗  are calculated using Eq (3) and Eq (5). Consequently, 

Eq (6) and Eq (8), as well as Eq (3), are used recursively to compute further approximation for  �� and ��   

as well as ���  and the preceding recursive process is repeated until the convergence for system 

parameters  �� and ��  is achieved.  
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Model updating from eigenvalue and incomplete eigenvector available 

It is assumed that the information about measured frequencies and incomplete measured mode shape  *�+
∗
 

for the modified structural dynamic system is available. The ith eigenvector for the modified structural 

system then can be expressed by 

 ��∗ = ��+
∗ + ��,

∗
 (9) 

  

Incomplete set of measured mode shapes  *�+
∗
 are obtained and need to be factored by -� in order to make 

the measured mode shapes close to the corresponding part of the analytical mode shapes. 

 

 

��+
∗ = -�*�+

∗
, in which mode scale factor -� = ��+
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∗
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∗.*�+
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The modified mode shape  ��,
∗
 is computed from  
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where the change of unknown vector  Δ��, is expressed as, 
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Consequently, the ith complete eigenvector for the modified system  ��∗  is obtained from  
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in which  /�+  is defined as, 

 /�+ = -�*�+
∗ + ��,  (14) 

 

Mode scale factor  -� has to be updated for each iteration because  ��+
∗
 must be scaled in such a way as to 

be close to  ��,
∗
. The first estimation for �� and �� is then obtained from 
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where the sensitivity coefficient vectors are defined as 
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in which the modified eigenvectors  ��∗  are calculated using Eq (13) and the mode participation factors  

���  can be obtained from Eq (6). The set of nonlinear equations (8) and (15) are utilized for an iterative 

solution procedure to solve for system parameters �� and ��. Similarly, the initial mode participation 

factors  ��� are assumed to be equal to zero. The first estimation for �� and �� is then obtained from Eq 

(15). The next estimation for the mode participation factors  ��� is obtained from Eq (6). The modified 

eigenvectors  ��∗ then can be calculated using Eq (13). Therefore, Eq (8) and Eq (15), as well as Eq (13), 

are used recursively to compute further estimation for �� and �� as well as ��� until the condition of 

convergence for �� and �� is satisfied. 
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Numerical example 
A 3D steel frame building model is used as an experimental structure to demonstrate the effectiveness of 

the proposed techniques for finite element model updating. The test structure has 4 stories with 40 

structural elements including beams, columns and braces, fixed into a rigid steel base plate. The analytical 

model used has 20 nodes and 40 elements with a total of 120 degree of freedoms (DOF). All structural 

members have the same material properties with Young’s modulus E = 2.0 x 10
11

 N/m
2
, density 0	= 7800 

kg/m
3
, cross-sectional area of column and beam elements is 0.0002 m

2
 and bracing is 3.848 x10

-7
 m

2
. The 

geometric properties of the structure and element numbers are shown in Fig. 1. Accelerometers are placed 

at node 5 to 20 measuring only translation displacement reading in Y-direction as shown in Fig. 1. The 

data set of acceleration is recorded from the excitation of impact hammer by using NI data acquisition 

device and Labview Signalexpress commercial software. Modal parameters including frequencies and 

mode shape measurements are extracted from MEscope VES software.   

 

 

Table 1. Natural frequencies for analytical, tested and 

updated models (Hz) 

Mode Analytical Tested Modified MAC 

diagonal 

value 

1 10.3552 10.3 10.2849 0.9998 

2 25.9379 24.3 25.9889 0.9998 

3 31.7607 32.2 32.2441 0.9990 

4 45.2474 46.0 45.7889 0.9990 

5 51.8178 51.4 51.8654 0.9953 

6 65.5715 60.3 65.7223 0.9946 

7 70.6418 70.4 70.9379 0.9757 
 

Figure 1. Experimental Structure  

 

The modal properties of the modified structure were computed using the new model updating techniques 

from eigendata obtained from vibration measurements. The updated natural frequencies through a 

succession of iterations are listed in Table 1 along with the analytical predictions and experimental 

results. Results in Table 1 show that structural parameters for stiffness and mass at each element could be 

correctly adjusted when information about only seven natural frequencies and/or incomplete mode shapes 

are employed. 

 

Conclusion 
The modal parameters including stiffness and mass of a structural system can be updated using the 

proposed techniques for finite element model updating.  The adjusted model closely reproduces the modal 

data obtained for experimental model for model updating. The results obtained, therefore, show that only 

a limited measured vibration modal data is required to correctly update the structural parameters such as 

stiffness and/or mass parameters at element level. 
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ABSTRACT

It is well known that standard penalty methods can decrease the critical time step of time domain dy-
namic finite element analyses. The bipenalty method utilises both stiffness and mass penalties in order
to impose constraints that have a minimal effect on the eigenfrequencies (and therefore the critical
time step) of a finite element system. One way of achieving this goal is to find a ratio of stiffness and
mass penalty parameters—the critical penalty ratio (CPR)—that does not affect the maximum eigen-
frequency of a system. Here we present a new method of calculating the CPR associated with a finite
element formulation through examination of the generic eigenvalue problem. Advantages of the method
compared with existing solutions include increased simplicity and generality, and the ability to consider
multiple constraints.

1 INTRODUCTION

Penalty methods are a popular technique for imposing constraints in structural analyses. In their most
common form penalty constraints are implemented by adding large values of stiffness, referred to as
penalty parameters, to the stiffness matrix of a system. Penalty methods are more flexible than direct
imposition, and are often favoured over Lagrange multipliers for their simplicity and the fact that ad-
ditional variables do not enter the formulation. The most obvious drawback is that constraints are only
approximately imposed; however, errors can usually be kept within acceptable bounds.

In time domain dynamic analysis there is a further problem: when employing conditionally stable time
integration schemes, traditional stiffness penalties can decrease the critical time step, potentially in-
creasing computational expense and, if unaccounted for, causing instabilities in the solution [1]. One
method that can be used to counter this effect is the so-called bipenalty method. This involves the use
of mass penalties along with stiffness penalties in order to keep the maximum eigenfrequency at the
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desired value; in this way, the critical time step can be kept constant even after adding large penalty
parameters into the system.

The ratio between stiffness and mass penalties that ensures the critical time step is unaffected is referred
to as the critical penalty ratio (CPR), and a method for calculating it was first given in [2]. However,
the calculation method suffers from the drawbacks that it does not account for multiple constraints
and, since the eigenproblem associated with the full, penalised system must be analysed, becomes
increasingly difficult to employ for more complex element types. Bipenalty formulations have also
been developed by Asano [3], and Paraskevopoulos et al. [4], although neither formulation provides a
method by which the CPR can be calculated.

In this paper, we present a method of calculating the CPR for a given finite element which relies only
upon the maximum eigenfrequency of the unpenalised element system, giving greater simplicity and
generality. An arbitrary number of absolute constraints are accounted for in the formulation.

2 THE BIPENALISED PROBLEM

The critical time step for the central difference time integration scheme is given by

∆tcrit =
2

ωmax
(1)

where ωmax is the maximum eigenfrequency of an individual finite element. Therefore, to keep the
critical time step constant after the additional of penalties, we must ensure that the maximum eigenfre-
quency is not affected. The eigenfrequencies are found, for the unpenalised problem (UP), from

(

K− ω2
iM

)

ui = 0 (2)

where K and M are the stiffness and mass matrices, respectively, and the eigenvectors ui and corre-
sponding eigenfrequencies ωi form the n solutions. The bipenalised problem (BP), in which absolute
constraints have been applied to the first k DOF, is given by

(

[K+K
p]− ω̃2

i [M+M
p]
)

ũi = 0 (3)

where K
p and M

p contain the stiffness and mass penalty parameters, αs and αm, and are of the form

K
p = αs

[
Ik 0

0 0

]

; M
p = αm

[
Ik 0

0 0

]

(4)

where Ik is the identity matrix of size k × k. The n solutions of the BP are given by ũi and ω̃i. For a
detailed derivation of the bipenalty method for absolute constraints, see [2].

3 RELATING CPR TO MAXIMUM EIGENFREQUENCY

The relationship we have established between the CPR and the maximum unpenalised eigenfrequency
can be stated simply as

Rcrit = ω2
max (5)

That is, (for large penalty parameters) the critical penalty ratio can be found from the square of the
maximum unpenalised eigenfrequency. The full proof requires showing the following three things:
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1. If R = ω2
n, there is no eigenfrequency of the BP that exceeds the maximum eigenfrequency of

the UP.
2. If R = ω2

n, the eigenpair (ωn, un), an eigensolution of the UP, is also an eigensolution of the BP.
3. If the penalty ratio is selected such that R > ω2

n, the maximum eigenfrequency of the BP is
greater than that of the UP, for large αm.

Unfortunately, we only have space to provide proof of the first point here. Items 2 and 3 above are
considered to be an extention of that original proof, and will be provided in a separate publication.

In the following we make use of the Rayleigh quotient, defined as

ρ(v) =
v
T
Kv

vTMv
(6)

where v is any non-zero vector. A useful property of the Rayleigh quotient is that it is bounded by the
minimum and maximum eigenvalues of the system [5]. That is,

ω2
1 ≤ ρ(v) ≤ ω2

n (7)

Now, if we consider the Rayleigh quotient of the BP, we have

ρBP(v) :=
v
T (K+K

p)v

vT (M+Mp)v
=

v
T
Kv + αs∥vp∥2

vTMv + αm∥vp∥2 (8)

where v
p is a vector containing only the first k entries of v (i.e., the entries associated with the

bipenalised DOF only). Now we assume that R = ω2
max, as stated in (5), and substitute in the Rayleigh

quotient of the UP, ρUP(v). Taking into account (7) we then have

ρBP(v) =
ρUP(v)v

T
Mv +Rαm∥vp∥2

vTMv + αm∥vp∥2 ≤ ω2
n

(
v
T
Mv + αm∥vp∥2

vTMv + αm∥vp∥2
)

= ω2
n (9)

Therefore, ρBP(v) is bounded from above by ω2
n, which means that no eigenvalue of the BP can be

larger than the largest eigenvalue of the UP, if we set R = ω2
max. After extending the proofs to include

all three of the items provided earlier, we assert that the relationship given in (5) holds true, and, given
that, the CPR for a given element type can be calculated as follows:

1. Derive the element stiffness and mass matrices.
2. Solve det

(

K− ω2
iM

)

= 0 for ωi.
3. Select max(ωi) and calculate CPR from Rcrit = ω2

max.

4 NUMERICAL VERIFICATION

In order to verify the method, the CPR is calculated using the process above for a few simple element
types. The elements are then used to form a 10 m cantilever beam, with a constant point force of 10 kN
acting vertically downwards at its tip. The boundary conditions (rigid supports) are applied using the
bipenalty method, with a constant stiffness penalty parameter, αs = 1013 N/m. The material properties
are E = 109 N/m2, ρ = 1000 kg/m3 and ν = 0.3 in all cases. The central difference scheme time
integration scheme is used, with a critical time step, so that the stability of each analysis can be assessed.
The results (given in Table 1) show tunstable, the time at which instability is first detected; here we assume
instability has occured when the maximum displacement reaches 1010 m. For brevity, details of the
individual element formulations will not be provided here, but will be given in a separate publication.

We see from the results that using R = Rcrit is safe in all cases; no instability is detected in the first
60 s of any analysis. Increasing the penalty ratio by even a small amount causes instability to occur,
demonstrating the crisp boundary provided by the CPR.
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Element type Mass matrix tunstable (s)

R = 1.01Rcrit 1.001Rcrit 1.0001Rcrit Rcrit

Square, selective Lumped 0.225898 0.712834 2.702412 -
integration Consistent 0.115931 0.363251 1.190708 -

Right-angled Lumped 0.163204 0.508923 1.833244 -
triangle Consistent 0.081602 0.261625 1.842588 -

Parallelogram Lumped 0.219030 0.693978 2.845849 -
Consistent 0.097597 0.307217 1.001001 -

Table 1: Time at which instability was detected for various values of R, for a few common plane stress
elements. Blank entries indicate that no instability was detected within 60 s.

5 CONCLUSIONS

This work presents a simple method of finding the CPR for a given finite element formulation directly
from its maximum unpenalised eigenfrequency. This allows the use of the bipenalty method in order to
ensure that the critical time step of a conditionally stable time domain analysis is not affected by the
addition of penalties.

Closed form expressions for the CPR can be found for simple element types; however, it is clear that
closed form expressions will not be available for more complex elements, due to difficulties regarding
element formulation and finding an analytical solution to the associated eigenvalue problem. However,
numerical methods (e.g., direct iteration) are available for calculating the maximum eigenfrequency of
a system, and future work will investigate how best to utilise them in order to select suitable penalty
parameters. In addition, extending the proof given above to include relative constraints, such as those
used in contact-impact problems, will be the subject of further research.
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ABSTRACT

The overall mechanical response of many materials is rooted in the behaviour of the heterogeneous
microstructure. There are a number of microstructure-driven phenomena such as wave dispersion and
size effects that can be investigated by a detailed modelling of the material microstructure. This paper
develops a formulation for the modelling of heterogeneous materials subject to dynamic loading and
supplements the work of Kaczmarczyk and Pearce[2] for a hybrid-Trefftz (HT) stress element formu-
lation for the modelling of cohesive cracks in heterogeneous materials subject to static loads. Here a
mixed formulation is considered.

1 INTRODUCTION

The “Trefftz method” was first introduced in 1926 by Erich Trefftz[3] and was the start point for the
development of the formulation which will be discussed in this paper. In a classical finite element there
is one continuous field covering the domain of the element, Ωe, where the displacements at any point
in the element relates to the strains and stresses. In the hybrid formulation [2], two fields were present,
one within the element domain Ωe and one on the element boundary, Γe. However, for the modelling
of dynamic problems, the hybrid formulation cannot be used and an alternative mixed formulation is
considered instead.

The features of the mixed formulation presented here are:

• Displacement boundary conditions and displacement compatibility are enforced in weak integral
sense.

• Traction boundary conditions and stress compatibility are enforced in a strong integral sense.

• Compatibility of accelerations associated with the mixed approximation fields is enforced in a
strong integral sense.

Furthermore, the equilibrium equation for dynamic problem is fulfilled locally inside the element do-
main. This element has been designed for dynamics problems of fracturing quasi-brittle heterogeneous
materials, where accurate representation of the stress field is considered more important than the rep-
resentation of the displacement field.

161



2 MIXED FORMULATION

The work presented here is largely based on the work of Teixeira de Freitas [1] and Kaczmarczyk
and Pearce[2]. In the formulation, an element, e, is considered with domain Ωe which has a boundary
Γ = Γσ∪Γu, where Γσ∩Γu = �. The prescribed displacements are given as ū on Γu while the tractions
on the boundary of the element are given by t̄ on Γσ. The body forces were eliminated for simplicity in
this case. The governing relations between displacements, strains and stresses are as follows:

LTσ = LTSvv = ρü in Ωe (1)

ε = Cσ = CSvv in Ωe (2)

Lu = LUvv = ε in Ωe (3)

u = ū on Γu (4)

Nσ = t̄ in Γσ (5)

u(t = 0) = u0 in Ω (6)

u̇(t = 0) = u̇0 in Ω (7)

where L is the differential operator, Sv is the matrix of stress approximation functions in the element,
Uv is the displacement approximation functions derived from Sv and v is the vector of stress degrees
of freedom.

The stress approximation functions Sv are derived from an assumed displacement approximation field
with the element using Legendre polynomials shown in (8).

Pm(x) =
1

2mm!

dm

dxm
[(x2 − 1)m] (8)

As stated above, compatibility between the accelerations derived from the mixed approximation fields
was enforced in a strong integral sense. The displacements within the element are approximated inde-
pendently of the stress approximation field as:

u = UΩq (9)

Thus the compatibility relation for accelerations is given by:
ˆ

Ω
wT

3 (ρ−1LTSvv −UΩq̈)dΩ = 0 (10)

where w3 is the weighting function chosen as ρUΩ and this ensure that the integral above has the
dimensions of energy.

Applying the Newmark method for time integration and supplementing equations from [2] by the ac-
celeration compatibility equation above, yields the following linear system of equations:

[
F −AT + MT

A−M 1
∆t2α

B

] [
∆v
∆q

]
=

[
pu − Fvn −MTqn + ATqn

pσ −Avn −B[ −1
∆tα q̇n − 1

α(1
2 − α)q̈n] + Mvn

]
(11)
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F =
´

Ω STv CSv dΩ
A =

´
Γ UT

ΓNSv dΓ
pu =

´
Γu

(NSv)
Tu dΓ

pσ =
´

Γσ
UT

Γt dΓ

B =
´

Ω UΩρUΩ dΩ
M =

´
Ω UT

ΩLTSv dΩ

where α is a Newark time integration paramter and ∆t is the time step used. This system of equations
can be solved on element level using static condensation that will lead to a symmetric, positive definite
system stiffness matrix.

3 RESULTS

Simple static and dynamic benchmark problems have been considered to validate the formulation and
its computer implementation. First a simple problem comprising two triangular elements subject to
uniaxial tension is presented. The results for this static analysis are shown in Figure 1 and Figure 2.

Figure 1: Displacement Results for Static Case of New Formulation

Figure 2: Stress Results for Static Case of New Formulation

Second, a bar comprising 4 triangular elements was subject to a constant velocity at every node in the
x direction and the results for the 10th time step are shown in Figure 3.

4 CONCLUSIONS

In conclusion, a new formulation for a mixed stress element for dynamic problems has been presented
which represents an extension of a hybrid stress finite element formulation. The next stage of this
work is to validate the formulation for more complex dynamic loading scenarios. Furthermore, the
formulation will be applied to 3D problems.
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Figure 3: Results for Constant Velocity Applied at Each Node at 10th Time Step
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ABSTRACT 

This paper describes a finite element analysis of the granular flow in a conical silo hopper, which has 
been performed to investigate the dynamic phenomena that can occur during discharge. The behaviour of 
the stored solid was modelled using a continuum mechanics approach formulated in an Arbitrary 
Lagrangian Eulerian (ALE) frame of reference. The temporally averaged discharge pressures obtained 
from the FE simulation are compared with those from the most commonly quoted theoretical solutions 
and are found to be in good agreement. The predicted dynamic events are studied and the results provide 
useful insight into the fluctuating pressure patterns often observed in silo discharge experiments. 

 

1  INTRODUCTION  

Silos are widely used for the storage of bulk solid in industry. In the design of silos, the pressure acting on 
the silo walls during filling and discharge are the main loads that need to be determined for design. Silo 
pressure during filling and storing are generally accepted to be well represented by Janssen type pressure 
equation [1]. However during discharge, the silo pressure tends to exhibit temporal and spatial variations 
and more work is needed to define the discharge pressure more accurately [2,3]. The present study 
describes results of a finite element simulation carried out using an Uncoupled Arbitrary Lagrangian-
Eulerian (ALE) formulation with an explicit time integration scheme. The method is able to simulate the 
silo discharge process without mesh distortion problem which are often encountered in the modeling of 
granular flow involving very large deformation such as silo discharge [4]. The dynamic events predicted 
by the present simulation were studied to provide further insight into the fluctuating pressure patterns 
often observed in silo discharge experiments. The oscillating discharge pressures were found to be 
dominated by two major frequencies at about 5 Hz and less than 1 Hz, respectively. The causes for these 
events have been investigated which lead to the conclusion that the stress wave and moving shear zone 
phenomena are responsible for these effects.  
 

2  ALE MODEL IMPLEMENTATION  

The Lagrangian and Eulerian are two major descriptions of motion used in the algorithm of continuum 
mechanics. In a purely Lagrangian formulation, it is difficult to describe large deformation because the 
element mesh can become severely distorted in the computational domain when no remeshing is used or 
when a remeshing operation becomes ineffective. In a purely Eulerian formulation, problems may arise 
when free surface condition, prescribed boundary condition or continuum deformation with history-
dependent constitutive relations are considered. In order to overcome the shortcomings of both 
formulations and to combine their best features, an Arbitrary Lagrangian-Eulerian technique has been 
developed [5]. In this method, the mesh is neither connected to the material nor fixed spatially but can be 
prescribed in an arbitrary manner. Meanwhile, the convective term is introduced in a remap of state 
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variables between material and mesh.  

The entire silo discharge process is simulated using ALE method available in the program 
Abaqus/Explicit code [6]. As a result, the deformation process is split into a Lagrangian phase and an 
Eulerian phase combined with a smoothing phase, as shown in Fig. 1. In Lagrangian phase, the material 
body deforms from its material configuration to its spatial one with a high distortion of the spatial 
discretization. In order to reduce the distortion a smoothing phase is then applied, which leads to the final 
spatial discretization. This allows the computation of convective terms and further to obtain history-
dependent variables in Eulerian phase.  

                  
              Fig. 1 ALE solution process:                               Fig. 2 Discretization grid and ALE boudary definitions  

 history-dependent variables ( nnv σ, ) in n time step           

An explicit time integration method was used [6]. The hopper was modelled as an axisymmetric structure. 
Fig. 2 shows the ALE mesh for the granular solid. An adaptive mesh constraint of zero-movement was 
applied to each node at the outlet, while an Eulerian surface-defined region is defined to the outlet edge to 
enable the granular solid to flow out through the outlet. A Lagrangian surface-defined region is applied to 
the other three boundaries of the solid domain (see Fig 2). The solid-wall contact was modelled using the 
Coulomb friction model with a constant wall friction coefficient and a penalty constraint enforcement 
method to control the contact behaviour by relating the constraint normal pressure to the penetration 
distance. Full details about the definition and choice of parameters in the ALE model can be found in 
Wang et al. [7].                                    

2  FE RESULTS  

The predicted wall normal pressure distributions during filling and discharge are compared with the 
theoretical solutions in Fig. 3. This shows a reasonable agreement with a greater discrepancy during the 
discharge phase: the discrepancy is not surprising since Walker’s solution [8] for discharge is based on 
static equilibrium in a horizontal solid slice of conical hopper. Fig. 5 shows the time series for the 
predicted normal pressure during the discharge at three different positions at the hopper wall. Similar 
fluctuations has been reported in experimental observations e.g. Ostendorf et al. [9] as shown in Fig. 4. A 
frequency spectrum analysis for the pressure at point b was made with a Fourier transformation (Fig. 6), 
which shows two dominant frequencies, one at less than 1 Hz and the other at about 5 Hz.  
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Fig. 3 Wall normal pressure in the conical hopper      Fig. 4 Wall pressures at vaious positionis during discharge,  

   experimental results by Ostendorf et al., 2003 [9] 

                
             Fig. 5 Wall normal pressures at various positions                     Fig. 6 Frequency spectrum of the predicted  
                   during discharge by the ALE model                                        normal wall pressure by ALE at point b  

3  DISCUSSION ON FLUCTUATING PRESSURE 

The frequency of any longitudinal wave travelling within the granular solid in the hopper can be 
estimated from the wave equation for an elastic bar of hopper height with free ends [10].  

fn h
vv

vE
f 2/

)21)(1(

)1(

−+
−=

ρ
Hz2.564.22/

)3.021)(3.01(1000

)3.01(550000 ≅⋅
⋅−+

−=  

where E denotes the modulus of elasticity, v is the Poisson’s ratio, ρ is the mass density of the fill and 

fh is the height of the fill in the hopper. This confirms that the about 5 Hz fluctuations at very small 

amplitudes in the predicted pressure is caused by the longitudinal wave propagation. 

For the fluctuation at much larger amplitudes with frequencies of less than 1 Hz, a probable explanation 
can be found by studying evolution of shear zone and slip-stick wall motion during discharge. An 
examination of the propagation of the shear failure zones during discharge (not shown here due to space 
constraint) reveals an intermittent shear failure arching zone located in the upper half of the hopper. 
Associated with that, the displacement of the solid adjacent to the wall shows a slip-stick motion as 
indicated in Fig. 7. Each  slip was found to correspond to a reduced stress ratio in the arching shear zone 
identified. The frequency of the slip-stick motion and intermittent shear zone are all less than 1 Hz which 
provides a plausible explanation for these larger pressure fluctuations. Furhter interpretation about the 
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pressure fluctuations can be found in Wang et al. [6]. 

              
Fig. 7 Wall normal pressure (pwn) at point b and slip displacement (uinc) at point b1 at the hopper wall 

4  CONCLUSIONS 

A finite element analysis of hopper discharge using an uncoupled ALE approach has been successfully 
performed. An appropriate material model and realistic desription of solid-wall interface behaviour are 
required to obtain proper predictions. The predicted discharge pressures are in good agreement with the 
theoretical solutions. The dynamic pressure fluctuations have been analyzed and investigated thoroughly. 
The predicted fluctuations exhibited two primary frequencies. By analyzing the wave effect and the 
development history of shear zones and slip-stick wall motion, the governing mechanisms have been 
identified. Furhter exploration using the ALE model is underway to study the effect of discharge rate and 
silo geometry.  
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ABSTRACT 

Solution procedures typically used in finite element analysis programs for contact problems are generally 

based on displacement constraints via Lagrangian multipliers or penalty functions. It is widely established 

that the well-known average acceleration Newmark scheme with a Lagrangian displacement constraint 

leads to spurious energy gain/loss upon contact which cannot be controlled with the refinement of 

temporal and/or spatial discretisation [1]. The penalty method also suffers from a non-physical energy 

gain/loss upon contact [2], though better accuracy in energy conservation may be achieved through 

temporal refinement. However, satisfying both the acceptable penetration criteria and energy conservation 

can lead to an excessively small time-step. Accordingly, a Lagrangian velocity constraint methodology is 

suggested with the Newmark average acceleration method for frictionless energy conserving dynamic 

contact analysis. It is further demonstrated that an approximate displacement constraint is achieved by 

enforcing the associated velocity constraint, while the magnitude of the gap can be reduced by temporal 

refinement. Moreover, it is shown that the energy conservation of contacting systems can be achieved 

through refining the mesh and/or reducing the time-step size. Hence, the proposed method leads to a more 

robust algorithm which can accurately model the interactions of solids subject to dynamic contact, while 

avoiding the need for very small time-steps or the determination of the requirements for the penalty 

stiffness a priori. Finally, numerical studies are presented to highlight the relative advantages of the 

Lagrangian velocity constraint method combined with the Newmark scheme for application in dynamic 

contact analysis using finite element procedures. 

1 INTRODUCTION 

The solution of highly nonlinear dynamic phenomena in solid and structural mechanics has received 

considerable attention over the years (e.g. [3]). In this context, the numerical simulation of dynamic 

contact problems is of great importance due to its frequent application in engineering practice. For this 

purpose, several methods were developed based on Lagrangian multipliers or penalty functions in an 

attempt to impose the impenetrability conditions in dynamic contact analysis. The kinematic constraints 

of impenetrability used in finite element analysis programs commonly work in conjunction with implicit 

step-by-step integration schemes such as the well-known Newmark average acceleration (so called 

‘trapezoidal rule’) and the Midpoint rule. Notwithstanding that the trapezoidal and Midpoint rules show 

unconditional stability and energy conservation in the linear elastic regime, much work can be found in 

the literature regarding the loss of those characteristics in dynamic contact analysis (e.g. [1-2]). It is now 

well established that, rather than a necessary spectral radius criteria, a sufficient condition for 

unconditional stability in the nonlinear regime can be achieved through the conservation or decay of the 

total energy within a time-step [4] given as: 
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energy and the work done at time 
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t  for a given temporal discretisation { } { }1
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time interval of interest
1
. 

Several algorithmic energy controlling strategies based on Lagrangian multipliers [1] and penalty 

functions [2] were proposed for dynamic contact analysis, using the ‘Energy-Momentum Method’ 

introduced by Simo and Tarnow [3]. However, this method lacks generality for application in common 

nonlinear finite element analysis programs, since it requires the evaluation of the internal energy at the 

mid-point of each time-step during analysis. Therefore, specific consideration is given in this paper to 

different algorithms enforcing the contact constraints using the Newmark family of methods, which 

enable energy conservation for frictionless linear elastic dynamic contact problems. For these cases, it is 

shown that a proposed algorithm based on Lagrangian velocity constraint ensures unconditional stability 

and leads to improved accuracy and convergence by means of temporal and/or spatial refinement. 

2 THE NEWMARK METHOD 

The single step Newmark method is considered here for dynamic analysis of frictionless contact 

problems. In this method, the solution for the equation of motion is obtained via the discrete equations: 

{ } { } { } ( ){ } { }( )
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(2)  

(3)  

where ∆t=tn+1–tn is the time-step for a given temporal discretisation; {dn}, {vn} and {an}are nodal 

kinematic matrices for displacement, velocity and acceleration evaluated at tn, respectively; β  and γ  are 

algorithm parameters defining the characteristics of temporal discretisation. To investigate the numerical 

stability of the Newmark method associated with the nonlinearity in dynamic contact phenomena, the 

incremental energy balance of a linear elastic system is considered for nodal contact problems. For this 

system, assuming a constant and symmetric mass matrix during the analysis time interval, the incremental 

energy balance in terms of the nodal kinematic matrices is: 
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It can be shown using eq. 4 that for / 2 0.25β γ= =  (i.e. average acceleration scheme) the total potential 

energy is conserved for a linear elastic system under free vibration. However, the response of this system 

using Newmark parameters / 2β γ≠ and 1 / 2γ =  suffers from a periodic energy fluctuation. Therefore, in 

this paper, special consideration is given to the Newmark average acceleration scheme. 

3 FRICTIONLESS CONTACT CONSTRAINTS 

Several methods have been developed over the recent decades to model the dynamic contact phenomenon 

by enforcing constraints on the displacements of the nodes for the contacting body (called ‘master body’) 

and the associated nodes/ surface of the impacted body (called ‘slave body’). The conventional penalty 

spring and Lagrangian displacement multiplier are typical examples of this. 

3.1 Lagrangian displacement constraint 

In this method for frictionless dynamic contact analysis, the so called ‘Kuhn-Ticker’ kinematic conditions 

are introduced via a multiplier into the equation of total potential energy, as illustrated below: 
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Where ( , )
i

g d t  and ( , )
i

d tτ  represent, respectively, the closest distance vector and the pressure between 

the solids along the contact boundaries at the time ti, and n  is the unit outward normal to the current 

contact slave surface. Based on this, the analytical study of the total incremental energy for nodal contact 

in the linear elastic system (eq. 7) shows that, the energy gain/loss for the trapezoidal rule will occur in 

two time steps: 1) initial contact [tn, tn+1], and 2) rebound [tn+k, tn+k+1], where k is the number of time steps 

in contact. From eq. 1 the sum of incremental energy over the contact duration [tn, tn+k+1] is equal to: 

[ ] ( ) { } ( ) { }
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1 1, . 1 / 2( ) , . 1 / 2
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+ +
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It is observed that, for persistent contact analysis, the trapezoidal rule combined with the Lagrangian 

displacement multiplier leads to severe oscillations in the displacements of contacting nodes. Hence, this 

method leads to numerical instability which cannot be resolved by spatial and/or temporal discretisation. 

3.2 Penalty function 

For the penalty method, the displacement constraint is enforced via a stiff penalty spring (kp) located at 

the position of contact to prevent large penetration between different boundaries. Similar to the 

Lagrangian displacement constraint, undesirable energy alteration is observed for contact analysis of a 

linear elastic system with the use of trapezoidal rule and the penalty spring: 

[ ] ( )( ) ( )( ) ( )( ) ( )( )1

1 11 / 2 , , 1 / 2 , ,
T Tn k

i i N n N n N n k N n kn
K U g d t kp g d t g d t kp g d t

+ +

+ + + ++ = +  (7)  

According to eq. 7, with the use of suitable penalty stiffness, better accuracy in energy conservation and 

contact response can be achieved through refinement of analysis time steps. However, defining 

appropriate penalty stiffness remains the main drawback of this method. 

3.3 Lagrangian velocity constraint 

Based on eq. 6, the numerical instability observed with the Lagrangian displacement multiplier is caused 

by the cumulative energy gain during multiple contacts of the discretised system. For the persistent 

contact case, this energy instability can be linked to the lack of kinematic constraints which cause severe 

velocity and displacement oscillation of the contacting nodes. Accordingly, by derivation of the normality 

‘Kuhn-Ticker’ condition with respect to time and holding the equality in equation 5(i) a condition for zero 

gap function rate is achieved for persistent dynamic contact analysis. The zero gap rate constraint, herein 

called as velocity constraint, is generally not captured with time-step algorithms using the Lagrangian 

displacement constraint or the penalty springs. In this paper, a velocity constraint multiplier is suggested 

with the trapezoidal rule to achieve a robust algorithmic solution procedure for frictionless dynamic 

contact analysis, written as: 

( ) ( ), . , 0i N id t g d tλ =ɺ  (8)  

where ( ),N ig d tɺ is the normal gap rate function for corresponding nodal contact nodes evaluated at time ti 

and ( ), id tλ  is the corresponding Lagrangian multiplier. 

4 CASE STUDY 

Elastic impact of two identical rods, one initially stationary (v0
slave

=0) and the other one moving with 

constant unit velocity (v0
master

=1), is considered to illustrate the advantages of the Lagrangian velocity 

method against the conventional ones. The rods have unit cross section (A=1) as well as unit Young’s 

modulus (E=1) and material density (ρ=1). The robustness of the suggested algorithmic method as well as 

its effective characteristic in modelling the dynamic contact constraints is illustrated in Fig. 1. 

Furthermore, it is shown that, the method can achieve better accuracy in terms of energy conservation and 

dynamic response through mesh refinement (Fig. 1(b)) or reducing the analysis time-step (Fig. 1(c)). 
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(a) nelement = 50, ∆t = 4e-3 

 
(b) nelement = 100, ∆t = 4e-3 

 
(c) nelement = 50, ∆t = 2e-3 

Fig. 1. Impact response of two rods using trapezoidal rule with Lagrangian velocity constraint. 

5 Conclusion 

It is widely established that the conservation or decay in the total energy of the system can ensure the 

desirable unconditional stability in nonlinear dynamic analysis. In this respect, dynamic contact analysis 

has received extensive attention due to its inherent nonlinearity. In this paper, the energy conservation of 

the Newmark family of integration methods is assessed for frictionless dynamic contact analysis of linear 

elastic structures. To investigate the energy stability, the incremental energy formulation of the 

trapezoidal rule is considered for both the penalty method and Lagrangian displacement constraint. It is 

noted that, for the case of Lagrangian displacement constraint, the cumulative energy error cannot be 

reduced by further refinement in the analysis time-step and finite element mesh due to high frequency 

oscillations in the displacement of the contacting nodes. 

An algorithmic energy conserving method based on a Lagrangian velocity constraint and the trapezoidal 

rule is suggested to eliminate the spurious displacement oscillation caused by temporal and finite element 

discretisation. In addition to the persistency condition, the method efficiently achieves a good 

approximation of the displacement constraint the magnitude of which can be reduced by temporal 

refinement. The main characteristics of the proposed method are its applicability to typical nonlinear 

finite element analysis programs and its robustness (unconditional stability) with respect to the inherent 

nonlinearity in frictionless dynamic contact problems. Finally, it is shown in Figs. 3(b and c) that, unlike 

methods based on Lagrangian displacement constraints, the proposed method achieves better accuracy in 

the response with refinement of the spatial and/or temporal discretisation. 
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ABSTRACT 

Many boundary conditions have been created to eliminate the reflection of outgoing propagating waves in 
the finite element analysis of semi-infinite media. However, many of these are not efficient and allow 
some waves to be reflected. A new absorbing boundary condition has been proposed by Nielsen[1] and 
aims to fully absorb outgoing waves. Using Maple 13, an incident P-wave case and incident S-wave case 
were analyzed using the theory of Lysmer and Kuhlemeyer[2] and then using the theory of the new 
proposed absorbing boundary condition. The results of the Lysmer and Kuhlemeyer analysis demonstrate 
that whilst the boundary conditions can absorb energy, they still are not perfect and allow some outgoing 
propagating waves to be reflected. However, the results of the new absorbing boundary conditions show 
that for all the incident angles, the reflection coefficients of the P-wave and S-wave are evaluated as zero. 
This suggests that there is complete energy absorption at the boundary. Whilst the theory from the 
proposed absorbing boundary condition is promising, it has yet to be fully tested and validated. 

1  INTRODUCTION  

Structural and civil engineers can use computer software to understand the interaction between a structure 
and the soil it is founded on. However, when carrying out such a computer analysis on a dynamic problem 
such as an earthquake, the outgoing propagating waves hit the boundaries of the model. Rather than 
propagating beyond the boundary, the waves are reflected back into the model’s domain. The waves 
become trapped within the model, Figure 1. As the model no longer represents semi-infinite media 
accurately, the analysis is altered. 

 
Figure 1 - Wave Reflection 

A solution to overcome this problem is to apply absorbing boundary conditions (ABCs) at the boundaries 
of the model. One such ABC is the viscous boundary that was developed by Lysmer and Kuhlemeyer. 
Whilst the ABC can absorb propagating waves, it still results in some waves being reflected into the 
model. Despite this, it is a popular method and is still used in analysis today. 

Much research has gone into creating a boundary condition that can achieve complete energy absorption. 
Many ABCs, such as the ones developed by Higdon and Wolf, improve the accuracy, but still allow for 
energy to be reflected. In 2008, a new ABC was proposed by Nielsen. The ABC is said to deliver an exact 
solution for analysis in the time domain and is capable of full absorption, but has yet to be validated. The 
purpose of this paper is to understand how the new ABC theory works, by using it to analyse two incident 
wave cases and comparing it with another ABC method that has been tried and tested. 
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2  THEORY  

 
Figure 2 - Incident P-wave Case 

 
Figure 3 - Incident S-wave Case 

The viscous boundary theory and the new ABC theory are used in the analysis of an incident P-wave and 
an incident S-wave. First, consider an incident P-wave propagated towards the free surface boundary at 
angle θ, Figure 2. As the wave hits the free surface boundary, a reflected P-wave of angle θ and S-wave 
of angle α are produced. However, in a computer model we are not interested in the free surface, but the 
use of an artificial boundary to shorten the semi-infinite domain. To prevent waves reflecting at the 
artificial boundaries, ABCs are imposed on them. 

In the case of the incident P-wave, the displacement potentials of the P-wave, ϕ, and S-wave, ψ, are 
 

 𝜙(𝑥, 𝑧, 𝑡) = 𝑒𝑖𝑘(𝑐𝑡+𝑧𝑡𝑎𝑛𝜃−𝑥) + 𝐴𝑒𝑖𝑘(𝑐𝑡−𝑧𝑡𝑎𝑛𝜃−𝑥) (1)  
 𝜓(𝑥, 𝑧, 𝑡) = 𝐵𝑒𝑖𝑘(𝑐𝑡−𝑧𝑡𝑎𝑛𝛼−𝑥) (2)  

where ω is the frequency, c is the velocity, k is the wave number and A and B are the amplitudes of the 
reflected P-wave and S-wave respectively, and are also known as the reflection coefficients. It should be 
noted, that the amplitude of the incident wave is arbitrary as the interest lies in the amplitudes of the 
reflected waves. These expressions were used to obtain the horizontal and vertical displacements, u and 
w. Using the displacements obtained, expressions for the normal stress and shear stress were obtained. 
These were then applied to the viscous boundary theory and then to the new ABC theory. For an incident 
S-wave case, Figure 3, an incident S-wave of angle α, hits the free surface boundary and produces a 
reflected P-wave of angle θ and a reflected S-wave of angle α. The displacement potentials of the S-wave 
and P-wave are  
 

 𝜙(𝑥, 𝑧, 𝑡) = 𝐴𝑒𝑖𝑘(𝑐𝑡−𝑧𝑡𝑎𝑛𝜃−𝑥) (3)  
 𝜓(𝑥, 𝑧, 𝑡) = 𝑒𝑖𝑘(𝑐𝑡+𝑧𝑡𝑎𝑛𝛼−𝑥) + 𝐵𝑒𝑖𝑘(𝑐𝑡−𝑧𝑡𝑎𝑛𝛼−𝑥) (4)  

Horizontal and vertical displacements were derived from these and then used to obtain expressions for the 
normal and shear strain. These were then applied to both theories, as done in the previous analysis. 

2.1  Lysmer and Kuhlemeyer Viscous Boundary  

This absorbing boundary condition was developed for a semi-infinite system, where a convex boundary is 
used to separate an inner region from an outer region. All sources of excitement would be contained 
within the inner region. Propagation of energy would first occur from within the inner region and head 
towards the convex boundary. As the energy reaches the boundary, it would then pass into the exterior 
region. To keep the same behaviour, it was determined that a boundary could absorb the propagating 
energy[2]. This led to the development of the viscous boundary which acts as normal and shear viscous 
dashpots supporting the convex boundary for use in the time domain. The conditions are expressed as 
 

 𝜎𝑧𝑧 = 𝜌𝑐𝑝�̇� (5)  
 𝜏𝑥𝑧 = 𝜌𝑐𝑠�̇� (6)  

where σ is the normal stress, τ is the shear stress, cp is the P-wave velocity, cs is the S-wave velocity, ẇ  is 
the normal velocity and  u̇ is the tangential velocity.  
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In the analysis of the incident P-wave, the displacement expressions given above were inserted into the 
viscous boundary, (5) and (6). Using Maple 13, these were then evaluated to determine expressions for 
the reflected amplitudes, A and B. In order to gain such expressions, the angle of the reflected S-wave, 
was related to the angle of the P-wave, using Snell’s law. With amplitudes obtained, the energy ratio, (7), 
was evaluated over all incident angles.  
 

 
𝐸𝑟
𝐸𝑖

= 𝐴2 + �
𝑐𝑠
𝑐𝑝
�

sin𝛼
sin𝜃

𝐵2 (7)  

The analysis for the incident S-wave is similar to the analysis of the incident P-wave. However, it should 
be noted that a critical angle exists for the incident S-wave. It can be calculated using 
 

 𝛼𝑐𝑟𝑖𝑡 = cos−1 �𝑐𝑠
𝑐𝑝
�  (8)  

When the incident S-wave is propagated at the critical angle, a reflected P-wave is produced at an angle 
of 0°. However, if the incident angle of the S-wave is smaller than the critical angle, a boundary wave is 
created, which decays exponentially with the depth. Due to this, the energy ratio must be calculated in 
two steps. When the incident angle of the S-wave is greater than or equal to the critical angle, the energy 
ratio is calculated using 
 

 
𝐸𝑟
𝐸𝑖

= 𝐵2 + �
𝑐𝑝
𝑐𝑠
�

sin𝜃
sin𝛼

𝐴2 (9)  

and when the incident S-wave angle is less than the critical angle, the energy ratio is calculated using 
 

 
𝐸𝑟
𝐸𝑖

= 𝐵𝑖2 + 𝐵𝑟2 (10)  

where Bi is the imaginary solution of amplitude B and Br is the real solution of amplitude B. This energy 
ratio equation does not contain the energy from the boundary wave produced, as it does not add or 
remove energy from the boundary[2]. By plotting the energy ratio against the angle of incidence, for both 
the incident P-wave and S-wave case, the following graphs were obtained. 

 
Figure 4 - Energy Ratio vs P-wave incident angle 

 
Figure 5 - Energy ratio vs S-wave incident angle 

By looking at Figure 4 for the incident P-wave, we can see that when the incident angle is greater than 
50°, there is complete absorption. Between 30 and 50 degrees, there is still a considerable amount of 
energy absorbed, but some energy is reflected. As the incident angle becomes smaller, less energy is 
absorbed and when the incident angle is 0°, there is complete reflection. Figure 5 for the incident S-wave 
also displays the same relationship. These results indicate that whilst the viscous boundary is a method 
capable of complete absorption, it depends on the incident angle. 

2.2  New Absorbing Boundary Condition  

The new absorbing boundary conditions derived by Nielsen are different for an incident P-wave and 
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incident S-wave[1]. For an incident P-wave, the conditions are expressed as 
 

 𝜎𝑧𝑧 = 𝛥(𝜆 + 𝜇(1 − cos2𝜃)) (11)  
 𝜏𝑥𝑧 =  −𝛥𝜇sin2𝜃 (12)  

where σzz is the normal stress, τxz is the shear stress, λ and μ are the Lamé coefficients and Δ is the 
dilatation, as the P-wave is a dilatational wave. The dilatation can be calculated using 
 

 
𝛥 =

∂𝑢
∂𝑥

+
∂𝑤
∂𝑧

 
(13)  

In the incident P-wave analysis, the normal and shear expressions derived earlier, were applied to the new 
P-wave boundary conditions, (11) and (12). Using Maple 13, these were then used to gain expressions for 
the reflected amplitudes, A and B, and then evaluated over all angles of incidence. As for an incident S-
wave, the new boundary conditions are expressed as 
 

 𝜎𝑧𝑧 = 2𝜔sin2𝜃 (14)  
 𝜏𝑥𝑧 =  −2𝜔𝜇cos2𝜃 (15)  

where σzz is the normal stress, τxz is the shear stress, λ and μ are the Lamé coefficients and ω is the 
rotation, as the S-wave is a shear wave. The rotation can be calculated using 
 

 
𝜔 =

1
2
�
∂𝑤
∂𝑥

−
∂𝑢
∂𝑧
� 

(16)  

As with P-wave analysis, the normal and shear expressions that were derived earlier, were applied to the 
new boundary conditions, (14) and (15). Snell’s law was used to relate the P-wave angle to the S-wave 
angle and Maple 13 was used to obtain expressions for the reflected amplitudes, A and B, and then 
evaluated over all angles of incidence. The energy ratio can be calculated using the same equations used 
in the viscous boundary theory[2]. If the energy ratio is then plotted against the incident angle for both the 
incident P-wave and S-wave cases, no curve is obtained. This is because the reflection coefficients, A and 
B, are evaluated to as 0 for all incident angles, indicating that no reflection takes place. 

3  CONCLUSION 

In conclusion, it is clear that the Lysmer and Kuhlemeyer viscous boundary condition is practical to 
implement in a code for its simplicity. However, in practice it is dependent on the angle of incidence. For 
normal incidence of waves on an artificial boundary, it leads to complete absorption of energy. But as the 
angle of incidence becomes smaller, most of the energy is reflected. This is unlike the newly proposed 
ABC which is shown to display complete absorption over all angles of incidence. This is proven 
theoretically but will require further validation through implementation in a finite element code.  
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ABSTRACT

A new model to describe water movement and mass transport in remediated contaminated land is being
developed. The model will be able to deal with differing climatic conditions, describe mass transfer and
basic reaction systems and will contain some characterisation of the resulting uncertainty. An overview
of some of the methods used in attempts to decribe mass transport in porous media and some of the
issues encountered is presented here. In particular the issues of numerical dispersion, anomalous trans-
port and uncertainty about subsurface heterogeneity are discussed. In addition the use of stochastics in
accounting for the uncertain nature of subsurface heterogeneity will be briefly discussed.

1 Introduction

A new model is being developed to allow for long term prediction of the effectiveness of a new tech-
nology for the remediation of contaminated land as part of the EPSRC funded ROBUST project1. The
uncertainty of subsurface conditions in contaminated land and the nature of risk assessment mean that
probabilistic methods are likely to play a significant role in the development of this model.

2 The Advection-Dispersion-Reaction Problem

The description of mass transfer in variably saturated porous media can be divided into two problems,
water flow and mass transfer. In the model under construction here the water flow problem will be
solved by the application of finite element analysis (FEA) to Richards’ equation and the use of the
primary variable switching method (PVSM)[6][5] . This involves switching the primary variable in
the problem depending on the saturation of the soil. Volumetric water content θ is used in unsaturated
conditions and pressure head ψ is used in saturated or close to saturated conditions. This method
can deal with problems which vary quickly between saturated and unsaturated conditions efficiently.
The solution of the flow field is then used to solve the advection-dispersion-reaction (ADR) equation [1]

∂c

∂t
+ v · ∇c = ∇ · (D∇c) +Q (1)

where c is solute concentration, v is pore water velocity, D is a combined dispersion-diffusion term and
1http://www.robustdurham.org.uk/
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Figure 1: Dispersion in porous media due to variations in flow path (adapted from Prickett et al. 1981
[9])

Q represents sources and sinks including reactions. Advection is the transport of mass by the movement
of the medium is it within. Diffusion is the movement of mass causing reductions in concentration gra-
dients due to random walk of particles. Dispersion is the spreading of material due to velocity variations
within pores and variations in flow path [Figure 1].

3 Numerical Solutions

The solution of the ADR equation generally involves the solution of the advection term separately.
Trying to solve the advection term using standard FEA soon leads to problems, the chief of which being
numerical dispersion. Fluxes in porous media tend to be of the order that distance travelled by a particle
in a time step (V c/θ)∆t is smaller than the distance between nodes. Therefore the concentration of a
solute in the pore fluid arriving at any node at any time generally has to be interpolated from the nodal
data. This process is conceptualised in the single step reverse particle tracking (SRPT) method (e.g.[3]).
In this method the location of a ficticious particle which will arrive at node i at time t = n is found.
The concentration at this location at time t = n−∆t is interpolated from the nodal concentrations and
transferred to node i at time t = n. This method causes numerical dispersion of sharp concentration
gradients [Figure 2].

Figure 2: A schematic diagram showing particle movement within the SRPT scheme (A) and the effect
of numerical dispersion(B,C). (A) The particle arriving at the top right node at t = n+∆t travels along
the path shown by the arrow. It’s location at t = n is shown by the open circle. (B,C) The particles,
shown by open circles move as shown by the arrows during one timestep. Due to the interpolation of
the solute concentration between nodal locations the concentration front is smoothed out.

To combat the problem of numerical dispersion the continuous forward particle tracking (CFPT) method
was developed [8]. In the CFPT method a cloud of particles is placed within the domain. The particles
are moved according to the generated flow field and then projected onto the nodes to form a con-
centration field. This method effectively eliminates numerical diffusion but is more computationally
intensive than SRPT as it requires a much larger number of particles. As numerical dispersion is more
of a problem around sharp concentration gradients adaptive versions of the CFPT method [8] have been
developed to remove particle clouds and revert to the SRPT method when concentration gradients drop
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below a certain threshold. In both the SRPT and CFPT methods the dispersive transport is solved by
the standard finite element method.
The CFPT method produces results in good accordance with analytical solutions assuming that disper-
sive transport behaves according to a Fickian model. Laboratory testing (e.g.[2]) has shown that the
ADR equation does not fit well to transport in heterogeneous porous media and that the transport does
not fit a Fickian description. Levy and Berkovitz [7] show that even in grain size sorted sands that this is
the case. A qualitative depiction of this is shown in Figure 3. Tortuosity and the presence of preferential
flow paths and stagnant areas lead to the spreading of material in an anomalous fashion. In systems
where the porous media is more heterogeneous the effect is enhanced. A schematic representation of
the difference between normal Fickian transport and this anomalous or non-Fickian transport is shown
in Figure 4.

Figure 3: Dispersion of ink in porous media due to variations in flow path. Flow field is continuous and
from left to right (adapted from[7]).

Figure 4: A schematic representation of the difference between normal (Fickian) and anomalous (non-
Fickian) transport (from [2]).

4 Stochastic Methods

Due to the uncertain nature of subsurface heterogeneity the problem cannot be addressed in a determin-
istic fashion. Instead dispersive transport can be characterised as a stochastic variable. The continuous
time random walk (CTRW) method [9] uses the same method for solving the advective term as the
ADR equation but replaces the Fickian FE solution of the diffusive and dispersive transport with a ran-
dom walk procedure. A random number generator fitted to a normal distribution is used to determine
the dispersive component of transport. A limit on the maximum deviation from the mean in terms of
the standard deviation is often imposed [9]. This value is then multiplied by the standard deviation
σ =

√
2D∗t where t is time and D∗ is a combined dispersion-diffusion term. The particle is moved

a random distance in the longitudinal and transverse direction producing a random spreading of the
concentration field [Figure 5].
The continuous time random walk (CTRW) method deals with the uncertainty associated with disper-

sion of a contaminant caused by variations in flow paths within a porous medium. Another uncertain
variable in a porous medium is how the hydraulic conductivity changes throughout the medium. If a
characterisation of the variability of hydraulic conductivity within a soil type, generally fitted to log-
normal distribution [4], can be obtained then the hydraulic conductivity can be treated as a random
variable in the same fashion as the dispersive flux in the CTRW method. This random hydraulic con-
ductivity can be used as a single realisation or as part of a Monte Carlo simulation. The amount of
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Figure 5: The general scheme for the continuous time random walk (CTRW) method (adapted from
[9]).

computing time and power needed to run Monte Carlo simulations of mass transfer problems in porous
media is prohibitive [4] so the simulations in this project will probably use single or small numbers of
realisations. An introduction to the application of stochastic methods to flow and transport in porous
media can be found in [4].

5 Conclusion

A brief overview of some of the issues surrounding mass transfer in porous media has been presented.
These methods are being applied in the development of a new numerical model to describe the long term
effectiveness of a novel remediation technique for contaminanted land. The applications of probabilistic
methods are an important aspect of model development and are being applied to mass transport and may
be extended to include soil water retention properties and Monte Carlo simulations.
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ABSTRACT 

Material characterisation is one of the most important aspects of accurate numerical modelling; correct 
material properties must be obtained for the correct behaviour to be observed. Traditionally permeability 
is measured by applying a constant/falling head test to a material sample, where such tests may involve 
many samples at varying pressure gradients. However current X-Ray micro-tomography techniques allow 
us to avoid physical lab tests by providing the ability to reproduce a voxelised representation of the 
internal structure of a porous medium. The Lattice Boltzmann Method may then be used to model a 
pressure induced flow field within the sample so that permeability may be numerically approximated. 
Typically this process is carried out after a thresholding procedure has been applied to the voxelised 
geometry to split it into definite solid and void spaces, at the expense of accuracy of the geometry. In an 
attempt to better represent the porous medium, a partial bounceback condition could be applied to the 
Lattice Boltzmann scheme allowing us to consider directly the raw voxel values and avoiding the need for 
any thresholding procedure. To validate this hypothesis two test cases were explored; flow past a periodic 
array of cylinders by use of a unit cell model, and flow through a simple heterogeneous porous medium. 
Results were compared with analytical expressions where available, and published expressions for 
permeability evaluation of porous media. Results were found to be in good agreement with the available 
expressions. 

1  INTRODUCTION  
Porous media represent a broad range of materials which may be encountered in a variety of industries, 
from oil production to textiles, yet the assessment procedure for permeability evaluation has, for the most 
part, gone unchanged for many years. When an organisation requires the permeability of a material to be 
evaluated, they must typically gather a set of samples of sufficient size and submit them to a laboratory 
where a constant/falling head test may be applied. Preparation and testing of these samples can leave 
them unsuitable for subsequent tests, and for media with anisotropic permeability the number of samples 
required for accurate permeability evaluation may easily be doubled when compared to a sample with 
isotropic permeability for a true scientific test. The research presented herein is focused on applying the 
Lattice Boltzmann method (LBM) to permeability assessment by considering the microstructural 
geometry of a porous media, represented by a voxelised scan of a porous sample generated by use of x-
ray micro-tomography. An alternate form of the bounceback “no-slip” boundary condition was explored 
with respect to its use in this field. 
 

2  THE LATTICE BOLTZMANN METHOD  
The Lattice Boltzmann Method[1] (LBM) has become a popular method in the field of porous media flow 
modelling[2,3], in large part due to the simplicity of constructing a lattice which may represent 
heterogeneous porous media. Since the LBM operates on a regular lattice, in most cases a square lattice, 
one can avoid the complexities of meshing routines required by more traditional methods such as the 
Finite Volume technique.  
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The standard D2Q9 Lattice Boltzmann scheme with an LBGK 
collision term[4] operates on a square lattice of connected lattice sites, 
figure 1 shows a diagram of a D2Q9 lattice site. Each lattice site is 
connected to its neighbours by 8 vectors, ei, and each vector has a 
particle distribution function (PDF), fi, associated with it along with a 
ninth “rest” PDF. The evolution of these PDF’s is defined by the 
LBGK Lattice Boltzmann equation: 
 

𝑓𝑖(𝒙 + 𝒆𝒊𝛿𝑡 , 𝑡 + 𝛿𝑡) − 𝑓𝑖(𝒙, 𝑡) =
1
𝜏

(𝑓𝑖
𝑒𝑞(𝒙, 𝑡) − 𝑓𝑖(𝒙, 𝑡)) 

 
Macroscopic values of density and momentum can be calculated by 
use of the following simple equations respectively: 

 
𝜌 = ∑ 𝑓𝑖𝑖  , 𝜌𝒖 = ∑ 𝒆𝑖𝑓𝑖𝑖  

 
For a no-slip condition to be imposed within a lattice Boltzmann domain one can simply apply what’s 
known as the “bounceback” boundary condition[5], where a site which represents a solid body interface 
simply reflects any momentum transferred to it. This operation is represented by the following equation: 
 

𝑓𝑖(𝒙 + 𝒆𝒊𝛿𝑡 , 𝑡 + 𝛿𝑡) = 𝑓−𝑖(𝒙, 𝑡) 
 
Where 𝑓−𝑖 is the PDF whose associated vector is in the opposite direction to the vector associated with 𝑓𝑖. 
This operation occurs instead of the LBM evolution equation for a given bounceback site. In order to 
represent the voxelised microstructural geometry of porous media using the LBM and the standard 
bounceback condition, one must therefore split the computational domain into lattice sites which 
represent either fluid space or solid space. However a voxelised geometry does not result in this polarised 
representation, instead a voxel is given a value between 0 and 1 which represents the degree to which the 
voxel is filled with solid matter, in order to better represent this voxelised geometry it is proposed that a 
partial bounceback condition be imposed rather than the standard “full way” bounceback condition. To 
this end, the partial bounceback condition proposed by Noble and Torczynski [8] was used; this condition 
is applied to all sites within the domain and modifies the standard LBGK LBM equation to read: 
 

𝑓𝑖(𝒙 + 𝒆𝒊𝛿𝑡 , 𝑡 + 𝛿𝑡) − 𝑓𝑖(𝒙, 𝑡) = [1 − B(𝒙)]ΩiBGK + B(𝒙)Ωis 

ΩiBGK =
1
𝜏

(𝑓𝑖
𝑒𝑞(𝒙, 𝑡) − 𝑓𝑖(𝒙, 𝑡)) 

There is some ambiguity in the literature as to a suitable expression for Ωis, to this end the following two 
expressions were tested. 

Ωis = 𝑓−𝑖(𝒙, 𝑡) − 𝑓𝑖(𝒙, 𝑡) + 𝑓𝑖
𝑒𝑞(𝜌,𝑼𝑠) − 𝑓−𝑖

𝑒𝑞(𝒙, 𝑡) 
  Ωis = 𝑓−𝑖(𝒙, 𝑡) − 𝑓𝑖(𝒙, 𝑡) + 𝑓𝑖

𝑒𝑞(𝜌,𝑼𝑠) − 𝑓−𝑖
𝑒𝑞(𝜌,𝑼𝑠) 

 
The variable B, determines the strength of the bounceback operation so that for B equal to one, a lattice 
site is seen to exhibit full way bounceback behaviour and for B equal to zero the lattice site is seen to 
exhibit purely fluid behaviour. For the case that B has a value between zero and one, the lattice site would 
have some permeability attached to it and behave in itself as a porous medium. 

3  TEST CASES  
To validate the use of this partial bounceback model in this way, two test cases were explored. The first 
test case is based upon the works of Gebart[6] and Lee and Yang[7], who have proposed expressions for the 
permeability of an ordered periodic array of cylinders representative of aligned fibres in fabrics or 
composites. A unit cell cylinder model was adopted, and a pressure drop applied across this unit cell 
cylinder. The pressure induced velocity field was approximated using the standard LBGK LBM with both 
full way and partial bounceback boundary conditions. Once an approximation for the steady state velocity 
field was achieved, Darcy’s law was applied to calculate the permeability of the domain. The unit cell 
cylinder model was tested for varying resolution and varying porosity. 

Figure 1 - The Lattice Site 
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Figure 2 – Results of Test Cases 

Top: Results for Unit Cylinder Test; Radius Normalised Permeability Variation with Resolution (Left), Radius Normalised Permeability Variation with Porosity (Right) 
Bottom: Results for Heterogeneous Porous Media; In Parallel (Left), In Series (Right) 
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The second test case which was explored was that of two simple heterogeneous porous media, each 
consisting of two homogeneous regions of different permeability aligned in parallel for the first medium, 
and in series for the second medium. Once again an approximation for the steady state velocity field was 
gained by using the standard LBGK LBM, however due to the nature of the domain only the partial 
bounceback condition could be applied. These simple heterogeneous porous media were tested for 
increasing permeability difference; approximate values for effective permeability were then compared 
with analytical expressions [8] for effective permeability of these simple porous media. 
 
The results for both test cases are presented in figure 2. For the unit cell cylinder test, good agreement can 
be shown when results are compared with both Gebart’s expression and Lee and Yang’s expression, 
though a better correlation with Lee and Yang’s expression can be seen. The second test case shows good 
agreement between numerical and analytical permeability for the “in parallel” porous medium, with 
results diverging only slightly as the permeability difference is increased. The correlation between 
numerical and analytical results for the “in series” porous medium is not so good. Though the two trends 
exhibit similar behaviour, the results are extremely divergent as the permeability difference is increased. 

5  CONCLUSION  
Noble’s Partial Bounceback condition was applied to permeability assessment of simple heterogeneous 
porous media with results compared to proposed expressions for permeability approximation and 
analytical permeability. It was shown that in general numerical results are in good agreement with these 
expressions. However there is still room for improvement, especially with respect to the heterogeneous 
porous medium with two regions of differing permeability in series. Since the full way bounceback is 
unable to deal with regions of a microstructural geometry which are intrinsically porous, and the partial 
bounceback condition demonstrates similar accuracy to the full way bounceback condition when 
representing a definite fluid/solid boundary; it can be seen that the partial bounceback condition proposed 
by Noble is more suitable than the full way bounceback condition for considering the voxelised 
microstructural geometry of a hetergenuous porous medium. 
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ABSTRACT 

The one equation Spalart-Allmaras (SA) turbulence model, which is the most popular industrial 

turbulence model, has been modified to predict the effect of boundary layer laminarization. Like most 

other Reynolds averaged Navier Stokes (RANS) models, the original SA model is insensitive to boundary 

layer acceleration. The modified version proposed here preserves the original models behavior in regions 

where the criteria determining the onset of laminarization is not exceeded. The model has been 

implemented in an unstructured Computational Fluid Dynamics (CFD) code, for acceleration parameters 

ranging from 1.5×10
-6

 to 3.5×10
-6

. The modification is based on a proposition by Jones and Launder, this 

being that the Van Driest damping function constants must become variables for accelerating flows. This 

is because the viscous sub-layer thickens in a laminarizing boundary layer. The modified SA model 

shows encouraging agreement with measurements for idealized (sink) flows.  

1. INTRODUCTION 

It is generally agreed that a turbulent boundary layer will transition to laminar flow if subjected to a 

sufficiently severe favorable pressure gradient (FPG). The dimensionless acceleration parameter 

( ) ( )dxdUUK ee // 2 ×= ν  is used to discern the onset of laminarization [1]. Under mild acceleration 

there is only a partial reversion to laminar state and for strong accelerations there is a complete reversion 

to laminar flow [1-2]. Unlike the laminar to turbulent transition, laminarization is usually accompanied by 

certain flow features, such as the thickening of the viscous sub layer, a departure of the mean velocity 

profile from the logarithmic ‘law of the wall’, a thinning of the boundary layer, a decrease in the 

momentum thickness Reynolds number (R2) and an increase in the shape factor (H). Flows which tend to 

laminarize however tend to pose challenges for RANS turbulence models as these models remain 

effectively turbulent in regions where experiments would suggest turbulent decay [3]. For a RANS model 

to predict the correct physics under these conditions, it would have to stop the global production of 

turbulence energy during laminarization and resume net production afterwards. 

2. GOVERNING EQUATION 

The SA low Reynolds number model is one of the most widely used turbulence model for aerospace 

applications. It solves a transport equation for an intermediate variable ν~ . The SA model uses the 

Boussinesq hypothesis to relate the Reynolds stress
''

jiuu−   to the gradient of the mean velocity 
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The transport equation for the one equation SA model can be written as: 
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The turbulent eddy viscosity is calculated from the relationship with ν~  as: 

1
~

vt fνρν = ,  
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χ

χ
,  

ν

ν
χ

~
=     (3) 

Where 1vf  is the damping function, 1.71 =vC  and the analogy from Mellor and Herring’s notation [4] 

introduced in the original paper by Spalart and Allmaras gives 
+= yκχ . This later relationship holds 

from the wall to the log layer with 41.0=κ . Due to brevity, the full description of the terms and 

modeling constants is not explained here but can be found in the original paper [5] 

3. TURBULENCE MODEL MODIFICATION 

The approach used in this work for the prediction of laminarization gains it basis from [6]. Van 

Driest proposed a near wall theory for turbulent flow that at a distance away from the wall, the 

eddies were not damped by the effect of wall proximity and close to the wall the viscosity and 

wall blocking influenced the near wall eddies. The damping factor was thus proposed as 

( )++−−= AyVD exp1   where A
+
 =26. Van Driest’s theory meant that the mixing length had to 

be represented by the equation ( )[ ]++−−= Ayyl exp1κ . However, Launder and Jones [1] proposed a 

modification to Van Driest function stating that for FPG turbulent boundary layer sink flow the 

A
+ 

was representative of the sub layer thickness. Suggesting that the Van Driest constant A
+
 

would become a variable proportional to a laminarization parameter. Hence a linear theoretical 

correlation is given by: 

L  ≤  1.9×10
-3

,             A
+
 = 26        

L  >  1.9×10
-3

,             A
+
(K) = 11 + (7.9×10

3
)L           (5) 

L = K 2
3

fC                  (6) 

Two methods of synthesizing the Jones and Launder Proposal with the SA model are explored here. 

These are described below. 

 

METHOD 1 (Van Driest Type) 

For Method 1, the y
+
 Van Driest damping function is taken with y+ replaced with κχ . 

( )+−−= ADV κχexp1         (7) 

For an accelerated boundary layer the A
+
 is modified based on the proposition by Jones and Launder. 

With this A
+
 is a variable A

+
{K}. It is expressed as a function of the dimensionless acceleration 

parameter. Hence we can state equation (5) as  

( )}{exp1 KADJL

+−−= κχ          (8) 

The subscript JL indicates that the acceleration parameter is based on the Jones and Launder proposition. 

The difference between DV and DJL is then calculated. This is an estimate of the damping increase needed 

to account for acceleration. It is subtracted from the SA fv1 damping function to give the following new 

function. 

JLVdiff DDD −=            (9) 

}0),max{( 1,1 diffvnewv Dff −=      (10) 

The eddy viscosity is calculated as: 

newvt f ,1
~νρν =       (11) 
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METHOD 2 (Mellor and Herring Type) 

In a similar approach to Method 1, we introduce an analogy that represents the variation of A
+
 with K in 

the Van Driest damping, however this is more directly added to the 1vf  damping function. We define Aχ  

where the subscript A, denotes the growth of the viscous sub layer. Using this we redefine 1vf  as 

( )
( ) 3

1

3

3

,1

vA

A
newv

C
f

+
=

χχ

χχ
     (12) 

where             }){,0.1max( KAA

+= κχ             (13) 

4. PROBLEM DESCRIPTION 

The code adopted for the calculations in this work is the in house Rolls-Royce HYDRA code. The 

descretization of the Reynolds average Navier-Stokes equation is based on an edge based finite volume 

scheme. Hydra is an unstructured solver and solves 2D and 3D RANS equation from a user specified 

boundary condition. The present calculation is for an incompressible flow over a flat plate for different K 

values. K is changed by varying the geometry’s inlet to exit area ratio (AR) and maintaining a constant 

inlet free stream Mach number. The two dimensional flat plate geometry used in this calculation has a full 

length of 2.0m. It has been designed such that a zero pressure gradient (ZPG) 0.8m length section is 

followed by a 0.6m FPG section and terminated by a 0.6m ZPG length for flow recovery. A hexahedral 

grid is used. A low Reynolds number calculation was performed with y
+
<1. The grid used 549 points in 

the stream wise direction and 205 (for the least acceleration parameter) for the normal direction. A grid 

independence study was also carried out doubling the grid points in all directions. 

5. RESULTS AND DISCUSSION 

The model in ZPG and adverse pressure gradient (AVG) still possess its normal formulation by the 

original author [5] except in region of strong FPG where the modification is automatically turned on. In 

Figure 1, a profile for Reynolds shear stress for varying acceleration is shown. The modified SA model 

for K=1.5×10
-6

 shows good agreement with Jones and Launder’s measurements. The peak stress value is 

around 0.0008 and the Reynolds shear stress profile shows a decrease as it moves further away from the 

wall. Figure 2 shows the variation of H with K for the modified SA prediction. The solutions indicate that 

an increase in K tends to shift the value of the shape factor towards a laminar solution which can be 

explained as the effect of the viscous sub layer thickening. Consequently, the variations of R2 with K as 

shown in Figure 3 suggest a decrease in the R2 for increasing value of K. For K=3.5×10
-6

, R2 reaches a 

value around 310. Figure 4 shows a departure of the mean velocity profile for K=2.5×10
-6

 from the 

logarithmic law of the wall. This departure is however not achievable with the standard SA model as it is 

not able to predict laminarization. 

 

6. CONCLUDING REMARKS 

This work is part of an on going work on crosswind flow around the lip of an aero engine intake lip. The 

flow around the nacelle lip tends to laminarize under severe acceleration and separate. On the basis of this 

motivation, an extensive study was carried out for boundary layers that tend to laminarize. This has been 

examined for sink flow cases. Preliminary calculations using the standard SA model showed this model to 

be insensitive to predicting laminarization as also mentioned in [3]. The predictions here are all for the 

modified SA model (method 1 was not as sensitive as method 2 since it did not have the original trend as 

the 1vf  damping function and the predicted results show encouraging agreement with Jones and 

Launder’s measurements for sink flow. 
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ABSTRACT

Previous attempts to model a fluid free surface have encountered some problems because of the com-
putational techniques adopted. Such techniques typically use an Eulerian approach to formulate the
governing equations; a fixed control volume with the fluid particles moving through it. As such this
method does not accurately depict the flexibility of free surface flows because the boundaries of the
problem are changing constantly in time.

In our initial work we adopt the Particle Finite Element Method. This approach adopts a Lagrangian
mesh, allowing for a much more efficient tracking of individual fluid particles as the control volume
moves in context with the fluid particles. Separation of particles from the main FE mesh is allowed and
hence a much more accurate depiction of the free surface flow and wave splashing is achieved.

Further improvement is still possible and these will be described in this paper. These developments
include an Arbitrary Eulerian Lagrangian (ALE) formulation of the governing equations and the intro-
duction of surface tension. Surface tension is an important fluid property that determines the shape of
fluid droplets as the fluid aims to minimise surface area. By initially modelling surface tension for a
single droplet, the method can be included in larger scale problems such as breaking wave modelling,
as well as small scale liquid actuation problems involving surface acoustic waves (SAW). Such analysis
will lead to the design of more efficient microfluidic SAW devices for microfluidic applications, for
example within the drug delivery and food industries.

1 INTRODUCTION

Surface tension is an important fluid property that has a direct affect on the shape of fluid droplets. To
gain an understanding in the mechanism of surface tension is of great benefit for both large scale fluid
free surface tracking problems and small scale liquid actuation problems involving surface acoustic
waves (SAW). The implementation of surface tension in computational models will have a more obvi-
ous affect on the accuracy of small scale problems where results are dependent on only a single fluid
droplet or collection of droplets. However, its importance in the modelling of wave splashing and fluid
separation should not be discounted, as accurate tracking of droplets breaking away from and rejoining
the main fluid body effects the way the body moves as a whole.
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Figure 1.1: Shape of Droplet when subjected to a Surface Acoustic Wave

The work of Alghane et al. [1] saw a method of microscale mixing and pumping using surface acoustic
waves (SAW). Whilst this produced several good results, the method used exclusively an Euler mesh
and it was assumed that the shape of the droplet is spherical. This is not always the case and as such
Alghane et al. did not include surface tension in their analysis. This is what our work aims to implement
and Figure 1.1 shows our preliminary semi-analytical result of a fluid droplet resting on a solid surface
subject to SAW.

2 METHODS OF FORMULATING THE GOVERNING EQUATIONS

Traditionally, Eulerian algorithms (spatial descriptions) were widely used in fluid dynamics to formulate
the governing equations. A Eulerian approach assesses a specific location in the space through which a
fluid flows as time passes; this is known as the control volume. The mesh points, comprising the finite
element (FE) mesh, are stationary and the fluid particles pass through the mesh, therefore tracking of
individual fluid particles is not possible as the properties of each particle can only be assessed whilst
they pass through the control volume.

Onate et al. [6] describe an alternative method which they implement in their work. A Lagrangian
approach (material description) adopts a system where each node in the FE mesh represents a fluid
particle and the motion of an individual particle is followed through time by moving the control volume
in context with the particle. An additional benefit of this approach is the fact that particles are allowed
to freely move and can even separate from the main FE mesh. However, frequent remeshing of the
continuum is required and large distortions are not easily followed. Use of a Lagrangian formulation
has been termed as the Particle Finite Element Method (PFEM) by Onate et al. and is used in their work
involving analysis of large fluid bodies.

It would appear, however, that neither a solely Eulerian or Lagrangian formulation give an entirely
satisfactory outcome and hence, we will implement later in our work, a third approach known as the
Arbitrary Lagrangian Eulerian (ALE) approach, as described in Figure 2.1.

ALE combines the most favourable features of both other formulations and this allows for modelling of
greater distortions and with more resolution. Figure 2.1 shows a point that represents a given particle and
that the point defined in material coordinates can be mapped to spatial coordinates using x = ϕ (X, t)
or to mesh space using χ = Ψ−1 (X, t). Additionally, the same point can be mapped from mesh space
to spatial coordinates using x = Φ (χ, t). Now a velocity of w is applied to the mesh in mesh space. To
map from material coordinates to mesh space for the same particle we use χ = Ψ−1 (X, t + dt) and
to map from material coordinates to spatial coordinates for the same particle we use x = ϕ (X, t + dt)
where dt is the time increment. However, to map from mesh space to spatial coordinates for the same
particle we must use the expression x = Φ

�
Ψ−1 (X, t + dt) , t + dt

�
but to map to the same mesh

point we use x =
�
Ψ−1 (X, t + dt) , t

�
. Thus the equivalent velocity in spatial coordinates is made up

of two parts, Fwd τ and v̂.
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Figure 2.1: Arbitrary Lagrangian Eulerian Mapping

3 ANALYSIS OF A LARGE SCALE DAM BREAK PROBLEM

In our initial work, the PFEM was used in the analysis of a dam break problem to assess the motion of
a body of fluid moving under gravity and to examine the motion of wave breaking. The computational
code was developed based upon a physical experiment undertaken by Janosi et al. [4], the geometry of
which is shown in Figure 3.1. The analysis is formulated from the Navier-Stokes equations that describe
the motion of a fluid based upon the conservation of mass, momentum and energy, see Eq. 3.1, where
ρ is the fluid density, u is the fluid velocity, t is time, p is the pressure, µ the dynamic viscosity, and
F represents body forces. The fluid modelled is incompressible and this is because, in the micro-fluid
problems that follow, volume change is negligible at micro-scales.

ρ
Du

Dt
= −∇p + µ∇2u + F (3.1)

The analysis made use of the tools MOAB (Mesh Oriented datABase)[5], PETSc (Portable, Extensible
Toolkit for Scientific Computation)[7], and CGAL (Computational Geometry Algorithms Library)[2].
MOAB stores the mesh and hold information pertaining to the mesh, whilst PETSc solves the system
of non-linear algebraic equations, and CGAL assists in mesh and alpha shape creation.

Figure 3.1: Geometry of Dam Break Problem

Photographs were taken during the physical experiment and these were compared to the free surface
profile found from our model. Whilst there was a level of correlation to the photographs in terms of
the profile of the fluid surface, the fluid in the computational model moved too quickly compared to
that in the photographs and wave breaking was achieved at an earlier time than that observed by Janosi
et al., see Figure 3.2. This is because turbulence has not been taken into account in our model. Whilst
turbulence is a necessary requirement for large scale problems, in the small scale micro-fluid problems
that follow it is not important and therefore has not been added into this analysis.
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(a) Free Surface Profile from Janosi et al. Experiment

(b) Free Surface Profile from Computational Analysis

Figure 3.2: Comparison of Free Surface Profiles

4 SURFACE TENSION AND FUTURE IMPLEMENTATION

Surface tension is a property of the fluid surface that allows it to resist external force. It is caused by
cohesive forces within the fluid due to the surface molecules only having neighbouring molecules on
one side and therefore a non-zero net force. This causes the fluid to attempt to reduce its surface area.
Surface tension is responsible for the shape of fluid droplets because of this cohesive force and in a
zero-gravity environment, fluid droplets will form near perfect spheres.

We have begun to model surface tension in our work. The first step was to examine Total Lagrangian
elements (TL elements) as described by Felippa [3]. The displacement of these elements and the current
strains and stresses in them are related back to the reference geometry. A simple analysis was developed
to assess these elements and to gain an understanding of the elements in general terms.

The next step is to use the tools of MOAB, PETSc and CGAL to model a single droplet of fluid and
to identify the edges of the mesh that are on the fluid-air interface. Of course, these edges will change
constantly as the droplet moves across a surface or actuates in a certain location and therefore, the
identification of surface edges must occur every time step. The analysis will identify these edges and
apply a surface tension value to them and thus better model the behaviour of fluid droplets subjected to
SAW.
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ABSTRACT
A finite element technique is presented which does not rely on body-fitted meshes. This method is
tailored for the numerical analysis of fluid flow around moving and highly flexible objects as in the

context of fluid-structure interaction. A variationally consistent penalty method is used for the
treatment of no-slip boundary conditions and LBB-stability is achieved by means of a subdivision

stabilisation technique. The full interaction between incompressible fluid flow and elastic structures is
handled by strong coupling.

1 INTRODUCTION

The numerical analysis of many fluid-structure interaction problems, such as, e.g., flapping flight or
hemodynamics, faces the difficulty of exceedingly large structural motions and deformations. In this
context, standard finite element methods suffer from severe mesh distortions and therefore require
complicated mesh adaptation algorithms. This defect is our main motivation to favour immersed fi-
nite element techniques which do not rely on any mesh generation but operate on simple Cartesian
grids [1].

Obviously, the imposition of Dirichlet boundary conditions, i.e., the no-slip at the structural surface, is
not straightforward. Here, we use a modification of the variationally consistent penalty method, com-
monly referred to as Nitsche’s method [2], in which these boundary conditions are treated as natural
conditions and a penalty term is added purely for stability reasons.

The finite element discretization is based on b-splines [3] which allow for arbitrary approximation
orders. The use of implicit surface representations for the immersed objects adds an extra degree of
robustness and flexibility to the numerical computations. This is verified by the examples presented
here.

Another technical difficulty arises from cells which are traversed by the boundary ΓD such that their
contribution to the system matrix is vanishingly small. Since arbitrary surface motions are allowed, this
problem requires a robust solution. Therefore, we employ on a special preconditioner as given in [3].

193



2 IMMERSED FLUID SOLVER

Consider the incompressible Navier-Stokes equations in a fluid domain Ω with density ρ and viscosity
µ formulated in the stress divergence form

ρ

(
∂u

∂t
+ (u · ∇)u

)
−∇ · σ(u, p) = f , ∇ · u = 0 , x ∈ Ω (1)

with the fluid stress σ(u, p) = −pI + µ(∇u+∇u>). The corresponding boundary conditions are

u = ū , x ∈ ΓD , and t(u, p) = σ(u, p) · n = t̄ , x ∈ ΓN , (2)

on the boundary parts ΓD and ΓN such that Γ = ∂Ω = ΓD ∪ ΓN . In practical terms, the Dirichlet
conditions on ΓD will be the inflow and no-slip boundary conditions, whereas ΓN refers to the outflow
boundary.

The weak form that we use incorporates both boundary conditions as natural conditions and reads: find
(u, p) such that

0 = ρ

∫
Ω

(
∂u

∂t
+ (u · ∇)u

)
· v dx+

∫
Ω
σ(u, p) : ∇v dx−

∫
Ω
q(∇ · u) dx−

∫
Ω
f · v dx

−
∫

ΓN

t̄ · v ds−
∫

ΓD

t(u, p) · v ds−
∫

ΓD

t(v, q) · (u− ū) ds− γ
∫

ΓD

(u− ū) · v ds (3)

for all admissible (v, q).

Since the weak form (3) is formulated without essential boundary conditions, it allows for more free-
dom in the choice of the finite element discretization. In view of the final application to fluid-structure
interaction with large deformations, our choice is an orthogonal grid with b-spline shape functions. The
finite element approximations are thus

uh(x) =
∑

Bi(x)ui and ph(x) =
∑

B̃j(x)pj (4)

with the b-splinesBi and B̃j of specific polynomial degree. In order to fulfil the LBB-stability condition,
we choose equal polynomial degrees forBi and B̃j but approximate the velocities on a grid which is one
level finer than the grid used for the pressure. Using the refinability property of b-splines, we actually
operate exclusively on the finer grid but mimic the coarse grid splines B̃j as linear combinations of fine
grid splines, i.e., B̃j =

∑
sjkBk with a predefined mask sjk.

3 FLUID-STRUCTURE COUPLING

For the interaction between fluid and elastic structures, we combine the fluid solver as described in the
previous section with a structures solver which can handle large deformations. In order to represent the
complete interaction between these media, a strong coupling iteration is used, see, e.g., [4]. Therefore,
at each discrete time point tn the following iteration scheme is carried out

• given the location and surface velocity of the structure, solve the fluid problem for the velocity
and pressure fields;

• evaluate the surface tractions that the fluid applies on the structure surface;

• solve the structure problem for its new location and velocities;

• if converged go to the next time step, otherwise iterate again.
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4 RESULTS

As example applications of the presented method, consider the viscous flow in a two-dimensional chan-
nel around deformable objects. Two such examples are depicted in the top row of figure 1: a circle and
a beam. On the left side of the channel, parabolic inflow is prescribed and the immersed objects deform
elastically in response to the fluid forces acting on them. Based on the characteristic length c = 0.2 for
the circle and c = 0.51 for the beam, the Reynolds numbers are Re = 80 and 204, respectively. The
immersed objects are modelled by dynamic large-deformation beam elements with bending stiffnesses
of EI = 5.6 · 10−4 and 2.6 · 10−3, respectively.
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Figure 1: Flow around a cylinder (left) and an inclined beam (right): problem description (top), stream-
line and vorticity snapshots (middle), forces acting on and deformed shapes of the immersed object
(bottom)

In the case of the circle, the deformation reaches a steady state and the flow field around is adapted
to it. After some initial time, the typical vortex shedding appears as clearly visible in the streamline
and vorticity plots. This effect is reflected by the force history. The beam, on the other hand is first
deflected upwards due to the inflow. This upward deflection reaches a point where the flow applies in
turn a downward force on the object. The deformation builds up and becomes unstable.
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ABSTRACT

As a part of the aircraft certification process, manufacturers are obliged to show that following a water
landing, known as ditching, the aircraft will be able to stay afloat in order to allow the safe
disembarkation of passengers. Improved design tools are required to support cost-effective design and
entry into service of aircraft containing new materials and structures. Detailed analysis of ditching using a
transient finite element structural model requires a suitable fluid model. One approach is to use the
Smoothed Particle Hydrodynamics (SPH) method to represent the fluid, allowing a coupled fluid-
structure analysis to be performed. This approach is established for vertical impacts on water, but has
limited application to ditching as key aspects of the flow physics that occurs at high speed are not
included in the model. Aspects such as cavitation and suction influence the structural response and must
be included in any suitable tool. This paper discusses the current state of the art with respect to ditching
analysis using the SPH method. The key missing aspects of the flow physics are discussed, including the
challenges related to including them in a coupled model.

1 INTRODUCTION

A ditching event is described as the planned water landing of an aircraft. As a part of the aircraft
certification process, manufacturers are obliged to show that following a ditching, the aircraft will be able
to stay afloat in order to allow the safe disembarkation of passengers [1]. High impact loads during
ditching can cause structural damage that allows water to enter the fuselage, posing a risk to the safe
egress of the passengers [2]. In a water impact the loads experienced by the fuselage are not the same as
from impact on a hard surface with the fuselage skin forming a key part of the load path, figure 1. The
structural integrity of the aircraft following the ditching is a key feature in survivability. It is shown from
data collected between 1959 until 1996 that most fatalities are a result of drowning rather than direct
crash injuries [1].

Figure 1: Loading of a structure during a hard surface impact (left) and a soft/fluid surface (right) [3].

Typically the configuration of an aircraft during ditching is similar to the landing configuration but with
the landing gear retracted. This means that the first point of contact is the lower aft section of the
fuselage. Following the first impact there can be a strong pitch down moment on the aircraft, resulting in
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a second impact on the forward fuselage and potentially nose diving. It must be noted that during a
ditching event there are other factors outside the control of the crew like the state of the water (sea state)
that can have a significant effect on the behaviour of the aircraft when impact occurs [4].

The classical approach to ditching design uses scale model experimental data, over a range of conditions,
to derive structural loads. Increasingly this has been supplemented by simple analytical models for the
water behaviour. A consequence of this classical approach is that ditching certification for novel fuselage
shapes, structural concepts or materials is expensive and time consuming. Improved numerical tools are
required that can predict the structural loads and response during ditching

So far water impact simulations that include a deformable structure have been focused on vertical impact,
see for example Pentecote et al. [5]. The ability of these simulation techniques to predict fixed-wing
aircraft ditching, which is characterised by a high initial horizontal velocity, is limited. Important aspect
of the flow physics such as cavitation, ventilation and suction are omitted. These physical effects
significantly influence the pressure distribution and deformation of the skin and hence the structural
response cannot be predicted without them.

2 WATER BEHAVIOUR DURING DITCHING

A ditching event includes complex fluid-structure interaction. There are several important phenomena
that influence the structural loading from the fluid. In this section these will be briefly introduced.

Air cushioning
During the impact, trapped air between the object and the fluid provides a cushioning effect [6], referred
to as air cushioning. The presence of this air cushion alters the structural loads, in particular initial impact
pressures. As the amount of trapped air increases, initial impact pressures become lower [6].

Suction
Suction occurs where the fluid pressure is low, resulting in an outward force on the structure. During
ditching, the aft part of the fuselage can experience a region of suction that potentially can generate both
local structural loads as well as a significant pitch up moment [4].

Cavitation
Cavitation is the result of the phase change of the fluid from liquid to vapour [7], occurring where the
liquid pressure falls below the vapour pressure. The typical result is a cloud of vapour bubbles forming in
the fluid. The primary relevant effect of cavitation for the structural loads during ditching is that it acts as
a limit on local suction forces from the fluid.

Ventilation
Ventilation occurs when air enters between the structure and the fluid [8]. It is often linked to cavitation
as the low fluid pressures that cause cavitation also draw in air.

3 DITCHING MODELLING

Non-linear explicit finite element analysis is well established in the crash analysis field for the prediction
of structural response, see for example Fasanella and Jackson [9]. The requirement for ditching analysis
is a suitable fluid model that can be robustly coupled with the structural model. One approach in use is to
model the fluid with the Smoothed Particle Hydrodynamics (SPH) method, a contact algorithm is used for
coupling the fluid model with the structural model. SPH is a meshless Lagrangian method that uses a
pseudo-particle interpolation method to compute smooth field variables. Each SPH particle has a mass,
Lagrangian position, Lagrangian velocity, and internal energy; other quantities are derived by
interpolation or from constitutive relations. A detailed explanation of the SPH method is given by
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Monaghan [10].

The coupled finite element-SPH approach has been applied to a range of fluid structure impact problems
[5,11]. One example is the impact on water of an aluminium structure, characteristic of a helicopter cabin
sub-floor [11]. Experimental data is available [12] for the impact of the structure on water. In the
experiment the structure was mounted on a trolley and dropped with an impact velocity of 7.95 m/s. The
total mass on the structure and trolley was approximately 600 kg. A finite element model of the sub-floor
structure was constructed using shell elements with appropriate elastic-plastic material properties. The
trolley was represented as a rigid mass, and time history information for the trolley acceleration was
measured. The initial state of model is shown in figure 2 and consists of approximately 38000 shell
elements and 61500 SPH particles. The overall deformation of the FE structure is consistent with the
deformation observed in the experiment, figure 3.

With respect to published ditching simulation results there are some common characteristics [5,11,13].
The water is modelled as a simple inviscid compressible fluid using a simple equation of state to define
the pressure-volume relationship. Where ditching simulations with a forward velocity have been
attempted [5], the same simple fluid model has been used.

At present the important phenomena identified in section 2 are not represented within a coupled finite
element-SPH analysis. Air is not included in the models as its inclusion would significantly add to the
cost and complexity of the analyses. The suction force is not represented [14], as the contact algorithms
used do not allow tensile forces to be generated between the fluid and structure. Simple cavitation models
that use a cut-off value to limit the pressure have been investigated [15-16], but the suitability of this
approach for high-speed water flow past a body has not been investigated.

4 FUTURE DEVELOPMENT

It is understood that in high velocity water impacts the complex phenomena that occur in the water flow
can have a significant effect on the structural integrity of a structure. While the analysis of vertical
impact of structures on water is established, the simplified fluid models used mean that they can not be
directly applied to ditching analysis of fixed wing aircraft. The objective of this PhD research project is to
develop and demonstrate an improved coupled finite element/SPH modelling methodology that is capable
of predicting the response for a deformable structure subject to impact on water at a high horizontal
velocity. The research will concentrate on the development of an improved fluid model and fluid-
structure interaction model that incorporates the effects of the phenomena identified.

Figure 2: Initial problem setup. Figure 3: Comparison of deformed shape of test
article and FE mesh.
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ABSTRACT 

A Performance-Based Wind Engineering (PBWE) framework for assessing the serviceability limit state 

of tall buildings is considered.  The immediate focus is on a key component of this procedure which 

involves creating an appropriate coupling interface between two independent fluid and structural solvers.  

The fluid solver (ANSYS FLUENT) uses the finite volume method to model the wind field and predict 

the wind-induced loads.  The structural solver (Strand7) applies the finite element method to model the 

resulting dynamic response.  The requirement of the coupling algorithm is to appropriately consider the 

interaction phenomena involving the wind and the tall building.  Clearly, no single coupling algorithm 

exists which may be appropriate for all fluid-structure interaction problems; the choice depends on an 

appropriate level of detail and accuracy in a given simulation setting and has a significant impact on the 

computational demand and accuracy.  The decision on the level of complexity for this particular coupling 

problem is related to the inherently probabilistic context of the PBWE framework and its ability to 

account for a whole range of uncertainties.  The code for the coupling interface has been developed using 

Microsoft VBA and its functionality will be demonstrated using a case study of a standard 49-storey tall 

building.  Attention will be focused on its capabilities and the potential consequences of its limitations. 

 

1  INTRODUCTION  

Modern design trends and advances in engineering materials have encouraged the demand for taller and 

more slender buildings.  This pattern induces inherent structural flexibility and heightens concerns 

regarding Aeolian risk.  Complete structural failure caused by the wind is extremely unlikely.  Instead, the 

primary concerns are related to serviceability failures such as damage to non-structural components and 

unacceptable occupant comfort conditions due to building motion.  Intrinsic uncertainties arise in such 

Wind Engineering problems due to the complexity and stochastic nature of both the loading and response 

parameters.  This paper explores the potential for adopting a probabilistic approach to Wind Engineering 

of tall buildings.  The proposed framework implements advanced numerical simulation methods to model 

the fluid-structure interaction (FSI) phenomena.  An appropriate coupling simulation interface between 

the independent fluid and structural solvers is an essential component.   

2  PERFORMANCE-BASED WIND ENGINEERING  

Performance-based design (PBD) offers a novel approach for handling the risks faced by structures in a 

probabilistic context, rationally reducing these risks for both design and retrofitting strategies [1].  The 

concepts of PBD have developed predominantly in Seismic Engineering.  The last decade, however, has 

seen a gradual increase towards adapting these established frameworks for Fire, Blast and Wind 

Engineering [2].  The fundamental aim of Performance-Based Wind Engineering (PBWE) is to ensure 

that key structural damage limitations associated with the risk of wind loading are satisfied with an 
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acceptable probability throughout the design life of the structure.  The probabilistic context of PBD can 

incorporate the inherent uncertainties associated with Wind Engineering. 

Researchers from the Pacific Earthquake Engineering Research (PEER) Centre in Berkeley developed an 

effective PBD framework for Seismic Engineering [3].  Early attempts have since been made at the 

Sapienza University of Rome at extending this theory to Wind Engineering to assess the performance of 

long-span bridges [2].  The procedure has been subdivided into five clearly-defined sequential stages.  

The first stage, Intensity Measure (IM), involves characterising a range of relevant Aeolian events based 

on the site-specific wind environment.  The mean wind speed and turbulence properties of each IM event 

are dependent on key variables such as height, risk of exceedance, terrain roughness, directionality, and 

local topography.  The Interaction Parameter (IP) phase entails a series of analyses that consider the 

interaction effects between the derived range of IM wind events and the tall building.  The probabilistic 

assessment of the resultant structural response is based on a chosen measure of Engineering Demand 

Parameter (EDP) i.e. interstorey drift, root-mean-square acceleration, or peak displacement.  The Damage 

Measure (DM) identifies the structural damage as a consequence of the EDP response.  The DM limits 

can be based on life safety, structural integrity, or functionality requirements and must be appropriate for 

the considered risk.  Finally, the Decision Variable (DV) translates the DM estimates into a quantifiable 

measure of likely losses from Aeolian risk throughout the design life of the structure.  The performance, 

or adequacy, of the structural design can be decided on the basis of these results. 

The focus of the current research is to introduce advanced simulation techniques to support such a PBWE 

framework and address weaknesses identified by previous studies.  Specifically, the techniques of 

Computational Fluid Dynamics (CFD) and Computational Structural Mechanics (CSM) will be 

implemented into PBWE.  It is intended that the former will offer an improved characterisation of the 

wind field and prediction of the subsequent wind loading, while the latter will provide a detailed 

prediction of the resultant dynamic response of the tall building.  The proposed numerical improvements 

require an efficient coupling interface to communicate between the fluid (ANSYS FLUENT) and 

structural (Strand7) solvers during the Interaction Parameter analyses.   

3  COUPLING ALGORITHM FOR FLUID-STRUCTURE INTERACTION 

A range of different coupling algorithms are available and each has its own advantages and limitations.  

The coupling strategies can be classified as monolithic, partitioned (or staggered), and one-way.  Clearly, 

no single coupling algorithm is ideally suited for all FSI problems; the choice depends on an appropriate 

level of detail and accuracy vs. uncertainty in a given simulation setting and has a significant impact on 

the computational demand and accuracy. 

Monolithic coupling simultaneously solves the entire fully coupled set of governing equations for both 

the fluid and structural domains.  Full aeroelastic effects can be considered to evaluate the movement-

induced excitation caused by the structural motion.  However, this method is computationally very 

demanding and difficult to implement, particularly for multi-degree-of-freedom (MDOF) problems [4].  A 

partitioned approach independently solves each domain; it moves intermittently between the fluid and 

structural solver throughout the simulation.  Coupling is achieved by specifying continuity conditions 

between the mesh motions of each domain.  The strength of coupling depends on the number of iterations 

performed to achieve convergence at each transition.  The computational requirements are clearly less 

demanding than monolithic coupling.  Nonetheless, it has been identified that this method also presents 

difficulties when applied to MDOF problems [5].  A one-way strategy allows the fluid solver to predict a 

range of pressure histories before transferring these loads to the structural solver to determine the 

dynamic response.  The underlying assumption is the motion of the structure has a negligible effect on the 

flow pattern and thereby the algorithm does not account for aeroelastic phenomena.  This coupling 

method is suited to relatively stiff structures. 

The probabilistic nature of PBWE and its ability to account for uncertainties suggest the basic one-way 

coupling strategy can be adopted.  The algorithm has been developed within the Visual Basic Application 

(VBA) in Microsoft Excel.  The mean velocity and turbulence profiles from each of the characterised IM 

wind events act as inflow conditions for separate unsteady CFD analyses in ANSYS FLUENT.  A series 

of monitors across the tall building record the predicted pressures throughout the simulations.  The 

coupling interface exports the database of pressure histories from each IM wind event as a collection of 

forcing functions and assigns these to the corresponding locations on the Strand7 structural model.  The 
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algorithm initiates the dynamic structural solver and extracts the acceleration history for the EDP 

response.  An overall assessment of the EDP results gives a distribution of the acceleration data.  The DM 

is based on acceleration levels which cause unacceptable occupant comfort conditions.  If the specified 

DV threshold is exceeded then the tall building design must be revised to increase the stiffness. 

4  ILLUSTRATIVE EXAMPLE: 49-STOREY TALL BUILDING  

The performance of the coupling interface will be demonstrated by applying the enhanced PBWE 

framework to a 49-storey standard tall building.  The structure has a rectangular prismatic shape and its 

dimensions are D = 30 m, B = 45 m and H = 180 m.  The lateral stability of the structural system is 

provided by a concrete core and provides a fundamental natural frequency of 0.26 Hz.  An acceleration 

range between 4-12 milli-g is generally accepted as causing unacceptable occupant comfort conditions.  

An agreed DV strategy would specify that this acceleration threshold is not exceeded on more than n 

instances throughout the design life.  The overall assessment requires the full range of IM wind events to 

be simulated.  This example here details a procedure for a single IM wind event only, in the overall 

PBWE framework an analogous procedure needs to be repeated for sampled (e.g. hypercube) IM events. 

The geometry of the computational domain in ANSYS FLUENT is chosen large enough to ensure the 

flow is not constrained at the tall building and the obstacle effects on the inflow and outflow are 

eliminated.  The building is oriented with the incident wind normal to one of the wider faces.  Equations 

for the vertical profiles of mean wind speed and turbulence were written in C programming language and 

interpreted in ANSYS FLUENT.  The reference mean wind speed at the building height was 41 ms-1.  The 

domain gives a 0.9% blockage ratio and is shown along with the boundary conditions in Figure 1.  The 

mesh generation strategy is aimed at computational efficiency, i.e. at providing a number of elements as 

low as feasibly possible, while satisfying near-wall meshing requirements.  Figure 2 shows the grid 

arrangement on the boundary surfaces.  The main characteristic of the mesh style is that it uses a grid 

nesting technique; the tall building is nested in a rectangular cylinder about four times larger than itself.  

The zones outside the nest use a fully structured mesh of hexahedral elements, while an unstructured 

mesh is applied within the nest volume.  This meshing scheme allows the near-wall region at the building 

faces to be fine enough and the outlying extents of the domain to be more appropriately coarser.  The 

generated grid has 2.96 x 106 elements. 

 

     
         Figure 1. Domain and boundary conditions                 Figure 2. Surface mesh for the fluid field 

 

The transport equations were solved using the RANS k-ε turbulence model with RNG modifications.  The 

CFD computations were performed on a high-performance computer in the Faculty of Engineering at the 

University of Strathclyde.  A total of 8 CPUs were used in parallel for the simulation.  The numerical time 

step was 5 x 10
-3

 s and 24000 steps (5 subiterations) were iterated to provide a flow time of 120 s.  A total 

of 90 CPU hours were required.  The surface monitors recorded the predicted pressures at 0.1 s intervals 

and stored this data in an external .out file format. 

The VBA coupling interface code extracted the wind pressures from the generated output files and 

imported this data as a series of forcing functions into the Strand7 structural model.  The coupling 
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algorithm was then responsible for assigning these force histories to the corresponding positions on the 

building envelope for a linear transient dynamic analysis of the structural response.   

The detailed finite element model was created in Strand7 using a total of 12327 beam and 40791 plate 

elements (Figure 3).  Modal superposition involving the first 20 natural eigenvalues was performed and 

the structural damping was estimated using the Rayleigh method.  The transient settings corresponded to 

the conditions specified in the fluid solver.  The CSM simulation required 22 CPU hours on a standard 

desktop machine.  The estimated EDP history of the absolute top floor acceleration is shown in Figure 4.  

It can be seen that the predicted values for this particular IM event do not exceed the threshold leading to 

unacceptable occupant comfort conditions.   However, an overall assessment in the context of the PBWE 

framework requires a full range of determined IM wind events to be completed. 

                                                    
     Figure 3. Strand7 finite element model              Figure 4. Top floor EDP absolute acceleration response 

5  CONCLUSIONS 

An enhanced PBWE framework for tall building design has been proposed.  A probabilistic approach to 

Wind Engineering can incorporate the intrinsic uncertainties associated with such problems.  The aim is 

that the introduction of advanced computational methods will improve the wind field characterisation, 

prediction of wind loads, and estimation of dynamic structural response.  The paper has identified the 

importance of an appropriate coupling simulation interface to communicate between the fluid and 

structural solver.  The role of the coupling algorithm has been demonstrated by following the proposed 

PBWE framework for a 49-storey standard tall building design using an illustrative, single IM wind 

event.  In the overall PBWE framework an analogous procedure needs to be repeated many times. The 

adopted one-way coupling strategy has a limited range of applications and is not appropriate for FSI 

analyses of highly-flexible structures such as aircraft wings or suspension bridges.  It must be assured that 

the effect of aeroelastic phenomena can be safely neglected or otherwise considered in the context of the 

simulation setting. 
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ABSTRACT 

The performance of different Unsteady RANS models were evaluated against DNS, for a boundary layer 

separating over a flat plate, subjected to a prescribed adverse pressure gradient. With minimal fine-tuning, 

the decay of free stream turbulent kinetic energy was matched with the value predicted by DNS at the 

point of separation. A reasonable agreement on predicting the trends of the velocity profiles, streamwise 

velocity fluctuations and shear stress, was obtained by the URANS models. However, a larger separation 

bubble is predicted by all the models. The streamwise evolution of skin friction coefficient and the 

contours of turbulent kinetic energy showed that the delay in the production of sufficient turbulent kinetic 

energy to suppress the bubble, resulted in a larger separation bubble. While using SA model, the turbulent 

to laminar viscosity ratio, VR, at the inlet is shown to be a crucial parameter to reproduce a laminar 

separation bubble. Rational solutions could only be obtained using ‘transition by contact’ process. 

1.  INTRODUCTION  

Numerous DNS [see e.g. 1, 10, 11, 12]; LES [see e.g. 2, 7] and URANS [see e.g. 3, 4] simulations have 

been carried out in the literature, to study the flow physics of the laminar separation bubble. While the 

URANS is computationally affordable, it fails to predict the sub scales. On the other hand, although LES 

and DNS simulations resolve the sub scales effectively, the associated computational cost is a major 

hurdle for their usage in industrial applications. The solution lies, either in developing a model which 

would be a trade off between the two or in extracting the details provided by the DNS in improving the 

existing URANS. While the former is gaining a substantial attention, the current work attempts to focus 

on the later part of it. A standard RANS model usually fails to predict the separation if run fully turbulent. 

Either the transition location has to be specified or the transition terms have to be coupled with the models 

to predict the separation [9]. Another alternative is to use the turbulence models with low values of free-

stream turbulence variables [2, 10]. The present investigation explores the usage of this alternative, along 

with the details provided by the DNS, to predict the effects on transition. 

2. FLOW CONFIGURATION 

2.1 Computational Domain 

The test case considered herein, is the flow over a flat plate with a sharp leading edge. Similar 

configuration was investigated in great detail [6, 9, 11] and DNS results are available for this case to 

compare with. The upper boundary of the computational domain is specifically contoured to impose an 

adverse streamwise pressure gradient for x/L > 0.3 as shown in Figure 1. This is representative of the flow 

around the leading edge of a LP turbine blade. At sufficiently low Reynolds number of 60000 [2], the 

flow fails to sustain the strong enough pressure gradient and separates in the laminar region. The 

simulations were carried out on an adequate fine grid of 512 x 128. 

2.2 Boundary Conditions 

As shown in Figure 1, a slip wall (or a free slip) condition is imposed on 1) the upper wall and 2) in the 

region upstream of the leading edge of the lower boundary of the flat plate (-0.5< x <0.0), with the 

205



 

 

 

strategy of saving the computational points, thus allowing a coarser mesh in this region. This strategy was 

proposed by Wissink and Rodi [11]. While a no slip boundary condition is imposed on the flat plate 

(x>0), a simple convective (or the non-reflective) boundary condition was used at the outlet.  

 
Figure1. Computational Domain, grid (512x128, every 4

th
 node shown) and the boundary conditions considered. 

 

An inlet free stream turbulence intensity level (FSTI) of 1% was specified for the two equation models (k-

ε (Launder-Sharma [8]), k-ω, k-ω MSST, k-ω BL). Figure 2 shows the decay of FSTI predicted by two 

equation turbulence models along streamwise direction at a cross-stream location of y/L = 0.065, in 

accordance with Wissink and Rodi [11]. It is evident that both the URANS (with inlet FSTI of 1%) and 

DNS (with an inlet FSTI of 5%) reach the similar level of FSTI at the point of separation, thus providing 

a basis for comparing the results. The k, ε and ω values at the inlet were specified based on the FSTI and 

the length scale prescribed by Lardeau [6]. This essentially reduces the incoming turbulent kinetic energy 

and the dissipation rates, thus aiding in the formation of separation bubble. It was noticed that with a 

higher level of FSTI, the URANS failed to predict the separation bubble.  

 
Figure 2. Comparison of the decay of free stream Turbulence Intensity predicted by two equation turbulence models 

in stream wise direction at a cross-stream location of y/L = 0.065  

For the solution of different turbulence models, the BOFFS code [5] was used. It is essentially a multi-

block; structured, curvilinear solver which uses the second-order centred fluxes with an additional 

smoothing term containing a tuning parameter. Crank-Nicolson scheme is used for temporal 

discretization.  

3. URANS RESULTS 

The simulations were carried out at a Reynolds number of 60,000, based on the chord length L and the 

inflow velocity U, identical to Re used in the work of Wissink and Rodi [11]. Investigations for four 

different two-equation turbulence models (k-ε, k-ω, k-ω-MSST and k-ω-BL) are presented. With URANS, 

the flow field is averaged over consecutive time intervals. A pseudo steady state is considered to have 

been achieved if the averaged flow field remains invariant over two successive time intervals. The 

streamwise velocity distribution for the turbulence models are compared at seven locations on the flat 

plate and illustrated in figure 3. The flow is accelerated upto a streamwise location of x/L = 0.3, where the 

throat is located and then decelerates downstream. Although the velocity profiles agree fairly well with 

the DNS till x/L of 0.5, considerable deviation creeps in for the rest of the domain.  

Figure 4(a) shows the plots of the skin friction coefficient along the flat plate. For all the models, the 

separation was observed at a streamwise location of around 0.38 which is in close agreement with the 

predictions of Wissink and Rodi [11]. 
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Figure 3. Comparison of streamwise velocity profiles predicted by two equation turbulence models with DNS at 

seven different stations, over the length of the separation bubble.  

As the phenomenon itself is unsteady, the reattachment point oscillates in space with time. However, with 

the time averaged flow field, an averaged separation bubble was obtained. All the models predicted a 

larger separation bubble compared to DNS (DNS plot is not shown in the figure, as we had only discrete 

data). Of all the models, the k-ε model predicts a smaller separation bubble while the k-ω model predicts 

the largest. This could be attributed to the combined effect of the low free stream values at the inlet which 

were imposed to predict transition (as discussed in section 2.2) and the maximum turbulent kinetic energy 

being located far too downstream as shown in the contour plots of turbulent kinetic energy in Figure 4(b).  

(a)  (b)  

Figure 4. Comparison of (a) Streamwise evolution of Skin Friction coefficient and (b) contours of turbulent kinetic 

energy, excluding SA, (arrow shows the shift in the location of peak turbulent energy) for different turbulence 

models.  

Since Spallart-Allmaras turbulence model is widely used in industrial applications, its performance in 

exploring the laminar separation bubble is also attempted.  The turbulent to laminar viscosity ratio (VR) at 

the inlet is a crucial parameter. The streamwise evolution of skin friction coefficient for VR=0.1 and 1 is 

also illustrated in Figure 4(a). Very low values of VR in the range of 0 to 0.1 could predict the separation 

bubble as observed by Catalano [2] and Spallart and Strelets [10]. VR = 0 at the inlet and µt > 0 within the 

domain, as an initialization yields plausible results that are virtually identical to those for VR = 0.1 and 

this is a more rational process. There is no turbulence entering the detached shear layer. The transition, 

referred as ‘transition by contact’ [10], occurs due to the contact of return flow of the turbulent fluid with 

the laminar fluid in the separation bubble. We intend to study this phenomenon further as it could occur 

spontaneously in complex flows in which laminar regions are allowed.   

Comparison of streamwise RMS velocity fluctuations and shear stress of the turbulence models with DNS 

is addressed in Figures 5(a) and 5(b) respectively. Although the trends captured by URANS are in 

accordance with the DNS, the peaks of both the parameters is quite low for 0.5< x/L< 0.7. 
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(a) 

 
(b) 

Figure 5. Comparison of (a) streamwise velocity fluctuations and (b) shear stress of turbulence models with DNS.  

4. CONCLUSIONS 

The performance of k-ε, k-ω, k-ω-MSST and k-ω-BL models were evaluated for a boundary layer 

separating over a flat plate, subjected to a prescribed adverse pressure gradient. The decay of free stream 

turbulent kinetic energy was adjusted to match the value predicted by DNS at the point of separation. The 

results obtained were compared against DNS and a reasonable agreement on mean velocity profiles, 

streamwise velocity fluctuations and shear stress was noticed. However, the models predict a larger 

separation bubble due to the delay in the production of enough turbulent kinetic energy to suppress the 

bubble. This was illustrated by the skin friction coefficient plot and the accompanying turbulent kinetic 

energy contours. The importance of choosing the appropriate value of turbulent to laminar viscosity ratio 

at the inlet, when using the SA model, was illustrated and the interest to study the phenomenon of 

‘transition by contact’ is highlighted. 
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ABSTRACT 

The OpenSees framework is extended to deal with the frame structures in fire conditions. 
OpenSees is an object-oriented, open source software framework developed at UC Berekeley 
and has so far been focused on providing an advanced computational tool for analyzing the non-
linear response of structural frames subjected to seismic excitations. To deal with thermo-
mechanical analysis of structures, new load classes are created to define the temperature 
distribution across the section of the element, which is built up with “fibres”. Existing material 
classes are modified to account for the temperature-dependent material properties according to 
the Eurocode3. The existing beam-column element classes are modified to include interfaces to 
the updated material at elevated temperature and section with temperature field and to take 
account of the thermally induced forces and deformations. Some benchmark cases are studied to 
verify the performance of thermal-mechanical analysis in OpenSees including steel frame and 
composite beam in Cardington test. The analysis procedures being developed for structures 
under fire in OpenSees will make it easier for users to define temperature-dependent material 
properties (based on codes or experiment data) and allow for non-uniform temperature 
distribution along an element. This work is part of wider project at the University of Edinburgh 
which, upon completion, will provide another user-friendly platform for structural fire 
engineering analyses. More importantly however, because of its open access and availability to 
all, this work will help towards OpenSees becoming a “community code” promoting 
collaboration between research groups. Furthermore, it will enable the analysis of structures 
subject to a sequence of man-made or natural hazards, an important topic in the context of the 
community’s increasing concern with structural robustness, resilience and sustainability. 

1  INTRODUCTION  

Many finite element program codes have been written to simulate the structural behaviour at elevated 
temperature and the results are compared well with the test data from Cardington test. These include 
specialist programs such as ADAPTIC(Song 1995; Izzuddin 1996), FEAST (Liu 1988; Liu 1996), SAFIR 
(Franseen 2000), VULCAN (Bailey 1995; Huang 2000) and commercial package such as ABAQUS and 
DIANA. The specialist programs are cost-effective but lack generality and versatility because they are 
always developed to focus on some special feature of structural behaviour in fire. OpenSees is an open-
source object-oriented software framework developed at UC Berekeley. OpenSees has so far been 
focussed on providing an advanced computational tool for analysing the non-linear response of structural 
frames subjected to seismic excitations. Given that OpenSees is open source and has been available for 
best part of this decade it has spawned a rapidly growing community of users as well as developers who 
have added considerably to it’s capabilities over this period, to the extent that for the analysis of structural 
frames it has greater capabilities than that of many commercial codes.  
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Figure 1. Flowchart for thermal-mechanical analysis in OpenSees 

2  Thermo-mechanical analysis in OpenSees 

The OpenSees framework was chosen to develop thermo-mechanical analysis of frame structures by 
adding new thermal load class and modified temperature dependent material classes (shown in Figure 2). 
Based on existing beam element dispBeamColumn2d (Taucer and Filippou 1991), the flowchart of the 
thermo-mechanical analysis in OpenSees is shown in Figure 1. New thermal load class 
<Beam2dTemperatureLoad> is created to store the temperature distribution along the section consisting 
of temperature and coordinate, the temperature of each fiber will determined by the interpolation of the 
temperature at the nearest coordinate point according to its location. Also the temperature dependent 
material properties are modified from the existing material bilinear steel material according to Eurocode 3 
(ENV 1993-1-2).  
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Figure 2. Class diagram for thermal load and material in OpenSees 
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3  Validation 

In order to establish the validity of the present thermo-mechanical analysis in OpenSees, two benchmark 
examples are conducted and the comparisons have been made with experimental data and ABAQUS. 
These include a fully restrained beam subjected to uniform temperature rise and a uniformly heated steel 
frame test.  

3.1 Restrained beam under thermal expansion 

Figure 3 shows a beam, only the left half of which is subjected to a uniform temperature increment from 
ambient to 1000oC. The temperature-dependent material properties are taken from Eurocode3 (ENV 
1993-1-2). The horizontal displacement and stress at midspan of the beam against temperature are shown 
in Figure 4. The results are consistent with that of ABAQUS.  

1 2 3

1 2

0T∆ ≠ 0T∆ =

1m 1m

0.1m

0.1m

1 2 3

1 2

0T∆ ≠ 0T∆ =

1m 1m

0.1m

0.1m

 
Figure 3.  Schematic of restrained beam subjected to uniform temperature rises 
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Figure 4.  Results of Restrained beam under thermal expansion 

 

3.2 Steel frame test 

Two steel frames were tested, with a schematic diagram shown in Figure 5. The results shown in Figure 6 
agree will with the experimental data (Rubert 1986).  
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Figure 5. Schematic of the tested steel frames (mm): (a) frame EHR3; (b) frame ZSR1 
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Figure 6. Comparison between predicted and test deflection results:  

(a) frame EHR3; (b) frame ZSR1 

 

Conclusions 

The present extended OpenSees shows good performance to deal with the thermo-mechanical analysis of 
structures under fire conditions. Further work should be done to develop a series of temperature-
dependent material class according to different code and make the 3D beam element and shell element 
available for thermo-mechanical analysis . 
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ABSTRACT 

Although the strut and tie approach has become a rational and reasonable approach for the design of non-
flexural members in concrete structures, the approach may lead to suboptimal design, as much of the 
material present in the member is neglected. Other difficulties, such as the amount of time consumed and 
the designer dependency of the solutions, have been encountered in its implementation. To avoid these 
problems, design may be undertaken using conventional linear elastic finite element analysis, which can 
yield more efficient designs with less material usage. However, the conventional linear elastic finite 
element method is also inefficient when the non-flexural members contain stress singularities, such as 
occur in a deep beam with square or rectangular web openings. These stress singularities lead to singular 
stress fields which always violate the yield criterion. The modified linear elastic finite element method 
proposed in this paper successfully removes the stress singularities by adjusting the elastic modulus in 
certain regions. The conventional strut-and-tie method and the new stress redistribution method are used 
to design a deep beam example with two web openings. The performance of the design resulting from the 
new method is assessed through non-linear finite element analysis. The results show that the proposed 
approach is safe, and is also more efficient than the strut-tie approach. 

 

1. Introduction 

The strut-and-tie approach is widely used for the design of non-flexural members, such as deep beams, 
corbels and nibs. This method has proved to be useful in the design and analysis of such disturbed regions 
of structural members (Marti P, 1985). While effective, this strut and tie modelling approach has some 
shortfalls, not only because it only considers the concrete within each compressive strut and does not 
utilize the capacity of the concrete outside of the identified struts, but also because it requires the designer 
to use their experience to identify the most suitable arrangement for the struts and ties. This may be 
difficult for members with complex shape, particularly those containing penetrations (Tjhin TN & 
Kuchma DA, 2002). Consequently designs produced using this approach might be conservative and 
designer-dependent. In another words, such an approach may lead to an inefficient design for members, 
wasting concrete. Since reducing carbon emissions due to construction activity is now of significant 
interest, and the production of concrete is a major generator of carbon, reducing the amount of concrete in 
a design is one way of reducing the carbon emissions of a construction project. 
To avoid these shortcomings of the strut-tie method, the current Australian Concrete design code 
(AS3600) permits the use of linear elastic finite element analysis (LEFEA) to design the reinforced 
concrete members (Standards Australia, 2005). By using LEFEA, the stress field is computed directly 
using the finite element method, eliminating the need for designers to identify a suitable arrangement of 
struts and ties. This allows the contribution of concrete outside the conventional compressive struts to the 
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load carrying of the structure to be included, which means the approach can yield more efficient designs 
with less material usage.  
However, when members contain stress singularities associated with particular geometric discontinuities 
or boundary conditions, such as occur in a deep beam with square or rectangular web openings, the 
conventional linear finite element method cannot be applied, as stresses close to the singularities always 
violate the max stress permitted in the concrete, and the lower bound theorem of plasticity cannot be 
applied (Ashour A & Yang KH, 2008). This paper presents a new approach which overcomes this 
difficulty.  

2. Modified linear elastic finite element method 

This paper proposes a rational approach to solve the above-mentioned stress singularity problem when 
using finite element analysis for the design of deep beams with web openings. For structural design 
considering stress singularities, the actual behaviour of the material should be taken into consideration. 
The existence of stress singularities is not realistic, because engineering materials, including concrete, 
yield or fail locally at some finite level of stress, never reaching the infinite stress state predicted by linear 
elastic stress field analysis (Barber JR, 2002). In reality the concrete at such points would crack, and 
removing the stress singularities altogether. The modified linear elastic finite element method proposed in 
this paper successfully removes the stress singularities by adjusting the elastic modulus in certain regions, 
which effectively reduces local stresses and redistributes them to the surrounding elements. Since the 
redistributed stress field is both in internal equilibrium and equilibrates the applied loads, this stress field 
can be used to design the member, applying the lower bound theory of plasticity. 
It is well-known (Logan DL, 2002; Timoshenko S, 1969) that when applying the finite element method, 
the elastic modulus E is taken as constant when the material is homogeneous and elastic. The approach 
proposed here artificially modifies the constitutive matrix by using an elastic modulus E(s,t) which varies 
in terms of the local spatial coordinates(s-t) of the element, but keeps Poisson’s ratio constant. The 
isoparametric shape functions used to approximate the displacement field are also used to define the 
variation of elastic modulus between nodal values. Thus the constitutive matrix for plane stress is: 
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3 Practical implementation 

In the work reported here, Matlab is used to implement a custom element and to perform the linear finite 
element analysis. In the analysis, when the compressive stress in the beam exceeds the specified 
compressive strength limit, the elastic modulus is adjusted to try to reduce the stress to an acceptable 
value. This iterative process is continued until the entire stress field meets the compressive stress limit. 
This generally involves 4 stages: 
Stage 1: Specify the finite element model with initial constant young’s modulus, and conduct the analysis 
as per usual; Stage 2: If needed, soften the peak stress exceeding the yield criterion by adjusting the 
elastic modulus at appropriate nodes, maintaining the Poisson’s ratio constant all the time; Stage 3: Re-
run the analysis with the modified model and to see whether all the yield criterion are satisfied. If they are 
not, return to stage 2, otherwise continue to stage 4; Stage 4: Find out the suitable reinforcement 
dimension to carry all the principal tensile stresses in the concrete.  
For stage 2, the rules used to adjust the Elastic modulus are: 
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Here, the subscript i indicates the node under consideration, while the superscript k denotes the iteration 

214



 

number. When the relationship is used to adjust the material properties in certain specified areas, the 
effective compressive strength factor specified by the concrete code (Standards Australia, 2005) is taken 
into consideration in this rule. A factorε less than one is chosen to reduce the elastic modulus by a greater 
ratio to improve the rate of convergence. In addition, before proceeding to step 2, the elastic modulus is 
specified as zero at the points of singularity to effectively remove them from the stress field.  
As the resulting stress field is statically admissible and able to satisfy the yield condition (Ashour A & 
Yang KH, 2008), softening the material around the corner is a rational and reasonable way to remove the 
stress singularities and redistribute the stress, it can be used for design. Unlike non-linear finite element 
analysis, the position of reinforcing steel and the thickness of the beam do not need to be defined in 
advance. Non-linear finite element analysis is useful to verify designs, but cannot be used efficiently to 
produce designs. 
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4. Application example  

The design (using '
cf  =25MPa concrete) of a simple deep beam with two rectangular openings with a 

point load (P=1000KN) applied over a bearing length of 500mm at the centre of the beam is investigated. 
To avoid the occurrence of stress singularities in the supports, relatively soft spring supports are assumed. 
The dimensions of the beam are shown as figure 1. For comparison, the two different design approaches 
are used to design this beam, and the cost comparison is shown in Table 1. The difference in the principal 
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compressive stress field between conventional and modified linear stress analysis is plotted in Figure 2.                
From the above example, the conclusion can be drawn that the stress redistribution method solves the 
problem of stress singularities confronted in a conventional Linear Stress Analysis approach and leads to 
a more efficient design than the conventional strut and tie method. 

5. Verification 

To verify the safety of this proposed approach, ABAQUS/CAE is used to conduct non-linear finite 
element analysis of the final design produced by the new approach. The load vs. deflection curve 
(presented in Figure 3) shows that the ultimate mid-span load is about 1240KN, compared to the ultimate 
design load of 1000KN. This result means the design is safe and the approach is reasonable. 
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6. Conclusions and future work 

This paper presents a stress redistribution method based on modified linear elastic finite element analysis, 
which is a new tool for designing complex non-flexural members, such as deep beams with openings. The 
new method was shown to lead to more efficient solutions than the conventional design approaches for 
such concrete structure members. Preliminary tests of the proposed design were performed using non-
linear finite element analysis, which showed the method leads to safe designs. As the stress field resulting 
from this new method is statically admissible and able to satisfy the yield condition, designs generated 
using this method will reach or exceed the ultimate design load, in accordance with the lower bound 
theory of plasticity. Future work should include conducting full scale experimental tests to verify the 
designs produced by this proposed approach. 
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Table 1: Cost Comparison 
Design Approaches Quantity of Steel at Mid-span (

2mm ) Thickness of Concrete ( mm ) 
Conventional Strut-and-Tie 1250 246 

Modified Linear Elastic FEA 970 214 
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ABSTRACT

In recent years, computational homogenisation techniques for simulating complex materials and struc-
tures have evolved to be able to incorporate structural elements and displacement discontinuities in
model formulations. However, their extension to scale-bridging between two models each comprised of
structural elements remains relatively unexplored. Such an extension requires careful modification of
averaging procedures and the microscopic boundary conditions used.

The authors present a structural-to-structural computational homogenisation technique applied to un-
bonded flexible pipes, where large scale response is dominated by interlaminar sliding. Using a spe-
cially developed beam element as the macro-scale model, selection of appropriate boundary conditions
for testing each generalized strain state on a nonlinear shell-based detailed model is discussed in the
context of the Hill-Mandel macrohomogeneity principle. Aspects of the detailed model and computa-
tional issues arising in the detailed model are discussed.

1 INTRODUCTION

The computational homogenisation approach is a well-developed tool for the analysis of composites
and problems involving complex structures at different length scales (Geers et al., 2007). The standard
two-scale first-order homogenisation procedure for continua is a nested algorithm in which a micro-
scale model is activated as a subroutine for selected material points in the macro-scale model. The
macro-scale model passes strains to the subroutine, which tests the Representative Volume Element
(RVE) under appropriate boundary conditions, and returns averaged stresses. The Hill-Mandel principle
of equivalence of virtual work on macro- and micro-scales is used to formulate boundary condition
restrictions and averaging procedures. Recent work (Kouznetsova et al., 2002; Coenen et al., 2010)
has involved extending the first-order computational homogenisation scheme to problems involving
discontinuities, fracture and thin shells. Work on shells involves passing higher-order strain measures
consistently between a continuum and a structural model.

217



Unbonded flexible pipes and risers are key components in the subsea oil and gas industry. Key structural
requirements include high flexural compliance combined with high axial stiffness and high resistance
to external pressure. Analytical tools used for design and operational assessment deal with either 1)
global dynamic analysis of riser configurations, or 2) local fatigue analysis. The coupled nature of
these problems prompts enquiry into whether a multi-scale approach could fulfil both roles, increasing
accuracy by removing the need for modelling assumptions and enabling the practical prediction of the
long-term local effects of large-scale dynamical response of risers to cyclic loads, such as wave motion
and vortex-induced vibration.

2 FLEXIBLE PIPE HOMOGENISATION: SPECIAL FEATURES

The application of computational homogenisation procedures to flexible pipes differs in several regards
from other traditional applications. Firstly, formulations involving structural elements require passing
generalised stresses and strains between the models in a consistent manner, when measures used in
one model may not be explicitly calculated in the other. Secondly, the detailed model is discontinuous;
the ability of components to slide over each other is the principal mechanism governing the global
nonlinear response. This can cause numerical difficulties when testing the RVE under typical boundary
conditions. Thirdly, the detail required by a realistic small-scale model would make a nested solution
algorithm too computationally demanding for practical industrial applications.

The standard first-order computational homogenisation is based on three principles: 1) the Hill-Mandel
macrohomogeneity condition, which states that virtual work done by the stresses at each macroscopic
material point equals the RVE-averaged microscopic virtual work done by stresses on the detailed
model; 2) identification of the continuum deformation gradient of the linearised large-deformation kine-
matic description of the material as a macroscopic strain; measure, and corresponding identification of
the higher-order terms as the microscopic displacement fluctuation field, 3) identity of macroscopic and
RVE-averaged microscopic measures in the limiting case of the RVE volume tending to zero.

To use these principles in the context of a structural-structural homogenisation, each of them must
be modified by 1) replacing continuum with generalised stress and strain measures, 2) replacing the
deformation gradient with a “beam operator” describing the part of the microscopic displacement field
that is a function of the macroscopic generalised strains 3) replacing volumetric averaging with section
averaging

Further details of the formal equivalence and implications for homogenisation procedures will be given
in a forthcoming article (Edmans et al., 2011).

Instead of attempting a nested procedure, we present a framework in which the (modified) computa-
tional homogenisation theory is used to select appropriate boundary conditions for running a series of
simulations on the detailed model. In these analyses, the nonlinear response of the RVE to a chosen
set of macroscopic generalised strains that have clear physical meaning (e.g. bending) is computed.
The stresses resulting from these tests are then averaged using a procedure justified by the modified
theory. This enables a set of generalised stress-strain curves to be produced. A nonlinear macroscopic
constitutive model can then be proposed that approximates these results, the parameters of which can
be determined from curve-fitting. These parameters may then be used for global analyses using the
macroscopic model alone.
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Figure 1: (a) Translational and rotational DOFs of beam(b) Radial DOFs (c) Detailed finite element
model (outer layer and some wires removed)

3 BEAM MODEL

The large-scale analysis uses a three-dimensional beam model. The beam incorporates the flexible pipe
constitutive model developed by Alfano et al. (2009) and Bahtui (2008), embedded in a corotational
element. The constitutive model relating beam stress resultants to generalised strains incorporates two
radial nonstandard strain measures. The relation between generalised stresses and strains is modelled
as generalised non-associative plasticity, displaying characteristic hysteresis in bending. Previous com-
parison of this constitutive model with detailed finite element simulations have shown good agreement
in predicting behaviour.

4 DETAILED MODEL

The detailed model was created using the finite element package ABAQUS 6.9 (Fig. 1 (c)). All phys-
ically distinct components of the pipe were considered as separate entities, modelled with linear shell
elements, with surface-to-surface frictional contact between all components. The pressure armour and
carcass layers of a flexible pipe are self-interlocking strips with complex sections; for this reason, these
layers were modelled as equivalent orthotropic homogenous cylinders with appropriate constants.

The infinite through-thickness stiffness of the shell elements was compensated by enforcing contact
with a penalty method. Following de Souza et al. (2010), penalty stiffnesses were chosen to model
the actual through-thickness compliance of the contacting shells. Independent comparison with other
analytical models showed that this modification significantly improved accuracy.

Periodic boundary conditions were used to implement the four standard generalised strains, while uni-
form traction boundary conditions were used to apply the pressure-related terms. This is because inter-
nal and external pressure data is either prescribed, or is passed to the structural analysis by a coupled
CFD simulation.

5 NUMERICAL RESULTS

To demonstrate the performance of the beam element, the riser configuration shown in Figure 2(a)
was modelled . A sinusoidally varying vertical displacement was applied to the top node. Hysteretic
behaviour near the touch-down point is observed (Fig. 2(b)).
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Figure 2: (a) Riser configuration (b) Top node vertical displacement vs. vertical reaction. Evaluated at
node 1

6 CONCLUSIONS

A homogenisation procedure for the analysis of unbonded flexible pipes is proposed. Based on com-
putational homogenisation principles, a sequential procedure for testing a detailed RVE composed of
shell finite elements and multiple contact interactions is described, aimed at establishing parameters
of a macroscopic beam model. Some modification of the computational homogenisation theory is re-
quired, and numerical issues must be addressed. The authors contend that extension of the compu-
tational homogenisation framework should enable theoretically-justified determination of equivalent
material properties for a wider range of engineering structures.
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ABSTRACT 

The response of structures under different fire scenarios is a complex phenomenon, and in order to 

represent it efficiently, a software is required that can analyse the inherent nonlinear behaviour under 

elevated temperatures due to second order effects of large deflections, progressive softening of materials 

with temperature rise and the effect of thermal expansion.  Furthermore, it is also important for such 

software to have the flexibility of adding new capabilities and to be accessible to users or researchers for 

modification of existing methods and procedures.  A truss element has been implemented within the 

object oriented nonlinear finite element framework OpenSees, primarily designed for earthquake 

engineering simulations, to model the behaviour of truss structures subjected to fire. This extension also 

enables the modelling of trusses under ‘‘fire following earthquake’’ scenarios within the same framework. 

Two truss elements have been developed using Co-rotational and Total Lagrangian formulation taking 

into account an exact geometric transformation between local and global frames of reference. 

Furthermore the element can use a material with nonlinear stress and strain relationship with temperature 

dependent material properties so inelastic effects are accounted for by utilizing appropriate constitutive 

relationships. Several numerical examples are presented to demonstrate the accuracy of the proposed 

numerical procedure. 

 

1  INTRODUCTION  
 

This study describes the procedures for conducting large displacement inelastic analysis of trusses in fire. 

The adopted formulation has been embedded into the object oriented and open source nonlinear finite 

element software framework OpenSees by creating new thermal load, element and material classes. 

 

OpenSees is an object-oriented nonlinear finite element framework primarily designed for earthquake 

engineering simulations. The fact that OpenSees is open-source,modular and oject-oriented makes it 

suitable for adding new capabilities which then will be accessible to users or researchers for modification 

of existing methods and procedures. 

 

The total Lagrangian and co-rotational formulations are adopted in this study. It is important for these 

formulations allow for the large displacements that are experienced in a real fire as well to take into 

account the inelastic effects from material degradation due to elevated temperatures. 

 

Excluding the strain due to creep effect the total strain is equal to the mechanical strain and the thermal 

strain: [1] 

 

εt = εm + εth 

 

Where the thermal strain for a truss element, which considers only thermal expansion of the member, will 

be  

 

εth = α ∆Τ = α (Τheated – Tambient) 
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Furthermore the total strain varies for different formulations. For the TL formulation the total strain will 

be equal the Green-Lagrange strain, while for the co-rotational formulation it will be equal to the 

engineering strain. Thermal strain does not produce any stress, which comes only from the mechanical 

strain.  

σ = σ(εm) 

 

A set of new classes were added in the OpenSees framework to make possible the analysis of trusses in 

fire. These include an elemental load class that provides a uniform temperature load for the elements 

(BarUniformThermalLoad), and elements based on the Total Lagrangian (ThermalTLTruss) and Co-

rotational (ThermalCorotTruss) theory. These elements are also capable of including the inelastic effect of 

material degradation in fire, combined with temperature dependent uniaxial materials that were also 

developed inside the OpenSees framework [2]. 

 

 
Figure 1: A class diagram of the hierarchy of the class added in OpenSees 

 

2  PROCEDURE  
 

In this study the incremental – iterative Newton Raphson algorithm is used for solving the finite element 

equations using a load control integrator. The mechanical load is first applied as the first load step and 

remains constant for the second thermal load step. The temperature of the element is provided as an input. 

The temperature is multiplied by the load factor, as in mechanical analysis, to give the first temperature 

increment. During that increment, the material tangent and the thermal strain are queried from the 

material class in order to obtain a guess for the thermal force in the element for the first iteration which 

will be equal to EAεth (addLoad method). Then, further iterations (update method) follow until the 

equilibrium conditions are satisfied inside a convergence limit and the next increment is then applied. 

During each iteration the tangent stiffness matrix of the element gets updated (getTangentStiff method) as 

well as the material stress gets calculated. At the end of the iterations and before the next increment, the 

resisting force gets updated by removing the thermal force found in that increment from the load resulting 

from the material stress in order to find the actual force in the element (getResistingForce method). 

 

Figure 2 below also shows the main typical methods of an element in OpenSees. 
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ThermalCorrotTruss

+ setDomain (theDomain)

+ update ()

+ getTangentStiff ()

+ addLoad (theLoad, loadFactor)

+ getResistingForce ()

 
Figure 2: A class diagram showing the main methods of an element in OpenSees 

 

 

The drawback of this load controlled procedure is that it cannot follow the equilibrium path beyond the 

limit points and cannot capture snap-through and snap-back buckling. This is the point where failure of 

the element takes place or a temporary loss of stability is experienced and then a post buckling path is 

followed. This drawback is not so important for most simple or determinate structures, but for redundant 

structures local (element) failure does not imply global failure of the whole structure which may be able 

to carry the loads, without the failed member contributing to its load carrying capacity. This is explained 

because redundant structures can find different load paths by which to support additional load when its 

local strength is reached at a single location [3]. Hence, alternative step by step procedures have also to be 

employed to check if the structure will continue to be stable or collapse.  For this reason a dynamic 

procedure is also under development to make that possible in the OpenSees framework [4]. 

3  NUMERICAL EXAMPLE  
 

A numerical example is presented to verify the proposed procedure. The example selected is the 

benchmark provided by Lin et al [5] which was solved analytically using a Total Lagrangian approach. 

For comparison purposes both Total Lagrangian and Co-rotational procedures developed are examined. 

 

 
Figure 3: Member with one fixed end example 

 

A uniaxial bilinear steel material with kinematic hardening (Steel01Thermal) is employed in this study. 

The information required for this material are yield strength (fy), Young’s modulus (E0) and strain 

hardening parameter (b). This material is approximate but computationally efficient. Furthermore, this is 

the same material that was used also by Lin et al. The strain hardening parameter is temperature 

dependent, as reported by Shen and Zhao [6]. 

 

The temperature increments for the OpenSees modelling were applied in 10
o
C steps. 

 

 

223



 

 

Member with one end fixed

0

2

4

6

8

10

12

14

0 100 200 300 400 500 600

Temperature

D
is

p
la

ce
m

e
n

t

TL OpenSees

Analytical

Co-rotational

 
 

The comparison between the analytical and OpenSees results shows very good agreement. Furthermore, 

as expected the OpenSees TL solution is almost identical to the analytical one as it is also based in a TL 

formulation. The CR solution finds slightly higher result by 1mm. 
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ABSTRACT 

Due to the competitive nature of the airline industry and the desire to minimise aircraft weight, there is a 

continual drive to develop lightweight, reliable and more comfortable seating solutions, in particular, the 

development of a new generation slim economy seat.  The key design challenge is to maximise the “living 

space” for the passenger, with strict adherence / compliance to Safety Regulations. 

This paper presents the analysis led design using finite element analysis of an innovative seat concept 

developed by BlueSKy Designers Limited, which has been acclaimed as “The most exciting development 

in aviation in over 30 years” and has won the company numerous awards.  A generous angle of recline 

(40 degrees), movement of the “Seat Pan” along different gradients, and unique single “Forward Beam” 

design, distinguishes “Sleep Seat” from current generation seats.    

Compliance against Static Strength requirements (CS25.561) through a sequential model development 

approach was performed, in order to predict the stress induced in the primary seat structure, against static 

certification requirements.  A critical design parameter is ensuring seat interface loads are below airline 

limits, which resulted in the inclusion of seat stud and track details in the finite element model.   

This stepwise and validated analysis framework, which includes mesh sensitivity studies, modelling of 

bolt-preload, representing bolted joints in FEA and obtaining a converged solution for non-linear FEA 

was essential in order to allow different concepts to be assessed virtually, thereby reducing development 

cycle time.  The findings from this paper demonstrate that the seat is safe against CS 25.561.   

1 INTRODUCTION  
This research provides an assessment of an innovative design called “Sleep Seat” [1], which consists of a 

forward beam, seat leg, Boomerang, and Seat pan as shown in Figure 1.  This innovative design includes 

movement of the seat pan along the gradient maximising the space for leg spread, 40 degree generous 

recline of the backrest within a fixed outer shell, single Forward (FWD) beam design eradicating the 

undercarriage below the seat pan, significant reduction in the part count, and an ultra lightweight design 

saving more than 3kg of mass over existing products [1], [2].   

The objective of the research is to develop a practical modelling methodology that can be used to assist 

designers in assessing the suitability of a chosen seat configuration, through a sound understanding / 

application of the FE Method, together with demonstrating a critical assessment of the quality of the 

numerical results through appropriate verification methods. 

 

2 CERTIFICATION SPECIFICATIONS (CS) USED AS SAFETY GUIDELINES 

CS has been followed as a guideline for safety in this research as it encompasses works of all reverent 

governing bodies in international commercial aviation and agrees to some extent with its US equivalent 

FAR (Federal Aviation Regulations) [3]. CS sections 25.561 and 25.562 give static and dynamic loads 

during emergency landing conditions respectively [4]. As a first step, this paper focuses on static 9g 

compliance in the forward direction, as defined in CS 25.561. 
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As this project was in the conceptual phase, Finite Element Analysis (FEA) was used to compare different 

designs. Going further, this can be considered as a baby step towards “Certification By Analysis (CBA)” 

a programme undertaken by “Federal Aviation Administration (FAA) [5]. To reduce the number of 

variables at initial stage, focus was on successful design of Forward (FWD) beam and leg which are 

critical components of “Primary Load Path (PLP)” subjected to “Forward 9g”. 

 

 

 

 

 

 

 

 

 

 

 

3.  SPREADSHEET FOR INITIAL SIZING OF FORWARD BEAM 

Analytical model for the “FWD beam” was developed (Spreadsheet), which could estimate the bending 

stress induced in it for “Forward 9g” loads, with design variables such as its cross-section and thickness.  

C3D8I (linear brick element with incompatible modes) used in Abaqus/Standard) gave satisfactory 

results, when two brick elements through thickness with aspect ratio of 1:1 in critical areas and 3:1 in 

non-critical areas gave reliable results with optimum solution time and storage requirements.  Good 

agreement between spreadsheet and FEA verified the FE model and demonstrated the usefulness of the 

spreadsheet as a quick and simple conceptual design tool for initial sizing of the FWD beam. 

  

4 SEQUENTIAL FE MODEL DEVELOPMENT FOR THE PRIMARY LOAD PATH 

A stepwise procedure for the development of the leg required an evolution in detailed FE model, where 

each model contains the refinements suggested by results supplied by previous models, resulting in the 

final model containing all necessary details, optimum mesh and boundary conditions (Figure 2) [6].  

 

 

 

 

 

Figure 1 Nomenclature of “Sleep Seat” (Courtesy BlueSky) [1] 

Figure 2 Sequential Development Approach for FE model of the “Primary Load Path (PLP)" 

(left) and cross sectional view of the detailed FE model generated for FWD beam / leg (right) 
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The mesh studies for the leg showed that geometrically versatile tetrahedral elements were a very 

attractive option compared to brick elements, as they provided an 85% reduction in the FE model building 

time and 40% in the solution time, whilst still providing reasonably accurate results. Care should be taken 

to ensure two elements through thickness are used. 

During this stepwise development, a procedure to verify computational accuracy of FEA results was 

drafted. It included checks as reaction force equilibrium, stress difference between “with nodal 

averaging” and “without nodal averaging” and displacement continuity. It was found that, results satisfy 

all the checks. For non-linear FEA, checks such as residual force and moment, ratio of artificial damping 

energy to strain energy, distribution of contact pressure and forces transmitted across interfaces were 

added to above checks. 

 

4.1 FE REPRESENTATION OF BOLTED JOINT IN SEAT 

FWD beam is attached to the leg with the help of two M5 bolts. Three different ways to represent this 

bolted joint in FEA were studied: coincident nodes at FWD beam and leg interface (Case I- preliminary 

model), tied contact (Case II) and actual modelling of studs and corresponding contacts (Case III). 

Flexibility (to absorb initial penetrations), less pre-processing time required (80% lesser than that in Case 

III) and acceptable results; favoured the used of “Tied contact” definition at “FWD beam and leg” 

interface. 

During study of bolted joint between “FWD beam and leg”, a stepwise procedure for FE modelling of 

“Bolt-preload” and its integration with inertia loads (CS 25.561); was developed and implemented.  

 

4.2 METHODOLOGY TO EXTRACT “SEAT INTERFACE LOADS (SIL)” 

Leg designing depends on its strength as well as on SIL i.e. static loads applied by the seat to the floor 

[7]. The challenge was to develop an FE model, which could give enable designers to perform sensitivity 

studies to assess the changes in the resulting stress due to different stud configurations for the applied 

“Forward 9g” loads. Going further, classification of contact pairs in suitable groups for evaluating SIL 

was accomplished through pilot studies, and a systematic approach for extracting SIL using FEA was 

developed. With this study, an “Intermediate” FE model of PLP was completed. 

 

4.3 TECHNIQUES TO HANDLE “RIGID BODY MOTION” 

For static non-linear contact FEA of “Sleep Seat”, two prominent reasons for non-convergence were 

initial penetrations and clearances. Model with initial penetrations, suffers from very high stress levels 

during as penetration is considered as interference fit by the solver, even though unintentional [8]. In case 

of initial clearances, FEA algorithms undergo unrestrained motion and frictional sticking is not effective 

[8]. Use of same element faces in mating area, clever use of “Mesh algorithm” e.g. use “Union Jack R-tri” 

instead of “Standard R-tri”  element and a nominal “Bolt Pre-load” of 1KN – 2KN to close initial gaps 

were some of the techniques, which were successfully used to deal with “Rigid Body Motion”. 

 

5 DESIGN PHASE AND NON-LINEAR FEA OF COMPLETE SEAT 

An elliptical cross-section with two millimetres thickness was chosen for FWD beam using spreadsheet. 

Inserts were added at high stress locations for local reinforcements. “I” section was chosen for leg 

considering the second moment of area, while length of the leg was decided by carefully studying SIL 

induced. 

A non-linear FE model of complete seat structure with total 62 contact pairs with penalty algorithm, 11 

tied contacts, 32 MPC connections (rigid) and 2 MPC connectors with “End Release”, involving material 

and geometric non-linearity was developed, which could give outputs such as stress and interface loads 

when subjected to loads as specified in CS 25.561. Total number of nodes and elements are 354862 and 

285679 respectively. Total mass of this seat structure is around 7 kg. 

The total weight considered for the load application was 87.48kg, which included an occupant mass of 77 
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kg and additional mass to represent in-plane entertainment items. Bottom surfaces of track were 

constrained for all dofs during the simulation and loads were applied at the point, as specified in National 

Aerospace Standard (NAS 809) [9].It was found that the components of PLP (FWD beam and leg) are 

“Safe” against the critical loads as specified in CS 25.561. 

 

6. SUMMARY 

The development of a practical methodology was successfully used during the conceptual design phase, 

which led to significant structural design modifications, which now allows the company to build and test 

a prototype with more confidence.  Methodology includes: 

� FE modelling strategy for individual components through Mesh Sensitivity Study, 

� Framework to critically assess the FEA results, 

� Solutions to deal with “Rigid Body Motion” and “Initial Penetration”. 

� Modelling of “Bolt Pre-load” using Abaqus / Standard, 

� Simplified yet reasonable FE representation of bolted joint in seat structure, 

� Extraction of “Seat Interface loads”, 

� To obtain the converged solution for the complete seat subject to static loads (CS 25.561) 

including all types of non-linearities i.e. contact, material and geometry; using Abaqus / Standard. 

 

7 FUTURE SCOPE 

The next phase of this work is to perform experimental tests to support model validation.  Once static 

compliance has been demonstrated, this project will then consider the dynamic certification requirements 

through the incorporation of an anthropometric hybrid III numerical dummy.  Based upon the findings, 

the numerical tools will be used to optimise the seat structure for minimum weight. 
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ABSTRACT

The use of computational stress analysis as a tool in early design stages faces some challenges. An
application framework and a data structure are proposed to overcome some of the difficulties arising
with such use. The proposed application framework and data structure are implemented using an open-
source CAD kernel and an in-house developed stress analysis software.

1 INTRODUCTION

Designing mechanical products relies strongly on computational stress analysis. This trend is encour-
aged by the rapid developments in computer technologies and in numerical methods. The computational
stress analysis became more accessible to engineers by integrating the stress analysis and CAD into the
same environment where the geometry, the boundary conditions and the analysis results are defined and
displayed graphically.
Despite being integrated into the same working environment the stress analysis and CAD function un-
der two different modes such that whenever the CAD model is modified the stress results are lost and a
new analysis is required. This limitation should not be a problem if only few modifications are needed.
However, for preliminary models where many modifications are necessary this limitation becomes se-
vere. Therefore to a large extent the use of numerical stress analysis is avoided at early design stages
where approximation methods are used instead. When considering that more than 70% of the total life-
cycle costs of a product are determined at the early stages [1] introducing numerical stress analysis to
these stages may significantly reduce the costs. To achieve this it is important to update the stress results
in real-time as the model is being modified.
Different approaches were investigated to achieve real-time stress analysis. One approach is to use the
knowledge available about the model in order to reduce the reanalysis time. Trevelyan et al. used the
first analysis results in order to save time in the reanalysis given that the system matrices and the so-
lution vectors have certain similarities before and after the modifications [2]. Another approach is to

229



Step1

make box

Step2
make cylinder

Step3

subtract 1-2

Step4

make cone

Step5

subtract 3-4

Figure 1: List of steps used to create an object.

reduce the analysis time by using high performance computing [3]. The ultimate aim of this work is
to make computational stress analysis accessible by a wide range of engineers therefore we consider
the first approach here. In particular we expand the approach developed by Trevelyan et al. into three-
dimensional problems.
A key issue in this approach is to establish a relation between the CAD model and the numerical analy-
sis input so that after modifying the model only the necessary parts of the linear system are recomputed
while the unchanged parts are reused as they are. In this work, we propose an application framework
and a data structure that can serve this purpose. An implementation example is shown using an open
source CAD kernel [4] and a real-time stress analysis tool [5].

2 APPLICATION FRAMEWORK AND DATA STRUCTURE

When the first stress analysis software packages were introduced they mainly relied on pre-prepared
data to be input at run time. With the advancement of CAD applications, CAD and analysis were in-
tegrated so that the CAD model is automatically transformed into input data at the analysis run time.
This remains the mainstream level of integration for most of the stress analysis tools available today.
However, for real-time stress analysis this may not be the most suitable level of integration.
A CAD model is usually developed gradually with the geometry evolving through a series of opera-
tions. This series is considered from the analysis point of view as a sequence of models that are not
necessarily related. To overcome this we propose to generate the analysis input when the first model
is introduced and prepare a first set of results. Then it is sufficient to only modify the linear system
according to the operations added to the series and subsequently update the results.
The proposed framework here describes the solid model as a list of operations/steps, as illustrated in
Figure 1. The last step of the list builds/updates the data structure. Using Object Oriented Programming
(OOP) the operations can be constructed as objects while the list can be expressed as a double linked list
where operations can easily be added or removed. Table 1 displays a list of the classes that are used to
build the application framework and the data structure. The letter C at the beginning of a name indicates
a class while S indicates a structure. Double precision is used for numerical quantities.
The structures SLocation and SSize define the location and the dimensions of a geometrical shape
while STractions and SDisplacements define a set of boundary conditions. The CStep class
may only store a single operation that is needed to create a shape, modify it or apply boundary condi-
tions to it. The CList class is the list of steps that defines the solid model and any modifications to
this model. The structures SVertex, SEdge and SFace represent the geometry of the solid model in
the data structure while SBC represents the boundary conditions. The CBoundaryGeom class stores
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Class name Member function Data member

CStep CreateBox() SLocation[]
CreateCone() SSize[]
CreateCyl() SDisplacements[]
CreateBoolean() STractions[]
AddBoundryCond()

CList GetFirst() CurrentStep : CStep
GetLast() FirstStep : CStep
GetCurrent() LastStep : CStep
Remove(CStep)
Add(CStep)
Replace(CStep, CStep)

CDoc Update() ListOfSteps : CList

CBoundaryGeom UpdateGeom() SVertex[]
UpdateBC() SEdge[]

SFace[]
SBC[]

CMesh CreateMesh() SNode[]
UpdateMesh() SElement[]

CAnalysis BuildElmtMtrx() ElmMtrx[]
BuildLnrSys() SLinearSys[]
UpdateLnrSys()

Table 1: Classes used to create and manipulate the objects of the application framework and data struc-
ture.

the geometric data structure and updates it. The CMesh class creates, stores and updates the mesh.
The CAnalysis class creates the elementary matrices and assembles them into the system matrix
to build the linear system and updates it. The CDoc class stores the model list of steps and com-
municates with the CBoundaryGeom, the CMesh and the CAnalysis classes whenever a step is
added to or removed from the list. This is done through the procedure Update() in CDoc which ac-
tivates the procedures UpdateGeom() and UpdateBC() in CBoundaryGeom, CreateMesh()
or UpdateMesh() in CMesh and BuildLnrSys() or UpdateLnrSys() in CAnalysis to up-
date the data structure and to build or to update the mesh and the linear system of equations.

3 IMPLEMENTATION IN A REAL-TIME STRESS ANALYSIS TOOL

The application framework and data structure have been developed in MS Visual C++ 2005 and us-
ing OpenCASCADE, an open-source CAD kernel [4], which provides a ready means of implementa-
tion of general solid modelling functionality. The application framework is applied using an in-house
developed stress analysis software [5] that uses the boundary element method. However, the appli-
cation framework might equally be useful when implemented with other methods such as the finite
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element method. The solid model is built by creating instances of the class CStep and adding them
to ListOfSteps. When the stress results are to be displayed for the first time the model is meshed,
the system matrix is assembled and the linear system is solved. If the model is to be modified a new
instance of CStep is added to ListOfSteps. This activates the Update() procedure in the CDoc
class instance, thus, the data structure, the mesh and the linear system are updated. Subsequently, the
linear system is re-solved.
The real-time aspect provides the user with the results while the modification is still being applied.
For example, when the user moves a face of the solid model from position A to position B the data
structure, the mesh and the linear system are updated simultaneously as the mouse cursor is still being
moved between the two positions. Updating the linear system frequently ensures smaller changes be-
tween two consecutive updates and, hence, the solution of the system before being updated can be a
good approximation of the updated system solution. This can be useful in different ways. For example,
this approximation can be used as an initial guess for solving the updated system iteratively, which
may efficiently reduce the required number of iterations. However, updating the linear system too often
may become prohibitively expensive in term of computations. Optimisation of this aspect is a topic that
remains under consideration by the authors.
To reduce the time needed to update the system matrix and re-solve the linear system, the
UpdateMesh() procedure minimizes the number of elements to be modified which minimizes the
number of entries in the system matrix that must be updated. Before adding or removing any elements
the procedure distorts the existing elements as long as they are of an acceptable quality, which retains
the size of the system matrix. Keeping the size of the system matrix and minimizing the number of to-
be-updated entries reduce the time needed to assemble the system matrix. Other strategies to reduce the
reanalysis time of a two-dimensional problem by up to 80% are proposed in [2]. However, the solution
of three-dimensional problems is more time demanding and an 80% reduction may not be sufficient to
achieve real-time. This will be discussed further in future work.

4 CONCLUSION

An application framework and a data structure that are useful to achieve real-time performance in stress
analysis software are proposed. The application framework and data structure can effectively reduce the
reanalysis time by improving the integration level of CAD and stress analysis. Their implementation
using an open-source solid modeling kernel is explained.
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ABSTRACT 

An experiment is being undertaken to understand the response of earthquake damaged reinforced concrete 

frames subjected to a post earthquake fire. To model the experiment, a number of new modules are being 

developed for the open source and object-oriented finite element software framework, OpenSees, so that 

the software could be used to perform thermo-mechanical analyses. The development began with 

modification of the elastic beam-column element and the elemental load classes. In addition to the 

existing 2D linear element 3D linear element and thermal load classes have been developed. A series of 

benchmark problems (an elastic beam with various boundary constraints subjected to uniformly 

distributed and thermal loads) have been solved using OpenSees and ABAQUS. The results obtained 

match well with each other and with analytical solutions (where available). New two dimensional 

nonlinear beam-column elements have been added to OpenSees by introducing thermally induced load, 

temperature dependent materials and section force-deformation relationships. These elements have been 

developed from the existing dispbeamcolumn2d and forcebeamcolumn2d OpenSees classes. The results 

from undertaking a number of benchmark tests and modelling a real fire test using the newly developed 

classes show that the additions so far have been reasonably successful. 

 

1  INTRODUCTION  

With increasing urbanisation and industrialisation earthquakes represent an ever greater risk to life, 

livelihoods and to the sustainability of society’s rapid development. In built-up areas, especially major 

cities with tall buildings and extensive gas mains, this risk is compounded by post earthquake fires.  In 

fact, losses resulting from fires developing soon after the earthquake may be comparable to those 

resulting from the shaking [1]. The risk is certainly increased by the hampering of fire response due to the 

extreme traffic congestion, collapsed houses and buildings, rubble in the streets, the concomitance of 

multiple fires and the possible difficulties in water supply soon after the earthquake [2].   

To develop a comprehensive earthquake and fire research programme based on exploiting the 

complementary strengths of the collaborating institutions, a project funded by UKIERI is currently 

underway. Objectives of this project may be stated as: a) Developing a detailed understanding of the 

mechanics of the response of earthquake damaged structures (primarily reinforced concrete frames) 

subjected to fire (through small and large scale testing and developing computational models); b) 

Developing mathematical models for determining the reliability of structural components and structures 

subjected to compound seismic and fire loading, which account for the uncertainties associated with the 

loading and damage estimation, to enable realistic quantification of performance. 

To model the experiment, a software named OpenSees has been developed so that it could be used to 

perform thermo-mechanical analyses. OpenSees is an open source object oriented software framework 

developed at UC Berekeley and currently supported by PEER and Nees. OpenSees has so far been 

focussed on providing an advanced computational tool for analysing the non-linear response of structural 

frames subjected to seismic excitations [3]. A key feature of OpenSees is the interchangeability of 

components and the ability to integrate existing libraries and new components into the framework (not 
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just new element classes) without the need to change the existing code [4].  However one of the 

limitations of OpenSees is that thermal analysis can not be carried out by it up to date. In order to 

overcome this flaw so that it can be used to model the experiment of UKIERI, some new classes have 

been added into OpenSees and the some thermal analysis has been performed. The compared results show 

an acceptable agreement between theory, OpenSees, Abaqus.  

 

2  NEWLY ADDED OPENSEES CLASSES 

As mentioned above, there is not much work to do to let the OpenSees “recognize” a new class, and this 

advantage can be shown by the progress of introducing thermal action to the elastic beam-column 

element. A new derived class of ElementalLoad, called Beam2dThermalAction or Beam3dThermalAction, 

and a new member function of elastic beam-column element were all required to add into OpenSees to 

perform the linear analysis of elastic element in thermal loading. 

 
Fig. 1  New classes introduced to the current OpenSees framework for performing thermo-mechanical analyses 

It is more complicated to perform a thermal analysis to the nonlinear beam-column element. Material and 

SectionForceDeformation classes’ information has to be passed to the element class while carrying out 

the nonlinear analysis and all of these classes must be temperature related. Fig. 1 above shows the new 

classes that have been implemented within the existing framework (the original OpenSees classed are 

identified by the greyed boxes).   

3  A BENCHMARK TEST FOR ELASTIC BEAM-COLUMN ELEMENT   

 
Fig. 2 An end-restrained elastic beam under udl and thermal loading 

A series of benchmark problems have been used to test the new thermo-mechanical code in OpenSees. 

For instance one was to predict the mid-span deflection, end rotation and axial force in an elastic beam 
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(Young’s Modulus E = 10GPa, area of cross section A = 9×104mm2) under udl and thermal loading (Ttop 

= 20C, Tbottom = 800C, thermal expansion coefficient α = 12×106 /C) both ends of which are restrained in 

translation (Fig. 2), however the rotations are free. Analytical, OpenSees and ABAQUS solutions are 

shown in Table 1, all of which are in agreement. 
 udl thermal udl and thermal 

analytical OpenSees ABAQUS analytical OpenSees ABAQUS analytical OpenSees ABAQUS 

δy(mm) 2.5 2.5 2.51 140.678 140.4 140.4 143.178 142.9 142.91 

θz(rad) 0.133 0.133 0.133 0.936 0.936 0.936 0.0949 0.0949 0.0949 

R(kN) 0 0 0 4212 4212 4120 4212 4212 4120 

Table 1 compared results among analytical, OpenSees and ABAQUA 

4  MODELLING OF AN TEST FRAME 

An RC frame is being tested in India under simulated earthquake damage and a subsequent fire. To 

predict the behaviour of the frame, a two dimension frame model has been analysed. The model was at 

first subjected to a gradually increased cycle of lateral displacements after loading the columns and the 

slab/beams with gravity loads. The complete analysis was carried out over a number of steps. In the first 

step the frame was subjected to increasing quasi-static cyclic displacements as shown in Figure 3. 

Displacement control was used for the analysis with node 1 (see Figure 4) regarded as the control point 

with a maximum displacement of approximately 200mm. 

 

 
Fig.3. Frame model and the displacement – force curve of control node 1 
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Fig.4. Frame model and the displacement – force curve of control node 1 
The Figure 4 shows the complete force-displacement plot node 1. The plot shows that the analysis was 

carried until maximum displacements of just under 200mm were reached on both sides. The displacement 

was then reduced until the force at the control point become zero, leaving a permanent residual 

displacement of approximately 130mm. The displacement corresponding to zero force was obtained from 

an earlier analysis.     

After the damage inducing cyclic displacement step, the frame was subjected to a 1000
o
C constant fire 

lasting 3600 seconds. An interesting feature of the behaviour was that the frame seemed to “stiffen” 

because of the fire. The absolute displacement of node 1 decreased from around -140mm to -80mm under 

fire until the maximum (exposed face) temperature of the beam reached 450
o
C, and then it dropped to 

around -130mm at the end of the heating (Fig. 5). The deflection at the midspan of the upper beam is also 

shown in Fig. 5 which shows relatively low values as the current model lumps the slab and beam sections 

together to form the beam. The test results are still awaited, however it is expected that the slab will 

produce greater deflections after the fire than possible with this 2D model 

  

 

 

 

 

 

 
 

 

Fig.4. Displacements of node 1, 2 and 3 

4  CONCLUSION 

A fully nonlinear 2D thermo-mechanical frame analysis capability has been added to OpenSees and had 

been tested against a number of benchmark problems to ensure that it is working correctly. It has also 

been combined with the native nonlinear static analysis capability in OpenSees to model damaged frames 

subjected to fire. Open source codes offer an excellent opportunity for researchers to collaborate across 

geographical boundaries and build a truly international community to solve engineering problems that are 

of common concern. This work is a small contribution to the OpenSees movement and considerable 

further development is in train. Future developments will include full 3D thermo-mechanical analyses for 

frames by further developing OpenSees beam and shell elements. 
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ABSTRACT 

It is an important practice to implement the methodology of Performance-based seismic evaluation 

(PBSE) for reinforced concrete (RC) substructures in bridges. With PBSE, more considerations have 

been focused on preserving the structure’s serviceability and integrity during and after the earthquake 

incident.  

To investigate the rate of damage at a structure due to a seismic motion, a dynamic FE analysis, with 

Rankine fracture model for quasi-brittle materials, is conducted for a shaking table multidimensional 

seismic excitation experiment. The aim is to seismically evaluate the bridge substructure based on the 

fracture state that develops at the column base. Crack initiation and propagation, spalling of the 

concrete cover, and buckling of the rebar are all detected along the time history of the analysis. Such 

information can be used to evaluate the seismic behaviour of bridge piers. The evaluation can also be 

extended for piers with seismically isolated bearings (SIB), to achieve an optimum energy dissipation 

with suitable structural serviceability.  

 

Introduction  

From 1990-to date, the Eurocode 8 has laid a new base for the so called capacity design strategy 

which has adopted deformation-based and energy-based approaches to reach a seismic design. The 

philosophy of the capacity design is to dissipate energy throughout the building itself, throughout 

‘plastic hinges’, i.e. controlling the failure mode & position. 

 A strong-column weak-beam design strategy would be adopted to control the initiation of plastic 

hinges, which act as 'hysteretic damping devices' that would bring the structure to some balanced 

energy state and force equilibrium. Plastic hinges would control the failure of a structure to the 

minimum extent in order to increase life safety measures, but the resulting damage is still not 

repairable.  

Both 1994's North Bridge earthquake and 1995's Kobe earthquake resulted a huge economic loss, and 

people started to think about preserving a structure's serviceability as much as life safety. This brought 

up what is known as Performance-based strategy which focuses on limiting the expected damage in 

the design to maintain the structure’s serviceability after the earthquake incident. 

This should bring us to the field of seismic evaluation of damage in RC structures, which requires 

knowledge of fracture mechanism and simulation of crack growth as the structure is subjected to the 

seismic excitement. Performance-based seismic design is used to ensure that specific damage-based 

criteria are met [1]. A performance objective represents a specific risk, stated in terms of the desired 

structural behaviour (or damage state) associated with a specific level of earthquake demand (or 

seismic hazard) [2]. In concern with bridges, Sung et al [3] stated that conventional seismic evaluation 

of existing bridges show inaccurate and unreliable information since that they use a strength-based 

concept to indirectly estimate the non-linear behaviour of structures. 

Recent studies have advised the use of energy concepts as an alternative way to the traditional design 

strategies for the identification of both seismic demands imposed by the earthquakes and the structure 
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capacities to meet with such demands [4]. Decanini and Mollaioli [4] stated that the energy balance 

formulation is much more effective in concept than the force equilibrium equation since it provides an 

explicit control of balance over the input and dissipated energy. The considered energy is the inelastic 

energy, which is the sum of the hysteretic energy (EH) and damping energy (Eξ). The hysteretic energy 

(EH) is an important demand descriptor for damage potential of the ground motion, and it is a function 

of the Displacement-Ductility ratio of the structure (uy = umax/µ).  

A seismic performance-based design of a structure implies that the seismic capacity of a structural 

response should meet the seismic demand of that structure under the target ground motion excitations. 

However, when a shortage of seismic capacity exists, certain damage would occur as corresponding to 

that shortage. It is the damage index (d) that expresses that shortage of efficiency in the structure, or it 

is the fragility index (Pf) that describes the probability of exceeding the damage state [5]. Most studies 

on fragility analysis of bridges use column ductility as the primary damage measure [5]. However, 

other effective damage indicators are based on energy dissipation. One of the best known local 

damage indices is the one proposed by Park and Ang [6], which defines a linear relationship between 

the displacement and a damage index, yet involves the ductility and rate of dissipative energy.  

As a qualitative descriptive approach, the HAZUS 97 technical manual to estimate structure loss in 

bridges due to lateral earthquake movements determines the damage states as they vary between (No 

damage –to- Complete damage state) [7]. HAZUS was used in an analytical study on typical bridges 

[5], in which damage states were classified in terms of ductility measures and displacement-based 

domains. There seems to be an agreement between researchers on the fact that the earthquake damage 

occurs not only due to maximum deformation (or max ductility) attained, but it is associated with the 

hysteretic energy dissipated by the structure as well [2].  

 

Simulation of fracture and Modelling of Specimen 
 

It is quite significant to understand the way fracture occurs theoretically and computationally. In the 

previously discussed literature, damage was determined through measuring energy and deformation 

parameters but not through inelastic stresses and softening strains, which control the fracturing 

mechanism. Once Gauss stresses reach the failure point, the material is said to have entered the 

softening stage, in which inelastic strains are determined according to the softening curve stiffness   , 
which is a function of the fracture energy    of the material.  

Release of the fracture energy rate     is dependent on the degree of damage. Integrating over a 

localization band width     for a constant slope softening model gives: 

 
  
    
   

      
  

  
 

Where,     is the concrete tensile strength, and    is the stress-strain modulus at the softening stage. 

The fracture energy    for concrete is ranging between 100 and 150 (N/m) (J/m), which is assumed to 

be released during the softening stage. Once all of the fracture energy in the infinitesimal element is 

released, i.e. work of softening strains is completed and stresses at that Gauss point drop to zero, a 

crack initiates.  

In this research, conducted a computational dynamic analysis of 3D Finite/Discrete tetrahedral 

elements using the ( ELFEN 3.7.1 ) software. The ELFEN Explicit code is provided with rate 

independent models such as the Rankine fracture model and the Mohr-Coulomb Model with tension 

cut-off envelope, which are designated to model fracture in quasi-Brittle materials such as concrete. 

The analysed model simulates a shaking table experiment that was conducted for a RC bridge column, 

subjected to a bidirectional seismic excitation of Kobe earthquake. This loading implements many 

structural hazards and raise challenges for seismic design tasks. However, it is a low strain-rate 

motion, and thus, a plastic strain-rate function is not required in the non-linear algorithm to update the 

plastic strains.  

The model is vertically symmetric and subjected to x-direction loading only to reduce the substantial 

computation time and memory required. In addition, only 10-seconds time history is analysed. 
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The discrete properties such as the normal penalties, tangential penalties, buffer zone, smallest 

element size and others belong to the Post-fracture process. However, in this particular seismic 

motion both Normal and Tangential Penalties of the Post-fracture parameters are quite effective in 

conducting the overall fracture process, and need to be tolerated until the simulated damage match the 

damaged column of the experiment. No specific interpretation was found for this cause and effect, but 

it was concluded that oscillatory low-rate strains motions may require special values for the post-

fracture parameters. 

  

Analysis and discussion of Results 

 
The bridge column is modelled by the ELFEN code to analyse its response when it is subjected to 

Kobe Ground motion. It can be clearly noticed, in this particular example, that neither time-history 

nor hysteresis loops representations of the structure’s mass are able to predict the rate of damage in its 

early or late stages. However, failure fracture state of elements (or FAILFC) expresses the percentage 

of fracture propagation that those elements experience. However, not all failed elements could 

become fully damaged, but rather have initiative fractures and micro fractures, as according to the 

fracture theory. Elements probability to reach severe fracture propagation depends on the seismic 

demand of the oscillation of the non-periodic ground motion imposed on the structure. 

Such failure-fracture history can be useful to researchers to understand the probability of fracture 

propagation in conjunction with other measures of a structure’s response such as the time history and 

hysteresis loops. Figures (1) and (2) show a 3-catigory display on the time history based on the 

change of fractured failure detected at the column base. They are; as follows: 1
st
 category starts at 2.7 

seconds, 2ed category starts at 4.0 seconds and 3ed category starts at 5.05 seconds until end of 

analysis. The time history of the top mass displacement relative to base displacement can also be 

classified based on this categorization. Points of crack propagations, in figure (1), are mostly seen 

when relative displacements reach maximum values, but this is not necessarily true for every crack 

propagation. In fact, few other large displacements are not associated with any crack propagation.  

This classification of the fractured failure can be very useful to define a range of qualitative damage 

severity for the specific problem, starting from trivial damage rates till non-repairable damage.  

Images of simulated fractures show that the first crack occurs at 3.3 seconds with elements’ fractured 

failure between 0.37 and 0.51. Then a second crack occurs at 3.95 seconds with failure between 0.53 

and 0.62. The 3
rd

, 4
th
, 5

th
 and 6

th
 cracks occur at 4.0, 4.95, 5.05 and 5.10 seconds respectively. At 

further excitements, the structure remains the same with no more propagation until the end of 

analysis.  

 

   
 
Figure(1):Crack points &failure stages in Time History Figure(2):Crack points & failure stages in fracture index 

 

In contrast to other oscillation responses, the hysteresis loops by Kobe motion shown in figure (3) 

shows some degree of inconsistency of path in the force-deformation relation. This is due to the shear 

mode response of this particular RC column under the Kobe excitement. In this analysis, the 

consequent damage has been relatively low, and the structure did not suffer spalling of the column 

concrete cover or buckling of the rebar. This investigation has been made to cover light failure 
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responses. Severe cases are to be conducted respectively under stronger ground motions to investigate 

progressive failure responses. Moreover, this analysis could be extended with base–isolated 

structures, in which seismic energy is dissipated through both isolation mechanism and the plastic 

hinge at the column base. 
 

 

   
 
Figure(3): Crack points in Hysteresis Loops.                                       Figre(4): Fracture failure spots in model 

 

Conclusion 

1- Evaluation of seismic performance for reinforced concrete bridge columns can rely on 

damaged-based fracture analyses, with low uncertainty, to interpret dissipative energy, probability of 

damage propagation and the structure's capacity to resist earthquake demand imposed on the structure. 

2- In this specific example, neither time-history nor the hysteresis loops displays were able to 

predict thr rate of damage in its early or late stages.   

3- Based on failure of fracture outcome, time history of this specimen can be divided into 3 

categories which specify different failure stages for the excited structure. The fracture classification 

can be very useful to define a qualitative range of damage severity for the specific problem, starting 

from trivial damage till non-repairable damage. 

4- In respect to this analysis, further extended work can be conducted concerning a structure’s 

progressive failure and seismic isolation analysis. Both are needed in earthquake engineering and 

bridge structures dynamics. 
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ABSTRACT

In this paper, the linear free flexural vibration of cracked isotropic and specially orthotropic plates
is studied using the extended finite element method. The mixed interpolation technique of the well-
established MITC4 [1] quadrilateral finite element with 12 standard degrees of freedom per element
is used for this study. The natural frequencies of simply supported square plates are computed as a
function of crack length and crack location.

1 INTRODUCTION

In this paper, we apply the extended finite element method (XFEM) to study the free flexural vibrations
of cracked isotropic and specially orthotropic plates. It is known that cracks or local defects affect the
dynamic response of a structural member. This is because, the presence of the crack introduces local
flexibility and anisotropy. Moreover the crack will open andclose depending on the vibration ampli-
tude. The vibration of cracked plates was studied as early as1969 by Lynn and Kumbasar [2] who used
a Green’s function approach. Later, in 1972, Stahl and Keer [3] studied the vibration of cracked rectan-
gular plates using elasticity methods. The other numericalmethods that are used to study the dynamic
response and instability of plates with cracks or local defects are: (1) Finite fourier series transform [4];
(2) Rayleigh-Ritz Method [5]; (3) harmonic balance method [6]; and (4) finite element method [7, 8].
And recently, XFEM has been applied to study the vibration ofcracked isotropic plates [9]. Their study
focussed on center and edge cracks with simply supported andclamped boundary conditions. In this
paper, we carry out a parametric study on the influence of crack location and crack length on the natu-
ral frequencies of isotropic plates with proper use of enrichment functions described in [10] using the
stabilized MITC4 element [1].
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2 Numerical results

In this section, we present the natural frequencies of cracked isotropic plates using the extended MITC4
formulation [10] for simply supported square plate. In all cases, we present the non-dimensionalized

free flexural frequencies as,Ω = ωa2
√

ρh

D
, whereD = Eh

3

12(1−ν2)
is the bending rigidity of the plate

andρ is the mass density. The effect of crack length and crack location on the natural frequencies are
studied. Based on progressive mesh refinement, a30 × 30 structured mesh is found to be adequate to
model the full plate for the present analysis. Consider a plate of uniform thickness,h and with length
and width asa and b, respectively. Figure (1) shows a plate with all edges simply supported with a
center crack of lengthc. The boundary conditions for this study are:

wo = θy = 0 along x = 0, a (1a)

wo = θx = 0 along y = 0, b (1b)

x
a

b

c

y

Figure 1: Plate with a center crack and all edges simply supported

Table 1: Non-dimensionalized natural frequency for a simply supported square plate with a center crack
for h/a=0.001

c/a Mode 1 Mode 2
Ref [11] Present Ref [11] Present

0.0 19.74 19.74 49.35 49.38
0.2 19.38 19.40 49.16 49.85
0.4 18.44 18.50 46.44 47.27
0.6 17.33 17.37 37.75 38.92
0.8 16.47 16.54 27.43 28.28

The influence of the crack length ratio(c/a) on the first two natural frequencies for a square plate
(a/b = 1) with thickness,h/a = 0.001 are shown in Table 1. It is observed that as the crack length
ratio increases, the frequency decreases for both modes. This is due to the fact that increasing the crack
length increases local flexibility and thus decreases the frequency.

Figure (2) shows the influence of the crack location on the natural frequency of a square plate with
thicknessh/a =0.001 and crack length ratio,c/a =0.2. It is observed that the natural frequency of
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Figure 2: Natural frequency (first mode) vs position of crackalong thex− and they− axis for a square
plate with(a/b = 1) with thickness,h/a = 0.001 and crack length,c/a = 0.2.

the plate monotonically decreases as the crack moves along the edges and towards the center of these
edges. The natural frequency of the plate is maximum when thedamage is situated at the corner. As the
crack moves along the center lines of the plate from the edgesand towards the center of the plate, the
natural frequency increases up to a certain distance and then decreases. When the crack is situated at
the center of the plate, the frequency is minimum.
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Figure 3: Fundamental frequency (mode 1) as a function of crack length for different fiber orientation
(E1/E2 = 25, G12 = G13 = 0.5E2, G13 = 0.2E2, ν12 = 0.2E2). θ is the orientation of the fiber.

Next, the influence of fiber orientation and the crack length on the fundamental frequency of a square
specially orthotropic plate is studied. The non-dimensionalized frequency,Ω = ω(a2/h)

√

ρ/E2 is
plotted as a function of crack length for different fiber orientations. It can be seen that the frequency
decreases as the crack length increases due to the loss of material stiffness. For a fixed crack length,
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the frequency intially increases until the fiber orientation reaches,θ = 45o. With further increase in the
fiber orientation, the frequency decreases. Due to the inherent anisotropic property of the material, the
solution lacks symmetry. This is shown in Figure (3).

3 Conclusion

In this paper, we used the extended finite element method to study the dynamic response of cracked
isotropic and specially orthotropic plates. A stabilized MITC4 element with appropriate enrichment is
used for the study. The influence of the crack length and cracklocation on the natural frequency are
studied. It is seen that with increase in crack length, the natural frequency decreases and is minimum
when the crack is situated at the center of the plate. The effect of fiber orientation and the crack length
on the fundamental frequency of specially orthotropic material is also studied. The unsymmetric nature
of material property is reflected in the response of the plate. It is seen that XFEM is an effective method
to study the dynamic response of cracked structures.
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ABSTRACT

We present a simple projected quasi-Newton (PQN) approach for dealing with frictional contact con-
straints in multibody dynamic simulations. A single matrix-vector product is required per iteration,
rendering the method attractive in the context of parallel computations. Our approach often performs
comparably with the commonly used Gauss-Seidel scheme, while having a much lower communication
cost in parallel. The implementation is available at http://code.google.com/p/solfec.

1 METHOD

Let U collect 3-component relative contact point velocities andR collect 3-component contact re-
actions. At contact points we consider a minimalistic interface law, reflecting the core difficulties
related to the lack of smoothness and the non-associated character of friction. In terms of normal
behaviour we employ the velocity Signorini condition,UαN ≥ 0, RαN ≥ 0, UαNRαN = 0. In
terms of shearing behavior we utilize the Coulomb law,Rα ∈ interior(Kα) ⇒ UαT = 0 and
Rα ∈ boundary(Kα) ⇒ UαT = −γRαT , whereγ > 0. The friction coneKα is defined as

Kα = {Rα : ‖RαT ‖ ≤ µαRαN , RαN ≥ 0} (1)

whereµα is the coefficient of friction. It has been shown by De Saxcé and Feng [1], that the Signorini-
Coulomb law can be expressed in a compact form

−

[
UαT

UαN + µα ‖UαT ‖

]

∈ NKα
(Rα) (2)

whereNKα
stands for the normal cone of the setKα. For a convex setA the normal coneNA (R) at

pointR ∈ A is defined as the set of all vectorsV such that〈V,S − R〉 ≤ 0 for all S ∈ A. Let us now
define
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F (R) =







...

UαT (R)
UαN (R) + µα ‖UαT (R)‖

...







(3)

and

K =
⋃

α

Kα (4)

where the dependenceUα (R) is linearU = WR+B, andR is a collection ofRα for α ∈ {1, ..., ν}.
Formula (2) states, that the frictional contact constraints are satisfied if−F (R) belongs to the normal
cone of the friction cone atR. Hence

−F (R) = R −F (R) − projK (R −F (R)) (5)

which can be reduced to the usual projection formulaR = projK (R− F (R)). Let us not do it though,
but rather define a vector field

m (S) = S− projK (S) . (6)

We can rewrite (2) as

C (R) = F (R) + m (R− F (R)) = 0 andR ∈ K, (7)

a root finding problem defined withing the friction cone. Since C (R) is not smooth, to compute∇C

we generalize the approach from [2], where only the self-dual case (friction coefficient equal to 1) was
considered. Our idea is to employ the following projected Newton step

R
k+1 = projK

[

R
k
− A

−1
C (R)

]

(8)

so that, as required, the iterates remain within the friction cone and whereA ≃ ∇C is an easy to invert
approximation of∇C. Since in many practical situations∇C is singular, we cannot hope to employ
∇C. The relative velocityU is first updated in step (a) of Algorithm 1. This is the only step requiring
parallel communication: each processor stores a subset of constrains and a portion of theW operator.
We then compute the right hand sideC and the diagonal3 × 3 blocks∇Cαα. SinceA is a rather poor
approximation of∇C, in step (c) we employ aθ-damping involving the previous increment, where
θ ∈ (0, 1]. We note that smoothing is only employed in step (b). Projection projK [·] and the merit
functiong (R) do not employ smoothing, where

g (R) =
ν∑

α=1

〈

W
−1
ααCα (R) ,Cα (R)

〉

/

ν∑

α=1

〈

W
−1
ααBα,Bα

〉

, (9)

B collects the relative local velocities of an unconstrainedmotion,C (R) has the dimension of velocity,
andWαα are the diagonal3 × 3 blocks ofW.
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Algorithm 1 The projected quasi-Newton method.
PQN(R, θ, γ, n, ω):

1. △R
0 = 0, k = 0.

2. Do

(a) U
k = WR

k + B.

(b) ComputeCk andA
k = diag3×3

[

∇C
k
αα

]

using smoothingω.

(c) △R
k+1 = (1 − θ)△R

k
− θ

(

A
k
)
−1

C
k.

(d) R
k+1 = projK

[

R
k + △R

k+1
]

.

(e) k = k + 1.

while g
(

R
k
)

≥ γ andk < n.

Figure 1: Stack of rigid cubes.

2 EXAMPLE

Figure 1 pictures an 8x8x8 stack of 1x1x1 rigid cubes with material properties 1E3, 0.3 for the mass
density and the coefficient of Coulomb friction. The cubes rest on a rigid foundation and are subject to
the gravity of value 10. Two cases are compared: a staticallyoverdetermined case with 5000 contact
points (includes edge to edge, vertex to vertex and surface to surface contacts) and a well conditioned
case with 1400 (surface to surface) contacts. The PQN solverfrom Algorithm 1 is compared against
the classical Gauss-Seidel (GS) solver [3]. The damping parameterθ = 0.25. The iteration histories
for time zero and zero initial reaction guess are presented in Figure 2. The PQN solver converges,
even though it is a nonlinear solver based on the Jacobi update paradigm (noteworthy in itself). The
convergence rate of PQN is slower than of GS for the case with 1400 contact points. On the other
hand, for the ill-conditioned case the convergence rate of both solvers is comparable. In the context
of distributed memory computations we take advantage of thelatter property and use the PQN solver,
which allows for a significant saving of communication time which dominates the solver runtimes for
large numbers of processors.
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Figure 2: Iteration histories for time zero and zero initialreaction guess. The ill-conditioned case on the
left and the well-conditioned case on the right.
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ABSTRACT 

This paper deals with the structural analysis of a novel post-tensioned modular system (PTMS) made of 
tubular steel frames and tie rods. It firstly introduces the structural characteristics of the post-tensioned 
modular system. A simplified computational model is then presented, which incorporates the interaction 
between the modular frames and the tensioning rods. Example analysis is given to illustrate the 
effectiveness of the simplified modelling methodology in predicting the global as well as the essential 
local responses under gravitational and applied lateral loads. 

 

1  INTRODUCTION  

Lightweight steel structure is increasingly used in the modern building construction. Apart from pre-
fabricated structural components such as curtain wall, ceiling and floor, self-contained modular units are 
also being developed. Building systems constructed by assembling modular units are sometimes called 
open house system [1], volumetric structure [2], or modular steel building [3]. The general advantages of 
module systems include higher accuracy and efficiency of production, shorter construction period, 
reduced use of skilled labour for on-site work, lower life-cycle cost, less construction waste, and thus 
generally improved sustainability. 
 In this study, a novel modular system, referred to herein as post-tensioned modular system (PTMS), is 
considered. Full details of the system can be found in [2]. Structurally the system is formed by assembling 
modular frame units through connectors at the floor levels and tie (tension) rods. The pre-stress installed 
through the tensioning rods effectively keeps the whole system tight, and in conjunction with the 
connectors it also provides a mechanism for lateral load resistance. Such a system has unique structural 
features due to the pre-stressing system, and hence requires special modelling considerations. 
 

    
 

Fig. 1. Building structure made from modular units and tie rods (courtesy Powerwall [2]) 
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2  STRUCTURAL CHARACTERISTICS OF PTMS 

As indicated in Fig. 1, the PTMS is an assembly of a number of modular frames integrated by tie rods. 
Each modular unit is a basic rectangular frame made by steel tubular members. The modular frame units 
are stacked on top of (and next to) each other, usually via a connector at each joint. Tie rods are passed 
vertically through the tubular columns, and attached to the connector via a lock nut as each storey is 
erected. Final tightening (post-tensioning) is applied at the top when the whole structure is erected. The 
relative movement between the modular units in the transverse direction is resisted by friction or gripping, 
in conjunction with the shear resistance provided via the connectors. Fig. 2 schematically illustrates the 
force paths in a post-tensioned modular system. 

 
                             a) Modular units self-stiffness            b) Tie rods     c) Pre-stress by tensioning rods 

Fig. 2. A typical PTMS 

When subjected to lateral (wind or seismic) loads, the load resistance mechanisms in a PTMS will exhibit 
the following features: 
1) Re-distribution of stress and associated nonlinearity: As lateral load are applied, re-distribution of 
stresses occur between the tensioning rods and the modular frame members. Vertical separation 
(uplifting) in the vertical direction could occur when the pre-stress in the frame columns is overtaken by 
the effect due to the lateral load-induced overturning moment. This marks a critical situation concerning 
the overall integrity and rigidity of the entire system. A separation between modular units will lead to a 
step reduction in the global stiffness because the contribution of the affected modular columns to the axial 
stiffness reduces to zero. Consecutive separations will manifest in the load vs. (vertical) deformation 
response with a piece-wise linear behaviour (without involving material nonlinearity).  
2) Interaction between modular frames and tension rods: tension rods may be attached to the modular 
frames directly or via the connectors by lock-nuts at the floor levels. The presence of lock nuts provides 
redundancy allowing for staged re-distribution of the axial force when separation (uplifting) occurs, as 
will be illustrated in section 4. 
3) Failure modes: Three failure modes can be identified in a PTMS when it is subjected to (lateral) 
external loading: a) failure of tubular components within a modular frame, with buckling of a tubular 
column or bending failure in columns/beams; b) rupture of tension rods; c) connection failure at the 
modular joints, normally with local failure in the tubular columns around the connectors. 

3  SIMPLIFIED FE MODELLING METHODOLOGY 

3.1 Basic modelling considerations 

Due to the complexity in the contact behaviour between the modular frames and the tensioning rods, a 
detailed analysis involving detailed contact simulation can be difficult and problematic. Herein a 
simplified method is adopted.  
1) Tie rods and post-tensioning force: The tie rods in a PTMS are modelled using bar elements (tension 
only). The post-tensioning force is established by setting an initial tensile strain in the bar elements. 
Consider a PTMS with tensioning rods being fixed at the top and bottom ends. Let the pre-tension force 
to be installed in the rod be Fpt , the axial rigidity of the tie rods and the tubular column be  tt AE  and 

mmAE , respectively, and the total length (height) of the PTMS be L, the required initial strain can be 
calculated as follows: 
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2) Modular frame-connector contact: The contact between the modular frames in the vertical direction is 
modelled by mass-less, rigid, and compression-only bar elements, as shown in Fig. 3(a). Where the 
modular frames are actually connected through a connector, two compression-only bars are used at each 
connection, Fig. 3(b). The interaction between the modular frames and the connectors in the transverse 
direction can also be simulated, using transverse links, Fig. 3(c). The properties of the transverse links 
may be assigned to simulate different coupling behaviour between the tubular columns and the 
connectors, which may also vary before and after separation. 

 
                  a) Modular-modular contacts    b) Connector - modular contact          c) Transverse links 

Fig. 3. Connection between modules and connector 

3) Tie rod-connector contact: The connection between tie rods and connectors can be modelled in a 
similar way as described above. Fig. 4(a) is the simple case where the tie rod directly connects to the 
connector. If the tie rod it attached to the connector through a lock-nut, a link element (compression-only 
bar) may be inserted between a node (the lock-nut) in the tie rod and the connector, Fig. 4(b). 

 
                                  a) Direct connection                                   b) Contact through a nut on rod 

Fig. 4. Connection between tie rods and connectors 

3.2 Example analysis of a PTMS  

A single span, five-storey PTMS is modelled with the above described modelling scheme using ANSYS.  
Fig. 5 shows the configuration and relevant properties of the structure. Ties rods are made of steel with a 
diameter of 25mm, and they are fixed to the foundation and the top of the structure. The pre-tensioning 
force in the rods is 60.0 kN. Uniform lateral loads are applied at storey levels. To highlight the force paths 
and re-distribution due to the interaction between the modular frames and the pre-tensioning system, the 
material nonlinearity is not considered in this example, while geometric nonlinearity is included. 
 The structural response is analysed by gradually increasing the lateral loads. Fig. 6(a) shows the 
vertical displacement at the foundation and floor levels. It can be seen that, when the lateral load at each 
floor, F, reaches 48kN, vertical displacement at the left bottom (Node 1LB) begins to emerge, indicating 
separation (uplifting) from the left support. Separation between the first and second storey frames occurs 
when F further increases to 71 kN, as line 1LT (top of first storey) and 2LB (bottom of second storey) 
begins to depart. A step reduction of the stiffness occurs when separation takes place.  
 The stress re-distribution in the tension rods is shown in Fig. 6(b). After the first separation (uplifting) 
occurs at the left support, for example when F = 58kN, the lock nut at the top of the first storey is engaged 
to limit the separation effect within the first storey. After the horizontal force exceeds the second 
separation threshold, for instance F = 87kN > 71kN, similar phenomenon extends to the second storey. 
Because the right hand side of the structure is being compressed by the lateral-load induced overturning 
moment, the connections at the floor levels remain in contact during the entire course of loading; 
however, the tension force in the tie rod decreases as the lateral loads increase.  
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Fig. 5. Simplified FE model of a PTMS with five modular units 

Different modular configurations have been analysed using such a simplified methodology, including 
material nonlinearities. Refined finite element model with shell elements for the critical regions of the 
frames and with contact have also been carried out to provide verification of the simplified analysis 
results, and generate more realistic constitutive descriptions for the link elements used in the simplified 
model. Results indicate that the simplified scheme works well within its capacity of providing results 
regarding the global behaviour and the stress re-distributions.   
 

    
      a) Vertical displacement                     b) Re-distribution of stress in tensioning rods 

Fig. 6. Analysis of an example five-storey PTMS 

4  CONCLUSIONS 

A simplified modelling scheme is presented to model the global behaviour and the stress re-distribution 
for a novel post-tensioned modular system (PTMS). Characteristic phenomena pertinent to the analysis 
and structural behaviour of such system, including establishment of tensioning force in the tie rods (and 
hence pre-stress in the modular frame), separation (uplifting) at modular foundation and floor joints, the 
axial force redistribution between tension rods and the tubular columns, as well the primary failure 
modes, can be well incorporated and described using such a simplified approach. 
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ABSTRACT

When modelling critical structures, it is crucial to rationally assess the outcome of numerical simu-
lations. Specifically, error estimation strategies are key tools in critical decision-based processes. The
development of design tools that enhance performance of the final product and give reliability on the
calculations is essential in today’s industrial environment, which increasingly seeks to reduce develop-
ment times for new products while improving the quality.

During the last years there has been an increasing interest on the use of error estimates which help to
measure and control the error committed in standard or enriched finite element approximations. The
error can be defined in terms of energy norm or in quantities relevant for design purposes (such as the
mean stress value in a particular area, displacements, the stress intensity factor for fracture problems).

In this work, we discuss the use of different a posteriori recovery techniques to evaluate error estimates
for different finite element (FE) approximations. These techniques are based on equilibrated supercon-
vergent patch recovery or equilibrated moving least squares procedures and can be used in smooth or
singular problems. Numerical results show the capabilities of the proposed techniques to provide good
error estimates.

1 INTRODUCTION

The use of powerful computers together with effective numerical methods have change our view on
how to move from theories derived from mechanics and physics to the effective simulation of real
phenomena both in industry and in research, and increased our capacity to tackle complex problems in
countless engineering applications. However, on major drawback of any simulation process is that in
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general the computational results obtained from it are affected by a numerical error. In particular, we
are interested in the error introduced when discretizing a continuum model in order to be able to obtain
a solution through a numerical approximation. This error can be large, pervasive and in some cases it
can even invalidate the numerical results. To assess the quality of these approximations and guarantee
the validity of the simulation it is necessary to measure, control and finally minimize the error obtained.

The error control techniques used in finite element (FE) analysis are well known and can be usually
classified into different families [1]: residual based error estimators, recovery based error estimators,
dual techniques, etc. Residual based error estimators were substantially improved with the introduction
of the residual equilibration by Ainsworth and Oden [1]. These error estimators have a strong math-
ematical basis and have been frequently used to obtain lower and upper bounds of the error [1, 2].
Recovery based error estimates were first introduced by Zienkiewicz and Zhu [3] and are often pre-
ferred by practitioners because they are robust, simple to use and, additionally, provide a more accurate
solution. Further improvements were made with the introduction of new recovery processes such as the
SPR technique proposed by the same authors [4, 5]. Dual techniques based on the evaluation of two
different fields, one compatible in displacements and another equilibrated in stresses, have also been
used in [6] to obtain bounds of the error. Herein we are going to focus on recovery based techniques
which follow the ideas of the Zienkiewicz-Zhu (ZZ) error estimator proposed in [3].

During the last decade new numerical techniques, such as the extended finite element method (XFEM)
and the smooth finite element method (SFEM), have emerged as powerful alternatives to the standard
FEM, extending even more the capabilities of the method. The XFEM increases the number of degrees
of freedom of the FE approximation space to properly describe the singularity and discontinuity typ-
ical of fracture mechanics problems. The SFEM extends strain smoothing techniques previously used
in meshless methods to FE approximations, redefining the way in which the problem is formulated.
It avoids the use of isoparametric mapping and the integration is performed along the boundaries of
subcells defined within the domain of the element. This method allows the use of arbitrary polygonal
elements, diminishes the sensitivity to mesh distortion and locking, as well as other useful properties.
Like in FEM, the XFEM and SFEM results are affected by the discretization error and, therefore, there
is a need to develop tools capable of providing accurate error estimates for these methods.

In this paper we present an overview of recently developed recovery based error estimators in the
context of standard and non standard FE approximations. The literature on error estimation techniques
for enriched FE approximations is still scarce. Strouboulis et al. [7] proposed a recovery-based error
estimator which provides good results for h-adapted meshes in the context of the Generalized Finite
Element Method (GFEM). Pannachet et al. [8] worked on error estimation for mesh adaptivity in XFEM
for cohesive crack problems. Two error estimates were used, one based on the error in the energy
norm and another that considers the error in a local quantity of interest. The error estimation was
based on solving a series of local problems with prescribed homogeneous boundary conditions. Panetier
et al. [9] presented an extension to enriched approximations of the constitutive relation error (CRE)
technique already available to evaluate error bounds in FEM. Bordas and Duflot [10] and Bordas et
al. [11] proposed a recovery based error estimator for XFEM called the extended moving least squares
(XMLS), which intrinsically enriched an MLS formulation to include information about the singular
fields near the crack tip. Later, Duflot and Bordas [12] proposed a global derivative recovery formulation
extended to XFEM problems. Ródenas et al. [13] presented a modification of the superconvergent
patch recovery (SPR) technique tailored to the XFEM framework named SPRXFEM, which enforces the
fulfilment of equilibrium constraints and decomposes the stress field in singular and smooth parts. Here,
we discuss the use of two recovery based techniques for FEM, XFEM and SFEM. The first one is the
SPRCX technique which is based on a superconvergent patch recovery procedure. The second one is
the MSLCX based on a moving least squares formulation.
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2 SPRCX

For a 2D problem the recovered stress field σ∗ in a patch of elements connected to a node is expressed
as the polynomial expansion

σ∗(x) =


σ∗xx(x)
σ∗yy(x)

σ∗xy(x)

 = P(x)A(x) =

p(x) 0 0
0 p(x) 0
0 0 p(x)


axx(x)
ayy(x)
axy(x)

 (1)

where P represents a polynomial basis and A are the coefficients to evaluate. The SPRCX technique
introduces the enforcement of the boundary and internal equilibrium equations in the functional mini-
mized locally at each patch, using Lagrange multipliers.

For singular problems the SPRCX performs a decomposition of the stress field into two parts: singular
and smooth, then each part is recovered separatedly:

σ∗ = σ∗
smo + σ∗

sing (2)

To obtain an approximation to the singular part of the problem, an estimation of the generalised stress
intensity factor (GSIF) is calculated. The GSIF is used to evaluate the expressions that describe the
stress field near the singularity. Continuity of the global recovered field is enforced using a conjoint
polynomials procedure.

3 MLSCX

We use a moving least squares formulation to directly obtain a continuous and equilibrated recovered
stress field. To obtain values for the coefficients A that define the polynomial expansion, the following
functional is minimized:

χ =
n∑

l=1

W (x− xl)
[
σ∗ (x,xl)− σh (xl)

]2
(3)

=
n∑

l=1

W (x− xl)
[
P (xl)A (x)− σh (xl)

]2
The MLS functional is modified to enforce the internal equilibrium equation. Normally in the literature
only the first part of the equilibrium constraint is enforced. Here we fully enforce the internal equi-
librium constraint. A second order expansion of the boundary tractions is also enforced using e.g. La-
grange multipliers. For singular problems a decomposition technique similar to the one used in SPRCX
is implemented.

4 CONCLUSIONS

The numerical results indicate that both techniques provide error estimates that converge to the exact
value and can be considered as asymptotically exact. These techniques could be effectively used to
estimate the error in different types of FE approximations of smooth and singular problems, while
other conventional recovery procedures which do not include the enrichment functions in the recovery
process have proved not to converge to the exact error. This shows the need for the use of extended
recovery techniques especially when considering problems with singular solution.
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ABSTRACT

The accuracy of the Finite Element Method is partly dependent on the quality of the underlying mesh.
Automatic mesh generation packages are available to generate good quality meshes. However, for prob-
lems with changing domains, moving boundaries, crack propagations, large deformations, etc. these
packages are not always appropriate as they cannot deal with the complex geometries. Poor quality el-
ements can result in a badly conditioned stiffness matrix, resulting in long solution times and a greater
discretisation error. In this paper we will discuss how to measure mesh quality and how to automatically
adapt the mesh to improve its quality, based on these mesh quality measures.

1 INTRODUCTION

In recent years, High Performance Computing (HPC) systems have become increasingly more powerful
and affordable allowing the widespread use of HPC for numerical simulations. The major developments
in this area has made it possible to model physical phenomena on a much greater scale than ever before.
However, in order to fully exploit the power of massively parallel machines, high quality, robust and
reliable software packages must be produced. The availability of such packages allows engineers and
scientists to focus their attention on the physical problem and not on the extremely complex computa-
tional aspects of it.

The finite element method (FEM) and its many variations are some of many methods used to model
physical problems. These methods require that the domain under consideration be descretised using a
mesh. There are many freely available and powerful mesh generation packages available. These pack-
ages are very effective in meshing standard shapes and non-complex domains. The meshing of complex
domains is much more challenging and thus, requires specialised software to achieve a high quality
mesh. A high quality mesh is essential to producing accurate results within an acceptable time frame.
Furthermore, for problems in which the mesh must evolves (e.g. finite deformations, fluids, fractures,
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Error Cause
Interpolation Error Element size major factor. Element Shape has very little influence

Gradient Interpolation Error Element size. Large angles bad, small angles OK.
Matrix Conditioning Element Shape. Small angles bad, large OK.

Table 2.1: Mesh errors and causes [1]

moving boudaries, etc.), maintining a high quality mesh throughout the simulation increases this chal-
lenge. Therefore, the objective of this project is to produce a mesh improvement library which takes
an existing mesh as input and performs local improvement on poor quality elements, with the goal
of producing a higher quality mesh and thus, more accurate analysis whilst using less computational
resources. The resulting package must be easily integratable with existing software to ensure its acces-
sibility to computational scientists and hopefully, to encourage its use in complex scientific codes.

2 WHAT IS A HIGH QUALITY ELEMENT

The purpose of performing mesh improvement is to reduce or eliminate the errors associated with
the discretisation of a domain, i.e. mesh errors. These errors may be classified as: interpolation error,
gradient interpolation error and stiffness matrix conditioning [1].

The errors presented in Table 2.1 often occur when a complex domain is meshed using an automatic
mesh generation package. This project aims to produce a high quality mesh according to the criteria
in Table 2.1 using a poor quality mesh as input. Many problems require re-meshing at every time step
such as problems with continuously changing domains, crack propagation for example. As one of the
reasons for producing a high quality mesh is to improve matrix conditioning, and hence reduce the
time required to solve the systems of equations, mesh improvement must be achieved as efficiently as
possible.

3 QUANTITATIVE QUALITY MEASURES

The ability to quantitatively measure the quality of a mesh is essential if the quality of a mesh is to
be improved. There are many such measures discussed in literature [1-3]. We will focus on the ones
presented in [3] which are the minimum sine measure and volume-length ratio as these have been shown
to be highly effective and possible to implement efficiently.

3.1 Minimum Sine

The minimum sine measure of a triangle is the minimum of the sines of its three angles. This measure
penalises both small and large angles as the sine of 0º and 180º are both zero. This therefore improves
discretisation accuracy and matrix conditioning (Table 2.1). This measures reaches its maximum of
arcsin(

√
3/2) for an equilateral triangle. It is possible to calculate this measure without using computa-

tionally expensive trigonometric functions. While the minimum sine measure is relatively inexpensive
to calculate, it’s gradient is not. This measure has been shown to be highly effective at improving poor
quality triangular mesh. From Table 2.1, it may be seen that large angles affect the accuracy of the
solution, not just the speed of the analysis. Therefore, large angles are more harmful than small ones.
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Measure Gradient

minimum sine 2 min
1≤k<l≤3

A
lalb

2
lalb∇A+A[

lb
la

a− la
lb
b]

l2al
2
b

area-length A
lrms

lrms∇A−A∇lrms
lrms2

Table 3.1: Quality measures and their Gradients (adapted from [3])

To account for this, the biased minimum sine measures is used, whereby the sine of obtuse angles are
multiplied by 0.7 before choosing the minimum.

3.2 AREA-LENGTH RATIO

This measure is an adaptation of the volume-length ratio [3] used for tetrahedral mesh. The measure
punishes triangles with extreme angles, be they small or large as these triangles tend to have a small
area compared with their edge lengths. The gradient for this measure is much cheaper to compute than
that of the minimum sine measure, thus making this measure more attractive from an efficiency point
of view.

4 IMPLEMENTATION

4.1 Minimum Sine

The sine of every angle in the mesh is calculated and the element with the lowest sine is found. The
vertex at which the lowest sine occurs is identified. Generally, vertices which lie on the boundary of
the domain cannot be moved or have restrictions on which directions they may be moved, i.e. fixed
in the x or y directions, for example.. If the vertex with the lowest sine cannot be moved the vertex
in that element which will have the greatest impact on the minimum sine is chosen. As each internal
vertex will lie on more than one element, a search direction must be chosen which will give the greatest
overall improvement to the local mesh. This is achieved by calculating the gradient of the sine of every
affected angle. These gradients are superimposed over the relevant vertex and a convex hull is formed
from which the search direction is calculated. A line search algorithm is then used to determine the
optimum distance to move the vertex in the search direction.If the vertex lies within the convex hull,
[3] states that no further improvement is possible. However, it has been found that moving the vertex
to the centroid of the hull results in significant improvement to the local mesh. This requires further
investigation.

4.2 Area-Length Ratio

The area of every triangle in the mesh and the root mean square length of every triangles’ edges are
calculated. The element with the lowest ratio is found and the gradient of this measure is found for each
vertex. The vertex with the largest magnitude gradient is identified. Moving this vertex will have the
greatest impact on the quality of the local mesh. Once the gradients have been calculated, a convex hull
is formed and a search direction determined in a simliar manner to the minium sine measure.
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(a) Before Improvement (b) After Improvement

Figure 5.1: Before and After Improvement

4.3 Future Work

The next step in this is to fully implement the area-length measure and compare the results from this
with those obtained from the minimum sine measure. The quality of the resulting mesh and a profile of
the code will be used to determine which method is best in terms of effectiveness and efficiency. This
will then be tested using mesh from physical simulations with the aim of improving the accuracy of the
calculations whilst reducing the time required to find the solution.

5 RESULTS

The mesh improvement strategy using the Minimum Sine measure was tested on a small triangular
mesh with poorly shaped elements. After running the improvement code on this mesh, significant im-
provement was achieved, with all extreme angles eliminated (Figure 5.1).

6 Conclusions

From the results presented above, it is clear that it is possible to significantly improve the quality of
a mesh. With further work, it should be possible to apply this to large scale simulations, thus improv-
ing the accuracy and decreasing the runtime of these simulations. In large simulations where iterative
solvers are used, there is significant scope for reducing runtime as a better conditioned matrix is pro-
duced from a higher quality mesh.
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ABSTRACT

Structural design of mechanical components is an iterative process that involves multiple stress analysis
runs; this can be time consuming and expensive. It is becoming increasingly possible to make significant
improvements in the efficiency of this process by increasing the level of interactivity. One approach
is through real-time re-analysis of models with continuously updating geometry. A key part of such
a strategy is the ability to accommodate such changes in geometry with minimal perturbation to an
existing mesh. A new re-meshing algorithm that can generate and update a boundary element (BE) mesh
in real time as a series of small changes are sequentially applied to the associated model is introduced.
The algorithm is designed to make minimal updates to the mesh between each step whilst preserving
a suitable mesh quality. This significantly reduces the number of terms that need to be updated in the
system matrix, thereby reducing the time required to carry out a re-analysis of the model.

1 INTRODUCTION

This research aims to produce an integrated modelling and analysis tool that can be used intuitively by
engineers at the conceptual design stage to analyse 3D components rapidly without lengthy training.
Parts of an initial design model, such as a fillet radius, may be updated and, as the geometry is altered,
stress contours displayed on the object will update in real-time. This will aid the designer to optimise
rapidly components for any mechanical application. Various finite element (FE) schemes that aim to
provide such a level of interactivity, eg. [1], have been conceived. Concept Analyst [2], a 2D BE stress
analysis package that features real-time functionality, has been developed at Durham University. The
current work aims to take the simplicity of the user interface and the speed of this package and extend it
into 3D. This will involve the development of innovative techniques to generate, update and analyse the
mesh. A key part of this work is the subject of this paper, creating an efficient re-meshing algorithm.

Many algorithms have been proposed for re-meshing FE and BE models, often using adaptive refine-
ment schemes [3] to inform re-meshing through the errors in an initial analysis. These schemes do not
usually allow geometrical changes and usually require regeneration of the entire mesh with a full re-
analysis. If the geometry is changed, it is possible to refresh only affected areas of the mesh. This has
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been applied to FE fluid flow problems [4], however, the methods can be adapted for BEs. It is important
to minimise the number of elements updated during re-meshing. Trevelyan et al. [5] have shown this to
be the major factor in reducing re-analysis time, Figure 1, this reduces the time required to update and
solve the BE equations. A fast linear solver, eg. [6], may be employed to accelerate the solution time.

Figure 1: Re-analysis performance for 3D applications (Reproduced from [5])

2 THE BOUNDARY ELEMENT METHOD

The boundary integral equation (BIE) can be formulated for displacements at a source point, p, on the
boundary, Γ, of an object due to tractions and displacements at field point, q, also on Γ. For p ∈ Γ:

c(p)uj(p) +

∫
Γ
Tij(p, q)ui(q)dΓ =

∫
Γ
Uij(p, q)ti(q)dΓ (1)

where u and t refer to the tractions and displacements experienced at q. Tij and Uij refer to the traction
and displacement kernels for every p-q pairing, taking into account the material properties and the
distance from p to q. The equations are given in most BE literature. The subscripts refer to a traction or
displacement in the Cartesian direction, i, at q caused by a unit load in direction j at p. c(p) is introduced
due to the limits applied to allow evaluation of the strongly singular traction kernel. Shape functions,
N , are defined as a discretization of Γ leading to a discretized BIE:

c(p)uj(p) +
∑
elemk

∫ 1

−1

∫ 1

−1
Tij(p, q)NkJdξdη{u} =

∑
elemk

∫ 1

−1

∫ 1

−1
Uij(p, q)NkJdξdη{t} (2)

where J is the Jacobian. Evaluating (2) considering p at all nodes in turn, and applying sufficient
boundary conditions, yields a set of linear equations in matrix form:

[A]{x} = {b} (3)

The system can now be solved to find the unknown tractions and displacements in {x}. Internal stresses
may be found by declaring p at the point of interest and substituting the now fully defined values of
displacement and traction at the nodes into equation (2) and solving at p.

3 RE-MESHING STRATEGY

The mesh updating procedure minimises the number of elements affected when the model geometry
is updated. This minimises the number of integrals, contained in matrix [A] of (3), that need to be
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recalculated before re-analysis and improves the convergence rate of a preconditioned iterative solver.
During re-meshing, each updated face of the model is considered individually. A face may be translated,
distorted in plane or distorted out of plane. If translated, all the nodes and elements on the face are
translated through the same vector, the integrals between these elements do not need to be recalculated.
If distorted out of plane the mesh across the face must be regenerated and all integrals recalculated. If
the face is distorted but remains in plane, efficiency gains can be made by only updating elements local
to the change. We propose a new algorithm to propagate these changes across the face.

The algorithm assumes that all elements on these faces are triangular. The quality, Q, of each element
can be assessed using an adaption of the radius ratio discussed by Topping et al. [7]. This is defined as
the ratio of the radius of the incircle to the circumcircle of the element and can be formulated such that:

Q =
16A2

abc(a+ b+ c)
(4)

where A is the area of the element and a, b and c are the side lengths. Q takes a value between 0 and 1,
where 1 indicates the highest quality element (an equilateral triangle) and 0 a fully collapsed element.
The global mesh quality can be assessed using the mean, Q̄, and standard deviation, S, of the collected
element quality measures. We define measures Q̄min and Smax to be the minimum acceptable mean
quality and the maximum acceptable standard deviation of element quality.

Nodes, Ni(i = 1, 2, 3, ..., nN ), distributed along updated edges are repositioned by translating or scal-
ing the original distribution. The vector through which they have moved, Vi, is stored. Each element
that includes Ni, Eki(k = 1, 2, 3, ..., nEi), is assessed for quality, Qki, using 4. If Qki < Qmin and
the update will further reduce the element quality, the un-updated corner node(s) of Eki are also moved
through vector Vi. The changes propagate through the mesh until all the elements return Qk < Qmin.
Experimentation has suggested 0.6 as an appropriate value of Qmin, a higher value will result in a more
accurate analysis but requires a larger number of elements to be updated. The re-meshing process is
summarised in Figure 2. A node may be moved only once in each update pass. All updates are initially
applied to the corner nodes of each element. Once all the required updates have been applied, the mid-
side node positions for updated elements are recalculated. Flags inform the re-analysis algorithm of
how each element has been transformed. This algorithm can only distort an existing mesh. It is efficient
for small to medium perturbations but for larger changes additional strategies must be employed to
prevent excessive propagation of updates. A crude method involves periodically regenerating the mesh
across any poorly meshed faces. Once the updates across face j have finished propagating, Q̄j and Sj
are calculated. If Q̄j < Q̄min or Sj > Smax the mesh across j is regenerated. As this only has to be
done occasionally the additional computational expense is relatively small. An apparently more effi-
cient technique is to add or remove elements from poorly/over refined areas, however, this necessitates
regeneration of the preconditioning matrices used during the analysis.

Additional strategies may be employed to maintain the accuracy of the analysis in key areas such as
around a hole or notch. If high quality elements are generated immediately adjacent to these features
and are not allowed to distort but instead move with the geometry the accuracy of the results in these
key areas is much improved. However, this leads to updates affecting a larger number of elements.

4 CONCLUSIONS

A robust algorithm has been introduced for updating a BE mesh to accommodate geometric perturbation
whilst preserving the majority of the mesh. The scheme is efficient for small perturbations; methods to
improve it for larger changes have also been discussed. Using these techniques, a BE mesh can be
updated in a computationally inexpensive manner and the time required for re-analysis can be reduced.
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Figure 2: Flowchart showing a single re-meshing iteration
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ABSTRACT

We present an algorithm to generate all C1 continuous polynomial shape functions for triangular ele-
ments without first prescribing the type of the degrees of freedom. We describe the derivation of the
algorithm and consider the ways in which the resulting shape functions can be grouped to generate
specific elements. A first comparison is made with existing elements.

1 INTRODUCTION

A displacement-only discretisation of continuum mechanics problems involving a fourth-order partial
differential equation introduces the need for finite elements with C1 continuous interpolation of the
displacements. Such elements have been developed and used for modelling bending of thin plates and
more recently for modelling strain-gradient dependent materials. A C1 triangular element with poly-
nomial interpolation and 21 degrees of freedom has been presented by Argyris et al. [1], as well as by
other authors, from which a simpler element with 18 degrees of freedom has also been produced.

We have recently presented an algorithm to directly derive elements like the latter, without first having
to formulate more complex ones like the former [2]. In that algorithm, the interpolation is obtaining by
determining a priori the location and type of the degrees of freedom. This restriction is lifted here, by
presenting an algorithm to generate all possible C1 continuous polynomial shape functions for triangu-
lar elements without first prescribing the type of the degrees of freedom.

2 SHAPE FUNCTIONS

Consider a shape function φ that multiplies a degree of freedom which lies on a given node. The node
can lie on a vertex, on a side (excluding its endpoints) or on the interior of the element—we do not
consider the case of nodes lying outside the element. We therefore distinguish between vertex shape
functions, side shape functions and internal shape functions.
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Figure 1: A triangle element with its neighbouring elements

Since we use a polynomial interpolation of order np, the shape functions are also polynomials of order
np. The generic form of the shape function φ can therefore be written as

φ =

np∑
i=0

np−i∑
k=0

ti,kL
np−i−k
1 Li2L

k
3 (1)

where the coefficients ti,k depend on the geometry of the element (expressed through the quantities
xij = xi − xj and yij = yi − yj). To determine the coefficients ti,k for a given shape function φ
associated with a given node, we distinguish between the sides which include the node (“near” sides)
and those that do not include it (“far” sides). The value of φ and its normal derivative must be zero on
the far sides and it must match the respective values of the shape function on neighbouring elements on
near sides (Figure 1).

2.1 Internal shape functions

For internal nodes, all three sides are “far” sides, therefore the shape function and its normal derivative
must be zero on all sides, so that the shape function is a “C1 bubble function”. This yields

ti,np−i = t0,i = ti,0 = 0, tj,np−1−j = t1,j = tj,1 = 0 (2)

where i = 0, . . . , np and j = 0, . . . , np − 1. The remaining coefficients can be selected arbitrarily, as
they do not affect C1 continuity. For np ≤ 5 there exist no internal shape functions.

2.2 Side shape functions

We consider a node on side 1 (shape functions for nodes on other sides will then be obtained by cycling
the appropriate indices). Considering the far sides (sides 2 and 3) we easily obtain

t0,i = ti,0 = 0, t1,j = tj,1 = 0 (3)

where again i = 0, . . . , np and j = 0, . . . , np − 1. The value of φ on side 1 must only depend on the
geometry of side 1, so

ti,np−i = t̂i,np−i(x32, y32) (4)
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Requiring rotational symmetry for the triangle, we consider the matching triangle that has its side 1 in
common with side 1 of the initial triangle. Matching the value of φ on side 1 for the two triangles yields

t̂i,np−i(x32, y32) = t̂np−i,i(−x32,−y32) (5)

The value of the normal derivative of φ on side 1 must also depend only on the geometry of the side, so
we can write √

x232 + y232
∂φ

∂n̂(1)
=

np−1∑
j=0

Lj2(1− L2)
np−1−jGj(x32, y32) (6)

whereGj(x32, y32) are arbitrary functions. Matching the normal derivatives of the two elements sharing
the side, we obtain Gj(x32, y32) = −Gnp−1−j(−x32,−y32) and, after some calculations,

tj,np−1−j = − 1

κ2 + κ3
Gj(x32, y32) +

κ2
κ2 + κ3

(np − j)t̂j,np−j(x32, y32)+

κ3
κ2 + κ3

(j + 1)t̂j+1,np−1−j(x32, y32) (7)

where κα is the cotangent of the angle on vertex α of the triangle. Using the above equations we also
obtain G0 = G1 = Gnp−2 = Gnp−1 = 0 and t2,np−2 = tnp−2,2 = 0. Therefore for np ≤ 4 there exist
no side shape functions.

2.3 Vertex shape functions

Considering a shape function for vertex 1 and using a procedure similar to the one for side shape
functions, but now with two near sides and one far side, we obtain

ti,np−i = 0, tj,np−1−j = 0 (8)

ti,0 = t̂i,0(x21, y21), t0,i = t̂0,i(x31, y31), t̂i,0(u, v) ≡ t̂0,i(u, v) (9)

t1,j = − 1

κ1 + κ3
Fj(x31, y31) +

κ3
κ1 + κ3

(np − j)t̂0,j(x31, y31) +
κ1

κ1 + κ3
(j + 1)t̂0,j+1(x31, y31)

(10)

tj,1 =
1

κ1 + κ2
Fj(x21, y21) +

κ2
κ1 + κ2

(np − j)t̂j,0(x21, y21) +
κ1

κ1 + κ2
(j + 1)t̂j+1,0(x21, y21)

(11)

where Fj are arbitrary functions, i = 0, . . . , np and j = 0, . . . , np − 1. For j = 2, . . . , np − 3,
equations (10) and (11) yield the respective values of t1,j and tj,1. For j = np − 2 we obtain

tnp−2,0 = t0,np−2 = 0 (12)

while for j = 0 and j = 1 the equations are coupled and yield, after a few calculations,

t0,0 = C0 (13)

t0,1 = npC0 + C1x31 + C2y31 (14)

t1,0 = npC0 + C1x21 + C2y21 (15)

t0,2 =
1
2np(np − 1)C0 + (np − 1)C1x31 + (np − 1)C2y31 +

1
2C3x

2
31 +

1
2C4y

2
31 + C5x31y31 (16)

t2,0 =
1
2np(np − 1)C0 + (np − 1)C1x21 + (np − 1)C2y21 +

1
2C3x

2
21 +

1
2C4y

2
21 + C5x21y21 (17)

t1,1 = np(np − 1)C0 + (np − 1)C1(x31 + x21) + (np − 1)C2(y31 + y21) +

C3x31x21 + C4y21y31 + C5(x21y31 + x31y21) (18)

where C0, . . . , C5 are arbitrary constants.
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3 COMBINING SHAPE FUNCTIONS

The expressions derived in the previous section give all the possible forms of a polynomial C1 shape
function of order np, even in the case that the element considered uses also non-polynomial shape
functions. It can be easily seen that for np < 5 there exist no polynomial C1 shape functions, as
demonstrated by Ženíšek [3].

It is more interesting, however, to consider the case of a C1 element where only polynomial shape
functions are employed. Calculating the value of a vertex shape function φ and its first and second
derivatives on the vertex 1 we obtain

φ = C0,
∂φ

∂x
= C1,

∂φ

∂y
= C2,

∂2φ

∂x2
= C3,

∂2φ

∂y2
= C4,

∂2φ

∂x∂y
= C5 (19)

The respective values for vertex shape functions of vertices 2 and 3, as well as for all side and internal
shape functions, are all zero. Thus by setting only one of C0, . . . , C5 equal to one and the others equal
to zero we obtain six shape functions whose corresponding degrees of freedom are the value at the
vertex of the function being interpolated and its first and second derivatives. These shape functions will
depend on at least one function, whose value is determined by requiring that the resulting element can
exactly interpolate a polynomial of a given order.

Considering fifth-order shape functions, the above six (for each vertex) shape functions can be used
to derive the C1 triangle with 18 degrees of freedom. One side shape function can be added for each
side (for side 1 this is φ = t2,2L1L

2
2L

2
3) to obtain the complete fifth-order element with 21 degrees

of freedom. Considering however the vertex shape functions, even for C0...5 = 0 there exists a shape
function (for vertex 1 this is φ = t1,2L

2
1L2L

2
3 + t2,1L

2
1L

2
2L3). It is therefore possible that a complete

fifth-order element can be obtained using only vertex nodes.

For elements with higher-order polynomial interpolation, a larger number of arbitrary functions is in-
troduced in the expressions for the shape functions. These allows greater freedom in the choice of the
additional degrees of freedom (e.g. for seventh-order elements it is possible to use up to second-order
or up to third-order derivatives). An extension to the present algorithm is however needed to easily
determine which combinations of shape functions provide adequate interpolations.
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ABSTRACT

The need to predict the operating characteristics of semiconductor devices that exhibit various ge-
ometries and are subject to differing boundary conditions is great, and with the current exponential
increase in semiconductor device usage, this need is becoming greater through time. The majority of
current numerical simulations are carried out using the finite difference method, where the well-known
Scharfetter-Gummel approximation [1] is used to provide stabilisation to the current continuity equa-
tions. However, the restrictions of using a finite-difference grid are clear, particularly when modelling
curved boundaries, and the finite element method seems to present a more attractive solution. After
implementation though, it is found that severe restrictions are placed on the geometry of elements and
meshing becomes a cumbersome task.

The present work implements a stabilisation method throughthe use of residual-free bubble functions
[2]. The method can be interpreted as a two-scale approach where in the fine scale a bubble func-
tion is used to solve the differential equation analytically. The bubble enrichment approximation is
applied to a simple 1D p-n junction problem where it is found that the method is equivalent to the
Scharfetter-Gummel approximation and the Streamline Upwind Petrov Galerkin method [3]. However,
the advantages of the method become clear in two dimensions.It is shown that the bubble approxima-
tion successfully stabilises the current continuity equations in the presence of curved boundaries and,
even when the method is subject to very distorted meshes, stable results are obtained.

1 INTRODUCTION

For semiconductor device simulation, the most widely used model is the drift-diffusion (DD) model
[4] which comprises of a set of three coupled partial differential equations. These consist of Poisson’s
equation (conservation of charge) and two current continuity (CC) equations (conservation of hole and
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electron current). For the case of the stationary semiconductor equations and ignoring recombination
terms, these are given by

∇
2
ψ(x) =

q

ε

(

n(ψ(x)) − p(ψ(x)) +N
−

a (x) −N
+
d

(x)
)

(1a)

∇ · Jn = 0 (1b)

∇ · Jp = 0 (1c)

where the electron and hole current density write, repectively

Jn = −q (µn · ∇ψ · n−Dn∇n) (2a)

Jp = −q (µp · ∇ψ · p+Dp∇p) , (2b)

In Poisson’s equation (1a)ψ refers to the electrostatic potential,q is the electron charge,ε is the absolute
permittivity of the material,n is the electron concentration,p is the hole concentration andN−

a ,N+
d

are
the acceptor and donor concentrations respectively.Jn andJp represent the electron and hole current
respectively. In Eq. (2a),µn is defined as the electron permeability andDn the electron diffusivity. The
terms for the hole current equation are directly analogous.However, before we proceed to the numerical
solution of these equations, some comments need to be made ontheir behaviour.

First of all, due the dependence ofn andp onψ, we find that Eq. (1a) is in fact a non-linear Poisson
equation and therefore must be solved using an appropriate solver. Second, close inspection of Eqns (2a)
and (2b) shows that they are in fact advection-diffusion equations where, in the case of the electron
CC equation, we find that the termµn · ∇ψ is an advection velocity and the termDn represents a
diffusion coefficient. As explained by Brooks et al. [3], equations of this type can exhibit boundary
layers for strong advection velocities leading to oscillations in the numerical solution. In the case of
the semiconductor equations, these oscillations can lead to much slower convergence rates and in some
cases, may even cause the solution to fail to converge. For this reason, care must be taken in their
numerical solution.

2 RESIDUAL-FREE BUBBLE ENRICHMENT

One technique which can be used to overcome the problems created by large advection-dominated
problems is residual-free bubble (RFB) enrichment [5]. Theidea is as follows: taking the domain of a
single element, and assuming that the advection term varieslinearly within this element, it is possible
to solve the differential equation with homogenous boundary conditions. The solution to this problem
results in a function that is non-zero in the element interior, but zero on the nodes of the element. In
this way,no additional degrees of freedom are introduced, but the resulting integrands in the stiffness
matrix may become exponential.

In the case of the electron current continuity equations, applying the RFB enrichment results in the
following 1D shape function approximation:

N1(ξ,Pen) =
exp(Pen(ξ + 1)) − exp(2Pen)

1 − exp(2Pen)
, N2(ξ,Pen) =

1 − exp(Pen(ξ + 1))
1 − exp(2Pen)

(3)

where the element Peclet number is defined as

Pen =
µn∇ψ∆x

2Dn

(4)

and∆x refers to the distance between nodes in an element. Similar expressions are obtained for the
hole current continuity equation.
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3 RESULTS

In order to highlight the improvements seen when using RBF enrichment, two problems were analysed:
the first consisted of a p-n junction with a straight interface and the second consisted of a p-n junction
with a curved interface (Fig. 3). In the first problem, a very distorted mesh was used to test the robustness
of the method (Fig. 1) while a comparison was made with the Bubnov-Galerkin method throughout. The
results for the electron concentration for both methods areshown in Fig. 2 where oscillations are clearly
seen in the Bubnov-Galerkin method while none are apparent in the RFB enrichment results. The same
results are also seen for the curved junction (Fig 4).
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Figure 1: 2D p-n junction with straight interface with distorted quadrilateral elements
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(b) Bubble enrichment

Figure 2: Electron concentration profiles for p-n junction with straight interface
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Figure 3: 2D p-n junction with curved interface
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(b) Bubble enrichment

Figure 4: Electron concentration profiles for p-n junction with curved interface

4 CONCLUSION

In this paper the problems created by advection-diffusion equations in semiconductor device simula-
tion has been briefly discussed. In addition, the use of the residual-free bubble enrichment to provide
stabilisation to the current continuity equations has beenoutlined while results show that the method
is capable of removing oscillations in the numerical solution for 2D problems, even when subjected to
highly distorted meshes.
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ABSTRACT 

Numerical modelling of material or weak discontinuities is presently an area of research interest although 

mesh-based methods are thought not to be ideally suited to their treatment.  Adaptive meshing and 

adaptive mesh-free methods are recognised to be computationally expensive when applied to large 

deformation and weak/strong discontinuities in solids.  Some advances have been made with enriched 

finite element methods, which involve extending element shape functions using enrichment typically 

facilitated by the standard partition-of-unity property of standard Lagrange interpolation.  Enrichment 

functions for elements are required to be selected and tested for the type of problem under consideration 

and only moderate success has been reported with space-time problems. 

The theory proposed in the present work is a new approach for the modelling of weak discontinuities.  

The approach is founded on the transport form of the governing conservation laws and the non-physical 

variable concept.  The advantage of the non-physical methodology is that it permits the precise 

annihilation of discontinuous behaviour from the governing finite element equations by means of a 

distribution like source term at the discontinuity location.  Equivalent transport equations written in terms 

of non-physical variables describe the behaviour and are exact replacements for the original governing 

equations.  Hence, continuous finite element approximations can be used to solve the equivalent 

governing equations numerically.  The methodology is demonstrated in the paper through application to a 

1-D cellular impact bar, which displays a shock-like behaviour at a discontinuous crush front. 

 

1  INTRODUCTION  

This work is concerned with the development of a moving control-volume finite element method for the 

solution of transport problems involving non-physical variables. The governing equations are presented in 

the form of transport equations. A control volume can be selected to be moving, stationary, mass tracking, 

part of, or enclosing the whole system domain. To model the discontinuity, a moving control volume 

(CV) which is in another moving CV has been selected. The first CV includes the discontinuity and the 

second CV encloses part of, or whole system domain. Transport equation (TEs) can be written for the first 

CV in the frame of second CV. The novel concept of non-physical variables are introduced to remove the 

discontinuity of the field variable through the domain and distribute it as a source term (at the 

discontinuity location) and discontinuity at the domain boundaries (Figure 1(b)). Non-physical field 

variables have limiting continuity and source-like behaviour at a physical discontinuity [1] .  Equivalent 

transport equations written in terms of non-physical variables describe the behaviour of non-physical 

variables and are exact replacements for the original governing equations. A weighted-transport method is 

applied to solve the TEs. By choosing Galerkin weighting functions the FEM has been used to solve TEs 

numerically. The level set method is applied to solve FE formulations numerically. 

The main aim of the work is to increase the capability of FE formulation to model discontinuities. The 

problems selected here are restricted to “cellular material crushing” for demonstration purposes to 

showcase the methodology although the theory is presented in a generic form. 
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2  CONSERVATION LAW FOR A MOVING CV 

The formulation proposed here can be considered as an arbitrary Lagrangian-Eulerian (ALE) formulation 

[2]. The ALE formulation permits independent control volume (CV) movement in a computational 

reference system (CRS). The Material reference system (MRS), spatial and CRS co-ordinates are denoted 

by X, x, and 
*
χ , respectively.  The material derivative 

X
tDtD ∂∂=  and CV derivative 

*
χ

**
ttDD ∂∂=  are related to the spatial derivative by the following expressions: 

(1)                                                                                                                            v
x

∇⋅+
∂

∂
=

tDt

D

(2)                                                                                                                          v
*

x

*

*

∇⋅+
∂

∂
=

ttD

D

where DtDxv = and tDD ***
xv = .

 A conservation law for a moving domain Ω  defined by the diffeomorphism ( )t,∗χχχχx , is, 

( ) (3)                                                               vv
*

*

*

∫∫∫∫
ΩΓΓΩ

+Γ⋅−=Γ⋅−+ bdVdnJdndV
tD

D
ρρψρψ

where, Ω  is CRS moving control volume, Γ  is its boundary, ψ  is physical filed variable per unit of 

density, ρ  is density, v  is material velocity, n  is a unit normal, nJ ⋅  is a flux and b is a body force. 

3  EQUIVALENT GOVERNING EQUATIONS 

The concept of an equivalent governing equation is introduced in reference [1] but limits to solidification 

modelling. The idea is to form alternative transport equations that can be more readily solved using 

numerical techniques.  The transport equation is to be constructed so that its solution is precisely that 

which satisfies equations (2.3). Consider then the identity 

( ) (4)                                            vvˆ
*

*

*

*

*

∫∫∫∫∫
ΩΓΓΩΩ

+Γ⋅−=Γ⋅−+= bdVdnJdndV
tD

D
dV

tD

D
ρρψρψψ

where ψ
⌢

is called non-physical variable and it is shown in Ref.[1] that the function ψ
⌢

 exists. 

To ascertain the behaviour of the non-physical variable ψ̂  at the discontinuity requires careful treatment. 

Because of non-uniqueness of ψ̂  , different strategies can be made for its behaviour [1]. The selected 

strategy in this paper is to assume a continuous distribution for the non-physical variable through the 

element which experiences the discontinuity and account the non-physical source term (ψ ′ˆ ) at 

discontinuity (Figure 1(b)). 

 
Figure 1. (a) Real model of discontinuity (b) Equivalent model. 

To model the discontinuity using the non-physical variable concept another moving control volume 

enclosing discontinuity ( iΓ ) is considered. The transport of this arbitrary small control volume (
×Ω ) is 
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assumed to be governed by the regular velocity field 
×

v  where nn i ⋅=⋅
×

vv  at iΓ  and iv  is the velocity 

of the moving discontinuity. The equivalent transport equation for this control volume is 

( ) ( )[ ] ( )[ ] [ ] (5)     vvvvˆvvˆˆ ∫∫∫∫∫
ΓΓ

∗

Γ

∗

Σ

∗

Γ

×

×

Γ⋅−=Γ⋅−=Γ⋅−+Σ⋅−′+Γ′

iiiii

dnJdndndtnd
tD

D
ssisii ρψψψψ

where the square bracket signifies a jump and tn  is a outward pointing unit normal on ii Γ∩Γ=∑  ( i∑  

is the boundary for iΓ ) that is in a tangent plane of iΓ . 

Modifying Equation (4) by using the MCV in a MCV
1
 concept to account for modelling of discontinuity 

gives 

( ) ( ) (6)              vvˆˆvvˆ
*''*

*

*

*

*

∫∫∫∫∫
Σ

×

Γ

×

×

ΓΩΓΩ

Γ⋅−−−Γ⋅−+=
e
i

e
ieeie

dtndV
tD

D
dndV

tD

D
dVN

tD

D
i ψψρψρψψ

   

 

( ) (7)                                       vvˆˆ ˆ
*''

*

*

∫∫∫∫∫
Σ

×

Γ

×

×

ΩΓΓΩ

Σ⋅−−−+Γ⋅−=
e
i

e
ieeie

dtndV
tD

D
bdVdnJdV

tD

D
ψψρψ

Hence there are three relations instead of two presented in Equation (4) which should be solved using the 

FEM. These three relations are denoted: source equation (Eq. 5), equivalent governing equation (Eq. 6) 

and linkage equation (Eq. 7).

 
4  FINITE ELEMENT FORMULATION 

By applying the standard Galerkin weighting functions ( iN ) to an element domain eΩ  and establishing 

relationships between different transport derivatives, the weighted form of the equivalent, the linkage 

and the source equations can be written as below respectively. 

[ ] ( )∫∫

∫∫∫ ∫

Γ

×∗

Γ

ΩΓΓΩ Ω

∗

∗

Γ∇⋅−′+Γ⋅+

⋅+Γ⋅−⋅∇=

e
i

e
i

eeie e

dNdnJN

bdVNdnJNdVJNdVN
tD

D

iNNsi

iiii

(8)                                                         vvˆ                             

ˆ

ψ

ρψ

( ) ( )

( ) [ ] ( ) (9)                                        vvˆvv                            

vvvvˆ

∫∫
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Γ

×∗

Γ

Γ

∗

Ω

∗

ΓΩ Ω

∗

∗

∗

∗

Γ∇⋅−′+Γ⋅−−

Γ⋅−+∇⋅−−=

e
i

e
i

eeie e

dNdnN

dnNdVNdVN
tD

D
dVN

tD

D

iNNsissi

iiii

ψψρ

ρψρψρψψ

( ) ( )

( ) [ ] [ ] (10)                                                        vv                       

vvˆvvˆˆ

∫∫
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ΓΓ

Γ

×∗

Γ Σ

×∗

×

×

Γ⋅−=Γ⋅−=

Γ∇⋅−′+Σ⋅−′+Γ′

e
i

e
i

e
i

e
i

e
i

dnJNdnN

dNdtnNdN
tD

D

sisissi

iNNii

ψρ

ψψψ

where 
∗

Nv  and 
×

Nv  are normal components of Ω  and ×Ω  control volumes velocities respectively. 

For the conservation of mass equations, ρψ ˆˆ =  , 0ˆ =′ψ , 0=J and they are called respectively 

non-physical density , non-physical density source and mass flux. And for the conservation of 

linear momentum equations, v̂ˆ =ψ  , v̂ˆ ′=′ψ , σ=J and they are called respectively non-

physical velocity , non-physical velocity source and stress field vector.  

 
                                                 
1
 MCV in a MCV: Moving Control Volume in a Moving Control Volume. 
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5  NUMERICAL RESULTS  

A 1-D cellular impact bar is considered to study as a model to illustrate the concepts. A crush front 

propagates through the bar as a moving weak discontinuity and results a jump in density, velocity and 

internal energy. A schematic model of 1D cellular impact bar has been shown in Figure 2(a), where its 

cross section area is assumed to remain constant during the deformation process. The FE solution 

algorithm is based on the level set method (LSM) and the non-physical variable is defined as a linear 

function of the level set variable φ ; i.e. ( ) ( ) ( )( )121
ˆˆˆ

++== eeeeee NNCC φφφφψ  
2
. The variable eĈ is called 

the non-physical capacitance (e.g. non-physical density capacitance for the non-physical density and non-

physical velocity capacitance for the non-physical velocity). The elemental weighted equivalent equation 

(Eq.8) is required to be assembled with other element equations to form the FE system. But the linkage 

and the source equations (Eq. 9 and Eq. 10) should be calculated only for the elements which experience 

the moving discontinuity and are automatically satisfied for the other elements. Hence there is no need to 

weight and assemble them (i.e. 1=iN  ). The variation of non-physical density and velocity capacitances 

and the non-physical velocity  source of the 3 elements model with respect to time is presented in the 

below figures. The behaviour of the numerical results exactly matches with the theory predictions. 

 

                         

 

Figure 2. (a) 1D cellular impact bar  (b) The variation of non-physical density capacitance 

(c) The variation of non-physical velocity capacitance  (d) Non-physical velocity source. 

 

CONCLUSION 

The temporal derivatives of ψ
⌢

 and ψ  are avoided, making the governing equations applicable when a 

discontinuity is inΩ . The continuous and source like behaviour of ψ
⌢

 facilitates the precise removal of 

discontinuous from the governing system of transport FE equations. The results presented in the previous 

section show that there exists a numerical solution for the system of FE equations based on LSM.   
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ABSTRACT

The element-free Galerkin method (EFGM) is superior to its counterpart the finite element method
(FEM) in terms of accuracy and convergence but is computationally expensive. Therefore it is more
practical to use the EFGM only in a region, which is difficult to model using the FEM, while the
FEM can be used in the remaining part of the problem domain. In the conventional EFGM, moving
least squares (MLS) shape functions are used for the approximation of the field variables. These shape
functions do not possess the Kronecker delta property and it is therefore not straightforward to couple
the EFGM with the FEM. Local maximum entropy (max-ent) shape functions are an alternative way
to couple the EFGM and FEM. These shape functions possess a weak Kronecker delta property at
boundaries, which provides a natural way to couple the EFGM with the FEM as compared to the MLS
basis functions, which need extra care to properly couple the two regions. This formulation removes
the need for interface elements between the FEM and the EFGM, unlike the approach adopted by most
researchers. This approach is verified using benchmark problems from small and finite deformation.

1 INTRODUCTION

The EFGM [1] is an excellent tool for the solution of boundary value problems in computational me-
chanics. In the conventional EFGM, MLS shape functions are used for the approximation of the field
variables, background cells are used for numerical integration and essential boundary conditions are
implemented with Lagrange multipliers. Compared to the FEM, the EFGM is more accurate with a
high rate of convergence, post processing is simple and there is no need for element connectivity in-
formation, so nodes can be added and deleted without computationally expensive remeshing. These
advantages makes the EFGM very suitable for certain classes of problems, e.g. those with large defor-
mation and moving boundaries.

On the other hand due to the use of the MLS basis functions, the EFGM is computationally more
expensive, especially for three-dimensional and nonlinear problems. At each integration point, a system
of linear equations are solved to calculate the MLS shape functions, a high integration order needs
to be used for accurate results due to the non-polynomial nature of the shape functions and essential
boundary conditions cannot be implemented directly as in the case of FEM due to the lack of Kronecker
delta property. Therefore it is more practical to use the EFGM only in a region where high accuracy
is required, while FEM can be used in the remaining part of the problem domain. Coupling between
EFGM and FEM is therefore a key issue.

The coupling between EFGM and FEM was first proposed in [2] based on interface elements. Hybrid
shape functions for these elements, consisting of both the FEM and the EFGM shape functions, are
formed using ramp functions. A detailed overview and analysis of the coupling between meshless and
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FEM can be found in [3]. In this paper a new way of coupling the EFGM and the FEM using local
max-ent shape functions is proposed. These shape functions possess a weak Kronecker delta property
at the boundaries. This property provides a natural way to couple the EFGM with the FEM as compared
to the MLS basis functions, which need extra care properly to couple the same regions.

2 LOCAL MAXIMUM ENTROPY SHAPE FUNCTIONS

For completeness a very brief overview of local max-ent shape functions are given, the detail can
be found in [4] and the references therein. The two-dimensional formulation is given here, which is
straightforward to modify for one- or three-dimensions. The expression for the local max-ent shape
function φi for node i at point of interest x = [ x y ]T is written as

φi =
Zi
Z
, Zi = wie

−λ1x̃i−λ2ỹi , Z =
n∑
j=1

Zj . (1)

Here wi is the weight function associated with node i, evaluated at point x, x̃i = xi−x and ỹi = yi− y
are shifted coordinates, n is the number of nodes in support of point x and λ1 and λ2 are Lagrange
multipliers and can be written as

λ = argmin F (λ), where F (λ) = log(Z), (2)

i.e. the set of values for which F attains its minimum. The expressions for the shape function derivatives
are

∇φi = φi

(
∇fi −

n∑
i=1

φi∇fi

)
, (3)

where

∇fi =
∇wi
wi

+ λ+ x̃i
[
H−1 −H−1A

]
, A =

n∑
k=1

φkx̃k ⊗
∇wk
wk

. (4)

3 NUMERICAL EXAMPLES

One- and two-dimensional numerical examples from small and finite deformation are now given to
demonstrate the implementation and performance of the current approach in linear and nonlinear prob-
lems.

3.1 Small deformation

In this section the behaviour of a one-dimensional bar of unit length subjected to body force and fixed
at a point x = 0 and a two-dimensional cantilever beam subjected to parabolic traction at the free end
are examined. In the 1D example the modulus of elasticity E = 1. Figure 1(a) shows the FEM and the
EFGM regions with the shape functions for all the nodes in the problem domain and Figure 1(b) shows
solution for the nodal displacement. The two-dimensional example is the famous Timoshenko beam
problem, for which the analytical solution is given in [5]. The problem is solved for the plane stress
case with P = 1000, ν = 0.3, E = 30× 106, all in compatible units. Figure 2(a) shows the FEM and
EFGM regions, Figure 2(b) shows the deflection at y = 0 and Figures 2(c) and 2(d) shows the normal
and shear stresses σxx and σxy at x = L/2.

3.2 Finite deformation

An updated Lagrangian formulation is used to model problems subjected to finite deformation. Here
the deformation gradient F provides the link between the current and the reference configurations. The
logarithmic strain ε = ln (v) and Kirchhoff stress τ = Jσ are used in this case, where v =

√
FF T

is the left stretch matrix, J is the determinant of the deformation gradient and σ is the Cauchy or true
stress. Two problems are solved in this case: a uniform loaded rectangular plate with simply supported
edges, the analytical solution for which is available in [6] and a cantilever beam with uniform loading,
the reference solution for which is given in [7]. The geometry for the plate problem is shown in Figure
3(a), due to symmetry only half of the plate is modelled. The problem is solved with q = 40, h = 0.2,
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Figure 1: FE-EFGM regions, shape functions and nodal displacements for the 1D bar problem
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Figure 2: FE-EFGM regions, deflection and stresses for the 2D beam problem

L = 10, E = 107, ν = 0.25 all in compatible units with 20 load steps. Half of the plate is modelled
with the EFGM and other half is modelled with the FEM. Figure 3(b) shows the pressure vs w/h for
the plate problem. The beam problem is solved with q = 10, h = 1, L = 10, E = 1.2 × 04, ν = 0.2
with 20 load steps all in compatible units. Half of the beam is modelled with the EFGM and other half
is modelled with the FEM. Figure 4(a) shows the deformed and un-deformed configuration at the end
of solution with the EFGM and the FEM regions for the problem. Figure 4(b) shows the pressure vs
uy/L for the beam problem.

4 Conclusion

In this paper a new method of coupling the FEM with the EFGM based on local max-ent shape functions
is proposed. Numerical examples are solved from small and finite deformation. In the small deforma-
tion case, numerical results for displacement and stresses are compared with the available analytical
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Figure 3: Geometry and pressure vs w/h for the plate problem
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Figure 4: Deformed and un-deformed Configuration with pressure vs uy/L for the beam problem

solution, which shows excellent agreement. In finite deformation case, the analytical solution for the
pressure vs deflection curve is available for the plate problem, while for the beam problem a reference
solution is used for comparison. In both cases the numerical results are in a very good agreement with
the analytical/reference solutions.
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ABSTRACT

This work presents novel applications of partition of unity (PU) enrichment within the boundary el-
ement method (BEM). In the present work, an approach to include drilling rotations in the classical
two-dimensional boundary element method will be considered. The approach is based on a simple par-
tition of unity strategy that gives rise to a fictitious rotational degree of freedom (using the well known
Allman’s triangle strategy). The approach maintains the boundary only character of BEM and the par-
tition of unity enrichment makes it general (totally kernel independent) and efficient (just certain areas
of the boundary could be enriched).

1 INTRODUCTION

Drilling rotations (also referred as out of plane rotations) refer to an additional degree of freedom that is
associated with the classical d.o.f. in 2D elasticity (u1 and u2). This d.o.f. is particularly important when
dealing with general plate/shell assemblies in which 6 d.o.f. per node are necessary (3 displacements
and 3 rotation, one in each coordinate axis). Drilling rotations in FEM have been introduced primarily
as a way to improve the element performance (e.g. avoiding higher order elements) or in order to
simplify/improve the treatment of plate/shell intersections [1, 2]. The most common approaches in
FEM employ various special devices to develop successful elements. The first successful technique
was proposed by Allman [3] in 1984, who introduced a quadratic displacement approximation in the
normal direction to supplement drilling d.o.f. to nodes of a triangular element (commonly referred as
Allman’s triangle). This technique has been continuously extended to other triangular and quadrilateral
elements. Other works in FEM include more rigorous mathematical development based on variational
principles employing independent rotation fields by Hughes and Brezzi [4]. In the BEM community,
drilling rotations have been neglected. The common approach for plate/shell assemblies relies on the
assumption that the plate flexural rigidity in its own plane is so large that it is possible to ignore its
associated deformation [5] (good approximation for wide plates, but not for narrow ones that behave
like beams). Very recently, Tian and Yagawa [8] found that Allman’s formulation takes a typical form
of partition of unity [9] approximation that offers merits and convenience in formulation and practical
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applications. The partition of unity notion also enables a straightforward and general formulation that
makes possible to extend Allman’s rotational d.o.f. to meshfree approximations. Finally, applications of
partition of unity in BEM (also known as PUBEM) started within Trevelyan’s group in 2002 with the
work of Perrey-Debain et al. [10] on short wave problems. In all reported cases, PUBEM has shown to
be a powerful new method for a variety of engineering problems.

2 FORMULATION

Enriched Shape Functions

The shape functions for a boundary could that includes drilling rotations could be written as a partition
of unity approximation, as recently proposed in [8, 6]:

[
ue1
ue2

]
=

2∑
β=1

Nβ

[
1 0

ξ̂β
2 (−n1)

0 1
ξ̂β
2 (n2)

] uβ1
uβ2
wβ

 (1)

where shape functionsNβ are the classical linear (2 nodes) shape functions used in BEM (continuous or
not). nβ are the components of the normal. ξ̂i = ξ − ξi for i = 1, 2, and ξi is defined as the collocation
point, where [ξ1 ξ2] is [−1 1] (continuous element); [−2/3 2/3] (discontinuous element); [−2/3 1]
(semi-discontinuous element node 1) and [−1 2/3] (semi-discontinuous element node 2). As pointed in
[8], this theoretically explains why these rotation formulae can be easily extended to meshfree method
and, as shown in this work, to boundary element methods.

Enriched 2D BEM formulation and relation between true and assumed rotations

The discretised enriched BEM formulation is obtained after equation (1) is introduced in the classical
BEM 2D equation as follows:

[
Cc11 Cc12

Cc21 Cc22

] [
uc1
uc2

]
+

Nenr
e∑ 2∑

β=1

[
P ∗mβ

11 P ∗mβ
12 P ∗mβ

13

P ∗mβ
21 P ∗mβ

22 P ∗mβ
23

] umβ1

umβ2

wmβ

+

Nstd
e∑ 2∑

β=1

[
Pmβ11 Pmβ12

Pmβ21 Pmβ22

][
umβ1

umβ2

]
=

Ne∑
m=1

2∑
β=1

[
Qmβ11 Qmβ12

Qmβ21 Qmβ22

][
tmβ1

tmβ2

]
(2)

where[
P ∗mβ

11 P ∗mβ
12 P ∗mβ

13

P ∗mβ
21 P ∗mβ

22 P ∗mβ
23

]
=

∫ 1

−1

[
T11(xc,x(ξ)) T12(xc,x(ξ))
T21(xc,x(ξ)) T22(xc,x(ξ))

]{
Nβ

[
1 0

ξ̂β
2 (−nm1)

0 1
ξ̂β
2 (nm2)

]}
Jm(ξ)dξ

where N enr
e is the number of the elements enriched and N std

e is the number of elements using the tra-
ditional linear displacement interpolation. In equation (2), left hand side contains displacements, while
right hand side contains forces applied on the system. Similar equations to (2) have been introduced by
Trevelyan’s group for wave propagation and fracture analysis [10, 11].
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a) All continuous element b) All discontinuous element

Figure 1: Short cantilever mesh configuration

As shown in [10, 11], implementing an enriched BEM formulation introduces additional d.o.f. to the
classical BEM for which additional equations are necessary. In their work, a technique based on addi-
tional collocations points have been implemented. In the present work a more physically based approach
will be used to obtain the additional equations necessary to have a well posed problem. Following a sim-
ilar approach continuously used in FEM, the following functional could be considered [2]:

Π(u, w̄) =
γ

2

∫
Γ
(Ψ − w̄)2dΓ (3)

This penalty term ties the average drilling rotation field w̄ to the true rotation Ψ induced from uα
(Ψ = 1/2(u2,1 − u1,2) [3, 2]). The penalty parameter (γ) is only necessary if the above expression
is introduced in the functional of the total potential energy in order to balance its contribution to the
classical two-dimensional problem.

3 NUMERICAL RESULTS

The enriched BEM formulation proposed above was verified using a common benchmark example in
FEM (cantilever beam with shear end load). This is a simple structure for which analytical solution
is available. The short cantilever tested is shown in Figure 1, the cantilever with length(L)= 48m,
height(D)= 12m and depth(h)= 1m is clamped at one end and a upward shear load of 40 is applied
on the other end. Other information of the cantilever is as follow: Young’s Modulus is 30000, Poisson’s
ratio is 0.25. A convergence study with different types of enrichment (all boundary or just the right end)
and elements (all continuous elements, all discontinuous, and mixed cases). Figure 2 shows the very
good rate of convergence of deflection and rotation for different cases (except for totally continuous
elements).

4 CONCLUSIONS

This works presents applications of PUBEM to drilling rotations. The approach is based on a recently
proposed formulation of the well known Allman’s triangle following a partition of unity enrichment
(PUFEM) strategy. A functional based on a weighted rotation residual is used as the additional equation
in order to obtain a mathematically well posed problem. Results show good convergence characteristics,
particularly for totally discontinuous elements while for totally continuous elements (sharing nodes at
corners) results are very unstable for rotation results.
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ABSTRACT

Over the last few years the topic of isogeometric analysis has received much attention, and represents
a fundamental shift in the engineering solution procedure using numerical methods. The aim of the
method is to take a model generated in CAD and use the functions that describe the geometry to perform
a numerical analysis directly - the often tedious meshing procedure has been bypassed. Hughes et al.
[1] were the first to present the method, and since this seminal paper, much research has been carried
out in the context of the finite element method. But the natural extension of isogeometric analysis to
the boundary element method (BEM) has been lacking, and it isthe goal of this paper to propose a new
isogeometric BEM which we term isoBEM. We find it is a natural fit with the isogeometric concept
since both the NURBS approximation and BEM deal with quantities entirely on the boundary. An
outline of isoBEM is given followed by application to an elastostatic problem. A comparison is made
with the standard BEM with quadratic elements, and it seen that superior accuracies are achieved.

1 INTRODUCTION

In the majority of CAD packages, non-uniform rational B-splines (NURBS) are used to describe the
geometry of a surface due to their ability to represent complex geometries that would otherwise be
difficult using polynomial functions. To see why this is the case we can take the example of a quarter-
circle and approximate it using both a NURBS and quadratic polynomial interpolation. Fig. 1 shows that
we are able to represent the geometryexactlywhile the polynomial interpolation is only approximate
in nature. From this we can start to understand the power of NURBS and why its use is widespread
throughout CAD software. But to gain insight into the concept of isogeometric analysis [1] - where the
same NURBS are used to approximate the unknown fields - the basis functions that comprise NURBS
need some explanation.
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2 NURBS BASIS FUNCTIONS

NURBS are a variant of B-splines, where it is possible to interpolate a line given the following: a knot
vector, control points and degree of the basis. The geometryapproximation is given by

C(ξ) =
n∑

i=1

Ni,p(ξ)Bi (1)

whereBi is a set of nodal coordinates known as ’control points’ andNi,p(ξ) are the B-spline basis
functions given by

Ni,0(ξ) =

{
1 ξi ≤ ξ < ξi+1

0 otherwise
(2)

for p = 0 and

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi

Ni,p−1(ξ) +
ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ) (3)

for p = 1, 2, · · ·

As an example, we can consider a B-spline approximation withthe knot vectorΞ = {0 0 0 1 2 3 4 4 4 },
degreep = 2 (quadratic) andn = 6 control points where the resulting B-spline approximationis plotted
in Fig. 2(a) and the associated basis functions shown in Fig.2(b). NURBS are a variant of B-splines in
that they project the B-spline approximation using a set of weightings. This approximation is written as

C(ξ) =
n∑

i=1

R
p

i
(ξ)Bi (4)

where the NURBS basis functions are given by

R
p

i
(ξ) =

Ni,p(ξ)wi∑
n

î=1
N

î,p
(ξ)w

î

(5)

andwi are an appropriate set ofn weightings. These weightings allow features such as cones and circles
to be modelledexactly.

Figure 1: Comparison of NURBS and quadratic approximation of quarter-circle
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(a) B-spline curve with associate control points (b) B-spline basis functions for knot vectorΞ =

{0 0 0 1 2 3 4 4 4 }

Figure 2: B-spline approximation

3 ISOBEM

The isogeometric concept is based on the idea that not only can we approximate the geometry using
Eq. (6), but we can also approximate the unknown fields using the same expression. In the Boundary
Element Method, this allows the displacement and traction fields to be written as

u(ξ) =
n∑

i=1

R
p

i
(ξ)ai t(ξ) =

n∑
i=1

R
p

i
(ξ)bi (6)

whereai andbi represent nodal coefficients for displacements and tractions respectively. When these
approximations are used, there are some important repercussions on a Boundary Element implementa-
tion:

• Control points do not necessarily lie on the boundary

• An algorithm for determining collocation points must be given

• Singular integration routines are required which can evaluate weakly and strongly singular inte-
grals at any general boundary point

• Elements are defined as intervals between unique knot vectorvalues. Numerical integration is
performed over these portions of the boundary.

In the present study, we have used the Greville abscissae definition [2] to determine the position of
collocation points. Each of the collocation pointsξ̂i is given as

ξ̂i =
ξi+1 + ξi+2 + · · · + ξi+p

p
(7)

We have also used the subtraction of singularity routine given by Guiggiani et al. [3] to determine the
strongly singular integrals and the Telles’ tranformation[4] for weakly singular integrals.
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4 RESULTS

To illustrate the isoBEM concept, the problem of a hole within an infinite plate subject to a traction
at infinity was studied. Since an analytical solution is available for this problem exact errors can be
determined. The problem can be modelled using symmetry as shown in Fig. 3(a) where an example
mesh of three elements per line has also been shown. Note thatthe control points on the hole surface do
not lie on the boundary. Exact tractions were applied along the top, left and hole surfaces with symmetric
conditions on the right and bottom surfaces. Fig. 3(b) showsa comparison between the exaggerated
displacement obtained with isoBEM and the exact solution. Excellent agreement is obtained.

In addition, a refinement study was performed in which knots were inserted to the knot vector result-
ing in a process equivalent to conventional h-refinement. The L2 norm for displacements around the
boundary was calculated for both a quadratic BEM refinement and isoBEM refinement. As can be seen
in Fig. 4, the isoBEM shows superior accuracy over the standard quadratic BEM.

(a) isoBEM geometry and mesh definition (b) isoBEM deformed profile

Figure 3: isoBEM analysis - problem of hole in an infinite plate

Figure 4:L2 relative error comparison between quadratic BEM and isoBEM
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5 CONCLUSION

This paper has outlined an isogeometric boundary element method for elastostatic problems that ap-
proximates both the displacement and traction fields using NURBS basis functions. It is found that the
implementation of the method differs from that of a conventional BEM code, where ’elements’ and the
location of collocation points no longer correspond to conventional definitions. As a result, the numer-
ical integration algorithm must account for these differences. It is seen that when the current method is
applied to the problem of an infinite plate with a hole at the centre, higher accuracies are seen for an
equivalent number of degrees of freedom compared to the conventional BEM with quadratic elements.
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ABSTRACT 

This paper presents an Element-free Galerkin (EFG) scaled boundary method. The EFG approach is 

employed to build approximation in scalded boundary weakened differential equations in circumferential 

direction. The moving least square (MLS) approximation is used to generate shape function. Numerical 

tests are shown illustrating the new method has higher accurate and better convergence compared with 

scaled boundary FEM and MLPG scaled boundary method, and smooth stress field can be obtained in 

proposed model. 

 

1  INTRODUCTION  

The scaled boundary finite element method is a semi-analytical method developed relatively recently 

by Wolf and Song [1].The method was shown to be more efficient than the finite element method for 

problems involving unbounded domains and for problems involving stress singularities or discontinuities 

[2]. This method works by weakening the governing differential equations in circumferential direction s   

through the introduction of shape functions, then solving the weakened equations analytically in the radial 

direction ξ . 

This paper investigated the possibility of using the Element-free Galerkin (EFG) approach presented 

by Belytschko et al [3] to solve the weakened differential equations in circumferential direction in scaled 

boundary method. EFG method has been proved to have the advantages that high accuracy, rapid rates of 

convergence and smooth stress field can be obtained [3]. This new EFG scaled boundary method is 

examined in four benchmark problems. The performance of the new method is compared with the scaled 

boundary FEM and MLPG scaled boundary method developed by Deeks and Augarde [4]. 

2  THE SCALED BOUNDARY MEHTOD  

The scaled boundary method introduces such a coordinate system by scaling the domain boundary 

relative to a scaling centre 0 0( , )x y  selected within the domain. The scaled boundary and Cartesian 

coordinate systems are related by the scaling equations 

0 ( )
s

x x x sξ= +                                                                                                                         (1) 

0 ( )
s

y y y sξ= +                                                                                                                         (2) 

An approximate solution is sought in the form 

{ } { }
1

( , ) [ ( )] ( ) [ ( )] ( )
n

h i hi h

i

u s N s u N s uξ ξ ξ
=

= =∑                                                                                  (3) 

Mapping the linear operator to the scaled boundary coordinate system, the stresses are obtained in the 
form  

291



 

{ } { } { } { }1 2

,

1
( , ) [ ] ( , ) [ ][ ( )] ( ) [ ][ ( )] ( )

h
s D s D B s u D B s u

ξ
σ ξ ε ξ ξ ξ

ξ
= = +                                         (4) 

      In the case with on body load the virtual work statement in Galerkin approach becomes 

       { } { } { } { }( , ) ( , ) d ( ) ( ) d 0
T T

h

V S

s s V u s t s sδε ξ σ ξ δ− =∫ ∫                                                                    (5) 

where the first term represents the internal work and the second term the external work. 

Substituting Eqs.(3) and (4) into (5), the virtual work equation can be solved as a standard 

eigenproblem. Finally the displacement and stress field are obtained as 

       { } { }
1

( , ) [ ( )] i

n

h i i

i

u s N s c
λξ ξ φ−

=

= ∑                                                                                                       (6) 

{ } { }1 1 2

1

( , ) [ ] [ [ ( )] [ ( )]]i

n

h i i i

i

s D c B s B s
λσ ξ ξ λ φ− −

=

= − +∑                                                                  (7) 

where { }φ  is modal displacements at the boundary nodes, while λ  can be identified as a modal scaling 
factor for the ‘radial’ direction. The detailed derivation can be found in [2]. 

 

3  AN ELEMENT-FREE GALERKIN APPRAOCH  

This paper employs an Element-free Galerkin (EFG) approach developed by T. Belystchko et al [3] 

in the circumferential direction. In this method the Galerkin approach is used, and both trail and test 

functions are built by moving least square (MLS) approximation.  
Following Belytschko [3], the MLS approximation yields 

   { } { }ˆ( ) ( )
T

x x
u s s uφ=                                                                                                               (8) 

where ( )sφ  is the MLS shape function,    { }ˆ
xu  is the nodal ‘fictitious’ value vector. 

        The actual nodal values can be related to the fictitious nodal values by 

        { } { } { }
1 1 1

1

( ) ... ( )

ˆ ˆ... ... ... [ ]

( ) ... ( )

n

x x x

n n n

S S

u u T u

S S

φ φ

φ φ

 
 = = 
  

                                                                          (9) 

        Substituting Eq. (9) to Eq. (8), 

         { } { } { } { }1 ˆ ˆ( ) ( ) [ ] ( )
T T

x x x
u s s T u s uφ ϕ−= =                                                                              (10) 

where ( )sϕ  can be identified as a shape function associated with a unit value at node i and zero at all 
other nodes in the conventional manner. That makes the essential boundary condition can be directly 
imposed [4].  

Thus the shape function matrix for the scaled boundary method then becomes 

1

1

( ) 0 ... ( ) 0
[ ( )]

0 ( ) ... 0 ( )

n

n

s s
N s

s s

ϕ ϕ

ϕ ϕ

 
=  
 

                                                                       (11) 

4  PERFORMANCE OF THE METHOD 

4.1 Example 1 – An infinite plate with a hole 

The geometry of the first example is shown in Fig.1. The centre of the hole is used as the scaling 
centre.  The Fig.2 (a-b) show the error η  of energy norm defined in [4] comparing EFG-SB with FEM-
SB and MLPG-SB developed by Deeks and Augarde in [4]. It is shown that EFG-SB is more accurate 
than FEM-SB and it is more accurate than MLPG-SB as the same basis is employed.  
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 Fig.1 Quarter infinite plate with hole                           Fig.2 Convergence of EFG approach and conventional approach 

4.2 Example 2 - A flexible strip footing of infinite extent 

The second example is shown in Fig.3 and only one-half of the plane strain problem is modelled due to 

symmetry. The comparison of raw stress fields 
y

σ is made in Fig.4, in which the ability of obtaining 

smoother stress field in EFG scaled boundary model is shown even only linear basis is used.  

 

 

Fig.3 Strip footing model                                                           Fig.4 Contour of raw stress  

4.3 Example 3 - An infinite plate with a through crack  

The third example is shown in Fig.5. As the scaling centre located at the crack tip, the scaled boundary 

method generates an approximation to the Williams expansion [5]. That makes the determination of stress 

intensity factors straightforward. Tab.1 shows results of mode I stress intensity factor 
I

K  comparing with 

exact solution [5]. The EFG-SB model results the value of 1.7724 and 1.7722 with linear and quadratic 

basis, the MLPG-SB model results 1.7722 using quadratic basis, these three results are very close to the 

exact value of 1.7725. 

 

Fig.5 Through crack problem 

 

Nodes 
number 

EFG  
linear  

EFG  
quadra.  

MLPG 
linear 

MLPG 
quadra.  

FEM  
linear  

FEM  
quadra.  

Exact 

17  1.7663 1.7599 1.7573 1.7662 1.7843 1.7364 
1.7725 33 1.7723 1.7709 1.763 1.7709 1.7755 1.7607 

65  1.7724 1.7722 1.7652 1.7722 1.7774 1.7693 

Tab.1 The values of intensity factor 
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4.4 Example 4 - A single edge cracked plate 

The fourth example is illustrated in Fig.6.  Fig.7 shows the computed coefficients 1a  and 3a  in Williams 

expansion in comparison with the EFG-SB with FEM-SB and MLPG-SB, also with reference solutions in 

[6] and [7]. Better convergence of EFG scaled boundary can be observed. 

         

Fig.6 Edge crack model                                 Fig.7 Convergence of EFG approach and conventional approach 

 

5 CONCLUSIONS 

     An Element-free Galerkin (EFG) scaled boundary method is developed in this paper. EFG approach is 

used in the weakened differential equations in circumferential direction in the scaled boundary method. 

Moving least square (MLS) approximation is employed to build shape function. In numerical 

verifications, this new model is shown with high accuracy, rapid convergence compared with scaled 

boundary FEM and MLPG scaled boundary, and smooth stress field can be achieved with no post-

processing.   
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