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Abstract

The aim of this research project is the modelling of complex anisotropic composites
and metamaterials with sub-wavelength inclusions at low frequencies. Metamaterials are
arti�cial materials with properties which do not exist in nature. These properties are
achieved by merging resonating metallic inclusion in a dielectric matrix. Depending on
the shape of the inclusions, they may change the polarisation of the incoming light or
completely stop the transmission for a given frequency. Such materials are very chal-
lenging to model due to their frequency dependence, anisotropy and coupling between
the electric and magnetic �elds. A metamaterial may consists of hundreds or thousands
of inclusions that interact with each other. To reduce the computational costs, a multi-
scale approach is developed that allows the computation of e�ective medium parameters
from a unit cell of a metamaterial. Finally an experimental setup was build to compare
the theoretical predictions with the experiment. For most of the simulations I rely on a
Finite Di�erence Time based Method, a generalised version of the Yee algorithm. The
classical Yee algorithm is a second order time domain algorithm and often the method of
choice for industrial simulations because of its simplicity and low computational costs.
Furthermore the boundary conditions are naturally treated in the algorithm when the
physical boundary conforms to the orthogonal mesh, which is not the case for curved
boundaries introducing simulation errors. To circumvent this problem we generalised the
Yee algorithm to unstructured meshes using a Delaunay mesh and its orthogonal Voronoi
dual graph. I demonstrate how this method can be used to model isotropic, anisotropic,
dispersive and even more complicated materials. As we demonstrate throughout this
thesis this method may signi�cantly reduce the computational costs and it still allows to
model numerically challenging materials like bi-anisotropic metamaterials.
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1. Introduction

1.1. Motivation

During the last decades so called composites started to play a signi�cant role in our
everyday life, by replacing metals and metallic alloys in items we use on a daily basis.
As the name says a composite is a combination of di�erent materials. The idea is to
combine two or more materials, the combination of which are stronger than the individ-
ual materials by themselves. This allows, for example, the construction of composites
that are far stronger than steel or aluminum and at the same time being lighter and
more �exible than their �normal� counterparts. Typically the name composite refers to
Fiber Reinforced Polymer (FRP) composites. In the past they were named reinforced
plastics. The development of composites started with the discovery and development
of plastics (vinyl, polystyrene) at the beginning of the twentieths century. Later, the
defense industry signi�cantly pushed the research in composites until in the 1940s the
�rst FRP was developed. These were a class called glass �ber reinforced composites
uniting high mechanical strength and light-weight in comparison to metals. Also in the
following decades military were pushing the development of composites particularly for
aerospace and naval applications due to their inherent resistance to weather and corro-
sive defects. Simultaneously, the emergence of new polymers helped to further re�ne and
adapt the properties of composites [3]. Nowadays composites are part of our everyday
life. They are used in snowboards (Figure 1.1a), golf clubs, cars and increasingly in civil
aircraft. According to Airbus, 50 percent of the A350 XWB (Figure 1.1b) is constructed
of composites (mostly Carbon Fiber Reinforced Plastic (CFRP)). Although it is harder
to manufacture an aircraft mainly based upon composites, it o�ers several advantages.
First of all, they are lighter and more resilient than metals, reducing the fuel consump-
tion. Furthermore the service intervals can be increased from 6 to 12 years, less fatigue
related inspections are required and the number of corrosion-related maintenance checks
are decreased, reducing signi�cantly maintenance costs for the customers [2]. Besides
composites, a new class, so called metamaterials has recently attracted the interest of re-
searchers due to the numerous possible applications such as antenna radomes [130, 131],
waveguides [145, 22, 23], polarisation transformers [105], cloaking materials [58, 6, 114]
and many more. Metamaterials can be generally de�ned as a class of arti�cial media,
possessing extraordinary properties that cannot be found in nature [61]. In this work
I restrict my attention to the electromagnetic properties of these materials therefore I
use the more speci�c de�nition: �A metamaterial is an arti�cial material in which the
electromagnetic properties, as represented by the permittivity and permeability, can be
controlled. It is made up of periodic arrays of unit cells, metallic resonant elements.
Both the size of the element and the unit cell are small relative to the wavelength�. Such
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(a) (b)

Figure 1.1.: (a) Amplid builds lightest Snowboard in the world using composite materials.
; (b) Airbus A350XWB.

electromagnetic metamaterials have �rst been theoretically predicted by H.Lamb [63]
in 1904 and later by the Russian physicist Georgievich Veselago in 1968 when he was
thinking about the e�ects on the re�ection and refraction of electromagnetic waves in
materials with simultaneously negative permittivity and permeability [135]. In 1999 Sir
John Pendry [101] suggests a method of creating a lens based upon a metamaterial with
a theoretically perfect focus. In 2000 David R.Smith was able to build the �rst meta-
material with a negative permittivity and permeability, leading to a negative index of
refraction, in the microwave range [119]. In Figure 1.2 such a metamaterial used by R.A.
Shelby [117] with a simultaneous negative permittivity and permeability is represented.
The simulation of electromagnetic phenomena in such complex (anisotropic, frequency

(a) (b)

Figure 1.2.: (a) Split ring resonator unit cell. ; (b) Metamaterial consisting of a periodic
array of wires and split ring resonators. [117]

dependent) materials becomes increasingly important due to rising manufacturing costs.
Imagine a plane manufacturer that would always have to build an entire plane to test
for the e�ect of lightning strike until they found the best suited material and shape.
To prevent such time consuming and expensive tests during the development of a pro-
totype, numerical simulations replace the experiments during the development process.
The development of faster and cheaper computers lead to an extensive use of simulation
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methods in Computational ElectroMagnetics (CEM) to replace usually unfeasible or very
costly real world measurements. For example a wafer fabrication of di�erent electrical
components may take 6 months and cost a couple of millions of dollars. Or the develop-
ment of a stealth aircraft like the Lockheed F117 Nighthawk or the B2 Spirit. In 1998
an F117 cost 80 Million US Dollars. This plane was designed to allow the supercomput-
ers at that time to calculate the Radar Cross Section (RCS) (parameter characterising
the scattering properties of an object) in a reasonable amount of time. So, again the
military pushed the development of numerical methods since the 80's during the cold
war to improve the design of radar systems, aircraft and ships. After the end of the
cold war the rapidly developing market in mobile telephony and personal communica-
tion systems, and the proliferation of electronic systems in motor vehicles, continued
to drive the technology forward [35]. The complexity of electronic system is increasing
rapidly and so is their sensitivity to electromagnetic disturbances. Often it is crucial to
prevent these disturbances of di�erent electromagnetic components. These problems are
classi�ed as ElectroMagnetic Compatibility (EMC), which is the ability of an electronic
system to (1) function properly in its intended electromagnetic environment and (2) not
be a source of pollution to that electromagnetic environment [136]. A simple example
of ElectroMagnetic Interference (EMI) is the characteristic noise we hear when a mobile
phone is close to a radio when a call or SMS is incoming. Another example concerns
businessman or other frequent �yer. Probably a lot of people are wondering why it is
forbidden to use the cell phone or Laptop during take o� and landing of an airplane.
The reason is again EMC issues. Personal Electronic Devices (PEDs) like smart phones,
laptops... may interfere with the electronics of an airplane. Studies from the Radio
Technical Comission for Aeronautics (RTCA) which have been conducted in the 1960's,
80's and 90's found that while the risk of interference with on board electronic equip-
ment due to PEDs is extremely low, it is highest during take-o� and landing. Finally
it depends upon the sensitivity of the on board electronic to a given frequency. The
navigational receivers located in or close to the cockpit are most likely to be disturbed
by radio frequency (RF), emitted by PEDs. Airplanes nowadays are equipped with at
least two Very high-frequency Omnidirectional Range (VORs) receivers, two Instrument
Landing Systems (ILS), two Global Positioning (GPS) receivers. PEDs may interfere
with any of those receivers but the area of concern is their e�ect on the GPS system. In
a NASA report from 2004 GPS receivers lost satellite lock in several general aviation air-
craft during their approach to landing due to interferences with a cell phone [31]. Other
NASA reports stating that pilots suspect problems during �ight due to PEDs. But until
now not a single plane crash has been proven to be caused by a PED on board a plane.
Whereas the risk of a plane crash induced by a smartphone is quite small, the e�ect of
a lightning strike however is much more dangerous. Statistically every plane is struck
once a year by a lightning strike, inducing very high surface currents which may damage
the electronic systems in an aircraft. Simulations of these e�ects of EMI and protecting
the system against it (EMC) is a crucial part, underlying very high requirements, in the
development of an electronic device [43]. With the development of aircraft mainly based
upon composites, EMC is even more crucial than before because composites generally
have a lower conductivity then metal increasing the damages of a lightning. Therefore
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1. Introduction

these composites have to be coated with a high conductive paint or metallic wires have
to be added to the composite to increase the conductivity. From the simulation point of
view composites and metamaterials cannot be modelled in the same way as simple di-
electric materials like glass for example because of the microstructure (Figure 1.2). The
orientation of the �ber makes the composite anisotropic, meaning the index of refraction
depends on the orientation of the �bers. The same is true for the metamaterial where
the index of refraction depends upon the orientation of the unit cells. At microscale the
material looks completely di�erent than at macroscale, but it is the microstructure that
gives the material its special properties. During the simulation of a macroscale object,
like an aircraft, the microstructure of the composite has to be taken into account. For
example carbon-�ber-reinforced carbon, a composite commonly used in aerospace engi-
neering due to its high mechanical strength and temperature resistance, is made by very
thin carbon �bers with a diameter between 5−10µm embedded in a carbon matrix. The
airbus A350 XWB however has a length of 67 m and a wingspan of 64 m. This makes
a di�erence of about 7 orders of magnitude between the micro and macroscale. These
materials can be considered as a 3 dimensional array of unit cells. In the most general
case, the material parameters of a composite, namely the permittivity and permeability,
are frequency dependent second order tensors due to the anisotropy of the material. In
the case of a metamaterial an additional material parameter tensor may be required to
take the coupling of the electric and magnetic �eld into account induced by the unit
cells. Direct simulation of every single unit cell is impossible. To overcome the problem
a multiscale approach can be used. The idea of multiscaling is to consider the problem
at two di�erent length scales. First I retrieve the properties of a unit cell (microscale)
using a homogenisation procedure. These parameters are then used to simulate an ef-
fective medium at macroscale with the same electromagnetic properties as an array of
unit cells. Semi analytical homogenisation techniques, referred to as �E�ective medium
approximations� or �mean �eld theories � based upon very simple mixing formulas as sug-
gested by Maxwell Garnett [50], Bruggemann [21], Luebbers [85] and Bergman [17] only
depending upon a single parameter, the volume fraction Vf may give satisfying results
for composites but completely fail for metamaterials. These methods cannot be applied
to metamaterials because the shape of the unit cell may lead to resonance phenomena
which usually do not appear in composites.

1.2. Aims and Objectives

The aim of this work is the simulation of electromagnetic e�ects on composite and meta-
materials. These materials can be considered as a 3 dimensional array of unit cells.
The standard homogenisation methods working reasonably well for composites cannot
be applied to metamaterials because the shape of the unit cell may lead to resonance
phenomena which usually do not appear in composites. Therefore I suggest a numerical
multiscale procedure which I adapted from a mechanical engineering method as suggested
by El Hachemi et al. [60]. This new method allows me to retrieve all the material pa-
rameters from a single unit cell, even for metamaterials. Tretyakov [128] suggested some
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models, mostly variations of the Lorentz model, to describe the e�ective material param-
eters of metamaterials. I use these models to �t the data I obtained from the simulation
of a unit cell. The �nal step consists in the transition from a unit cell to the complete
material using the �tted data. Therefore I use a Finite Di�erence Time Domain (FDTD)
approach. In contrast to the standard method as suggested by Yee [146], relying on a
structured mesh, I further improved a FDTD method based on an unstructured mesh
[144]. This modi�ed version is referred to as �UM-FDTD� throughout the thesis where
�UM� stands for unstructured mesh. This method was initially limited to perfect electric
conductors (PECs). The di�erent objectives of the thesis to model metamaterials are
listed below.

• Modi�cation of UM-FDTD to model isotropic dielectric conductive (lossy) materi-
als [48].

• Further generalisation to anisotropic lossy materials, allowing the simulation of
composites [49].

• Extension of UM-FDTD to dispersive materials using the Z-transform method [103,
123].

• Development of a numerical simulation technique to model bi-isotropic or in a
speci�c case isotropic chiral materials characterised by a coupling between the
electric and magnetic �elds.

• Development of a numerical simulation technique to model bi-anisotropic materials.
In this case, additionally to the coupling of the electric and magnetic �eld the
metamaterial is anisotropic.

• Development of a numerical multiscale procedure to retrieve the material parame-
ters from a single unit cell.

• Design of a free space setup [108, 94] that allows me to measure the re�ection and
transmission of a material.

• Computation of electromagnetic material parameters [96, 77, 28] from measure-
ments and comparison with numerical results.

1.3. Outline

This thesis is divided in two parts. The �rst part deals with the theory, the di�erent
algorithms I developed and their numerical validation. The second part is dedicated to
the experimental setup and the multiscale approach.
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1. Introduction

Part 1 Numerical Modelling of Maxwell Equations

Chapter 2, Maxwell and Constitutive Material Equations

This chapter introduces Maxwells equations and the corresponding boundary conditions.
My aim is the simulation of electromagnetic in dielectric materials. A typical dielec-
tric is characterised by the electric permittivity, magnetic permeability and electric and
magnetic conductivities. These quantities are introduced and their physical origins are
explained. Depending on the simulation the dielectric material parameters can be simple
scalars, matrices or even complex functions in the case of frequency dependent materials.
Finally I introduce metamaterials, arti�cial materials with properties which do not exist
in nature and explain their extraordinary physical properties. To �nish, I describe how
such materials can be constructed and discuss possible applications.

Chapter 3, Numerical Solution of Maxwells Equations

Chapter 3 is devoted to the numerical simulation of Maxwells equations and is mainly
based upon the published results [48, 49]. First I introduce the scattered �eld formula-
tion which I employ throughout this chapter to solve Maxwells equations. Next I do a
small recall of the standard Yee algorithm on structured meshes. Before I derive the Yee
algorithm for unstructured meshes (UM-FDTD), I give a brief introduction to the mesh
generation and necessary requirements for a high-quality mesh [144]. UM-FDTD is gen-
eralised to isotropic, anisotropic and frequency dependent materials. To model isotropic
metamaterials, the chirality, describing the coupling between the electric and magnetic
�elds needs to be taken into account. For this case, I adapted the method suggested by
[103] to the unstructured mesh. I �nish this chapter with a method that allows me to
model bi-anisotropic materials using unstructured meshes. In this case the three material
parameters, namely the permittivity, permeability and chirality are frequency dependent
second order tensors. This last part combines everything I derived so far and follows the
ideas of Nayyeri [95].

Chapter 4 Code Validation and Numerical Examples

The results and benchmark tests validating my algorithms from chapter 4 are presented.
For the di�erent cases I numerically compute the RCS of a sphere or the transmission
through a dielectric slab. Analytical solutions are available for this problems and allow me
to compare the accuracy of my numerical solutions with the analytical ones. Furthermore
I compare the e�ciency of the co-volume method with the standard Yee algorithm.

Part 2, Multiscale Approach for Metamaterial Modelling

Chapter 5, Micro to Macro Approach

A metamaterial may consist of hundreds of unit cells which makes it nearly impossible
to model the material by considering every single cell. Therefore I suggest a multiscale
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technique to predict the behaviour of the whole material by restricting the simulation to
a single unit cell.

Chapter 6, Experimental Characterisation of Material Properties

To compare my numerical results with experimental data I built a free space measurement
setup which allows us to retrieve the dielectric material parameters from experimental
measurements. The advantages and disadvantages of di�erent experimental setups and
the retrieval algorithms for isotropic and bi-anisotropic materials are explained. By com-
paring my experimental results for di�erent test materials with data found in literature
I validate my setup.

Chapter 7, Experimentally Measured Material Parameters

To compare the predictive capabilites of my multiscale approach I build a metamaterial
based upon the same unit cell as I used for the numerical simulation. From a transmis-
sion/re�ection measurement I am able to compute the material parameters which are
later compared with the results from the multiscale approach.

Chapter 8, Results of the Multiscale Approach

In this chapter the results of the two multiscale approaches are presented. I demonstrate
that the commonly used �indirect� multiscale approach based on the numerical computa-
tion of the scattering parameters reaches its limits for the simulations of metamaterials.
I also present an alternative, �direct� multiscale approach, that I developed, which does
not rely on the scattering parameters but which is based on a �eld averaging technique.
This method leads to results that are more coherent with experimental measurements.

Chapter 9, Conclusion and Future Work

All the results of the preceding chapters are summarised and some possible perspectives
and further applications are outlined. I discuss the advantages and drawbacks of UM-
FDTD with respect to the standard Yee algorithm by analysing the isotropic, anisotropic
and chiral cases. Furthermore I comment my multiscale technique and the corresponding
results. I �nish with a discussion about the free wave setup I used and how to further
improve the measurements in the future.
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2. Maxwell and Constitutive Material

Equations

In this chapter I introduce the basic concepts needed for the theoretical description of
dielectric, lossy, frequency dependent and anisotropic materials. I start with the de�ni-
tion and illustration of the four Maxwell equations which are later numerically solved.
As soon as interfaces of di�erent media like dielectrics or metals are considered, we have
to be aware of the boundary conditions and assure that they are also ful�lled in our
numerical scheme. A revision of the boundary conditions and its e�ects on the electric
and magnetic �elds is given. Next I introduce the de�nition of TE �transverse electric�
and TM �transverse magnetic� modes because this de�nition is commonly used in lit-
erature. The �rst solver, generalising the Yee algorithm to unstructured meshes [144]
was limited to perfect electric conducting materials in free space. I extended it to di-
electric materials [48]. Therefore in my opinion a small repetition of the physical origin
of the materials parameters like electric permittivity ε, the magnetic permeability µ and
the conductivity σ is helpful for a good understanding of the di�erent concepts. Many
isotropic materials may be described in a good approximation by frequency independent
(non-dispersive) material parameters. For other materials, especially metamaterials, the
frequency dependence of the material parameters has to be taken into account. I make
a brief summary of the di�erent models, namely, the Drude, Lorentz or Debye model
before I introduce the concept of metamterials and investigate the uncommon physical
properties they have. First I demonstrate how metamaterials in�uence the phase and
group velocity before I examine the e�ect of a negative index of refraction on the electric
and magnetic �eld vectors at an interface. These e�ects which cannot be observed in
materials found in nature are due to the microstructure, an arrangement of unit cells.
These cells typically are a combination of two di�erent structures. One structure in�u-
ences the electric permittivity and the other one the magnetic permeability. I explain
how a wire grid allows me to tune the electric permittivity depending on the frequency
and how magnetic resonators allow the control over the magnetic permeability. Adding
both structures together and arranging all the resulting unit cells periodically leads to a
metamaterial. Di�erent kind of metamaterials need to be distinguished. A very common
one is based upon a magnetic resonator and wire combined in a single unit cell which may
lead to a negative index of refraction. Chiral metamaterials on the other hand are based
on chiral unit cells and show other interesting phenomena. As an example, left or right
handed (chiral) steel springs dispersed homogeneously in a matrix may lead to a coupling
of the electric and magnetic �eld in the constitutive equations changing the polarisation
of the incident �eld. This and other e�ects will be discussed in the corresponding sub-
chapter. Finally I �nish this chapter with so called pseudochiral materials. Pseudochiral
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2. Maxwell and Constitutive Material Equations

means that the unit cell by itself is not chiral, nevertheless due to its special shape and
spatial orientation, it leads to the same electromagnetic phenomena than materials with
chiral unit cells.

2.1. Maxwell equations

The Maxwell equations, a set of four coupled equations describe the interactions of electric
and magnetic �elds with matter[118, 57]. They form the foundation of classical optics,
electrodynamics and circuit theory.

Maxwell Equations in Di�erential form

∇×H = Jf +
∂D

∂t
(2.1)

∇×E = −∂B

∂t
− Jm (2.2)

∇ ·B = 0 (2.3)

∇ ·D = ρ (2.4)

Maxwell Equations in Integral Form

ˆ
∂A

H · dl =

ˆ
A

(
Jf +

∂D

∂t

)
· dA (2.5)

ˆ
∂A

E · dl = −
ˆ
A

(
Jm +

∂B

∂t

)
· dA (2.6)

ˆ
∂V

D · dA =

ˆ
V
ρdV = Q (2.7)

ˆ
∂V

B · dA = 0 (2.8)

Where E is the electric and H the magnetic �eld respectively and B and D represent the
magnetic and electric �ux densities. Jf (r, t) = Je + J is the total current density where
Je is the electric current density and J the current density arising from sources other than
conductivity. Jm = σmH with σm the magnetic conductivity, no real physical quantity
but usually used for arti�cial absorption at simulation space boundaries. ρ corresponds
to the charge density and Q to the total charge. In the integral formulation dl is an
in�nitesimal line segment, dA is an in�nitesimal surface element, dV refers to a volume
element, ∂A is the contour enclosing the surface A and ∂V is the surface enclosing the
volume V . The di�erent �elds and currents are position and time dependent vectors. For
simplicity we omit writing explicitly the time and spatial dependence e.g E = E(r, t).
If we allow materials with isotropic, non-dispersive (ε and µ are independent of the
frequency of the incoming wave) electric losses attenuating E �elds via conversion to
heat energy, the electric current density becomes Je = σE, where σ is the conductivity.
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2.1. Maxwell equations

(a) (b)

Figure 2.1.: (a) Ampere's law ; (b) Faraday's law

For the simplest case, a linear, isotropic and non-dispersive material we have the following
constitutive relations

D = εE (2.9)

B = µH (2.10)

Relating the �ux densities to the �elds, with µ the magnetic permeability and ε the
electric permittivity where ε = εrε0 and µ = µrµ0. ε0 = 8.854187817 10−12As/V m is
the electric permittivity of free space and µ0 = 4π 10−7N/A2 the magnetic permeability
of free space. εr and µr are the relative electric permittivity and relative magnetic
permeability. They characterise a dielectric material and are explained in all detail in
section 2.4.

2.1.1. Interpretation of Maxwell equations

Ampere's and Faraday's laws

To graphically illustrate Maxwell's equations we restrict ourselves to the integral for-
mulation. Equation (2.5) is referred to as Ampere's law and states that a time varying
electric �ux density ∂D/∂t and an electric current density Jf create an eddy magnetic
�eld as illustrated in Figure 2.1a. Equation (2.6) represents Faraday's law and states that
a time varying magnetic �ux density ∂B/∂t creates an eddy magnetic �eld as illustrated
in Figure 2.1b.

Gauss' law for magnets and electric charges

Equation (2.7) is the Gauss' law for the electric �eld. It mathematically expresses the ex-
perimental fact that electric charges attract or repeal each other. A surface ∂V encloses
the Volume V which contains a volume charge quantity ρ. If equation (2.7) is positive
the electric �eld lines point away from the charges (positive charges), this corresponds
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2. Maxwell and Constitutive Material Equations

to a source. If on the other hand equation (2.7) is negative the electric �eld lines point
towards the charges (negative charges), this corresponds to a sink. In the di�erential

(a) (b)

Figure 2.2.: ; (c) Gauss' law for a positive charge density ; (b) Gauss' law for magnetic
�eld

formulation a source corresponds to a positive divergence of the �eld vector and a sink
to a negative divergence of the �eld vector. Similarly equation (2.8) is called Gauss' law
for the magnetic �eld. In contrast to the Gauss' law for electric �elds it states that no
magnetic charges (monopoles) exist. Therefore the �eld lines always close on in contrast
to the electric Gauss' law. Figures 2.2a and 2.2b illustrate the di�erence between the
electric and magnetic case.

2.2. Electromagnetic boundary conditions at material

interfaces

Boundary conditions describe the behaviour of the �eld at interfaces. Typical interface
that occur may be air-metal or dielectric-metal or other combinations. A metal, also
referred to as perfect electric conductor (PEC) has a very high conductivity σ of several
million S/m, therefore for metals commonly σ = ∞ is used. This is typically not the
case for dielectrics which called �nite conductivity media with σ 6= ∞. The boundary
conditions for two �nite conductivity media σ1, σ2 6=∞ de�ned by ε1, ε2, µ1, µ2 are

n̂× (E2 −E1) = 0 (2.11)

n̂× (H2 −H1) = 0 (2.12)

n̂ · (D2 −D1) = 0 (2.13)

n̂ · (B2 −B1) = 0 (2.14)
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2.3. TE and TM modes

They may also be displayed in a slightly di�erent form

E2t = E1t (2.15)

H2t = H1t (2.16)

E2nε2 = E1nε1 (2.17)

H2nµ2 = H1nµ1 (2.18)

where �t� refers to �tangential� and �n� to �normal�. For further information please refer
to [12]. The boundary conditions for the electric �eld are graphically represented in
Figure 2.3

Figure 2.3.: Boundary condition for electric �eld vector with ε1 < ε2

2.3. TE and TM modes

Because the boundary conditions di�er for the normal and tangential components it is
often useful to split the incoming wave in two parts by de�ning a plane spanned by the
incident and re�ected wavevector ki and kr. The incoming electric �eld vector is now sep-
arated in a part perpendicular to the plane of incidence, the s-polarised wave (TE mode)
and another part parallel to the plane of incidence, the p-polarised Wave (TM mode).
S-polarised comes from the German word �senkrecht� which means �perpendicular� and
p-polarised from the German word �parallel�. E = Ep + Es is graphically represented
in Figure 2.4. For the TE mode only the electrical �eld component is perpendicular
to the direction of propagation, whereas the magnetic �eld component is parallel with
respect to the wavevector. Similarly for the TM mode, the magnetic �eld components
are perpendicular with respect to the direction of propagation. Only the electric �eld
components is parallel to the wavevector. Or in a less scienti�c way: TE means, the
electric �eld does not exist in the direction of propagation and TM means, magnetic �eld
does not exist along the direction of propagation.
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2. Maxwell and Constitutive Material Equations

Figure 2.4.: TE and TM mode of an electric �eld.

2.4. Constitutive equations

This subchapter explains the origin of the electric permittivity and magnetic permeability
in dielectrics and is based upon the book Advanced Engineering Electromagnetics [12].
In a dielectric the charges in atoms and molecules, which are held in place by atomic and
molecular forces, are not free to travel. If an external electric �eld is applied, the centroid
of these bound positive and negative charges is slightly shifted in position relative to each
other, creating an electric dipole moment. For a polar material, even if no electric �eld is
applied, local dipole moments dpi exist between the charges. But the electric polarisation
vector is still zero because due to the random orientation of the dipol moments, the
local polarisation vectors cancel each other. Application of an electric �eld leads to an
alignment of all the charges along the �eld lines. However, all the charges in between the
top and bottom surface of the dielectric cancel each other. Only the charges +qsp and
−qsp at the surfaces remain. These charges create the polarisation density vector P. The
polarisation does not change the value of the applied electric �eld E but the value of the
electric �ux density D inside the material. In free space DfreeSpace = ε0E in a dielectric
with the same applied electric �eld DDielectric = ε0εrE = εE or DDielectric = ε0E + P.
Assuming a linear proportionality between P and E leads to the de�nition P = ε0χeE
where χe is the electric susceptibility (dimensionless quantity). Resulting in

DDielectric = ε0E + P = ε0E + ε0χeE = ε0(1 + χe)E = ε0εrE (2.19)

For magnetic dipoles in a dielectric under the in�uence of a magnetic �eld a similar
relation for the magnetic polarisation vector M = µ0χmH (for linear dependency between
magnetisation and magnetic �eld) where χm is the magnetic susceptibility is obtained.
In general the susceptibilities are tensors and the relation between polarisation and the
corresponding �elds are linear if the applied �elds are not too strong. To summarise,
the permittivity (permeability) is a measure of how much a medium changes to absorb
electric (magnetic) energy when subjected to an electric (magnetic) �eld.
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2.4. Constitutive equations

2.4.1. Electric and magnetic conductivites

The conductivity is linked to the amount of free charges inside a material and therefore
how easily a current can �ow through it. In dielectrics most of the charges are bound to
the atoms and cannot move freely around. In metals on the other hand, all the electrons
in the outer shell (with energy near Fermi level) are free to move. Therefore conductivities
in metals are much higher than in dielectrics. The permittivity and permeability can be
expressed as a complex number ε = ε′+ iε′′ = ε′+ iσ/ω,µ = µ′+ iµ′′ = µ′+ iσ/ω, where
ε′, µ′ and ε′′, µ′′ refer to the real and imaginary parts of the permittivity and permeability
respectively and ω to the angular frequency. As can be seen, the conductivity is linked
to the imaginary part of ε or µ, representing a power loss. Materials with σ, σm ≈
0 are called lossless materials (air or vacuum). Lossy materials are characterised by
σ, σm > 0 (for example, sea water, carbon and germanium). Metals on the other hand
are characterised by a very high conductivity σ, σm ≈ ∞ (for example silver, copper,
iron). The conductivity may vary over a huger range from ∼ 10−24 S/m (lossless) for
Te�on to 6.3× 107 S/m for Silver (metals generally have a very high conductivity). The
resistivity is the inverse of the conductivity % = 1/σ. Ohm's law links the electric Field
E to the electric current density J via the electric conductivity.

J = σE =
1

%
E (2.20)

Inside a conductor, after a very short time no electric �eld exists anymore. To explain
this, imagine bringing a positive charge close to a conductor. For a very short moment
an electric �eld will form due to the charge separation. This �eld will displace the
electrons that are free to move until the electric �eld is cancelled. Therefore metals are
also referred to as perfect electric conductors (PEC). For a lossy (conducting) dielectric,
conductivity corresponds to a power loss because some of the energy is converted to heat
[13]. The constitutive equations for isotropic linear materials are typically written as
in the equations 2.10 and 2.9. The material parameters may be simple scalars as used
in frequency independent cases or frequency dependent functions ε(r, ω), µ(r, ω). For
anisotropic cases they even become matrices ¯̄ε, ¯̄µ.

2.4.2. Lorentz material

The Lorentz type of dispersion is based upon the assumption that, in contrast to a
metal, the electrons are strongly bounded to the atom. An external �eld will displace
the electrons from their initial position, but due to attraction between the electrons and
the atoms they cannot move freely through the material but start oscillating around their
equilibrium position (see Figure 2.5). The permittivity and permeability linked to this
model are

ε(ω)

ε0
= ε∞ +

(εs − ε∞)ω2
0

ω2
0 − ω2 + i2ω0ξ0ω

(2.21)

µ(ω)

µ0
= µ∞ +

(µs − µ∞)ω2
0

ω2
0 − ω2 + i2ω0ξ0ω

(2.22)
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2. Maxwell and Constitutive Material Equations

where εs, ε∞(µs, µ∞) is the permittivity (permeability) at the lower and upper end
of the frequency band, ω0 is the resonance frequency, ω the angular frequency, ξ0 the
damping and I the imaginary unit. For a given set of parameters ε∞ = 2, εs = 5, ωe =
2π × 5GHz, ξ0 = 0.5 the Lorentz permittivity is represented in Figure 2.5.
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Figure 2.5.: Lorentz permittivity

The function used for the material parameters depends upon the type of material needs
to be modelled. There are typically three di�erent types of materials. Lorentz , Debye
or Drude materials, depending if one is interested in modelling solid dielectrics, liquids
or metals, whereas Lorentz and Drude models o�er the best theoretical description of
metamaterials [153]. The derivation of ε(ω), µ(ω) (the spatial dependence has been
omitted for simplicity) for a given type of material can be found in every standard
textbook [13].

2.4.3. Debye material

Liquids, exhibiting oriental polarisation are often modelled as Debye materials, because
the molecules re-orient themselves under the in�uence of an electric �eld. This re-
orientation is not instantaneous due to the inertia of the polarisation. If the frequency
passes a given threshold, the molecules cannot follow the variations of the �eld, leading
to a relaxation of the permittivity. This is taken into account by the Debye relaxation
time τ leading to a permittivity

ε(ω)

ε0
= ε∞ +

εs − ε∞
1 + iωτ

(2.23)

For a given set of parameters ε∞ = 2, εs = 5, τ = 1 the Debye permittvity is represented
in Figure 2.6.
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Figure 2.6.: Debye permittivity

2.4.4. Drude material

In a perfect electric conductor the electrons are assumed free to move without interactions
and therefore they are accelerated perfectly in phase with the incident �eld. In a realistic
metal (non-perfect conductor) internal electrons are accelerated, but their motion is
damped by collisions with the atoms or molecules, leading to the dispersion

ε(ω)

ε0
= ε∞ +

ω2
p

iωΓ− ω2
(2.24)

where ω2
p = ne2/ε0m is the plasma frequency, with n the density of electrons, e and m

the charge and mass of an electron respectively and Γ the collision frequency (probability
that a collision occurs). For a given set of parameters ε∞ = 2 , ωp = 2π×5GHz, Γ = 0.5
the Drude permittivity is represented in Figure 2.7.
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Figure 2.7.: Drude permittivity

2.4.5. Causality condition

In dispersive media, the material parameters are not simple scalars anymore. They
become frequency dependent functions ε, µ → ε(ω), µ(ω). Modelling of frequency de-
pendence is crucial for the simulation of metamaterials because frequency-independent
negative material parameters are not realizable [61]. To verify this we consider the rela-
tion between the energy densityW , and the electric E and magnetic H �elds respectively

W =
1

2

(
ε |E|2 + µ |H|2

)
(2.25)

If the permittivity and permeability are frequency-independent and negative, this would
lead to a negative energy violating the causality principle. For frequency-dependent
material parameters equation (2.25) has to be rewritten to

W =
1

2

(
∂ [ε(ω)ω]

∂ω
|E|2 +

∂ [µ(ω)ω]

∂ω
|H|2

)
(2.26)

and the material parameters have to ful�ll the condition

∂ [ε(ω)ω]

∂ω
> 0 ,

∂ [µ(ω)ω]

∂ω
> 0 (2.27)

which is ful�lled by the Lorentz and Drude model.

2.5. Anisotropic material

In anisotropic materials, the electromagnetic material parameters, such as permittivity,
permeability and conductivity, may vary in the di�erent crystal directions, so that they
must be treated as tensors. It is assumed that already 1000 years ago, before the in-
vention of magnetic compasses, Vikings used crystals, a naturally occurring anisotropic
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2.6. Metamaterial modelling

material, in Norse sagas referred to as sunstones to navigate on open water on cloudy
days. In accordance to researchers these sunstones could have been calcite crystals where
anisotropy leads to the phenomenon of birefringence (crystalline materials with di�er-
ent indices of refraction with di�erent crystallographic directions). Their sunstone came
within 1% of the true location of the sun [109]. Nowadays anisotropic materials o�er
many new and interesting perspectives in engineering. A thin anisotropic coating may,
for example, signi�cantly change the radar cross section of an aircraft. Composites,
anisotropic materials with applications initially limited to stealth bombers, satellites and
space shuttles become part of our everyday life. Due to their advantages with respect to
mechanical strength and weight compared to metals they are now used in civil aircrafts,
trains, automobiles, trucks, sports equipment and so on. Especially in plane and cars
electromagnetic compatibility is an issue which can be dealt with using numerical sim-
ulations. Other applications are the design of patch antennas where anisotropy can be
used as a design parameter [82]. Analytical solutions to wave propagation problems in
electromagnetics are mainly restricted to problems involving simple geometrical shapes
and diagonal, uniaxial or biaxial, tensors [39, 113]. In anisotropic materials, like crys-
tals or composites, the material parameters (ε, µ, σ, σm) are a function of the vector
direction of the wave electric and magnetic �elds. In 3D they are represented as 3 × 3
matrices.

¯̄a =

 axx axy axz
ayx ayy ayz
azx azy azz

 , a = ε, µ, σ, σm

The constitutive equations become

D = ¯̄εE (2.28)

B = ¯̄µH (2.29)

This means that the electric and magnetic �elds are generally not parallel anymore to
the electric, magnetic �uxes. The only exception would be if aij = a for i = j and aij = 0
for i 6= j. More intuitively this means the index of refraction depends on the direction
of the �eld vectors. The components aij may also be frequency dependent functions
aij → aij(ω) following a Drude, Lorentz or Debye model. This becomes important for
metamaterials which are introduced in the next section.

2.6. Metamaterial modelling

The term metamaterial �rst appeared in the year 2000 in the paper [119] but until now
there is no consensus about the de�nition of a metamaterial. I only concentrate on
materials with exceptional electromagnetic properties were the unit cell is small relative
to the wavelength [121]. It is however important to mention that metamaterials can also
be designed for acoustic [33], structural [151] or thermodynamic applications [89].
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2. Maxwell and Constitutive Material Equations

2.6.1. Group and phase velocity of double negative metamaterials

The underlying principle of metamaterials has been discovered by the The Russian physi-
cist Victor Georgievich Veselago. He was the �rst (known) person noticing that Maxwell's
equation do not exclude the existence of materials with negative permeability and per-
mittivity. In his paper published in 1968 [135] Veselago thinks about the e�ects on the
re�ection and refraction of electromagnetic waves in a material with negative permittivity
and permeability. For him, there are three possible results

1. Properties of a substance are not a�ected by a simultaneous change the signs of ε
and µ.

2. Simultaneously negative values of ε and µ con�ict with some fundamental laws of
nature and therefore no such substance can exist.

3. Simultaneously negative values of ε and µ are possible, but the electrodynamics of
such materials di�ers from electrodynamics for the case of positive ε and µ [134].

Veselago comes to the conclusion that only the third case is correct. What e�ect does a
negative permeability and permittivity has on the propagation of a wave in a medium?
First a small reminder on physical relations:

• vp = ω/k phase velocity (magnitude)

• vG = ∂ω/∂k group velocity (magnitude)

• n =
√
εrµr index of refraction

• c = 1/
√
µε = 1/

√
µ0µrε0εr = c0/

√
εrµr = c0/n speed of light in a medium

• η =
√
µ/ε = η0n/εr impedance

Introducing a plane wave ansatz in equations (2.2) and (2.1) leads to

k×E = ωB = ωµH (2.30)

and
−k×H = ωD = ωεE (2.31)

These two equations give us information about the relative position of the vectors to each
other. E, H, k are perpendicular to each other. But their orientation depends upon the
sign of ε and µ. If ε > 0 and µ > 0 the �eld vectors form a right handed system with
B parallel to H and D parallel to E and the material is called right handed material
(RHM). If ε < 0 and µ < 0 the �eld vectors form a left handed material (LHM) and B
anti parallel to H and D anti parallel to E. Materials with ε < 0 and µ < 0 respective
ε > 0 and µ > 0 may also be referred to as �double negative� (DNG) or double positive
(DPS).
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2.6. Metamaterial modelling

(a) (b)

Figure 2.8.: (a) Left Hand Material (LHM) ; (b) Right Hand Material (RHM)

Materials with one negative parameter are named �single negative� (SNG) and can even
further be speci�ed as �epsilon-negative� (ENG) or� mu-negative� (MNG). For a DPS (or
RHM) and DNG (or LHM) the Poynting vector de�ned as S = (E×H) = 1/(εµ)(D×B)
, representing the energy �ux, always points in the same direction. Waves with a wave
vector pointing in the opposite direction with respect to the Poynting vector are referred
to as backward waves. Figure 2.8 illustrates the di�erence between a RHM and LHM. To
clarify the consequences of this new concept let's introduce the phase and group velocity.
The phase velocity vp = (ω/k) k̂, with the unity wave vector k̂, points in the same
direction as the wavevector.

(a) [99] (b) [99]

Figure 2.9.: Phase- and group velocity of a plane wave and a wave packet in a LHM and
RHM (a) plane wave; (b) wave packet

Therefore the group velocity is parallel to the wavevector and it is negative for a LHM and

positive for a RHM. The group velocity vg = (∂ω/∂k) k̂ = ∂/∂k
(
k/
√
εµ k̂

)
= 1/

√
εµ k̂

on the other hand is independent of the direction of k. The group velocity is parallel to
the Poynting vector and pointing in the same direction. A wave with a positive Poynting
vector and anti-parallel wavevector as in a LHM corresponds to a wave where the phase
and group velocities go in opposite directions as illustrated in Figure 2.9
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2. Maxwell and Constitutive Material Equations

2.6.2. Negative index of refraction

Using the boundary conditions and the de�nition of the TE, TM modes (section 2.3) I am
now able to derive a continuity condition for the wavevector. For a TM mode, Hz is equal
to zero for a wave propagating in z direction, leading to Ht = Hy, Hn = Hx + Hy = 0,
where �t� refers to tangential and �n� to normal. For simplicity I de�ne the interface
at z = 0. The magnetic �eld inside the material is referred to as H2 and elsewhere as
H = H1. Hy is assumed to be a plane wave. Hy is the sum of the incident and the
re�ected wave whereas H2,y only contains the transmitted wave propagating along the z
direction

Hy = Ae−i(kzz+kxx) +Bei(kzz−kxx) (2.32)

H2,y = Ce−i(k2,zz+k2,xx) (2.33)

where A,B,C are the amplitudes. Using the boundary conditions (equation (2.16)) and
the fact that the boundary is located at z = 0

Ht = H2,t (2.34)

(A+B) e−ikx = Ce−k2,xx (2.35)

This condition can only be ful�lled if kx = k2,x and A + B = C. The similar reasoning
follows for a TE mode with a tangential E-�eld. If the second medium is a LHM, the
wavevector inside this material k2 is anti parallel to the wavevector in the RHM k (see
section 2.6.1). But the condition kx = k2,x is still valid, so k2,z has to be negative leading
to a wave (k3) which is refracted above the perpendicular as illustrated in Figure 2.10.
This is called a negative refraction. To derive Snell's Law, the condition kx = k2,x with

(a) (b)

Figure 2.10.: (a) p-polarised wave ; (b) s-polarised wave

kx = k sin (θ) and k2,x = k2 sin (θ2) needs to be full�lled. With the dispersion relation
ω = k/

√
εµ this leads to
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2.6. Metamaterial modelling

√
εµ sin (θ) =

√
ε2µ2 sin (θ2) (2.36)

⇔ n sin (θ) = n2 sin (θ2) (2.37)

For a negative refraction θ′ becomes negative. Next I use sin(−θ2) = − sin(θ2) and
introduce it in equation (2.37). Rearranging it leads to

n2 = n
sin(θ)

− sin(θ2)
(2.38)

but in this case equation (2.37) would be violated because n sin (θ) = −n2 sin (θ′) there-
fore n2 has to be negative. Corresponding to a negative index of refraction in a LHM.
This is illustrated in Figure 2.11.

Figure 2.11.: Snell's law

Let us now further investigate the index of refraction, which is de�ned as n =
√
εµ.

According to this de�nition the material parameters ε, µ have to be complex for a LHM,
otherwise a negative index of refraction is not possible. The real part of n, Re(n) = n′

corresponds to the classical index of refraction and the imaginary part Im(n) = n′′

corresponds to the absorption .

n2 = εµ (2.39)

⇔
(
n′ + in′′

)2
=

(
ε′ + iε′′

) (
µ′ + iµ′′

)
(2.40)

⇔ n′2 − n′′2 + i2n′n′′ = ε′µ′ − ε′′µ′′ + i
(
ε′µ′′ + iε′′µ′

)
(2.41)

Everything I derived until now remains true for the real parts of the considered quantities
ε′ < 0, µ′ < 0, n′ < 0. Therefore, by only considering the imaginary part of equation
(2.41) I get

n′ =
ε′µ′′ + ε′′µ′

2n′′
< 0 (2.42)

The absorption n′′ is always > 0. Therefore the remaining condition is

ε′µ′′ + ε′′µ′ < 0 (2.43)
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2. Maxwell and Constitutive Material Equations

2.6.3. Absorption and evanescent waves

To prove that ni is linked to the absorption of a wave let's consider a plane wave propa-
gation in x direction inside a medium with index of refraction n.

E(t, x) = E0e
−i(kx−ωt) (2.44)

using the dispersion relation

k =
nω

c0
=
(
n′ + in′′

) ω
c0

(2.45)

and introducing it in equation (2.44) leads to

E(t, x) = E0e
−i

(
ω
c0
n′x−ωt

)
e
− ω
c0
n′′x (2.46)

where n′′ leads to an exponential damping of the incident wave. In the next step I link
the imaginary part of the index of refraction using Lambert Beer Law which is only
de�ned for intensities

I(x) = I0e
−αx (2.47)

with x the thickness of the sample, α the absorption coe�cient and I0 the initial intensity.
The intensity of the electric �eld is proportional to the square of the �eld

I(x) ∝ |E|2 = E2
0e
−i2

(
ω
c0
n′x−ωt

)
e
−2 ω

c0
n′′x

= I0e
−2 ω

c0
n′′x (2.48)

where E2
0e
−i2

(
ω
c0
n′x−ωt

)
got absorbed in I0. Comparing the coe�cients from equations

(2.47) and (2.48) leads to

α =
2ωn′′

ε0
(2.49)

Until now I investigated how the wave propagates in RHM (ε, µ > 0) and LHM (ε, µ < 0).
But, what happens if ε < 0, µ > 0 or ε > 0, µ < 0. Using the dispersion relation, leads
to

k = ωc = ωn = ω
√
ε0µ0
√
εµ (2.50)

where µ, ε refers to the relative material parameters in this case. If ε < 0, µ > 0 or
ε > 0, µ < 0 , k has to be a complex number k = k′ + ik′′ , so k′′ is again linked to the
imaginary index of refraction n′′. For a plane wave, propagating in positive x direction
the electric �eld is

E(t, x) = E0e
−i(kx−ωt) = E0e

−i(k′x−ωt)ek
′′x (2.51)

Where the term exp(k′′x) leads to an exponential damping in x direction. Therefore the
penetration depth is very limited. Such a wave is referred to as evanescent. A summary
of the re�ection/transmission properties for di�erent material parameters is summarised
in Figure 2.12
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2.7. Electrical wire grid resonators

Figure 2.12.: Re�ection and ransmission properties for di�erent material parameters

2.7. Electrical wire grid resonators

Until now no DNG materials has been discovered in nature. But in 1999 Sir John Pendry
[101] got the idea to build a LHM by assembling two di�erent structures. One leading
to a µ < 0 and another leading to a ε < 0 by using split ring resonators and wires. The
basic idea is to choose inclusions on a mesoscopic scale (smaller than the wavelength
but larger than atoms) with respect to the wavelength, because they will behave like a
homogeneous material. The size of such inclusions should be at least λ/6.

wire grid resonator

According to the Lorentz model ε(ω) < 0 close to the resonance frequency. Unfortunately
no naturally occurring dielectric material is known with this property. But many metals
have this property ε(ω) < 0. In contrast to dielectrics where electrons are bound to the
atoms, metals are described using a Drude model because the conducting electrons are
free to move. There exists no restorable force and the electrons oscillate with the electric
�eld. In Figure 2.13 a negative permittivity occurs for angular frequencies smaller than
ωp. Due to the absorption only a small band may be used for creating a negative index
of refraction which can be controlled by tuning the the plasma frequency by changing
the density of charges.
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2. Maxwell and Constitutive Material Equations

Figure 2.13.: Drude permittivity, with Re(ε) = ε′ and Im(ε) = ε′′

Unfortunately it is not simply possible to generate a plasma and control the position of
all the charges. Therefore Sir John Pendry had the idea to assemble long metallic wires
which appear to an incoming wave as e�ective electron plasma (because the charges
are free to move along the wire) if the wavelength is long enough. The electric �eld is
polarised along the wires. This allows the design of negative permittivity materials in
the frequency range below 2GHz. But the exponentially increasing absorption limits the
use of such a material. To improve the e�ciency the �cut wire grid� method is developed.

Cut wire grid resonator

To increase the bandwidth the resonant behaviour of short wires can be used. For this
case the Drude model is not suited because due to the short wires the ideal plasma
assumption doesn't hold anymore. For short wires the electrons will accumulate at the
boundaries generating an opposing �eld leading to a resetting force proportional to the
de�ection. This force depends on the length of the wire. By considering this e�ect, the
permittivity becomes a mixture between a Lorentz and a Drude model leading to

ε(ω) = 1−
ω2
p − ω2

ε

ω2 − ω2
ε + iξεω

(2.52)

with

ωp =
2πc2

0

a2ln(a/r)
ω0 =

πc0

l
(2.53)

where a is the lattice parameter, r the radius and l the length and ω0 the fundamental
mode. Details about the derivation of this function can be found in [100] and [45].
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2.8. Magnetic resonator

(a) (b)

Figure 2.14.: (a) cut wire grid resonator ; (b) comparison between �wire� and �cut wire�
transmission and permittivity

The wire has an inductive behaviour and the edges are the capacity. The �cut wire
grid� is represented in Figure 2.14a. In Figure 2.14b the transmission and permittivity
of a �wire� and �cut wire� are compared. As can be seen the transmission for a �wire
grid� decreases exponentially to zero. Due to the resonance in the � cut wire grid � the
frequency band from ω0 to ωp is much wider. Such �cut wire� materials are not only
interesting for DNG materials but are already used to improve standard horn antennas
[79].

2.8. Magnetic resonator

On a microscopic scale magnetism is the result of unpaired electron spins. Probably the
simplest way to generate a magnetic moment on a macroscale is to bend a metallic wire
to a circle and apply a current to it. A magnetic moment perpendicular to the plane of
the wire is generated according to

m =
1

2

ˆ
V

(r× J) dV (2.54)

with J the current density and r the radius. As depicted in Figure 2.15 incoming plane
wave with a time varying magnetic �eld perpendicular to the plane of the conducting ring
will induce an electric �eld along its contour leading to an electric current I. According
to Amperes law this time varying current will induce an magnetic �eld leading to an
magnetic moment m. Unfortunately this magnetic moment is too weak. Even for a
closed packed con�guration of conducting rings only µ < 1 is realisable, but not µ < 0.
As for the electric case, the magnetic moment may be increase by making use of a
resonance, leading to the design of the so called split-ring resonator.
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Figure 2.15.: magnetic moment generated by incident wave.

In contrast to the conducting ring the split ring is not completely closed leading to a ca-
pacitance C at both ends of the wire connected in series to the inductance L of the ring.
Strictly speaking the split ring resonators do not have to be rings. They may appear in
di�erent con�gurations as depicted in Figure 2.16.

Figure 2.16.: Rectangular SRR, circular SRR, nested SRR (Double split ring resonators
(DSRR)), SRR back-to-back con�guration. [99]

For a known L,C and resistance R, the di�erential equation describing a RLC-circuit is

L
d2I(t)

dt2
+R

dI(t)

dt
+

1

C
I(t) = 0 (2.55)

⇔ d2I(t)

dt2
+ α

dI(t)

dt
+ ω2

0I(t) = 0 (2.56)

where the damping is α = R/L and the resonance frequency ω0 = 1/
√
LC. L, C mainly

depends upon the geometry. DSRRs (Figure 2.16) show a sharper resonance and are a
popular choice for metamaterials with µ < 0. They lead to an e�ective permeability of
[74]

µeff (ω) = 1− ω2
m − ω2

0

ω2 − ω2
0 + iαω

(2.57)

where ωm is the �magnetic plasma frequency� equivalent to the plasma frequency, for a
closed packed arrangement a strong magnetic response leads to µ < 0.
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2.9. E�ective LHM medium

2.9. E�ective LHM medium

To �nally build a negative index of refraction metamaterial typically alternating layers
of electric and magnetic resonators are used. The �rst metamaterial developed by Smith
[119] is represented in Figure 2.17a. The wires and DSRRs are clearly distinguishable.
Later, printed circuit board (PCB) technology is used to reduce the dimensions of the
metamaterial making it useful for smaller wavelengths. On PCBs the DSRRs are printed
on one side and the wires on the other side of the board as depicted in Figure 2.17b.
These are only examples of 2D metamaterials.

(a) (b)

Figure 2.17.: (a) Metamaterial developed by Smith et al. [119] ; (b) Metamaterial suited
for smaller wavelengths build using print circuit board technology

2.10. Chiral and pseudochiral materials

A Chiral material is a metamaterial but it is not part of the double negative materials
because the permittivity and permeability may remain positive. The negative index
of refraction may be obtained using an additional material parameters referred to as
chirality. Chirality is derived from the Greek word for �hand�, therefore it is also referred
to as handedness. An object is chiral if it is distinguishable from its mirror image and
consequently if it cannot be superimposed with it by translation and rotation. This is for
example the case for the left and right hand. In chemistry, chiral molecules are referred to
as enantiomers (Figure 2.18a). If a chiral object is left handed, its enantiomorph is right-
handed (see Figure 2.18b). On the other hand, an achiral object like a sphere cannot
be distinguished from its mirror image. The interaction of an electromagnetic wave with
a collection of randomly oriented chiral objects (small helices for example) leads to the
phenomenon of optical activity causing a rotation of the plane of polarisation to the right
or to the left depending on the chirality of the object [67]. In 1811 Argo [7] �rst discovered
optical activity in quartz crystals and 1815 Biot [18] discovered this phenomenon in other
media such as oil of turpentine. 1848 Louis Pasteur [83] identi�ed the chirality of the
molecules as cause of the optical activity. Finally, in 1920 and 1922, Lindman [73, 81]
set up a model based upon microwaves instead of light by replacing chiral molecules by
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wire spiral entities (macroscopic molecules). Which has been experimentally validated
by Pickering [104]. Lindman and Pickering showed that a collection of randomly oriented
left-handed helices turns the plane of polarisation of the incident wave one way whereas
the right-handed helices turns it the other way [94].

(a) (b)

Figure 2.18.: (a) hand and chiral molecules ; (b) left- (on the left) and right-handed (on
the right) helices

Chiral materials are a special case of bi-isotropic materials. Due to the discovery of
new properties and fabrication techniques they become increasingly popular. Especially
because they o�er a negative index of refraction without requiring a negative permittivity
or chirality. In the mathematical description bi-isotropy is taken into account in the
constitutive equations

D(ω) = ε(ω)E + ξ(ω)H (2.58)

B(ω) = µ(ω)H + ζ(ω)E (2.59)

ξ, ζ are the cross coupling parameters de�ned as

ζ(ω) =
χ(ω) + iκ(ω)

c
(2.60)

ξ(ω) =
χ(ω)− iκ(ω)

c
(2.61)

where c is the speed of light, χ the Tellegen parameter and κ the chirality, sometimes
also referred to as Pasteur parameter. In this thesis I will only focus on chiral materi-
als therefore we neglect the Tellegen parameter especially because it's existence is still
controversial. Hence our constitutive equation simpli�es to
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2.10. Chiral and pseudochiral materials

D(ω) = ε(ω)E− iκ(ω)

c
H (2.62)

B(ω) = µ(ω)H +
iκ(ω)

c
E (2.63)

As can be seen the chirality leads to a coupling between the electric and magnetic �elds.
The Pasteur parameter leads to two interesting e�ects

• Optical rotatory dispersion (ORD): continuous rotation of the plane of polarisation
of a linearly polarised incident wave inside the chiral material

• Circular dichroism (CD): change of the polarisation from linear to elliptical due to
di�erent absorption coe�cients of a right and left circularly polarised wave

These phenomenon are illustrated in Figure 2.19.

(a) (b)

Figure 2.19.: E�ect of Pasteur parameter (a) Optical rotatory dispersion (ORD). ; (b)
Circular dichroism (CD)

A pseudochiral material is used in bi-anisotropic metamaterials and may show a similar
optical activity with the phenomena of CD and ORD without being chiral [110]. The
unit cells of a pseudochiral material are by itself not chiral but they nevertheless lead to
a coupling between the electric and magnetic �eld, described by the chirality (Pasteur)
parameter if they are arranged in a speci�c way. This coupling does not exist in a LHM
where the magnetic resonators (SRR) are spatially separated from the electric resonators
(wires). An omega particle for example (Figure 2.20) is a combination of the SRR and
wire. Therefore the coupling of the electric and magnetic �eld arises, mathematically
taken into account by the chirality parameter in the constitutive equations.
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Figure 2.20.: Standard unit cell of Ω-Medium. [10]

2.11. Classi�cation of metamaterials

In 1998 Tretyakov et al. [129] suggested a method to classify di�erent kind of metama-
terials. They de�ne the constitutive equations as in the isotropic case but the material
parameters are complex tensors instead of scalars.

D = ¯̄εE + ¯̄ξH (2.64)

B = ¯̄µH + ¯̄ζE (2.65)

¯̄ξ =
1

c

(
¯̄χT − i¯̄κT

)
(2.66)

¯̄ζ =
1

c
( ¯̄χ+ i¯̄κ) (2.67)

¯̄χ is the Tellegen or non-reciprocal parameter which I do not consider in the following
classi�cation because I am only interested in reciprocal bi-anisotropic media. In this
case ¯̄ε and ¯̄µ are symmetric tensors and ¯̄ξ = − ¯̄ζT = −i¯̄κT where ¯̄κ is the chiral tensor
responsible for the magnetoelectric coupling. Rewriting ¯̄κ as

¯̄κ =
1

3
Tr (¯̄κ) ¯̄I + ¯̄M (2.68)

where Tr() is the trace of a matrix. In the original publication the term 1/3 in front of
the trace is not used but in our opinion it should be added. ¯̄I is the unity matrix and
the trace of ¯̄M equals zero. It is furthermore possible to decompose every square matrix
in a symmetric and antisymmetric matrix.

¯̄M = ¯̄N + ¯̄J (2.69)

Where ¯̄N =
(

¯̄M + ¯̄MT
)
/2 is symmetric and ¯̄J =

(
¯̄M − ¯̄MT

)
/2 is antisymmetric. As

a reminder a matrix ¯̄A is symmetric if Aij = Aji and antisymmetric if Aij = −Aji. In
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our case Tr
(

¯̄M
)

= 0, therefore Tr
(

¯̄N
)

= 0. Therefore there must be at least two
set of virtual inclusions with opposite handedness. In these media e�ects known from
isotropic chiral media like optical rotatory dispersion and circular dichroism may occur.
Interestingly the microstructure of these materials doesn't has to be chiral to lead to the
same e�ects as observed in isotropic chiral media. Therefore they are called pseudochiral.

¯̄κ =
1

3
Tr (¯̄κ) ¯̄I + ¯̄N + ¯̄J (2.70)

Equation (2.70) allows us to classify several metamaterials (Table 2.1)

Coupling Parameters Class

Tr (¯̄κ) 6= 0, ¯̄N = 0, ¯̄J = 0 Isotropic chiral medium
Tr (¯̄κ) 6= 0, ¯̄N 6= 0, ¯̄J = 0 Anisotropic chiral medium
Tr (¯̄κ) = 0, ¯̄N 6= 0, ¯̄J = 0 Pseudochiral
Tr (¯̄κ) = 0, ¯̄N = 0, ¯̄J 6= 0 Omega medium
Tr (¯̄κ) 6= 0, ¯̄N = 0, ¯̄J 6= 0 Chiral omega medium
Tr (¯̄κ) = 0, ¯̄N 6= 0, ¯̄J 6= 0 Pseudochiral omega medium
Tr (¯̄κ) 6= 0, ¯̄N 6= 0, ¯̄J 6= 0 General reciprocal bi-anisotropic medium

Table 2.1.: Classi�cation of reciprocal bi-anisotropic media
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3. Numerical Solution of Maxwell

Equations

In computational electromagnetics (CEM) there exist various methods for solving Maxwell's
equations. They all have their advantages and disadvantages and depending on the case
one method may be better suited than another.

3.1. Review of numerical techniques for the solution of

Maxwells equations

Time Domain vs Frequency Domain

CEM programs can be separated in two main groups. Time domain (TD) and frequency
domain methods. Time domain methods are interesting if a broadband analysis is re-
quired. An example would be the transmission and re�ection coe�cients (expressed in
the frequency domain) of an electromagnetic pulse (time domain) interacting with a di-
electric material. Therefore a pulse is de�ned in the time domain and after it interacted
with the dielectric when the Fourier transform is applied to convert the response from
the time to frequency domain. The result is a very broadband response in the frequency
domain by running the algorithm only once in time domain. If on the other hand we
are only interested in a time-harmonic steady state solution at a single frequency the
frequency domain method is much more e�cient because no time stepping is required
and the solution is obtained through a matrix inversion process. Another big advantage
of a frequency domain method is the simplicity to implement frequency dependent (dis-
persive) material parameters (ε, µ, σ), because the scalar values can be used directly. In
the time domain this is more cumbersome because the constitutive equation, which is a
multiplication in the frequency domain, becomes a convolution in the time domain. To
obtain a broadband response a frequency domain method can also be used by running
multiple simulations, one at each frequency. Although it is more complicated to deal
with frequency dependent material parameters in a TD method, the broadband response
obtained in the frequency domain after a single run in the time domain outweights the dis-
advantages. Therefore I restrict my attention only to TD methods. The advantages and
disadvantages of the most common methods are presented in the following paragraphs.

Method of Moments (MoM) or Boundary Element Method (BEM)

The Method of Moments (MoM), or Boundary Element Method (BEM) solves linear
partial di�erential equations formulated as integral equations. Applications range from
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electromagnetics over acoustics to fracture mechanics. The numerical implementations
of the method go back to the 60s but it became popular in the late 1970s. The main dif-
ference between the MoM and the presented �nite element and �nite di�erence methods
(FDM) is that the MoM is a boundary method whereas the others are domain methods.
In a BEM method for a 3D case, the discretisation is only applied to the boundary sur-
face, whereas in domain methods, the whole space needs to be discretised. This reduced
dimension leads to lower computational requirements due to the smaller systems. This
method is especially suited for problems with a small surface to volume ratio and ex-
cel in modelling open radiation problems, particularly when the geometry includes large
metallic surface or resonant length wires. The ray tracing techniques is part of the BEM
methods and results from the high frequency approximation of Maxwell's equations. As
a geometrical method ray tracing adds no penality on the runtime if the frequency is
increased. This becomes useful when other methods become computationally to expen-
sive because of the vanishing wavelengths. If the size of the obstacle is much bigger than
the incoming wavelength this method is typically applied. Common applications of ray
tracing are the propagation of radio signals through the ionisphere, ocean acoustics or
the design of lenses and optical systems. I am however interested in objects with a size
in the order of magnitude of the exciting wavelength, making this method not suitable
for my applications. Generally BEM methods result in fully populated matrices, lead-
ing to a grow of the storage requirements and the computational time proportional to
the square of the problem size. For Finite Element Methods the storage requirements
however only grow linearly with the problem size [29]. BEM methods are best suited for
problems in linear homogeneous media where Green's functions can be calculated, which
is a non-negligible restriction for this method especially for my applications. Therefore I
concentrate on volume discretisation methods.

Finite Di�erence Time Domain Method

The publication from 1928 from Courant, Firedrichs and Lewy can be considered as start-
ing point of the Finite Di�erence Method [32]. They investigated the solution of problems
by means of �nite di�erent methods. They even de�ned a �nite di�erence approxima-
tion for the wave equation and the derived the CFL stability condition necessary for the
convergence of the solution. This condition is a key parameter in the FDTD formulation
because it links the time step to the spatial step of the mesh. In 1930 Gerschgorin [53]
derived the error bounds for the di�erence approximation of elliptic problems. Twenty
years later after the Second World War, the improvement of computers lead to practical
applications pushing the development of the Finite Di�erence Time Domain Method.
During the 1950s and 1960s key protagonists in the further development and generali-
sation of the method where O'Brian, Hyman, Kaplan [98], John [68] and many others.
Probably the most common FDTD method in electromagnetics is the Yee algorithm [146]
named after his inventor Kane S. Yee. A two-point centered di�erence form is used to
obtain second-order accuracy. In its standard form a structured staggered spatial mesh is
used. The staggered mesh allows the interleaved placement of the electric and magnetic
�eld components. The main advantages of this methods are [118, 126]:
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• Simple discretisation procedure allowing to model a 3D problem in less than 100
lines of code

• Easy to understand due to simple discretisation

• No inherent limit to the size of a simulation due to explicit nature. No linear
algebra or matrix inversions are required

• Gauss laws are inherently ful�lled

• Scheme preserves the energy and amplitude of the wave

• As a time domain method one single run of the simulation allows the whole repre-
sentation of the frequency domain by using the Fourier transform.

• Accurate and robust method

• Method can easily be parallelised on CPU's and GPU's

The main drawbacks are:

• A stability condition links the time step to the spatial size of the smallest mesh
elements. This makes it problematic for the method to deal with large scale appli-
cations.

• As a low order method the accuracy of the results may su�er from numerical
dispersion.

Finite Volume Time Domain (FVTD)

Initially �nite-volume techniques were used to solve the governing equations in �uid
dynamics. Beginning of the 90's Madsen [88], and Shankar [116] adapted this method
for the solution of Maxwell's equations. Similar to the Yee algorithm, Madsen suggested
an interleaving of the �elds. In this case the method may be referred to as a hybrid
FDTD-FVTD method. The electric and magnetic �eld components are stored on the
edges of the primal and dual cell respectively. Yee and Chen [147, 148] also suggested
their own FVTD method. In contrast to Madsen they store the �elds on the vertices
of the cells, simplifying the derivation of the update equations. In FVTD the integral
form of Maxwell's equations is used to conserve the �eld quantities. Whereas in the
standard FDTD formulation the electric and magnetic �eld vectors are stored on the
nodes of grid cells, in FVTD the �elds are de�ned in small volumes in space. The
main advantage of the FVTD method compared to the standard FDTD method is the
generalisation to unstructured meshes, allowing the conformal approximation of curved
surfaces. Furthermore the method can be used on non-uniform meshes. For linear, non-
dispersive materials the spatial discretisation has to be smaller than λDiel/10, where
λDiel is the wavelength inside the dielectric. Materials with a large electric permittivity
can be discretised with smaller cells compared to low electric permittivity materials.
The unstructured mesh allows a smooth transition between high and low permittivity
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materials. This signi�cantly reduces the number of cells in the overall mesh. Overall the
FVTD method combines an explicit time domain method with an unstructured mesh.
The drawbacks of the methods are the required dual grid, which may be challenging to
generate and the larger stencils, required for higher accuracy, destroying the locality of
the scheme. Furthermore this method is not divergence free.

Finite Element Method (FEM)

The �nite element method has originally been developed in the 1940's for structural
mechanic applications [152]. The popularity for electromagnetic application rise end of
the 1960s. Nevertheless FDTD was the most popular method until the 1990s due to its
simplicity and e�ciency with respect to computational ressources. By further developing
the Finite Element method in Time Domain (FETD) and by using improved algorithms
higher accuracy and e�ciency could be achieved. In contrast to the standard FDTD
method, FETD can be used on unstructured meshes. FETD on the other hand can
deal with higher-order polynomial basis functions. There is also a conceptual di�erence
between the �nite di�erence and �nite element methods. FD methods approximate the
operators (derivatives) ∂u/∂t ≈ (u(ti+1)− u(ti)) /∆t whereas FE methods approximate
the solution of the di�erential equation u (t) ≈

∑N
i uiφi(t) ,where φi(t) is a local basis

of expansion function de�ned over a local �nite element, and then adapt the solution
to minimise the di�erence between the numerical and exact solution. A big drawback
of the FE method is that a large albeit often sparse matrix has to be solved in implicit
schemes, to enforce continuity at element boundaries, leading to a serious overhead often
limiting the applications of the method. In a second order central �nite di�erence method
the scheme is explicit. Restricting the method to low orders allows an iterative scheme
through mass lumping for example. However, in this case it is not divergence free and it
introduces dissipation [44].

Discontinuous Galerkin Finite Element Method (DG-FEM)

The Discontinuous Galerkin Method (DGM) has �rst been used by Reed and Hill [142]
to solve the neutron transport equation. Over the decades the method has been further
re�ned and has been successfully applied in electrodynamics, �uid mechanics and plasma
physics. In the last decade a lot of research has been done in the development of high-
order discontinuous galerkin methods for electromagnetic simulations in time domain
[62, 30, 84, 70, 27]. DGM combines the advantages of the FEM and FVTD method,
leading to a scheme that is local, explicit in time and able to deal with higher order of
accuracy. In contrast to the standard FDTD, DGM works on unstructured meshes and
no staggered grids are required. Furthermore, the block-diagonal structure of the matrix
induces a trivial parallization of this scheme. Another major advantage is the facility
to use non-uniform-uniform degrees of approximations. As with all the FE methods the
problem lies in the complexity of the algorithms compared to FDTD methods, but it
would in my opinion be the best choice out of the FE methods.
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UM-FDTD (Co-Volume Method)

Although FE methods can employ polynomials of higher orders and are not restricted to
a structured mesh, the algorithms itself are much more complicated to implement and
computationally expensive compared to FDTD schemes. A possible solution would be
the use of hybrid solution techniques. In this case an unstructured �nite element or �nite
volume method is combined with a structured FDTD method [59, 36]. This allows one
to model the scatterer accurately with tetrahedra for example whereas the rest of the
domain is �lled with hexahedra, signi�cantly reducing the computational costs. However
special care has to be taken at the transition between the higher order FE and FD regions
because non-physical di�raction e�ects may occur due to linear approximation of curved
boundaries [115]. Although the hybrid method is more e�cient than the standard FEM
it complicates the algorithm even more. The main advantages of the FDTD method with
respect to FEM are as mentioned above, the simplicity of the discretisation procedure,
the low memory requirements, the explicit nature of the scheme... but the method is
typically limited to a structured mesh. This leads to a loss of accuracy due to staircasing.
A �ner mesh is necessary to improve the accuracy, but the CFL condition requires a
reduction of the time step and an increase in the computational costs. To improve the
accuracy of the scheme in the case of curved interfaces non-uniform and unstructured
mesh implementations have been suggested like the generalised Yee algorithm [51] or the
Yee-like algorithm [20]. Unfortunately these methods are not as e�cient as the original
scheme [87]. Xie used another approach to generalise the Yee algorithm to unstructured
meshes by employing a primal unstructured Delaunay mesh and its orthogonal Voronoi
dual graph [144]. This method was initially limited to perfect electric conductors but in
this work I was able to extend the method to isotropic, anisotropic, frequency dependent
and chiral dielectrics [48, 49]. This allows me to model composites and metamaterials.
I refer to this method as �UM-FDTD�, where UM stands for unstructured mesh. UM-
FDTD preserves the advantages of the FDTD algorithm by signi�cantly increasing the
spatial and temporal step by using unstructured meshes to match a curved boundary.
My results demonstrate that a 6 − 8 times coarser meshes can be employed leading to
important savings with respect to memory and time. UM-FDTD is a generalisation of
the classical Yee algorithm to unstructured meshes. Hence it simpli�es to the classical
method on a structured mesh. Thus it can naturally handle hybrid meshes without
requiring any kind of interpolations between the structured and unstructured mesh and
therefore no non-physical di�raction e�ects occur at di�erent mesh interfaces. As edge
and face based method it is not even limited to speci�c mesh elements like a hexahedron
or tetrahedron. It can handle any kind of polyhedra. With the development of the
UM-FDTD the advantages of an unstructured mesh method could be united with the
simplicity and most of the other advantages of the FDTD method. Especially for 3D
isotropic materials the simplicity of the implementation of UM-FDTD corresponds to
a the implementation of a 1D FDTD scheme. For anisotropic materials it is however
slightly more complicated as I will show later in this chapter.
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Commercial Software

According to Cheng [29], after a keyword search in the Science Citation Index Expanded,
the total number of journal publications of the three most common numerical methods
in 2004 leads to about 60′000 results for the FEM, 19′000 for FDM and about 10′000
for BEM making it the third most used technique. These three methods therefore form
the basis of most of the commercially available software tool in engineering ([25]). The
softwares are �rst categorised in partial di�erential equations or integral technique solvers.
For the �rst case, a volume mesh is needed whereas integral solvers require a surface mesh.
A further classi�cation can be done by regrouping the software as frequency or time
domain methods. In the frequency domain, the FE method is typically used because it
allows the use non-uniform meshes and can model complicated geometries. I however will
only consider commercial software codes based upon the FDTD method. As mentioned
before this techniques also allows the modelling of complex and inhomogenous structures,
but doesn't create a larges set of linear equations and therefore doesn't require matrix
solvers. The most popular FDTD commercial codes are probably CST Studio from
CST, XFDTD from Remcom and Lumerical. For a more general overview, please refer
to the paper by Su et al. [25]. These softwares are also able to model metamaterials
demonstrating the importance of accurate modelling techniques of these materials for
industrial applications. To improve the e�ciency, conformal meshes are used, which
account for subcell features, to reduce the stairstepping e�ect [149, 122, 38]. However
the accuracy and stability can still not compete with those obtained by unstructured
meshes. To our knowledge no FDTD method generalised to unstructured meshes is so
far used in commercial software, which is one of the reasons for the development of
UM-FDTD.

3.2. Pure scattered �eld formulation

The total and scattered �eld formulation allows me to generate an incident wave which
appears to simulation as if the plane wave source is external to the simulation space e.g
as if a wave has been generated at a great distance away. To establish this formalism I
use the linearity of Maxwell's equation stating: If the �elds E1 and E2 separately satisfy
Maxwell's equations than E12 = E1 + E2 also satis�es Maxwell's equations. This allows
me to split the total electric �eld into an incident and scattered part, Etot = Einc+Escat.
The analytically speci�ed incident �eld corresponds to the �eld present in a region in the
absence of any objects (dielectric or conductor). The incident �eld thus ful�lls Maxwell's
equations of free space.

∇×Einc = −µ0
∂Hinc

∂t
(3.1)

∇×Hinc = ε0
∂Einc

∂t
(3.2)

The presence of a scatterer and the electromagnetic boundary conditions lead to the
formation of the scattered �eld as the incident �eld interacts with the object. This
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�eld must satisfy Maxwell's equation inside the scatterer with the medium parameters
ε, µ, σ, σm as well as Maxwell's equations for free space outside the scatterer. The total
�eld corresponds to the superposition of the incident and scattered �eld and has to obey
within the scatterer the following equation

∇×Etot = −µ∂Htot

∂t
− σmHtot (3.3)

∇×Htot = ε
∂Etot

∂t
+ σEtot (3.4)

with ε 6= ε0 and µ 6= µ0. Using Etot = Einc + Escat and Htot = Hinc + Hscat I rewrite
equation (3.3) and equation (3.4)

∇× (Einc + Escat) = −µ∂ (Hinc + Hscat)

∂t
− σm (Hinc + Hscat) (3.5)

∇× (Hinc + Hscat) = ε
∂ (Einc + Escat)

∂t
+ σ (Einc + Escat) (3.6)

Subtracting equation (3.1) from equation (3.5) and equation (3.4) from equation (3.6)
leads to

∇×Escat = −µ∂Hscat

∂t
− σmHscat −

[
(µ− µ0)

∂Hinc

∂t
+ σmHinc

]
(3.7)

∇×Hscat = ε
∂Escat

∂t
+ σEscat +

[
(ε− ε0)

∂Einc

∂t
+ σEinc

]
(3.8)

Rewriting equation (3.7) and equation (3.8) with the time derivatives on the left hand
side leads to

∂Hscat

∂t
= − 1

µ∇×Escat −
σm
µ

Hscat −
σm
µ

Hinc −
µ− µ0

µ

∂Hinc

∂t
(3.9)

∂Escat

∂t
= 1

ε∇×Hscat −σ
ε

Escat −
σ

ε
Einc −

ε− ε0

ε

∂Einc

∂t
(3.10)

In the scattered �eld formulation the incident �eld is an analytically de�ned function.
Therefore the only unknown is the scattered �eld.

3.3. Classical 3D Yee algorithm

For completeness and to illustrate the di�erences between the classical Yee algorithm and
our Co-Volume scheme I derive the discretised update equations for a lossless dielectric.
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Starting with Faraday's law equation (2.2) and writing it in components

∂Hx

∂t
=

1

µ

(
∂Ez
∂y
− ∂Ey

∂z

)
(3.11)

∂Hy

∂t
=

1

µ

(
∂Ex
∂z
− ∂Ez

∂x

)
(3.12)

∂Hz

∂t
=

1

µ

(
∂Ey
∂x
− ∂Ex

∂y

)
(3.13)

similarly for Ampere's law equation (2.1) becomes

∂Ex
∂t

=
1

ε

(
∂Hz

∂y
− ∂Hy

∂z

)
(3.14)

∂Ey
∂t

=
1

ε

(
∂Hx

∂z
− ∂Hz

∂x

)
(3.15)

∂Ez
∂t

=
1

ε

(
∂Hy

∂x
− ∂Hx

∂y

)
(3.16)

The electric �eld is updated at integer time steps n and the magnetic �eld at half integer
time steps n + 1

2 . The electric �eld component Ea for a = x, y, z is at half-integer
steps for the a-location and integer for the other two components. For the magnetic �eld
components it is the opposite. Ha for a = x, y, z is at integer steps for the a-location
and half-integer for the other two components.

(a) (b)

Figure 3.1.: (a) 3D Yee cell for a rectangular grid. .; (b) slices of the Yee cell at positions
i and i− 1

2 .[118]

Applying the �nite di�erence approximation for time and space as indicated as example
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in equations (3.17) and (3.18)

∂Ez
∂t

∣∣∣∣n+1/2

' En+1
z − Enz
4t

(3.17)

∂Ey|n

∂z
'

Ey|ni,j+ 1
2
,k+1
− Ey|ni,j+ 1

2
,k

4z
(3.18)

to equations (3.11)-(3.16) leads after rearranging to the interleaved leap frog algorithm
update equations

Ex|n+1
i+ 1

2
,j,k

= Ex|ni+ 1
2
,j,k

+
4t

εi+ 1
2
,j,k

Hz|
n+ 1

2

i+ 1
2
,j+ 1

2
,k
−Hz|

n+ 1
2

i+ 1
2
,j− 1

2
,k

4y
(3.19)

−
Hy|

n+ 1
2

i+ 1
2
,j,k+ 1

2

−Hy|
n+ 1

2

i+ 1
2
,j,k− 1

2

4z


Ey|n+1

i,j+ 1
2
,k

= Ey|ni,j+ 1
2
,k

+
4t

εi,,j+ 1
2
,k

Hx|
n+ 1

2

i,j+ 1
2
,k+ 1

2

−Hx|
n+ 1

2

i,j+ 1
2
,k− 1

2

4z
(3.20)

−
Hz|

n+ 1
2

i+ 1
2
,j+ 1

2
,k
−Hz|

n+ 1
2

i− 1
2
,j+ 1

2
,k

4x


Ez|n+1

i,j,k+ 1
2

= Ez|ni,j,k+ 1
2

+
4t

εi,,j,k+ 1
2

Hy|
n+ 1

2

i+ 1
2
,j,k+ 1

2

−Hy|
n+ 1

2

i− 1
2
,j,k+ 1

2

4x
(3.21)

−
Hx|

n+ 1
2

i,j+ 1
2
,k+ 1

2

−Hx|
n+ 1

2

i,j− 1
2
,k+ 1

2

4y
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Hx|
n+ 1

2

i,j+ 1
2
,k+ 1

2

= Hx|
n− 1

2

i,j+ 1
2
,k+ 1

2

+
4t

µi,j+ 1
2
,k+ 1

2

[
Ey|ni,j+ 1

2
,k+1
− Ey|ni,j+ 1

2
,k

4z
(3.22)

−
Ez|ni,j+1,k+ 1

2

− Ez|ni,j,k+ 1
2

4y

]

Hy|
n+ 1

2

i+ 1
2
,j,k+ 1

2

= Hy|
n− 1

2

i+ 1
2
,j,k+ 1

2

+
4t

µi+ 1
2
,j,k+ 1

2

[
Ez|ni+1,j,k+ 1

2

− Ez|ni,j,k+ 1
2

4x
(3.23)

−
Ex|ni+ 1

2
,j,k+1

− Ex|ni+ 1
2
,j,k

4z

]

Hz|
n+ 1

2

i+ 1
2
,j+ 1

2
,k

= Hz|
n− 1

2

i+ 1
2
,j+ 1

2
,k

+
4t

µi+ 1
2
,j,k+ 1

2

[
Ex|ni+ 1

2
,j+1,k

− Ex|ni+ 1
2
,j,k

4y
(3.24)

−
Ey|ni+1,j+ 1

2
,k
− Ey|ni,j+ 1

2
,k

4x

]
Keep in mind that the electric �eld is updated at integer time steps n→ n+1 and spatial
steps i→ i+1 and the magnetic �eld at half integer time steps n− 1

2 → n+ 1
2 and spatial

steps i− 1
2 → i+ 1

2 . The time step only changes when a derivative with respect to time
is applied. In that case n→ n+ 1 , the spatial grid points stay the same i+ 1

2 → i+ 1
2 .

Approximating a spatial derivative has no e�ect on the time step n+ 1
2 → n+ 1

2 . Taking
the derivative with respect to j for example, means, only the variation of the magnetic
�eld in j direction is considered and therefore only j will change during the discretisation
process j − 1

2 → j + 1
2 . After discretising the derivatives with respect to space and time

I rearrange the terms with respect to the electric or magnetic �eld components.

3.4. Modelling of isotropic dielectrics using the co-volume

method

3.4.1. Problem formulation

The formulation employs the integral form of Maxwell's equations [144]. For a three
dimensional lossy dielectric medium, Ampère's and Faraday's Laws are expressed, in
scattered �eld formulation, as:ˆ

A

ε
∂

∂t
EscatdA =

˛

∂A

Hscatdl−
∂

∂t

ˆ

A

(ε− ε0) EincdA (3.25)

−
ˆ

A

σEincdA−
ˆ

A

σEscatdA

and
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ˆ

A

µ
∂

∂t
HscatdA = −

˛

∂A

Escatdl−
∂

∂t

ˆ

A

(µ− µ0) HincdA (3.26)

−
ˆ

A

σmHincdA−
ˆ

A

σmHscatdA

The total �elds are formed as the sum of the corresponding incident and scattered �elds.
To model a perfect electric conductor, the �rst term on the right side of equations
(3.25,3.26) is su�cient. For modelling a non-lossy dielectric material the �rst two terms
have to be considered and for a lossy dielectric material every term on the right side needs
to be taken into account. In addition Einc, Hinc and Escat, Hscat represent respectively
the incident electric and magnetic �elds and scattered electric and magnetic �elds. The
incident �eld is assumed to be a plane wave illumination from the far �eld, which has the
form Einc = E0 cos(ωt−k · r), where E0 is the electric �eld vector, k is the wave vector,
r is the position vector. From the known incident electric �eld, the incident magnetic
�eld may be determined, using Faraday's Law, as

Hinc =
1

η0
k̂×Einc (3.27)

where k̂ is the unit wave vector and η0 =
√
µ0/ε0 is the impedance of free space.

3.4.2. Discrete equations

The Yee algorithm is a low operation count method for the solution of Ampère's Law and
Faraday's Law. The algorithm is implemented on two mutually orthogonal meshes. For
the present implementation, a primal tetrahedral mesh is generated using a Delaunay
method [139]. The Voronoi diagram associated with this primal mesh is used to de�ne a
dual mesh. Each Voronoi face is a perpendicular bisector of the corresponding Delaunay
edge and each Delaunay face is perpendicular to the corresponding Voronoi edge. It is
assumed that the Delaunay mesh has ND

e edges and that the Voronoi mesh has NV
e

edges. Thus each Delaunay edge has a perpendicular closed loop of Voronoi edges and
similarly each Voronoi edge is surrounded by a closed loop of Delaunay edges. For the
leapfrog scheme to be second order accurate, the unknowns are located at the midpoints
of these edges. The unknown at the centre of the ith Delauany edge corresponds to
the projection, Escat,i, of the scattered electric �eld onto the direction of the edge. The
unknown at the centre of the jth Voronoi edge corresponds to the projection, Hscat,j , of
the scattered magnetic �eld onto the direction of the edge.
Applying the central di�erence approximations to the �elds according to the following
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equations

ˆ

A

ε
∂

∂t
EscatdA =

ε
(
En+1 −E

n)
AV

4t
+O

[
(∆t)2

]
(3.28)

˛

∂A

Escatdl ≈
MD
j∑

k=1

Enscat,ij,k l
D
ij,k

(3.29)

ˆ

A

σEscatdA ≈ σEn+1/2AV =
σ
(
En+1 + En

)
AV

2
(3.30)

ˆ

A

µ
∂

∂t
HscatdA =

µ
(
Hn+1/2 −H

n−1/2)
AD

4t
+O

[
(∆t)2

]
(3.31)

˛

∂A

Hscatdl ≈
MV
i∑

k=1

H
n+1/2
scat,j,i,k

lVji,k (3.32)

ˆ

A

σmHscatdA ≈ σmHnAD =
σ
(
Hn+1/2 + Hn−1/2

)
AD

2
(3.33)

and applying them to Ampère's Law and Faraday's law leads to

En+1
scat,i =

(
2ε− σ4t
2ε+ σ4t

)
Enscat,i +

(
24t

(2ε+ σ4t)AVi

)
(3.34)MV

i∑
k=1

H
n+1/2
scat,j,i,k

lVji,k − σA
V
i E

n+1/2
inc,i − (ε− ε0)AVi

∂

∂t
E
n+1/2
inc,i


and

H
n+1/2
scat,j =

(
2µ− σm4t
2µ+ σm4t

)
H
n−1/2
scat,j +

(
24t

(2µ+ σm4t)ADj

)
(3.35)MD

j∑
k=1

Enscat,i,j,k l
D
i,j,k
− σmADj Hn

inc,j − (µ− µ0)ADj
∂

∂t
Hn
inc,j


where 4t denotes the time step, the superscript n denotes an evaluation at time level
t = n4t, lDi represents the length of the ith Delaunay edge and AVi corresponds to the
area of the Voronoi face spanned by the Voronoi edges surrounding Delaunay edge i.
Similarly, lVj represents the length of the jth Voronoi edge and ADj corresponds to the
area of the Delaunay face spanned by the Delaunay edges surrounding Voronoi edge j.
The numbers ji,k, k = 1, ...,MV

i refer to theMV
i edges of the Voronoi face corresponding
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3.5. Mesh generation

to the ith Delaunay edge, as illustrated in Figure 3.2a. Similarly, the numbers ij,k,
k = 1, ...,MD

j refer to the MD
j edges of the Delaunay face corresponding to the jth

Voronoi edge, as illustrated in Figure 3.2b.

(a) The ith Delaunay edge, connecting De-

launay vertices p1 and p2, and the cor-

responding Voronoi face, formed by the

Voronoi edges ji,1, ..., ji,6

(b) The jth Voronoi edge, connecting

Voronoi vertices v1 and v2, and the

corresponding Delaunay face, formed by

the Delaunay edges ij,1, ij,2, ii,3

Figure 3.2.: (a) Delaunay Edge and Voronoi face. ; (b) Voronoi Edge and Delaunay face.

These staggered equations are used to advance the solution in a leapfrog manner; with
the magnetic �eld updated over the dual graph at the half time step, using equation
(3.35), and the electric �eld updated over the primal graph at the full time step, using
equation (3.34). At the interface boundaries, the material parameters in the equation
are not constant over the area of integration, therefore the values of ε, µ, σ and σm
are averaged at a dielectric interface, leading to the values εav, µav, σav and σmav . The
evaluation of these averaged values is detailed in section 3.5.1.

3.5. Mesh generation

The main di�erence between our Co-Volume approach and the standard Yee algorithm
is the generalisation of the method to unstructured meshes. Before investigating the
requirements and challenges linked to the 3D unstructured mesh generation it is easier
to �rst consider an example in 2D illustrating the principle and relation between the
Voronoi and Delaunay mesh (Figure 3.3a). Firstly the space is �lled with triangles
forming the Delaunay mesh. Next , the circumcircle, a circle connecting the 3 corners of
a triangle is drawn and the position of the circumcenter for each triangle is retained. If
two circumcenters from neighbouring triangles are connected, they form a Voronoi edge.
By construction, the Voronoi edge is the bisector of the Delaunay edge. This means a
Voronoi edge is perpendicular to a Delaunay edge and it intersects it in the middle.
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3. Numerical Solution of Maxwell Equations

(a) (b)

Figure 3.3.: (a) Delaunay and Voronoi mesh in 2D. ; (b) Cut through hybrid mesh used
to model sphere object. The displayed mesh consists of tetrahedra inside the
sphere (white) and it's vicinity with few layers (blue). One layer of pyramids
(yellow) links the tetrahedra to the hexahedra (red).

This was only a very brief and simpli�ed explanation about the relation of the primal
Delaunay and its dual Voronoi mesh. In reality numerous challenges had to be overcome
especially in 3D. Not only employ an unstructured but a hybrid mesh is employed to
represent the computational domain. Most of the free space region is �lled with hexahe-
dral elements. This is e�cient in terms of managing the number of degrees of freedom
required and enables a standard PML boundary condition to be implemented at the
outer surface of the domain. Tetrahedral elements are used near to, and inside, scat-
tering bodies. The tetrahedral and hexahedral elements are connected using pyramidal
elements, which means that hanging edges may be avoided, as shown in Figure 3.3b.
Mixed meshes of this type are readily generated using the cut cell technique detailed in
[144]. Of importance here are the methods applied to ensure the quality of the elements
in the unstructured tetrahedral mesh. Traditional automatic unstructured mesh genera-
tion methods, such as the advancing front technique [102] and the Delaunay triangulation
[139], or their combination [47], do not guarantee the regularity of the edge lengths of the
dual mesh and the absence of bad elements, e.g. for an acceptable Delaunay mesh, the
corresponding Voronoi diagram is often highly irregular and can include some very short
Voronoi edges. Methods based on improving mesh quality by swapping, reconnection
and smoothing [127] cannot be used to guarantee suitable meshes[112]. To circumvent
this problem, the approach adopted is to construct the unstructured mesh by employ-
ing a CVT~(central Voronoi tessellation) [42], with information provided from an ideal
mesh. The CVT is a Voronoi tessellation whose generating points are the centroids of the
corresponding Voronoi regions. All Voronoi and Delaunay edge lengths are required to
be bounded from below, as the update equations will cease to be valid if some edges have
zero length. For the classical Yee algorithm, on uniform Cartesian meshes, the stability
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3.5. Mesh generation

criterion is generally expressed as c4t ≤ l/
√
D, where c = 1/

√
εµ is the speed of wave

propagation in the medium ` is the edge length in the mesh and D is the dimension of
the simulation [126]. In contrast to �nite element methods taking conductivities into
account has no e�ect on the stability condition because only the amplitude changes but
not the velocity. This will be demonstrated later in section 4.2.3. Extra care has to
be taken for anisotropic materials because the speed of light di�ers in each direction.
Therefore I choose the direction leading to the smallest time step. For heterogenous
materials again the material parameters leading to the smallest time step are used. In
the case of chiral materials the index of refraction is written as n =

√
εµ− κ2 with κ

the chirality. The chirality only has a small downsize e�ect on the time step. Neverthe-
less it seems that the chirality leads to the instabilities that are not linked to the time
step. This phenomenon is investigated in subsections 4.4.3 and 4.4.4. For unstructured
meshes, experience shows that c4t ≤ Sf mini,j{lVi , lDj } is a practical stability criterion.
In this expression, c is again the speed of wave propagation through the medium, 4t is
the time step and lVi , l

D
j are the lengths of the Voronoi and Delaunay edges respectively.

Here, Sf is a safety factor, that typically has a value roughy between 0.8− 2 [144]. This
value can be linked to the edge length depending on the type of element. An equilateral
tetrahedron with edge length l has a height of (

√
6/3)l = 0.81l. An equilateral pyramid

with edge length l has a height of l/
√

2 for hexahedra, l for hexahedra. Setting l = 1
leads to the corresponding Safety factors. I typically used a sefety factor of 0.8. The
smallest Voronoi or Delaunay edge length in the mesh is obtained through the use of the
expression mini,j{lVi , lDj }. If two or more adjacent tetrahedral elements share the same
circumsphere, the primal Delaunay mesh may be degenerate. In this case, the Voronoi
edge connecting the circumcentres of neighbouring cells is of zero length. This di�culty
is removed by merging these elements, as illustrated in Figure 3.4.

Figure 3.4.: An illustration, in 2D, of the merging process for cells sharing the same
circumcentre.

It is also possible that elements with very small Voronoi edges will be created during
the mesh generation process, which would in�uence the magnitude of the allowable time
step. To avoid this di�culty, corresponding cells are merged if the distance between their
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3. Numerical Solution of Maxwell Equations

circumcentres is below 10 % of the initial uniform element size of the Delaunay mesh,
that is related to the characteristic wavelength. An additional requirement is that the
centre of the circumsphere should lie inside each Delaunay tetrahedron. If this criterion
is not met, a given Voronoi edge will not intersect with the corresponding Delaunay
face and the approximation of the integral

´
∂A Hdl cannot even guarantee �rst order

accuracy. To avoid this problem, the requirement that a dual edge must be a bisector of
the corresponding Delaunay face is relaxed, as illustrated for the 2D case in Figure 3.5.
To get the bisectors of a triangle I consider three circles with the same radius r. Each
circle is centred at one of the vertices A, B, C of the triangle. The radius has to be larger
than half the length of the longest side of the triangle, i.e. r > distance(A,B)/2. To
obtain the bisector of the edge AB, I connect the intersection points of the circles centred
at A and B. This procedure is repeated for the other edges. The intersection point of
the bisectors, the dashed line, is by de�nition the circumcentre O1 of the triangle. In
the illustrated case, O1 is situated outside the triangle, leading to a bad element. The
weighted Voronoi power diagram [138] leads to a shift in the location of the circumcentre
of the element ABC, from position O1 to position O2 by changing the radius from R2
to R2. The dotted-dashed lines intersecting at point O2 are no longer bisectors, as they
do not cut each side of the element into equal segment, but they remain perpendicular
to the respective edges.

Figure 3.5.: shifting the circumcenter from the outside to the inside of a triangle

The relaxation of the bisection requirement allows us to generate unstructured meshes
that meet the requirements of the leapfrog scheme. Additional requirements are that
all Delaunay and Voronoi edges should be bounded above by a number that is not
signi�cantly greater than δ, which represents the side length of the cubes forming the
Cartesian mesh; any deviation in the location of the midpoint of a Voronoi edge from the
actual point of intersection with the corresponding Delaunay face should be minimised;
any deviation in the location of the circumcentre of a tetrahedron from its centroid
should also be minimised. The two most important requirements for securing a stable
implementation of the leapfrog scheme are that all Voronoi and Delaunay edge lengths are
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3.5. Mesh generation

bounded from below and the centre of the circumsphere should lie inside each Delaunay
tetrahedron. In practice, the other requirements have usually to be relaxed for complex
three-dimensional geometries.

3.5.1. Boundary conditions

PEC boundary conditions

In a scattered �eld formulation, the condition

n×Escat = −n×Einc (3.36)

is applied at the surface of a perfect electric conductor (PEC). Here, n is the unit outward
normal vector to the PEC surface. Without changing equations (3.45) and (3.46), I can
strongly impose the electric �eld unknowns, at the set of edges forming the PEC interface,
to satisfy the condition of equation (3.36). Within this leapfrog scheme, it is possible
to model thin resistive or PEC sheets, by assigning the sheet conductivity only to the
Delaunay edges forming the interface.

Far �eld boundary conditions

In scattering problems, the incident wave is assumed to be generated by a source located
in the far �eld and the physical solution domain is in�nite in extent. Nevertheless, the
numerical simulation of the scattering problem is undertaken on a �nite computational
domain. For example, the computational domain employed for the problem of simulating
scattering by an anisotropic dielectric sphere, located in free space, is illustrated in Figure
3.6. The in�nite real physical domain has been truncated and, at the truncated outer
computational boundary, the scattered �eld should consist of outgoing waves only. The
modelling of this requirement is achieved by adding a wave damping perfectly matched
layer (PML) [16] to the truncated exterior far-�eld boundary. In earlier work Morgan et
al. [92], and El Hachemi et al. [44], have shown that it is convenient to represent the
PML region with an assembly of regular hexahedral computational cells.

Dielectric interface boundary conditions

I present an easy but powerful averaging method for Dielectric and perfect electric con-
ducting (PEC) interfaces suited for unstructured meshes. Usually in a scattered-�eld
formulation PEC boundaries must be driven with the negative of the instantaneous inci-
dent �eld, in order to cancel out the �eld to zero. In the standard Yee algorithm based on
a structured mesh, the three most common averaging techniques for material parameters
at an interface between two dielectric of generic parameters a1 and a2 are:

Arithmetic mean average : aav = (a1 + a2)/2 (3.37)

Harmonic mean average : aav = (2a1a2)/(a1 + a2) (3.38)

Geometric mean average : aav =
√
a1a2 (3.39)
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It has been reported in [65] that the geometric and harmonic means provide better accu-
racy for cell sizes in the range of λ0/10 to λ0/20, where λ0 is the free-space wavelength,
but both show lower convergence with smaller cell size. Meanwhile the arithmetic mean
retains the second order convergence regardless of the grid resolution. Therefore I decided
to use the arithmetic mean average and adapted it to unstructured meshes which do not
necessarily have uniform cells. I will demonstrate shortly that our weighted averaging on
an unstructured mesh corresponds to the arithmetic mean on a structured mesh.
Our averaging method does not require any change in equations (3.34) and (3.35). To
illustrate the method consider a 3D isotropic dielectric object, e.g. a sphere, in free space,
as represented in Figure 3.6. The material properties, ε and σ, associated to the electric
�eld, are stored on the Delaunay edges and µ and σm associated to the magnetic �eld
are stored on the Voronoi edges.

Figure 3.6.: Simulation of scattering by a 3D dielectric sphere in free space.

In Figure 3.7a and 3.7b I use the same colours as in Figure 3.6. Blue edges correspond
to Delaunay edges in free space, green edges correspond to Delaunay edges inside the
dielectric and red Delaunay edges form the interface between dielectric and free space. As
can be seen in Figure 3.7a, which corresponds to Figure 3.2a, some of the Voronoi edges
(black) surrounding a given Delaunay edge at the interface are in free space, whereas
others are inside the dielectric or even intersect the interface
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3.5. Mesh generation

(a) (b)

Figure 3.7.: Averaging of material properties at interfaces for : (a) Delaunay edges in
free space in blue, within the dielectric in green, at interface in red. ; (b)
Voronoi edges crossing triangles at the interface in black.

In equations (3.25) and (3.26) ε, µ, σ and σm are inside the integrals. I take them outside
the integral for the discretised equations (3.34), (3.35) by averaging over the closed sur-
face loop. For these Delaunay and Voronoi edges, the material properties are evaluated
using the weighted average formulae

aavDel,i =

2NV or∑
k=1

wkacell

2NV or∑
k=1

wk

(3.40) bavV or,j =

2∑
k=1

gkbcell

2∑
k=1

wk

(3.41)

When

equation (3.40) is used for averaging a = ε and a = σ, the corresponding material pa-
rameter assigned to one of the cells surrounding Delaunay edge i is acell. The kth volume
spanned by the two endpoints of Delaunay edge i, the intersection point of the Voronoi
edge with the Delaunay face and the position of the circumcentre of the cell is wk. For
example, in Figure 3.7a, w1 would be the volume spanned by the points P1, P5, P9, P8
and, in free space, acell = ε1 or acell = σ1, w2 would correspond to the volume spanned
by the points P1, P5, P9, P10 and, inside the dielectric, acell = ε2 or acell = σ2. The
averaged material parameter assigned to Delaunay edge i is aavDel,i. Simply using the
length between two points, like P8 and P9 for example as a weight instead of a volume,
is not su�cient because although the distance between two points may be identical, the
volumes might be very di�erent depending on the cell. The volume averaging I use led
to the best results. Equation (3.41) is used for averaging values of the parameters b = µ
and b = σm which are linked to the Voronoi edges. The length of a Voronoi edge inside a
given cell is gk, which corresponds to the distance between the intersection point of the
Voronoi edge j with the Delaunay face and the circumcentre of the cell. For example,
in Figure 3.7b, the distance between the points P1 and P3 is g1, and the coe�cient
bcell = µ1 or bcell = σm1 . In the co-volume scheme we can also simulate a PEC by means
of a resistive sheet, by assigning only to the Delaunay and Voronoi edges forming the
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interface a very high conductivity. I do not have to assign a conductivity to the edges
inside the object, because the electric wave is already re�ected at the interface.
To prove that the weighted averaging on an unstructured mesh corresponds to the arith-
metic mean on a structured mesh, I consider four cells (cubes) of a structured mesh and
choose the Delaunay edge in the centre (magenta) in Figure 3.8a.

(a) (b)

Figure 3.8.: Averaging of material properties at interfaces for (a) Delaunay edge (ma-
genta) surrounded by four Voronoi edges (dark red). ; (b) two sub-volumes
(blue, yellow) of equal volume inside a given cell.

This Delaunay edge is surrounded by four Voronoi edges (dark red) that connect the of
cell centre and passing through the centre of cube faces. Due to the structured uniform
mesh, every cell has the same volume and, therefore, the two sub-volumes shown in blue
and yellow in Figure 3.8b will also have equal volume. If I consider that two cells are
located inside Dielectric (1) and two cells inside Dielectric (2), equation (3.40) becomes:

aavDel,i =

2NV or∑
k=1

wkacell

2NV or∑
k=1

wk

≡

2NV or∑
k=1

wacell

2NV or∑
k=1

w

≡ a1 + a2

2
(3.42)

I also investigated the accuracy of di�erent averaging methods, namely the weighted
arithmetic mean average (which I adopted for the unstructured mesh), the arithmetic
(3.37), harmonic (3.38) and geometric (3.39) mean averages on an unstructured mesh.
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Figure 3.9.: Results of a comparison of the use of di�erent averaging methods across
dielectric interface : (a) RCS calculations. ; (b) Relative L2Errors of each
method.

I considered the problem of 2λ dielectric sphere illuminated by a monochromatic plane
wave as described in section (4.2.3), then I computed the logarithmic L2 error of the
di�erent averaging techniques of the RCS against the corresponding Mie solution. The
results are represented in 3.9b. The relative error of all the methods varies only by about
0.05%. However di�erences can clearly be observed in Table 3.9a due to the logarithmic
scale. It is apparent that the weighted arithmetic mean average gives the best results for
an unstructured mesh, hence con�rming our choice.

3.6. Modelling of anisotropic dielectrics

Analytical solutions to wave propagation problems in electromagnetics are mainly re-
stricted to problems involving simple geometrical shapes and diagonal, uniaxial or biax-
ial, tensors [39][113]. Numerical techniques are required for the solution of the majority
of problems, which involve arbitrary shaped objects. In earlier work [48], I demonstrated
the capability of a generalised Yee algorithm adapted to unstructured meshes to accu-
rately model the radar cross section (RCS) of arbitrarily shaped lossy dielectric objects.
For isotropic cases our method shows signi�cant savings with respect to memory and
time with respect to the standard FDTD scheme due to the unstructured mesh I employ.
Here, I describe the extension of the method to deal with anisotropic materials, such as
composites.
There are generally two methods to deal with anisotropic materials. Firstly you use the
constitutive equation to replace the displacement �eld in Maxwell's equations by the
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electric �eld [132]. Another possibility is to obtain the displacement �eld and afterwards
use it in the constitutive equations. I adopt the latter method which has been proposed
by [82]. This approach was originally presented within the context of a total �eld for-
mulation, but the unstructured mesh extension adopted here employs a scattered �eld
formulation.

3.6.1. Problem formulation

The integral form of Maxwell's equations is employed [144]. For a three dimensional
lossy dielectric medium, Ampère's and Faraday's Laws are expressed, in a scattered �eld
form, as

ˆ

A

[
∂

∂t
+ ¯̄σ ¯̄ε−1

]
DscatdA =

˛

∂A

Hscatdl−
ˆ

A

(¯̄ε− ε0
¯̄I)
∂Einc

∂t
dA (3.43)

−
ˆ

A

¯̄σEincdA

and

ˆ

A

[
∂

∂t
+ ¯̄σm ¯̄µ−1

]
BscatdA = −

˛

∂A

Escatdl−
ˆ

A

(¯̄µ− µ0
¯̄I)
∂Hinc

∂t
dA (3.44)

−
ˆ

A

¯̄σmHincdA

I use the same convention as for the isotropic case, with the constitutive equations 2.10
and 2.9. The only di�erence is that from now on the material parameters are second
order tensors.

3.6.2. Discrete equations

The same mesh and notation as for the isotropic dielectric case is used. When the
leapfrog scheme is used for time discretisation, it will be second order accurate if the
unknowns are located at the midpoints of these edges. The unknown at the centre of
the ith Delaunay edge corresponds to the projection, (Dscat,i, Escat,i), of the scattered
electric �eld onto the direction of the edge. The unknown at the centre of the jth Voronoi
edge corresponds to the projection, (Bscat,j , Hscat,j), of the scattered magnetic �eld onto
the direction of the edge. In the scattered �eld formulation, the incident �eld is a known
function, while the scattered �eld is unknown. At the interface boundaries, the material
parameters in the equations (3.43) and (3.44) need to be averaged because the FDTD
method approximation is continuous. Therefore, I average the values of ¯̄ε, ¯̄µ, ¯̄σ and
¯̄σm at a dielectric interface, leading to the values ¯̄εav, ¯̄µav, ¯̄σav and ¯̄σmav . The method
for determining these averaged values is detailed in section 3.6.3. Direct discretisation
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of Ampère's Law and Faraday' s Law as described in section 3.4.2 then leads to the
equations

Dn+1
scat,i =

〈
¯̄a−1
ε+ (¯̄aε− Dn

scat|i + ZD|i) , êi
〉

(3.45)

B
n+1/2
scat,j =

〈
¯̄a−1
µ+

(
¯̄aµ− B

n−1/2
scat

∣∣∣
j

+ ZB|j
)
, êj

〉
(3.46)

where 〈F, êi〉 denotes the dot product (projection) of any �eld vector F along the ith edge.
The projection of the scattered electric �eld vector onto Delaunay edge i is denoted by
Escat,i, while Escat|i denotes the scattered electric �eld vector at the location of the ith

Delaunay edge. ¯̄aε+, ¯̄aµ+, ZD|i, ZB|j are de�ned as follows

¯̄aε+ =

(
¯̄I +
4t¯̄σav ¯̄ε−1

av

2

)−1

, ¯̄aε− =

(
¯̄I − 4t

¯̄σav ¯̄ε−1
av

2

)
(3.47)

¯̄aµ+ =

(
¯̄I +
4t¯̄σavm ¯̄µ−1

av

2

)−1

, ¯̄aµ− =

(
¯̄I − 4t

¯̄σavm ¯̄µ−1
av

2

)
(3.48)

ZD|i = 4t

 1

AVi

MV
i∑

k=1

H
n+1/2
scat,ji,k

lVji,k

 êi (3.49)

−
(

¯̄σavm Hn
inc|j − (¯̄µav − µ0

¯̄I)
∂

∂t
Hn
inc|j

)]

ZB|j = 4t

− 1

ADj

MD
j∑

k=1

E
n+1/2
scat,ij,k

lVij,k

 êj (3.50)

−
(

¯̄σavm Hn
inc|j − (¯̄µav − µ0

¯̄I)
∂

∂t
Hn
inc|j

)]
Here, Bn+1/2

scat,j and Dn+1
scat,i are projections onto the Delaunay and Voronoi edges respec-

tively, whereas the quantities Dn
scat|i, E

n+1/2
inc

∣∣∣
i
, and B

n−1/2
scat

∣∣∣
j
, Hn

inc|j represent �eld

vectors computed at the centre of the ith Delaunay edge and the jth Voronoi edge re-
spectively. These �eld values have to be determined from their corresponding stored
projections and this calculation, which is not direct, is described in detail in section
3.6.4. In contrast to the isotropic case, these equations cannot be updated in one step,
as vector�matrix multiplications are involved, because it is not possible to have direct
access to the full �eld vectors B, H D and E at a given location. Nevertheless, approxi-
mated �eld vectors are obtained, which are required for the matrix�vector multiplication
of the updating equations. Finally the resulting vectors are projected to the correspond-
ing Delaunay edge ei or Voronoi edge ej . This updating process is explained in detail in
Section 3.6.6.
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3.6.3. Material interface boundary conditions

When the boundary is an interface between two di�erent media, the update equations
(3.43) and (3.44) require integration across the interface. These integrals are evalu-
ated by assigning a weighted average value to the material parameters, based upon the
mesh structure. In section 3.5.1, the material parameters at the interface are obtained
by a weighted arithmetic mean average and compared the results produced with those
obtained by using the arithmetic mean average, the harmonic mean average and the
geometric mean average. I demonstrated that the weighted arithmetic mean average
resulted in improved accuracy on unstructured meshes . Here, I adopt the same form
of averaging, but applied to every component of the material parameter tensors. In the
isotropic case, the scalar material properties, ε and σ, associated to the electric �eld, are
stored on the Delaunay edges and the scalars µ and σm associated to the magnetic �eld
are stored on the Voronoi edges. The adapted formules become

εavq,l
∣∣
Del,i

=

2MV
i∑

k=1

wk εq,l|Cell,k
2MV

i∑
k=1

wk

σavq,l
∣∣
Del,i

=

2MV
i∑

k=1

wk σq,l|Cell,k
2MV

i∑
k=1

wk

(3.51)

Here q and l can take the values 1, 2 or 3, corresponding to the x, y or z directions respec-
tively, while MV

i refers to the number of Voronoi edges surrounding a given Delaunay
Edge i. As there are two sub�volumes associated to each Voronoi edge, I have to sum
over 2MV

i Voronoi edges. These account for the contribution of the material parameter
assigned to each of the cells surrounding Delaunay edge (.)Del,i, weighted by a coe�cient
wk that corresponds to the volume spanned by the two endpoints of the Delaunay edge,
the intersection point of the Voronoi edge with the Delaunay face and the position of
the circumcentre of the cell. Each component of the tensors of magnetic permeability ¯̄µ
and magnetic conductivity ¯̄σm, which are linked to the Voronoi edges, is obtained, by
averaging, as

µavq,l
∣∣
V or,j

=

2∑
k=1

gk µq,l|Cellk
2∑

k=1

gk

σmavq,l

∣∣∣
V or,j

=

2∑
k=1

gk σmq,l
∣∣
Cellk

2∑
k=1

gk

(3.52)

The lengths of the Voronoi edges, g1 and g2, are the distances between the intersection
point of the Voronoi edge (.)V or,j with the Delaunay face and the circumcentre of the
cell.

3.6.4. Obtaining approximated �eld vectors from edge projections

In Section 3.6.2 it was noted that the main di�culty with equations (3.45) and (3.46)
are the matrix-vector multiplications. This is because of the projection based nature of
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3.6. Modelling of anisotropic dielectrics

the co-volume updating scheme. The challenge is now to obtain the corresponding �eld
vectors Dscat and Bscat and associate them with Delaunay edge i and Voronoi edge j
respectively. Unfortunately, it is to my knowlwedge not possible to get exact full �eld
vector components from �eld to edge projections. However, I can approximate the full
�eld components at any location in the mesh. This is achieved by assuming that, in R3,
with a set of three orthogonal vectors v1, v2, v3, a general vector x can be reconstructed
as

x =
3∑
i=1

Pvi (3.53)

in terms of the projections

Pvi =
< x,vi > vi
‖vi‖2

for i = 1, 2, 3 (3.54)

As the mesh is assumed to be unstructured, I cannot use this method directly to obtain
an exact �eld vector. The trivial solution would be to consider all the edges connected
to one node, as depicted in Figure 3.10 (b), and solve a system of equations. This will
give me a �eld vector at node n1. As one edge is always formed by two points, I do the
same for point n2. Finally, the obtained �eld vectors are averaged and projected to the
corresponding edge.

(a) (b)

Figure 3.10.: Interpolation of the �eld vector at node n1: (a) Tetrahedra in the Delaunay
mesh containing the point n1. ; (b) edges in the 3 Delaunay mesh containing
the point n1.

For example, to obtain the displacement �eld vector Dscat on the edge i, denoted by the
red line in Figure 3.10 (a), I construct the set of equations

¯̄P Dscat = (Dscat · êi) êi (3.55)
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3. Numerical Solution of Maxwell Equations

where

¯̄P =

 eixeix eixeiy eixeiz
eiyeix eiyeiy eiyeiz
eizeix eizeiy eizeiz

 (3.56)

and êi is the normalised Delaunay edge vector corresponding to Delaunay edge i. The
matrix ¯̄P, based upon the x, y, z components of the vector êi and the projections
Dscat · êi are known. The displacement �eld vector at a node belonging to Delaunay
edge i is approximated by considering the sum of the system in equation (3.55) for each
Delaunay edge connected to that node, as depicted in Figure 3.10 (b). In this case, the
system

¯̄P ′Dscat =
N∑
q=1

(Dscat,q · êq) êq (3.57)

is solved, with

¯̄P ′l,m =
N∑
q=1

3∑
l=1

3∑
m=1

eqleqm (3.58)

Here, Dscat is the unknown vector, ¯̄P ′ and Dscat,q · êq are known, N is the number of
Delaunay edges connected to the node and ei1 = eix , ei2 = eiy and ei3 = eiz . This
system of equations is solved locally, node by node, until an approximated �eld vector at
all nodes of the Delaunay mesh is obtained. Finally, I link the computed �eld vector to the
corresponding edges. A Delaunay edge is assumed to connect the two nodes n1 and n2 and
the displacement �eld vector, associated to the Delaunay edge i, is obtained by averaging
the electric �eld vectors at nodes n1 and n2, i.e. Dscat,i = (Dscat,n1 + Dscat,n2) /2. The
same procedure is applied for approximating the magnetic �ux vectors Bscat, but using
now the Voronoi edges. However, unlike the Cartesian Yee scheme, where each component
of the �eld vectors has its own update equation, the approximations of the full vector �elds
obtained using this method are not good enough for time iterating the �eld components.
It is found that error accumulation causes the algorithm to become unstable. In the
following sections, I demonstrate how this di�culty may be circumvented.

3.6.5. Local orthogonal unit vectors

When using the integral formulation of Maxwell's equations, it is not the displacement
�eld vector Dscat that is updated, but rather its projection, Dscat,i = Dscat · ei, onto
a Delaunay edge ei. In the case of an isotropic material, the electric permittivity and
the magnetic permeability are scalars, so that updating the �elds only involves scalar
multiplication between the �eld projections and the scalar material properties. For an
anisotropic material, the integrals in Ampère's and Faraday's laws contain matrix-vector
multiplications between material tensors (¯̄ε, ¯̄µ, ¯̄σ,¯̄σm) and the �elds (Dscat, Bscat). To
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3.6. Modelling of anisotropic dielectrics

deal with these matrix-vector multiplications, two linearly independent vectors are cre-
ated for each Delaunay and Voronoi edge. Using the stabilised Gram-Schmidt orthonor-
malisation procedure, I generate three orthonormal vectors, as illustrated in Figure 3.11.
The �rst vector e1, to which the two linearly independent vectors (e′2,e

′
3) are added,

remains unchanged during the whole process. Each set of three orthogonal vectors rep-
resents one local coordinate system, leading to as many local systems as Delaunay and
Voronoi edges.

(a) (b)

(c)

Figure 3.11.: Generating the orthonormal local coordinate system. (a) Consider Delaunay
edge e1 from a given tetrahedron ; (b) Create two linear independent vectors
e′2 and e′3 ; (c) Orthogonalisation of the vectors e′2 and e′3 with respect
to e1 using the Gram Schmidt orthogonalisation procedure.

The discretisation, allows me to reconstruct approximated �eld vector components for
each local coordinate system, using the �eld projections of the surrounding Delaunay or
Voronoi edges, as explained in Section 3.6.4. The �eld vectors, obtained in this way, are
projected onto the two orthogonal vectors forming the local frame. The �rst vector of
each subset, which remains unchanged during the orthonormalisation procedure, can be
immediately updated using the projection equation employed in the isotropic case. For
this projection, no error is induced by the �eld averaging.

3.6.5.1. Coordinate transformation

The material tensors are expressed in the global reference frame formed by the orthonor-
mal vectors x̂, ŷ and ẑ. Three orthonormalised vectors x̂′, ŷ′, ẑ′ form the basis of each
local coordinate system. The (̂.) always refers to unit vectors and (.′) to vectors or vector
components of the local coordinate system. The Jacobian matrix ¯̄J, de�ned by
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3. Numerical Solution of Maxwell Equations

¯̄J =


∂x′

∂x
∂x′

∂y
∂x′

∂z
∂y′

∂x
∂y′

∂y
∂y′

∂z
∂z′

∂x
∂z′

∂y
∂z′

∂z

 (3.59)

can be used to transform a vector, or a matrix, from the global to a local frame. Here
(x′, y′, z′) refers to the coordinate in the local coordinate system and (x, y, z) to the
global coordinate system. Each component of the Jacobian can be interpreted as an
ampli�cation factor, describing how one coordinate in a given reference frame stretches,
shrinks or rotates with respect to another coordinate in another reference frame. In our
case, the Jacobian is pure a rotation matrix JR which can be directly calculated as

¯̄JR =

 x̂′ · x̂ x̂′ · ŷ x̂′ · ẑ
ŷ′ · x̂ ŷ′ · ŷ ŷ′ · ẑ
ẑ′ · x̂ ẑ′ · ŷ ẑ′ · ẑ

 (3.60)

Maxwell's equations are form invariant [24], which means that, in the local coordinate
system, they may be expressed as

E′(r′) =
(

¯̄JTR

)−1
E(r) (3.61)

H′(r′) =
(

¯̄JTR

)−1
H(r) (3.62)

and a material parameter tensor, ¯̄M say, is transformed into the local coordinate system
using the operator transformation

¯̄M ′(r′) =
¯̄JR

¯̄M ¯̄JTR
det(¯̄JR)

(3.63)

The form invariance allows me to absorb the coordinate transformation completely into
the material properties. Note that the determinant of the rotation matrix is unity, i.e.
det( ¯̄JR) = 1.

3.6.6. Time updating scheme

As mentioned previously, equations (3.45) and (3.46) cannot be updated simultaneously,
as the scattered �eld vectors Dscat and Bscat are not immediately available. In this
section, the updating process will be explained in detail. For simplicity, I will restrict
consideration to updating the electric �eld projection Enscat,i, as the magnetic �eld Hn

scat,j

will be similarly updated. Firstly I apply the coordinate transformation to the terms
¯̄aε+, ¯̄aε− de�ned in equation (3.47) and ¯̄ε′−1

av from equation (3.46), so that
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3.7. Modelling of isotropic chiral material

¯̄a′ε+ = ¯̄JR

(
¯̄I +
4t¯̄σav ¯̄ε−1

av

2

)−1
¯̄JTR (3.64)

¯̄a′ε− = ¯̄JR

(
¯̄I − 4t

¯̄σav ¯̄ε−1
av

2

)
¯̄JTR (3.65)

¯̄ε′−1
av = ¯̄JR ¯̄ε−1

av
¯̄J T
R (3.66)

These are stored at the corresponding Delaunay edges before entering the time loop.
Within the time iteration loop, I �rst calculate and store the right hand side of the
equation (3.49) for each Delaunay edge êi. This is readily accomplished, as the magnetic

components in the circulation term
∑MV

i
k=1H

n+0.5
scat,ji,k

lVji,k are available, from the previous

iteration, and the full vector En+0.5
inc,i is also a known function. Before updating the

projection Dn
scat,i to D

n+1
scat,j , equation (3.57) is employed, to obtain the vectors Dn

scat

and ZD as de�ned above . These vectors are projected in each of the three orthogonal
directions of every local frame, e.g. ê′1 ≡ ê1, ê′2, ê′3 from Figure 3.11, and the matrix
vector multiplication is performed. Equation (3.46) in the local frame takes the vector
form

D′
n+1
scat = ¯̄a′ε+

[
¯̄a′ε−D′nscat + Z′D

]
(3.67)

The constitutive equation allows me to retrieve the electric �eld projection. In practice,
only the �rst line of ¯̄ε−1

av needs to be considered, due to the fact that the data storage is
based upon �eld projections along the edges and not �eld vectors. As a result, the value

En+1
scat,i = ¯̄ε′

−1
av,11 D

′ n+1
scat,e1 + ¯̄ε′

−1
av,12 D

′ n+1
scat,e′2

+ ¯̄ε′
−1
av,13 D

′ n+1
scat,e′3

(3.68)

may be obtained. These values are used for updating the sum up curl term of equation
(3.50) and then the magnetic �eld is updated in a similar manner.

3.7. Modelling of isotropic chiral material

Applications of isotropic metamaterials are smaller antennas, super lenses [150], po-
larisers, radomes or radar-cross section (RCS) reducing materials. Due to the causality
condition (subsection 2.4.5) frequency-independent DNG metamaterials are not physi-
cally realisable [135]. Although the metamaterial under consideration is not necessary
part of the DNG class, I decided to further generalise our method to frequency depen-
dent materials. This is not a straightforward approach because the co-volume scheme is
a time domain method, whereas the material parameters are frequency dependent func-
tions. Therefore the material parameters need to be converted to the time domain using
a convolution. The displacement �eld in time domain corresponds to

D(r, t) = ε0ε∞E(r, t) + ε0

tˆ

0

E [r, t− τ ]χe(r, τ)dτ (3.69)
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Several methods exist to deal with frequency dependent materials in FDTD algorithms,
namely the Auxiliary Di�erential Equation method [71, 69], the Piecewise Recursive
convolution method [85, 72] and the Z-transform technique [123]. All three methods give
comparable results. Nevertheless I decided to use the Z-transform because it is easy to
implement and shows a better convergence close to the resonant frequency [80]. The
Z-Transform is a common technique in signal processing and is the discrete version of
the Laplace transform. Sullivan [123] had the idea to use this method to model frequency
dependent materials. To my knowledge Demir at al. [37] were the �rst ones to model
chiral materials in 3D using the �nite-di�erence time domain method (FDTD) by taking
into account the frequency dependence of all the material parameters (ε, µ, κ) using the Z-
transform. In their method they only use �rst order approximations in the Z-Domain and
derive the Z transform coe�cients analytically. Pereda et al.[103] use another approach
based upon the Padé approximants [5]. Using a bilinear transformation for calculating
the Padé approximants they were able to preserve a second order accuracy in Z-Domain.
In this work I generalise the method introduced by Pereda et al. to an unstructured
mesh. To validate my results I compute the transmission and re�exion coe�cients of a
pulse through a 3D chiral slab in free space, I compute the rotation of the incident plane
of polarisation after the slab and model the Radar-cross section of a sphere. Furthermore
I investigate the stability behaviour of the algorithm with respect to di�erent chiralities
and meshes.

3.7.1. Problem formulation

For my update equations I use a mix between a scattered and total �eld formulation. This
allows me to compute the re�exion and transmission coe�cients in a single run compared
to two runs required for the total �eld formulation. The integral form of Maxwell's
equations is employed. For a three dimensional lossy dielectric medium, Ampère's and
Faraday's laws are expressed, in a scattered �eld form, as

ˆ

AV

∂Dscat

∂t
dA =

ˆ

∂AV

Hscatdl +

ˆ

AV

(ε (ω)− ε0)
∂Einc

∂t
(3.70)

ˆ

AD

∂Bscat

∂t
dA = −

ˆ

∂AD

Escatdl +

ˆ

AD

(µ (ω)− µ0)
∂Hinc

∂t
(3.71)

for the calculation I need the displacement �eld D and magnetic �ux B expressed as
total �elds where the total �eld is de�ned as the sum of the incident and scattered �eld
(section 3.2). Equations (3.70) and (3.71) become

ˆ

AV

∂Dtot

∂t
dA =

ˆ

∂AV

Hscatdl +

ˆ

AV

ε0
∂Einc

∂t
(3.72)

ˆ

AD

∂Btot

∂t
dA = −

ˆ

∂AD

Escatdl +

ˆ

AD

µ0
∂Hinc

∂t
(3.73)
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In contrast to the previous cases, the material parameters, the permittivity ε(ω), per-
meability µ(ω) and the chiral parameter κ(ω) are now frequency dependent. For the
permittivity and permeability a Lorentzian model is assumed, whereas the chirality fol-
lows a Condon model [128].

ε(ω) = ε∞ +
(εs − ε∞)ω2

e

ω2
e + 2ωeξeiω − ω2

(3.74)

µ(ω) = µ∞ +
(µs − µ∞)ω2

h

ω2
h + 2ωhξhiω − ω2

(3.75)

κ̂(ω) = iκ(ω) =
τkω

2
kiω

ω2
k + 2ωkξkiω − ω2

(3.76)

where ε∞, µ∞ is the permittivity, permeability at the high frequency limit, εs, µs is the
permittivity, permeability at the low frequency limit. ωe, ωh, ωk are the resonance fre-
quencies, ξe, ξh, ξk are the damping coe�cients and τk is a coupling constant de�ning the
magnitude of the chirality. Due to the frequency dependence of the material parameters
we have to convert Ampere and Faraday's law to the frequency domain. This is achieved
by replacing ∂/∂t by jω, leading toˆ

AV

jωDtotdA =

ˆ

∂AV

Hscatdl +

ˆ

AV

ε0jωEinc (3.77)

ˆ

AD

jωBtotdA = −
ˆ

∂AD

Escatdl +

ˆ

AD

µ0jωHinc (3.78)

The constitutive equations for a chiral material are derived from equations (2.58) and
(2.59)

Dtot(ω) = ε(ω)Etot(ω)− iκ(ω)
1

c
Htot(ω) (3.79)

Btot(ω) = µ(ω)Htot(ω) + iκ(ω)
1

c
Etot(ω) (3.80)

Inserting equations (3.79) and (3.80) in equations (3.77) and (3.78) respectively, leads to

ˆ

AV

iωε∞Etot(ω)dA =

ˆ

∂AV

Hscatdl +

ˆ

AV

ε0iωEinc(ω)−
ˆ

AV

iω (ε(ω)− ε∞) Etot(ω)dA

+

ˆ

AV

1

c
iωκ̂(ω)Htot(ω)dA (3.81)

ˆ

AD

iωµ∞Htot(ω)dA = −
ˆ

∂AD

Escatdl +

ˆ

AD

µ0iωHinc(ω)−
ˆ

AD

iω (µ(ω)− µ∞) Htot(ω)dA

−
ˆ

AD

1

c
iωκ̂(ω)Etot(ω)dA (3.82)
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where κ̂(ω) = jκ(ω). Introducing the following notation

Jhh = iω(µ(ω)− µ∞)Htot(ω)

Jκh =
1

c
iωκ̂(ω)Htot(ω)

Jee = iω(ε(ω)− ε∞)Etot(ω) (3.83)

Jκe =
1

c
iωκ̂(ω)Etot(ω)

resulting in

ˆ

AV

iωε∞Etot(ω)dA =

ˆ

∂AV

Hscatdl +

ˆ

AV

ε0iωEinc(ω)−
ˆ

AV

Jee(ω)dA

+

ˆ

AV

Jκh(ω)dA (3.84)

ˆ

AD

iωµ∞Htot(ω)dA = −
ˆ

∂AD

Escatdl +

ˆ

AD

µ0iωHinc(ω)−
ˆ

AD

Jhh(ω)dA

−
ˆ

AD

Jκe(ω)dA (3.85)

The incident �eld is assumed to be a monochromatic plane wave, generated by a source
located in the far �eld, which has the form E = E0 cos(ωt− k · r).

3.7.2. Discrete equations and Z-Transform

To convert equations (3.84) and (3.85) from frequency to time domain the substitution
jω → ∂

∂t is employed. For the discretisation a second order central di�erence approxima-
tion is used. In our interleaved leapfrog scheme, the electric �eld projections are stored
at integer time steps n and the magnetic �eld projections are stored at half-integer time
steps n+ 1/2 leading to the following approximations:

∂E

∂t
=

En+1 −En

∆t
(3.86)

∂H

∂t
=

Hn+1/2 −Hn−1/2

∆t
(3.87)

Jnhh =
J
n+1/2
hh + J

n−1/2
hh

2
(3.88)

Jn+1/2
ee =

Jn+1
ee + Jnee

2
(3.89)

To convert a frequency dependent function to the Z-Domain the bilinear transformation
is used
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iω =
2

∆t

1− Z−1

1 + Z−1
(3.90)

This allows us to express the equations (3.83) with second order accuracy in the Z-Domain
by approximating it via Padé approximants bij0 , b

ij
1 , b

ij
2 , a

ij
1 , a

ij
2 with ij = ee, κe, hh, κh.

Jee becomes for example

Jee =
bee0 + bee1 Z

−1 + bee2 Z
−2

1 + aee1 Z
−1 + aee2 Z

−2
(3.91)

Going back to the time domain is straightforward because Z−m acts as an decrease
operator in time. For example with m = 1, Z−1Jn+1

ee = Jnee, I go back one time step.
Rearranging equation (3.91) and using Z−mFn = Fn−m with F an arbitrary �eld leads
to

Jn+1
ee = Wn

ee + bee0 En+1 (3.92)

Wn+1
ee = bee1 En+1 − aee1 Jn+1

ee + bee2 En − aee2 Jnee (3.93)

J
n+1/2
κh = W

n−1/2
κh + bκh0 Hn+1/2 (3.94)

W
n+1/2
κh = bκh1 Hn+1/2 − aκh1 J

n+1/2
κh + bκh2 Jn−1/2 − aκh2 J

n−1/2
κh (3.95)

J
n+1/2
hh = W

n−1/2
hh + bhh0 Hn+1/2 (3.96)

W
n+1/2
hh = bhh1 Hn+1/2 − ahh1 J

n+1/2
hh + bhh2 Hn−1/2 − ahh2 J

n−1/2
hh (3.97)

Jn+1
κe = Wn

κe + bκe0 En+1 (3.98)

Wn+1
κe = bκe1 En+1 − aκe1 Jn+1

κe + bκe2 En − aκe2 Jnκe (3.99)

Discretising equations (3.84) and (3.85) and using the above conventions leads to

En+1
tot = En

tot +
∆t

ε∞AV

MV
i∑

k=1

H
n+1/2
scat,ji,k

lVji,k + ε0
∂E

n+1/2
inc

∂t
AV (3.100)

−Jn+1/2
ee AV + J

n+1/2
κhav

AV
]

H
n+1/2
tot = H

n−1/2
tot +

∆t

µ∞AD

−MD
j∑

k=1

Enscat,ij,k l
D
ij,k

+ µ0
∂Hn

inc

∂t
AD (3.101)

−JnhhA
D − JnκeavA

D
]

using equations (3.88) and (3.89) for replacing Jnhh and J
n+1/2
ee and furthermore using

equations (3.92)-(3.99), equations (3.100) and (3.101) become

En+1
tot = En

tot +
∆t

ε∞AV

MV
i∑

k=1

H
n+1/2
scat,ji,k

lVji,k + ε0
∂E

n+1/2
inc

∂t
AV (3.102)

+
−Wn

ee − bee0 En+1
tot − Jnee

2
AV + J

n+1/2
κhav

AV
]
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H
n+1/2
tot = H

n−1/2
tot +

∆t

µ∞AD

−MD
j∑

k=1

Enscat,ij,k l
D
ij,k

+ µ0
∂Hn

inc

∂t
AD (3.103)

+
−W

n−1/2
hh − bhh0 H

n+1/2
tot − J

n−1/2
hh

2
AD − JnκeavA

D

]

Rearranging equations (3.102) and (3.103) to move En+1
tot and H

n+1/2
tot to the left side lead

to

En+1
tot =

1

2ε∞ + bee0 ∆t

2ε∞En
tot + ∆t

2

 1

AV

MV
i∑

k=1

H
n+1/2
scat,ji,k

lVji,k (3.104)

+ε0
∂E

n+1/2
inc

∂t
AV

)
−Wn

ee − Jnee + 2J
n+1/2
κhav

AV

}]

H
n+1/2
tot =

1

2µ∞ + bhh0 ∆t

2µ∞H
n−1/2
tot + ∆t

2

−1

AD

MD
j∑

k=1

Enscat,ij,k l
D
ij,k

(3.105)

+µ0
∂Hn

inc

∂t

)
−W

n−1/2
hh − J

n−1/2
hh − 2Jnκeav

}]
This equation corresponds to the ones derived by [103]. Now I will adapt them to our
unstructured mesh. Therefore I project all the vectors to the Delaunay edges ei or
Voronoi edges ej with i, j an index for a Delaunay or Voronoi Edge respectively. The
electric �eld vectors are projected to the Delaunay edges and the magnetic �eld vectors
are projected to the Voronoi edges, leading �nally to the update equations

En+1
tot,i =

1

2ε∞ + bee0 ∆t

2ε∞E
n
tot,i + ∆t

2

 1

AV

MV
i∑

k=1

H
n+1/2
scat,ji,k

lVji,k (3.106)

+ε0

∂E
n+1/2
inc,i

∂t
AV

)
−Wn

ee,i − Jnee,i + 2J
n+1/2
κh,iav

}]

H
n+1/2
tot,j =

1

2µ∞ + bhh0 ∆t

2µ∞H
n−1/2
tot,j + ∆t

2

−1

AD

MD
j∑

k=1

Enscat,ij,k l
D
ij,k

(3.107)

+µ0

∂Hn
inc,j

∂t

)
−Wn−1/2

hh,j − Jn−1/2
hh,j − 2Jnκe,jav

}]
It is important to note that the �eld vectors are not �rst calculated and then projected
to the edges, but equations (3.106) and (3.107) are applied directly. For a dispersive
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3.7. Modelling of isotropic chiral material

non-chiral material J{κe,j}av and J{κh,i}av are equal to zero, leading to the simplicity
of a 1D code for a 3D case. The di�culty of equations (3.106) and (3.107) lies in the
coupling terms Jn+1/2

κh,iav
and Jnκe,jav . In the co-volume scheme the electric �eld projections

are stored on the Delaunay edges and the magnetic �eld projections on the Voronoi edges.
But J

n+1/2
κhav

depends on the magnetic �eld and has to be linked to the Delaunay edges and
Jnκeav depends on the electric �eld and has to be linked to the Voronoi edges. In Figure
3.12 I illustrate in the case of the electric �eld how to transfer it from the Delaunay to
the Voronoi edges.

(a) (b)

Figure 3.12.: Associating electric �eld to Voronoi edges: (a) Reconstruct the electric �eld
vector from its projections on the Delaunay edges and link this vector to the
corresponding cell center. ; (b) average electric �eld vectors from cell centers
linked to the same Voronoi edge v and project them to the corresponding
edge.

In the case of a thetrahedra I have 6 Delaunay edges. On each edge an electric �eld
projection Ei, i = 1, ..., 6 is stored. Using these projections electric �eld vector ECell1

is reconstructed and linked to the cell center of the corresponding cell. A Voronoi edge
connects cell centers of two neighboring cells. The same procedure is applied �eld recon-
struction to the second cell. Finally the �eld vectors linked to the cell centers are averaged
and projected to the corresponding Voronoi edge ([(ECell1 + Ecell2) /2] · v). When the
electric �eld is successfully linked to the voronoi edges Jnκe,iav is computed. The identnical
approach is used for the magnetic �eld. For additional informations on the reconstruction
process of the �eld vectors from the projections please refer to subsection 3.6.4.

3.7.3. Boundary conditions

To satisfy the boundary conditions the same weighted averaging on the Padé approx-
imants is applied as I used for the isotropic and anisotropic dielectric cases described
in sections 3.5.1 and 3.6.3. Not all the Padé approximants are averaged, but only the
coe�cients on the numerator. To explain this I consider the case of the permeability
associated to the Voronoi edges as illustrated in Figure 3.13.
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3. Numerical Solution of Maxwell Equations

Figure 3.13.: Representation of a voronoi Edge and the corresponding cells.

Applying the bilinear transformation to (µ∞ − µ(ω)) leads to (µ∞ − P (z)) with

P (z) =
b0 + b1z

−1 + b2z
−2

1 + a1z−1 + a2z−2
(3.108)

The constitutive equation for the displacement �ux becomes

B(z)i = µ(z)H(z)i (3.109)

⇔ B(z)i = (µ∞ − P (z))H(z)i (3.110)

where i = 1, 2 corresponds to dielectric medium 1 or 2. The average magnetic �ux at
the interface becomes

B(z)av =
l1B(z)1 + l2B(z)2

l1 + l2
(3.111)

⇔ B(z)av =
l1(µ∞,1 − P (z)1)H(z)1 + l2(µ∞,1 − P (z)2)H(z)2

(l1 + l2)
(3.112)

⇔ B(z)av = w1(µ∞,1 − P (z)1)H(z)1 + w2(µ∞,2 − P (z)2)H(z)2 (3.113)

Where the length l of the Voronoi edge from the intersection point to the corresponding
cell center acts as weight. Following equation 3.113, with wi = li/(l1 + l2), we see that
only the numerator of P (z) is multiplied by the weight.

3.7.4. Updating scheme

1. Magnetic �eld loop. Calculation of Hn+1/2
scat,j

a) Reconstruct En
scat from Delaunay edges and project it to the Voronoi edges

leading to Enscat,j
b) add the incident �eld to obtain the total �eld vector Entot,j = Enscat,j + Eninc,j

c) compute Jnke,j with equations (3.98) and (3.99)
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3.8. Modelling of bi-anisotropic materials

d) calculate Hn+1/2
tot,j using equation (3.107)

e) compute Jn+1/2
hh,j using equations (3.96) and (3.97)

f) compute Hn+1/2
scat,j = H

n+1/2
tot,j −Hn+1/2

inc,j

2. Electric �eld loop. Calculation of En+1
scat,i

a) Reconstruct Hscat
n+1/2 from Voronoi edges and project it to the Delaunay

edges leading to Hn+1/2
scat,i

b) add the incident �eld to obtain the total �eld vector Hn+1/2
tot,i = H

n+1/2
scat,i +

H
n+1/2
inc,i

c) compute Jn+1/2
kh,i with equations (3.94) and (3.95)

d) calculate En+1
tot,i using equation (3.106)

e) compute Jn+1
ee,i using equations (3.92) and (3.93)

f) compute En+1
scat,i = En+1

tot,i − E
n+1
inc,i

3.8. Modelling of bi-anisotropic materials

The electromagnetic modelling of bi-anisotropic materials is a very challenging task be-
cause all the methods developped so far have to be combined because the material pa-
rameters are frequency dependent second order tensors with a non zero chirality tensor
ε (ω) , µ (ω) , κ (ω) → ¯̄ε (ω) , ¯̄µ (ω) , ¯̄κ (ω). The applications for bianisotropic materials
may be similar to those of chiral materials but they allow an additional control of the
material properties due to the anisotropy. Possible applications are radomes [130], waveg-
uides [145, 22, 23], polarisers[105], backward wave media [128] or cloacking devices [58].
I am interested in modelling a material based upon small (with respect to the wave-
length) metallic omega inclusions periodically arranged in a dielectric matrix to compare
with experiments. This algorithm is mainly based upon the work of Nayyeri [95], but I
adapted it to allow me to model also frequency dependent composites. In this case the
chirality should be zero.

3.8.1. Problem formulation

As for the bianisotropic case I consider the constitutive equations

Dtot (ω) = ¯̄ε (ω) Etot (ω)− i

c
¯̄κ (ω) Htot (ω)

Btot (ω) = ¯̄µ (ω) Htot (ω) +
i

c
¯̄κT (ω) Etot (ω)
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3. Numerical Solution of Maxwell Equations

where all the material parameters are second order tensors. For the material parameters
I assume the following frequency dependence as suggested by [128]

¯̄ε (ω) = ε0

(
¯̄ε∞ +

ω2
ε

ω2
ε − ω2 + i2ωεξεω

(¯̄εs − ¯̄ε∞)

)
(3.114)

¯̄µ (ω) = µ0

(
¯̄µ∞ +

ω2

ω2
µ − ω2 + i2ωµξµω

(¯̄µs − ¯̄µ∞)

)
(3.115)

ˆ̄̄κ = i¯̄κ (ω) = i
ω2
κω

ω2
κ − ω2 + i2ωκξκω

¯̄τκ (3.116)

Where ωε, ωµ, ωκ the resonance frequencies, ξε, ξµ, ξκ the dampings, ¯̄εs, ¯̄µs, ¯̄ε∞, ¯̄µ∞
typically diagonal tensors representing the low frequency (static) and high frequency
limit respectively. ¯̄τκis the magnetoelectric coupling coe�cient matrix. For the omega
inclusions a reciprocal model is assumed, meaning ¯̄ε, ¯̄µ are symmetric and ¯̄κ = −¯̄κT .
According to [128], for a low density of omega particles the material is best described by
the equations (3.114)-(3.116) where the permittivity follows a Lorentz and the chirality
a Condon model. Consider that the suggested permeability has a ω2 frequency depen-
dence in the numerator in contrast to the Lorentz model. For a plane wave propagating
in z direction with E (z = 0) = E0x̂, H (z = 0) = −H0ŷ with normal incidence on a
bianisotropic material, in ¯̄κ the only non zero element is κx,y or −κy,x.

x̂ =

 1
0
0

 , ŷ =

 0
1
0

 , ẑ =

 0
0
1


To create an omega material with its optical axis rotated by the Euler angles α, β, γ
with respect to the propagation vector I de�ne the rotation matrix as follows.

¯̄U =

 cos (α) −sin (α) 0
sin (α) cos (α) 0

0 0 1

×
 1 0 0

0 cos (β) −sin (β)
0 sin (β) cos (β)

 cos (γ) −sin (γ) 0
sin (γ) cos (γ) 0

0 0 1


The material parameters in the rotated coordinates are calculated according to

¯̄εrotated = ¯̄UT ¯̄ε ¯̄U

¯̄µrotated = ¯̄UT ¯̄µ ¯̄U

¯̄κrotated = ¯̄UT ¯̄κ ¯̄U

Instead of using the method of Nayyeri [95] which is actually an adapted version of Demir
[37] for the omega inclusions I decided to generalise the method suggested by Pereda
[103]. Therefore I directly take the equations (3.100) and (3.101) from the isotropic
chiral material and adapt them to a bianisotropic material.

En+1
tot = En

tot + ¯̄ε−1
∞ ∆t

 1

AV

MV
i∑

k=1

Hn+0.5
scat,ji,k

lVji,k + ε0
∂E

n+1/2
inc

∂t
(3.117)

−J
n+1/2
ee,tot + J

n+1/2
κhav ,tot

]

74



3.8. Modelling of bi-anisotropic materials

H
n+1/2
tot = H

n−1/2
tot + ¯̄µ−1

∞ ∆t

− 1

AD

MD
j∑

k=1

Enscat,ij,k l
D
ij,k

+ µ0
∂Hn

inc

∂t
(3.118)

−Jnhh,tot − Jnκeav ,tot
]

Where Jhh, Jκh, Jee, Jκh are de�ned as follows

J
n+1/2
hh,tot = iω(¯̄µ(ω)− ¯̄µ∞)H

n+1/2
tot (ω) (3.119)

J
n+1/2
κh,tot =

1

c
iω ˆ̄̄κ(ω)H

n+1/2
tot (ω) (3.120)

Jn+1
ee,tot = iω(¯̄ε(ω)− ¯̄ε∞)En+1

tot (ω) (3.121)

Jn+1
κe,tot =

1

c
iω ˆ̄̄κT (ω)En+1

tot (ω) (3.122)

The electric �eld is de�ned at integer and the magnetic �eld at half-integer time steps.

Jnhh =
J
n+1/2
hh + J

n−1/2
hh

2
(3.123)

Jn+1/2
ee =

Jn+1
ee + Jnee

2
(3.124)

I use the Z-transform suggested by Sullivan to convert frequency dependent tensors to the
Z and later to the time domain, but this time I derive the coe�cients analytically using
the table 3.1. I cannot use the bilinear transformation because due to the second order
tensor material parameters it is not possible to simply extract the �elds En+1

tot , H
n+1/2
tot

as I did it in equations (3.102) and (3.103) .

Frequency Domain Z Domain

F (ω) = β
(ρ2+β2)+j2ρω−ω2 F (z) = e−ρ∆tsin(β∆t)z−1

1−2e−ρ∆tcos(β)z−1+e−2ρ∆T z−2

F (ω) = β F (Z) = β
∆t

iωF (ω)
(

1−z−1

∆t

)
F (z)

ω2F (ω) = − (iω)2 F (ω) −
(

1−z−1

∆t

)2
F (z)

iωω2F (ω) = − (iω)3 F (ω) −
(

1−z−1

∆t

)3
F (z)

Table 3.1.: Analytical Z-Transform. ρ, β are constants

I assume that only the elements of ¯̄εs, ¯̄ε∞, ¯̄µs, ¯̄µ∞ and ¯̄τκ are anisotropic but the
frequency responses

ω2
ε

ω2
ε − ω2 + i2ωεξεω

, ω2

ω2
µ−ω2+i2ωµξµω

,
ω2
κω

ω2
µ − ω2 + i2ωµξµω

(3.125)
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3. Numerical Solution of Maxwell Equations

of equations (3.114)-(3.116) are independent upon the directions. To update equation
(3.117) and (3.118) I have to update Jhh, Jκh, Jee, Jκh from equation (3.121). Therefore
I actually have to �nd the Z-transform of equations (3.125) instead of equations (3.114)-
(3.116). In the Z-Domain the constitutive equation are de�ned as

D (z) = ¯̄ε (z) E (z) ∆t− 1

c
i¯̄κ (z) H (z) ∆t (3.126)

B (z) = ¯̄µ (z) H (z) ∆t+
1

c
i¯̄κT (z) E (z) ∆t (3.127)

in contrast to his �rst paper [123] where the time step ∆t was included in the de�nition
of the Z transform, in a later publication [124] Sullivan removed the factor from the def-
inition and added it in the constitutive equation to guarantee mathematical consistency.
I �rst determine the analytical pade coe�cients of iω(¯̄ε(ω)− ¯̄ε∞)

Fε (ω) = iω(¯̄ε(ω)− ¯̄ε∞) (3.128)

= iω
ωε√

1− ξ2
ε

(¯̄εs − ¯̄ε∞) (3.129)

ωε
√

1− ξ2
ε

(ωεξε)
2 +

(
ωε
√

1− ξ2
ε

)2
+ iω2ωεξε − ω2

(3.130)

Fε (z) =
ωε√

1− ξ2
ε

(
1− z−1

∆t

)
(¯̄εs − ¯̄ε∞) (3.131)

e−ωεξε∆tsin
(
ωε
√

1− ξ2
ε∆t

)
z−1

1− 2e−ωεξε∆tcos
(
ωε
√

1− ξ2
ε∆t

)
z−1 + e−2ωεξε∆tz−2

(3.132)

=
Cε1z

−1 − Cε1z−2

1− Cε2z−1 + Cε3z−2
(¯̄εs − ¯̄ε∞) (3.133)

Fκ (ω) = iω
1

c
ˆ̄̄κ(ω) (3.134)

=
1

c
(iω)2 ωκ√

1− ξ2
κ

¯̄τκ (3.135)

ωκ
√

1− ξ2
κ

(ωκξκ)2 +
(
ωκ
√

1− ξ2
κ

)2
+ iω2ωκξκ − ω2

(3.136)

Fκ (z) = −
(

1− z−1

∆t

)2
1

c

ωκ√
1− ξ2

κ

¯̄τκ (3.137)

e−ωκξκ∆tsin
(
ωκ
√

1− ξ2
κ∆t

)
z−1

1− 2e−ωκξκ∆tcos
(
ωκ
√

1− ξ2
κ∆t

)
z−1 + e−2ωκξκ∆tz−2

(3.138)

=
−Cκ1z

−1 + 2Cκ1z
−2Cκ1z

−3

1− Cκ2z−1 + Cκ3z−2
¯̄τκ (3.139)
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because Jκh and Jκe only appear at time step n + 1/2 and n in equations (3.117) and
(3.118) for this case I can also use the bilinear transformation as before

iω =
2

∆t

1− Z−1

1 + Z−1

and rewrite

Fκ (ω) = iω
1

c
ˆ̄̄κ(ω) → Fκ (z) =

1

c

b0 + b1z
−1 + b2z

−2

1 + a1z−1 + a2z−2
¯̄τκ

Fµ (ω) = iω(¯̄µ(ω)− ¯̄µ∞)

= − (iω)3 1

ωµ
√

1− ξ2
µ

(¯̄µ(ω)− ¯̄µ∞)

ωµ
√

1− ξ2
κ

(ωµξµ)2 +
(
ωµ
√

1− ξ2
µ

)2
+ iω2ωµξµ − ω2

Fµ (z) = −
(

1− z−1

∆t

)3
1

ωµ
√

1− ξ2
µ

(¯̄µ(ω)− ¯̄µ∞)

e−ωµξµ∆tsin
(
ωµ
√

1− ξ2
µ∆t

)
z−1

1− 2e−ωµξµ∆tcos
(
ωµ
√

1− ξ2
µ∆t

)
z−1 + e−2ωµξµ∆tz−2

=
−Cµ1z

−1 + 3Cµ1z
−2 − 3Cµ1z

−3 + Cµ1z
−4

1− Cµ2z−1 + Cµ3z−2
(¯̄µ(ω)− ¯̄µ∞)

with all the coe�cients de�ned as

Cε1 =
ωεe
−ωεξε∆tsin

(
ωε
√

1− ξ2
ε∆t

)
∆t
√

1− ξ2
ε

(3.140)

Cε2 = 2e−ωεξε∆tcos
(
ωε
√

1− ξ2
ε∆t

)
(3.141)

Cε3 = e−2ωεξε∆t (3.142)

Cµ1 =
e−ωµξµ∆tsin

(
ωµ
√

1− ξ2
µ∆t

)
∆t3ωµ

√
1− ξ2

µ

(3.143)

Cµ2 = 2e−ωµξµ∆tcos
(
ωµ

√
1− ξ2

µ∆t
)

(3.144)

Cµ3 = e−2ωµξµ∆t (3.145)
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Cκ1 =
ωκe

−ωκξκ∆tsin
(
ωκ
√

1− ξ2
κ∆t

)
∆t2c

√
1− ξ2

κ

(3.146)

Cκ2 = 2e−ωκξκ∆tcos
(
ωκ
√

1− ξ2
κ∆t

)
(3.147)

Cκ3 = e−2ωκξκ∆t (3.148)

b0 =
4ω2

κ

ω2
κ∆t2 + 4∆tωκξκ + 4

(3.149)

b1 = −2b0 (3.150)

b2 = b0 (3.151)

a1 =
2ω2

κ∆t2 − 8

ω2
κ∆t2 + 4∆tωκξκ + 4

(3.152)

a2 =
ω2
κ∆t2 − 4∆tωκξκ + 4

ω2
κ∆t2 + 4∆tωκξκ + 4

(3.153)

With all these de�nitions the equations 3.121 become

J
n+1/2
hh,tot =

−Cµ1z
−1 + 3Cµ1z

−2 − 3Cµ1z
−3 + Cµ1z

−4

1− Cµ2z−1 + Cµ3z−2
(¯̄µs − ¯̄µ∞)H

n+1/2
tot (3.154)

J
n+1/2
κh,tot =

1

c

b0 + b1z
−1 + b2z

−2

1 + a1z−1 + a2z−2
¯̄τκH

n+1/2
tot (ω) (3.155)

Jn+1
ee,tot =

Cε1z
−1 − Cε1z−2

1− Cε2z−1 + Cε3z−2
(¯̄εs − ¯̄ε∞) En+1

tot (ω) (3.156)

Jn+1
κe,tot =

1

c

b0 + b1z
−1 + b2z

−2

1 + a1z−1 + a2z−2
¯̄τTκ En+1

tot (ω) (3.157)

J
n+1/2
hh,tot = −Cµ1(¯̄µs − ¯̄µ∞)H

n−1/2
tot + 3Cµ1(¯̄µs − ¯̄µ∞)H

n−3/2
tot (3.158)

−3Cµ1(¯̄µs − ¯̄µ∞)H
n−5/2
tot + Cµ1(¯̄µs − ¯̄µ∞)H

n−7/2
tot

+Cµ2J
n−1/2
hh,tot − Cµ3J

n−3/2
hh,tot

J
n+1/2
κh,tot =

1

c

(
b0 ¯̄τκH

n+1/2
tot + b1 ¯̄τκH

n−1/2
tot + b2 ¯̄τκH

n−3/2
tot

)
(3.159)

−a1J
n−1/2
κh,tot − a2J

n−3/2
κh,tot

Jn+1
ee,tot = Cε1 (¯̄εs − ¯̄ε∞) En

tot − Cε1 (¯̄εs − ¯̄ε∞) En−1
tot (3.160)

+Cε2J
n
ee,tot − Cε3Jn−1

ee,tot

Jn+1
κe,tot =

1

c

(
b0 ¯̄τTκ En+1

tot + b1 ¯̄τTκ En
tot + b2 ¯̄τTκ En−1

tot

)
(3.161)

−a1J
n
κe,tot − a2J

n−1
κe,tot
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By comparing the Lorentz model with the one suggested by [128] with the ω2 dependence
I �gured out that for dampings ξµ ≤ 0.1 they nearly show the same behaviour. If I take
a damping suggested by [95] of ξµ = 0.5 the di�erences become more important as can
be seen in Figure 3.14.
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Figure 3.14.: Comparison of permeability model suggested by Nayyeri and the Lorentz
model (a) ξµ = 0.1 ; (b) ξµ = 0.5

If I change however the frequency independent term in equation (3.115) from µs to µ∞
, even for higher dampings, the functiones become much more similar or even identical
especially at the resonance frequency, our region of interest.
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Figure 3.15.: Replacing the constant term µs by µ∞ by maintaining a high damping of
ξµ = 0.5

I am actually not sure if the frequency independent term µs is correct because in other
publications like in [128] or [41] a simple constant is used wheras the ω2 dependence is
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maintained. Pereda on the other hand directly assumed a Lorentz model for both, the
electric and magnetic �eld [103]. The reader might wonder why I do not simply consider
a ω2 dependence. The reason becomes obvious by considering equation 3.154. As you
can see the ω2 dependence forces me to go to the fourth order in the Z-Domain whereas
the Lorentz model only requires second order. This reduces the number of arrays and it
allows me to use a larger timestep because the ω2 dependence forced Nayyeri to use a
very small time step of ∆t = ∆x/(20c0) to guarantee the stability of the scheme. Where
∆x is the edge length of a cubic cell. For completeness, the corresponding parameters
and equations in the Z-Domain for the Lorentz permittivity are.

Cµ1 =
ωµe

−ωµξµ∆tsin
(
ωµ
√

1− ξ2
µ∆t

)
∆t
√

1− ξ2
µ

(3.162)

Cµ2 = 2e−ωµξµ∆tcos
(
ωµ

√
1− ξ2

µ∆t
)

(3.163)

Cµ3 = e−2ωµξµ∆t (3.164)

J
n+1/2
hh,tot =

−Cµ1z
−1 − Cµ1z

−2

1− Cµ2z−1 + Cµ3z−2
(¯̄µs − ¯̄µ∞)H

n+1/2
tot (3.165)

J
n+1/2
hh,tot = Cµ1 (¯̄µs − ¯̄µ∞) H

n−1/2
tot − Cµ1 (¯̄µs − ¯̄µ∞) H

n−3/2
tot

+Cµ2J
n−1/2
hh,tot − Cµ3J

n−3/2
hh,tot (3.166)

To ful�ll the boundary conditions only the coe�cients on the numerator are averaged
as in 3.7.3. Due to the anisotropy I cannot directly update the equations (3.117) and
(3.118) because the method is based upon �eld projections and not �eld vectors. To
solve this issue I have to create two additional orthogonal vectors for each Delaunay and
Voronoi Edge to store additional informations. This procedure is explained in detail in
3.6.4 and 3.6.5. Each set of three orthogonal vectors creates a local coordinate system.
Our material parameters have to be expressed in this local system. Therefore I apply the
coordinate tranformation and a material parameter tensor, ¯̄M say, is transformed into
the local coordinate system ¯̄M′ using the operator transformation (identical to equation
(3.63))

¯̄M′(r′) =
¯̄JR

¯̄M ¯̄J T
R

det(¯̄JR)
(3.167)

where ¯̄JR is the Jacobian matrix which is nothing else than a rotation matrix in our
case due to the orthogonality of the local coordinate system. ” ′ ” refers to the local
coordinate system. For an omega material with its optical axis rotated by the Euler
angles α, β, γ I apply equation 3.167 of course on the rotated materials parameters
¯̄εrotated, ¯̄µrotated, ¯̄κrotated.
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3.8. Modelling of bi-anisotropic materials

3.8.2. Update equations

Before solving equations (3.117) and (3.118) it is easier to rewrite them as

En+1
tot = En

tot + ¯̄ε−1
∞ FE

n+1/2
tot (3.168)

H
n+1/2
tot = H

n−1/2
tot + ¯̄µ−1

∞ FHn
tot (3.169)

FEtot = ∆t

 1

AV

MV
i∑

k=1

Hn+0.5
scat,ji,k

lVji,k + ε0
∂E

n+1/2
inc

∂t
(3.170)

−J
n+1/2
ee,tot + J

n+1/2
κh,tot

]

FHtot = ∆t

− 1

AD

MD
j∑

k=1

Enscat,ij,k l
D
ij,k

+ µ0
∂Hn

inc

∂t
(3.171)

−Jnhh,tot − Jnκe,tot
]

Several things should be taken into account before updating equations (3.168), (3.169).
First of all, the �eld vectors have to be projected on the corresponding normalised Delau-
nay or Voronoi edges denoted by êi and êj . The vectors Etot, FEtot, ∂Einc/∂t, Jee,tot and
Jκhav ,tot are linked to the Delaunay edges and Htot, FHtot, ∂Hinc/∂t, Jhh,tot and Jκeav ,tot
to the Voronoi edges respectively. The projection of the total electric �eld vector E at
time step n to a unit vector ej is for example denoted as Entot,j = 〈En

tot, êj〉 with 〈〉 the
dot product. Jκh,tot needs to be associated to the Delaunay edges which is not directly
possible because the magnetic �eld projections are linked to the Voronoi edges. The
same problem rises for Jκe,tot which needs to be linked to the Voronoi edges but depends
upon the electric �eld projections linked to the Delaunay edges. To solve this problem,
I use the same method as in the isotropic chiral case (subsection 3.7.2). Furthermore,
during the updating several matrix vector multiplication have to calculated, for example
in equation (3.161) where the magnetoelectric coupling matrix, expressed in local coor-
diantes, ¯̄τTκ is multiplied by En+1

tot . In our projection based algorithm this multiplication
cannot be executed directly, therefore I apply the same method as in the anisotropic
case ( section 3.6.6). I generate for each Voronoi or Delaunay edge two additional vec-
tors labelled as e′2, e

′
3 or v′2, v

′
3 dependent if they belong to a Delaunay or Voronoi edge

respectively (3.6.5). The three vectors together form a local coordinate system. The
material parameter matrices are expressed with respect to this coordinate system using
equation (3.167). Then I reconstruct a �eld vector according to (3.6.4). This vector is
then projected to the two newly generated vectors e′2, e

′
3 or v′2, v

′
3. The original edge

e1, v1 is updated using the standard update equation to reduce additional errors. Finally
instead of computing (¯̄µ′s − ¯̄µ′∞) H

n−1/2
tot with H

n−1/2
tot currently linked to a cell center I

compute (¯̄µ′s − ¯̄µ′∞)11 H
′ n−1/2
tot,v1

+ (¯̄µ′s − ¯̄µ′∞)12 H
′ n−1/2
tot,v′2

+ (¯̄µ′s − ¯̄µ′∞)13 H
′ n−1/2
tot,v′3

resulting
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3. Numerical Solution of Maxwell Equations

in a simple scalar I associate to the original Voronoi edge v1, with v′2, v
′
3 the two ad-

ditionaly generated edges. In (¯̄µ′s − ¯̄µ′∞)lm, lm refers to the element in the lth row and

mth column in the matrix expressed in the local coordinate system and H ′
n−1/2
tot,v′2

is the

total magnetic �eld projected to the edge v′2. Everytime a matrix vector multiplication
has to be done we have to follow the procedure I explained.

3.8.3. Updating scheme

Herein by Delaunay vertexes I refer to all the points of the Delaunay mesh whereas the
cell centers are the vertexes of the Voronoi mesh.

Calculation of H
n+1/2
scat,j from equation (3.169)

1. loop over the cells

a) Reconstruct H
n−1/2
scat from the projections of the Voronoi mesh and associate

it to the cell center.

b) Reconstruct En
scat from the projections of the Delaunay mesh and associate it

to the cell center.

The di�erence between the reconstruction of H
n−1/2
scat and En

scat is that the �eld projections

of Hn−1/2
scat from which I reconstruct the corresponding vector are associated to the Voronoi

Edges. In this case I use the same procedure as explained in the anisotropic section 3.6.4
and link the vector naturally to the cell center. For En

scat it is di�erent because it needs
to be reconstructed from the Delaunay edges. To link it to the cell centers we use the
method as described in the isotropic chiral case illustrated in Figure 3.12

1. Magnetic �eld loop over the Voronoi Edges.

a) Calculate the Curl
∑MV

i
k=1H

n+0.5
scat,ji,k

lVji,k needed in (3.170)

b) Compute ¯̄µ0∂H
n+1/2
inc /∂t and project to the Voronoi edges. It is also possible

to directly compute the projection µ0∂H
n+1/2
inc,i /∂t because ¯̄µ0 = µ0

¯̄I and in
our formulation the incident �eld is always an analytical function which we
de�ne, therefore we do not have to reconstruct it from projections.

c) Take En
scat reconstructed in the previous loop and associated to the cell center.

De�ne En
inc, compute En

tot = En
scat+En

inc and project it to the original Voronoi
edge and the two additional ones.

d) Compute ¯̄τTκ En
tot needed in Jnκe,tot

e) Calculate the projection Jnκe,tot,j

f) De�ne H
n−1/2
inc and with H

n−1/2
scat (reconstructed before) compute H

n−1/2
tot =

H
n−1/2
scat + H

n−1/2
inc
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3.8. Modelling of bi-anisotropic materials

g) To compute (¯̄µ′s − ¯̄µ′∞) H
n−1/2
tot required in Jnhh,tot,av =

(
J
n+1/2
hh,tot + J

n−1/2
hh,tot

)
/2

project H
n−1/2
tot to the original Voronoi edge and the two additionaly generated

edges associated to each Voronoi edge. Now compute (¯̄µ′s − ¯̄µ′∞)11 H
′ n−1/2
tot,v1

+

(¯̄µ′s − ¯̄µ′∞)12 H
′ n−1/2
tot,v′2

+ (¯̄µ′s − ¯̄µ′∞)13 H
′ n−1/2
tot,v′3

where v1 refers to the original

Voronoi edge and v′2, v
′
3 to the two additionaly generated edges forming all

together a local coordinate system. In (¯̄µ′s − ¯̄µ′∞)lm, lm refers to the element
in the lth row and mth column in the matrix expressed in the local coordinate
system and H ′

n−1/2
tot,v′2

is the total magnetic �eld projected to the edge v′2.

h) Compute Jnhh,tot,j
i) Compute FHn

tot,j

j) Add the projection Jnκe,tot,j to FH
n
tot,j

2. loop over the cells

a) Reconstruct FHn
tot from the Voronoi edges vj and link it to the cell center

3. Loop over Voronoi edges

a) Project FHn
tot to the two additional edges linked to Voronoi edge vj .

b) Compute ¯̄µ−1FHn
tot needed in equation (3.169)

c) Update equation (3.169) leading to Hn+1/2
tot,j . Compute Hn+1/2

inc,j (known ana-

lytically) to obtain the scattered �eld projections Hn+1/2
scat,j = H

n+1/2
tot,j −H

n+1/2
inc,j

. We need Hn+1/2
scat,j to calculate the curl in equation (3.170) correctly.

Calculation of En+1
scat,i from equation (3.168)

1. loop over the Delaunay edges

a) Compute the curl
∑MD

j

k=1 E
n
scat,ij,k

lDij,k needed in equation (3.171)

2. loop over the vertexes of the Delaunay mesh

a) Reconstruct En
scat from the projections of the Delaunay mesh and associate it

to the Delaunay vertexes.

b) Reconstruct H
n−1/2
scat from the projections of the Voronoi mesh and associate

it to the Delaunay vertexes.

The di�erence between the reconstruction of En
scat and H

n−1/2
scat is that the �eld projec-

tions of En
scat from which we reconstruct the corresponding vector are associated to the

Delaunay edges. In this case we use the same procedure as explained in the anisotropic
section 3.6.4 and link the vector naturally to the Delaunay vertex. For H

n−1/2
scat it is dif-

ferent because we reconstruct this one from the Voronoi edges. To link it to the Delaunay
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3. Numerical Solution of Maxwell Equations

vertexes we use the method as described in the isotropic chiral case illustrated in Figure
3.12 adapted to the magnetic �eld.

1. Electric �eld loop over the Delaunay Edges. Calculation of En+1
scat,i using equation

(3.168)

a) Compute ¯̄ε0∂E
n+1/2
inc /∂t and project to the Voronoi edges. It is also possible

to directly compute the projection µ0∂H
n+1/2
inc,i /∂t because ¯̄µ0 = µ0

¯̄I and in
our formulation the incident �eld is always an analytical function which we
de�ne, therefore we do not have to reconstruct it from projections.

b) Take H
n+1/2
scat reconstructed in the previous loop associated to the Delaunay

vertex. De�ne H
n+1/2
inc , compute H

n+1/2
tot = H

n+1/2
scat + H

n+1/2
inc and project it

to the original Delaunay edge and the two additional ones.

c) Compute ¯̄τκH
n+1/2
tot needed in J

n+1/2
κh,tot

d) Calculate the projection Jn+1/2
κh,tot,i

e) De�ne En
inc and with En

scat (reconstructed before) compute En
tot = En

scat+En
inc

f) To compute (¯̄ε′s − ¯̄ε′∞) En
tot required in J

n+1/2
ee,tot,av =

(
Jn+1
ee,tot + Jnee,tot

)
/2 project

En
tot to the original Delaunay edge and the two additionaly generated edges

associated to each Delaunay edge. Now compute (¯̄ε′s − ¯̄ε′∞)11 E
′ n
tot,e1 +

(¯̄ε′s − ¯̄ε′∞)12 E
′ n
tot,e′2

+ (¯̄ε′s − ¯̄ε′∞)13 E
′ n
tot,e′3

where e1 refers to the original De-
launay edge and e′2, e

′
3 to the two additionaly generated edges forming all

together a local coordinate system. In (¯̄ε′s − ¯̄ε′∞)lm, lm refers to the element
in the lth row and mth column in the matrix expressed in the local coordinate
system and E′ ntot,e′2 is the total magnetic �eld projected to the edge v′2.

g) Compute Jn+1/2
ee,tot,i

h) Compute FEn+1/2
tot,j

i) Add the projection Jn+1/2
κh,tot,i to FE

n+1/2
tot,i

2. Loop over the Delaunay vertexes

a) Reconstruct FE
n+1/2
tot from the Delaunay edges ei and link it to the Delaunay

vertexes

3. Loop over Delaunay edges

a) Project FE
n+1/2
tot to the two additional edges linked to Delaunay edge ej .

b) Compute ¯̄ε−1FEn
tot needed in equation (3.168)

c) Update equation (3.168) leading to En+1
tot,i . Compute En+1

inc,i (known analyti-
cally) to obtain the scattered �eld projections En+1

scat,i = En+1
tot,i − E

n+1
inc,i . We

need En+1
scat,i to calculate the curl in equation (3.171) correctly.
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4. Code Validation and Numerical

Examples

In this chapter we present all the numerical examples to validate our Co-Volume method
for di�erent kinds of materials. Typical benchmark tests are the computation of the radar
cross section (RCS) of a sphere or the transmission of an electromagnetic pulse through
a slab of a dielectric material, because analytical solutions are available for these cases.
I start with the results of an isotropic lossy dielectric material, followed by the results
of an anisotropic lossy material. Until now the material parameters were frequency
independent. For the modelling of an isotropic chiral material the frequency dependence
and chirality have to be taken into account. I �nish this chapter by validating the method
that allows me to model bi-anisotropic materials, where the material parameters become
second order tensors with frequency dependent entries.

4.1. Radar cross section and transmission

4.1.1. Radar cross section

The radar cross section (RCS) corresponds to the amount of scattered power from a
target towards a radar. The bi-static RCS which, in contrast to the mono-static RCS,
is a function of aspect angle and bi-static angle. The scattered wave is decomposed into
2 parts. One part has the same polarization as the transmitted signal and is referred to
as co-polarised, while the other part has an orthogonal polarisation state compared to
the transmitted signal and is referred to as cross-polarised. In scattering experiments,
the radar cross section is of practical interest because an analytical solution is available
for certain simple cases. To obtain the required far �eld information from the computed
near �eld data, a near to far �eld transformation procedure [14] is employed. To achieve
this, a closed collection surface, S, completely enclosing the scatterer, is constructed and,
when steady state conditions have been achieved, a further cycle is computed. During
this cycle, the harmonic solution produced by the time domain solver is used to calculate
the phasor amplitudes Ĕ and H̆ which enable �ctitious electric and magnetic currents to
be de�ned on S. Using the surface equivalence theorem, the components of the scattered
electric �eld in the far �eld are determined [91]. With these values, the distribution of
the radar cross-section is computed as

χ = lim
r→∞

4πr2

∣∣∣Ĕscat,θ∣∣∣2 +
∣∣∣Ĕscat,φ∣∣∣2∣∣∣Ĕinc,θ∣∣∣2 +
∣∣∣Ĕinc,φ∣∣∣2 (4.1)
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where (r, θ, φ) denotes a standard spherical polar coordinate system. For the results
presented here, the collection surface, S, is taken to be the surface formed in the mesh
by removing all but the �rst three layers of tetrahedra that are attached to the scattering
surface. The quantity χ de�ned in equation (4.1) is used to compute

RCS(θ, φ) = 10 log10(χ) (4.2)

which is the RCS in dB.

4.1.2. Transmission

In one of the numerical examples, a pulse is sent through a dielectric radome repre-
senting the nose of an aircraft, protecting the radar equipment. Radomes are used to
protect radar systems from weather or to conceal antenna electronic equipment from the
public view. Typically, a material that minimally attenuates the electromagnetic signal
transmitted or received by the antenna is used. The transmission is evaluated as

T (f) = 20 log10

∥∥∥∥F [Etot(r0, t)]

F [Einc(r0, t)]

∥∥∥∥ (4.3)

which corresponds to the ratio of the amplitude of the total electric �eld divided by the
amplitude of the incident electric �eld at a point r0 inside the radome.

4.2. Isotropic lossy material

4.2.1. Comparison between standard FDTD and co-volume method

In order to show the advantages of using the co-volume method compared to the standard
Yee's algorithm, I consider two regular structured meshes with spacing of λ/15 and λ/60.
Figure 4.1 shows the two staircase surfaces of the sphere for the coarse and �ne meshes.
I compare their Bistatic RCS with the results computed by the co-volume method, using
a conforming unstructured mesh with global spacing of λ/15. Throughout the thesis
I compute the RCS of sphere with a size similar to the wavelength, typically with a
electrical length of 2λ. I restrict myself to these cases because the method has already
been extensively tested for other shapes and higher electrical lengths like a 15λ PEC
sphere, a 10λ PEC aircraft or a 170λ waveguide [144][111].
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4.2. Isotropic lossy material

(a) (b)

Figure 4.1.: Structured sphere's surface meshes (a) λ/15 spacing ; (b) λ/60 spacing

First, I considered the case of a plane wave scattered by a 2λ PEC sphere. The accuracy
of our method and the ones from standard Yee's scheme are checked against the analytical
Mie solution.
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Figure 4.2.: Scattering of a plane wave by a PEC sphere of electrical length 2λ comparing
the co-volume and standard FDTD method: (a) co�polarised RCS distribu-
tion; (b) cross�polarised RCS distribution

Figure 4.2 shows, for both co-polarised and cross-polarised, that even a structured mesh
with very �ne spacing λ/60 does not achieve the accuracy of the conformal unstructured
mesh of spacing λ/15.
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Figure 4.3.: Scattering of a plane wave by a dielectric sphere of electrical length 2λ com-
paring the co-volume and standard FDTD method, for the case ε = 2, µ =
1, σ = σm = 0 : (a) co�polarised RCS distribution; (b) cross�polarised RCS
distribution

A �ner structured mesh is clearly required to achieve comparable results to those pro-
duced by the geometry conforming co-volume method. A similar comparison was also
carried out for the case of 2λ dielectric sphere, as shown in Figure 4.3. It is also clear
that much �ner structured meshes are required to overcome the e�ect of the staircase
that structure grids introduce near the geometry. In addition, the increased resolution
by a factor of 4, has led to an increase in size of the volume mesh, by a factor of 64. This
resulted in the use of a time step that was four time smaller and an increase in the CPU
requirement by a factor of 256. The relative L2 errors corresponding to the �gures 4.2
and 4.3 are represented in table 4.1a and 4.1b. It can be seen that the method shows
better results for the PEC than for the dielectric case. Nevertheless the L2 error of an
RCS should be considered with care because the RCS varies on the logarithmic scale
from −5 to 30 dB. Hence a relatively small deviation from the analytical solution in the
vicinity of 180◦has a much higher impact on the L2 error as a deviation at a relatively
small angle. Nevertheless the challenge is to capture the small oscillations as good as
possible arising for our testcase between 0◦−120◦. So, although the L2 error of the λ/15
unstructured mesh is higher for the dielectric case compared to the λ/60 structured mesh
(Table 4.1b), the co-volume method gives better results for low angles.
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4.2. Isotropic lossy material

relative L2 Error co-polarised cross-polarised

standard FDTD λ/15 54.80 % 50.75 %

standard FDTD λ/60 15.18 % 14.04 %

unstructured λ/15 2.99 % 2.77 %

(a)

relative L2 Error co-polarised cross-polarised

standard FDTD λ/15 12.63 % 12.75 %

standard FDTD λ/60 1.41 % 1.39 %

unstructured λ/15 4.68 % 4.66 %

(b)

Table 4.1.: Relative L2-Error with respect to di�erent meshes computed in linear scale
of (a) PEC sphere ; (b) Dielectric sphere

4.2.2. Convergence of the leapfrog scheme

The centered leap frog scheme is known to be second order on an ideal mesh. To evaluate
the order of convergence on a general unstructured mesh, I chose the example of a
dielectric sphere of radius 1m with relative electric permittivity εr = 2, relative magnetic
permeabilityµr = 1, electric and magnetic conductivities σ = σm = 0S/m, excited using
a plane wave with a wavelength of 1 m. Several meshes with global spacing of 4, 8, 15
and 20 cells per wavelength (in free space) are generated. For each mesh, after 20 cycles
the numerical solution of the RCS is compared to the analytical distribution using the
L2 error. The tangent of the �tted line will give us the rate of convergence. Figure
4.4a shows an order of convergence of 1.59 for the co-polarised RCS whereas Figure 4.4b
shows an order of convergence of 1.48 for the cross-polarised RCS. Averaging the two
tangents leads to an order of convergence of 1.54.
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Figure 4.4.: Order of convergence of the scheme using the L2 error for varying number
of cells per wavelength (a) co polarised (b) cross polarised
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4.2.3. Scattering by a spherical object

The initial examples involve spherical scatterers and have analytical solutions for the RCS
that can be used to validate the numerical distribution computed using equation(4.2).
The meshes employed in the simulations for modelling the spherical objects have between
15 and 20 degrees of freedom per wavelength, λ, in free space. This level of resolution
will decrease in a dielectric, e.g. with a relative electric permittivity of εr = 2 the mesh
resolution reduces to 10 degrees of freedom per wavelength. Past experience has shown
that, with a co-volume method of this type, reasonable results are obtained provided a
mesh resolution of at least 8 degrees of freedom per wavelength is employed. Such a low
grid resolution is su�cient for this scheme, in which the �eld vectors are stored at the
center of the faces. As there are in general about four times more degrees of freedom than
points, the co-volume method needs four times less cells compared to a �nite element
method. In each case, the calculated RCS represents the cross and co-polarised scattered
waves. Due to the spherical symmetry, only the RCS from 0−180 degrees is represented.
All the computations were performed using a single processor comparable to an Intel core
i7. For all the examples, the PML has a thickness of 10 layers of hexahedra. The space
between the inner boundary of the PML and the object surface is �lled with either 7 or
8 cells. The �rst examples involve scattering of a plane wave with wavelength λ = 1m,
propagating in x direction, by a sphere, of radius 1m.

(a) (b)

Figure 4.5.: (a) View of a cut through the discretised dielectric sphere. (b) Detail of a
cut through the mesh showing the di�erent cell types.

A view of a cut through the mesh used to represent the sphere is given in Figure 4.5a and
Figure 4.5b. The white cells lie inside the sphere and consist exclusively of tetrahedra.
Outside the sphere, there are a few layers of tetrahedra, shown in blue, connected to the
red hexahedra using a layer of yellow pyramids. In total, the mesh contains 451355 cells,
989069 Delaunay edges and 1138930 Voronoi edges. When the object is considered to
be a dielectric sphere, the relative electric permittivity is εr = 2, the relative magnetic
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4.2. Isotropic lossy material

permeability is µr = 1 and the conductivities are σ = σm = 0 S/m. The solution is
advanced through 20 cycles of the incident wave using 328 time steps per cycle, with
the computation requiring 1.6 minutes per cycle. If not indicated di�erently, I use the
same number of time steps for all the dielectric test cases computed on the λ/15 mesh
of the sphere. By comparing with the analytical solution I observed that the steady
state is reached for all the presented test cases after the indicated number of cycles.
The computed bi-static RCS distributions are shown to be in good comparison with the
analytical solution for this problem in Figure 4.6. The corresponding L2 errors for the
co- and cross-polarised RCS are 4.68 % and 4.66 % respectively.
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Figure 4.6.: Scattering of a plane wave by a dielectric sphere of electrical length 2λ with
εr = 2, µr = 1 and σ = σm = 0S/m ; (a) co-polarised RCS distribution; (b)
cross-polarised RCS distribution

Next, I use the same mesh, representing a sphere with the same relative electric permit-
tivity εr = 2 and relative magnetic permeability µr = 1, but the electric conductivity is
set to σ = 0.7 S/m.
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Figure 4.7.: Scattering of a plane wave by a dielectric lossy sphere of electrical length 2λ
with εr = 2, µr = 1 and σ = 0.7 S/m, σm = 0 S/m : (a) co-polarised RCS
distribution; (b) cross-polarised RCS distribution

The solution is again advanced through 20 cycles and the computed bi-static RCS results
are shown to be in good agreement with the analytical solution in Figure 4.7. The
corresponding L2 errors for the co- and cross- polarised RCS are 6.49 % and 6.35 %
respectively. For the case of a PEC sphere, I have chosen to model the problem by using
the same mesh and setting the value of the electric conductivity to σ = 106 S/m, with a
relative electric permittivity εr = 1 and relative magnetic permeability µr = 1. In this
case, no speci�c PEC boundary condition is required. The distribution of the analytical
solution of the RCS for a PEC sphere is seen to be in excellent agreement with the
numerical solution in Figure 4.8.
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Figure 4.8.: Scattering of a plane wave by a PEC sphere of electrical length 2λ with
εr = 1,µr = 1,σ = σm = 106 S/m; (a) co�polarised RCS distribution; (b)
cross�polarised RCS distribution.
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4.2. Isotropic lossy material

As mentioned earlier, the presence of a resistive sheet on the surface of the object can
be easily simulated by assigning only to the Delaunay and Voronoi Edges forming the
interface a speci�c conductivity, permeability or permittivity.
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Figure 4.9.: Scattering of a plane wave by sphere covered with a resistive sheet of con-
ductivity σ = σm = 106 S/m: (a) co-polarised RCS distribution; (b) cross-
polarised RCS distribution

For those edges, I choose very high conductivity, σ = 106 S/m, this allows to model a
PEC sphere by the means of highly conducting resistive sheets. No εr and µr has to
be speci�ed inside the sphere because the plane wave is totally re�ected from the highly
conducting surface. Figure 4.9 proves the excellent agreement between the analytical of
PEC sphere and numerical solution of a sphere covered by a high conductive resistive
sheet. Convergence tests performed for these examples showed that RCS results within
a 3 dB tolerance can be obtained using an element size of λ/15, 9 cycles of the incident
wave and 206 time steps per cycle. These computations required only 1.1 minutes per
cycle on a single processor. The L2 errors for the RCS represented in Figure 4.8 and 4.9
for the co- and cross-polarised RCS are for both cases 1.64 % and 1.69 % respectively.

4.2.3.1. Scattering by a coated spherical object

The next examples involve scattering of a plane wave with wavelength λ = 1 m, prop-
agating in the x direction, by a coated spherical object, of electrical length (2λ) with
a radius of 0.5 m and a uniform dielectric coating of thickness 0.5 m as represented in
Figure 4.10.
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(a) (b)

Figure 4.10.: Cut through a coated sphere (a) View of the mesh used to represent a coated
dielectric sphere, with the blue cells representing the coating and the red
cells the dielectric.; (b) Graphical representation of the scattered �eld for
the coated dielectric sphere

For these examples the PML has a thickness of 10 layers of hexahedra elements. The
smallest distance between the inner boundary of the PML and the object surface is �lled
with 8 cells. The mesh consists of 876116 cells, 1673527 Delaunay and 2076019 Voronoi
edges respectively. For the �rst case, a PEC sphere, with parameters εr = 1, µr = 1,
σ = 106S/m, σm = 0S/m , is coated with a spherical dielectric, with parameters εr = 2,
µr = 1, σ = σm = 0S/m. The computed bi-static RCS distribution is seen to be in good
agreement with the analytical distribution in Figure 4.11. The corresponding L2 errors
for the co- and cross-polarised RCS are 1.06 % and 1.09 % respectively.
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Figure 4.11.: Scattering of a plane wave by a coated PEC sphere of electrical length 2λ:
(a) co�polarised RCS distribution; (b) cross�polarised RCS distribution

For the second case, a PEC sphere, with parameters εr = 1, µr = 1, σ = 106 S/m,
σm = 0 S/m , is coated with a conducting dielectric, with parameters εr = 2, µr = 1,
σ = 0.7S/m and σm = 0S/m . The computed bistatic RCS distribution is seen to be in
good agreement with the analytical distribution in Figure 4.12. The corresponding L2

errors for the co- and cross-polarised RCS are 1.02 % and 1.04 % respectively.
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Figure 4.12.: Scattering of a plane wave by a PEC sphere coated with a conducting di-
electric of total electrical length 2λ: (a) co-polarised RCS distribution; (b)
cross-polarised RCS distribution

The scatterer is now replaced by a dielectric sphere of radius 0.5 m, characterised by
the parameters εr = 2, µr = 1, σ = σm = 0 S/m, with a uniform dielectric coating of
thickness 0.5m , characterised by the parameters εr = 1.5, µr = 1, σ = σm = 0S/m. The
computed bi-static RCS distribution is seen to be in good agreement with the analytical
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distribution in Figure 4.13 with the corresponding L2 errors for the co- and cross-polarised
RCS of 1.31 % and 1.28 % respectively.

-20

-10

0

10

20

30

0 20 40 60 80 100 120 140 160 180

B
is

ta
tic

s 
R

C
S

 (
dB

)

 θ (deg)

Co-Volume
Analytic

(a)

-20

-10

0

10

20

30

0 20 40 60 80 100 120 140 160 180

B
is

ta
tic

s 
R

C
S

 (
dB

)

 θ (deg)

Co-Volume
Analytic

(b)

Figure 4.13.: Scattering of a plane wave by a coated dielectric sphere of electrical length
2λ: (a) co-polarised RCS distribution; (b) cross-polarised RCS distribution

4.2.3.2. Transmission of a narrow band pulse

The �nal example demonstrates the use of the method in a predictive mode and involves
the calculation of the transmission e�ciency of a dielectric radome. The radome consists
of half an ellipsoid, with a lateral radius of 0.5 m, a length of 1 m and a thickness of
0.05m. The ellipsoid is constructed of Ipar Plexiglass, with a relative electric permittivity
εr = 2.59 and a loss tangent σ = 0.015 S/m. Radomes of this type are commonly
employed on subsonic aircraft. The narrow band pulse

Ey(r, t) = e−(t−k·r/ω)2/2τ2
sin(ωt− k · r) (4.4)

is used to illuminate the radome, where τ denotes the pulse width, k is the the wave
vector and r is the general position vector. Figure 4.14a shows the details of the mesh.
The yellow elements form the radome structure and Figure 4.14b shows contours of the
electric component Ey of the pulse. The employed mesh represented in Figure 4.14c
has 40 degrees of freedom per wavelength and the PML has a thickness of 10 layers of
hexahedral elements. The smallest distance between the inner boundary of the PML
and the object surface corresponds to 8 cells. The mesh contains 876314 cells, 1673283
Delaunay edges and 2076114 Voronoi edges. I illuminate the radome with a 1.2 GHz
narrowband pulse with a pulse width of 1× 10−9s.
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4.2. Isotropic lossy material

(a) (b)

(c)

Figure 4.14.: (a) View of the coarse mesh used for the radome example, with the yellow
cells representing the dielectric and the white and blue cells representing free
space.; (b) Graphical representation of the scattered �eld induced by an EM
pulse (c) mesh with 40 degrees of freedom per wavelength

The transmission calculated using equation (4.3) can be seen in Figure (4.15).
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Figure 4.15.: Transmission of a Narrowband pulse centered at 1.2GHz, through a dielec-
tric radome with 40 degrees of freedom per wavelength
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4.3. Numerical Validation for anisotropic lossy objects

4.3.1. Scattering on sphere

A series of examples, involving scattering of an incident plane wave by an anisotropic
sphere, is included here to demonstrate the numerical performance of the algorithm that
has been described. The algorithm is validated by comparing the results produced with
those obtained from the open source program Discrete Dipole Scattering (DDSCAT)
[40], which is an implementation of the frequency domain discrete dipole approximation
[46]. The incident wave has free space wavelength λ0 = 1 m and it propagates in the x
direction. In each case, the electrical length of the sphere is 2λ0.

(a) (b)

Figure 4.16.: Scattering by a dielectric anisotropic sphere: (a) cut through the mesh used
to represent the sphere; (b)~contours of Ey on a cut through the computa-
tional domain.

The mesh employed is illustrated in Figure4.16 and has an average edge length of λ0/20.
For each example, the PML region is located at a minimum distance of λ0 from the
scatterer and the PML is discretised using 10 layers of hexahedra. The minimum distance
between the inner boundary of the PML and the surface of the scatterer is represented
by 8 cells. The complete mesh consists of 876, 116 cells, 1, 673, 527 Delaunay edges and
2, 076, 019 Voronoi edges. For the anisotropic case, it is estimated that a mesh spacing of
λ0/20 should be su�cient. As I include a test case with full anisotropic tensors for both
electric and magnetic properties, I decided to use the same mesh for all the test cases.

4.3.1.1. Magnetically uniaxial non�lossy anisotropic sphere

The �rst test case involves an uniaxial permeability tensor and is devised to check the
updating of the magnetic �eld projections. For the sphere, the material parameters
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¯̄εr =

 1 0 0
0 1 0
0 0 1

 , ¯̄σ =

 0 0 0
0 0 0
0 0 0

 , ¯̄µr =

 1.5 0 0
0 1.5 0
0 0 2.0

 , ¯̄σm =

 0 0 0
0 0 0
0 0 0
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Figure 4.17.: Scattering of a plane wave by a dielectric sphere of electrical length
2λ with anisotropic permeability: (a) co�polarised RCS distribution; (b)
cross�polarised RCS distribution.

are used. In this case the only term in equation (??) that involves matrix multiplication
is (¯̄µav − µ0

¯̄I ) ∂∂t Hn
inc|j . The matrices ¯̄a′µ+ and ¯̄a′µ− reduce to the unit matrix and the

update of of magnetic �eld from the constitutive equation (3.68) only requires multi-
plication by the coe�cient (¯̄µ

′−1
av )11. Figure 4.17 shows the computed distributions of

both the cross�polarised (σθφ) and the co�polarised (σθθ) RCS compared with the dis-
tributions obtained from using the discrete dipole approximation~(DDA). It can be seen
that the RCS distributions are in excellent agreement, apart from the di�erences in the
troughs, which are typical of comparisons between time�domain and frequency�domain
approximations. The corresponding L2 errors for the co- and cross-polarised RCS are
1.22 % and 1.13 % respectively.

4.3.1.2. Electrically uniaxial non�lossy anisotropic sphere

This test case involves a uniaxial permittivity tensor, to check on the updating of the
electric �eld projections. For this case, the material parameter values

¯̄ε =

 1.5 0 0
0 1.5 0
0 0 2.0

 , ¯̄σ =

 0 0 0
0 0 0
0 0 0

 , ¯̄µ =

 1 0 0
0 1 0
0 0 1

 , ¯̄σm =

 0 0 0
0 0 0
0 0 0


are used for the sphere.

100



4.3. Numerical Validation for anisotropic lossy objects

-20

-10

 0

 10

 20

 30

 0  20  40  60  80  100  120  140  160  180

B
is

ta
tic

s 
R

C
S

 σ
θ,

θ 
(d

B
)

 θ (deg)

3D-leapfrog 
DDA

(a)

-20

-10

 0

 10

 20

 30

 0  20  40  60  80  100  120  140  160  180

B
is

ta
tic

s 
R

C
S

 σ
φ,

θ 
(d

B
)

 θ (deg)

3D-leapfrog
DDA

(b)

Figure 4.18.: Scattering of a plane wave by a dielectric sphere of electrical length 2λ
with anisotropic permittivity: (a) co�polarised RCS distribution ; (b)
cross�polarised RCS distribution.

In this case the only term that require matrix multiplication in equation (??) is (¯̄εav −
ε0

¯̄I ) ∂∂t En+0.5
inc

∣∣
j
, as the other matrices ¯̄a′ε+ and ¯̄a′ε− reduce to the unit matrix. The update

of the electric �eld from the constitutive equation (3.68) only involves multiplication
by the coe�cient (¯̄ε

′−1
av )11. Figure 4.18 shows good agreement between the computed

RCS distributions and those produced with the DDA method. There seems to be a big
di�erence between our solution and the solution from DDA for the co-polarised RCS
distribution in Figure 4.18 (a) but this is mainly due to the logarithmic scaling I am
using highlighting even small di�erences between the results because the corresponding
L2-Errors for the co-and cross-polarised RCS are only 1.37 % and 1.33 % respectively.

4.3.2. Electrically lossy anisotropic sphere

The next example involves an anisotropic permittivity tensor, together with electric
conductivity. The material parameters

¯̄ε =

 1.3 0 0
0 1.6 0
0 0 2.0

 ¯̄σ =

 0.3 0 0
0 0.5 0
0 0 0.7

 ¯̄µ =

 1 0 0
0 1 0
0 0 1

 ¯̄σm =

 0 0 0
0 0 0
0 0 0


are employed.
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Figure 4.19.: Scattering of a plane wave by a dielectric sphere of electrical length 2λ with
anisotropic permittivity and electrical conductivity: (a) co�polarised RCS
distribution; (b) cross�polarised RCS distribution.

In this case, the matrix multiplications are required in equation (??) and the time up-
dating scheme described in Section 3.6.6 was used. The RCS distributions computed
with the 3D�leapfrog and with the DDA scheme are compared in Figure 4.19. Steady
state conditions were attained in the time domain approach after ten cycles of the inci-
dent wave leading to L2 errors for the co and cross polarised RCS of 1.15 % and 1.09 %
respectively.

4.3.3. Magnetically lossy anisotropic sphere

For the next example, I consider an anisotropic permeability tensor, together with mag-
netic conductivity. The sphere, in this case, is characterised by the material parameters

¯̄ε =

 1 0 0
0 1 0
0 0 1

 , ¯̄σ =

 0 0 0
0 0 0
0 0 0

 , ¯̄µ =

 1.3 0 0
0 1.6 0
0 0 2

 , ¯̄σm =

 0.3 0 0
0 0.5 0
0 0 0.7
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Figure 4.20.: Scattering of a plane wave by a dielectric sphere of electrical length 2λ with
anisotropic permeability and magnetic conductivity: (a) co�polarised RCS
distribution; (b) cross�polarised RCS distribution.

In this example, matrix multiplication is required in equation (??) and the scheme de-
scribed in Section 3.6.6 was used for the magnetic �eld update. The time domain solver
reached steady state after ten cycles of the incident wave. The comparison between
the RCS distributions computed with the current time domain approach and frequency
domain method is given in Figure 4.20. The corresponding L2 errors for the co-and
cross-polarised RCS are 0.41 % and 0.39 % respectively.

4.3.4. Computational cost of the anisotropic model

The next example includes the use of full anisotropic tensors for both electric and mag-
netic properties. The sphere is characterised by the parameters

¯̄ε =

 1.3 0 0
0 1.6 0
0 0 2.0

 ¯̄σ =

 0.3 0 0
0 0.5 0
0 0 0.7

 ¯̄µ =

 1.2 0 0
0 1.4 0
0 0 1.8

 ¯̄σm =

 0.4 0 0
0 0.3 0
0 0 0.5


Comparison with DDA results is not possible in this case, as the DDA code only allows
for the modelling of non�magnetic materials. To investigate the time penalty that results
from the use of the anisotropic model, two simulations were performed on the same mesh.
In the �rst example, the sphere was taken to be an isotropic lossy dielectric material,
with µ > 1, ε > 1, σ > 0, σm > 0. In the second example, the sphere was modelled as
an anisotropic lossy dielectric material, so that ¯̄µ 6= µr

¯̄I, ¯̄ε 6= εr
¯̄I, ¯̄σ > 0, ¯̄σm > 0. It was

found that the computational cost for the example involving the anisotropic sphere was
ten times the cost of the solution for the isotropic sphere. This extra cost mainly arises
from equation (3.57), which implies a requirement to solve a system of three equations
for each Voronoi and Delaunay node.
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(a) (b)

Figure 4.21.: Scattering of a plane wave by a fully anisotropic dielectric sphere of electrical
length 2λ: (a) contours of Hz shown on a cross�section through the mesh;
(b) contours of Ey shown on a cross section through the mesh.

Considering these additional costs, is this scheme competitive when compared to the
standard FDTD method? In my �rst paper [48], I showed that the accuracy of this
scheme, with a λ/15 unstructured mesh, compares favorable with that of the standard
FDTD method, with a λ/90, λ/120 structured mesh, for objects of curved shape. This
means that comparable results are obained when using a mesh that is 6 to 8 times
coarser. This is of ourse only valid for objects of high curvature with respect to the
wavelength. For objects of very high electrical lengths, e.g a 20λ sphere, the curvature
becomes less and less important and at a given point UM-FDTD will be outperformed by
the standard Yee algorithm. The smaller A standard FDTD Yee's cell has 12 edges and
6 faces where the electric and magnetic �eld components are stored respectively. This
corresponds to 18 degrees of freedom. Discretising one Yee's cell requires 6 tetrahedra, in
the worst case scenario, leading to 19 edges and 14 faces. As the electric �eld projections
are stored at the Delaunay edges and the magnetic �eld projections at Voronoi edges
intersecting with the faces, this sums up to 33 degrees of freedom. Although the number
of degrees of freedom have nearly doubled, this is more than compensated by the fact
that I use a mesh that is, at least, 6 times coarser. Furthermore, because I am working in
three dimensions, this should also be taken into account, This implies that, for the same
volume, an unstructured mesh with 33 degrees of freedom produces the same accuracy
as a structured mesh with 63 × 6 = 1296 degrees of freedom.
The extra operations, needed for averaging and reconstructing the vectors described in
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4.3. Numerical Validation for anisotropic lossy objects

section 3.6.4, imply a cost penalty. For each node, 18 averaging operations for each �eld,
in addition to 3 × 3 operations of vector reconstruction for each edge are required. For
the 6 tetrahedra lying inside one cube, the number of operations will be 2 × 8 × 18 +
9 × (19 + 14) = 585 for all degrees of freedom, taking into account the 19 electric �eld
vectors and 14 magnetic �eld vectors. For one cell of a Cartesian mesh, 8 operations
are required for averaging the two o�set components of a �eld vector, leading to 48
extra operations on one cell node or 144 per Yee's cell. However, in this case dealing
with curved boundaries, to achieve the same level of accuracy, the standard scheme will
actually cost 63 × 48 = 10368 operations per same computational volume whereas the
co-volume method only needs 585 operations.

4.3.5. Transmission of a narrow band pulse

As �nal example, I evaluate the transmission e�ciency of a pulse through a radome
made of anisotropic dielectric containing conducting �bers. The radome consists of half
an ellipsoid, with a lateral radius of 0.5 m, a length of 1 m and a thickness of 0.05 m.
Figure 4.22 and Figure 4.24 display a radome mesh with 20 points per wavelength.
This mesh is only used for visualisation, as it is too coarse for a 1 GHz pulse. For the
actual simulation, a �ner mesh with 40 points per wavelength is used to guarantee enough
degrees of freedom per wavelength inside the dielectric. In [48], I showed that the number
of element layers employed to represent a given thickness of material has no impact on the
results, provided that I meet the minimum number of points per wavelength requirement.

Figure 4.22.: Radome (yellow) in free space (white, blue)

The incident plane wave used to illuminate the Radome is a narrow band pulse (equation
(4.4)). Composites are harder to model than standard anisotropic materials, due to the
inner structure, e.g orientation of the �bers.
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(a) (b)

Figure 4.23.: Composite material: (a) material frame (b) Distance between cell centers
and material frame located at surface

In Figure 4.23 (a) I illustrate a cut through a composite slab with the �bers oriented
in the ŷ′′ direction. Due to the speci�c orientation of the slab, the material frame
(x̂′′, ŷ′′, ẑ′′) and the global frame (x̂, ŷ, ẑ) are identical. In the case of the curved shell
of a radome, the situation is more complicated, as the orientation of the �bers changes
in space. In this case, for each location on the shell, there exist a material frame which,
in general, di�ers from the global frame as illustrated in Figure 4.23 (b). In the previous
sections, the coordinate transformation has only been used to pass from a global frame
(x̂, ŷ, ẑ) to a local frame linked to each Voronoi or Delaunay edge (x̂′, ŷ′, ẑ′). For
a composite, �rstly a coordinate transformation from the material frame, linked to the
orientation of the �bers, (x̂′′, ŷ′′, ẑ′′) to the global frame (x̂, ŷ, ẑ) is required. Afterwards
I pass from the global frame to a local frame linked to each Voronoi or Delaunay edge,
according to (x̂′, ŷ′, ẑ′). (x̂′′, ŷ′′, ẑ′′) → ¯̄JR1 → (x̂, ŷ, ẑ) → ¯̄JR2 → (x̂′, ŷ′, ẑ′).
Here, ¯̄JRi, i = 1, 2, are the two transformation matrices, where ¯̄JR2 is identical to ¯̄JR
from equation (3.60). First, I have to create an orthonormal material frame. As in
the preceding sections, an orthonormal system simpli�es the coordinate transformation
because the transformation matrix becomes a simple rotation matrix. The procedure
here is illustrated in Figure 4.24(a). Initially, I only consider the Voronoi edges at the
dielectric interface. Each Voronoi edge (Vor1,blue) crossing the face of a tetrahedron
is surrounded by three Delaunay edges. I select two of these edges, (Del1, Del2). By
construction, they are parallel to the surface. Using the cross product, I create a vector
x′′ = Del1×Del2 perpendicular to the dielectric surface. Finally, I take the cross product
to obtain the vector y′′ = z′′ ×Del1 and assign z′′ = Del1. After normalising, I end up
with one orthonormal material frame (x̂′′, ŷ′′, ẑ′′) for each face of the dielectric interface.
The next step consists in linking the material frame to the cells inside the composite. To
achieve this, I compare the distance between the intersection points of a Voronoi edge
with the interface and the circumcenter of all cells C1 inside the dielectric. After �nding
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4.3. Numerical Validation for anisotropic lossy objects

the smallest distance, I link the local material frame (x̂′, ŷ′, ẑ′) from the surface to the
corresponding cell. This process is illustrated in Figure 4.24 (b).

¯̄JR1 =

 x′′ · x x′′ · y x′′ · z
y′′ · x y′′ · y y′′ · z
z′′ · x z′′ · y z′′ · z

 ¯̄JR2 =

 x′ · x x′ · y x′ · z
y′ · x y′ · y y′ · z
z′ · x z′ · y z′ · z


A typical material parameter tensor ¯̄M = ¯̄ε, ¯̄σ, ¯̄µ, ¯̄σm is now de�ned with respect to
the material frame (x̂′′, ŷ′′, ẑ′′) and linked to the cells inside the dielectric. The �rst
coordinate transformation converts the material parameters, from the material to the
global frame, according to

¯̄M =
¯̄JR1

¯̄M ′′ ¯̄JTR1

det( ¯̄JR1)

The second coordinate transformation converts the parameters from the global to the
local frame and this process has already been described in the preceding sections. Con-
sidering, for example, equations (3.47,3.48), the material parameters ¯̄ε, ¯̄σ, ¯̄µ, ¯̄σm have
to be replaced by ¯̄ε′′, ¯̄σ′′, ¯̄µ′′, ¯̄σ′′m. This is true for each equations in which the material
parameters appear.

(a) (b)

Figure 4.24.: Radome of composite material: (a) Construction of orthonormal material
frame (b) Distance between cell centers and material frame located at surface

Our radome is characterised by the material parameters

¯̄ε′′ =

 2.59 0 0
0 2.59 0
0 0 4.7

 ¯̄σ′′ =

 100 0 0
0 100 0
0 0 10

 ¯̄µ′′ =

 1 0 0
0 1 0
0 0 1

 ¯̄σ′′m =

 0 0 0
0 0 0
0 0 0
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Figure 4.25.: Transmission of 1.2 GHz pulse through a radome made out of a composite
dielectric

Due to the orientation of the �bers, the properties of our composite are the same in the
m̂′′ and the l̂′′ directions, but di�er along the n̂′′ axis. For our material parameters,
this means that ¯̄M(1, 1)′′ = ¯̄M(2, 2)′′ 6= ¯̄M(3, 3)′′, and the other components are 0, for
¯̄ε′′, ¯̄σ′′ and ¯̄µ′′ = ¯̄I and ¯̄σ′′m = 0. Typically, a material that minimally attenuates the
electromagnetic signal transmitted or received by the antenna is used. The transmission
is evaluated using equation (4.3) which corresponds to the ratio of the amplitude of the
total electric �eld divided by the amplitude of the incident electric �eld at a point r0

inside the radome. The transmission of 1.2GHz narrowband pulse through a composite
radome is represented in Figure 4.25.
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4.4. Numerical validation for isotropic chiral material

4.4. Numerical validation for isotropic chiral material

To validate my algorithm I compute the transmission coe�cients of an EM pulse through
a chiral slab and the variation of the angle of the plane of polarisation of the incident
�eld. For both cases I use a structured mesh to model a dielectric slab of dimensions
0.3m× 0.3m× 0.1m in x, y, z dimension. A thickness of 0.1m corresponds to 40 cells.

Figure 4.26.: Chiral slab (yellow) in free space (blue)

4.4.1. Rotation of the plane of polarisation

As mentioned in the introduction the chirality induces a rotation of the plane of polar-
isation of the incident �eld (ORD) if the chirality is a real number. In the case of a
complex number the plane of polarisation is rotated and the polarisation changes (CD).
To validate our results I currently only consider the real part of the chirality. In this case
the rotation of the angle can be computed according to the following formula

Φ = Re(κ)ωL (4.5)

With Φ the variation of the angle, Re(κ) the real part of the chirality, ω the angular
frequency of the incident wave and L the thickness of the slab [66]. I use the slab in free
space as depicted in Figure 4.26. To numerically compute the variation of the angle I
use the Fourier transform, which allows me to compute the variation of the amplitude
without the time dependence. Therefore I choose a point of the Delaunay mesh behind
(with respect to the incident wave) the chiral slab and take the fourier transform of
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4. Code Validation and Numerical Examples

the y versus the Fourier transform of the x component of the electric �eld for a wave
propagating in z direction.

Φnum =
FT (Ey)

FT (Ex)
(4.6)

and compare them with the analytical computed angle Φ.
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Figure 4.27.: Rotation of the plane of polarisation for 6 di�erent chiralities over time.
The black line corresponds to the analytical value.

According to Figure 4.27, for chiralities below κ = 0.0407 the scheme appears to be stable
and the numerically computed angle of rotation of the plane of polarisation matches
well the analytical solution. For higher chiralities the angle of rotation starts varying
signi�cantly over time. It seems that the chirality leads to an instability of the algorithm
if the imaginary part of the chirality is too high. This instability and the stabilising e�ect
of damping ( Im(κ) 6= 0 ) is investigated in subsection 4.4.3 and 4.4.4

4.4.2. Re�ection and transmission on a chiral slab

I compute the transmission and re�ection coe�cients of a chiral slab in free space. The
derivation of this expression can be found in all details in [66]. I will only give the
transmission and re�ection coe�cients for a bi-isotropic slab of in�nite height and width
with a �nite thickness L between two bi-isotropic media. Medium 1 extends from z ∈
] − ∞,−L[, the bi-isotropic slab from z ∈ [−L, 0[ and medium 3 from z ∈ [0,+∞[.
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4.4. Numerical validation for isotropic chiral material

De�ning the following parameters:

ZL = η3± (4.7)

Z+ = η2± = η2e
∓jϑ2 (4.8)

Z− = η2∓ = η2e
±jϑ (4.9)

Z+ + Z− = 2η2cos(ϑ2) (4.10)

Z+ − Z− = ∓2jη2sin(ϑ2) (4.11)

β+ = k2± = k2(cos(ϑ2)± κ2r) (4.12)

β− = k2∓ = k2(cos(ϑ2)∓ κ2r) (4.13)

β = k2cos(ϑ2) (4.14)

ηi =

√
µi
εi

(4.15)

χr,i = sin(ϑi) (4.16)

κr,i = κi/ni (4.17)

ni =

√
µiεi
µ0ε0

(4.18)

ε+ = ε(cos(ϑ) + κr)e
jϑ (4.19)

ε− = ε(cos(ϑ)− κr)e−jϑ (4.20)

With κr the relative chirality, n the index of refraction, χr the relative Tellegen parameter
which equals 0 in chiral media, η the impedance and i = 1, 2, 3 the index for the
corresponding region.

Zin± = η2
η3±cos(ϑ2 ∓ k2L cos(ϑ2)) + jη2sin(k2L cos(ϑ2))

η2cos(ϑ2 ± k2L cos(ϑ2)) + jη3±sin(k2L cos(ϑ2))
(4.21)

The corresponding re�ection coe�cients at the interface are

Rco =
Zin+Zin−cos(2ϑ1)− η2

1 + jη1(Zin+ − Zin−)sin(ϑ1)

Zin+Zin− + η2
1 + η1+Zin+ + η1−Zin−

(4.22)

Rcr = −jZin+Zin−sin(2ϑ1) + η1(Zin+ − Zin−)cos(ϑ1)

Zin+Zin− + η2
1 + η1+Zin+ + η1−Zin−

(4.23)

T±± =
2η2η3cos(ϑ1)cos(ϑ2)e±j(ϑ1−ϑ3)e∓jκrk2L

η2(η1∓cos(Ψ±) + η3±cos(Ψ∓)) + j(η2
2 + η1∓η3±)sin(k2Lcos(ϑ2))

(4.24)

Tco =
1

2
(T++ + T−−) (4.25)

Tcr = − j
2

(T++ − T−−) (4.26)

with Ψ± = ϑ2 ± k2Lcos(ϑ2). In my case medium 1 and 3 are free space and the slab
is not bi-isotropic but only chiral. Therefore the Tellegen parameter equals 0. An in y
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direction linearly polarised narrowband pulse propagating in z direction is send towards
the slab.

Ey(r, t) = e−(t−k·r/ω)2/2τ2
sin(ωt− k · r) (4.27)

Our material parameters are εs = 1.8 ε0, ε∞ = 1.6 ε0, µs = 1.1 µ0, µ∞ = 1.0 µ0,
ωe = ωh = ωk = 2π × 3.5 GHz, ξe = 0.14, ξh = 0.12, ξk = 0.1 and τk = 1 ps.
The thickness of the slab is 0.1 m and is made out of 40 cells, leading to a spatial
discretisation ∆z = 0.0025 m. To compute the frequency dependent re�ection I chose
a point p1 of the mesh in free space just in front of the slab. For the transmission
coe�cient I chose another point p2 slightly behind the slab. Next I reconstruct the
electric �eld vector at the corresponding points and use the Fourier transformation to
get a time independent response. I compute the co-polarised re�ection coe�cient Rco, the
co-polarised transmission coe�cient Tco and the cross-polarised transmission coe�cient
Tcr according to

Rco =
FT (Escat,y,p1)

FT (Einc,y,p1)
(4.28)

Tco =
FT (Escat,y,p2)

FT (Einc,y,p2)
(4.29)

Tcr =
FT (Escat,x,p2)

FT (Einc,y,p2)
(4.30)

Rcr equals zero and Tcr would be zero for a non chiral material.
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Figure 4.28.: Analytical vs Numerical Transmission coe�cients (a) Tco ; (b) Tcr
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4.4. Numerical validation for isotropic chiral material

Figure 4.29.: Analytical vs Numerical Re�ection coe�cients Rco

As expected Tcr di�ers from zero. Furthermore the results agree reasonably well in the
vicinity of the resonance frequency. The di�erences between the analytical and numerical
results are probably due to two reasons. First of all, the analytical model assumes a slab
with in�nite extension in the directions perpendicular to the propagation of light. Which
is clearly not the case for my slab. Applying periodic boundary conditions (which are
not yet implemented in my code) to model an in�nite slab should already improve the
results. Furthermore, the numerical dispersion inherent to the scattered �eld formulation
leads to a shift in the peaks for the re�ection coe�cient.

4.4.3. Numerical stability without damping

During my simulations I observed that an increase in the chirality leads to an instability
of the algorithm. To understand this instability let's consider again equation (4.5). L
corresponds to the thickness and can also be expressed as L = n∆z with n the number
of cells along the z direction (thickness) of our slab. ∆z is the edge length of a given
cell. Instead of considering the overall rotation of the plane of polarisation, I normalise
it to a single cell, leading to :

Φcell =
Φ

n
= κω∆z (4.31)

To investigate the instabilities I set ξk = 0 which leads to a vanishing imaginary part in
the chirality. Than I run the algorithm for 20 cycles on two di�erent meshes and compute
the angle Φcell. The results start at the 5 th cycle because no steady state is achieved
before (at least not for the �ne mesh). Both meshes represent the same slab with the
same dimension. Only the spatial step ∆z di�ers. The �ner mesh has ∆z = 0.0025 m
and the coarser ∆z = 0.003 m. To visualise the deviation of the computed from the
expected angle I calculate the relative error (xana−xnum)/xnum with xana the analytical
value and anum the numerically computed value. The results are represented in Figure
4.30.
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Figure 4.30.: Relative Error of the numerically computed rotation of the plane of po-
larisation with increasing chirality compared to analytical values for two
meshes (a) mesh with ∆z = 0.003 (b) mesh with ∆z = 0.0025m

From Figure 4.30 (a) and (b) it can be clearly seen that for the same chirality the
oscillations increase with increasing spatial step ∆z. To further investigate the e�ect of
the spatial step ∆z, I kept the chirality constant and used meshes with di�erent spatial
sizes (4z = 0.0025 m, 0.003 m, 0, 004 m, 0.005 m) where the dimension of the slab
remained the same. Increasing the spatial step ∆z leading to an increase in Φcell for
coarser meshes (Figure 4.31a). I use the same time step of 2.9 ps for all the meshes. For
another test I use the same mesh (4z = 0.003) but reduce the time step (Figure 4.31b).
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Figure 4.31.: E�ect on mesh re�nement and time steps on the results (a) same chirality,
di�erent meshes (b) same mesh, di�erent time step

From Figure 4.31a I observe that for κ = 0.0305 I only obtain a stable result for Φ/n =
0.458◦at an error of roughly 10%. For all the other, coarser meshes, the solution varies
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4.4. Numerical validation for isotropic chiral material

signi�cantly. By analysing Figure 4.31b it appears that a decrease of the time step only
has a minor e�ect on the stability. I can conclude that the chirality induced instabilities
are directly linked to the spatial discretisation and do not strongly depend on the time
step. For Im(κ) = 0, according to my results, the condition Φ/n < 0.45 should be
ful�lled to obtain a stable solution. To verify these results I considered the publication of
Pereda [103]. Their parameters are: ω = 2π×8GHz, τk = 5×10−12s, ωk = 2π×3.5GHz,
ξk = 0.1 leading to κ = −0.059− i0.006. Only considering the real part of the chirality,
with ∆z = 0.001m this leads to ΦCell = 0.57◦. I had further discussions with Ana
Grande [103]. She gave me additional results. For Re(κ) = 0.17, ∆z = 0.2× 10−3m and
a slab with a thickness of L = 500∆z I get ΦCell = 0.49◦. In contrast to my testcases so
far, Ana Grande and Pereda considered materials with Im(κ) 6= 0. Therefore I continue
to investigate the e�ect of damping Im(κ) 6= 0 on the stability of the algorithm.

4.4.4. Numerical stability with damping

In this section I demonstrate the stabilising e�ects of damping induced imaginary part of
the chirality. Therefore I used a coupling coe�cient τk = 2×10−12 s which leads without
damping (ξk = 0) to very strong instabilities in the scheme.For a constant τk I increase the
damping (ξk = 0.01, 0.025, 0.5, 0.1) and plot as before Φ over 20 cycles. Furthermore I
computed the real and imaginary parts of the chirality for di�erent damping coe�cients.
Figure 4.32 shows a stable scheme for ΦCell, which before lead to instabilites in the
undamped case. It appears that as long as Im(κ) ≥ Re(κ)/15 the scheme is stable.

Figure 4.32.: relative error of computed angle over 20 cycles

But in this case I am not dealing with a pure ORD because due to the imaginary part
the polarisation also changes. For τk = 2× 10−12s, ωk = 2π × 3.5GHz, and varying ξk,
the real and imaginary part of the chirality are displayed in Figure 4.33.

115



4. Code Validation and Numerical Examples

(a) (b)

Figure 4.33.: Real and imaginary part of the chirality for varying damping factors (a)
Real part of the chirality ; (b) imaginary part of the chirality

My results demonstrate a succesfull implementation of the algorithm for modelling
isotropic chiral media. Furthermore the stabilising e�ects of the damping have been
investigated.

4.5. Numerical validation for bi-anisotropic media

For bi-anisotropic media not only the numerical methods but also the analytical solutions
become increasingly complex. Although there exist an analytical solution developed by
Rikte [106] I am still working on the implementation. Meanwhile, I validate my method
in two steps. First of all I do not consider the chirality tensor by setting all its components
to zero. The algorithm now models an anisotropic frequency dependent material. Next
I use DDscat [40] as for the anisotropic case because it can handle diagonal complex
material parameters. As benchmark test I compute the bistatic RCS of a sphere

4.5.1. Radar cross section on anisotropic dispersive sphere

To validate my algorithm I compute the RCS (equation (4.2)) of a 2λ sphere. Where I
used exactly the same mesh as for the isotropic case (Figure 4.5a) on which a plane wave
with λ = 1m is incident. In my algorithm I assume a Lorentz model dispersion relation
for the permittivity and permeability

¯̄ε (ω) = ε0

(
¯̄ε∞ +

ω2
ε

ω2
ε − ω2 + j2ωεξεω

(¯̄εs − ¯̄ε∞)

)
¯̄µ (ω) = µ0

(
¯̄µ∞ +

ω2

ω2
µ − ω2 + j2ωµξµω

(¯̄µs − ¯̄µ∞)

)
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4.5.1.1. Isotropic permittivity

For the �rst case, I decided to use identical entries for ε∞,ii and εs,ii with i = 1, 2, 3 and
no frequency dependence at all for the permeability. This corresponds to an isotropic
dispersive material.

¯̄ε∞ = ε0

 1.6 0 0
0 1.6 0
0 0 1.6

 , ¯̄εs = ε0

 2 0 0
0 2 0
0 0 2

 , ¯̄µ (ω) = µ0

 1 0 0
0 1 0
0 0 1


ωε = 0.6GHz, ξε = 0.4
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Figure 4.34.: Scattering of a plane wave by a dielectric sphere of electrical length 2λ with
anisotropic dispersive permittivity: (a) co�polarised RCS distribution; (b)
cross�polarised RCS distribution.

Overall a very good agreement between the RCS for both polarisations is obtained (Figure
4.34). The corresponding L2-Errors for the co and cross polarised RCS are 2.94 % and
2.96 % respectively.

4.5.1.2. Anisotropic permittivity

For the second case, the entries on the diagonal of the matrices ¯̄ε∞ and ¯̄εs di�er from
each other. As in the example before no frequency dependence for the permeability is
assumed.

¯̄ε∞ = ε0

 1.6 0 0
0 1.4 0
0 0 1.7

 , ¯̄εs = ε0

 2.1 0 0
0 1.9 0
0 0 2.0

 , ¯̄µ (ω) = µ0

 1 0 0
0 1 0
0 0 1


ωε = 0.6GHz, ξε = 0.4
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Figure 4.35.: Scattering of a plane wave by a dielectric sphere of electrical length 2λ with
anisotropic dispersive permittivity: (a) co�polarised RCS distribution; (b)
cross�polarised RCS distribution.

The co�polarised RCS of our 3D�leapfrog scheme and the DDA solution match well
over the whole angular range except for the last 30 degrees. The cross-polarised RCS
on the other hand shows a slight shift in the dips between my solution and the DDA
approximation (Figure 4.35). The corresponding L2-Errors for the co and cross polarised
RCS are 11.19 % and 11.22 % respectively.

4.5.1.3. Isotropic permeability

This time I removed the frequency dependence of the permittivity and use identical ele-
ments for entries of the permeability matrix. This corresponds to an isotropic dispersive
material with respect to the permeability

¯̄µ∞ =

 1.6 0 0
0 1.6 0
0 0 1.6

 , ¯̄µs =

 2.0 0 0
0 2.0 0
0 0 2.0

 , ¯̄ε (ω) = ε0

 1 0 0
0 1 0
0 0 1


ωµ = 0.6GHz, ξµ = 0.4
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Figure 4.36.: Scattering of a plane wave by a dielectric sphere of electrical length 2λ with
anisotropic dispersive permittivity: (a) co�polarised RCS distribution; (b)
cross�polarised RCS distribution.

Again a good agreement for both polarisations is observed. Only at the end of the
angular range around −30dB the solutions start to diverge slightly from each other. The
corresponding L2-Errors for the co and cross polarised RCS are 11.74 % and 11.74 %
respectively.

4.5.1.4. Anisotropic permeability

As last test case we de�ned a matrix where the entries on the diagonal of the matrices
¯̄µ∞ and ¯̄µs di�er from each other.

¯̄ε(ω) = ε0

 1 0 0
0 1 0
0 0 1

 ¯̄µ∞ = µ0

 1.6 0 0
0 1.9 0
0 0 1.7

 , ¯̄µs = µ0

 2.1 0 0
0 1.9 0
0 0 2.0


ωµ = 0.6GHz, ξµ = 0.4
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Figure 4.37.: Scattering of a plane wave by a dielectric sphere of electrical length 2λ with
anisotropic dispersive permittivity: (a) co�polarised RCS distribution; (b)
cross�polarised RCS distribution.

In contrast to the results for anisotropic permittivity, depicted in Figure 4.35, this time
no shift of the peak occurs. The two solutions agree quit well except again for the last 40
degrees for the co�polarised solution. The corresponding L2-Errors for the co and cross
polarised RCS are 11.13 % and 11.13 % respectively. Unfortunately I can only compare
my results with another numerical method because an analytical solution for frequency
dependent anisotropic materials does not exist. Therefore it is not clear which method
is more or less accurate. Although the L2 errors appears to be relatively high the shapes
of the RCS agree quite well in most of the cases.

4.5.1.5. isotropic chiral vs bi-anisotropic

To validate the implementation of the magnetoelectric coupling tensor I decided to com-
pare the bi-anisotropic with the isotropic chiral solution. Therefore we use diagonal
tensors with identical entries on the diagonal.

¯̄µ∞ = µ0

 1.0 0 0
0 1.0 0
0 0 1.0

 , ¯̄µs = µ0

 1.1 0 0
0 1.1 0
0 0 1.1

 , ωµ = 2π × 3.5GHz, ξµ = 0.12

¯̄ε∞ = ε0

 1.6 0 0
0 1.6 0
0 0 1.6

 , ¯̄εs = ε0

 1.8 0 0
0 1.8 0
0 0 1.8

 , ωε = 2π × 3.5GHz, ξε = 0.14

¯̄τκ =
1

c

 0.0003 0 0
0 0.0003 0
0 0 0.0003

 , ωκ = 2π × 3.5GHz, ξκ = 0.1

120



4.5. Numerical validation for bi-anisotropic media

for the isotropic case

µ∞ = µ0, µs = µ01.1, ωµ = 2π × 3.5GHz, ξµ = 0.12

ε∞ = ε01.6, εs = ε01.8, ωε = 2π × 3.5GHz, ξε = 0.14

τκ =
1

c
0.003, ωκ = 2π × 3.5GHz, ξκ = 0.1

The incoming plane wave with optical axis along z direction has an angular frequency of
ω = 5 GHz. If the implementation of the bi-anisotropic algorithm is correct we expect
the same results as for the isotropic chiral algorithms. For the simulation I used a slab
with lateral extension x = y = 0.3m and a thickness of d = 0.1m in z direction. Figures
4.38 and 4.39 demonstrate the correct implementation of my algorithm.
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Figure 4.38.: Analytical isotropic chiral vs Numerical bi-anisotropic transmission coe�-
cients (a) Tco ; (b) Tcr
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Figure 4.39.: Analytical isotropic chiral vs Numerical bi-anisotropic re�ection coe�cients
Rco
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Part II.

Multiscale Approach for

Metamaterial Modelling
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5. Micro to Macro Approach

Due to its microstructure composites and metamaterials cannot be modelled in the same
way as simple dielectric materials like glass. The orientation of its constituents makes
the composite anisotropic, meaning the index of refraction depends on the orientation of
the �bers. The same is true for the metamaterial where the index of refraction depends
upon the orientation and arrangement of the unit cells. Imagine, modelling VLF (very low
frequency) radiation, typically in the frequency range from 3 − 30 kHz. Such antennas
are used for communication in submarines because the radiated waves may penetrate
between 10 m − 30 m deep into the ocean. This leads to a free space wavelength of
λ0 = 1000 m − 10 km. To model an object, most of the numerical methods require the
creation of a mesh to represent the object. The mesh needs to be �ne enough to capture
all the phenomena of interest and at the same time be as coarse as possible to reduce the
computational costs. As example, for a �nite di�erence time domain algorithm which is
based upon a structured mesh, the FDTD grid cell (for free space simulations) should be
at least λ0/10. This corresponds to a cell with an edge length of 100m− 1 km, which is
much longer than the antennas and even longer than most of the submarines. Using a very
�ne mesh is in this case however a poor alternative because the computational costs would
be tremendous. Instead a technique called �thin-wire approximation� [125] which allows
the modelling of sub-cell structures is applied. Similar problems occur for the modelling
of metamaterials consisting of a periodic array of wires and rings (Figure 5.1). In this
case it is not possible to model every single unit cell separately. At this point multiscale
techniques can be used to circumvent the typically required �ne meshes and to reduce the
sometimes tremendous computational costs. The idea behind these methods is to predict
the behavior of a given material at a large scale by only performing calculations on a
smaller scale, as single unit cell for example. Multiscale techniques can be roughly divided
into two classes, analytical and numerical homogenisation techniques. The analytical
techniques may be used for two component composites but quickly reach their limitations
for metamaterials. Concerning the numerical homogenisation techniques, I decided to
divide them in two classes, �direct� and �indirect� techniques. As direct technique I
classify a method where the material parameters can be directly calculated from the
electric and magnetic �elds by �eld averaging. This typically involves inverting the
constitutive equations as suggested by Wu or Pendry [143, 101]. In an indirect method,
the material parameters are not directly deduced from the �eld quantities. Such methods
typically involve the scattering parameters introduced in subsection 6.4 and a retrieval
algorithm to compute the material parameters from the S-parameters 6.8. This procedure
is identical to the experimental method, with the exception that the S parameters are
computed numerically. Li, Chen and Smith presented such methods for metamaterials
[77, 78, 28, 120]. In this chapter I brie�y recall the analytical homogenisation techniques
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5. Micro to Macro Approach

Figure 5.1.: Schematic representation of the multiscale approach

and their limitations, before I focus on a indirect and direct numerical homogenisation
technique.

5.1. Analytical microscale homogenisation techniques

For composites very simple mixing formulas have been established over the last century by
Maxwell Garnett [50], Bruggemann [21], Looyenga [85] and Bergman [17]. The Maxwell
Garnett (equation (5.1)), Bruggeman (equation (5.2)) and Looyenga (equation (5.3))
equations only rely upon one single parameter to compute the e�ective permittivity of
a two component composite, namely the volume fraction Vf de�ned as the volume of
the embedded particles divided by the total volume. Due to this simpli�cations the �rst
three mentioned methods can only be applied in some special cases.

εeff − εM
εeff + 2εM

= Vf
ε− εM
ε+ 2εM

(5.1)

(1− Vf )
εM − εeff
εM + 2εeff

= −Vf
ε− εeff
ε+ 2εeff

(5.2)

ε
1/3
eff = Vfε

1/3 + (1− Vf ) ε
1/3
M (5.3)

Where ε is the permittvity of the embedded particles, εM is the permittivity of the matrix
(Figure 5.2a) and εeff the permittivity of the e�ective medium after the homogenisation
(Figure 5.2b).
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5.2. Numerical microscale techniques

(a) Two phase composite (b) E�ective medium after homogenisation

Figure 5.2.: E�ective medium from a two phase composite

The Maxwell Garnett model is suited for systems with low volume fractions of embedded
particles with particles far away from each other. The Bruggeman theory is equivalent
to Maxwell Garnett for low volume fractions. Above Vf = 1/3 the embedded particles
are assumed to be partially connected. The Looyenga formulation on the other hand
assumes a percolation for any volume fraction.
The Bergmann representation of e�ective dielectric functions is the most general form of
e�ective medium approaches.

εeff = εM

(
1− Vf

ˆ 1

0

g(n, Vf )

t− n
dn

)
where

t =
εM

(εM − ε)
(5.4)

The function g(n, Vf ) is the spectral density function holding all the topological details
of the microgeometry. Unfortunately g(n, Vf ) cannot simply be computed analytically.
Experiments were conducted to match the theoretical optical spectra with the experimen-
tal ones by adjusting g(n, Vf ). As mentioned, those methods relying on simple analytic
mixing formulas have their limitations, especially if metallic inclusions are considered in-
stead of dielectric ones, which is the case for metamaterials. A purely numerical solution
to the homogenization of metamaterials appears to be a much better approach for the
modelling of metamaterials.

5.2. Numerical microscale techniques

Compared to analytical methods numerical homogenisation techniques have the advan-
tage not to be limited to the quasi static regime, low volume fractions or the shape of the
inclusions [56]. I will mainly focus on methods that have been designed for metamate-
rials. These techniques are based upon three main pillars. Field averaging, the retrieval
of e�ective parameters from scattering and periodic boundary conditions. To illustrate
the procedure of �eld averaging and e�ective parameter retrieval I consider a publication
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5. Micro to Macro Approach

from 1999 by Pendry at al. [101] were they investigated the e�ective permeability of
several periodic arti�cially magnetic structures. To allow the retrieval of an e�ective
permittivity the unit cell should be much smaller than the incoming wavelength in the
material (a� λ). Pendry et al. suggest a �eld averaging which follows directly from the
integral form of Maxwell's equation. They average every component of H along each of
the three axes of a unit cell, leading to

(Havg)x =
1

a

ˆ r=(a,0,0)

r=(0,0,0)
H · dr

(Havg)y =
1

a

ˆ r=(0,a,0)

r=(0,0,0)
H · dr

(Havg)z =
1

a

ˆ r=(0,0,a)

r=(0,0,0)
H · dr

B is averaged over each face of the unit cell. Where the corresponding surfaces Ax, Ay, Az
are spanned by the vectors y, z; x, z; x,y , resulting in

(Bavg)x,y,z =
1

a2

ˆ

Ax,y,z

B · dA

To obtain the e�ective material parameters the constitutive equation B = µH and the
e�ective �elds Bavg and Havg are used leading to

µeff,x =
(Bavg)x
µ0 (Havg)x

µeff,y =
(Bavg)y
µ0 (Havg)y

µeff,z =
(Bavg)z
µ0 (Havg)z

To reduce the computational costs instead of meshing all the unit cells of the a periodic
metamaterial it is more e�cient to model a single unit cell and to apply periodic bound-
ary conditions. In the frequency domain these conditions are implemented by Bloch
functions. This method is known as the eigenfrequency method and is for example used
in an algorithm developed by Smith [120]. Pendry assumed that the size of a unit cell
(de�ned by a ) is negligible with respect to the incoming wave. According to Smith [120]
this is however not the case for most of the metamaterials to date. Therefore he adapted
the method from Pendry and generalised it to chiral materials. He showed that the re-
trieved material parameters needs to be corrected, which works well for an empty unit
cells but leads to an approximation for a metamaterial. My method doesn't need this
correction. Furthermore instead of using a linear polarised wave to retrieve the material
parameters I use a circular polarised one, which allows me to retrieve all the parameters
perpendicular to the optical axis.
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5.2. Numerical microscale techniques

5.2.1. Indirect microscale parameter retrieval

This method is based upon the calculation of the S-parameters that are related to the
complex re�ection and transmission coe�cients. From them, one can retrieve the material
parameters. Typically, the metamaterials considered in the methods so far are all non
chiral. In this case only two e�ective material parameters have to be identi�ed, the
permittivity and permeability. For the chiral material however the chirality also needs
to be determined. Therefore I use a method by Chen [28, 26]. For the simulation I only
consider a unit cell of the metamaterial surrounded by a layer of free space and a PML
(Absorbing boundary condition (ABC)) on both sides along the optical axis as depicted
in Figure 5.3. I use periodic boundary conditions (PBC) perpendicular to the direction
of propagation to create an in�nitely extended slab in lateral direction. The thickness
along the optical axis still corresponds to a single unit cell.

Figure 5.3.: Unit cell surrounded by free space and PML along the optical axis

Algorithm procedure

1. I set two ports, an emitting and a receiving port to record the S-parameters. The
ports are located between the PML and free space. After running the simulation I
obtain the S-parameters.

2. From the S-parameters I compute the material parameters using the same retrieval
algorithm as described in section 6.8.

3. In the next step I use an optimisation algorithm giving me the best match be-
tween the computed material parameters and the corresponding Lorentz or Condon
model. The materials parameters are complex functions, and the retrieved param-
eters (ε∞, εs, ωε, ξε...) have to match the real and imaginary part of the model.
Therefore I use the open source library for nonlinear optimisation (NLopt). From
this library I use an evolutionary algorithm for global optimisation, namely ESCH,
developed by Carlos Henrique da Silva Santo's [34].

4. These parameters (ε∞, εs, ωε, ξε...) obtained from the optimisation algorithm are
the input for my UM-FDTD program which allows the simulation of bi-anisotropic
media (section 3.8). With this program I model the experimental slab with the
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5. Micro to Macro Approach

same dimensions 7 cm × 15 cm × 15 cm as in the experiment. Remember, the S
parameters I obtained at the beginning correspond to those of slab with an in�nite
lateral extension but with a �nite thickness of a single unit cell, therefore they di�er
from the experimental data.

5. From this simulation I obtain the S-parameters from the transmission and re�ection
and compare them directly with the experimental S-parameters.

My material parameters are tensors. Therefore I have to change the orientation of the
incident �eld vectors with respect to the unit cell to get all the elements of the material
parameter matrices. The element in the permittivity matrix along the optical axis is set
to the permittivity of the matrix material. I used a frequency domain code, for instance
COMSOL. To validate this method, the con�guration depicted in Figure 5.3 is used.
The unit cell is a simple dielectric, with the same, constant, permittivity as the matrix
material (FR4). From this setup I compute the S-parameters. The ports required for
computing the scattering parameters are placed at the interface between the free space
and the PML. In contrast to the magnitude, the phase of the numerical S-parameters
needs to be corrected by an angle Φcorr = k0(c0/lfs) to compensate for the free space
region. Where lfs = lfs,1 + lfs,2 is the total length of the free space and lfs,i , i = 1, 2
the free space region on each side of the dielectric and k0 is the free space wavenumber.
Correcting the phase leads to a perfect agreement between numerical and analytical S-
parameters as illustrated in Figure 5.4. This correction is obviously also required for the
unit cell of the metamaterial and the results are presented in subchapter 8.1.1.
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Figure 5.4.: Phase of S11 and S21 corrected by Φadd = k0(c0/lfs) for transmitting and
receiving ports located at the interface between the dielectric and free space
(a) |S11| ; (b) |S21|

I use the retrieval algorithm for the bianisotropic material and obtain the expected per-
mittivity of 4.5 with the loss tangent of 0.004 S/m as depicted in Figure 5.5
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Figure 5.5.: Material parameters of FR4 after phase correction (a) relative permittivity ;
(b) relative permeability

5.2.2. Direct mean �eld technique

The constitutive equations for a bi-anisotropic material are de�ned as in equations (2.64)
and (2.65). We only consider the chiral case, therefore the Tellegen parameter χ is
not considered. For a reciprocal bi-anisotropic, ¯̄ε and ¯̄µ are symmetric tensors and
¯̄ξ = − ¯̄ζT = −i/c¯̄κT where. Writing equations (2.64) and (2.65) for every component
leads to

Dx = εxxEx + εxyEy + εxzEz −
i

c
(κxxHx + κxyHy + κxzHz)

Dy = εyxEx + εyyEy + εyzEz −
i

c
(κyxHx + κyyHy + κyzHz)

Dz = εzxEx + εzyEy + εzzEz −
i

c
(κzxHx + κzyHy + κzzHz) (5.5)

Bx =
i

c
(κxxEx + κxyEy + κxzEz) + µxxHx + µxyHy + µyzHz

By =
i

c
(κyxEx + κyyEy + κyzEz) + µyxHx + µyyHy + µyzHz (5.6)

Bz =
i

c
(κzxEx + κzyEy + κzzEz) + µzxHx + µzyHy + µzzHz

If the wave is propagating in x direction with electric �eld in z and magnetic �eld in y
direction equation (5.5) and (5.6) become

Dz = εzzEz −
i

c
κzyHy (5.7)

By = µyyHy +
i

c
κyzEz (5.8)
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5. Micro to Macro Approach

To determine the components of ¯̄ε, ¯̄µ, ¯̄κ I use the property that the components of ¯̄ε, ¯̄µ
di�er for a right or a left hand circular polarised wave.
According to Lindell [66], for a bi-isotropic medium the constitutive correspond to equa-
tions (2.62) and (2.63). Lindell suggests to use the wave�elds E+, E− and H+, H−
instead of the electric and magnetic �elds directly. They are linked to each other via

E = E++E− (5.9)

H = H++H− (5.10)

The wave�eld decomposition of an electromagnetic �eld in a bi-isotropic medium is based
upon the two following postulates:

1. Each of the two wave�elds E+, H+ and E−, H− sees the bi-isotropic medium as
an equivalent isotropic medium with respective medium parameters µ+, ε+ and
µ−, ε−

2. The two wave�elds are independent: they do not couple in a homogeneous bi-
isotropic medium.

Next the equivalent parameters are de�ned as

η+ = i
ξ

ε+ − ε
= i

µ+ − µ
ς

(5.11)

η− = −i ξ

ε− − ε
= −iµ− − µ

ς
(5.12)

leading to

ε+ = ε (1 + κr) (5.13)

ε− = ε (1− κr) (5.14)

µ+ = µ (1 + κr) (5.15)

µ− = µ (1− κr) (5.16)

With the constitutive equations

D± = ε±E±

B± = µ±H±

where κr = κ/
√
εrµr is the relative chirality and the +,− refers to a right hand circular

polarised and left hand circular polarised wave if I am looking along the direction of
propagation of the incident wave. The di�erent material parameters are obtained by
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5.2. Numerical microscale techniques

combining the equations (5.13)-(5.16) to

ε =
ε+ + ε−

2
(5.17)

κr =
ε+ − ε−

2ε
=
ε+ − ε−
ε+ + ε−

(5.18)

µ =
µ+ + µ−

2
(5.19)

κr =
µ+ − µ−

2µ
=
µ+ − µ−
µ+ + µ−

(5.20)

I assume that these statements can be generalised to the bi-anisotropic medium where
the material parameters become second order tensors because each equation should still
hold indepently for every component of the matrix.

¯̄εeff =
1

2
(¯̄εeff,+ + ¯̄εeff,−) (5.21)

¯̄µeff =
1

2
(¯̄µeff,+ + ¯̄µeff,−) (5.22)

¯̄κr = (¯̄εeff,+ + ¯̄εeff,−)−1 (¯̄εeff,+ − ¯̄εeff,−) (5.23)
¯̄κr = (¯̄µeff,+ + ¯̄µeff,−)−1 (¯̄µeff,+ − ¯̄µeff,−) (5.24)

Algorithm procedure

To obtain the e�ective material parameters I �rst illuminate the unit cell with a right
hand polarised and afterwards a left hand polarised wave. The optical axis is oriented
along the x axis and the wave rotates in the x, y plane.

E (r, t) =

 0
±iE0

E0

 ei(k·r−ωt)

In this direct homogenisation approach I require the volume average of the �eld vectors
over two unit cells. The �rst cell corresponds to the unit cell of the metamaterial consist-
ing of a metallic inclusion inside a matrix cube. The �elds {D+} , {B+} , {D−} , {B−}
are calculated inside these cells, where 〈〉 refers to the volume average of the �eld vectors
over an unit cell. As reference I use a unit cell with the same dimension and the same
dielectric material but without the inclusion, leading to {E+} , {H+} , {E−} , {H−}.
From these quantities I can calculate the matrices ¯̄εeff,+ and ¯̄εeff,− which I write as
¯̄εeff,± by taking the ratio of the di�erent �eld components.

¯̄εeff,± =


{Dx,±}
{Ex,±}

{Dx,±}
{Ey,±}

{Dx,±}
{Ez,±}

{Dy,±}
{Ex,±}

{Dy,±}
{Ey,±}

{Dy,±}
{Ez,±}

{Dz,±}
{Ex,±}

{Dz,±}
{Ey,±}

{Dz,±}
{Ez,±}

 (5.25)
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5. Micro to Macro Approach

From equations (5.21) the e�ective permittivity tensor can be calculated. It should
however be noted that only the elements on the diagonal correspond to the e�ective
permittivity. If I apply this method to a simple isotropic or anisotropic material ε+ = ε−.
The o�-diagonal elements are residua from the coupling, which can be calculated from
equation (5.23). This time only the o� diagonal elements should be considered for a
bi-anisotropic material. To compute the e�ective permeability I proceed in the same way
as before by calculating this time the matrices ¯̄µeff,± using equation (5.22).

¯̄µeff,± =


{Bx,±}
{Hx,±}

{Bx,±}
{Hy,±}

{Bx,±}
{Hz,±}

{By,±}
{Hx,±}

{By,±}
{Hy,±}

{By,±}
{Hz,±}

{Bz,±}
{Hx,±}

{Bz,±}
{Hy,±}

{Bz,±}
{Hz,±}

 (5.26)

From these matrices, using equations (5.21)-(5.24) I deduce the material parameters
¯̄ε, ¯̄µ, ¯̄κ. The results are presented in subsection 8.1.2. This method o�ers two advantages
compared to the �indirect� method. First of all the computational requirements are much
lower because no free space region or PML is required. Secondly, the e�ective material
parameters are calculated directly. There is no need to �rst compute the S-parameters
and then using an algorithm to compute the material parameters.
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6. Experimental Characterisation of

Material Properties

6.1. Introduction

There exist several experimental methods to extract the permittivity and permeability
of a material. They all have their advantages and disadvantages mainly depending upon
the sample material, size and temperature. In my experiment I am not only interested
in retrieving the permittivity and the permeability but also the chirality adding an ad-
ditional constraint for the experimental setup. After introducing several experimental
techniques and justifying my choice, I explain in detail our setup and the corresponding
calibration and measurement techniques. Furthermore I give a brief introduction to the
scattering parameters (S-parameters) from which the permittivity and permeability may
be computed using a retrieval algorithm. To test my setup with isotropic dielectrics I use
the NRW (Nicolson-Ross-Weir) algorithm [96]. For the metamaterials I need an adapted
version of the NRW algorithm as suggested by Chen [28, 26].

6.2. Review of experimental procedures for the

characterisation of material properties

To retrieve the material parameters three methods based upon transmission and re�ection
are commonly used. I will brie�y explain the advantages and disadvantages of these
methods especially with respect to measurements of metamaterials because this adds
additional restrictions to the setup. This section is mainly based upon the techniques
used in [90], [54] and [4].

Transmission/Re�ection line method

The transmission and re�ection method is commonly used to determine the permittivity
and permeability of dielectric materials. For a non-chiral material commercially available
rectangular waveguides could be used. But due to the rotatory dispersion occurring in
chiral samples circular waveguide components are required which are not commercially
available. By referring to Figure 6.1, the circular measurement cell including the chiral
sample is located at (2). A rectangular to circular waveguide transition (located at (1))
feeds the signal from the vector network analyser (VNA) to the sample. A chiral sample
will rotate the plane of polarisation which can be measured using a rotatable transition
(located at (3)).
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6. Experimental Characterisation of Material Properties

Figure 6.1.: Illustration of circular waveguide setup.

The advantage of this system is its small size and that the measurements are well shielded
from external interferences. A disadvantage is the sensitivity to local density variations
in the sample which may cause �uctuations in the measurements. Air gaps between the
sample and the waveguide walls will further in�uence the results. Therefore the sample
has to be arti�cially shaped to �t tightly into the waveguide which may be challenging.
These problems may be overcome by averaging through several sample orientations and
by precise sample manufacturing. Furthermore, unwanted higher modes may propagate
in the sample. In this case inversion equations cannot be developed.

Resonator technique

The resonator technique is the most suitable method for obtaining high precision mea-
surements of non-chiral media. With this method two quantities are measured: the res-
onant frequency and the quality factor. It cannot be used for chiral media as this would
at least require three independent quantities for a full characterisation. Furthermore the
sample would be so small that the material could not be considered as homogeneous. So
until now no resonator technique for the studies of chiral materials has been implemented
experimentally.

Free space technique

A free wave setup (Figure 6.2a) consists of a transmitting and receiving antenna, a VNA
(to generate and measure the re�ected and transmitted signal) and a sample holder.
The sample should be located in the far �eld of the antenna. To reduce the di�raction
e�ects at the edges of the sample the beam width should be decreased by a focussing
lens or an ellipsoidal mirror. Simply positioning the sample closer to the antenna is a
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6.2. Review of experimental procedures for the characterisation of material properties

bad solution for two reasons. First of all, the e�ects of multiple re�ections between the
sample and antenna are enhanced, introducing additional errors in the measurement.
Furthermore, the plane wave assumption is not valid anymore, because we are not in the
far �eld, making the development of inversion equations to extract material parameters
impossible. In Figure 6.2b the di�erent �eld regions are illustrated. Where D is the
aperture of the antenna and λ the wavelength. In the reactive near �eld region the
electric and magnetic �elds are out of phase by 90 degrees to each other. In the far
�eld region, the radiation pattern does not change its shape with distance, the �elds are
orthogonal to each other and in phase. In this region the plane wave assumption is valid.
In the radiating near �eld region observe a mixture between the reactive rear �eld and
far �eld region is observed. Especially the radiation pattern may vary with distance.

(a)

(b)

Figure 6.2.: (a) Experimental setup ; (b) Di�erent �eld regions
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A focussing device like a dielectric lens [76] or an ellipsoidal mirror [86] solves these two
issues, it even allows one to reduce the size of the sample if the beam is focused well
enough. Although the wave becomes a Gaussian behind the focal point, the plane wave
assumption still holds. The free space technique o�ers several advantages :

1. A gap between the sample and the waveguide wall leads to the excitation of higher
order modes induced by the inhomogenities due to the fabrication process. In the
free wave setup this problem does not exist.

2. For cavities or waveguides the samples have to be cut properly according to the
shape of the waveguide to limit the gap between the dielectric and the walls. This
leads to additional constraints on the size and the fabrication process of the sample.
Not every material may be machined precisely enough. For the free wave setup
relatively large samples are required. Di�raction e�ects at the edges of the sample
are negligible if the minimum transverse dimension of the sample is greater than
three times the beam width at the focus [54].

3. Measurements based upon the free wave technique are non-destructive and con-
tactless and are therefore suited for dielectric measurements at high temperature.

4. Suited for high frequency measurements

The disadvantages are :

1. Multiple re�ections between antenna and surface of the sample causing errors in
the measurement, although these re�ections may be identi�ed in the time domain.

2. Relatively large and �at samples are required. To further reduce di�raction e�ects
at the edge of the sample a focussing device should be used. The size of the sample
should nevertheless still be about three times the diameter of the beam at the focal
point.

3. Care must be taken by the thickness of the sample. Depending on the thickness the
re�ected �eld is too weak to allow an accurate measurement of the phase resulting
in important measurement errors.

To obtain accurate measurements the system has to be correctly calibrated. There exist
several calibration standards. The most common are TRL (THROUGH, REFLECT,
LINE) and GRL (GATED, REFLECT, LINE). To further increase the accuracy time
gating is applied. The calibration eliminates the e�ects of the cable and antenna and
signi�cantly improves the quality of the measurement. The free space technique is my
method of choice because it is without any further modi�cations suited for the dielectric
characterisation of metamaterials and all the components are commercially available.

6.3. Free space measurement setup

The vector network analyser (Model ZVK from Rohde and Schwarz) generates the signal
and measures the magnitude and phase of the complex S (scattering) parameters. I use

138



6.4. Scattering parameters

the Flann DP-240 Dual Polarised Horn as transmitting and receiving antennas. The
antennas are mounted on rails in order to allow us to change their distance from the
sample and thus to reposition the focal point (Figure 6.2a). The ellipsoidal mirror has
been specially designed for the DP-240 antennas for a frequency range of 4.5− 18GHz.
The 3 dB-width of the beam on the mirror focus is 13 cm at 4.5 GHz and 2.6 cm at
18 GHz. Rojo et al. [108] proved that for the frequency range of interest a sample
diameter of 15 cm is large enough to avoid di�raction e�ects. Figure 6.2a also shows
the mirror fabricated by the research service of the University of Murcia (spain). The
dimensions are 490× 350× 50mm and has been designed according to [108]. One of the
main advantages of this setup is the large frequency range from 4.5−18GHz. Previously
two setups were needed [55] one for the X Band (8.2 − 12.4 GHz) and another for the
Ku band (12.4 − 18 GHz). They required di�erent antennas, mirrors and waveguides.
Furthermore, as mentioned before, the use of a mirrors instead of dielectric lenses prevents
the e�ect of multiple re�ection due to the lenses. I placed the mirror at a distance of
25 cm with respect to the transmitting antenna. The distance between the mirror and
sample and between the sample and the receiving antenna is 45 cm in both cases

Figure 6.3.

6.4. Scattering parameters

This subsection, mainly based upon [1] gives only a brief summary about the scattering
parameters. For more information please refer to Kurokawa [75]. The S (scattering) pa-
rameters are the key quantities to calculate the electromagnetic properties of a material.
This theory is based upon a linearity assumption. If a circuit consists of linear elements
it can mathematically be represented by a set of linear equations. The idea is to put
complicated circuits into a black box, take two pairs of nodes de�ned by voltages and
currents and link them via two linear equations. These parameters are automatically
computed by the vector network analyser. The S parameters are complex numbers cor-
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responding to the magnitude and phase of a signal. They are commonly displayed in
matrix form with the number of rows and columns equal to the number of ports. For
two ports the matrix is

¯̄S =

(
S11 S12

S21 S22

)
(6.1)

For the matrix element Sij , the subscript j corresponds to the input (excited) and i to
the output port respectively. S11 refers to the ratio of the signal that re�ects from port
one to the amplitude of the signal incident on port one. S21 means the response at port
2 due to an incident signal at port 1. Parameters along the diagonal of ¯̄S correspond
to the re�ection coe�cients because they only take into account what happens at one
port. O�-diagonal elements on the other hand correspond to the transmission coe�cients
because they refer to what happens at one port when it is excited by a signal incident
at another port. I will only concentrate on 2 port systems as illustrated in Figure 6.4
because they are the most common used. For each port there is an incoming and emitted
wave, therefore each port is shown as 2 nodes. The S parameters are expressed with
respect to the reference impedance Z0.

Figure 6.4.: 2 port system.

The link between input ai, i = 1, 2 and output signal bj , j = 1, 2 is given by(
b1
b2

)
=

(
S11 S12

S21 S22

)(
a1

a2

)
(6.2)

⇔ b1
b2

=
S11a1 + S12a2

S21a1 + S22a2
(6.3)

The di�erent S parameters may be obtained by setting the value of the incident signal
ai, i = 1, 2 to 0 leading to

S11|a2=0 = b1/a1

S12|a1=0 = b1/a2

S21|a2=0 = b2/a1

S22|a1=0 = b2/a2

(6.4)

To measure Sii for example, a signal at port i is injected and the re�ected signal is
measured at port i. For this speci�c case no signal is injected into port 2, so aj = 0,
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i 6= j. To measure Sij , a signal is injected at port j and the response is measured at port
i. S parameters are commonly expressed in decibels (dB).

Sij(dB) = 20 log [Sij (magnitude)] (6.5)

Power ratios are expressed as 10 log(x), but here voltage ratios are used, where the power
P is linked to voltage U by P = U2/R, with R the resistance. Keeping in mind a property
of logarithmic calculus, 10 log(x2) = 20 log(x), the di�erence between the two de�nitions
becomes obvious. The VNA saves the information in a �touchstone� �le. For a two-port
VNA the �le ends with �s2p�.

6.5. Time Gating

Time gating is a crucial part of the measuring process, but it needs to be used with care.
Therefore I use some of the slides from keysight (formerly known as Agilent) FieldFox
Handheld Education Series Part 4 [64] to give a brief introduction of the concept. The
S parameters measured by a VNA are expressed in the frequency domain. For some
application this is unfortunately not the most suited representation, therefore the time
domain may be more appropriate. This is illustrated in Figure 6.5 where the S11 param-
eter of a device under test is represented. As a reminder, the S11 parameter corresponds
to the re�ected signal (emitted at port 1 and measured at port 1). Considering Figure
6.6, it becomes clear that each peak in the time domain corresponds to a speci�c re�ected
signal of the DUT (Device under test).

Figure 6.5.: frequency response of a coax device under test.
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Figure 6.6.: Time domain response and identi�cation of the di�erent re�ection peaks, due
to non-continuities, with the corresponding parts of a coaxial line.

For the S11 parameter of a coax adapter connected to a waveguide which is connected
to a horn antenna a characteristic response as illustrated in Figure 6.7 is obained. This
measurement allows me to clearly identify the e�ect of the coaxial adapter and the horn
antenna. In this �gure the setup has already been calibrated to remove the e�ects of the
cable.

Figure 6.7.: Time Domain response of a coax adapter and antenna
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The time domain even allows me to identify and characterise further components, as the
re�ection of a metal plate I put in various positions in front of the antenna. This e�ect
will be used during the calibration I present later.

Figure 6.8.: Frequency domain response of the e�ect of a metal plate located at two dif-
ferent positions.

In Figure 6.8 the e�ect of the metal plate on the frequency response depending on the
position becomes obvious. Unfortunately in the frequency domain this is not very helpful.
In the time domain however an additional peak appears in Figure 6.9 which has not been
present before in Figure 6.7. The peaks corresponding to the re�ection of the coax
adapter and the horn antenna remain the same.
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Figure 6.9.: Time domain response of the e�ect of a metal plate located at two di�erent
positions.

To remove the e�ect of the antenna, to only consider the e�ect of the metal plate or
generally the DUT a technique called time gating is applied. Time gating allows me
to remove or include responses in time. This is schematically illustrated in Figure 6.10.
There exist di�erent kind of gatings and care has to be taken to choose the best suited one.
Generally a �hamming� or �hanning� window is used. Time gating involves a convolution
and it may also lead to undesirable e�ects, like ringing (appearance of many small side
lobes caused by frequency truncation), the signal has to be normalised and so on. For
more information please refer to the agilent or keysight Application note 1287-12 �Time
Domain Analysis Using a Network Analyzer�.
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6.5. Time Gating

Figure 6.10.: Time Gating using a band pass or notch.

In Figure 6.11 a band pass �lter is applied to the signal caused by the coax adapter and
horn antenna. The e�ect of ringing is clearly visible in the �environment� part of the time
gated signal. Figure 6.12 shows the e�ect of the time gating in the frequency domain.
The gated signal is now much smother compared to the ungated one.

Figure 6.11.: Frequency domain representation of band pass �ltered signal of a coax
adapter and horn antenna.
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Figure 6.12.: Comparison between an ungated and a gated signal in the frequency domain.

6.6. Review of calibration techniques of the free space setup

Before a measurement I need to calibrate the system to eliminate the e�ects of the cable,
antennas and multiple re�ections. There exist many di�erent calibration techniques. I
explain the most common ones and go into detail about their advantages and disadvan-
tages for free space measurement systems. Most of these techniques require a symmetric
setup, therefore I already plan to add a second mirror to my setup to compare the e�ects
of di�erent calibration techniques. For simplicity I draw the antennas in the following
�gures with a dielectric lens as focussing device, although I use an ellipsoidal mirror
instead of lenses.

TRM

TRM [19] stands for THROUGH, REFLECT and MATCH as depicted in Figure 6.13.
The THROUGH standard is obtained with an air DUT (Device Under Test) between
the antennas. For the REFLECT, a metal plate of known thickness has to be placed
between the antennas. To achieve the MATCH a broadband absorber has to be added.
The advantage of this technique is that the antennas do not have to be moved during
calibration. The disadvantage is that it is very di�cult to �nd a perfect broadband
absorber for free space, therefore limiting the use of this calibration technique.
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6.6. Review of calibration techniques of the free space setup

Figure 6.13.

TRL

The TRL calibration for free space measurement systems has been developed by Ghodgaonkar
[54]. The acronym TRL stands for THROUGH, REFLECT and LINE. After the cali-
bration of the VNA the reference planes are located at the end of the coaxial lines. TRL
is then used as a second pier calibration to determine the error parameters describing
the in�uence of the coaxial adapter, antenna and free-space up to the sample surface.
Correcting the measured data with the inverse of this error terms moves the reference
planes at the sample surface. To realise a THROUGH, the antennas have to be distanced
by twice the focal length. For the REFLECT, a metal plate has to be placed at the focal
planes of the transmission and receiving antenna respectively and the port 2 antenna
must be moved back by the thickness of the metal plate. After this measurement, the
antenna has to be moved back to its original position. Finally, for the LINE, the focal
planes of transmit and receive antenna have to be separated by a quarter of the free-
space wavelength at the center of the frequency band. Afterwards they have to be moved
back to the original position. As can be seen, this method involves a lot of mechanical
movements of the antennas leading to important errors if no highly precise positioning
�xtures are used. The higher the working frequency the harder the calibration of the free
space system. Nevertheless for our frequency range this method could be applicable. For
more information please refer to the publication of Rocha [107]. It may be quite chal-
lenging to program this algorithm on your own. If no commercial software is available (or
to expensive) I recommend downloading a scilab extension called �Microwave Toolbox�
doing a complete TRL calibration from http://www.microwave.fr/products.html. This
program has been written by Tibault Reveyrand.
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Figure 6.14.: TRL calibration.

GRL

The GRL calibration (Figure 6.15) has been developed by Bartley and Begley [15]. GRL
stands for GATED, REFLECT, LINE (the LINE in this case is actually a THROUGH be-
cause the antennas are not moved) . The advantage of this method is, that no movement
of the antennas is required. Before measuring the LINE and REFLECT, the response of
the antennas is time gated. This method has been reported to give the highest accuracy
[15]. Unfortunately no software compatible with our VNA exists and as for the other
methods this calibration requires a symmetric setup. Therefore I am are currently work-
ing on my own implementation. In the mean time I use another calibration technique
which is explained below.
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Figure 6.15.: GRL calibration.

Normalisation based calibration

The previous calibration methods require a symmetric setup whereas I currently use an
asymmetric one. In the future I plan to add a second mirror in front of the receiving
antenna to increase the power received by the antenna and to make it symmetric. Then
I will use the GRL calibration. In the mean time, for my setup I adapt a calibration
method suggested by Munoz [94] consisting of actually two calibrations. In their setup,
Munoz had a coaxial adapter connected to a transmission line which was connected to a
horn and adapted a TRL calibration for this. In the DP-240 antenna, the coax adapter
is already integrated, simplifying the calibration for me. As a �rst calibration TOSM
(THROUGH, OPEN, SHORT, MATCH) is used to remove the e�ect of the cable by
moving the reference plane from the ports of the VNA to the end of the cable, connected
to the antenna. The aim of the second calibration is to shift the reference planes to the
sample surface. Therefore I �rst do a measurement without sample (like a THROUGH in
the previous calibration techniques) and measure the S21THROUGH. To �lter out the
e�ects from the antennas, edge di�raction e�ects and unwanted re�ections, a time gating
is applied around the transmitted signal. Next, I place a metal plate in the sample holder
and measure the S11REFLECT and apply a time gating around the re�ected signal.
These two measurements act as reference signals. I place the sample in the sample holder
making sure that its front face (directed towards the transmitting antenna) is located
at the same position as the front face of the metal plate used during the calibration. I
measure the S11DUT and S21DUT and time gate the signal as explained in subsubsection
6.7. Normalisation with respect to the reference measurements leads to

S11DUTNorm =
S11DUT

S11REFLECT
(6.6)

S21DUTNorm =
S21DUT

S21THROUGH
(6.7)
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These parameters can now be represented in polar coordinates. The S11DUTNorm phase
has to be increased by +π to revert the phase change introduced by measuring the
REFLECT (metal plate). Furthermore I have to subtract a phase of k0L from the
S21DUTNorm. Leading to

S11DUTNorm = |S11DUTNorm| ei(Φ11+π) (6.8)

S21DUTNorm = |S21DUTNorm| ei(Φ21−k0L) (6.9)

where Φi1 is the measured phase of Si1DUTNorm, i = 1, 2 , k0 is the free space wavevector
and L the thickness of the sample. This calibration method has the advantage that I do
not have to move the antenna, reducing measurement errors.

6.7. Practical considerations

It is quite delicate to to get reasonable results out of this measurements as I had to �gure
out during many failures. As hints for other people here is some useful advice:

• Ensure that the chosen frequency range for the measurement is not too small if
you want to time gate, because the peak of the signal in the time domain will
be broader the smaller the selected frequency band. When the signal in the time
domain becomes too broad all multiple re�ections are hidden in it and a reasonable
time gating is not possible anymore. For our measurement a bandwidth of 1.2GHz
was too small. Our signal in the time domain had an extension of 3ns (at the
bottom) which corresponds to about a distance of 90 cm in free space (a lot if you
only have a sample of a thickness of 1 cm) . Proper time gating is not possible
in this case. On the other hand, a too large frequency range results in a very
narrow peak in the time domain which has not enough measurement points for an
accurate reconstruction of the signal in frequency domain after time gating. I got
satisfying results with a frequency band width of 4 − 6GHz but our VNA (ZVK
from Rohde and Schwarz) is also quite old and measures only 1601 points over the
whole frequency range. Newer VNAs measure up to 100′000 points. In this case
the time gating of even narrower pulses should be �ne.

• Do not use a too small time gate. Always keep in mind that for a time gate band
pass �lter you set to zero all the points outside the gate. With a limited number of
points, if the gate is too small, you may end up with only very few measurement
points from which the signal is reconstructed in the frequency domain. Several
test measurements should be conducted to verify the e�ect of time gating. In my
experiment, I applied a time gate (Figure 6.16a) including the whole peak (main
signal). Of course this only makes sense by choosing the right frequency range
avoiding a too broad response in the time domain. Small time gates (Figure 6.16b)
should be used with care because too much information may be lost.
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(a) (b)

Figure 6.16.: Applying time gates of di�erent widths (blue) on a given response in time
domain (a) Large gate. ; (b) Narrow gate.

• Do not gate asymmetrically. If you use a time gate, try to gate symmetrically with
the center of the gate at the maximum of the peak. By gating asymmetrically
(Figure 6.17) I observed a change in the phase with respect to a symmetrically
applied gate.

Figure 6.17.: asymmetric time gating (blue) with respect to the peak.

• Care has to be taken during the measurement of low loss materials like PMMA. If
|S11| < 0.2 our VNA is not able anymore to retrieve the correct phase [94], leading
to a dip or peak in the retrieved permittivity and permeability. Even by increasing
the power of the VNA the problem may persist.

6.8. Dielectric properties from S-parameters

In 1970 Nicolson and Ross [96] and Weir [141] in 1974 developed a method for the
extraction of the dielectric properties of a material from the S-parameters, known as
Nicholson-Ross-Weir (NRW) algorithm. Today there exist di�erent methods to extract
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the material parameters. A nice overview including some examples and the limitations
of the di�erent methods can be found in the Rohde and Schwarz application Note [4].
Here I start with the NRW algorithm and explain some of the di�culties and how to deal
with them. I assume a linearly polarised plane wave with angular frequency ω normally
incident on a planar sample of in�nite lateral extension and �nite thickness d situated
in free space (Figure 6.18). For characterising losses, instead of the imaginary part, the
loss tangent, de�ned as the ratio between the imaginary and real part tanδ = (.)′′/(.)′ is
commonly used.

Figure 6.18.: S-parameters of a planar dielectric sample in free space.

The S11 and S21 parameters are linked to the phase shift function T and the interface
re�ection coe�cient Γ by the following equations:

S11 =
Γ
(
1− T 2

)
1− Γ2T 2

(6.10)

S21 =
T
(
1− Γ2

)
1− Γ2T 2

(6.11)

T and Γ are given by

Γ =
(η − η0)

(η + η0)
=

(zin − 1)

(zin + 1)
(6.12)

T = e−γd (6.13)

where zin = η/η0 is the normalised characteristic impedance, η =
√
µ/ε the impedance

for the sample, η0 =
√
µ0/ε0 the free space impedance and γ the propagation constant

of the sample
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γ = γ0
√
εµ = α+ iβ (6.14)

zin =

√
µr
εr

(6.15)

where γ0 = i2π/λ0 = iω/c0 represents the propagation constant of free space and λ0 the
free space wavelength, ω the angular frequency and c0 the speed of light in free space.
α is the attenuation factor and β the phase factor. From equation (6.10) and equation
(6.11) Γ is derived as

Γ = K ±
√
K2 − 1 (6.16)

where

K =
S2

11 − S2
21 + 1

2S11
(6.17)

T =
S11 + S21 − Γ

1− (S11 + S21) Γ
(6.18)

In equation (6.16) the plus or minus sign is chosen such that |Γ| < 1. Rewriting equation
(6.13) leads to

γ = ln

(
1

T

)
/d (6.19)

Keeping in mind that T is a complex number, leading to multiple values of γ, and can
be written as

T = |T | eiφ (6.20)

where φ is the phase leading to

γ = ln

(
1

|T |

)
/d+ i

(
2πm− φ

d

)
(6.21)

= − ln (|T |)
d

+ i

(
2πm− φ

d

)
(6.22)

= α+ iβ (6.23)

where m = 0,±1,±2, ...
In contrast to the real part of γ, the imaginary part is not single valued. Using equation
(6.12) and equation (6.15), leads to√

µr
εr

=
(1 + Γ)

(1− Γ)
(6.24)

From equation (6.14) and equation (6.24), I obtain
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εr =
γ

γ0

(
1− Γ

1 + Γ

)
=

γ

iωzin
(6.25)

µr =
γ

γ0

(
1 + Γ

1− Γ

)
=
γzin
iω

(6.26)

due to the multiple values of the imaginary part of γ, εr and µr are also not unique.
This is especially a problem for thick samples. The phase constant β corresponds to the
imaginary part of γ.

β = 2π/λ (6.27)

where λ is the wavelength in the sample material. From equation (6.21) and equation
(6.27) I obtain

d

λ
= m− φ

2π
(6.28)

For m = 0 and −2π < φ < 0, d/λ is between 0 and 1. If the sample thickness is
choosen to be smaller than λ the values of ε, µ are unique and correspond to m = 0.
The ambiguity problem occurs if d > λ . The e�ects of a wrong initial value of m on the
material parameters and how to �nd the correct value are explained in the appendix C.
In the case of a low loss material another much easier method to compute the electric
permittivity only requiring the transmission S21 [94] may be used. This method assumes
µr = 1 and a loss tangent tanδε < 0.01 and leads to two formulas , one for the parallel
(‖) another for the perpendicular ⊥ polarisation with respect to the plane of incidence.

εr‖ =
− (R+ 1)−

√
(R+ 1)2 + (R+ 1) (R− 1) sin2 (2θ)

2 (R− 1) cos2 (θ)

εr⊥ =
1 +R cos (2θ)

1−R

R =

√√√√(1− |S21|2
)

sin2Φ21
(6.29)

where θ is the angle of incidence and Φ21the phase of S21. R is de�ned as in equation
(6.29) for θ below the Brewster angle, otherwise a minus sign precedes the root. I only
do measurements at normal incidence (θ = 0). In this case ε‖ = ε⊥. This formula
and implementation is much easier than the NRW algorithm, reducing the possibility of
errors. To compare the accuracy of our measured S parameters I compute the analytical
S parameters according to Arslanagic [8].

S11 =
(1− T 2)(η2 − η2

0)

(η + η0)2 − (η − η0)2T 2
(6.30)

S21 =
4ηη0T

(η + η0)2 − (η − η0)2T 2
(6.31)
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where η =
√
µ/ε is the impedance inside the dielectric, T = e−ikd is the phase shift

function and η0, the impedance of free space, d the thickness of the slab and k = ω2εµ
the wavevector. For an isotropic material S11 = S22 and S21 = S12.

6.9. Retrieval of constitutive parameters from a

bi-anisotropic metamaterial

In subsection 6.8 I used the NRW algorithm to retrieve ε(ω), µ(ω) from an isotropic
dielectric material with the help of the S-parameters. My metamaterial is however bi-
anisotropic, this means the materials parameters become 2nd order tensors. Furthermore
another parameters has to be determined, the chirality κ(ω). This subsection is based
upon the publications of Li et al. [77, 78] and Chen et al. [28, 26]. Assuming a reciprocal
material and a harmonic time dependence e−iωt , where ω is the angular frequency, the
constitutive equation to describe a bi-anisotropic material is

D = ¯̄ε ·E + ¯̄ξ ·H
B = ¯̄µ ·H + ¯̄ς ·E

where

¯̄ε = ε0

 εxx(ω) 0 0
0 εyy(ω) 0
0 0 εzz(ω)

 , ¯̄µ = µ0

 µxx(ω) 0 0
0 µyy(ω) 0
0 0 µzz(ω)


¯̄ξ = −i1

c

 0 0 0
0 0 0
0 κzy 0

 , ¯̄ς = i
1

c

 0 0 0
0 0 κyz
0 0 0


Where where c is the speed of light. Reciprocal means ¯̄ε, ¯̄µ are symmetric and ¯̄ς =
− ¯̄ξT = i/c¯̄κ. ¯̄ς and ¯̄ξ depend upon the the material under investigation (section 2.11).
For a bi-axial medium, they are de�ned as above. I assume a plane wave polarised in z
direction propagating with wavevector k in x direction interacting, with a bi-anisotropic
material, only εzz, µyy and κzy = κyz = κ are active. The other four components will not
be involved. To retrieve the active material parameters I make use of the fact that the
characteristic impedance inside a bi-anisotropic material has di�erent values for the wave
propagating in the two opposite directions of the x axis. The propagation of the incident
wave with respect to the Omega particle and the bi-anisotropic slab are illustrated in
Figure 6.19 (a) and Figure 6.19 (b) respectively.
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(a) (b)

Figure 6.19.: (a) wavevector k parallel to x ; (b) wavevector k anti-parallel to x.

The wave traveling in the ±x direction leads to the impedances

η+ =
µyy
n+ iκ

, η− =
µyy
n− iκ

(6.32)

where n is the refractive index

n = ±
√
εzzµyy − κ2 (6.33)

In contrast to the retrieval of the material parameters of an isotropic dielectric material
which only required the S11 and S21 parameter, the change of the impedance with the
direction requires the determination of three S parameters, namely the S11, S21 and S22.
S12 is identical to S21. The analytical form of the S parameters for a wave propagating
in +x direction is

S11 =
2i sin (nk0d)

[
n2 + (κ0 + iµ)2

]
[
(µyy + n)2 + κ2

]
e−ink0d −

[
(µyy − n)2 + κ2

]
eink0d

(6.34)

S21 =
4µyyn[

(µyy + n)2 + κ2
]
e−ink0d −

[
(µyy − n)2 + κ2

]
eink0d

(6.35)

where d is the thickness of the homogeneous (Omega particles much smaller than wave-
length) bi-anisotropic slab and k0 is the wavenumber in free space. If the wave is propa-
gating in the −x direction the remaining S parameters become

S22 =
2i sin (nk0d)

[
n2 + (κ0 − iµyy)2

]
[
(µyy + n)2 + κ2

]
e−ink0d −

[
(µyy − n)2 + κ2

]
eink0d

(6.36)

S12 =
4µyyn[

(µyy + n)2 + κ2
]
e−ink0d −

[
(µyy − n)2 + κ2

]
eink0d

(6.37)
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6.9. Retrieval of constitutive parameters from a bi-anisotropic metamaterial

As can be seen S12 = S21, but S11 6= S22. This leads us to three independent equations
for the three unknowns (n, µy, κ). The refractive index is linked to the S parameters via

cos (nk0d) =
1− S11S22 + S2

21

2S21
(6.38)

For a passive medium, n = n′+in′′ must obey the condition that n′′ ≥ 0. After retrieving
n the other parameters can be calculated using zin,± from equation (6.42)

κ = In
(zin,− + zin,+)

(zin,− − zin,+)
(6.39)

µyy = (n− iκ) zin,+ (6.40)

εzz =
(n+ iκ)

zin,+
(6.41)

To retrieve the material parameters εzz, µyy, κ I use the algorithm suggested by Chen at
al. [28, 26]. The S11, S21 and interface re�ection coe�cient Γ are de�ned as in equations
(6.10), (6.11). Only the phase T is de�ned slightly di�erent

T = eink0d

where n is the refractive index, k0 the wavenumber in free space and d the thickness
of the slab. The normalised characteristic impedance zin and the refractive index n are
obtained by inverting equations (6.10) and (6.11) leading to

zin,± =
(S11 − S22)±

√
(1− S11S22 + S12S21)2 − 4S12S21

(1− S11) (1− S22)− S12S21
(6.42)

T = X ± i
√

1−X2 (6.43)

where

X =
1− S11S22 + S2

21

2S21
(6.44)

To determine the sign of equations (6.42) and (6.43) the passive medium condition is
used leading to the requirements

z′in ≥ 0 (6.45)

n′′ ≥ 0 (6.46)

From equation (6.43) the refractive index n is obtained.

n =
1

k0L

{[
[ln (T )]′′ + 2mπ

]
− i [ln (T )]′

}
(6.47)

where m is an integer related to the branch index of n′. As before the real part of n
is therefore not uniquely determined. To solve this problem I employ again the phase
unwrapping method. To determine the sign of zin and n equations (6.45) and (6.46)
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6. Experimental Characterisation of Material Properties

are usually used. Unfortunately this method may fail if z′in and n′′ are close to zero.
Therefore Chen et al. suggest to use the fact that n and zin are related to determine the
correct signs. To determine the correct sign of Zin two cases needs to be distinguished.
Therefore a small positive number δ is de�ned. If |z′in| ≥ δ equation (6.45) is used. If
|zin| < δ, the sign of zin is determined so that the corresponding refractive index n has
a non-negative imaginary part, or equivalently |T | ≤ 1. After obtaining the value of zin
equation (6.48) is applied

T = eink0d =
S21

1− S11
Zin−1
Zin+1

(6.48)

to avoid the sign ambiguity in equation (6.43).

6.10. Metamaterial with metallic omega inclusions

The advantage of metamaterials in general or pseudochiral materials speci�cally are the
ability to tune the electromagnetic properties of a material by slightly changing the unit
cells. I decided to build our metamaterial based upon metallic omega inclusions for
two reasons. First of all it is a relatively simple structure because the wire and split
ring are combined in one structure and not spatially separated as in the metamaterial
designed by Smith 2.17a2.17b. Furthermore, although the shape seams simple, it leads
to the coupling of the electric and magnetic �eld making it bi-anisotropic if the unit
cells are arranged correctly. My omega inclusions have dimensions similar to those used
by Aydin [11] (Figure 6.20a) because they show a resonance between 10GHz − 11GHz
which lies in the working range of my free space setup. The main di�erence between my
and Aydins structure is that I use sharp edges at the gap whereas the edges of Aydins
structure are rounded o�. The omegas are made out of copper and has dimensions:
r = 1.19mm, w = 0.45mm± 20µm and L = 1.8mm. The FR4 circuit boards and the
copper have a thickness of 1.6mm and 30µm respectively.

(a) (b)

Figure 6.20.: (a) size of single Omega particle. ; (b) Periodicity of array of Omega cells.
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6.10. Metamaterial with metallic omega inclusions

The omega pattern is obtained by etching the copper that is deposited on a FR4 substrate.
The dimensions of the FR4 slab in x, y, z direction is 70mm×1.6mm×150mm (Figure
6.21). The number of omega structures on an FR4 substrate in x and y direction are 13
and 32 .

Figure 6.21.: Periodic arrangement of omega structures on FR4 substrate

To create a bi-anisotropic slab we pile the printed circuit boards (PCBs) up, therefore
the number of Omega structures in z direction depends upon the number of FR4 sub-
strates. One FR4 substrate with copper Omega structures is always followed by two
FR4 slabs without Omega structures. This procedure is repeated until the desired ex-
tension of the slab is achieved. In total I ordered 32 FR4 slabs with Omega pattern
and 62 without Omega pattern. The dimension of the �nal slab in x, y, z direction is
70mm× 150mm× 150mm. According to [108] these lateral dimensions guarantee that
there are no di�raction e�ects at the boundary of the slab in the desired frequency range
if we use the ellipsoidal mirror to focus the incident beam. The interested reader can �nd
the e�ects of di�erent kinds of Omega inclusions with respect to size and orientation on
the transmission, re�ection in the publications by Aydin [11, 10] and Li [77, 78]. Using
the lumped element equivalent circuit model [128] the capacitance (C0), inductance (L0),
resonance frequency (ω0), resistance (R0) can be expressed as:

ω0 =
1√
L0C0

(6.49)

R0 =

√
ω0µ0

2σ

2rin
w

(6.50)

L0 = µ0rin

[
log

(
16rin
w

)
− 2

]
(6.51)

C0 =
πlε0εm
log (4l/w)

(6.52)

where εm is the matrix relative permittivity, σ is the metal conductivity, rout, rin, l
are de�ned in Figure 6.20a. Using equations (6.49)-(6.52) from Tretyakov [128] the
capacitance (C0), inductance (I0), resonance frequency (ω0), resistance (R0) of a unit
cell are calculated. The parameters are given in Figure 6.20a. rout = 1.19mm, L =
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6. Experimental Characterisation of Material Properties

1.8mm, w = 0.45mm and g = 0.3mm leading

C0 = 82.13 µF

L0 = 2.61 nH

R0 = 142.65mΩ

f0 = 10.87GHz

This result is only valid for a single unit cell. If the Omega structures are arranged
periodically with ax = ay = az = 4.8mm as illustrated in Figure 6.20b, we expect a stop
band of roughly 1GHz close to ω0 because of the coupling between all the inclusions.
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7. Experimentally Measured Material

Parameters

In this chapter I present �rst the results for a simple isotropic dielectric, which were
mainly used to test the setup and calibration, before showing the retrieved material
parameters of the bi-anisotropic metamaterial.

7.1. Experimental validation for an isotropic dielectric

To test my experimental setup, calibration and retrieval algorithm I used PMMA (poly(methyl
methacrylate)) also referred to as acrylic glass or �plexiglas� and polystyrene. In the liter-
ature, the real part of the permittivity for PMMA varies between 2.50− 2.64 at 10GHz
and the loss tangent is of the order of 10−2 [94]. Similarly polystyrene has a relative
permittivity of 2.54 at 10GHz and a loss tangent of 0.00033 [93]. Our samples have at
least a lateral dimension of 15cm × 15cm to avoid refraction e�ects on the boundaries.
The minimum thickness of the sample should correspond to around 20% of the incoming
wavelength inside the dielectric. Measurements of samples with di�erent thicknesses are
recommended if the order of magnitude of the material parameters are not known at all.
For the following measurements I used a step sweep mode with 1601 frequency points and
averaging of 30 sweeps from 8GHz−14GHz for a perpendicular polarised incident wave
and a power of −10 dBm. I de�ne perpendicular and parallel polarisation with respect to
the plane spanned by the incident and re�ected wavevector from the mirror. According
to Munoz et al. [94] the magnitude of the parallel polarised signal is usually weaker than
the perpendicular polarised signal. The lower the signal, the higher the measurement
uncertainties, especially for the S11 parameter, therefore I only use the perpendicular
polarisation. For all the measurement the 500MHz at the beginning and end of the
frequency band should not be considered because they are severely a�ected by the time
gating. This also has to be taken into account in the retrieval algorithm because the
time gating a�ects the phase in this region leading to an incorrect phase unwrapping. In
the retrieval algorithm, if necessary I simply neglected the �rst measurement points to
guarantee a correct phase unwrapping.
I �rst measured the material parameters for a 2.94mm PMMA sample. This is already
the thinnest sample I can measure for an estimated relative permittivity of roughly
ε′r = 2.5. The results are presented in Figure 7.1. The top horizontal black line at
ε′r = 2.55 corresponds to the averaged real part of the permittivity for di�erent values
from the literature. The second black line indicates 0. A good agreement between the
measured and expected values is observed.
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Figure 7.1.: Material parameters for a 2.94mm PMMA sample from NRW algorithm (a)
relative permittivity ; (b) relative permeability

In the next step I repeated the measurement but this time with a 10mm thick PMMA
sample (Figure 7.2). As before, the 500MHz at the beginning and at the end are
not considered because of the time gating. Nevertheless from 8.5GHz − 10.5GHz I
observe important �uctuations in the material parameters. This problem rises because
|S11| < 0.2 leading to high uncertainties in the measurement of the S11 phase. |S11|
reaches a minimum when the sample thickness corresponds to one half of the wavelength
inside the sample. This is exactly the case for our frequency range and the 10mm PMMA
sample.
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Figure 7.2.: Material parameters for a 10mm PMMA sample NRW algorithm (a) relative
permittivity ; (b) relative permeability

In Figure 7.3 we see that for the 2.94mm PMMA sample |S11| is always well above 0.2,
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7.1. Experimental validation for an isotropic dielectric

whereas this is not the case at all for the 10mm PMMA sample. The region where
|S11| < 0.2 and where strong �uctuations appear in the retrieved material parameters
are exactly overlapping. To proof that the measurements are correct I compute the
|S11| parameter analytically for the 2.94mm and 10mm PMMA sample by assuming
εr = (2.55 + i0.0) and µr = (1.0 + i0.0). These curves are perfectly overlapping in the
frequency range not a�ected by the time gating.
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Figure 7.3.: Comparison of experimental and analytical S11 for (a) 2.94mm thick PMMA
sample ; (b) 10mm thick PMMA sample

Furthermore, I used a 3mm thick slab of polystyrene and measured the material param-
eters from 8GHz−14GHz. Due to the e�ect of time gating I display only the frequency
range from 8.5GHz − 13.5GHz.
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Figure 7.4.: Material parameters for a 3mm polystyrene sample NRW algorithm (a) com-
plex permittivity ; (b) complex permeability
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In the literature [93] , the relative permittivity at 10 GHz is indicated as 2.54 with a
loss tangent of 0.00033. The results I obtained are represented in Figure 7.4 and they
match very well with the expected values, although up to 7% errors should be taken
into account [94]. As a �nal veri�cation I use the low loss retrieval method because
this formula and implementation is much easier than the NRW algorithm, reducing the
possibility of errors. I computed ε⊥ again for the same polystyrene and PMMA sample of
3mm and 2.94mm respectively. The results are depicted in Figure 7.5. For the PMMA
slab the expected permittivity of 2.55 at 10GHz is obtained whereas the permittivity of
polystyrene is with this method slightly higher as expected. Nevertheless the results are
comparable if the errors are considered.
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Figure 7.5.: ε⊥ for (a) 2.94mm PMMA slab using low loss formula ; (b) 3mm polystyrene
slab

7.1.1. Discussion of the retrieved material parameters of simple dielectrics

Although my retrieved results agree very well with the values found in literature proving
a succesfull calibration of the setup, many errors may in�uence the �nal result. First
of all the measurements are obviously limited by the accuracy of the VNA with respect
to magnitude and phase of the S parameters. Especially if |S11| < 0.2. In this case the
measured phase is so erroneous that it dominates all the other e�ects as can be seen
in Figure 7.2. Other errors are due to the sample thickness which is a parameter in
the retrieval algorithm. To reduce the measurement errors I average over several sweeps.
Unfortunately this averaging is hard to quantify. The time gating also has a severe impact
on the results, depending if the gate is choosen too small or too large. This also depends
upon the number of frequency points and on the bandwidth used. Another e�ect is linked
to the positioning of the sample. It should be placed at exactly the same position as the
metal plate used for the REFLECT measurement. Munoz et al. [94] also showed that
the error on the retrieved loss tangent varies with the real part of the permittivity for
high loss materials. For ε′r = 25 the error on the loss tangent is 30%, whereas for low
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7.2. Experimental results for a bi-anisotropic material

permittivities Re(εr) = 2 the error on the loss tangent is 6% . A low loss material has a
loss tangent below 0.01, whereas as lossy material has a loss tangent above 0.1. Munoz
et al. claim an uncertainty of ±7% for Re(ε) and ±4% for Re(µ) with respect to the
waveguide method which is the most accurate method with an uncertainty of ±1%. To
clearly identify the e�ect of all the errors I would suggest to do several measurements
without averaging the sweeps by always removing the sample completely and putting it
back. From such measurements I could calculate a relative error.

7.2. Experimental results for a bi-anisotropic material

After testing my system on isotropic samples like PMMA and polystyrene I did transmis-
sion and re�ection measurements on the bi-anisotropic slab. Depending on the orientation
of the Omega particles with respect to the incident �elds di�erent e�ective material pa-
rameters are expected. This response depends on the coupling between the electric and
magnetic �elds with the omega structure. The details about the size of the omega inclu-
sions and the sample are those in section 6.10. I started with the orientation presented
in Figure 7.6 where a strong coupling is expected.

Orientation 1

Figure 7.6.: Electric �eld oriented parallel to the arms and magnetic �eld perpendicular
to the loop. A strong coupling is expected for this con�guration

For a VNA output power of −10 dBm I only observed a very weak response. Increasing
the power to 0 dBm lead to the desired results. As predicted by the theory [77, 78]
the S11 and S22 (Figure 7.7) parameters di�er whereas the S12 and S21 parameters are
nearly identical (Figure 7.8). I observe a transmission approaching zero in the vicinity
of 10.2GHz in Figure 7.8a. The transmitted signal is so weak that the phase cannot be
measured accurately anymore leading to a peak at 10.2GHz in the phase (Figure 7.8b).
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Figure 7.7.: S11 and S22 parameters of the bi-anisotropic material for 0 dBm (a) magni-
tude ; (b) phase
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Figure 7.8.: S12 and S21 parameters of the bi-anisotropic material for 0 dBm (a) magni-
tude ; (b) phase
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Figure 7.9.: S11 and S22 parameters of the bi-anisotropic material for 3 dBm (a) magni-
tude ; (b) phase

To improve the accuracy on the measurements I increased the power to 3dBm. I couldn't
increase it further because the calibration standard isn't suited for higher powers. For-
tunately this was enough to let some signal pass even at the resonance frequency as can
be seen in Figure 7.10b. From these measurements I computed the material parameters
using the algorithm from Chen [28, 26] presented in section 6.9.
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Figure 7.10.: S12 and S21 parameters of the bi-anisotropic material for 3 dBm (a) mag-
nitude ; (b) phase
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Figure 7.11.: (a) relative permittivity ; (b) relative permeability
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Figure 7.12.: chirality

In theory the permittivity, permeability are expected to follow the Lorentz and the
chirality the Condon model, which are repeated hereafter for convenience

ε (ω) = ε0

(
ε∞ +

(εs − ε∞)ω2
ε

ω2
ε − ω2 + i2ωεξεω

)
µ (ω) = µ0

(
µ∞ +

(µs − µ∞)ω2
µ

ω2
µ − ω2 + i2ωµξµω

)

κ (ω) =
τκω

2
κω

ω2
κ − ω2 + i2ωκξκω

Tretyakov [128] even suggests a slightly di�erent model for the permeability where instead
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of ω2
µ, ω

2 appears in the numerator.

µ (ω) = µ0

(
µ∞ +

(µs − µ∞)ω2

ω2
µ − ω2 + i2ωµξµω

)
At the resonance both models give a very similar behavior. Slight di�erences only appear
in the low or high frequency limit. The suggested models unfortunately do not �t the
data without further modi�cation. If I correct however ε(ω), µ(ω) by a factor i and κ(ω)
by −1 leading to

ε (ω) = ε0

(
ε∞ + i

(εs − ε∞)ω2
ε

ω2
ε − ω2 + i2ωεξεω

)
µ (ω) = µ0

(
µ∞ + i

(µs − µ∞)ω2
µ

ω2
µ − ω2 + i2ωµξµω

)

κ (ω) = (−1)
τκω

2
κω

ω2
κ − ω2 + i2ωκξκω

I obtain an excellent agreement between the theoretical and experimental data as can be
seen in Figures 7.11 and 7.12 using the following parameters

µyy(ω) : µ∞ = µ00.85, µs = µ01.3, ωµ = 2π · 10.3GHz, ξµ = 0.02

εzz(ω) : ε∞ = ε04.2, εs = ε05.0, ωε = 2π · 10.3GHz, ξε = 0.02

κyz(ω) : τκ = 36.7ps, ωκ = 2π · 10.3GHz, ξκ = 0.02

To understand this correction I rewrite ε, for example, using the electric susceptibility,
ε (ω) = ε0 (ε∞ + χe (ω)). It seems that only the susceptibility needs to be corrected
by a factor i. This is however not physical because the causality condition (subsection
2.4.5) is not ful�lled. I expect the origin of this to be in the retrieval algorithm, because
i corresponds to a phase shift of i = eiπ/2 and similarly −1 = eiπ. In contrast to a
simple dielectric, it seems that the metamaterials alters the phase of the S-parameters
which needs to be taken into account during the retrieval process. Walien et al.[137]
also expect the retrieval algorithm to be the origin of the unexpected behavior. Koschny
[74] on the other hand suspects the underlying periodicity of the metamaterial to lead to
this response. This explains the di�erences of the results retrieved from a single unit cell
with a periodic arrangement. Further investigation is required to entirely understand the
e�ect of the periodicity and the retrieval algorithm on the retrieved data.

Orientation 2

I continued with the second orientation by rotating the sample by 90 degrees, leading to
a con�guration depicted in Figure 7.13. For this con�guration no or only a very weak
coupling is expected.
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Figure 7.13.: Magnetic �eld parallel to the arms and electric �eld perpendicular to the
loop. Only a very weak coupling is expected

The S-parameters are represented in Figures 7.14 and 7.15. Compared to the previous
case where the strong coupling occurred, now the magnitude of S11 and S22 phase are
identical but the phase is shifted by 180 degrees and no jump in the phase is detected
(Figure 7.14).
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Figure 7.14.: S11 and S22 parameters of the bi-anisotropic material for 3 dBm (a) mag-
nitude ; (b) phase

The S12 and S21 parameters show a very high transmission throughout the whole fre-
quency range (Figure 7.15a) without any stop band (Figure 7.15b) and only three changes
of the phase (Figure 7.15b) compared to the six observed in the �rst con�guration (Figure
7.10b). The metamaterial behaves in this con�guration similar to a simple dielectric.
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Figure 7.15.: S12 and S21 parameters of the bi-anisotropic material for 3 dBm (a) mag-
nitude ; (b) phase

The retrieved materials parameters are shown in Figures 7.16a, 7.16b and 7.17. The
periodically appearing peaks are due to the retrieval method and appear when the sample
thickness is an integer multiple of one half wavelength in the sample. To demonstrate this
I consider the distance between peaks which equals roughly 1GHz. This leads to a free
space wavelength of λ0 = 30cm. The FR4 board I use has Re(εr) = 4.5, Re(µr) = 1. The
wavelength inside the dielectric λDiel = λ0/

√
µrεr = 14.1 cm. Because the peaks appear

at an integer multiple of one half wavelength I obtain d = λDiel/2 ≈ 7 cm corresponding
to the thickness of my slab. This speci�c orientation of the metallic inclusion with
respect to the electric �eld makes them to small capacitors which probably leads to a
non negligible e�ect resulting in a non zero chirality.
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Figure 7.16.: (a) relative permittivity ; (b) relative permeability
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Figure 7.17.: chirality

Orientation 3

For the last measurement, I arranged the sample to obtain the con�guration represented
in Figure 7.18. In this con�guration only the electric �eld should lead to a strong response
because the �eld vector is parallel to the arm. The magnetic �eld however is parallel to
the structure and cannot completely couple to it as in the �rst con�guration (Figure 7.6)

Figure 7.18.: Magnetic �eld parallel to the arms and electric �eld perpendicular to the
loop. Only a very weak coupling is expected

The S-parameters are represented in Figures 7.19 and 7.20. The S12 and S21 parameters
are very small throughout the whole frequency range. This is probably because by
disassembling the sample the faces of the slabs are now perpendicular to the incident
wave resulting in many metallic interfaces that leading to re�ections.
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Figure 7.19.: S11 and S22 parameters of the bi-anisotropic material for 3 dBm (a) mag-
nitude ; (b) phase

The S12 and S21 parameters show a very low transmission throughout the whole frequency
range (Figure 7.20a). For this con�guration
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Figure 7.20.: S12 and S21 parameters of the bi-anisotropic material for 3 dBm (a) mag-
nitude ; (b) phase

The retrieved materials parameters are shown in Figures 7.21a, 7.21b and 7.22. Again
the e�ect of the coupling is observed. To �t the data, the same correction would be
required as for the �rst orientation
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Figure 7.21.: (a) relative permittivity ; (b) relative permeability
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Figure 7.22.: chirality

7.2.1. Discussion of the experimental results

For the �rst orientation, a strong coupling between the electric and magnetic �eld at
the resonance frequency is expected to lead to an increase or decrease in the material
parameters. This response is observed for each of the material parameters between
10 GHz − 11 GHz. Which is in a reasonable agreement with the expected resonance
frequency of a single omega inclusion of 10.87GHz as calculated analytically in section
6.10. In the second case, only a very weak coupling is expected because neither the
electric nor the magnetic �eld can couple to the arm or the loop of the omega inclusion.
Therefore the material should show characteristics close to the matrix (FR4) material,
which is again con�rmed by the measurement. Nevertheless, a non zero chirality is
measured, but no resonance. This e�ect is probably due to multiple re�ections of the
incoming wave on the metallic omega inclusions. This e�ect is hidden in the strong
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7.2. Experimental results for a bi-anisotropic material

response for orientation 1 and 2. For the third orientation, only the electric �eld can
couple to the omega inclusion, therefore I expect a resonance which is less pronounced
compared the �rst orientation. Nevertheless, the electric �eld still induces an magnetic
�eld in the wire to which the magnetic �eld can couple. Hence the permeability and
permittivity are similar for orientation 1 and 3. As already explained for orientation 1.
It seems that the metamaterial adds a phase shift to the S-parameters which needs to
be corrected, otherwise it leads to non physical results. Although the results con�rm
my expectations care has to be taken with the measured data and the retrieved material
parameters due to several reasons.

1. The input power is crucial to observe the expected resonance leading to a stop
band in the transmission. For the sample thickness of 7 cm and input power of
0 dBm was su�cient to observe the resonance, but the transmitted signal was too
weak, at the resonance frequency, to retrieve the phase correctly. For 3 dBm the
signal was fortunately strong enough to measure the phase. With the VNA I use
I cannot go to higher input powers because the calibration kit doesn't allow so.
Measurements at even higher power would in my opinion reduce the errors on the
S parameters. Adding a second mirror between the sample and receiving antenna
would also improve the signal strength by refocusing the beam in the receiving
antenna.

2. Another problem linked to the metamaterial itself is the di�erence between the
physical and electrical thickness. For a simple dielectric, the physical and electrical
thicknesses are equal because the impedance does not depend on its thickness. In
our case however currents will be induced on the metallic inclusions. Therefore the
impedances of two slabs of di�erent thicknesses should be computed and used to
obtain the electrical thickness [28]. This will be the thickness d used in the retrieval
algorithm [28]. Until now I only have a single slab and therefore I'm forced to use
the physical as electrical thickness which is not correct.

3. In the retrieval algorithm a parameter m describes the phase ambiguity in the
refractive index (equation (6.47)). For a given sample thickness and material pa-
rameters, the initial value for m may di�er from 0. In the case of a metamaterial,
samples of two di�erent thicknesses are required to obtain the correct initial m. In
my case I am more interested in the resonance phenomenon which can be observed
even for a parameter m which might not be entirely correct. In the future I plan
to re�ne the results using two samples of di�erent thicknesses.

4. The measurement setup is very sensitive to the calibration. Currently I use the
calibration technique suggested by [94]. It would however be interesting to com-
pare this method with other calibration techniques like the GRL and TRL for a
metamaterial after making the setup symmetric with a second mirror.

5. Another source of error especially for large samples is the time gating. In a meta-
material the signal converted to the time domain does not have the shape of a
smooth Gaussian as for the thin dielectric samples I used as reference. This makes
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it more di�cult to detect the main signal between multiple re�ections. The idea
is to extend our setup by a second mirror to make it symmetric. This allows us
to perform a TRL or GRL calibration to fully understand the e�ect of time gating
on the results. To further investigate the di�erence between the metamaterial and
simple dielectric I suggest to use a slab with the same dimensions made out of
the same dielectric material as the matrix of the metamaterial, but without the
metallic inclusions.
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8. Results of the Multiscale Approach

In this chapter I present the results from my multiscale approach and compare them with
the experimentally retrieved data.

8.1. Microscale simulation of the bi-anisotropic media

8.1.1. Method 1 �Indirect retrieval method�

In this subsection I use the method described in section 5.2.1 to compute the S-parameters
from a unit cell of a metamaterial. From the S-parameters I calculate the materials
parameters using the retrieval algorithm presented in section 6.9. The results for the
di�erent orientations are shown below. I use the same convention as for the experimental
measurements. Orientation 1 corresponds to Figure 7.6, Orientation 2 to Figure 7.13 and
Orientation 3 to Figure 7.18.

(a)

(b)

Figure 8.1.: (a) Mesh of omega including the free space region and the PML ; (b) Intensity
of the electric �eld at (9.4GHz)

Bare in mind that the retrieved S-parameters and material parameters correspond to a
metamaterial with in�nite lateral extension (extension perpendicular to the optical axis)
but with a thickness of only a single unit cell. The mesh and the intensity of the electric
�eld at a frequency are depicted in Figures 8.1a and 8.1b.
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Orientation 1

-20

-10

 0

 10

 20

 30

 40

 50

 60

 7  8  9  10  11  12  13

ε

 Frequency (GHz)

Re(εr,zz)
Im(εr,zz)

(a)

-30

-20

-10

 0

 10

 20

 30

 7  8  9  10  11  12  13

µ

 Frequency (GHz)

Re(µr,yy)
Im(µr,yy)

(b)

Figure 8.2.: (a) relative permittivity ; (b) relative permeability
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Figure 8.3.: chirality

The retrieved permeability and chirality show a narrow and very pronounced peak at a
frequency of 10 GHz. Whereas in the permittivity the main peak appears 9 GHz and
another smaller one at 10 GHz. The chirality on the other has a small peak at 9 GHz.
In the experimentally retrieved material parameters the peaks all appear at the same
resonance frequency.
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Orientation 2
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Figure 8.4.: (a) relative permittivity ; (b) relative permeability
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Figure 8.5.: chirality

These results agree very well with my expectations, because neither the electric nor the
magnetic �eld couple to the omega inclusion, hence the metamaterial behaves like a
simple dielectric. This results also agrees with the experimental data.
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Orientation 3
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Figure 8.6.: (a) relative permittivity ; (b) relative permeability
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Figure 8.7.: chirality

A very narrow and pronounced peak appears for the permittivity at 10GHz. The exper-
imental data suggest this peak to be less pronounced compared to the �rst orientation
which is not the case. Whereas the retrieved permeablitiy and permittivity for the ex-
periment were very similar for orientation 1 and 3 in this simulation they are completely
di�erent with respect to shape and magnitude.

Discussion of the indirect multiscale approach results

As expected, a more or less strong resonance due the coupling of the �elds for orientation 1
and 3 is observed. Surprisingly, strong responses are observed at two di�erent frequencies,
namely at 9 GHz and 10 GHz. This does not correspond at all to the experimental
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8.1. Microscale simulation of the bi-anisotropic media

results. However, my results look similar to those from Chen [26] where the sharp
peaks/dips also appear in the retrieved data. The problem may be that the material
has a thickness of a single unit cell because these peaks and dips do not appear for
the experimental data where a much thicker sample is used. It may be interesting to
model several unit cells instead of a single one along the optical axis to see if this has an
in�uence on the peaks/dips. Neglecting the peaks/dips in Figure 8.2a and Figure 8.6a
from 8.7GHz− 10GHz the retrieved permittivity is well below the relative permittivity
εr = 4.5 of the FR4 dielectric demonstrating the coupling induced by the omega inclusion.
Similar results are observed for the permeability and permittivity. Orientation 2 on
the other hand completely ful�lls my expectations. Neither the electric �eld nor the
magnetic �eld can couple to their corresponding part of the omega structure. Therefore
the metamaterial behaves like a simple dielectric slab of FR4 material. The initial idea
was, as explained in section 5.2.1, to �t a Lorentz/Condon model to those retrieved
materials parameters. These parameters (ε∞, εs, ωε, ξε...) obtained from the parameter
identi�cation algorithm would have been the input for the UM-FDTD program which
allows the simulation of bi-anisotropic media (section 3.8). With this program I model the
experimental slab with the same dimensions 7cm×15cm×15cm as in the experiment. The
retrieved data di�er however signi�cantly from a Lorentz/Condon model and therefore
the NLOPT algorithm doesn't converge.

8.1.2. Method 2 �Direct retrieval method�

In this section I present the results obtained by the direct method. In contrast to the
indirect method it allows me to directly retrieve the material parameters without �rst
calculating the S-parameters. I used a frequency domain FE solver on a unit cell with
dimensions speci�ed in section 6.10

(a) (b)

Figure 8.8.: (a) Unit cell with omega inclusion ; (b) Intensity of the electric �eld at the
resonance frequency
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8. Results of the Multiscale Approach

The omega inclusion is oriented as depicted in Figure 8.9. The optical axis is oriented
along the +x direction. I send a right and left hand circular polarised wave towards the
unit cell.

E (r, t)± =

 0
±iE0

E0

 ei(k·r−ωt)

This way the components in the material parameter matrices

Figure 8.9.: Orientation of omega
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Figure 8.10.: (a) εr,xx, εr,yy, εr,zz ; (b) µr,xx, µr,yy, µr,zz

The yz, zy elements are not displayed because they are 0 as expected. Currently I'm
not able to retrieve a reasonable chirality, therefore no graph is displayed. For the
yy, zz elements of the permittivity matrix a resonating behavior is observed both for
the permittivity and permeabilty. Whereas ¯̄εxx 6= ¯̄εyy, ¯̄µxx = ¯̄µyy. I'm not sure if this
is related to the speci�c shape of the omega inclusion or if there is another reason.
The components µxx and εxx are set to the permeability and permittivity of the matrix
material. They can not be computed directly because the optical axis is oriented along
the x axis.
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8.2. Macroscale Simulation

Discussion of the direct multiscale approach results

Only the εzz component follows a Lorentz model as described by equation (3.114). The
other components show however a Lorentz type behavior. Maybe the circular polarised
wave excitation leads to this di�erence between the direct multiscale results and the
Lorentz model. For a circular polarised wave, one of the components perpendicular to
the direction of propagation requires a phase shift of π/2 leading to a multiplication by
a factor i = eiπ/2 for one of the electric �eld components. Also the experimental data
required such a correction to match with the theoretical model. This needs however
to be investigated in more detail. Furthermore, I wasn't able to retrieve a reasonable
chirality with my method. I think however that it is possible after further and especially
mathematically more rigorous investigation. To further improve the direct multiscale
approach it would be interesting to test with a chiral structure like a left and right handed
spring. Alternatively I will test the method suggested by [120] to see if this allows me to
retrieve the chirality from a unit cell. My results also show a lower resonance frequency
than the experimental data. This phenomenon is also observed in real experiments where
the resonance of a single unit cell di�ers signi�cantly from the response of a periodic
omega media. Whereas a unit cell shows a resonance at a speci�c frequency, the periodic
arrangement leads to a band gap over a much larger frequency range. Furthermore a
shift of the bandgap to higher frequencies is observed. These e�ects are directly linked to
the periodicity of the material [10]. Further investigation is required to see if this e�ect
can be taken into account by modelling a single unit cell.

8.2. Macroscale Simulation

From the direct retrieval method I �tted a Lorentz model to the data obtained by the
direct approach using a global optimisation algorithm from the NLOPT library. Unfor-
tunately the code can currently just model the permittivity and permeability according
to a Lorentz model described by equation (3.114). Which describes very well the per-
mittivity. For the permeability and chirality I took the same resonance frequency and
damping as for the permittivity and an electromagnetic coupling constant of 1 ps which
is comparable to the value used by [95] because I wasn't able to retrieve a reasonable
chirality with my method. Furthermore I consider only εzz, µyy, κyz as frequency de-
pendent because I use linear polarised wave with the electric �eld along the z direction,
the magnetic �eld along the y direction and the optical axis along the x direction. For
the simulation with UM-FDTD I also use a higher resonance frequency as I obtained
with my multiscale method because the resonance frequency changes if the unit cells are
arranged periodically [10]. Resulting in the following parameters for the strong coupling
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8. Results of the Multiscale Approach

(orientation 1, Figure 7.6)

¯̄ε =

 εDiel 0 0
0 εDiel 0
0 0 εzz(ω)


¯̄µ =

 µDiel 0 0
0 µyy(ω) 0
0 0 µDiel


¯̄κ =

 0 0 0
0 0 κyz(ω)
0 0 0



µyy(ω) : µ∞ = µ01.05, µs = µ00.95, ωµ = 2π · 8.8GHz, ξµ = 0.02

εzz(ω) : ε∞ = ε03.83, εs = ε04.19, ωε = 2π · 8.8GHz, ξε = 0.02

κyz(ω) : τκ = 1 ps, ωκ = 2π · 8.8GHz, ξκ = 0.02

To compute the transmission I illuminate the radome with a 10GHz narrowband pulse
with a pulse width of 1 · 10−10s. I also take the frequency shift between a unit cell and
the metamaterial into account by changing the resonance frequency to 10.3GHz instead
of 8.8GHz. The results are displayed in Figure 8.11.
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Figure 8.11.: Experimental vs numerical transmission from direct multiscale approach

Discussion of the macroscale simulation

Using the UM-FDTD program for bi-anisotropic materials with the material parameters
from the direct retrieval method leads to a transmission which agrees reasonably well
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with respect to the width of the transmission band compared the experimental data
although the bandgap in my simulation is slightly larger compared to the experimental
transmission. Due to the periodic arrangement and hence coupling of the resonating
elements inside the sample, the position of the bandgap is shifted by a given amount
with respect to our simulation of the unit cell.
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9. Conclusion and Future Work

In this chapter I analyse all the di�erent methods I developed and highlight the advan-
tages, disadvantages and perspectives for each section

9.1. Isotropic lossy materials

A generalised version of the classical Yee scheme for implementation on hybrid meshes has
been considered (UM-FDTD). The results show that it is perfectly suited for all kinds of
scattering objects involving arbitrary shaped isotropic lossy dielectrics. To demonstrate
this I computed the RCS of several benchmark tests, because the analytical solutions are
available for these cases. Independent if a dielectric sphere with losses or a sphere coated
with another dielectric is considered, the results agree very well with the theoretical
results. My results demonstrate that 6 − 8 times coarser meshes can be used compared
to the standard Yee algorithm. This signi�cantly reduces the memory requirements.
Furthermore, because the co-volume method is based upon �eld projections and not
vectors only two equations need to be updated, one equation for the electric and one for
the magnetic �eld, although I work in three dimensions. So, by moving the complexity of
the algorithm into the mesh I have the simplicity of a 1D code (for isotropic cases) whereas
in the classical algorithm one equation for each component of each �eld vector is required,
making a total of six update equations. Besides I showed that my weighted averaging
allows me to accurately take into account the interface between di�erent materials. Even
the modelling of PEC or multilayered objects becomes straightforward. The ability of
the method to handle objects of arbitrary shape at reduced computational costs makes
the approach appealing for industrial electromagnetic analysis. However, parallelising
the method is required before this goal can be fully realised and the method applied to
more challenging engineering applications.

9.2. Anisotropic lossy materials

I further generalised UM-FDTD to model electromagnetic wave scattering by bodies
consisting of electrically and magnetically anisotropic and conducting dielectric mate-
rials, on an appropriately generated unstructured mesh. The implementation has been
successfully validated by comparison with the results obtained using the discrete dipole
approximation. Furthermore I compute the transmission of an EM pulse through a com-
posite radome by taking the orientation of the �bers into account. Although good results
are obtained, the simplicity of the scheme is lost compared to the isotropic case. Fur-
thermore, the reconstruction of �eld vectors from �eld projections to do a matrix vector

187



9. Conclusion and Future Work

multiplication is time consuming. Therefore these operations should be reduced to a
minimum. This method o�ers however also a big advantage, as it could act as a unstruc-
tured PML because my method is able to handle lossy materials. This could signi�cantly
reduce the memory requirements of the mesh (especially in three dimensions) because
an unstructured PML could be �tted perfectly around an object.

9.3. Isotropic chiral materials

The next step towards bi-anisotropic materials was the modelling of isotropic chiral mate-
rials. This was challenging because of two reasons. First of all, the material parameters
are not scalars anymore but become frequency dependent complex functions. In con-
trast to a frequency domain solver, our time domain solver cannot handle this directly.
Therefore I used the Z-Transform and Padé approximants to deal with this. Secondly
the chirality induces a coupling between the electric and magnetic �elds. I validated my
algorithm by comparing the numerical transmission and re�ection coe�cients with the
theoretical solutions. Furthermore, the chirality changes the angle of the plane of polari-
sation and even the polarisation itself of the incident wave. This e�ect depends upon the
chirality, frequency of the incoming wave and the thickness of the slab. The numerical
and the analytical solutions agree again very well. I furthermore did a stability analysis
of the algorithm because the chirality parameter leads to an instability. Increasing the
damping stabilizes it again but care has to be taken because my analysis shows that a
�ner mesh may be required for chiral materials compared to non-chiral ones.

9.4. Bi-anisotropic materials

The modelling of bi-anisotropic materials was the most challenging task I had because
it combines anisotropy, frequency dependence and coupled electric and magnetic �elds.
Although there exist an analytical solution as a benchmark, I am still working on the
implementation of it, which is quite challenging. Meanwhile, to validate the method I
model a frequency dependent anisotropic sphere (not bi-anisotropic) and compare my
numerically computed RCS solution with the one obtained by DDscat, a program based
upon the Discrete Dipole Approximation. My results are in a very good agreement with
the results of DDscat. Furthermore, I compared the results of the bi-anisotropic code
with those of the isotropic chiral code by assuming diagonal material tensors. In this
special case the results of the bi-isotropic and bi-anisotropic simulation are identical as
expected.

9.5. Multiscale Approach

Direct multiscale approach

This method has the advantage that no free space region or PML is required compared
to the indirect method. This reduces already the computational costs. Furthermore

188



9.6. Experimental setup

the e�ective parameters are directly retrieved from the �eld vectors. There is no need
to �rst compute the S parameters and then use a retrieval algorithm to compute the
material parameters. This is a big advantage because the retrieval algorithm may lead to
nonphysical results at some frequencies due to instabilities as can be seen in the results
of the indirect multiscale approach. Unfortunately I wasn't able to retrieve a reasonable
chirality with my method. This problem needs additional investigation to make it robust.
To further improve the direct multiscale approach it would be interesting to test with
a chiral structure like a left and right handed spring. It may also be worth to combine
four unit cells of the omega material and investigate if this allows me to retrieve the
chirality. Furthermore, the resonance frequency I obtain for a unit cell is lower than the
resonance frequency observed in the experimental results. This seems to be an e�ect
of the underlying periodicity of the metamaterial at large scale. Additional research
is required to take this e�ect into account. Generally this techniques seems to very
promising, but further research has to be done.

Indirect multiscale approach

Although I observed resonance induced phenomena in the material parameters I do not
think that this method is currently suitable for a multiscale approach. Mainly because
pronounced peaks and dips appear at given frequencies which in my opinion are non-
physical. I am not sure if they are caused by the retrieval algorithm itself or by the
numerically obtained S-parameters. For the experimental S-parameters I get reason-
able results without sharp peaks/dips. Maybe the problem rise because I obtain the
S-parameters from a slab with a thickness of a single unit cell. It might be interesting to
see what happens if several unit cells are considered.

Macroscale simulation

Using the UM-FDTD program for bi-anisotropic materials with the material parame-
ters from the direct retrieval method I obtain a transmission which agrees reasonably
well with the experimental data after correcting the resonance frequency. This demon-
strates the great potential of the methods developed during this thesis for predicting the
electromagnetic responses of metamaterials in real life applications.

9.6. Experimental setup

Setting up a free space measurement setup from scratch is a challenging task. The right
equipment needs to be ordered which signi�cantly depends on the frequency range. The
antenna, cable holder needs to be build and the retrieval algorithms to be implemented.
A VNA is required as power source, which I borrowed from the university of Luxembourg.
The university of Murcia manufactured the focussing mirrors for me and the most di�cult
part is the calibration of the system. In the end the free space setup meets all the
requirements I had and allows me to measure material parameters in the frequency range
of interest between 8 GHz − 18 GHz for isotropic and bi-anisotropic materials. I was
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able to correctly characterise di�erent materials like PMMA and polystyrene of di�erent
thicknesses to proof the successful calibration of the setup and working of the retrieval
algorithms. I got reasonable results for both isotropic dielectrics and metamaterials. To
measure the material parameters of a metamaterial is however much more challenging
compared to a normal dielectric. In my opinion there are several possibilities to improve
the accuracy of the measurements. First of all I ordered a second mirror which will be
placed between the sample and the receiving antenna. This makes my setup symmetric
and allows me to refocus the beam after its transmission through the sample and therefore
increasing the intensity of the measured signal. As my results demonstrated, if the
transmitted power is too low the phase cannot be measured accurately which is the
main source of error in the measurement. A symmetric setup furthermore allows me to
use a TRL or GRL calibration and to test if they are more accurate as the calibration
I use right know. Besides, the VNA (ZVK from Rohde and Schwarz) I used is quit
outdated. Therefore I was limited to 1601 measuring points. This may not be enough
if I want to measure in a larger frequency band. Because after converting the frequency
domain data to the time domain not enough data points may be left for a reasonable time
gating. Newer VNAs allow up to 100000 measuring points and higher output powers,
signi�cantly increasing the accuracy of the measurements. Another source of error is the
sample thickness of a metamaterial because it does not conform to the physical thickness
as in the case of a simple dielectric, due to the coupling related e�ects. To correct
this, two samples of di�erent thicknesses are required. Furthermore, as explained the
phase ambiguity doesn't occur if the sample thickness is below a given threshold which
is furthermore related to the starting frequency, permittivity and permeablity. It would
be interesting to do the measurement with a slab fabricated out of the same dielectric
material as our metamaterial but without the omega inclusions. For metamaterials the
e�ect of time gating needs to be examined in more detail. For an isotropic dielectric,
a single Gaussian peak, corresponding to the transmitted or re�ected signal, appears in
the time domain. In this case it is straightforward to the correct width of the time gate
window. For a metamaterial however, several peaks appear and the choice of the width of
the window for time gating is less obvious. To conclude, despite all the challenges, the free
space setup is suited for the measurements of metamaterials. In my opinion the obtained
S parameters are reasonable but the measurement accuracy could still be improved as
explained above. The main problem however is to obtain the material parameters from
the measured S parameters via the retrieval algorithm, due to its sensitivity to the phase
and the numerical instabilities induced at the resonance. It may be interesting to start
also for the metamaterial with a very thin sample and then increase the thickness.
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A. The Z-Transform

In engineering or physics, a problem may be solved by transforming it from time to
frequency space or vice versa. For a linear systems, the relationship between the input
and output is a convolution integral in time domain but it reduces to a multiplication
in the frequency domain and complicated di�erential equations in one domain become
algebraic equations in another domain. The Laplace, Fourier and Z-transfom are all
linked to each other. The Z-transform is for example the discrete-time counterpart of
the Laplace transform and may be therefore derived from this one. The speci�c problem
de�nes which transformation is used. An analog signal is a continuous signal representing
physical measurements which may be denoted by sine waves, like the human voice or
analog electronic devices. In this case, due to the sine wave nature of the signal the
Laplace or Fourier transform are applied. A digital signal on the other hand is the
translation of information into binary format (zero or one). They represent discrete time
signals. In those cases the z-transform is employed.

A.1. Derivation of the z-Transform from the Laplace

transform

As mentioned before, the Z-Transform is the discrete-time counterpart of the Laplace
transform. The Laplace transform X(s) , of a continuous-time signal x(t) is de�ned as

X(s) =

∞̂

0

x(t)e−stdt (A.1)

where s = σ + jω, s ∈ C, σ, ω ∈ R, x(t) : [0,∞[→ C. The inverse Laplace transform is
de�ned by

x(t) = limω→∞

σ+jωˆ

σ−jω

X(s)estdt

where σ is selected so that X(s) has no singularities for s > σ. Equation (A.1) is
discretised by sampling the continuous-time signal x(t) at time steps t = nTs, denoted
as x(n). Assuming the sampling period Ts = 1, leads to

X(es) =

∞∑
n=0

x(n)z−sn

Substituting the variable es by z we obtain the one-sided z-transform equation
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A. The Z-Transform

Time Domain Frequency Domain Z Domain

f(t) F (ω) F (z)

δ(t) 1 1/T
df(t)
dt jωF (ω) 1−z−1

T F (z)

e−αtu(t) 1
α+jω

1
1−e−αT z−1

e−αtsin(βt)u(t) β
(α2+β2)+j2αω−ω2

Te−αT sin(βT )z−1

1−2e−αT cos(βT )z−1+e−2αT z−2

Table A.1.: Transfomring among the time,Frequqncy and Z Domain, (α, β ∈ R are con-
stants)

X(z) =
∞∑
n=0

x(n)z−n

The two sided z-transform is de�ned as

X(z) =
∞∑

n=−∞
x(n)z−n (A.2)

A.2. Dispersive chiral FDTD Formulation using the Z

Transform

I cannot immediately deal with the material parameters because the the FDTD is a time
domain method but the material parameters are expressed in the frequency domain.
The idea consists in transforming the constitutive equations 2.632.62 from frequency
to the z domain and �nally from the z to the time domain. Afterwards I can include
them in the FDTD updating scheme. A multiplication of frequency-dependent terms
will be represented by a convolution in the time domain. In the Z domain however the
multiplication of frequency dependent materials remains a multiplication.

D(z) = ε(z)E(z)T − κ(z)
√
ε0µ0H(z)T (A.3)

B(z) = µ(z)H(z)T + κ(z)
√
ε0µ0E(z)T (A.4)

Where T = 4t is the period of sampling in the Z domain. It corresponds to half of the
time step 4t employed in time domain. ε(z), µ(z) are the Z transforms of the electric
permittivity and amgnetic permeability. κ(z) is the Z transform of the time function
whose Fourier transform is jκ(ω). Frequency domain values are obtained from the time
domain using the Fourier transform de�ned as
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A.2. Dispersive chiral FDTD Formulation using the Z Transform

f(t) =
1√
2π

+∞ˆ

−∞

F (ω)ejωtdω

F (ω) =
1√
2π

+∞ˆ

−∞

f(t)e−jωtdt

and Z Domain quantities are obtained using equation (A.2) where u(t) is the step function

u(t) = 1 , t ≥ 0

= 0 , t < 0

A.2.1. De�nition and Properties of the Z-Transform

In the sampled time domain the function x(t) becomes x(n)

x(n) =

+∞∑
n=−∞

x(t)δ(t− nT )

where T is a uniform time interval and δ is the Dirac Delta function

δ(t) = 1 , t = 0

= 0 elsewhere

The Z-Transform is de�ned by

Z[x(n)] = X(z) =

+∞∑
n=−∞

x(n)z−n

The z variable may be interpreted as a time delay. This is the fundamental principle
I use to go from the z to the time domain for obtaining an FDTD updating scheme.
Without a time shift

x(m)→ Z → X(z)

by de�nition. Applying a shift x(m− k) I obtain

x(m− k)→ Z → z−kX(z) (A.5)

Proof:

X(z) =

+∞∑
m=−∞

x(m− k)z−m =
+∞∑

n=−∞
x(n)z−(n+k) = z−k

+∞∑
n=−∞

x(n)z−n = z−kX(z)

where I used the substitution m = n+ k
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A. The Z-Transform

A.2.2. Examples

The di�erent transformations from one space to another will be illustrated by some
examples.

1. df(t)
dt → FT → jωF (ω)

jnωnF (ω) =
jn√
2π

+∞ˆ

−∞

f(t)ωne−jωtdt

=
jn(−j)−n√

2π

+∞ˆ

−∞

f(t)
dne−jωt

dtn
dt

=
(−1)n√

2π
(−1)n

+∞ˆ

−∞

dnf(t)

dtn
e−jωtdt

= F (
dnf(t)

dtn
)(ω)

where n refers to the order of the derivative. To obtain the last line I used an
integration by parts. For n = 1 I get F (df(t)

dt )(ω) = jωF (ω).

2. df(t)
dt → Z − Transform → 1−z−1

T F (z) In the sampled time domain te function
x(t) becomes x(n)

x(n) =
+∞∑
−∞

x(t)δ(t− nT )

where T is a uniform time interval and δ is the Dirac Delta function

δ(t) = 1 , t = 0

= 0 elsewhere

the Z-Transform is de�ned by

Z[x(n)] = X(z) =
+∞∑
−∞

x(n)z−n

e.g if x(n) = δ(t) + 0.5δ(t− 1T ) + 0.25δ(t− 2T ) the Z-Transform becomes

X(z) =
+∞∑
−∞

(x(n) = δ(t) + 0.5δ(t− 1T ) + 0.25δ(t− 2T )) z−n

= 1z−0 + 0.5z−1 + 0.25z−2

Going from the time to the sampled time domain the derivative may be approxi-
mated by:

dx(t)

dt
∼=
x[nT ]− x[(n− 1)T ]

T
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A.2. Dispersive chiral FDTD Formulation using the Z Transform

Taking the Z transform of dx(t)/dt and using the time shift property from equation
(A.5) I obtain

Z

(
dx(t)

dt

)
=

1

T

(
z−0X(z)− z−1X(z)

)
=

1− z−1

T
X(z) (A.6)

which can be found in the table.

3. f(t) = e−αtu(t)→ FT → 1
α+jω , with u(t) the step function and α ∈ R a constant

F (ω) =

+∞ˆ

−∞

f(t)e−jωtdt

=

+∞ˆ

−∞

e−αtu(t)e−jωtdt

=

+∞ˆ

0

e−αte−jωtdt

=

+∞ˆ

0

e−(α+jω)tdt

=
e−(α+jω)t

−(α+ jω)

∣∣∣∣+∞
0

=
1

α+ jω

4. f(t) = e−αtu(t) → Z → 1
1−e−αT z−1 , with u(t) the step function and α ∈ R a

constant

Z (f(nT )) =

+∞∑
n=−∞

f(nT )z−n

=
+∞∑

n=−∞
e−αnTu(nT )z−n

=

+∞∑
n=0

e−αnT z−n

=

+∞∑
n=0

(
e−αT z−1

)n
=

1

1− e−αT z−1
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A. The Z-Transform

where we used
+∞∑
n=0

a−n =
1

1− a−1

for a ∈ R and a ≤ 1

A.3. Z-Transform of material parameters using an analytical

method

The frequency material parameters ε(ω), µ(ω), κ(ω)

ε(ω) = ε∞ +
(εs − ε∞)ω2

e

ω2
e + 2ωeξeiω − ω2

µ(ω) = µ∞ +
(µs − µ∞)ω2

h

ω2
h + 2ωhξhiω − ω2

κ̂(ω) = iκ(ω) =
τkω

2
kiω

ω2
k + 2ωkξkiω − ω2

will now be tranformed from frequency to the Z domain using the relations in table (A.1).
First of all I need to bring the electric permittivity and magnetic permeability into the
form

β

(α2 + β2) + j2αω − ω2

where α, β ∈ R are constants. Afterwards I can use Table A.1. To achieve this we de�ne

β = ωi

√
1− ξ2

i , α = ωiξi with i = ε, µ depending for µ(ω) or ε(ω) respectively, leading
to

ω2
i

ω2
i + j2ωiω − ω2

=
ωi√

1− ξ2
i

ωi

√
1− ξ2

i(
ω2
i ξ

2
i + ω2

i

(
1− ξ2

i

))
+ j2ωiξi − ω2

after rewritting

ε(ω) = ε∞ + (εs − ε∞)
ωε√

1− ξ2
ε

ωε
√

1− ξ2
ε

(ω2
εξ

2
ε + ω2

ε (1− ξ2
ε )) + j2ωεξε − ω2

µ(ω) = µ∞ + (µs − µ∞)
ωµ√
1− ξ2

µ

ωµ
√

1− ξ2
µ(

ω2
µξ

2
µ + ω2

µ

(
1− ξ2

µ

))
+ j2ωµξµ − ω2

jκ(ω) = jω
τκωκ√
1− ξ2

κ

ωκ
√

1− ξ2
κ

(ω2
κξ

2
κ + ω2

κ (1− ξ2
κ)) + j2ωκξκ − ω2
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A.3. Z-Transform of material parameters using an analytical method

in the Z-Domain I get

ε(z) =
ε∞
T

+
(εs − ε∞)ωε√

1− ξ2
ε

×
e−ωεξεT sin

(
ωε
√

1− ξ2
εT
)
· z−1

1− 2e−ωεξεT cos
(
ωε
√

1− ξ2
εT
)
· z−1 + e−2ωεξεT · z−2

µ(z) =
µ∞
T

+
(µs − µ∞)ωµ√

1− ξ2
µ

×
e−ωµξµT sin

(
ωµ
√

1− ξ2
µT
)
· z−1

1− 2e−ωµξµT cos
(
ωµ
√

1− ξ2
µT
)
· z−1 + e−2ωµξµT · z−2

κ(z) =

(
1− z−1

)
T

τκωκ√
1− ξ2

κ

×
e−ωκξκT sin

(
ωκ
√

1− ξ2
κT
)
· z−1

1− 2e−ωκξκT cos
(
ωκ
√

1− ξ2
κT
)
· z−1 + e−2ωκξκT · z−2

κ(z) is the Z transform of jκ(ω). Whereas ε(z) and µ(z) are the Z transforms of ε(ω),
µ(ω). In contrast to ε(z) and µ(z) in κ(z) the factor

(
1− z−1

)
/T appears due to jω.

Using the following de�nitions I can simplify equations A.3A.4

Cκ1 =
τκωκe

−ωκξκT sin(ωκ
√

1− ξ2
κT )
√
ε0µ0√

1− ξ2
ε

Cκ2 = 2e−ωκξκT cos
(
ωκ
√

1− ξ2
κT
)

Cκ3 = e−ωκξκT

Cε1 =
T (εs − ε∞)ωεe

−ωεξεT sin
(
ωε
√

1− ξ2
εT
)

√
1− ξ2

ε

Cε2 = 2e−ωεξεT cos
(
ωε
√

1− ξ2
εT
)

Cε3 = e−2ωεξεT

Cµ1 =
T (µs − µ∞)ωµe

−ωµξµT sin
(
ωµ
√

1− ξ2
µT
)

√
1− ξ2

µ

Cµ2 = 2e−ωµξµT cos
(
ωµ

√
1− ξ2

µT
)

Cµ3 = e−2ωµξµT

to

D(z) =

(
ε∞ +

Cε1z
−1

1− Cε2z−1 + Cε3z−2

)
E(z)− Cκ1z

−1 − Cκ1z
−2

1− Cκ2z−1 + Cκ3z−2
H(z) (A.7)

B(z) =

(
µ∞ +

Cµ1z
−1

1− Cµ2z−1 + Cµ3z−2

)
H(z) +

Cκ1z
−1 − Cκ1z

−2

1− Cκ2z−1 + Cκ3z−2
E(z)(A.8)
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A. The Z-Transform

To further simplify the constitutive equations we now introduce the four new parameters
Sκe(z), Sκh(z), Sh(z), Se(z) and rewrite (A.7),(A.8) as

D(z) = ε∞E(z) + Se(z)z
−1 − Sκh(z)z−1 + Sκh(z)z−2

B(z) = µ∞H(z) + Sh(z)z−1 + Sκe(z)z
−1 − Sκe(z)z−2

A.4. Z-Transform using padé approximants

The idea of padé approximants is to expand a function (in my case ε(z), µ(z), κ(z)) as a
ratio of two power series. This method is superior to a standard Taylor series expansion
when the function contains poles [5].

ε(r, z)

ε0
=
b0(r) + b1(r)z−1 + b2(r)z−2 + ...+ bNb−1(r)z−(Nb−1)

1 + a1(r)z−1 + a2(r)z−2 + ...+ aNa(r)z−Na
(A.9)

This methods leads directly to a �nite di�erence implementation. To illustrate this I
consider a second order approximation (z−2) as done in [140]. Using the consitutive
relation in Z Domain D(r, z) = ε(r, z)E(r, z),equation (A.9) and omitting the spatial
dependence of the �eld and pade coe�cients I obtain

ε0D(z) = ε(z)E(z)

⇔ 1

ε0
D(z) =

b0 + b1z
−1 + b2z

−2

1 + a1z−1 + a2z−2
E(z)

⇔ E(z) =
1

b0

{
1

ε0

[
D(z) + a1z

−1D(z) + a2z
−2D(z)

]
− b1z−1E(z)− b2z−2E(z)

}
To go from the Z to the time domain we use the property A.5 leading to the �nal update
equation

En+1 =
1

b0

{
1

ε0

[
Dn+1 + a1D

n + a2D
n−1
]
− b1En − b2En−1

}
this can be implemented more e�ciently reducing the number of storage arrays from �ve
to four using the transposed direct Form-2 structure as known from signal processing
literature.

En+1 =
1

b0

[
1

ε0
Dn+1 +Wn

1

]
Wn+1

1 =
a1

ε0
Dn+1 − b1En+1 +Wn

2

Wn+1
2 =

a2

ε0
Dn+1 − b2En+1

The only remaining question is how to obtain the padé coe�cients in Z domain from the
coe�cients in frequency domain.
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A.4. Z-Transform using padé approximants

A.4.1. Obtaining Padé coe�cients

There exist several more or less accurate methods to obtain these coe�cients. using
approximations I can go directly from frequency to Z-domain. If the fourier transform F

is de�ned as F [f(t)] = F (ω) then F
[
df(t)
dt

]
= jωF (ω). I can approximate a derivative

as df(t)
dt '

f(t)−f(t−4t)
4t . Taking the Z transform leads to

Z

[
f(t)− f(t−4t)

4t

]
=
F (z)− z−1F (z)

4t
=

1− z−1

4t
F (z)

which is the same result as A.6. As an approximation we can go from the frequency to
the Z domain by replacing jω by

(
1− z−1

)
/∆t. This speci�c transformation is called

Backward Di�erence approximation. More accurate results can be obtained by replacing
jω by

(
2
(
1− z−1

))
/
(
∆t
(
1 + z−1

))
. This is called the bilinear transformation and is

equivalent to using a trapezoidal approximation to a derivative[9]. To obtain the coe�-

cients we consider the function we want to transform e.g ε(ω) = ε∞ + (εs−ε∞)ω2
ε

ω2
ε+(jω)2+j2ωεξεω

.

For simplicity I choose the Backward Di�erence approximation jω →
(
1− z−1

)
/∆t and

rearrange the terms with respect to the order of z leading to

ε(z) =

(
4t2εsω2

ε + 2ε∞ωεξε4t+ ε∞
)

+ (−2ε∞ωε4t− 2ε∞)z−1 + ε∞z
−2

(ω2
ε4t2 + 2ωεξε4t+ 1) + (−2ωεξε4t− 2)z−1 + z−2

=

(4t2εsω2
ε+2ε∞ωεξε4t+ε∞)

(ω2
ε4t2+2ωεξε4t+1)

+ (−2ε∞ωε4t−2ε∞)
(ω2
ε4t2+2ωεξε4t+1)

z−1 + ε∞
(ω2
ε4t2+2ωεξε4t+1)

z−2

1 + (−2ωεξε4t−2)
(ω2
ε4t2+2ωεξε4t+1)

z−1 + 1
(ω2
ε4t2+2ωεξε4t+1)

z−2
(A.10)

=
b0 + b1z

−1 + b2z
−2

1 + a1z−1 + a2z−2
(A.11)

Comparing the coe�cients from equations (A.10) and (A.11) gives us the coe�cients
b0, b1, b2, a1, a2 with respect to parameters from ε(ω).In literature another method is also
used, which I explain for completeness. For more details please refer to [52]. First,
approximate a function f using the Taylor Series

T [f (x, a)] =
∞∑
n=0

f (n)(a)

n!
(x− a)n

= f
(0)

(0) (x− a)0 + f (1) (x− a)1 +
f (2)

2!
(x− a)2 ...

Where f (n) = dfn

dx . Setting a = 0, f (n) = fn and replacing xn by z−n leads to

T [f (z)] = f0 + f1z
−1 + f2z

−2 + ...

In the next step we express the function we want to approximate (e.g ε (ω)) as ratio of
two polynamials of order L and M respectively

Fa (z) =
b0 + b1z

−1 + b2z
−2 + ...+ bLz

−L

a0 + az−1
1 + a2z−2 + ...+ aMz−M
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A. The Z-Transform

where a0 := 1. Solving the system

f (z) = Fa (z)

⇔ f0 + f1z
−1 + f2z

−2 + ... =
b0 + b1z

−1 + b2z
−2 + ...+ bLz

−L

a0 + az−1
1 + a2z−2 + ...+ aMz−M

⇔
(
f0 + f1z

−1 + f2z
−2 + ..

)
·(

a0 + az−1
1 + a2z

−2 + ...+ aMz
−M) = b0 + b1z

−1 + b2z
−2 + ...+ bLz

−L

Equating the coe�cients from z−(L+1), ..., z−(L+M)leads to the following system of equa-
tions

aMfL−M+1 + aM−1fL−M+2 + ...+ a0fL+1 = 0 (A.12)

aMfL−M+2 + aM−1fL−M+3 + ..+ a0fL+2 = 0
...

aMfL + aM−1fL+1 + ...+ a0fL+M = 0

Equating the coe�cients 1, z−Lleads to

b0 = f0 (A.13)

b1 = f1 + a1f0

b2 = f2 + a1f1 + a2f0

...

bL = fL +

min(L,M)∑
i=1

aifL−i

As simple example for llustrating the method I calculate the Padé approximants for the
permittivity linked to the Debye Model

ε (ω) = ε∞ +
(εs − ε∞)

1 + jωτ

First I apply the bilinear transformation jω → 2
4t

(
1−z−1

1+z−1

)
to ε (ω) to go to the Z-

Domain, leading to

ε (z) =
2ε∞τ − 2ε∞τz

−1 + εs4tz−1

4t+4tz−1 + 2τ − 2τz−1

Calculating the coe�cients for the second order Taylor expansion

f0 = ε
(
z−1
)
|z−1=0 =

2ε∞τ + εs4t
4t+ 2τ

f1 =
∂ε

∂z−1
|z−1=0 =

4τ4t (εs − ε∞)

(4t+ 2τ)2

2f2 =
∂2ε

∂ (z−1)2 |z−1=0 =
8 (ε∞ − εs)

(
4t2τ − 24tτ2

)
(4t+ 2τ)2
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A.4. Z-Transform using padé approximants

I �rst have to solve the system of equations (A.12)

a1f1 + a0f0 = 0

Keep in mind that a0 := 1. Leading to

a1 = −f2

f1
=

(4t− 2τ)

(4t+ 2τ)

Now I can solve the system of equations (A.13)

b0 = f0

b1 = f1 + a1f0

leading to

b0 =
2ε∞τ + εs4t
4t+ 2τ

b1 =
εs4t− 2ε∞τ

4t+ 2τ
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B. Finite Di�erences

The di�erential maxwell equations are approximated by �nite di�erence equations. This
procedure is based upon the taylor expansion. For a function f(x) = f(x0 +h) the Taylor
expansion is

f(x) = f(x0 + h) =

∞∑
n=0

f (n)(x0)
hn

n!
= f(x0) +

∂

∂x
f(x)|x=x0h+

∂2

∂x2
f(x)|x=x0h

2 + ....

For this chapter n corresponds to the index in time (after discretization) and i for the
index in space (after discretization). The Taylor series expansion in time (n) around the
grid point (i,n) with 4t = tn+1 − tn is:

fn+1
i = fni +4t∂f

∂t
|ni +

1

2
(4t)2∂

2f

∂t2
|ni + ...

⇔ ∂f

∂t
|ni =

fn+1
i − fni
4t

− 1

2
4t∂

2f

∂t2
|ni − ...

The second term on the right side is of �rst-order, because it only depends on 4t. This
means that the error increases linearly with 4t. By dropping the error terms we get the
First-order forward di�erence

∂f

∂t
|ni '

fn+1
i − fni
4t

(B.1)

To approximate the �rst derivative with second order precision we expand fn+1
i and fn−1

i

around the grid point (i,n)

fn+1
i = fni +4t∂f

∂t
|ni +

1

2
(4t)2∂

2f

∂t2
|ni +

1

6
(4t)3∂

3f

∂t3
|ni (B.2)

fn−1
i = fni −4t

∂f

∂t
|ni +

1

2
(4t)2∂

2f

∂t2
|ni −

1

6
(4t)3∂

3f

∂t3
|ni (B.3)

Subtracting B.3 from B.2 and dropping the error terms we �nd the Second-order centered
di�erence

∂f

∂t
|ni '

fn+1
i − fn−1

i

24t
(B.4)

approximating the �rst derivative. The problem is that in this equation we need to
know the value of the function at time step n+1 and n-1. In the interleaved leapfrog
algorithm it is for example necessary to de�ne intermediate values of the derivative at
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B. Finite Di�erences

half time/space steps. If we approximate fn+1
i and fni around the grid point (i, n + 1

2)
we get:

fn+1
i = f

n+ 1
2

i +
4t
2

∂f

∂t
|n+ 1

2
i +

4t2

4

∂2f

∂t2
|n+ 1

2
i +

4t3

48

∂3f

∂t3
|n+ 1

2
i (B.5)

fni = f
n+ 1

2
i − 4t

2

∂f

∂t
|n+ 1

2
i +

4t2

4

∂2f

∂t2
|n+ 1

2
i − 4t

3

48

∂3f

∂t3
|n+ 1

2
i (B.6)

Subtracting B.6 from B.5 leads to a second order di�erence

∂f

∂t
|n+ 1

2
i '

fn+1
i − fni
4t

(B.7)

We notice that even if the right hand side of B.7 is equal to the right hand side of B.1, B.7
is second order accurate for an approximation of the frst order derivative at an half-time
step. Until now we only considered temporal discretization. We get similar results for the
spatial discretization. In this case, the temporal step n stays constant and we advance
the spatial increment i. If we furthermore replace in the formulas above the temporal
step width 4t by the spatial step width 4x we have the spatial �nite di�erences.
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C. Phase unwrapping

To determine m from equation 6.21, measurements of two samples with di�erent thick-
nesses have to be done. This may be a problem for expensive samples. One common
approach to solve this ambiguity problem is by applying a Kramer-Kronig relations to
the wavenumber [133]. A Kramers-Kronig type of relation is a bidirectional relation
connecting the real and imaginary parts of any complex function that is analytic in the
upper half-plane H. Where the upper half-plane is de�ned as the set of complex numbers
with positive imaginary part (H = α+ iβ|β > 0;α, β ∈ R). For a causal medium, m can
be choosen uniquely because for an analytic function of frequency ρ = α+ iβ this results
in a Kramers-Kronig-type relation between α and β. Causality refers to a system where
the output y(t0) only depends on the input x(t) for values t ≤ t0 (past and current but
not future inputs). The Kramers-Kronig relation which allows me to compute the real
part of the complex wavenumber β from the attenuation factor α corresponds to

βK−K (ω)

β0 (ω)
= 1 +

2

π
P

∞̂

0

ω1α (ω1) /β0 (ω1)

ω2
1 − ω2

dω1 (C.1)

where β0 = 2π/λ0 is the free-space wavenumber. P denotes the principal value of the
integral. Which is de�ned as

P

+∞ˆ

−∞

f(x)dx = limR→∞

+Rˆ

−R

f(x)dx (C.2)

P

bˆ

a

f(x)dx = limr→0+

 c−rˆ

a

f(x)dx+

bˆ

c+r

f(x)dx

 (C.3)

for an interval I = [a, b] , a, b ∈ R, c ∈ I, c ∈ R. In equation (C.1) the domain extends
from [0,+∞] but we only have a �nite bandwidth data. This leads to truncation errors
especially at the band edge [101][97]. Fortunately the results can still yield reasonable
agreement with the actual data [97]. This method is employed by numerically solving
equation (C.1) for example by using the trapezoidal rule with α retrieved from equation
(6.22). Next βm from equation (6.22) is computed for di�erent m and compared with
βK−K from equation (C.1). Only one value of m will match with βK−K . To illustrate
the e�ect of the phase ambiguity we consider an example of an isotropic dielectric slab
in free space with a given thickness d = 0.1m and εr = 2.0 + i0 and µr = 1.0 + i0 over
frequency range from [0− 8.5]GHz. To make the problem as realistic as possible I �rst
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C. Phase unwrapping

create a �touchstone� �le. Where the S-parameters are computed according to Arslanagic
[8].

S11 =
(1− Z2)(η2 − η2

0)

(η + η0)2 − (η − η0)2Z2
(C.4)

S21 =
4ηη0Z

(η + η0)2 − (η − η0)2Z2
(C.5)

with η =
√
µ/ε the impedance inside the dielectric, η0, the impedance of free space

and Z = e−ikd, with d the thickness of the slab and k = ω2εµ the wavevector. For an
isotropic material we assume S11 = S22 and S21 = S12. These parameters are complex
in general. Next we use the NRW procedure to extract the material parameters. At a
frequency of 8.5GHz the wavelength in the dielectric equals λDiel(8.5GHz) = λ0/

√
εµ =

0.0375/1.41 ≈ 0.0265m. This is about four times smaller than the sample and therefore
the condition that m of equation (6.21) equals 0 over the whole frequency range is not
full�lled. What happens if we nevertheless keep m = 0 for a frequency varying from
[0− 8.5]GHz is illustrated in Figure C.1a. The permittivty di�ers signi�cantly from
what we expect. The origin of this problem becomes clear by considering the phase of
the transmission coe�cient T , which can be computed as φ = atan(T ′′/T ′) represented
in Figure C.1b.
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(a) m = 0 for a relatively large sample.
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(b) Phase of transmission coe�cient.

Figure C.1.

The jumps in the retrieved permittivity occur at the same frequencies as the jumps in the
phase of the transmission, oscillating between ±π. The phase is referred to as wrapped.
Unwrapping the phase allows us to solve the ambiguity issue [76]. This procedure is
called phase unwrapping and is an easy to implement alternative to the Kramers-Kronig
relation method, which still may be used to validate the initial value of m. Therefore we
increment m by 1, m → m + 1 over the bandwidth everytime we detect a jump in the

218



phase. We then use this new value of m for further calculation of the permittivity and
permeability. The di�erence between the wrapped and unwrapped phase is illustrated in
Figure C.2b. The e�ect of the unwrapping on the permittvity is shown in Figure C.2a.
Now we observe the expected agreement between the theoretical and retrieved permit-
tivty.
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Figure C.2.: E�ect of wrapped vs unwrapped phase on the permittvity retrieval.

The ambiguity problem for m doesn't occur if the starting frequency of the measurement
is below a given minimum frequency fmin (equation (C.6))[76] because in this case we
start at m = 0.

εrµr ≤
(

c

2dfmin

)2

(C.6)

where d is the thickness and c the speed of light. What happens if fmin is not small
enough? To illustrate this we keep all the parameters the same as before in the ex-
ample, we only increase fmin from 0 → 1.059GHz. The result from equation (C.6)
is εrµr = 2.0035 if we now slightly increase fmin to 1.060GHz and equation (C.6) is
εrµr = 1.9997. This means for fmin = 1.060GHz the algorithm should not be working
properly anymore. The reason for this becomes obvious in Figure C.3a and Figure C.3b.
The �rst jump in the phase is skipped in Figure C.3b. Therefore our assumption m = 0
is not valid anymore. In this case we would have to start at m = 1 instead to get the
expected result. The e�ect on the permittivity is signi�cant if the initial guess for m is
wrong, as can be seen in Figure C.4a and Figure C.4b. Fortunately the di�erence from
the obtained value with respect to the expected result is so important that obviously
something went wrong.
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C. Phase unwrapping

 

 

 

 

 

 

 

 

 

 

 0  1  2  3  4  5  6  7  8  9

π

-π

 

 Frequency [GHz]

phase

(a) phase for fmin = 1.059GHz
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(b) phase for fmin = 1.060GHz

Figure C.3.: E�ect of di�erent starting frequencies on the phase
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Figure C.4.: E�ect of di�erent starting frequencies on the permittivity
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