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Abstract

Traditionally, geometric design, analysis and optimisation, the main components of a

product development cycle, are treated as separate modules requiring different methods

and representations. Recent progress towards addressing this issue has been focused on

Isogeometric analysis where the same basis functions are used for both geometry and

analysis representations. However, having the same mesh for both design and analy-

sis causes problems in the optimisation module as a result of having too many design

variables. Traditional parameter based shape optimisation sidesteps this problem by

restricting the space of possible geometry changes during optimisation.

In a novel approach, this dissertation proposes the use of multiresolution surfaces for

shape optimisation of shells and solids. A hierarchy of meshes are created with the

coarse resolutions used in the geometric design and optimisation modules whereas the

fine resolution is used in the analysis module. In addition to facilitating parameter-free

optimisation, enabling more flexibility in design space exploration, the proposed method

is capable of using different solver modules including non-isogeometric solvers. Two

alternative concepts, one based on subdivision surfaces and the other using progressive

meshes, are explored for creating the multiresolution representation.

Kirchhoff-Love shells offer an ideal formulation for optimisation of shells due to the

displacement based setting without any rotational degrees of freedom. The proposed

multiresolution framework is demonstrated for shape optimisation of Kirchhoff-Love

shells using analytically derived discrete shape derivatives.

Use of conventional finite element methods for analysis of solid geometry require a vol-

umetric mesh which is likely to be distorted during shape optimisation leading to inac-

curacies. Two possible solutions to this problem are offered by immersed and boundary

element methods that only require a surface mesh representing the domain boundary to

be deformed. The former is used in the thesis for shape optimisation of linear elastic

solids. The developed top-down multiresolution method is also demonstrated for shape

optimisation in electrostatic problems using a boundary element solver.

Numerous validation and industry strength examples are presented to highlight the

merits of using the proposed multiresolution shape optimisation paradigm for integrated

product development involving shells and solids.
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1. Introduction

1.1. Motivation

Computer aided design (CAD) and finite element analysis (FEA) are integral compo-

nents in product development today. CAD is used to build a precise geometric descrip-

tions of the design model while FEA simulations allow increased performance without

time consuming physical testing. Simulation driven product development, where the

geometric design is iteratively optimised based on simulation feedback, is the main focus

of this dissertation. The key requirement for such a framework is the seamless exchange

of information between the main modules, i.e. design, analysis and optimisation.

Integrated design analysis and optimisation

The incompatibility between the geometry representations has been a major bottleneck

in integrating CAD and FEA. Historically, the finite element method widely used for

simulation was formulated much earlier than the geometry descriptions used in CAD

were developed. The former favours body-fitted polygon meshes whereas B-spline based

Nonuniform Rational B-splines (NURBS) or subdivision methods are typically used

in the latter. Presently, this implies a separate representation, i.e. a finite element

mesh, has to be maintained that approximates the design CAD geometry. This requires

regenerating the FEA mesh via various meshing tools each time the design is changed, as

a direct link between the two geometries cannot be maintained (Figure 1.1). In high-end

production industries such as automotive, aerospace, it is hardly surprising that some

estimates put the amount of time spent on mesh generation at 80% of total analysis

time [73]. Figure 1.2 shows the three different representations using an automotive

model with distinct design features. Note the smooth NURBS and subdivision surfaces

in comparison to the fine polygon mesh used for FEA.
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Figure 1.1.: Traditional product development framework. Geometry is remeshed each
time the design is changed.

Isogeometry paradigm

In recent times the major drive towards integrating CAD and FEA has come from

isogeometric analysis where the same representation is used for both geometric design

and analysis [33, 73]. The key innovation is to use either subdivision or NURBS as

the basis functions in finite element analysis. However presence of multiple NURBS

patches and trimming curves, as often is the case in real-world NURBS applications,

causes deficiencies in NURBS based isogeometric methods. T-splines [116] has emerged

as a candidate to circumvent this issue, in which T junctions are used to create a single

watertight NURBS model. However isogeometric methods based on T-splines [9] suffer

from linear dependency problems [19].

Although direct transfer of data from CAD to FEA is possible with isogeometric meth-

ods, using the same geometric mesh for design and analysis causes many problems in the

optimisation module. Essentially for most practical design optimisation problems, hav-

ing too many design variables will result in the optimal solutions being wiggly irregular

shapes that cannot be used for realistic designs [18].
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(a) NURBS geometry. Non-watertight control mesh with trimming curves (in red) used to show/hide
wanted/unwanted regions.

(b) Subdivision geometry. Repeated refinement of a watertight coarse control mesh creates a smooth surface
in the limit.

(c) Typical body fitted polygon mesh used in FEA. Requires removal of gaps, overlaps when created from
a NURBS model.

Figure 1.2.: Geometry descriptions used in CAD and FEA. Geometric models obtained
from http://www.turbosquid.com and http://www.grabcad.com .
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1.2. Methodology

Shape optimisation

Shape optimisation seeks an optimal geometric shape among alternative designs by min-

imising a performance related objective function subject to constraints.

minimise J (s,u(s)) s ∈ Rns (1.1a)

such that gi(s,u(s)) = 0 i = 1, . . . , ng (1.1b)

where s is the vector of design variables related to the geometric shape of the domain

and u is the vector of state variables, i.e. displacement, that depend on s. Additional

constraints, i.e. equilibrium, are denoted by the set gi. For simplicity, only equality

constraints are assumed here. Mathematical programming methods used to minimise

(1.1) can be either gradient based or non-gradient based. The former is usually employed

as it utilises more information in the form of design sensitivity

dJ
ds

(s,u(s)) =
∂J
∂s

+
∂J
∂u

du

ds
(1.2)

which is the derivative of the objective function with respect to the design variables s.

The natural choice for design variables is to select the nodal coordinates of the finite ele-

ment mesh itself leading to parameter-free optimisation. However having such a one-to-

one correspondence between the design variables and the finite element mesh can quickly

lead to unrealistic designs and is generally avoided. Informally in such situations the

non-convexity of the optimisation problem can easily lead to optimal designs belonging

to a local minima. Examples of this nature are provided in later chapters. Historically,

the issue was side-stepped using various methods that restrict possible boundary defor-

mations by resorting to a reduced number of auxiliary parameters [63]. This practice is

known as parameter optimisation and is widely used in industrial product development

today.

It is clear that parameter-free optimisation enables more flexibility in design space ex-

ploration and obtaining innovative designs. Additionally, advances in additive manu-

facturing imply that manufacturability of complex geometries is no longer a constraint.

Isogeometric analysis is a potential candidate for parameter-free shape optimisation since

the B-spline basis functions can be used to maintain the desired regularity of the shape.

4



(a) Subdivision refinement. From left to right; coarse
control mesh, once refined mesh, twice refined
mesh.

(b) Knot insertion in NURBS. Note
that only four knots are inserted
here.

Figure 1.3.: Mesh refinement in NURBS and subdivision.

In this setting, the control points can have the combined role of being the design variables

during optimisation and the degrees of freedom during analysis. This is demonstrated

by, amongst others, Bletzinger and Ramm [16] using Bézier patches, Cirak et al. [30]

using subdivision, Wall et al. [128] with NURBS and Seo et al. [117], Ha et al. [60] using

T-splines.

The key difference between isogeometric optimisation methods and the present work

is the use of multiresolution geometry editing techniques originating from computer

graphics. It will be shown how the proposed method avoids many of the pitfalls of

parameter-free optimisation. Additionally, the method is specially beneficial in optimi-

sation of solids where any shape changes distort the internal mesh. In the present work,

this issue is avoided by using immersed and boundary element methods that only require

a surface mesh representing the domain boundary to be deformed. In this context, the

multiresolution hierarchy is constructed for the boundary surface mesh typically given

as a b-rep (boundary representation) in a CAD model.

Multiresolution framework

Subdivision surfaces have been widely used in the animation industry due to their ability

to represent arbitrary geometry with smooth watertight meshes [41]. In a subdivision

setting, repeated refinement of the control mesh creates a hierarchy of higher resolution

meshes that ultimately converge to a limit surface as shown in Figure 1.3a. Refinement

of the control mesh is achieved via a subdivision matrix S, which relates the control

points of resolutions ` and `+ 1. Given a vector of control points x` in resolution `, the

5



Figure 1.4.: Subdivision editing. A single control point from the coarse control mesh in
Figure 1.3a is perturbed (left) resulting in a smooth shape change in the
twice refined mesh (right).

fine resolution control points x`+1 can be obtained by multiplication with a subdivision

matrix

x`+1 = Sx` (1.3)

The equivalent process to increasing mesh resolution in NURBS is referred to as knot

insertion (Figure 1.3b). Observe that the fine resolution subdivision mesh resembles a

conventional body-fitted finite element mesh, which can be altered in a smooth, regulated

manner by moving the control points of the coarse control mesh (Figure 1.4).

The methodology proposed in this dissertation for creating an integrated design, analy-

sis and optimisation framework using parameter-free shape optimisation is mainly mo-

tivated by the following two properties of subdivision;

� Multiresolution property : Subdivision provides a natural means of navigating be-

tween different mesh resolutions. A coarse resolution model can be used as the

CAD model and corresponding fine resolution model as the analysis model with

subdivision linking the two.

� Variation diminishing property : This property, inherited from B-splines, enables

changes to the coarse design model to be propagated to the fine resolution analysis

model in a smooth and robust manner.

The conceptual multiresolution framework proposed is shown in Figure 1.5. A hierarchy

of meshes are created with the coarse resolutions used in design and optimisation modules

whereas a fine resolution is used in the analysis module. The modular nature of the whole

setup implies that the multiresolution geometric representation can be independent of the

analysis module. Hence the strict requirement of an isogeometric solver is not required
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Figure 1.5.: Subdivision based multiresolution framework. Two models of different reso-
lution are maintained; a coarse resolution model with the CAD design vari-
ables and a fine resolution FEA model. Information is exchanged between
the two resolutions using (1.3) and (1.4). Note that only a simplified pre-
sentation is made here, the intermediate resolutions are hidden for brevity.

and the simulation module can use any type of solver capable of using conventional body-

fitted finite element meshes. The design sensitivities (1.2) are computed with the fine

resolution analysis mesh and need to be projected to the coarse resolution containing the

actual design variables. A wavelet inspired subdivision coarsening method is developed

to this end. This coarsening operator functions in an opposite manner to the subdivision

matrix (1.3) and uses the control points of resolution ` + 1 to yield those of resolution

`

x` = Rx`+1 (1.4)

Clearly any B-spline based geometry description such as NURBS, subdivision, T-splines

among others can be used to create a multiresolution framework due to the refinability

property of B-splines. Such a framework can be used to integrate design, analysis and

optimisation to create an iterative workflow for evolving designs from a concept stage

to final production level (Figure 1.6). The limitation is that the initial input geometry

is required to be representable using a coarse control mesh.

However real world design examples often contain many complex geometric features that

cannot be resolved using a coarse mesh. In an alternative point of view, a multiresolution

mesh hierarchy can be created from such a highly detailed fine resolution geometry, with

an opposite starting point from the previously described subdivision based framework.
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Figure 1.6.: Isogemetric product development cycle based on a multiresolution frame-
work. Concept stage creates a coarse control mesh on which the design
variables are defined. This has a corresponding smooth CAD model which
represents the current design. The analysis stage uses a suitable fine reso-
lution mesh that approximates the CAD model.

A family of tools based on mesh decimation can be used to this end, an example of which

is shown in Figure 1.7. Mesh decimation, also known as mesh simplification, is aimed

at reducing the number of nodes (vertices) in a geometric mesh and can be achieved in

a number of ways such as edge collapse or facet merge [67]. The decimation process can

be expressed similar to the subdivision coarsening process (1.4) with

x`−1 = R(x`) (1.5)

Observe in Figure 1.7 that geometric features are lost during mesh decimation. Such

missing features, called details hereafter, need to be recorded if a loss-less mapping

between coarse and fine resolutions is to be achieved. As will become clear, this is vital

for translating coarse resolution design changes to the original fine resolution model. The

present work explores multiresolution geometry editing methods based on progressive

mesh simplification [69] for multiresolution editing (Figure 1.8). The method is based

on progressively storing details for each decimation step. The details d` representing the
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Figure 1.7.: Mesh decimation of the Stanford bunny. Percentage of vertices removed
from left to right: 0%, 50%, 80%, 95%, 98%.

Figure 1.8.: Multiresolution editing using progressive meshes. An initial fine resolution
model is coarsened and edited. Next the changes due to the coarse resolution
edit are translated back to the fine resolution.

difference between mesh resolutions ` and `− 1 can be computed as follows

d` = x` − S(x`−1) (1.6)

The presence operator S, which is essentially a smoothing operator similar to subdi-

vision, helps in preserving smoothness of the geometry during multiresolution editing.

Suitable subdivision schemes for this are explored in later chapters. Assume the coarse

resolution control points are now edited during optimisation, x`−1 → x̃`−1. The changes

can be transferred to the fine resolution, termed detail restoration, as follows

x̃` = S(x̃`−1) + d` (1.7)

Figure 1.9 shows a simplified multiresolution framework based on progressive meshes. At

the start of the cycle, a given fine resolution mesh is decomposed to create the details and

a coarse resolution mesh using (1.6). After this initial step, the optimisation workflow
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Figure 1.9.: Progressive mesh based multiresolution framework. The original fine reso-
lution CAD model is decomposed into a coarse resolution model containing
the design variables and a set of details related to the difference of the two.
The FEA model is the same as the original fine resolution CAD model.
Information is exchanged between the two resolutions using (1.5) and 1.7.
Note that only a simplified presentation is made here, the intermediate res-
olutions and details are hidden for brevity.

is very similar to the subdivision based framework.

In summary, two multiresolution frameworks based on subdivision (Figure 1.5) and

progressive meshes (Figure 1.9) are proposed in this dissertation. Both approaches

are fundamentally based on the same concept of using a multiresolution hierarchy to

connect a fine resolution analysis model to a coarse resolution model containing the

design variables. This creates an inherently integrated design, analysis and optimisation

framework (Figure 1.6). More importantly, maintaining the design variables in a coarse

resolution eliminates the shortcoming of parameter-free optimisation. Different stages of

product development involve varying degrees of emphasis on globalisation of geometric

design features. In the initial design stage, i.e. concept development stage, global

shape changes are expected whereas shape changes during later design stages tend to be

more minimal and localised. This is mirrored in the proposed setup where, during the

concept stage the design variables can be control points of a very coarse control mesh

but transferred to finer resolutions in later design stages without any interference to the

analysis model.
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1.3. Objectives and layout

The main objective of this dissertation is to explore the use of mutiresolution surfaces

for integrated design, analysis and optimisation of shells and solids. The first task is

the realisation of a multiresolution geometric framework capable of translating design

and analysis information between the different modules involved. Two alternatives exist

as previously discussed; a top-down approach starting from a design that can be repre-

sented using a coarse resolution or a bottom-up approach starting from a design already

containing many design features.

Chapters 2 and 3 review the definition of NURBS, subdivision and progressive meshes

as potential candidates for realising the desired multiresolution framework. Specifically,

Chapter 2 compares the merits of using either a NURBS or a subdivision representation

for the top-down approach. Progressive meshes are reviewed in Chapter 3 to facilitate

the opposite bottom-up framework.

In Chapter 4, the integrated design, analysis and optimisation cycle is formulated for

subdivision and progressive mesh representations. Chapter 5 demonstrates the proposed

framework for shape optimisation of thin shells. Discrete sensitivities are derived ana-

lytically for Kirchhoff-Love shells and computed with subdivision shells [33]. Chapter 6

explores the optimisation of solid bodies using immersed and boundary element methods

for the solver module. The immersed method from Rüberg and Cirak [110] is used for

shape and topology optimisation of linear elastic solid bodies. The extension to topology

optimisation is made via the bubble method [46]. Additionally, the shape optimisation

of solid bodies in electrostatics is presented using a boundary element method [102] to

solve the Laplace equation. Finally conclusions are drawn and future research directions

explored in Chapter 7.
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2. CAD geometry representation

techniques

This chapter reviews the definition of NURBS and subdivision surfaces starting from

their common foundation of B-splines. See Böhm [17] for an overview of different CAD

representation techniques in a historical perspective. Subsequently, the possibility of

using each geometry description for the desired multiresolution framework is examined.

2.1. B-splines

The name spline is derived from the thin strip of wood held in place by weights used

by early draftsmen to generate smooth curves. B-splines or basis splines originate from

Bézier curves developed in the 1960s, which represented polynomial curves using Bern-

stein polynomials. In contrast to Bézier curves which are comprised of a single poly-

nomial segment, B-splines are piecewise polynomial curves with multiple polynomial

segments. The continuity of the segments is defined by a knot vector u which contains

the parameter values ui, known as knots, that map into the ends of each polynomial

segment. The definition of a B-spline curve is as follows;

C(u) =
n∑
i=0

Ni,p(u)xi u = {u0, u1, . . . , un+p+1} (2.1)

where Ni,p are polynomial basis functions of degree p and the geometric coefficients xi

are the control points. Figure 2.1 shows an example of a cubic B-spline curve and the

corresponding B-spline basis functions.

B-splines have several unique properties that make them ideal for CAD geometry. A few

such properties that are relevant to the present work are explained below. See Prautzsch
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Figure 2.1.: Cubic B-spline curve and basis functions. It is important to distinguish the
difference between the control polygon connecting the control points in blue
and limit curve in black. The knot vector u = {0, 0, 0, 0, 0.4, 0.7, 1, 1, 1, 1}.

et al. [107] and Piegl and Tiller [105] for more details.

� Variation diminishing property : No straight line intersects the curve more times

than it does the control polygon. Essentially this means the curve cannot be more

’wiggly’ than the control polygon.

� Local support : The basis functions have a local support such that Ni,p 6= 0 only

if u is inside the knot interval [ui, ui+p+1]. This implies that each basis function

influences only a limited region of the overall geometry, a property distinct from

Bézier curves.

� Recurrence formula: A recurrence relation can be used to compute successively

higher degree B-spline basis functions. The zero degree B-spline is the box function

Ni,0(u) =

{
1 if ui ≤ u < ui+1

0 otherwise
(2.2)

Higher degree B-splines are computed with the recurrence relationship

Ni,p(u) =
u− ui
ui+p − ui

Ni,p−1(u) +
ui+p+1 − u
ui+p+1 − ui+1

Ni+1,p−1(u) (2.3)

� Refinability : The B-spline basis functions can be expressed as translated and di-

lated copies of themselves. For uniform B-splines, i.e. the distance between the
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Figure 2.2.: Refinement of uniform Cubic B-spline basis function (2.4).
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knots are uniform, the following two scale relation holds (see Figure 2.2)

Ni,p(u) =
1

2p

p+1∑
j=0

(
p+ 1

j

)
Ni,p(2u− j) (2.4)

where the refined basis function are multiplied with the binomial coefficients(
p+ 1

j

)
=

(p+ 1)!

j!(p+ 1− j)!
(2.5)

It is obvious from (2.1) that the geometry of the curve depends not only on the control

points but also the degree and the knot vector. The curve geometry can be altered by

changing any such parameter. Generally in CAD models, the designer will determine the

degree at the start and formulate a control polygon to represent the conceptual geometry.

A suitable knot vector is implicitly created based on specific geometric features such

as sharp edges, creases etc. Subsequent to the initial concept stage, the geometry is

modified as required by moving the control points without necessarily changing the

degree or the knot vector.
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2.2. NURBS

Non Uniform Rational B-spline (NURBS) came in to prominence after Versprille [127]

and Tiller [126] showed that they can unify the parametric and implicit polynomial

forms that were popular for representing smooth curves and surfaces in the 1980’s.

Additionally NURBS are able to provide exact descriptions of all conic section such as

ellipses and circles. NURBS has been an Initial Graphics Exchange Specification (IGES)

standard since 1983 [104] and the flexibility and precision offered by NURBS has since

made it the de facto CAD standard.

NURBS curves are a variant of B-splines that allow a more precise definition of geometry

using rational basis functions. The definition for a p-th degree NURBS curve is

C(u) =
n∑
i=0

Ri,p(u)xi u = {u0, u1, . . . , un+p+1} (2.6)

where the basis functions Ri,p(u) are defined as follows

Ri,p(u) =
Ni,p(u)wi∑n
j=0 Nj,p(u)wi

(2.7)

Homogeneous coordinates of the form xw = (wx,wy, wz, w) can also be used to represent

a non-rational NURBS curve in a four-dimensional space

Cw(u) =
n∑
i=0

Ni,p(u)xwi u = {u0, u1, . . . , un+p+1} (2.8)

The weight wi of each control point xi is a free variable, which provides additional

control over the shape of the curve.

NURBS surfaces can be constructed as the tensor product of two NURBS curves as seen

in Figure 2.3. A rectangular grid of control points and two knot vectors u, v are thus

required.

u = {u0, u1, . . . , un+p+1}

v = {v0, v1, . . . , vm+q+1}

The definition of a NURBS surface (based on the tensor product of (2.6)) of degree p in
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Figure 2.3.: Tensor product construction of a cubic NURBS basis function.

the u direction and q in the v direction using knot vectors u, v reads

ζ(u, v) =
n∑
i=0

m∑
j=0

Ri,j(u, v)xi,j (2.9)

where xi,j are the control points and Ri,j(u) are the rational B-spline basis functions;

Ri,j(u, v) =
Ni,p(u)Nj,q(v)wi,j∑n

k=0

∑m
l=0 Nk,p(u)Nl,q(v)wi,j

(2.10)

Similarly the tensor product of (2.8) yields a NURBS surface using homogeneous coor-

dinates.

Knot insertion

Changing mesh resolution of a NURBS geometry, i.e. adding extra control points, is

achieved by a process known as knot insertion. There are many available knot insertion

algorithms starting from the Casteljau algorithm [40] for evaluating Bézier curves. This

algorithm was adapted by de Boor [37] for evaluating a B-spline curve at some parameter

value t. These methods are based on repeatedly inserting t to the knot vector.

C(t) =

p∑
i=0

Ni,p(t)xi =

p−1∑
i=0

Ni,p−1(t)x1
i = · · · =

0∑
i=0

Ni,0(t)xni = xn0 (2.11)
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where xj is given by an affine combination of xj−1. The curve is unchanged during this

process but existing control points are moved and a new control point is added per each

new knot inserted. Algorithms that enable multiple knots to be inserted at the same

time such as the Oslo algorithm [35] are more suited for creating higher resolutions from

a starting coarse control mesh as required in the present work.

Arbitrary geometry

As described in the previous section, creating multiple resolutions of a single NURBS

patch is not an issue, the challenge is to perform multiresolution editing on a trimmed

NURBS surface. As implied in (2.9), a NURBS surface is restricted to rectangular

patches. For representing arbitrary geometry, mesh trimming is required which is simply

a boolean operation that hides unwanted sections of a surface patch. In addition, the

various surface patches must be stitched together to create a single smooth geometry

resulting in lack of continuity. Careful positioning of the control points on either side

of the trimming curve can achieve continuity only in situations where the surfaces have

compatible knot vectors [17, 48]. Figure 2.4 shows an example geometry that cannot be

represented using tensor-product patches. Trimming has resulted in a visually smooth

surface, which on close inspection reveals the gap in the geometry. The root of the

problem is that the intersection of two arbitrary NURBS patches cannot be exactly

reproduced by the trimming curve [115, 9]. A remedy based on T-Splines to obtain

watertight stitching of trimmed NURBS patches (with no gaps or holes) is presented in

[115]. However a fine resolution mesh with T-junctions is not suitable for conventional

(a) Sixteen untrimmed
NURBS patches
smoothly connected.

(b) Trimmed NURBS surface and trimming curve (green). Close
inspection reveals holes (inset).

Figure 2.4.: Trimming to represent non-tensor product meshes.
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Figure 2.5.: Chaikin’s [25] corner cutting example. Original curve (grey) successively
refined (green) by cutting corners.

FEM solvers. Hence using a multiresolution framework based on T-splines would restrict

the analysis module to isogeometric methods which also use T-splines [9].

2.3. Subdivision surfaces

Subdivision can be defined as obtaining a smooth curve or surface as the limit of a

sequence of successive refinements [131]. The origins of subdivision can be dated to the

corner cutting algorithm by Chaikin [25] who produced a uniform quadratic B-spline

in the limit after successive refinement steps (figure 2.5). Informally, subdivision is

essentially a way of obtaining B-spline curves and surfaces with uniform knots.

2.3.1. Univariate subdivision

The refinability property of uniform B-spline basis functions (2.4) can be expressed using

a subdivision matrix

Ni,p(u) =

p+1∑
j=0

Ni,p(2u)Sij (2.12)

where the non-zero entries of the subdivision matrix Sij contain the weights of the

binomial coefficients defined in (2.5). Let C(u) be a uniform B-spline curve of degree p

initially defined with the basis Np and control points x0. The subdivision matrix can be
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used to change the basis of a curve from Np(u) to Np(2u) and control points from x0 to

Sx0

C(u) = Np(2u)Sx0 (2.13)

This process can be repeated k times to obtain an increasingly smoother control polygon

as seen from Figure 2.6.

C(u) = N(u)x0

= N(2u)x1 = N(2u)Sx0

...
...

= N(2ku)xk = N(2ku)Skx0

Note that for the example shown in Figure 2.6, there are twice more components in

N(2u) than N(u) etc. Also, the subdivision matrices S gets larger during refinement. It

is clear that the subdivision matrix S defines the following relationship between control

points of two consecutive levels of refinement.

x`+1 = Sx` (2.14)

By definition, the initial control polygon is assigned level ` = 0. Subdivision is easily

understood when explained in the widely used cubic setting, i.e. using cubic B-splines.

Figure 2.6.: Subdivision refinement of a cubic control polygon (shown left). The three
polygons to the right are generated by repeated subdivision. Notice the
increasing smoothness of the subdivided polygons.
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(a) Refinement by bisecting. (b) Masks for even (top)
and odd (bottom) ver-
tices.

Figure 2.7.: Univariate cubic subdivision refinement.

The subdivision matrix for a cubic curve has the following structure

S =


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. . .

0 0 0 1
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. . .

0 0 0 0 . . .


Each column of the subdivision matrix is a copy of the previous column shifted down by

two rows. The entries of the subdivision matrix are called subdivision weights. Each row

contains weights defining how existing control points combine to form control points in

the refined curve. These rules can be graphically shown in the form of subdivision masks

and are widely used in computer graphics literature. It is clear that the above cubic

subdivision matrix has two different type of rows and, hence, has two different masks

shown in Figure 2.7b.

It is instructive to think that each subdivision step consists of a refinement and averaging

steps. In the refinement step every segment of the polygon is subdivided in two segments,

Figure 2.7a. Subsequently, the vertex coordinates of the refined polygon are determined
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by averaging the coarse vertex coordinates with the two masks shown in Figure 2.7b.

x`+1
2i =

1

8
x`i−1 +

3

4
x`i +

1

8
x`i+1 (2.15a)

x`+1
2i+1 =

1

2
x`i +

1

2
x`i+1 (2.15b)

The even vertex mask applies to vertices that are already present in the coarse polygon

and the odd vertex mask applies to vertices that are only present in the refined polygon.

The naming odd and even for the stencils is motivated by the consecutive numbering of

vertices in a polygon where newly inserted vertices receive odd numbers (2.15).

2.3.2. Bivariate subdivision

The main difference between NURBS and subdivision stems from how the univariate

curves described in the previous section are adapted to create bivariate surfaces. It

is now appropriate to introduce some terminology used in connection with subdivision

surfaces. The valence denotes the number of edges connected to a vertex, vertices with

valence = 4 in a quadrilateral mesh or valence = 6 in a triangular mesh are called

a regular vertex and any non-regular vertex is an extraordinary vertex. Additionally

the notion of control polygon is now replaced with control mesh to reflect the higher

dimension.

For a regular control mesh, i.e. all vertices are regular, the subdivision masks for surfaces

can be constructed in the same way as NURBS using the tensor product of (2.12). In the

refinement step, each quadrilateral element in the control mesh is subdivided into four

quadrilaterals by introducing new vertices at the edge midpoints and element midpoints

as shown in Figure 2.8a. In a cubic setting, the tensor product of (2.15a) and (2.15b)

lead to the subdivision masks shown in Figures 2.8b and 2.8c.

Arbitrary geometry

The capabilities of subdivision with respect to arbitrary geometry represented is high-

lighted in its popularity in character animation. A successful integration of a variant of

Catmull-Clark subdivision to Pixar’s Renderman [41] was used for creating the Academy
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(a) Refinement by
quadrisecting.

(b) Masks for odd vertices.

(c) Mask for regular even vertices. (d) Valence dependent mask for non-
regular even vertices.

Figure 2.8.: Bivariate Catmull-Clark subdivision refinement.
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(a) Refinement by
quadrisecting.

(b) Masks for even and odd vertices.

Figure 2.9.: Bivariate Loop subdivision refinement.

award winning short film Geri’s game. This led to widespread use of subdivision surfaces

resulting in it being the method of choice for the animation industry today.

Subdivision leads to NURBS surfaces when applied for regular meshes. The key advan-

tage of subdivision is the unique ability of generating a single watertight smooth surface

from a mesh with extraordinary vertices. An important contribution in this regard was

from Catmull and Clark [21] who modified the regular cubic subdivision masks to be

applied for meshes with extraordinary vertices by making them dependent of the valence

of vertices. Doo and Sabin [42] provide analytical proof based on eigenanalysis of the

subdivision matrix (see appendix A.1 for details). The modified mask for existing ver-

tices presented by Catmull and Clark is shown in Figure 2.8d, with the suggested values

for β and γ being 3
2v

and 1
4

respectively where v is the valence of the vertex. Note that

the mask reduces to the one in figure 2.8c when v = 4 for a regular vertex.

There are many different subdivision schemes available, the most widely used of which

are Catmull-Clark [21] and Loop [91] for quadrilateral and triangular meshes, respec-

tively. Only these two subdivision schemes are used in this dissertation. Both schemes

are cubic in the univariate setting but the Loop scheme yields quartic box splines in

the bivariate setting for regular meshes whereas Catmull-Clark leads to cubic splines.

Figure 2.9 shows the refinement pattern and the subdivision masks for Loop subdivision.

More details on subdivision surfaces can be found in [111], [131].
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(a) Using regular subdivision.

(b) Using extended subdivision. The edges shown in red are tagged as crease edges.

Figure 2.10.: Comparison of subdivision refinement of a connector using regular and
extended Loop subdivision rules. Figures from left to right shows the
control mesh, once subdivided mesh, twice subdivide mesh and a rendering
of the limit surface.

Extended subdivision

The subdivision rules in (2.15) have been chosen such that the limit curve for `→∞ is

a uniform cubic B-spline. The relaxed nature of conditions required for convergence of

subdivision schemes allow room for various improvised subdivision rules to be created

in order to change the interpolation and/or smoothness properties of the limit surface.

Being a cubic spline the limit surface is C2-continuous which can be reduced to C0

continuous by modifying the subdivision weights. A comprehensive list of such extended

subdivision rules for Loop and Catmull-Clark were given by Biermann et al. [14]. The

present work uses these extended rules to impose surface features such as boundaries,

creases etc. The methods is based on mesh tagging where vertices may be tagged as

creased, corner and edges as creased amongst others. Special subdivision masks with

modified weights are used in the vicinity of tagged vertices or edges.

Ability to represent such surface features are vital for use of subdivision in CAD where

models often contain non-smooth design features. Figure 2.10 shows such an example

which compares regular and extended Loop subdivision.
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2.3.3. Multiresolution geometry editing

Figure 2.11.: Multiresolution editing of the connector geometry introduced in Fig-
ure 2.10a. The geometry is modified by moving the edge of one of the
holes in the vertical direction. The modification is performed on levels
` = 0, 1, 2 shown on the first, second and third rows respectively. Notice
the effect of the modification level on the limit surface (last column).

Creation and manipulation of complex geometric models is often required in applica-

tions such as animation. As previously explained subdivision is the method of choice in

animation owing to the flexibility offered in representing arbitrary geometry. Addition-

ally, subdivision offers an elegant solution to the needs of multiresolution mesh editing

semantics, namely provision of a coarse mesh that can be edited with large scale control

while the resulting changes can be applied to the limit surface smoothly.

The basic idea in multiresolution editing is to modify coarse mesh coordinates to perform

large-scale changes (to the limit surface) and to modify fine mesh coordinates to add

localised changes. The local support property of B-splines imply that editing a control

point only affects the local support of the corresponding B-spline. The local support

of a control point in a coarse resolution maps to a larger region in the limit surface in
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comparison to a fine resolution control point. Such geometry editing with subdivision

surfaces is now standard practice in modelling packages, e.g. 3Ds Max, Maya, Blender.

By way of example, this is illustrated in Figure 2.11 for the connector geometry previ-

ously introduced in Figure 2.10a using extended Loop subdivision. It can be shown that

the local support or area of influence for each vertex extends over two rings of adjacent

triangles in this case. First the control mesh coordinates x0 are modified with x0 + d0,

where d0 can be thought as a user given perturbation vector. In the considered example

perturbations are only applied to the vertices placed on one of the hole edges. Subse-

quent computation of the limit surface (by repeated subdivision) leads to a geometry

with rather large scale changes. Alternatively, the edge of the hole can be perturbed on

some finer level `, i.e. x` + d` = S`x0 + d`. This results in more localised changes.
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3. Progressive meshes

Constructing a multiresolution hierarchy from a given fine resolution mesh can be ad-

dressed with two alternative approaches; namely, either by creating an equivalent fine

resolution mesh with subdivision connectivity or via mesh simplification. This chapter

focuses on the latter where a sequence of meshes obtained from incremental mesh dec-

imation is used to represent the geometry at different resolutions. Existing progressive

mesh technologies are reviewed in view of developing a framework suitable for multires-

olution optimisation.

3.1. Multiresolution modeling on arbitrary meshes

Subdivision surfaces can also be used for the bottom up approach of starting the inte-

grated geometric design, analysis and optimisation cycle from a fine resolution model

already containing many design features. However this requires a remeshing step before

the model can be incorporated into the multiresolution framework. During the remesh-

ing step, a fine resolution subdivision mesh is to be fitted to the original mesh, the

parameterisation of the former needs to be such that the geometric difference with the

original is minimised. Krishnamurthy and Levoy [83] provide such an example where

multiple B-spline patches are fitted to arbitrary meshes. However use of subdivision

surfaces in this context requires a constraint on the remeshing process; the fitted fine

resolution mesh must have subdivision connectivity, i.e. semi-regular mesh without too

many extraordinary vertices. Several algorithms for fitting meshes with subdivision con-

nectivity are provided in literature; Eck et al. [43] used Voronoi diagrams and harmonic

maps, the MAPS algorithms by Lee et al. [87] used vertex removal to obtain a coarse

mesh on which a modified Loop scheme is used to create the parameterisation, Lee et

al. [86] also use the MAPS algorithm to generate the coarse mesh but use a global op-

timisation strategy to adjust the control points to obtain a better correspondence with
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the original. Once such a mesh with subdivision connectivity is fitted to the original,

the desired multiresolution framework can be created using the inherent multiresolution

structure of subdivision surfaces.

Alternatively, a different concept based on progressive meshes [69] is adopted in the

present work for building a bottom-up multiresolution framework. In comparison to

subdivision mesh fitting methods, progressive meshes can construct a multiresolution

hierarchy from an arbitrary mesh without any remeshing.

3.2. Mesh decimation

Mesh decimation has been traditionally used for reducing the complexity of high reso-

lution meshes for data compression, see Heckbert and Garland [67], Cignoni et al. [29]

for a review. Most algorithms are based on incremental mesh decimation where one

vertex is removed during a single decimation step. The process can be designed to be

invertible, i.e. the original mesh can be reconstructed by running the decimation scheme

backwards. In this context, it is advantageous to keep a single decimation operation as

simple as possible. Several available choices shown in Figure 3.1 and listed below:;

� Vertex removal: Delete a vertex and re-triangulate its neighbourhood.

� Edge collapse: Delete one edge and two adjacent triangles and merge the two

involved vertices into a new position.

� Halfedge collapse: Takes two adjacent vertices, one is moved to the position of

the other. Effectively a special case of edge collapse where the merged vertex takes

the place of one of the original vertices.

In view of the need to record the decimation process for later reconstruction, it is clear

that halfedge collapse is the easiest [69] from the decimation operations depicted in

Figure 3.1.

The order of decimation is governed by some quality criteria which is usually a combi-

nations of binary and continuous oracles. These quality criteria are used to keep the

decimated mesh within some geometric tolerance of the original. As the name implies,

a binary oracle is used to check (yes/no) if a particular decimation step violates a given
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(a) Vertex removal (b) Edge collapse (c) Halfedge collapse

Figure 3.1.: Mesh decimation operations. Entities removed during decimation are shown
in blue and entities added after decimation are in red.

condition, e.g. maximum aspect ratio. A priority queue is then formed from the remain-

ing potential simplification steps according to a continuous oracle that assigns some

value to the quality of the mesh after the decimation step in consideration. Note that

this process requires the presence of at least one continuous oracle.

3.2.1. Quadrics

The quadric error metric by Garland and Heckbert [55] provides a way to measure the

error due to a decimation step and can be used as a continuous oracle. Essentially it

computes the squared distance from a vertex to the surface. The equation of a plane with

unit normal n and passing through a point p is given by is (x− p)Tn = 0. Restricting

the definition of a surface to a triangular mesh, i.e. a set of planes P , the squared

distance error Es between a vertex x and the surface can be computed as the sum of
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squared distances from x to each plane

Es(x) =
∑
i∈P

((x− pi)Tni)2

=
∑
i∈P

((x− pi)TninTi (x− pi)

=
∑
i∈P

xTnin
T
i x− 2(nin

T
i p)Tx+ pTi pi

=
∑
i∈P

xTAix+ 2bTi x+ ci (3.1)

where Ai = nin
T
i , bi = −Aipi and ci = pTi pi. Garland and Heckbert [55] defined the

following quadric as a triple

Q(A, b, c) =

[
A b

bT c

]
(3.2)

Note that Q is a 4×4 matrix given that A is a matrix of size 3×3 and b is a vector of size

3. Essentially a quadric is a matrix that can be used to measure the squared distance

error from a point to a plane. Quadrics can be added component wise; Qi(Ai, bi, ci) +

Qj(Aj, bj, cj) = Q(Ai + Aj, bi + bj, ci + cj). The error in (3.1) can now be computed

using quadrics and an augmented position vector for the vertex x̂ = [x1 x2 x3 1]

Es(x) =
∑
i∈P

x̂TQs
i x̂ = x̂T

(∑
i∈P

Qs
i

)
x̂ (3.3)

where Qs = Qs(nnT ,−nnTp,pTp) is the local approximation error quadric, with p’s

given by the original positions of the vertices.

3.2.2. Feature preserving decimation of CAD geometry

Using only the local approximation error quadric Qs (3.3), quantifying the squared dis-

tance error to the surface, during decimation is adequate for models with mostly curved

geometry as seen, for instance, in Figure 1.7. However most CAD geometries contain

flat surfaces which will give zero error for any in-plane halfedge collapses. Additionally,

design features such as holes, creases etc. need to be preserved as much as possible

during the decimation process.

Figure 3.2 shows an example where a CAD model with holes, creases and plane areas is
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(a) Original mesh with 16638
vertices.

(b) 95% vertices decimated us-
ing Qs (3.3).

Figure 3.2.: Decimation of typical CAD model containing holes, creases and plane areas
using only the local approximation error quadric.

decimated using only the local approximation error quadric. The zero error in the flat

region has resulted in the immediate collapse of all halfedges in this region. Clearly a

priority queue based on a single error quadric is not adequate. Several types of errors

can be combined with different weights as required [81] for enforcing different quality

measures.

E(x) = αE1(x) + βE2(x) + . . . (3.4)

where α, β are the weighting factors for the errors E1, E2. This concept can be used

to combine multiple quadrics related to different error measures. For example, Garland

and Zhou [56] suggests the use of a vertex distribution quadric for the decimation of flat

regions. Let p denote the original position of a vertex with coordinate x, the deviation

from its original position is expressed as;

Ev(x) = (x− p)2

= xTx− 2pTx+ pTp

= x̂TQvx̂ (3.5)

Where Qv = Qv(I,−p,pTp) is the vertex distribution quadric. Figure 3.3a shows that

a more uniform decimation can be achieved by using a combination of the local approx-

imation quadric and the vertex distribution quadric.

The next task is to preserve design details such as creases, holes etc. Garland and

Heckbert [55] propose the use of a normal plane to facilitate halfedge collapse along

the boundary and to constrain collapses where a vertex on the boundary is removed.

For a vertex x connected to an element located along the boundary, let e denote a unit
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(a) 95% vertices decimated us-
ing a combination of Qs (3.3)
and Qv (3.5).

(b) Creased edges (red) tagged
before decimation.

(c) 95% vertices decimated us-
ing a combination of Qs, Qv

and Qe. The latter is com-
puted the same way as (3.6).

Figure 3.3.: Feature preserving mesh decimation for model in Figure 3.2a.

tangent vector to the boundary edge. The equation of the normal plane is (x−p)T n̄ = 0

with the unit normal given by n̄ = n× e, where n is the element normal. The squared

distance form this normal plane, expressed using a boundary preserving quadric, can be

used to maintain the boundary during decimation.

Eb(x) =
∑
i∈B

x̂TQb
i x̂ (3.6)

where Qb = Qb(n̄n̄T ,−n̄n̄Tp,pTp). The set B contains all elements connected to x

adjacent to the boundary. Qb needs to be computed multiple times for elements with

multiple boundary edges as n̄ is different each time. In the present work, the same

method is used to preserve any creased edges. An edge preserving quadric Qe is generated

the same way as before treating the creased edge as a boundary. For feature preserving

decimation of the model from Figure 3.2a, creased edges are tagged (Figure 3.3b) before

decimation resulting in the creased edges being preserved as shown in Figure 3.3c.

Incremental mesh decimation

The present work uses an algorithm for incremental decimation with halfedge collapse

using quadrics originally presented by Garland [54]. The decimation is initiated by

computing the quadrics for each vertex. Multiple quadrics are combined to formulate a

single error quadric per vertex xi following the approach in (3.4).

Qi = Qv +
∑
j∈Pi

ajQ
s
j +

∑
m∈Bi

l2mQb
m +

∑
n∈Ei

l2nQe
n (3.7)
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where the sets Pi, Bi and Ei contain; all elements connected to vertex xi, elements with

a boundary edge and elements with a creased edge, respectively. The scaling factors a

and l are the area of the element and edge length, the latter is squared for dimensional

consistency. Notice that in the introduced quadratics, when p = x is used, for example

Qs
j = Qs

j(njn
T
j ,−njnTj xi,xTi xi), they yield to x̂Ti Qix̂i = 0 as expected.

The list of allowable halfedge collapses is established by passing every halfedge in the

mesh through binary oracles. In the present work two binary oracles are used, namely a

limitation on element aspect ratio after collapse and strict preservation of user defined

vertices. Next, the list of allowable halfedge collapses is sorted to formulate a priority

queue. This is done by comparing the error in each halfedge collapse using quadrics

(3.7). In each decimation step, the halfedge collapse at the top of the priority queue is

performed and the priority queue is updated before the next collapse. See appendix B.1

for the exact description of the incremental decimation algorithm used in the present

work.

3.3. Progressive meshes

Progressive meshes introduced by Hoppe [69] can be used for multiresolution editing

of arbitrary fine input meshes as demonstrated by Kobbelt et al. [82] and Guskov et

al. [59]. Essentially a sequence of intermediate meshes, generated using incremental

mesh decimation introduced in Section 3.2, is used as a proxy for editing a fine resolution

triangulated mesh. Detail vectors are used to store the difference between each successive

resolution which is used to transfer the effects of global coarse mesh edits to the initial

fine resolution.

Hoppe noted that the halfedge edge collapse transformation is reversible via vertex split

if a record of the edge collapses is maintained. Given a starting mesh xn containing n

vertices, a sequence of meshes can be generated, via a series of k halfedge collapses.

Here, each resolution contains one vertex less than the previous one. Let x`i , x
`
j denote

a pair of adjoining vertices in the current mesh x`, a halfedge collapse is represented by

(x`i ,x
`
j)→ x`−1

i , i.e. vertex x`j is removed during decimation and vertex x`i remains but
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Figure 3.4.: Progressive decimation of an initial mesh with 10 vertices. Note that
the superscript denoting the level of each vertex is omitted for clarity.
The sequence of halfedge collapses from left to right are (x9,x6) → x9,
(x2,x4) → x2, (x3,x0) → x3 and (x7,x3) → x7 respectively. In each
halfedge collapse, the vertex removed is indicated in blue and the vertex
retained in red.

at a coarser resolution x`−1
i = x`i . A schematic diagram of progressive decimation of an

initial mesh with 10 vertices is shown in Figure 3.4. The process can be run backwards

and the original mesh recovered if a record of the local neighbourhood for each collapse is

maintained. The limitation is that the order of restoration has to be strictly the inverse

of the decimation order.

The order of half edge collapses is governed by a quadric based continuous oracle as

previously explained. This defines how and when geometry features are preserved during

decimation.

In addition to decimation, another important module in progressive meshes is the

smoothing operator. Computing the details as the difference between two mesh res-

olutions, d` = x` − x`−1, is not suitable for transferring coarse resolution edits to finer

resolutions in a smooth and intuitive manner. As indicated in (1.7), the smoothing

operator affects detail restoration after the coarse resolution geometry is edited. Only

certain choices for the smoothing operator lead to visually satisfactory results after detail

restoration.
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3.3.1. Smoothing operator

The simplest smoothing operator available is the discrete Laplacian L which was used by

Kobbelt et al. [82] in their multiresolution mesh editing framework. However it causes

severe shrinking of the mesh after repeated smoothing (Figure 3.5b). Shrinking can be

avoided by using the non-shrinking two-step method by Taubin [125]. Additionally, the

discrete Laplacian cannot preserve the in-plane shape of elements, i.e. element shapes

change when smoothing a flat surface. Taubin [125] proposed using the inverse of the

edge length as weight functions resulting in reduced in-plane shape distortions. The

general format of the discrete Laplacian for smoothing a vertex xi with the one-ring

neighbourhood Ni 1 is as follows;

L(xi) =

∑
j∈Ni

wij(xj − xi)∑
j∈Ni

wij
(3.8a)

xi ← xi + L(xi) (3.8b)

The weights wij are 1 in the general Laplacian or 1/l (where l is the edge length) for the

modified Laplacian preserving element planar shape [125]. Note that the Laplacian (3.8)

is essentially an avaraging operation very similar to that of subdivision 2.15. The non-

shrinking version uses two smoothing steps

x̌i ← xi + λL(xi) (3.9a)

xi ← x̌i + µL(x̌i) (3.9b)

Initially, all vertices are smoothed using a Laplacian scaled by a parameter λ, followed by

a second smoothing stage with a different scale factor µ. See Figure 3.5c for an example

of non-shrinking Laplacian smoothing. A similar effect to the non-shrinking Laplacian

can be achieved by simply scaling the contribution from the one-ring neighbourhood

in (3.8b) using some scalar ρl

xi ← xi + ρlL(xi) 0 < ρL ≤ 1 (3.10)

Figure 3.6 shows a comparison of different ρl values for smoothing the Stanford bunny

model in Figure 3.5a.

1One-ring refers to the vertices sharing an edge with xi.
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(a) Starting model, Stanford
bunny with 2503 vertices.

(b) 10 smoothing steps using
regular Laplacian (3.8b).

(c) 10 smoothing steps using
non-shrinking Lapla-
cian (3.9), with λ = 0.6307
and µ = −0.6732.

Figure 3.5.: Comparison of regular and non-shrinking Laplacian smoothing.

(a) ρl = 1
3 (b) ρl = 1

5 (c) ρl = 1
10

Figure 3.6.: Use of scaled Laplacian for non-shrinking smoothing. The Stanford bunny
model in Figure 3.5a is smoothed 10 steps using (3.10) with different ρl
values.
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(a) Decomposition. Initial mesh x` decimated to obtain
coarse resolution x`−1 and details d`.

(b) Reconstruction. Edited coarse
resolution mesh x̃`−1 and origi-
nal details d` used to translate
the editing to the original mesh.

Figure 3.7.: Wiring diagrams for computing and restoring details. Note that F will be
described later.

3.3.2. Multiresolution editing

The multiresolution editing framework used in the present work is based on the work

of Kobbelt et al. [82] and Guskov et al. [59]. The multiresolution decomposition of

a fine resolution model mesh into a sequence of coarser meshes and details is termed

decomposition and its opposite is termed reconstruction where details are restored. These

can be conveniently expressed using wiring diagrams [132] as shown in Figure 3.7. Note

that the diagrams in Figure 3.7 are only for a single decimation step from level ` to `−1.

The process is repeated for multiple decimation steps.

The presence of smoothing operator S is essential in the reconstruction step (Fig-

ure 3.7b), where coarse level edits x̃`−1 are smoothed before details d` are added back

to restore the fine resolution. The decimation step must be designed such that its in-

verse gives the desired smoothing of coarse level edits. The resulting decomposition

step is shown in Figure 3.7a, where details are computed as the difference between the

smoothed coarse resolution and the fine resolution. Note that a local frame F is required

for preserving the orientation of details and will be discussed later.

The next task is to define a suitable mesh neighbourhood for applying the smoothing

operator during multiresolution editing. Kobbelt et al. [82] restricted their Laplacian

smoothing operator to a user defined region around the edited coarse resolution vertex.

This is not practical for multiresolution optimisation where multiple coarse resolution

vertices may be edited at the same time. Guskov et al. [59] used a geometric smooth-
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ing operator based on minimising the normals between two neighbouring triangles and

applied this for the one-ring neighbourhood N `
i of the coarse resolution vertex x`i .

In the present work, the general Laplacian smoothing operator (3.8a) in the form (3.10)

is used. Unless otherwise stated, the scaling parameter is set to ρl = 1
3

in all presented

examples. Smoothing is applied only to the one-ring of the decimated vertex, as in

Guskov et al. [59], limiting the shrinking which is anyhow recovered via the details.

The smoothing achieved by the non-shrinking Laplacian is not sufficient for smoothing

relatively large coarse resolution edits while the geometric smoothing operator in [59] is

unsuitable for geometry with plane regions.

Reconstruction step

The smoothing operation in the reconstruction step ensures that the coarse resolution

edits are transferred to the fine resolution in an intuitive manner. At the start of the

reconstruction stage, there is a detail vector d`i available corresponding to every vertex

in the fine resolution x`i to be reconstructed. The computation of the detail vector d`i

will be explained later. Let N `
k denote the set of vertices in the one-ring neighbourhood

of the decimated vertex x`k (Figure 3.8a). Assume that the coordinates of the vertices

in N `
k have been edited x`−1

j → x̃`−1
j with j ∈ N `

k (Figure 3.8b). The first task is to

restore the decimated vertex x`k using these edited vertices (Figure 3.8c).

x̃`k = d`k +
1

vk

∑
j∈N `

k

x̃`−1
j (3.11)

where vk denotes the valence of vertex x`k. After this restoration of the decimated vertex,

the mesh is now in resolution ` with the vertices in N `
k retaining their position in the

coarse resolution, i.e. x̃`j ← x̃`−1
j . Next the positions of all vertices in N `

j are updated

using Laplacian smoothing and detail restoration (Figure 3.8d).

x̃`j ← d`j +
(
x̃`j + ρlL(x̃`j)

)
(3.12)

Note that the correct new positions for all vertices in N `
i are computed before updating

any to prevent dependence on the order of smoothing. Once the correct new positions

are known for all vertices in N `
k , the mesh is updated.
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(a) In the decimation step the edge indi-
cated in red is collapsed and the ver-
tex in red is removed. The vertices in
blue represent the one-ring N `

k of the
decimated vertex x`

k (red).

(b) During mesh editing the vertices in
N `

k are edited in the coarse resolution;
x`−1
j → x̃`−1

j , j ∈ N `
k .

(c) In the reconstruction step, first the
decimated vertex is restored using
edited vertex positions from the one-
ring (3.11).

(d) Finally, in the reconstruction step,
the positions of the vertices in the
one-ring N `

j are corrected using
Laplacian smoothing (3.12).

Figure 3.8.: Mesh decimation, editing and restoration order.

Decomposition step

The procedure for computing the detail vectors can be obtained by simply reversing the

previously described reconstruction process. The detail of the decimated vertex x`k is

computed using the inverse of (3.11)

d`k = x`k −
1

vk

∑
j∈N `

k

x`−1
j (3.13)

Note that due to use of half edge collapse for decimation, the positions of vertices in

N `
k have not changed, i.e. x`−1

j = x`j, j ∈ N `
k . Next the details of the one-ring are

computed by inverting (3.12)

d`j = x`j −
(
x`j + ρlL(x`j)

)
= ρlL(x`j) (3.14)

It is important that the positions of the vertices don’t change during detail computation.

Specifically, all vertices in N `
k receive a smoothed position x`j ← x`j + L(x`j), j ∈ N `

k

during application of (3.14). Once all details d`j have been computed, the vertices must
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be restored to their original positions.

Local frame

The concept of local frames, introduced by Forsey and Bartels [51], is illustrated using

the simple example shown in Figure 3.9. Local geometric features retain their global

orientation if details are maintained in the global coordinates during decomposition

and reconstruction as shown in Figure 3.9b. In most practical applications this is not

desirable as it changes the global appearance of the surface. Generally it is desirable

to maintain the relative orientation of such local geometric features with respect to the

geometry during deformations. This can be achieved simply by storing the details with

respect to a local coordinate system as demonstrated in Figure 3.9c.

(a) Original geometry xn

with a bump in the sur-
face (top) is decomposed
into a coarse resolution
xk and a single detail
vector dk.

(b) Detail described in global
coordinate system. Relative
orientation of feature is not
preserved after reconstruc-
tion (bottom).

(c) Detail maintained in local
coordinate system. Relative
orientation of feature is pre-
served after reconstruction.

Figure 3.9.: Local frames for maintaining orientation of details. The geometry is de-
formed xk → x̃k before reconstruction.

Local frames can be easily constructed as vertex based, see Kobbelt et al. [82] for details.

Consider decomposition and reconstruction for the halfedge collapse (x`i ,x
`
j) → x`−1

i .

The local frame must be defined using coarse resolution geometry x`−1 in view of (3.13)

for restoring the detail of the decimated vertex. In the present work, x`−1
i is selected

as the origin of the local coordinate system. Alternatively a different vertex from the

one-ring of x`j can be used such that the detail length is minimised.

Let w denote the average unit normal of all elements connected at x`−1
i and e be a unit

vector along an edge connected to x`−1
i . A local frame can be constructed with direction
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vectors u, v, w where u = e×w and v = u×w. During decomposition (3.13), (3.14)

the detail d`i is transformed into the local frame. It is transformed back during the

reconstruction stage (3.11), (3.11).

Examples

A frequently used multiresolution example in the computer graphics community is ma-

nipulating facial features of a mannequin surface mesh. A similar example in Figure 3.10

demonstrates the interplay of the decomposition (Figure 3.7a) and reconstruction (Fig-

ure 3.7b) procedures to obtain multiresolution editing. In Figure 3.10a the geometry

with 10011 vertices is edited after 9444 decimation steps resulting in a more local shape

change compared to Figure 3.10b where editing is done after 9935 decimation steps.

A multiresolution study of a plate with localised surface features is made in Figure 3.11.

This example highlights several features required of the bottom-up multiresolution shape

optimisation framework proposed in this dissertation; presence of plane geometry, glob-

alisation of shape changes with multiresolution edits and maintaining orientation of local

surface features. The geometry is initially a rectangular plate of 6 × 12 with 2849 ver-

tices. Localised surface perturbations are added along the normal for all vertices within

a circular region around the centroid. The initial model x2849 is decimated to coarse

resolutions x227 and x9 with 2622, and 2840 halfedge collapses respectively. During deci-

mation, the vertex at the centroid is preserved using a binary oracle and is later deformed

by adding a unit displacement along the normal direction as indicated in Figure 3.11a.

Restoration of this geometry edited at different resolutions results shape changes with

varying degrees of support as evident from the elevation colour contours in 3.11b and

3.11c. Additionally, it is clear from the side view that in each of the restored geometries

the local surface perturbations remain normal to the surface of the plate.
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(a) Edited after 9444 halfedge collapses.

(b) Edited after 9935 halfedge collapses.

Figure 3.10.: Multiresolution editing of mannequin head. Initial mesh contains 10011
vertices. Geometry is edited after decomposition followed by reconstruction
for transferring the coarse resolution edits to the original fine resolution.
In the top figure the mesh level ` = 567 and in the bottom figure the level
` = 76 are edited.
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(a) Initial geometry x2849 (b) Final geometry after editing
coarse mesh x85

(c) Final geometry after editing
coarse mesh x9

Figure 3.11.: Multiresolution editing study of plate with surface features. The initial
mesh containing 2849 vertices is edited at different coarse resolutions. The
colour contours indicate elevation from the plate surface. The top and
bottom rows show respectively an isometric and a side view of the fine
resolution geometry.
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4. Multiresolution geometry

representation

This chapter provides a detailed explanation of how the multiresolution geometric rep-

resentations presented in Chapters 2 and 3 can be used for multiresolution shape opti-

misation.

4.1. Multiresolution shape optimisation

As discussed in Chapter 1, the motivation for using multiresolution geometry for shape

optimisation is better integration of geometric modelling and finite element analysis.

The parameter-free optimisation methods mostly lead to too many design degrees of

freedom and to wiggly shapes unsuitable for design [18, 95, 66]. Ideally it is desirable to

move the mesh while preserving the regularity of the geometric boundary and the finite

element mesh. This can be achieved by using blending functions, such as B-spines [18] or

Bézier curves [66], Laplacian smoothing [95] and describing the boundary as a collection

of primitive geometries (lines, curves, arcs etc) [74]. Overall, the goal is to keep the

number of design variables significantly smaller than the number of nodal coordinates

in the finite element mesh. See Haftka et al. [63] for a survey of geometry description

techniques in shape optimisation.

In topology optimisation, material distribution in a design space is optimised, the issue

of oscillatory optimised solutions has been remedied by various filtering methods, see

Sigmund and Petersson [119], Bendsøe and Sigmund [12] for details. Such filters es-

sentially recover a desirable solution by removing oscillations with a wavelength below

a specified filter radius. Similar filtering methods can be adopted for parameter-free

shape optimisation [36, 15]. The drawback of the filtering approaches is the dependency
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of the final solution on the filter used. To achieve the same objective as the filtering

approaches in the present work, the resolution difference between analysis and design

geometry (Figure 1.5) is used for obtaining smooth regulated shape changes. In addition

to regularising the optimisation process, the proposed multiresolution framework pro-

vides the connectivity between the different modules involved, namely design, analysis

and optimisation, creating an integrated product development cycle.

The use of multiple resolutions have previously been demonstrated in structural topology

optimisation by employing the microstructure approach with a wavelet based variable

space [80, 106, 96]. Quan [108] used a B-spine based density filter in his microstructure

approach to topology optimisation. In terms of multiresolution CAD geometry, Cervera

and Trevelyan [24] added more control points to NURBS curves via knot insertion during

isogeometric topology optimisation, increasing the size of the design space. Kiendl [79]

noted in his NURBS based isogeometric shape optimisation framework that the reso-

lution of the mesh containing the design variables can be refined for optimising more

localised design features. Although NURBS geometry resolution can be locally changed

by adding and removing of control points via knot insertion or T-splines, subdivision sur-

faces offer a natural framework for multiresolution geometry representation. Similarly,

methods based on mesh decimation can facilitate the creation of multiple resolution from

a given fine resolution design model as demonstrated in Chapter 3.

To restate the methodology outlined in Section 1.2, two geometry resolutions are main-

tained; a fine resolution representing the optimised shape and a coarse resolution with

the design variables. Analysis is done using the fine resolution geometry which is up-

dated according to optimisation of the coarse resolution design variables. In addition

to initial construction of the multiresolution hierarchy, the process requires two types

of data transfer between different resolutions. Geometry edits need to be transferred

from coarse to fine resolution and the design sensitivities from fine to coarse. The lat-

ter requires better understanding about the computation and discretisation of design

sensitivity in a multiresolution context.

4.2. Design sensitivity

Design sensitivity is defined as the partial derivative of a cost or objective with respect

to a design variable (1.2). In the following, the first task is to clarify the notion of a
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Figure 4.1.: Geometry mapping between initial design configuration Ω and current de-
sign configuration Ωt.

design variable. The design space in shape optimisation is defined by all the allowable

perturbations of the geometric shape. In this context, a linear mapping which maps a

given domain Ω into a perturbed domain Ωt needs to be defined. With this mapping, a

material point with the coordinate x ∈ Ω is mapped onto

xt = x+ tδv, t ≥ 0 (4.1)

where δv is a prescribed constant vector field and t is a scalar parameter. In the usual

continuum mechanics terminology, Ω is the reference configuration, Ωt is current con-

figuration, δv is the prescribed velocity vector and t is the (pseudo-) time. In shape

optimisation literature the mapping (4.1) is usually expressed as

Ωt = (I + tδv)Ω (4.2)

with I the identity mapping. The optimisation problem (1.1) can be restated in the new

setting (Figure 4.1)

minimise J (Ω,u(x)) (4.3a)

such that gi(Ω,u(x)) = 0 i = 1, . . . , ng (4.3b)

where u(x) is the state variable, i.e. displacement field. Solving (4.3) using gradient

based mathematical programming methods requires the directional derivative of the

objective function in the direction of the velocity field δv

dJ
dΩ

(Ω,u(x))δv = lim
t→0

J (Ωt,u(xt))− J (Ω,u(x))

t
(4.4)
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Figure 4.2.: Discrete (bottom) and continuum (top) approaches in design sensitivity
analysis. The shape change is given by the velocity field V indicated as
black arrows.

Hereafter this derivative will be denoted by DJ (Ω,u(x))[δv],

There are two different approaches (Figure 4.2) to shape design sensitivity analysis based

on the order of discretisation and differentiation of (4.4) and governing equations. In a

discrete setting, differentiation is done with respect to a set of discrete design variables

that define the shape. Alternatively, in a continuum setting differentiation is done with

respect to the shape itself and the resulting shape gradient later discretised among design

variables. The two methods are theoretically equivalent under certain conditions which

are generally violated when computed numerically [27, 129]. Refer to Haftka et al.[2, 62]

for a review of different methods for sensitivity analysis.

In the present work, Chapter 5 uses the discrete approach for shape optimisation of

shell structures, whereas Chapter 6 uses the continuum approach for shape optimisation

of solids. In both cases, the optimisation problem is formulated for the fine resolution

mesh. Hence the shape derivative is obtained as a vector quantity at each node in the

fine resolution mesh. In this respect, fine resolution nodes can be treated as pseudo

design variables. The multiresolution geometry framework is expected to transfer the

sensitivity vectors from these pseudo design nodes in the fine resolution to the coarse

resolution design nodes. The optimisation problem is then solved in the coarse resolution

and the geometry is updated accordingly.

Note that it is also possible to compute the shape derivative with respect to the coarse

resolution design variables where the multiresolution framework is embedded in the
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solver module. However this restricts the use of different geometric frameworks and

solver modules and will not be used in the present work.

4.3. Top-down multiresolution framework

One essential component of the proposed multiresolution subdivision framework (Fig-

ure 1.5) is the coarsening method required to project design sensitivity data from fine

to coarse resolutions. As discussed in Section 4.2, design sensitivities are computed as a

vector quantity in the fine resolution mesh and need to be converted to vector quantities

in the coarse resolution mesh. The framework for transfer of data between multiple

resolution required in the present work is inherently linked to wavelets. A brief outline

of wavelet methods are next presented for better understanding of data transfer between

multiple resolutions.

4.3.1. Wavelets

Wavelets offer a natural choice for hierarchical representation of functions. Finkelstein

et al. [49] used B-spine wavelets for multiresolution editing of curves and the relationship

between wavelets and subdivision was presented by Lounsbery et al. [92]. See Stollnitz

et al. [122] and Schröder [112] for more details on wavelets. The wavelet concept is

demonstrated here using Figure 4.3 which shows the Haar wavelet [61], the most basic

wavelet basis. Let x` be the control points of a degree 0 uniform B-spine (box functions)

curve at level ` (c.f. Equation 2.13)

C(u) =
∑
i

N `
i (2u

`)x`i , x`i ∈ x` (4.5)

The variable u denoting the parametric coordinate will be omitted for brevity hereafter,

i.e. N l = N l
i (2l). The resolution of a basis function is indicated by the superscript.

The Haar wavelet can be used to construct a hierarchical decomposition of the curve as

follows;

x`−1
i =

x`2i + x`2i+1

2
, x`−1

i ∈ x`−1 (4.6a)

d`−1
i = x`2i − x`2i+1, d`−1

i ∈ d`−1 (4.6b)
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(a) Basis functions N 2 replaced
by N 1 and W1.

(b) Basis functions N 1 replaced
by N 0 and W0.

(c) Reconstruction of the original
basis.

Figure 4.3.: Haar wavelet example from Gortler [58]. Basis of degree 0 B-spine curve
C =

∑
N2x2 is transformed to a Haar wavelet basis.

The process can a reapplied to x`−1 yielding x`−2 and d`−2. This can be repeated up to

level 0. The original curve can now be reconstructed without loss of information using

wavelet decomposition

C =
∑
i

N0
i x

0
i +

`−1∑
m=0

∑
i

Wm
i d

m
i , N0

i ∈ N0, Wm
i ∈Wm (4.7)

where N0 and Wm are the B-spine and wavelet shape functions at level 0 and m respec-

tively. The key idea is to replace a fine level function space with a coarse level space

and the difference.

N` = N`−1 + W`−1 (4.8)
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4.3.2. Subdivision coarsening

The Haar wavelet represents subdivision coarsening by (4.6a) which is essentially a data

fitting problem. The fine resolution control points x`+1 at level `+ 1 are known and we

seek a mapping R to find the coarse resolution control points x` at level ` (1.4). The

difference between the two resolutions are stored in details as done by the Haar wavelet

in (4.6b). Similarly, details can be simply computed as the difference between the fine

resolution control points and once subdivided coarse resolution control points [113].

d`+1 = x`+1 − Sx`

= x`+1 − SRx`+1

= (I− SR)(x`+1) (4.9)

Note that the details need to be converted via local frames (Figure 3.9) to maintain

orientation during multiresolution editing. Ideally the magnitude of the detail vectors

are kept as short as possible which is necessary to prevent undesirable geometric effects

when details are restored after editing the coarse resolution. The magnitude of the

details is an indirect measure of the difference between the two resolutions.

In the present work, in addition to projecting from fine to coarse, the subdivision coars-

ening R is required to remove high frequency noise from the shape derivative computed

in the fine resolution, i.e. low pass filtering. The filtering frequency is implicitly related

to the distance between control points in coarse and fine resolutions. Ideally the filter

should only remove noise with frequency matching the fine resolution. For example,

consider some vector field is passed down to the fine resolution using (2.14). If this is

projected back to the coarse resolution without applying any modifications in the fine

resolution, the original vector field is expected to be recovered. In order to have such

behaviour the coarsening method needs to be the inverse of subdivision, i.e. the de-

tails need to be zero when the fine resolution is the once subdivided coarse resolution

x`+1 = Sx`.

0 = Sx` − SRSx`

SRSx` = Sx`

RS = I (4.10)

This property will be referred to as identity property hereafter.

50



Figure 4.4.: Cubic reverse subdivision relations.

4.3.3. Coarsening methods

There are various methods available for determining a subdivision coarsening operator

R, the simplest of which is sub-sampling. Although capable of removing some noise,

the identity is not maintained. Having a local coarsening operator is beneficial due

to convenience of application. The inverse of the subdivision mask [85] or the limit

mask [88] can provide two families of such methods. The drawback of these is that the

exact average of the fine resolution geometry is not always maintained. Bi-orthogonal

wavelets [34] for one-dimensional problems avoid this problem but are complicated to

both implement and to generalise for arbitrary connectivity meshes. A much simpler

method is to use least squares fitting [70, 13], the disadvantage being having to solve

a global linear system. There are other methods that use a combination of the above

to obtain better coarsening operators. Constrained interpolation by Halstead et al. [65]

solves a linear system to get Catmull-Clark control points interpolating a given mesh.

The control points are next subdivided and optimised according to a fairness norm.

Reverse subdivision

It is known that since subdivision is a smoothing operation its reverse may create a

high-energy coarse approximation [85]. The coarsening operator R can be obtained

by locally inverting the refinement equation (2.14) applied at a vertex. Essentially

the vertex masks (the mask for refining even vertices, examples of which are shown in

Figures 2.8c and 2.8d for Catmull-Clark subdivision) are inverted. Reverse subdivision

satisfies the identity requirement (4.10) and yields local reverse subdivision masks that

can be conveniently applied. To derive the reverse subdivision relations, consider a single
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(a) Perturbation (b) n = 13, f = 12π (c) n = 13, f = 14π (d) n = 6, f = 14π

Figure 4.5.: Inconsistency of reverse subdivision. A cubic curve with n vertices and
length 1 is subdivided 5 times and perturbed by adding a sinusoidal noise.
This means for a vertex with index i the perturbation is of the form x̃i

5 =
xi

5 + e1a sin(fx5
i · e0) where e0, e1 are the basis vectors (1, 0)T, (0, 1)T, a

is the amplitude and f is the angular frequency. The perturbed curve is
coarsened x̃i

0 = R5x̃i
5 using five reverse subdivision steps. Three different

cases with different n, f values and constant amplitude a = 0.05 are shown.
In each example, the solid black lines indicate the limit curve before (top)
and after (bottom) coarsening. The blue line represents the control polygon
after coarsening.

subdivision step of the one-ring neighbourhood of a control point x`i (c.f. Figure 2.7)

x`+1 = Sx`x
`+1
2i−1

x`+1
2i

x`+1
2i+1

 =


1
2

1
2

0
1
8

3
4

1
8

0 1
2

1
2


x

`
i−1

x`i

x`i+1


The subdivision matrix for this neighbourhood can simply be inverted to obtain the

coarsening operator

x` = S−1x`+1x
`
i−1

x`i

x`i+1

 =


3
2
−2 0

−1
2

2 −1
2

0 −2 3
2


x

`+1
2i−1

x`+1
2i

x`+1
2i+1



A major shortcoming of reverse subdivision is the lack of consistency in coarsening when

details are present, an examples of which is shown in Figure 4.5. This is a result of the

coarsening operator R = S−1 amplifying certain frequencies.
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B-spine wavelets

The Hierarchical B-spines approach to multiresolution modelling by Forsey and Bar-

tles [51] uses a hierarchy of nested B-spine at different resolutions for editing spline

curves at multiple resolutions. The B-spines at different resolutions are related by (2.4).

It is clear that maintaining multiple B-spine resolutions concurrently leads to an over-

representation. In comparison, wavelets use a basis where only the difference between

adjoining resolutions is present (4.8). B-spine wavelets [58], are a class of wavelets that

fills the gap between adjoining B-spine resolutions. Consider uniform cubic B-spines

with the following refinement relationship

N` = SN`+1 (4.11)

where S =
{

1
8
, 1

2
, 3

4
, 1

2
, 1

8

}
. Similarly cubic B-spine wavelets W have the following refine-

ment relationship [34]

W` = SwW`+1 (4.12)

where Sw =
{

5
256
, 20

256
, 1

256
, −96

256
, −70

256
, 280

256
, −70

256
, −96

256
, 1

256
, 20

256
, 5

256

}
. Note that Sw has been

determined so that the basis has certain orthogonality properties. These relations enable

conversion of coarse resolution B-spines and wavelets to fine resolution B-spines given

the relation in (4.8)

C = N0x0 +
`−1∑
m=0

Wmdm

= N`−1x`−1 + W`−1d`−1

= N`x` (4.13)

where x`+1 = Sx` + Swd`. More importantly, the following relations [34] can be used to

project data from fine to coarse resolutions;

x` = Rx`+1 (4.14)

d` = Rwx`+1 (4.15)

with R =
{ −5

256
, 20

256
, −1

256
, −96

256
, 70

256
, 280

256
, 70

256
, −96

256
, −1

256
, 20

256
, −5

256

}
and Rw =

{
1
8
, −1

2
, 3

4
, −1

2
, 1

8

}
.

These relations can be expressed using local operations similar to subdivision masks.

However wavelets are not a good representation for multiresolution editing as the details
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Figure 4.6.: Coarsening with B-spine wavelets. The limit curve previously obtained with
subdivision refinement, see Figure 2.6, is coarsened (4.14). Top row shows
the coarsening of the unperturbed limit surface and the bottom row shows
the coarsening of a perturbed limit surface. For a vertex with index i the
perturbation is of the form x̃i

∞ = xi
∞ +

∑
j n(xi)aj sin(fjxi · e0), where n

is the normal to the curve, e0 is the basis vector (1, 0, 0)T, a is the amplitude
and f is the angular frequency.

tend to behave in undesirable ways during editing [58, 113]. Additionally, developing

wavelets schemes for arbitrary connectivity surface meshes is not straightforward.

In Figure 4.6 the functioning of B-spine wavelet coarsening operator is illustrated re-

considering the one-dimensional subdivision refinement example previously introduced

in Figure 2.6. The coarsening of two limit curves is investigated. On the top row of

Figure 4.6 the limit curve previously obtained via subdivision refinement in Figure 2.6 is

successively coarsened (4.14) until the original control polygon is recovered. Note that

this is possible due to the identity property (4.10). On the bottom row the coarsening of

a perturbed limit surface is shown. As can be seen the coarsening operation successively

removes the high-frequency oscillations from the geometry while satisfying the identity

requirement (4.10). The resulting control polygon represents a limit surface which is a

visually faithful smooth representation of the perturbed original curve.

Quasi-interpolation

Quasi-interpolation [38, 39] methods enable the construction of a spline surface to ap-

proximate a given function based on local operations. A quasi-interpolation method
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for fitting subdivision surfaces to arbitrary surfaces is available in [88]. Assume p are

sample points that need to be fitted using a subdivision mesh. Let x denote the control

points of the subdivision mesh, the objective is to find x such that p = L0x, where L0 is

the limit mask (A.3).

x = L−1
0 p (4.16)

An approximate inverse of the limit mask L0 can be obtained using a Neumann series;

L−1
0 =

∞∑
i=0

(I− L0)i

= I + (I− L0) + (I− L0)2 + . . .

≈ 2I− L0

The quasi-interpolation operator 2I− L0 can be adapted to provide the required coars-

ening operator by fitting the control points x` to the limit surface p = L0x`+1

x` = (2I− L0)p (4.17)

giving the coarsening operator (2I − L0)L0 which can be expressed as local operations

similar to reverse subdivision. However, the accuracy of the quasi-interpolation operator

is comparable to least squares fitting except at extraordinary vertices where the error

increases with the valence of the vertex [88].

Least squares fit

A common method for fitting meshes to arbitrary data is least squares fitting [71, 70].

The distance energy between the two geometry resolutions ` and `+ 1 can be expressed

by the following functional;

Edist =

∫
Ω

‖N`+1x`+1 −N`xl‖2dΩ (4.18)

The coarse resolution control points x` can be found by minimising this functional.

However expressing the energy in a continuous sense as above requires evaluating the

basis functions N` and N`+1 at the quadrature points, a computationally expensive
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Figure 4.7.: Coarsening using least squares fitting. In (4.20), cubic subdivision is used
to create S. See Figure 4.6 for problem description.

process. Alternatively the distance energy can be expressed in a discrete form

Edist = ‖x`+1 − Sx`‖2 (4.19)

The coarse resolution control points can be obtained by minimising the above

x` = argmin
x`
‖x`+1 − Sx`‖2 (4.20a)

STSx` = STx`+1 (4.20b)

x` = (STS)−1STx`+1 (4.20c)

The desired coarsening operator (1.4) is now given by R = (STS)−1ST. Note that since

subdivision is a local operation, the STS term in (4.20c) can be assembled locally.

Figure 4.7 shows the functionality of the least squares coarsening operator with the same

example coarsened with B-spine wavelets (Figure 4.6). Properties of the wavelet operator

such as preserving identity and obtaining a smooth coarse resolution while eliminating

only high frequency noise are recovered by the least square coarsening operator. The

coarsening process (4.20) for any subdivision scheme, such as Loop and Catmull-Clark,

can be established. Additionally, any special features in the subdivision surface, such as

creases, are naturally recovered by the coarsening process (4.20) by design.
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4.3.4. Integrated geometric design, finite element analysis and

optimisation

With the coarsening operators discussed in the previous section, all the components of

the multiresolution shape optimisation algorithm are in place. This description of Algo-

rithm 1 should be read in conjunction with Figure 1.5. For simplicity of the algorithm,

it is assumed that the discretised optimisation problem is solved with a steepest descent

algorithm and no additional constraints (volume, area etc) are present.

Let `o = 0 and `c denote the coarse resolution containing the design variables and the

fine resolution containing the computational model, respectively. The fine resolution

`c is user given and has to be large enough such that the accuracy of the numerical

solution is sufficient for practical purposes. The initial geometry is denoted by x`o in this

context. Optimisation of geometry is done in an incremental manner; design variables

in resolution `o are first optimised before the optimisation level is incremented by one,

i.e. `o ← (`o + 1).

During each optimisation step, the model is subdivided (`c− `o) times until the compu-

tation mesh x`c is obtained. In the present work, three different subdivision schemes are

used. Uniform cubic subdivision (Figure 2.7) rules are used for optimising 2D geometry

while Catmull-Clark (Figure 2.8) and Loop (Figure 2.9) are used in the 3D case. The ob-

jective function (4.3a) and shape derivatives (4.4) are evaluated using this fine resolution

model. The shape derivative is interpolated at the fine resolution nodes and projected

to the coarse resolution using (4.20). Note that, depending on the subdivision scheme

used, the coarsening operator is different each time. The optimisation problem is solved

in the coarse resolution and the design variable updated using a suitable mathematical

programming method. In the actual implementation the Method of Moving Asymptotes

(MMA) proposed by Svanberg [123, 124] as implemented in the nlopt library [76] is used

to this end. This changes in particular Step 9 in the Algorithm 1. As to be expected,

using a more sophisticated optimisation algorithm than steepest descent significantly

reduces the number of optimisation iterations. If any additional constraints such as

volume or area constraints are present, they must be evaluated and their derivatives

computed after step 6. The derivative of the constraints also need to be projected to

the coarse resolution in step 8.
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Algorithm 1 Multiresolution optimisation with subdivision

// initiate optimisation level `o
1: `o = 0

// iterate until optimisation level is equal to the analysis level `c
2: while `o < `c do

// update vertex coordinates x`o while objective function decreases

3: repeat
// subdivide geometry model on level `o up to analysis level `c

4: x`c = S(`c−`o)x`o

// compute objective function c and shape derivative γ

5: c = J (x`c ,u(x`c)), x`c ∈ x`c

6: γ = dL
dτ

(x`c ,u(x`c))
// interpolate shape derivative at fine resolution nodes

7: γ 7→ g`c

// project shape derivative to optimisation level

8: g`o = R(`c−`o)g`c

// update vertex coordinates of the optimisation model

9: x`oi ← (x`oi + αg`oi ), α < 0, x`oi ∈ x`o, g
`o
i ∈ g`o

10: until c < cprev

// increment optimisation level

11: `o ← (`o + 1)
12: x`o ← Sx`o

13: end while

Figure 4.8 shows an application of the multiresolution framework using subdivision. The

depicted example is a shell optimisation problem where the shape of an architectural

roof is optimised for a uniform pressure load. The example will be covered in detail later

in Chapter 5. In this example, no additional geometry changes are made in the design

stage. If any such additional design features are present, they must be stored as details

using (4.9).
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(a) Initial mesh x153 (b) Coarse resolution x76 (c) Coarse resolution x15

Figure 4.9.: Multiple resolutions of flat rectangular plate (0.3×1). The Initial mesh x153

is coarsened with 77 and 138 halfedge collapses to obtain coarse resolutions
x76 and x15 respectively. Note that binary oracles have been used to obtain
relatively uniform elements in each of the coarse resolutions and to preserve
nodes with indices 14, 24 and 96.

4.4. Bottom-up multiresolution framework

4.4.1. Basis function analogy

Multiresolution representations based on mesh decimation are not naturally suited to

the structural concept of considering a surface in space to be a linear combination of

scalar-valued basis functions [82] such as shape functions in finite elements. However, a

graphical representation of the underlying basis functions can be obtained. Figure 4.9

shows multiple coarse resolutions of a flat plate. Several selected nodes in each resolution

are perturbed along the normal direction and the details restored as shown in Figure 4.10.

The deformed fine resolution mesh can be identified as the corresponding basis function

for the perturbed node.

4.4.2. Uniform geometry editing

In a subdivision setting, the limit position of a node in a deformed control mesh is

determined using limit masks (A.3). In progressive meshes, the equivalent to a limit

surface is the fine resolution mesh. Due to the Laplacian smoothing of the one-ring for

each decimated node (Section 3.3.2), the limit position (position in the fine resolution

mesh with details restored) of each perturbed node depends on the decimation process.

This is reflected by the different maximum values for each of the shape functions in

Figure 4.10. As a consequence, perturbing nodes of a uniform coarse resolution mesh
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(a) x76
24 → x̃76

24 (b) x76
14 → x̃76

14 (c) x76
96 → x̃76

96

(d) x15
24 → x̃15

24 (e) x15
14 → x̃15

14 (f) x15
96 → x̃15

96

Figure 4.10.: Progressive mesh shape functions for example in Figure 4.9. Nodes in
coarse resolution ` are perturbed as x̃`i = x`i + an, where i ∈ {14, 24, 96}
and n is the unit normal to the plate. The amplitude is set to a = 0.25
for coarse resolution ` = 76 (Figure 4.9b) and a = 0.5 for coarse resolution
` = 15 (Figure 4.9c). In each figure, the wireframe indicates the deformed
coarse resolution mesh and the colour contours indicate elevation of the
deformed fine resolution mesh with respect to the plate surface.

may result in non-uniform surface deformations which is not desirable for multiresolution

geometry editing.

Use of constant weights in Laplacian smoothing (3.8a) imply linear response to a per-

turbation of a coarse resolution node. Let x` denote the coarse resolution mesh obtained

after (n−`) halfedge collapses of some original fine resolution mesh xn. A node x`k ∈ x` is

now perturbed x`k → x`k+an along the unit normal n. Note the magnitude of perturba-

tion is given by a. The details are now restored with the position of the perturbed node

in the fine resolution mesh denoted by x̃nk . The shrinking due to Laplacian smoothing is

now represented by the vector x̃`k− x̃nk . Figure 4.11 plots shrinking magnitude ‖x̃`k− x̃nk‖
for different perturbation magnitudes a in Figure 4.10 showing a linear relationship be-

tween the two. This is useful, for example, enforcing prescribed deformations on a mesh

as shown in Figure 4.12. Note that the linear behaviour is lost if non-uniform weights,

such as the inverse of edge length [125], or local frames (Section 3.3.2) are used.
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(a) Shape functions shown in Figures 4.10a,
4.10b and 4.10c with ` = 76.

(b) Shape functions shown in Figures 4.10d,
4.10e and 4.10f with ` = 15.

Figure 4.11.: Relationship between shrinking and perturbation for shape functions in
Figure 4.10. Shrinking ‖x̃`k − x̃153

k ‖ is plotted for different perturbation
magnitudes a.

4.4.3. Coarsening of field data

During multiresolution optimisation, the computed fine resolution design sensitivity

needs to be projected to the coarse resolution. In the quadric based decimation method

described in Section 3.2, coarse resolutions are obtained by removing nodes via halfedge

collapses. This implies the coarse resolution nodes are simply subsets of the fine resolu-

tion and the coarsening operator is a sub-sampling operation.

Figure 4.13 shows an example where sub-sampling based coarsening of some field data

associated to nodes is demonstrated. It is clear that correspondence between the original

data field and the projected coarse resolution data field gradually deteriorates with

coarsening. One remedy is to have a pre-smoothing step before computing details [59].

Essentially, the one-ring of the decimated vertex can be smoothed via a non-shrinking

Laplacian based smoothing operation resulting in smoother coarse resolutions. This

requires the original wiring diagram for the decomposition step (Figure 3.7a) to be

modified as indicated in Figure 4.14. However, in practice such pre-smoothing can be

avoided due to the incremental nature of the multiresolution framework, i.e. later stages

of the optimisation process are done on much finer resolutions where the field data is

adequately represented. Additionally, extreme coarse resolutions are not suitable for

optimisation with progressive meshes. This is due to the large detail vectors present in

such cases causing undesirable effects during detail restoration.
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(a) x15
24 → x̃15

24 (b) x15
24 → x̃15

24 (c) x15
96 → x̃15

96

Figure 4.12.: Progressive mesh shape functions for uniform geometry editing. The per-
turbations corresponding to shape functions in Figures 4.10d, 4.10e and
4.10f have been scaled to obtain uniform geometry editing. The pertur-
bations are of the form to x̃15

i = x15
i + ân, i ∈ {14, 24, 96} where n is

the unit normal. The amplitude â for each node is multiplied by a factor
1/(1− ρsf) where ρsf is the gradient of the curve in Figure 4.11b.

t
(a) Initial mesh x900 (b) Coarse resolution x90 (c) Coarse resolution x22

(d) x̂900 (e) x̂90 (f) x̂22

Figure 4.13.: Coarsening of field data using sub-sampling. Nodes in the initial mesh x900

are perturbed using a scalar field f to x̃900
i = x900

i + f(x900
i )n where n

is the normal to the surface. Next the mesh is coarsened with 810 and
878 halfedge collapses to obtain coarse resolutions x90 and x22 respectively
(top). In the bottom row, the colour contours and the elevation about the
plate surface indicate the scalar field f .
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Figure 4.14.: A pre-smoothing operation Sp can be added [59] to the original decompo-
sition scheme in Figure 3.7a. The pre-smoothing ensures that each coarse
resolution is a smoothed representation of the fine resolution data.

4.4.4. Integrated design, analysis and optimisation algorithm

This description of the bottom-up multiresolution optimisation Algorithm 2 using pro-

gressive meshes should be read in conjunction with Figure 1.9. Same settings as in the

subdivision algorithm (Algorithm 1) are assumed where it is assumed that the discre-

tised optimisation problem is solved with a steepest descent algorithm and no additional

constraints (volume, area etc) are present.

Let x`c denote the fine resolution initial design used as the starting point for optimisation.

The analysis module will use this same mesh, hence the resolution `c needs to be such

that the accuracy of the numerical solution is sufficient for practical purposes. Assume

the set K = {`1, `2, . . . , `k}, `k ≤ `c contains the sequence of increasing resolutions

specified by the user as the different optimisation resolutions, i.e. design variables in

resolution `1 are first optimised before they are moved to the next resolution `2 etc. In

practice, such resolutions are obtained by decimating some percentage of nodes in the

starting geometry mesh.

The progressive mesh hierarchy is built once for each optimisation resolution `o ∈ K.

This involves performing `c − `o halfedge collapses (Section 3.2) on the fine resolution

mesh x`c . The set of details D computed (Equations 3.13 and 3.14) during the dec-

imation will be used throughout iterative optimisation of design variables in x`o . The

objective function (4.3a) and shape derivatives (4.4) are always evaluated using the fine

resolution model x`c . Due to the sub-sampling nature of the coarsening process (Sec-

tion 4.4.3), the shape derivative γ only needs to be interpolated at fine resolution nodes

that are not decimated during the coarsening x`c → x`o . However if pre-smoothing is
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present (Figure 4.14), γ needs to be discretised to all fine resolution nodes. Solving the

optimisation problem in the coarse resolution follows the same order as Algorithm 1.

If uniform geometry modifications are required (Section 4.4.2), the relationship between

shrinking and perturbation of shape functions needs to be pre-computed before step

6. This information can be used when updating the positions of the coarse resolution

design variables in step 13.

Algorithm 2 Multiresolution optimisation with progressive meshes

// obtain sequence of optimisation resolutions

1: K = {`1, `2, . . . , `k}, `k ≤ `c
// optimise each coarse resolution specified in K

2: for ` = `o ∈ K do
// decimate mesh to coarse resolution `, collect and store set of details D

3: D = {d`c ,d`c−1, . . . ,d`o−1}
4: dr = xr − S(xr−1), dr ∈ D
5: x`c hcol1−−−→ x`c−1 hcol2−−−→ x`c−2 . . . hcol`c−`o−−−−−→ x`o

// optimise design variables x`0 while objective function decreases

6: repeat
// restore details up to fine resolution `c

7: xr = dr + S(x`) dr ∈ D
8: x`c vsplit`c−`o←−−−−−− . . . vsplit2

←−−−− x`o−1 vsplit1

←−−−− x`o

// compute objective function c and shape derivative γ

9: c = J (x`c ,u(x`c)), x`c ∈ x`c

10: γ = dL
dτ

(x`c ,u(x`c))
// interpolate shape derivative at fine resolution nodes

11: γ 7→ g`c

// decimate mesh to resolution ` (not required to recompute details)

12: x`c hcol1−−−→ x`c−1 hcol2−−−→ x`c−2 . . . hcol`c−`o−−−−−→ x`o

// update design variables in coarse resolution

13: x`oi ← (x`oi + αg`ci ), α < 0, x`oi ∈ x`o , g`ci ∈ g`c

14: until c < cprev

15: end for

Note that both Algorithms 1 and 2 essentially follow the same workflow. The main

for loop is for optimising the design variables in each optimisation level `o. For each

such level, the cost function is repeatedly computed and the positions of the design

variables are iteratively updated. The main difference between the two algorithms being

the presence of details in Algorithm 2 and the difference in multiresolution data transfer

operations. In Algorithm 1, the subdivision matrix S and the coarsening operator R
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are used for data transfer while Algorithm 2 uses detail restoration via the smoothing

operator S and mesh decimation.

Figure 4.15 shows an application of the multiresolution framework using progressive.

The same example as in Figure 4.8 is used but using a more detailed fine resolution

mesh with arbitrary connectivity as the starting geometry.
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5. Kirchhoff-Love shell optimisation

Kirchhoff-Love theory offers an ideal formulation for parameter-free shape optimisation

of thin shells since it is displacement based and does not require rotational degrees of

freedom. In this setting, the energy functional contains the second order derivatives of

displacement. This leads to the C1-continuity requirement for the finite element basis

functions, which need to have square integrable second order derivatives. Subdivision

based finite element methods offer an elegant solution given the underlying surfaces are

C2 at all places except at a few extraordinary points where the surface is only C1. Similar

C1 methods are available using NURBS basis functions [73, 78, 77] and can be used for

optimisation in combination with a NURBS based multiresolution framework.

Multiresolution shape optimisation of thin shells using Kirchhoff-Love formulation is

presented in this chapter. The subdivision based isogeometric method developed by

Cirak et al. [33, 32, 30] is used for solving the shell equations and computing the design

sensitivities which are derived analytically.

The thin shell problem is formulated on the fine resolution mesh with subdivision shell

discretisation. In the subdivision multiresolution framework (Section 4.3) the fine reso-

lution is obtained by refining the given coarse resolution whereas in the progressive mesh

framework (Section 4.4), the given mesh is directly used as the finite element mesh.

5.1. Review of thin shell mechanics

This section contains a brief review of thin shell kinematics and discretisation of the

energy functional within the Kirchhoff-Love theory of thin shells. See Ciarlet [28],

Cirak [33] for more details.
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Figure 5.1.: Shell kinematic description. Reference configuration is shown on left and
the current configuration is shown on right.

5.1.1. Kinematics

The Kirchhoff-Love theory of thin shells assumes that normals to the shell mid-surface

remain normal during deformation implying no out-of-plane shear deformations are

present. As a result, the behaviour of the shell can be described by using only its

mid surface. Let r̄ and r denote the position vectors of a material point in the reference

and deformed configurations, respectively. The curvilinear coordinate system {θ1, θ2, θ3}
can be used for parameterising a shell of thickness t as follows;

r̄(θ1, θ2, θ3) = x̄(θ1, θ2) + θ3ā3(θ1, θ2), −t/2 ≤ θ3 ≤ t/2 (5.1a)

r(θ1, θ2, θ3) = x(θ1, θ2) + θ3a3(θ1, θ2), −t/2 ≤ θ3 ≤ t/2 (5.1b)

where x̄ and x are the position vectors of the reference and deformed shell mid surface

(Figure 5.1). The unit normal vectors to the shell mid-surface denoted by ā3 and a3 in

each configuration are given by

ā3 =
ā1 × ā2

|ā1 × ā2|
, a3 =

a1 × a2

|a1 × a2|
(5.2)

using the covariant basis vectors of the mid surface in each configuration;

āα =
∂x̄(θ1, θ2)

∂θα
, aα =

∂x(θ1, θ2)

∂θα
(5.3)

69



The corresponding contravariant basis is given by āi · āj = δij where δij is the Kronecker

delta. Note that in the above and henceforth, the Greek indices can have the values

α, β, γ, δ ∈ {1, 2} and Latin indices can have the values i, j ∈ {1, 2, 3}.

Green-Lagrange strain tensor

According to the Kirchhoff-Love hypothesis the mid-surface normal a3 is not an inde-

pendent vector. In this setting, the Green-Lagrange strain tensor which represents the

deformation of the shell body can be expressed as follows (neglecting quadratic terms in

θ3)

E = α+ θ3β (5.4)

where the tensors α and β are related to in-plane deformations of the shell mid surface

and curvature change, respectively. The components of these tensors are given by

αij =
1

2
(ai.aj − āi · āj) (5.5a)

βij = ai · a3,j − āi · ā3,j (5.5b)

Given a3 ·a3 = ā3 · ā3 = 1 by definition and aα ·a3 = āα · ā3 due to the Kirchhoff-Love

assumption, the non-zero components of (5.5a) and (5.5b) reduce to;

ααβ =
1

2
(aα · aβ − āα · āβ) (5.6a)

βαβ = āα,β.ā3 − aα,β.a3 (5.6b)

It is evident that the deformation state of the shell is completely defined by the tensors on

the mid-surface owing to the Kirchhoff-Love assumptions. Let u denote the displacement

of the mid surface of the shell given by

u(θ1, θ2) = x(θ1, θ2)− x̄(θ1, θ2) (5.7)

Assuming that deformation of the shells is small, geometrically linear kinematic equa-

tions can be adopted for linear thin shell problems. Linearisation of (5.6a) and (5.6b)
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to first order of u results in

ααβ =
1

2
(u,α.āβ − āα · u,β) (5.8a)

βαβ = −u,αβ · ā3+

1

|ā1 × ā2|
[u,1 · (āα,β × ā2) + u,2 · (ā1 × āα,β)]+

a3 · aα,β
|ā1 × ā2|

[u,1 · (ā2 × ā3) + u,2 · (ā3 × ā1)] (5.8b)

After the above linearisation, the reference and current domains are the same within

first order.

5.1.2. Discretisation of the energy functional

In the present work, discretisation of shell energy follows the formulation discussed in

Cirak et al. [33]. The total potential energy of the shell body reads

Π(u) =Πint(u) + Πext(u)

=

∫
Ω

Wm(α) +W b(β)Ω + Πext(u) (5.9)

where Πext is the potential of the external forces and Wm, W b are the membrane and

bending energy densities, respectively. The potential of the external forces can be ex-

pressed as follows when the shell is subject to a system of external dead loads consisting

of distributed loads q per unit area of mid-surface Ω and axial forces N per unit length

of the boundary Γ;

Πext(u) = −
∫

Ω

q · udΩ−
∫

Γ

N · udΓ (5.10)

The membrane and bending energy densities can be expressed as;

Wm(α) =
1

2

Et

1− ν2
Hαβγδααβαγδ (5.11a)

W b(β) =
1

2

Et3

12(1− ν2)
Hαβγδβαββγδ (5.11b)
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where E is the Young’s modulus, ν the Poisson’s ratio and

Hαβγδ = νāαβāγδ +
1

2
(1− ν)(āαγ āβδ + āαδāβγ) (5.12)

Note that āαβ = āα · āβ are the contravariant components of the metric tensor for

the reference configuration. The membrane and bending stresses can be obtained by

differentiation

nαβ =
∂W

∂ααβ
=

Et

1− ν2
Hαβγδααβ (5.13a)

mαβ =
∂W

∂βαβ
=

Et3

12(1− ν2)
Hαβγδβαβ (5.13b)

Voigt’s notation can be used to reduce the order of a symmetric tensor and express it

as an array. The symmetric second-order tensor

x =

[
x11 x12

x12 x22

]

is expressed in Voigt’s notation as x = [x11 x12 x22]T. Voigt’s notation can be used to

express the tensors from 5.8 and 5.13 in the simplified notation; α = [α11 α12 α22]T,

β = [β11 β12 β22]T, n = [n11 n12 n22]T and m = [m11 m12 m22]T. The expressions for

membrane (5.13a) and bending stresses (5.13a) now simplify to

n =
Et

1− ν2
Hα (5.14a)

m =
Et3

12(1− ν2)
Hβ (5.14b)

where H is given by;

H =

(ā11)2 ā11ā12 νā11ā22 + (1− ν)(ā12)2

1
2
[(1− ν)ā11ā22 + (1 + ν)(ā12)2] ā22ā12

sym (ā22)2

 (5.15)

The weak form can be obtained by minimising the energy functional in (5.9) using
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variational calculus

DΠ(u)[δu] = DΠint(u)[δu] +DΠext(u)[δu] = 0 (5.16)

The variation of internal and external energy functionals are given by;

DΠint(u)[δu] =

∫
Ω

nαβδααβ +mαβδβαβdΩ

=

∫
Ω

[
Et

1− ν2
δαTHα+

Et3

12(1− ν2)
δβTHβ

]
dΩ (5.17a)

DΠext(u)[δu] = −
∫

Ω

q · δudΩ−
∫

Γ

N · δuds (5.17b)

Substituting in to (5.16), the weak form can be obtained as∫
Ω

[
Et

1− ν2
δαTHα+

Et3

12(1− ν2)
δβTHβ

]
dΩ =

∫
Ω

q · δudΩ +

∫
Γ

N · δuds (5.18)

5.2. Subdivision shells

First introduced in Cirak et al. [33], the shell mid-surface can be parameterised as

a subdivision surface resulting in a finite element formulation with subdivision basis

functions. The position and displacement fields of the shell mid-surface in a finite element

are approximated with

xh(θ1, θ2) =
k∑
i=1

Ni(θ1, θ2)xi (5.19a)

uh(θ1, θ2) =
k∑
i=1

Ni(θ1, θ2)ui (5.19b)

where k denotes the number of subdivision shape functions overlapping the element

and xi, ui are the position and displacement vectors of the corresponding subdivision

control points. In this context the element nodes are the control points (vertices) of the

subdivision surface. The basis functions Ni and their derivatives can be evaluated as

explained in Appendix C. Loop and Catmull-Clark subdivision schemes are used for finite

element discretisation of triangular and quadrilateral meshes respectively. Extended

subdivision rules based on Biermann et al. [14] are used to enforce special surface features
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such as creases and boundaries. A detailed description of subdivision shape functions

using such extended subdivision rules is given in Long [90] and Cirak and Long [31].

Expressions for the membrane and bending strains α and β (5.8) can now be approxi-

mated using the above approximations

αh(θ
1, θ2) =

k∑
i=1

M i(θ1, θ2)ui (5.20)

βh(θ
1, θ2) =

k∑
i=1

Bi(θ1, θ2)ui (5.21)

The membrane-strain matrix M i and the bending strain matrix Bi are of the form;

M i =

 Ni,1a1 · e1 Ni,1a1 · e2 Ni,1a1 · e3

(Ni,2a1 +Ni,1a2) · e1 (Ni,2a1 +Ni,1a2) · e2 (Ni,2a1 +Ni,1a2) · e3

Ni,2a2 · e1 Ni,2a2 · e2 Ni,2a2 · e3

 (5.22a)

Bi =

B
i
1 · e1 Bi

1 · e2 Bi
1 · e3

Bi
2 · e1 Bi

2 · e2 Bi
2 · e3

Bi
3 · e1 Bi

3 · e2 Bi
3 · e3

 (5.22b)

where the components of the bending strain matrix are given by

Bi
1 = −Ni,11a3+

1√
a

[Ni,1a1,1 × a2 +Ni,2a1 × a1,1+

a3 · a1,1(Ni,1a2 × a3 +Ni,2a3 × a1)]

Bi
2

2
= −Ni,12a3+

1√
a

[Ni,1a1,2 × a2 +Ni,2a1 × a1,2+

a3 · a1,2(Ni,1a2 × a3 +Ni,2a3 × a1)]

Bi
3 = −Ni,22a3+

1√
a

[Ni,1a2,2 × a2 +Ni,2a1 × a2,2+

a3 · a2,2(Ni,1a2 × a3 +Ni,2a3 × a1)]

The weak form in 5.18 can be expressed in matrix form to give the standard equilibrium

equation;

Khuh = fh (5.23)
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The stiffness matrix and the force vector for a mesh with ne elements are given by;

Kh =
ne∑
k=1

∫
Ωk

Eh

1− ν2
(M i)THM j +

Eh3

12(1− ν2)
(Bi)THBjdΩ (5.24a)

fh =
ne∑
k=1

∫
Ωk

qNidΩ +

∫
Γk∩Γ

NNids (5.24b)

5.3. Discrete shape derivative

Following the multiresolution approach introduced in Section 4.2, the design geometry

is represented by the fine resolution finite element mesh. The shape derivatives need to

be computed as a vector quantity at each node in this mesh. Based on the discretisation

of the shell mid-surface using subdivision shape functions (5.19), a design change in

shape can be achieved by changing the position of a subdivision control point, i.e. a

node in the finite element mesh. In this context the discrete sensitivity analysis method,

where the shape is first discretised to discrete design variables (Figure 4.2), can be used.

Considering the format of the equilibrium condition (5.23) and the discrete nature of

the optimisation variables x, the optimisation problem (1.1) is stated as;

minimise J (x,u(x)) (5.25a)

subject to Ku = f (5.25b)

where u(x) is the state variable, i.e. displacement, which depends on the design variable

x. Note that it is possible to have other equality or inequality constraints in (5.25), such

as area or volume constraints. Global numerical differentiation with a finite difference

scheme can be used to evaluate the design sensitivity (1.2). For example, using forward

difference
dJ
dx

(x,u(x)) ≈ J (x + ∆x,u(x + ∆x))− J (x,u(x))

|∆x|
(5.26)

The ease of implementation of this approach is offset by its computational inefficiency

needing a solution cycle per each discrete design variable. Additionally the numerical

errors caused by finite difference approximations can lead to severe inaccuracies. Specif-

ically, for larger step sizes the truncation error is predominant and for smaller step sizes

the roundoff error is predominant [8, 103].
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Alternatively, the constrained optimisation problem (5.25) can be expressed as an equiv-

alent unconstrained problem via a Lagrangian function

L(x,u,λ) = J (u, x) + λT[f −Ku] (5.27)

using the Lagrange parameter vector λ. The necessary conditions for a minimum of

the constrained problem (5.25), known as Kuhn-Tucker conditions, are given by the

stationary points of the Lagrangian [64], i.e. δL(x,u,λ) = 0

∂L
∂u

(x,u,λ) = 0 → λTK =
∂J
∂u

(5.28a)

∂L
∂λ

(x,u,λ) = 0 → Ku = f (5.28b)

The discrete shape derivative can be expressed using the chain rule;

dL
dx

=
∂L
∂x

+
∂L
∂u

du

dx

=
∂J
∂x

+

[
λT ∂f

∂x
− λT∂K

∂x
· u
]

+
∂u

∂x

[
∂J
∂u
− λTK

] (5.29)

There exist two main methods for solving (5.29); the direct method and the adjoint

method. In the adjoint method, the Lagrange multipliers λ can be selected such that all

∂u/∂x terms in (5.29) are zero, forming the adjoint problem (5.28a). The direct method

involves differentiating (5.25b) with respect to x;

K
∂u

∂x
=
∂f

∂x
− ∂K

∂x
u (5.30)

which can be solved for ∂u/∂x. Alternatively, a similar finite difference setup to (5.26)

can also be used to numerically evaluate (5.30) leading to semi-analytical sensitivity

analysis.

The present work uses compliance minimisation, which is related to maximising the

stiffness, as the objective function;

J =
1

2
uTKu (5.31)

76



giving the following adjoint problem (5.28a);

∂ 1
2
uTKu

∂u
− λTK = 0

uTK− λTK = 0

(5.32)

It is clear λ = u solves the adjoint problem in this case and substitution in (5.29) results

in the following shape derivative;

dL
dx

=
∂ 1

2
uTKu

∂x
+

[
λT ∂f

∂x
− λT∂K

∂x
· u
]

=
1

2
uT∂K

∂x
u + uT ∂f

∂x
− uT∂K

∂x
u

= uT ∂f

∂x
− 1

2
uT∂K

∂x
u

(5.33)

Note that there are no global operations in the above expression and the partial deriva-

tives of the stiffness matrix and the force vector for Kirchhoff-Love shells (5.24) can be

assembled element-wise for each design variable xi;

∂Kh

∂xi
=

ne∑
k=1

∫
Ωk

Eh

1− ν2

[
∂(M i)T

∂xi
HM j + (M i)T

∂H

∂xi
M j + (M i)TH

∂M j

∂xi

]
+

Eh3

12(1− ν2)

[
∂(Bi)T

∂xi
HBjdΩ + (Bi)T

∂H

∂xi
Bj + (Bi)TH

∂Bj

∂xi

]
dΩ

+

[
Eh

1− ν2
(M i)THM j +

Eh3

12(1− ν2)
(Bi)THBj

]
∂dΩ

∂xi
(5.34)

∂fh
∂xi

=
ne∑
k=1

∫
Ωk

∂q

∂xi
NidΩ + qNi

∂dΩ

∂xi
+

∫
Γk∩Γ

NNi
∂ds

∂xi
(5.35)

Note that the above require the partial shape derivatives of the covariant and contravari-

ant basis vectors which is explained in Appendix D.1.

5.4. Examples

Three examples are presented to demonstrate the functioning of the proposed multires-

olution frameworks for shape optimisation of Kirchhoff-Love shells. The objective is

to minimise the structural compliance (5.31). The discretised optimisation problem is
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(a) Initial geometry. All coarse resolution
nodes in x`c along the supported edges
are pinned as indicated. The mesh in-
dicates the optimisation level `o which
is 0 initially.

(b) Optimised geometry. The blue line shows the cen-
tre line of the optimised strip used in the catenary
curve comparison in figure 5.3.The mesh indicates
the optimisation resolution, now at `o = 2.

Figure 5.2.: Optimisation of thin strip to form a catenary curve. Initial and optimised
strip for a curve with l = 1.3 and supports at equal height.

solved with the Method of Moving Asymptotes (MMA) [124] as implemented in the nlopt

library [76]. The input to the nlopt library consists of the cost function J (x`c ,u(x`c))

and the position vectors x`oi and the gradient g`oi for each coarse geometry node. In the

subdivision framework, the coarse resolution gradients are obtained by coarsening the

fine resolution gradients g`ci = ∂L
∂x`c

i

as described in Section 4.3.3. In addition, for some

examples, geometric bounds for the design variables and additional area constraints are

provided to the nlopt library. During optimisation the position vectors are updated

using the relevant multiresolution algorithm 1 or 2.

5.4.1. Catenary curve

In this verification example, a thin strip pinned at the ends is optimised for a vertical

pressure load and compared with a catenary curve. It has been known since the work

of Leibniz, Huygens and Johann Bernoulli in 1691 that the shape of a curve assumed by

a loose string hung freely from two fixed points is a catenary [89]. The equation of the
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catenary curve reads

y = α cosh

(
x+ β

α

)
+ γ (5.36)

The three constants α, β and γ are determined based on the location of the supports

and length of the string l. Two cases are studied, one where the supports are at equal

height and the other where one support is higher than the other. In both cases the

horizontal distance between the supports is 1. The vertical offset between the supports

in the second case is 0.2. Initially, the strip is a flat plate connecting the supports with

length equal to the distance between the supports. Width and thickness are constant

at 0.05 and 0.02 respectively. The magnitude of vertical uniformly distributed load is

1000, the Young’s modulus and Poisson’s ratio are respectively 2× 108 and 0.3. Length

of the curve l is varied at 1.1, 1.2 and 1.3. This is realised by using an area constraint

during optimisation;

0.05l − Aτ = 0 (5.37)

where Aτ =
∫
J denotes the current area of the strip with Jacobian of the mapping

J = |a1 × a2|. Note that the derivative of the area constraint (6.16) is now required at

each design variable. The derivative of J is computed (see Appendix D.1) for each fine

resolution node xi and projected to the coarse resolution in the same way as the shape

derivative. Notice that this constraint is initially violated in all cases.

Multiresolution geometry description: Catmull-Clark subdivision

Extended Catmull-Clark subdivision is used for creating the multiresolution framework

and solving the mechanical problem via subdivision shells. The initial coarse mesh used

for optimisation contains only 3 elements as shown in Figure 5.2a. This increases to 48

in the twice subdivided fine mesh used for computations. During multiresolution optimi-

sation, the optimisation resolution is increased from `o = 0 until `o = 2 is reached. Note

that corner nodes of the strip have been tagged as corner to maintain the rectangular

shape during subdivision refinement and computation of subdivision shape functions.

Only the y coordinates are optimised and as a result, only in-plane shape changes are

expected. Comparison of the optimisation results with the corresponding catenary curve

for different curve lengths and support conditions is shown in Figure 5.3. The reduction

of the objective function is more than 99.9% for all cases and the results show good

visual agreement with catenary curves. It is important that transverse bending (bend-

ing about the centre line in Figure 5.2a) in the strip is minimised to be faithful to the

beam assumption, hence the relatively large thickness value. However it is seen from
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figure 5.2 that optimisation has resulted in some lateral curvature as it would stiffen the

strip. This indicates a small deviation from beam behaviour and explains why a perfect

catenary profile is not obtained. Ideally, the optimisation problem needs to be solved

using a beam formulation for a better comparison with a caternary profile.

5.4.2. Bi-parabolic roof shell

This example is adapted from Bletzinger and Ramm [16] where parameter optimisation

was used to optimise a roof with rectangular plan (6 × 12). The roof is of thickness

0.05 with pinned supports along the short edges and loaded by a vertical load of 5000.

The Young’s modulus and the Poisson’s ratio are respectively 3 × 1010 and 0.2. In the

reference problem two parameters s1, s2 (Figure 5.4) are used to change the roof shape

while maintaining a bi-parabolic shape.

Multiresolution geometry descriptions: Catmull-Clark and Loop subdivision

Unlike the reference problem where the initial geometry is a cylindrical shell (Fig-

ure 5.4a), a flat rectangle is used with several different mesh layouts as the initial

geometry to highlight mesh dependence of the optimised shape. During multiresolu-

tion shape optimisation, `o is initiated at 0 and gradually increased to 2, equal to the

computational level `c. Only the out-of-plane position of the vertices are optimised with

an upper bound of 6 to reproduce the effect of limiting the maximum value of s1 to 6 in

the reference problem.

The different meshes used and the resulting optimised shapes are shown in Figure 5.5.

The corner nodes in each mesh have been tagged as corner to maintain the rectangular

shape during subdivision refinement and computation of subdivision shape functions.

For comparison of each optimal shape with the reference, the objective function is eval-

uated for a very fine resolution mesh at the end of optimisation. This evaluation of cost

from a converged solution for each shape is necessary since each starting mesh is different

with respect to element size and mesh layout. In this setting, the cost of the initial and

optimised shape of the reference solution is 2108 and 149.68 respectively while the flat

plate used here as the initial shape has a cost ≈ 46× 104 .

It is clear from the results that there are several local minima in this problem resulting

in different optimised shapes depending on the initial mesh used. Only having the

minimal number of design variables at the initial resolution `o = 0, as in mesh A and
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(a) Supports at same height (b) Supports at different heights

Figure 5.3.: Optimised catenary curve shapes. The blue lines show the centre lines of
the strip before and after optimisation with the solid blue line indicating
the latter. The dotted black line is the catenary curve of corresponding
length l for each case. The α, β and γ parameters in (5.36) for given curve
length and support positions are as indicated. The origin is such that the
left support has coordinates (−0.5, 0.0) in all cases.
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(a) Initial geometry
Cost = 2108

(b) Optimised geometry
Cost = 149.68

Figure 5.4.: Bi-parabolic roof shell, initial and optimised roof from Bletzinger and
Ramm [16]. The shape is defined using four parabolic curves indicated as
blue lines. The parabolic curves are parameterised by the design variables
s1 and s2. The final value of the objective function (cost) for each optimised
shape, recomputed from the subdivision shell solver for comparison, is as
indicated.

Figure 5.5.: Roof shell optimised using multiresolution subdivision framework with dif-
ferent starting meshes. The top row shows the different meshes for the
starting geometry at initial resolution `o = 0. The limit surfaces of the opti-
mised shapes and the corresponding cost for each mesh after multiresolution
optimisation are shown in the bottom row.
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Figure 5.6.: Comparison of roof shell optimisation with multiresoluiton subdivision. The
optimum shapes for mesh A using single and multiresolution are compared.
The graph plots minimal cost obtained from using different computational
levels during optimisation. The dashed red line indicates single resolution
optimisation and the dotted blue line is for multiresolution optimisation.
Each data point denotes the final cost of an independent optimisation prob-
lem with initial geometry given by mesh A and optimised with either `o = `c
or `o = 0→ `o. Inset pictures are the optimised shapes at the computational
level.

B, ensures convergence to the correct global minima which is similar to the optimised

shape of the reference solution (Figure 5.4b). A comparison of single and multiresolution

optimisation for mesh A is shown in Figure 5.6. In single resolution optimisation, the

optimisation level is maintained at the same level as the computational level, `o = `c.

Note that the final cost is computed using a much finer mesh of each optimum shape

as before. A feature of this problem is that the main solution features can be closely

approximated using a once subdivided mesh A, explaining the relatively good results

obtained from both single and multiresolution optimisation at `c = 1 . When using

finer computational levels, single resolution optimisation quickly leads to noisy solutions

while multiresolution optimisation continues to provide improved solutions.

Multiresolution geometry description: progressive mesh

Optimisation with progressive meshes is not suitable for making large shape changes,

such as in the previous subdivision examples where the starting geometry is a flat plate.

The extreme coarse resolutions required in such cases imply large geometric details
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(a) Initial fine mesh contains
1617 nodes and is geo-
metrically similar to that
in Figure 5.4a. Optimi-
sation resolutions `o ∈
{48, 80, 161}.

(b) Initial fine mesh contains
2145 nodes and is geo-
metrically similar to that
in Figure 5.4b. Optimi-
sation resolutions `o ∈
{64, 107, 214}.

(c) Initial fine mesh contains
1089 nodes and is the
optimised mesh B from
Figure 5.5. Optimisa-
tion resolutions `o ∈
{108, 217, 326}.

Figure 5.7.: Bi-parabolic roof shell optimisation with progressive meshes from different
initial geometries.

(Equations 3.13 and 3.14) causing undesirable effects during detail restoration. Addi-

tionally, the error due to sub-sampling of the shape derivative (Section 4.4.3) is largest

when optimising design variables in such extreme coarse resolutions.

In this context, the previous roof example is optimised with progressive meshes starting

from better initial geometries than a flat plate. Figure 5.7 contains several such example

where the initial geometry is a given fine resolution mesh. Computations are done using

extended Loop subdivision shell shape functions computed in the given fine resolution

mesh. This requires the corners nodes of the fine resolution mesh being tagged as before.

A progressive mesh hierarchy is built to provide the coarse resolutions nodes used as

the design variables. For example, the coarse resolution x64 shown in Figure 5.8a is

used as the first set of design variables in optimising the initial mesh x2145 shown in

Figure 5.7b. A binary oracle is used to preserve the corner nodes during decimation and

the boundaries are preserved as explained in Section 3.2.2.
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(a) x64 (b) x107 (c) x214

Figure 5.8.: Multiple progressive mesh coarse resolutions used during optimisation of
model shown in Figure 5.7b.

Once the shape has been optimised using the design variables in x64, the optimisation

resolution is increased to `o = 107 and the corresponding coarse resolution x107 is shown

in Figure 5.8b. The process is repeated using resolution x214, shown in Figure 5.8c,

after which using any finer resolutions causes wiggly and irregular optimised shapes

due to local minima. Results show good agreement with the subdivision framework,

i.e. optimised shapes in Figures 5.7b and 5.7c closely resemble the optimum shapes

from multiresolution subdivision in Figure 5.5. However it is clear that optimising an

existing shape using progressive mesh geometry produces inferior results in comparison

to gradually building an optimised shape using subdivision.

5.4.3. Architectural roof design

Architects frequently require shell design where structural efficiency is compromised for

aesthetics. In this example, multiresolution shape optimisation is used for design space

exploration where the architect can actively seek optimal structural efficiency for given

aesthetic constraints. An initial model shown in Figure 5.9 is given with approximate

dimensions of 2.31 × 6.27 × 0.75. A vertical uniformly distributed load of −1000 is

considered as the design load and the shell thickness is set to t = 0.02. The Young’s

modulus and the Poisson’s ratio are 1×1010 and 0.2 respectively. Only the z coordinates

of nodes are used as design variables to preserve the plan shape during optimisation. An

area constraint is present to restrict the size of the optimised shape;

At − 1.2Ao ≤ 0 (5.38)

where Ao and At denote the initial and current roof surface area. An important archi-

tectural feature of the problem is the roof ridge profile. Three different design scenarios
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are considered where the profile of the central ridge is preserved to varying degree as

indicated in Figure 5.10.

Multiresolution gometry description: progressive meshes

The different design constraints in Figure 5.10 pose additional requirements on the dec-

imation and smoothing process.

� The start and end nodes of each line support segment need to be preserved during

decimation. This is easily accomplished via a binary oracle (Figure 5.11). The

roof ridge is tagged as a creased edge to use a special edge preserving quadric as

explained in Section 3.2.2.

� The progressive mesh shape functions are not suited for implementing Dirichlet

conditions by design. Essentially the one-ring Laplacian smoothing causes prop-

agation of geometry modification to constrained regions. However this is easily

fixed by restricting the one-ring smoothing to include only neighbouring nodes

belonging to the same Dirichlet support.

� In each design scenario a specific region of the geometry is prevented from be-

ing modified by the optimisation process. This is realised by not optimising any

coarse resolution node in such regions. Additionally, the method described above

for enforcing Dirichlet conditions is used to prevent propagation of geometry mod-

ifications from neighbouring nodes.

The tagged nodes and edges in Figure 5.11 are also used in construction of the extended

Loop subdivision shape functions for solving the mechanical problem. Essentially the

nodes marked in black used by the binary oracle are designated as corner nodes and

the roof ridge as a creased edge in a subdivision setting. The fine resolution mesh x1797

used in the analysis module is decimated to obtain different optimisation resolutions

`o ∈ {26, 35, 89} as shown in Figure 5.12.

The initial value of the objective function is 24.11, the largest reduction of which is

obtained in design C where the final cost is 63.32% lower than the original cost. Design

A also achieves a significant cost reduction of 51.02%. In comparison, design B only

manages a cost reduction of 28.6% due to the restricted design space. The corresponding

optimised shapes for each design scenario are shown in Figures 5.13, 5.14 and 5.15.
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(a) 3D view

(b) Front view

(c) Back view

Figure 5.9.: Given initial mesh of architectural roof containing 1797 nodes. The model
is asymmetric with three line supports and a central opening. A roof ridge
is also present as indicated by the creased geometric edge in Figure 5.9a.
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(a) Top view

(b) Front view

(c) Back view

Figure 5.10.: Design constraints for the architectural roof optimisation problem. The
edges marked in black are preserved in all designs in order to preserve the
supports and maintain overall length. In design A, the edges marked in
red need to be preserved while both edges in red and blue are preserved in
design B. Only the essential black edges are preserved in design C.

88



(a) Top view

(b) Front view

(c) Back view

Figure 5.11.: Architectural roof design, special decimation conditions to preserve sup-
ports and roof ridge. A binary oracle is used to prevent the nodes indi-
cated in black from being decimated, this is required for maintaining sharp
edges and corners. Additionally, the nodes marked in colour are preserved
in each of the design scenarios described in Figure 5.10. The marked edges
are tagged as creased for preserving the roof ridge. Note that additional
edges are marked as creased according to the design scenario indicated in
Figure 5.10.
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(a) x26 (b) x35 (c) x89

Figure 5.12.: Multiple progressive mesh coarse resolutions `o ∈ {26, 35, 89} used during
optimisation of architectural roof model. The coarse resolutions have been
created using special decimation conditions indicated in Figure 5.11. Note
that these coarse resolutions have been successively generated from the
initial fine resolution without involving any optimisation.

Multiresolution geometry description: Loop subdivision

In order to use the subdivision framework for optimising the given geometry, a subdivi-

sion control mesh is manually created such that the limit surface closely resembles the

original geometry. The obtained subdivision limit surface and the corresponding control

mesh are shown in Figures 5.16 and 5.17. The line supports in the original model have

been simplified to point supports in order to avoid coarse resolution elements with bad

aspect ratios.

The design scenarios defined on the original geometry (Figure 5.10) are now expressed

in an equivalent manner by tagging the coarse resolution nodes. In Figure 5.17, the

nodes and vertices indicated in black are used to enforce corners and creased edges

during multiresolution refinement and evaluation of extended Loop subdivision shape

functions. Different design scenarios are implemented by fixing different nodes on the

control mesh to exclude them from optimisation. When the coarse resolution is re-

fined in later optimisation stages, all descendants nodes (one-ring neighbours for Loop

subdivision) of such fixed nodes become fixed.

The coarse mesh at optimisation level `o = 0 contains 26 nodes which is twice subdivided

to obtain the computation mesh at level `c = 2 with 272 nodes. The second optimisation

stage is done at level `o = 1 but no optimisation is done at level `o = 2 as this results

in local wrinkling. The initial value of the objective function is 31.36 (c.f. the starting

cost in the progressive mesh model is 24.11). As in the progressive mesh case, design

C results in the most efficient optimised shape with a 79.13% reduction is cost followed

by design A with a reduction of 38.88%. The total reduction in the most constrained

design B is only 23.97%. The corresponding optimised shapes for each design scenario
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(a) 3D view

(b) Front view

(c) Back view

Figure 5.13.: Optimised architectural roof for design scenario A using progressive
meshes. The final value of the objective function is 11.81, representing
a 51.02% reduction.
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(a) 3D view

(b) Front view

(c) Back view

Figure 5.14.: Optimised architectural roof for design scenario B using progressive
meshes. The final value of the objective function is 17.22, representing
a 28.6% reduction.
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(a) 3D view

(b) Front view

(c) Back view

Figure 5.15.: Optimised architectural roof for design scenario C using progressive
meshes. The final value of the objective function is 8.87, representing
a 63.32% reduction.
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(a) 3D view

(b) Front view

(c) Back view

Figure 5.16.: Limit surface of the approximate subdivision surface created to resemble
the original model in Figure 5.9. The limit surface is generated by applying
extended Loop subdivision scheme on the coarse resolution control mesh
shown in Figure 5.17.
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(a) Top view

(b) Front view

(c) Back view

Figure 5.17.: Mesh tagging in the subdivision architectural roof model. The nodes and
edges indicated in black are tagged as corner and creased respectively. This
preserves sharp edges and corners as can be observed in the rendering of
the limit surface shown in Figure 5.16. The coloured nodes are used to
enforce the design scenarios described in Figure 5.10. The red nodes are
fixed in design A, while both red and blue nodes are fixed in design B. In
design C, only the black nodes are fixed.
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are shown in Figures 5.18, 5.19 and 5.20.

The importance of accurate representation of the original design is highlighted in the

difference between the progressive mesh and subdivision results for the different design

cases. However in both frameworks, the order of cost reduction follows the richness of

the design space as expected. This concludes the chapter on shape optimisation of shells

using subdivision and progressive mesh multiresolution methods. Shape optimisation of

solids will be explored in the next chapter.
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(a) 3D view

(b) Front view

(c) Back view

Figure 5.18.: Limit surface of the optimised architectural roof for design scenario A using
subdivision. The final value of the objective function is 19.17 representing
a 38.88% reduction.
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(a) 3D view

(b) Front view

(c) Back view

Figure 5.19.: Limit surface of the optimised architectural roof for design scenario B using
subdivision. The final value of the objective function is 23.84 representing
a 23.97% reduction.
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(a) 3D view

(b) Front view

(c) Back view

Figure 5.20.: Limit surface of the optimised architectural roof for design scenario C using
subdivision. The final value of the objective function is 6.55 representing
a 79.13% reduction.
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6. Optimisation of solids

In CAD, the geometry of a solid is typically expressed using boundary representations

(B-reps) or constructive solid geometry (CSG). The former expresses the volumetric

object as a collection of surfaces whereas the latter uses boolean expressions on primitive

solid objects [68]. The conventional finite element analysis of such solids requires a

volume mesh which needs to be generated via some meshing tool while taking the B-

rep or CSG model as input. During shape optimisation, any significant changes to

the surface geometry leads to severe distortion of the solid mesh rapidly leading to

inaccurate analysis results. This makes it necessary to frequently regenerate or to smooth

the volume mesh during shape optimisation. One possible solution to this problem

comes from immersed and boundary element methods that only require a surface mesh

representing the domain boundary to be deformed.

The immersed finite element approach, also known as the fixed grid finite element

method, involves the solution of the original problem on a proxy domain created by

immersing a boundary mesh in a slightly larger Cartesian background grid (Figure 6.1).

During shape optimisation, the proxy domain is updated by re-evaluating the cells cut

by the new boundary and involves no remeshing. This enables the problem to be dis-

cretised on a surface mesh directly obtained from the B-rep CAD model. Additionally,

the generation of surface meshes is usually substantially easier than the generation of

volume meshes.

The solid optimisation framework presented in this chapter uses B-rep CAD models to

represent the boundary of the solid domain. The input B-rep is either a subdivision

surface mesh (Section 4.3) or a progressive mesh representation (Section 4.4). Linear

elastic optimisation of solids using an immersed method is presented in Section 6.1 which

is next extended to topology optimisation in Section 6.3. The boundary element method,

by design, restricts the problem formulation to the boundary and offers another means

of solid optimisation without necessarily using a body fitted solid mesh. A boundary
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(a) Initial domain (b) Deformed domain

Figure 6.1.: Immersed finite element method for shape optimisation. The original prob-
lem domain Ω is deformed to Ωt during shape optimisation corresponding to
the boundary change Γ → Γt. In immersed methods, a proxy problem do-
main is created by immersing the domain boundary Γ in a fixed background
grid ω.

element method is used to demonstrate shape optimisation for electrostatic problems in

Section 6.5.

6.1. Linear elastic shape optimisation

Consider the linear elastic boundary value problem for a solid body with the domain Ω

−∇ · σ(u) = f in Ω (6.1a)

u = 0 on ΓD (6.1b)

σ(u)n = t on ΓN (6.1c)

where σ is the stress tensor, u is the displacement vector, f is the external load vector

and t is the prescribed traction on the Neumann boundary ΓN with the outward normal

n. For simplicity only homogeneous Dirichlet boundary conditions are assumed on ΓD.

The linear strain tensor ε(u) is defined as follows

ε(u) =
1

2
(∇u+∇Tu) (6.2)

The linear elastic material model is given by

σ(ε) = C : ε(u) (6.3)
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where C is a fourth order constitutive tensor. In the present work, compliance minimi-

sation is used which can be expressed as

J (Ω,u) =

∫
Ω

f · u dΩ +

∫
ΓN

t · u dΓ =
1

2

∫
Ω

σ(u) : ε(u) dΩ (6.4)

6.1.1. Shape derivative

The present work uses shape sensitivity analysis for obtaining the shape derivative fol-

lowing the work of Allaire et al. [4]. A brief outline of this approach is given below, see

[4, 6, 22] for more details.

Following the notation introduced in Section 4.2, let δv represent the velocity vector

describing the deformation from the initial configuration Ω0 to the updated configuration

Ωt. Evaluating the shape derivative (4.4) requires the directional derivative of the state

variable u in the direction of the velocity vector δv. This is clearly seen by using the

chain rule
dJ
dΩ

δv =
∂J
∂Ω

δv +
∂J
∂u

∂u

∂Ω
δv (6.5)

Alternatively, an adjoint method can be used, as demonstrated for the discrete case in

Section 5.3, by formulating the following Lagrangian

L(Ω,u,λ) = J (Ω,u)−
∫

Ω

λ · [∇ · σ(u) + f ] d Ω (6.6)

−
∫

ΓD

u · (C : ∇λ)n d Γ−
∫

ΓN

λ · [t− σ(u)n] d Γ

The Lagrangian L(Ω,u,λ) depends on the unknown domain shape Ω, the displacement

field u and the Lagrange parameter λ. For subsequent derivations, the second term is

rewritten with the divergence theorem to obtain

L(Ω,u,λ) = J (Ω,u) +

∫
Ω

∇λ : σ(u) d Ω−
∫

Ω

λ · f d Ω

−
∫

ΓD

u · (C : ∇λ)n+ λ · σ(u)n d Γ−
∫

ΓN

λ · t d Γ
(6.7)

The stationary condition for the Lagrangian, i.e. δL(Ω,u,λ) = 0, yields the complete

set of shape optimisation equations. For example, the adjoint problem for compliance 6.4

102



minimisation is given by considering the variation of the Lagrangian with respect to the

displacements u

∂L
∂u

δu+
∂L

∂(∇u)
δ(∇u) =

∂J
∂u

δu+

∫
Ω

∇λ : C : δ(∇u) d Ω

−
∫

ΓD

δu · (C : ∇λ)n+ λ · (C : δ(∇u))n d Γ = 0 (6.8)

After introducing the cost function (6.4) and reformulating the domain term with the

divergence theorem∫
Ω

f · δu d Ω +

∫
ΓN

t · δu d Γ−
∫

Ω

δu · (∇ · σ(λ)) d Ω

−
∫

ΓD

λ · (C : ∇(δu))n d Γ +

∫
ΓN

δu · σ(λ)n d Γ = 0 .

(6.9)

The corresponding boundary value problem, referred to as the adjoint problem, reads

−∇ · σ(λ) = −f in Ω (6.10a)

λ = 0 on ΓD (6.10b)

σ(λ) · n = t on ΓN (6.10c)

It is clear that λ = −u is the solution of the adjoint problem. A great advantage of the

use of the Lagrangian as is the identity

dJ
dΩ

(Ω,u(x))δv =
∂L
∂Ω

(Ω,u(x),λ)δv (6.11)

This enables the shape derivative (4.4) to be expressed as a boundary integral of the

following form

DJ (x, u(x))[δv] =

∫
Ω

f(u,λ) (∇ · δv) d Ω

=

∫
Γ

f(u,λ)(δv · n) d Γ ,

(6.12)

Without loss of generality, it can be assumed that some boundary variations are not

relevant in practical shape optimisation. In solid mechanics, the boundary variations
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are usually of the form

δv̂ = 0 on ΓD ,

δv̂ = 0 on ΓN with σn = t ,

δv̂ 6= 0 on ΓN with σn = 0 .

(6.13)

This means that only parts of the boundary ΓN with no traction are free to move during

the shape optimisation. In this context, the variation of the Lagrangian (6.7) in the

direction δv̂ with structural compliance (6.4) as the cost function reads

∂L
∂Ω

δv̂ =

∫
ΓN

(2u · f −∇u : σ(u)) (δv̂ · n) d Γ (6.14)

It is worth emphasising without restricting δv̂ as stated in (6.13) the variation of the

Lagrangian would contain several more terms. During the iterative shape optimisation

the shape derivative (6.14) is used as gradient information. In order to achieve maximum

decrease in the objective function the boundary perturbation has to be chosen in the

direction

δv̂ = − (2u · f −∇u : σ(u)) . (6.15)

6.1.2. Immersed methods for optimisation

By requiring only a definition of the domain boundary, immersed methods are ideally

suited for shape optimisation of solids. Examples of immersed methods for shape op-

timisation in literature include the global finite difference shape derivatives and local

refinement of the background grid in [53] and evolutionary strategies in [52].

In the present work, a B-spline based immersed finite element method introduced in

Rüberg and Cirak [110] is used for solving the linear elastic boundary value problem (6.1)

and computing the shape derivative (6.12). Several important features of the method

are explained in Appendix E.1, see also Rüberg and Cirak [109, 110].
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6.2. Linear elastic shape optimisation examples

Three examples are presented to demonstrate the functioning of the proposed mul-

tiresolution framework for shape optimisation of two- and three-dimensional solids in

combination with immersed methods (Section 6.1.2). The problem domain is created by

immersing a curve or surface in a background grid. The immersed curve or surface now

represents either an internal (cavity) or external boundary of the problem domain. The

mechanical problem is then solved using the proxy domain in the background grid using

an immersed method with the B-spline degree set to p = 2. This leads to continuous

stresses and shape derivatives for the discretised problem. The optimisation problem

consists of determining the optimum shape of the immersed curve or surface such that

the compliance (6.4) is minimised. The MMA algorithm is used to solve the minimisa-

tion problem, the input to the algorithm is as described in Section 5.4. Essentially this

consists of the cost function J (x`c ,u(x`c)) evaluated in the fine resolution and the po-

sition vectors x`oi and the gradients g`oi for each coarse geometry node in the immersed

domain Ω. In addition suitable geometric bounds for the design variables are provided

to the MMA algorithm.

6.2.1. Two-dimensional plate with hole

This introductory example is aimed at highlighting the advantages of multiresolution

optimisation. The problem consists of a square plate of dimensions 2 × 2 with an

initially circular hole of unit diameter as shown in Figure 6.2a. The square is loaded

with an in-plane line load of unit width on the top edge while the Young’s modulus and

Poisson’s ratio are 100 and 0.4, respectively. The shape of the hole is to be optimised so

that the compliance of the plate is minimised, or the stiffness is maximised. This results

in a cavity with vanishing diameter unless the area of the hole is kept constant. The

following area constraint is used to this end;

A0 − At ≤ 0 (6.16)

where Ao and At denote the initial and current area of the hole, respectively. For the

polygon mesh describing the hole geometry, the area is given by

At =
∑ 1

2
lin

`c
i · x

`c
i (6.17)
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(a) Problem description(left) and hole shapes obtained for three different optimisation scenarios.
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(b) Change of mesh resolution during optimisation.
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(c) Convergence of normalised cost.

Figure 6.2.: Simply supported plate with a hole. The shape of the central hole is opti-
mised using a single coarse resolution in A, a single fine resolution in B and
multiple resolutions in C. In case A, both optimisation and computations
are done at `o = `c = 0, whereas in case B both resolutions are fixed at
`o = `c = 4. In case C, the optimisation resolution successively increased
from 0 to 4 while the computational resolution is maintained at `c = 4.
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where n`ci and li are the normal and element length at fine resolution node i, respectively.

These quantities are obtained by averaging element quantities at nodes. The derivative

of the constraint with respect to each fine resolution nodes is given by

dAt
dxi

=
1

2
lini (6.18)

Multiresolution geometry description: uniform cubic B-spline curves

A uniform cubic B-spline based multiresolution framework, the 2D equivalent of Catmull-

Clark surfaces, is used in this example where initially the hole geometry is specified with

8 control points. This represents the initial geometry of the optimised shape at resolution

`o = 0. Three different cases are studied. In case A, both optimisation and computations

are done at `o = `c = 0. Subsequently, the initial control polygon is subdivided 4 times

to obtain a fine resolution mesh with 128 control points. This fine mesh is used for

both analysis and optimisation in case B, i.e. `o = `c = 4. In case C, the optimisation

resolution `o is successively increased from 0 to 4 while the computations are done in

`c = 4. Figure 6.2b shows the variation of optimisation resolution `o over the number

of optimisation iterations. The background grid contains 100 × 100 cells in all case.

The history of the objective function reduction for each case is shown in Figure 6.2b.

It is evident that the fixed fine resolution B achieves the least cost reduction while the

multiresolution case C obtains the lowest optimum. The presence of sharp corners in

optimised geometry suggest an ill conditioned problem (similar to σxxσyy < 0 case in

example 6.2.2) with several local minima. This explains the poor performance of the fine

resolution which is more likely to converge to a local minima, whereas the coarse and

the multiresolution cases A and C are restricted from doing this due to lack of degrees

of freedom initially.

6.2.2. Optimal shapes of a cavity in an elastic domain

This classical example studies the shape of a cavity in an elastic plate with a uniform

applied stress field. The problem setup is shown in Figure 6.3a. In the two-dimensional

case, analytical results by Kristensen and Madson [84] show that the optimum cavity

shape is an ellipse with the semi-axis ratio rx/ry = σxx/σyy. Similarly, in the three-

dimensional case the optimum cavity shape is an ellipsoid with three different semi-axis

ratios; rx/ry = σxx/σyy, rx/ry = σxx/σzz and rz/ry = σzz/σyy. Numerical optimisation
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(a) Problem description

0

0.1

0.2

0.3

0.4

0.5

2 3 4 5 6 7

(b) Convergence of optimum ellipse semi-axis ratio.
The error is the deviation from the theoretical op-
timum ratio α = σxx/σyy, i.e. error=α− rx/ry.

Figure 6.3.: Optimal shape of cavity in an elastic plate.

studies on this problem are available in, amongst others, Noboru et al. [97] using grid

adaptation, Norato et al. [98] where an immersed method is used with a filter on volume

fraction, Cervera and Trevelyan [24] using boundary element methods and evolutionary

optimisation strategies.

In all cases considered, the Young’s modulus is 100 and the Poisson’s ratio is 0.4. A

plane strain state is assumed in 2D computations. An area constraint (6.16) is used

to prevent the hole from shrinking in the 2D case. Similarly in a 3D setting, a volume

constraint is required to prevent the cavity from shrinking

V0 − Vt ≤ 0 (6.19)

where Vo and Vt denote the initial and current volume of the cavity respectively. The

latter is given by

Vt =
∑ 1

3
Ain

`c
i · x

`c
i (6.20)

where n`ci and Ai are the normal and element area at fine resolution node i, respectively.

As in the 2D case, nodal quantities are obtained by averaging element quantities at

nodes. The derivative of the constraint with respect to each fine resolution nodes is
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given by
dVt
dxi

=
1

3
Aini (6.21)

Multiresolution geometry description: uniform cubic B-spline curves

An coarse resolution model with 8 control points is used as the initial hole geometry at

`o = 0. This is refined up to `o = 3 during the multiresolution optimisation process. All

computations are done at a fine resolution `c = 3.

First the effects of having a finite domain, as opposed to the infinite domain in the

analytical setting, is studied. To this end, the L/D ratio of the plate is changed while

keeping a constant cell density of 25× 25 cells/unit area in the background grid repre-

senting the plate. The diameter of the hole at the start is fixed at D = 1 and the plate

size is varied 1.5 ≤ L ≤ 7. Figure 6.3b shows the error in semi-axis ratio of the obtained

ellipses for different stress ratios α = σxx/σyy. During analysis, α values are specified by

setting σyy = 10 and σxx = ασyy. Convergence to the correct semi-axis ratio is observed

for stress ratios α = 0.5 and α = 0.7 after increasing the domain size. However conver-

gence to the correct value is not achieved using the current cell size for the stress ratio

α = 0.3, for which the discretisation error is too large near the semi-major axis of the

ellipsoid.

Next, the grid dimensions and cell density are kept fixed at D = 1, L/D = 4 and

100×100 cells/unit area respectively to focus on variation of optimal shapes for different

values of α = σxx/σyy. As before, α values are specified during analysis by setting

σyy = 10 and σxx = ασyy with α ∈ {−1.0,−0.7,−0.5,−0.3,−0.1, 0.1, 0.3, 0.5, 0.7, 1.0}.
Cherkaev et al. [26] show that when σxxσyy < 0, simply connected shapes stop being

optimal. Essentially, having more than one cavity becomes more optimal in this case.

In the present computations, the formation of more cavities is prevented by adding a

term to the cost function that penalises the increase of the hole’s perimeter

J (x`c , u(x`c))← J (x`c , u(x`c)) + ρL
∑

(li)
2 (6.22)

where li is averaged element length at node i and ρL is a scalar penalty parameter (deter-

mined via numerical experimentation). The complete range of optimum cavity shapes

can now be computed as shown in Figure 6.4. Note that as |α| → 0, the discretisation

error starts dominating and the deviation from the optimum semi-axis ratio increases as

observed in the previous study.
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Figure 6.4.: Optimum shapes and semi-axis ratios of cavities in an elastic plate. The
theoretical semi-axis ratio is shown in red. The multiple curves for σxσy < 0
are computed using different penalty values ρL for the perimeter (6.22). The
corresponding optimum shapes (bottom row) are for ρL = 5. No penalty is
applied when σxσy > 0.
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Figure 6.5.: Optimum shapes and semi-axis ratios of cavity in an infinite domain. Note
that rx, rz denote the length of ellipsoid semi-axis in x and z directions
respectively. The theoretical semi-axis ratio is shown in red.

Multiresolution gometry description: Catmull-Clark subdivison

The 3D equivalent of the previous 2D studies is made by immersing a spherical hole

inside a 3D domain. A quadrilateral subdivision mesh with 26 control points is used to

represent the initially spherical cavity of diameter D = 1. The control points of this mesh

are used as the initial design variable at `o = 0. During multiresolution optimisation,

the initial mesh is refined up to 3 times, i.e. `o = 0→ 3.

First the cavity shape is optimised for different stress ratios σxx/σzz ∈ {0.3, 0.5, 0.8, 1.0}
while σxx = σyy is kept constant. In computations, σzz = 10 is chosen and σxx and σzz

are changed accordingly. The 3D elastic domain is represented by a background grid

in the shape of cube. The grid dimensions are maintained at L = 4 with cell density

of (20 × 20 × 20/unit volume). Figure 6.5 shows the final semi-axis ratio rx/rz of the

resulting ellipsoids. In comparison to the equivalent 2D results in Figure 6.4, a larger

deviation from the theoretical ratio is observed. Note that although the same L/D = 4

ratio is set in both cases, the discretisation error is much larger in the 3D case as a result

of the coarse grid used.

Similarly, two stress ratios can be varied at once resulting in optimised shapes shown in

Figure 6.6. Here, σxx/σyy and σzz/σyy are both varied while keeping σyy = 3. A constant

cell density of (5× 5× 5 cells/unit area) is used while the domain size Lx × Ly × Lz is
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varied in a proportional manner to the applied stresses as follows;

Lx = 3|σxx/σyy|, Ly = 3, Lz = 3|σzz/σyy|

When negative stress ratios are present (Figure 6.6b), a penalty method similar to 6.22

is used to prevent formation of additional cavities by penalising the increase of surface

area.

J (x`c , u(x`c))← J (x`c , u(x`c)) + ρA
∑

(Ae)
2 (6.23)

where Ae denotes the surface area of fine resolution elements. In Figure 6.6a, the positive

stress ratios applied have resulted in the optimum cavity shape being ellipsoids where

the semi-axis ratios are visually proportional to the applied stress ratios. The negative

stress ratios in Figure 6.6b result in optimised shapes where the cross-section in the xy

plane is an ellipse while nearly rectangular cross sections are obtained in the xz, yz

planes.

Mutiresolution gometry description: progressive meshes

The progressive mesh framework is now used to demonstrate an extension of the previous

study, where shear stresses are applied to the domain boundaries causing the cavity to

rotate. However it should be made clear that progressive meshes are not suited for

optimisation problems of this nature, as use of details tend to preserve the original

geometry to some degree. This is more conspicuous during coarse resolution edits where

details are long. However the details are shorter during finer resolution edits enabling

convergence to the correct optimum shape to some degree.

In contrast to the previous setting, if shear stresses are applied to the domain, the

resulting optimised ellipsoids are rotated according to the eigenvectors of the stress

tensor. For example, the following stress conditions result in the optimum shape being

an ellipsoid rotated by 450;

case A

σ =

σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

 =

3 0 1

0 2 0

1 0 3


case B

σ =

3 0 1

0 4 0

1 0 3



The principal stresses of 2, 2, 4 and 2, 4, 4 given by the eigenvalues, are now rotated with
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(a) Positive stress ratios; σxx/σzz, σyy/σzz ≥ 0

(b) Negative stress ratios; σxx/σzz, σyy/σzz ≤ 0

Figure 6.6.: Comparison of optimum cavity shapes for different stress ratios σxx/σzz and
σyy/σzz.
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(a) Optimised geometry for case A. (b) Optimised geometry for case B.

Figure 6.7.: Optimum cavity shape for stress conditions involving shear. An initially
spherical cavity is optimised using progressive meshes. The outline of the
background grid representing the domain is shown in black.

two of the principal directions at an angle of 450 to the basis vectors.

A mesh x24568 with 24568 vertices representing a sphere of diameter 1 is used as the initial

geometry of the cavity. This fine resolution mesh is immersed in a grid of, 3×4×3 in case

A and 3× 4× 3 in case B. The cell density is a constant 5× 5× 5 cells/unit volume in

both cases. During optimisation, the geometry is decimated to obtain the optimisation

resolution `o ∈ {245, 798, 1351, 2457}. Figure 6.7 shows the final optimised shapes in the

form of rotated ellipsoids as expected. The obtained semi-axis ratios are 1 : 1.01: 1.96

for case A and 1: 1.81: 1.86 for case B. The error with respect to the theoretical ratios

1 : 1 : 2 and 1: 2 : 2 is comparable with that of subdivision given the coarse grid used.

However, it should be noted that the rotation angle is recovered precisely with 450 in

each case.

6.2.3. Shape optimisation of skate helmet

The progressive mesh framework is ideally suited to making relative small shape changes

to existing detailed designs. Such a situation is demonstrated in this example where

the outer shape of a skate helmet is optimised to improve its overall stiffness in the

longitudinal direction. The initial geometry of the helmet is given as a fine resolution

surface mesh with 30538 vertices. This is partially immersed in a background grid of

dimensions 2.25× 2.4× 1.85 as depicted in Figure 6.8a. The grid contains 30× 30× 30
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(a) 3D view (b) Top view (c) Side view

Figure 6.8.: Skate helmet problem setup. Original CAD geometry obtained from
http://www.grabcad.com. The fine resolution skate helmet mesh of dimen-
sions 2.25× 1.91× 1.62 is partially immersed in a background grid. A unit
pressure is applied to the front of the helmet indicated in red.

cells. The optimisation problem is created by applying a longitudinal pressure on a

region at the front of the helmet and applying a rigid support at the back as shown

in Figures 6.8b and 6.8c. The Young’s modulus and Poisson’s ratio are 100 and 0.4,

respectively. A volume constraint (6.19) is used to keep the volume constant during

optimisation.

Note that these conditions are only used for creating an illustrative problem, the for-

mal procedure for testing of such helmets is governed by the standard BSEN 1078 [1].

The latter involves impact testing, a numerical study of which is available in Mills and

Gilchrist [94].

Mutiresolution gometry description: progressive meshes

During optimisation, only the front portion of the outer surface needs to be optimised

while the back and inner surface, the latter touching the wearer’s head, requires no shape

changes. The shape change must be such that the ventilation holes are preserved. These

design constraints require additional control during decimation. Specifically, a vertex

distribution quadric (3.5) with a high penalty factor is added to all vertices in regions

where no geometry changes are permitted. This results in graded coarse resolution

shown in Figures 6.9b and 6.9c. Additionally only coarse resolution nodes in the front

of the helmet (the blue region in Figure 6.9a) are used as active design variables. This

process results in a smooth transition of shape changes between the front and the rest

of the helmet. Such smooth transition cannot be achieved if a binary oracle is used to
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(a) Nodes in the red area are
penalised during decima-
tion. The blue area de-
notes the active optimisa-
tion region.

(b) Initial coarse resolution
x2352.

(c) Final coarse resolution
x4026.

Figure 6.9.: Skate helmet mesh decimation setup. Additional controls are needed in the
decimation and optimisation process to maintain smooth transition of shape
changes between the front and the rest of the helmet.

prevent any decimation in the back or inner surface.

The initial mesh x30538, also used as the immersed geometry, is optimised in coarse

resolutions `o ∈ {2352, 2910, 3468, 4026} to obtain the final optimised shape shown in

Figure 6.10b. The corresponding cost reduction is ≈ 10% while the reduction in the

strain energy density is shown in Figure 6.11. A comparison of the geometry before and

after optimisation, shown in Figure 6.10, reveals changes to the helmet profile near the

front as expected. Additionally the thickness has also increased in the same region while

maintaining the original inner surface and ventilation holes as required.

6.3. Linear elastic topology optimisation

Topology optimisation can be addressed using a variety of numerical methods which can

be broadly classified into two groups; the material or microstructure techniques and ge-

ometrical or macrostructure techniques [47]. Informally, microstructure techniques are

based on an initially porous material distribution where the constitutive model relates

material density 0 ≤ ρ ≤ 1 to stiffness. An optimisation problem is then solved to

determine the optimum distribution of material density. Two widely used microstruc-

ture techniques are the SIMP method [10] and the homogenisation method [11, 3]. In
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(a) Before shape optimisation.

(b) After shape optimisation.

Figure 6.10.: Comparison of skate helmet geometry before and after optimisation. Note
the changes in the profile (red dashed line), and thickness (black dashed
lines).

(a) Initial geometry (b) Optimised geometry

Figure 6.11.: Strain energy density of skate helmet before and after optimisation. The
geometry shown is the domain created by the immersed method.
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the SIMP method, intermediate material densities are penalised to favour either hav-

ing ρ = 0 or ρ = 1 denoting a void or a solid respectively. In the homogenisation

method intermediate material densities are treated as composites. See, amongst others,

Eschenauer and Olhoff [47], Bendsøe and Sigmund [12] for a review of microstructure

techniques in topology optimisation.

The macrostructure approach, treats the material as homogenous and the topology of

a continuum domain is changed by adding or removing holes. This can be done in

such a way that the new holes are represented as CAD surfaces, inline with the goals

of integrated product development. For example, Cervera and Trevelyan [24] used a

boundary element method and evolutionary concepts for topology optimisation where

the new topology boundaries were represented using NURBS curves. Material is then

added or removed from the domain by manipulating the NURBS control points. A

formal framework for increasing the genus of a solid body is offered by the bubble

method [46], which is based on iterative introduction, positioning and shape optimisation

of new holes. Essentially, the optimum location to introduce a topology change is first

determined followed by insertion of a small hole which is enlarged during subsequent

shape optimisation using area/volume minimisation with constraints on compliance. In

addition the work of Eschenauer et al. [46] who used NURBS curves to represent the

bubbles, several examples of using this approach with CAD geometry exist; a parameter

based approach by Schumacher [114] and a NURBS based framework by Seo et al. [117,

118]. The latter represented topology boundaries as trimming curves.

6.3.1. Topology derivative

The motivation behind the topology derivative is to predict the optimum location for

placement of a new hole, i.e. optimum location for a topology change. Eschenauer et

al. [46] studied the variation of an objective functional with respect to adding an in-

finitesimal hole. This is used to define a characteristic function that depends on the

stress state of the domain. Subsequently, holes are inserted at the location where the

characteristic function takes the minimum value. Based on this, Garreau et al. [57] pre-

sented a formal structure for evaluating the topology derivative via topological sensitivity

analysis.

The topology derivative at a point gives the sensitivity of the cost function when a small

hole is created at that point. Let Br be a hole of radius r centred in x0 ∈ Ω with
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(a) Initial domain Ω. (b) Domain with new topology.

Figure 6.12.: Change of domain topology. A hole of radius r is inserted at x0 to change
the topology of original domain from Ω to Ωr = Ω \Br.

boundary Γr. The boundary value problem (6.1) in Ω (Figure 6.12a) is now defined in

the new domain Ωr = Ω \Br (Figure 6.12b)

−∇ · σ(ur) = f in Ωr (6.24a)

ur = u on ΓD (6.24b)

t(ur) = σ(ur) · n = t on ΓN . (6.24c)

σ(ur) · n = 0 on Γr (6.24d)

Note the additional Neumann boundary condition for the new hole boundary. For the

sake of brevity, the value of the objective function J (Ω,u) (6.4) will be denoted by

J (Ω) henceforth. In the new domain Ωr, the objective function can be expanded as

follows

J (Ωr) = J (Ω) + f(r)DTJ (x0) + O(f(r)) (6.25a)

lim
r→0

f(r) = 0, f(r) > 0 (6.25b)

where f(r) is a measure of the hole size and DTJ (x0) is the topological derivative at

xo (see also Sokolowski and Zochowski [120] and Céa et al. [23]);

DTJ (x0) = lim
r→0

J (Ωr)− J (Ω)

f(r)
(6.26)

The domain Ωr now varies with r and there is no continuous mapping with an inverse

between Ωr and Ω, hence the derivative (6.26) cannot be computed in a conventional way.
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Two alternatives mathematical frameworks are used to this end, the domain truncation

method [57] or the so-called topology-shape sensitivity method [99, 100, 101]. The latter

relates the shape derivative to the topology derivative, and is used in the present work.

Specifically, the topology derivatives given in Novotny et al. [100, 101] for minimisation

of total potential energy in linear elastic boundary value problems in plane stress, plane

strain and 3D are used. See appendix D.2 for more details on topology derivatives.

6.4. Topology optimisation examples

Several examples are introduced in this section to demonstrate the versatility of mul-

tiresolution optimisation in a topology optimisation context. Only the subdivision based

multiresolution framework is used due to the need for new meshes during topology

changes. Additionally, topology optimisation usually involves significant changes to ex-

isting topology boundaries, which is easier to accomplish with subdivision surfaces.

The problem domain is created by immersing a curve or surface, representing the bound-

ary of the initial domain, in a background grid. Subsequently, a combination of shape

and topology optimisation steps in any desired order are performed. During a topology

optimisation step, the topology derivative DtJ (x) is computed for each cell in the back-

ground grid and a bubble is inserted at the location of minimum topology derivative.

Alternatively, a group of cells with the largest topology derivative can be removed based

on a volume reduction ratio. In this case the new topology boundary approximately

coincides with a contour line of the topology derivative. The boundary geometry of the

bubble is next optimised with shape optimisation optimisation before another bubble is

inserted and the process is repeated. Each boundary in the current domain is treated

as a separate multiresolution curve or surface during shape optimisation.

As in previous examples, the boundary value problem (6.1) is solved using the proxy

domain in the background grid using the immersed method (Section 6.1.2). The shape

optimisation problem consists of determining the optimum shape of the immersed curves

or surfaces such that the compliance (6.4) is minimised. The MMA algorithm is used

for solving the discretised optimisation problem. The input to the MMA algorithm is

as described in Section 5.4. Essentially it consists of the cost function J(x`c , u(x`c))

evaluated in the fine resolution and the position vectors x`oi and the gradients g`oi for

120



(a) Problem description. The top boundary is first shape opti-
mised with bounds on the end nodes (black squares) to pre-
vent any horizontal shrinking.

(b) Two bubbles are introduced at locations of
minimum topology derivative. Bounds restrict-
ing horizontal movement are added to the
nodes indicated as black squares.

(c) Final optimised geometry.

Figure 6.13.: Topology optimisation of a cantilever truss. The colour contours show the
topology derivative.

each node in the optimisation level `o. The size of the bubbles are increased during

shape optimisation using area or volume constraints that are initially violated

gAA0 − Aτ ≤ 0 (6.27a)

gV V0 − Vτ ≤ 0 (6.27b)

where different values for gA ≥ 1 and gV ≥ 1 are used to increase the current area Aτ

or volume Vτ with respect to the initial values Ao and Vo. The area and volume of the

holes are computed using (6.17) and (6.20) respectively.
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Figure 6.14.: Problem description of arch to truss transition study The two vertical
boundaries are first optimised with bounds on the end nodes (red squares)
to prevent any vertical movement.

6.4.1. Cantilever truss

This plane-stress topology optimisation problem, shown in Figure 6.13a, is similar to

the cantilever truss problem in Eschenauer et al. [46]. However, in the present example

the starting geometry is a rectangular plate, the top boundary of which is first shape

optimised. The top boundary (black line in Figures 6.13a and 6.13b) is represented at

the coarse resolution `o = 0 by a cubic B-spline with 3 control points. The two end

control points are tagged as corner to prevent horizontal shrinking. The fine resolution

is obtained after 2 subdivisions (`c = 2) and immersed in a background grid of 100×100

cells representing the plate. The Young’s modulus and Poisson’s ratio are 100 and 0.4,

respectively. The shape of the curve is optimised while reducing the area of the domain

using gA < 1 in (6.27a).

In the second stage, two bubbles (a triangle and a square) are inserted at locations

of minimum topology derivative as shown in Figure 6.13b. In the coarse resolution

`0 = 0, the bubbles contain 3 and 4 nodes which are subdivided twice to obtain the fine

computation resolution `c = 2.
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6.4.2. Arch to truss transition

The aspect ratio of the domain shown in Figure 6.14 is changed during shape and

topology optimisation to simulate the transition from arch to truss behaviour. The

starting domain is initially rectangular and its vertical boundaries are first optimised

followed by iterative positioning and optimisation of bubbles. Three cases are studied

for different H/L ∈ {0.25, 0.5, 1} ratios, where the background grids contain 80 × 200,

200× 100 and 150× 150 cells respectively. Young’s modulus and Poisson’s ratio are 100

and 0.4 respectively for all cases.

The vertical boundaries are represented at the coarse level `o = 0 using cubic curves with

3 control points each. These are subdivided 3 times to obtain the fine resolution `c = 3.

As in the previous example, the shape of the domain is first optimised while reducing

area before bubbles are introduced and optimised iteratively. Note that the bubbles

contain 3 or 4 nodes at `o = 0 and the fine resolution is chosen with `c = 3. Figure 6.15

contains the history of intermediate topology changes and the final optimisation results

for different H/L ratios indicating the expected arch behaviour for H/L = 1 case and

truss behaviour for H/L = 0.25 case. The optimisation of H/L = 1 is a special case

since having one roller support results in a small tensile region at the bottom whereas

changing the support conditions to two pinned supports results in an arch (Figure 6.16).

6.4.3. Shape and topology optimisation of a table

Figure 6.17 shows the setup of a 3D shape and topology optimisation problem used

as the starting geometry in this problem. Only a quarter of the model is used in the

optimisation study considering symmetry with appropriate bounds and geometry tags at

the planes of symmetry. The geometry is immersed in a background grid of dimensions

0.7× 0.7× 1 and 30× 30× 30 cells. The Young’s modulus and Poisson’s ratio are 100

and 0.4, respectively.

The sequence of topology and shape optimisation stages performed are shown in Fig-

ure 6.18. Unlike the previous two examples, a relatively large amount of material is

removed during each topology optimisation stage. Elements with topology derivative

below a certain threshold are removed in a single stage such that a clear change in

topology is obtained. The initial domain is created by immersing the outer boundary
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Figure 6.15.: Arch to truss transition using shape and topology optimisation. The colour
contours indicate the topology derivative. After initial shape optimisation
of the vertical boundaries, new bubbles are inserted at points of minimum
topology derivative (middle column).
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(a) Pinned support on the left and a roller support on the right.

(b) Both supports pinned. At the intermediate stage, the topology derivative is minimal below the
cavity indicating removal of material to obtain an arch.

Figure 6.16.: Changing support conditions based on topology derivative for H/L = 1.
The colour contours show the topology derivative of the initial (left), in-
termediate (middle) and final (right) geometries.

Figure 6.17.: Problem description for shape and topology optimisation of a table. Pinned
supports are applied to all nodes inside regions marked as red squares.
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(Figure 6.17) in the background grid. The first topology optimisation step, (A → B)

in Figure 6.18 involves removing cells with a topology derivative DTJ ≤ 0.025. A

coarse resolution subdivision surface representing the boundary of the new topology is

generated next (B → C). The new surface at `o = 0 is subject to shape optimisation

(C → D), with the fine resolution given by `c = 2. A volume constraint is applied to

maintain constant domain volume during shape optimisation. Material with topology

derivative DTJ ≤ 0.04 are removed during the second topology optimisation, stage

(E → F ) followed by another surface generation (F → G) and shape optimisation

(G→ H) stage.
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(a) Stage A: topology deriva-
tive of the initial domain.

(b) Stage B: material removed
to create new topology.

(c) Stage C: initial boundary
shape.

(d) Stage D: optimised bound-
ary shape.

(e) Stage E: topology deriva-
tive of domain.

(f) Stage F: material removed
to create new topology.

(g) Stage G: initial boundary
shape.

(h) Stage H: optimised bound-
ary shape.

Figure 6.18.: Shape and topology optimisation of a table. Topology optimisation is
performed during (A→ B) and (E → F ), shape optimisation is performed
during (C → D) and (G→ H). The colour contours indicate the topology
derivative and the wireframe denote the coarse resolution mesh of each new
topology. The final optimised shapes are shown as smooth shaded surfaces.
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(a) Initial domain (b) Deformed domain

Figure 6.19.: Interior free boundary value problem for the Laplace equation. The bound-
ary of the domain Ω consists of a fixed part Γ0 and a free part Γf . During
optimisation, the original problem domain Ω0 is deformed to Ω→ Ωt with
a corresponding change to the free boundary Γf → Γf,t.

6.5. BEM-based shape optimisation in electrostatics

In electrostatics, interior free boundary problems of Bernoulli type are given by the

following overdetermined Laplace equation [66]

−∆u = 0 in Ω

u = 0 on Γ0

u = 1,
∂u

∂n
= Q on Γf

(6.28)

where u represents the electrostatic potential and Q ≥ 0 is a prescribed constant ex-

pected value. The boundary of the domain Ω consists of a fixed part Γ0 and a free part

Γf as indicated in Figure 6.19a. The problem stated in (6.28) over constrained bound-

ary conditions on Γf . In a physical interpretation, the shape of the free boundary Γf ,

with a prescribed electric potential, must be determined such that the electrostatic flux

∂u/∂n along it is constant. A theoretical study of solutions to such interior problems

can be found in [50]. In the related exterior problem, the free boundary Γf is located

exterior(c.f. Figure 6.19a) to the fixed boundary Γo with prescribed potential. This class

of problems can be reformulated as an optimisation problem [66, 75, 44] where the state

equation is given by the Dirichlet boundary value problem for the Laplace equation

−∆u = 0 in Ω

u = 0 on Γ0

u = 1 on Γf

(6.29)
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with the objective function

J (x, u(x)) =
1

2

∥∥∥∥ ∂u∂n(x)−Q
∥∥∥∥2

L2(Γf )

=
1

2

∫
Γf

(
∂u

∂n
(x)−Q

)2

d Γf (6.30)

6.5.1. Shape derivative and computation

Using the notation introduced in Section 4.2, let tδv represent a design change in shape

resulting in the domain being deformed from the initial configuration Ω0 to the current

configuration Ωt. The perturbed problem is now restated using the deformed domain;

−∆ut = 0 in Ωt

ut = 0 on Γ0,t

ut = 1 on Γf,t

(6.31)

with a corresponding change of the objective function (6.30) evaluated on the perturbed

domain given by

J (xt, u(xt)) =
1

2

∫
Γf,t

(
∂ut
∂nt

(xt)−Q
)2

d Γf,t (6.32)

The shape derivative (4.4) can be expressed as a boundary integral in an analogous

manner to the linear elasticity shape derivative in Section 6.1

DJ (x, u(x))[δv] =

∫
Γf

f(u, λ)(δv · n) dΓf (6.33)

The exact form of f(u, λ) for the problem 6.31 and the objective function 6.30 under

consideration is given by [5, 130, 45]

f(u, λ) = − ∂λ
∂n

(x)
∂u

∂n
(x)− H(x)

2

((
∂u

∂n
(x)

)2

−Q2

)
(6.34)
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In the above expression, H is the curvature and λ is the solution of the adjoint problem

−∆λ = 0 in Ω

λ = 0 on Γ0

λ =
∂u

∂n
−Q on Γf

(6.35)

A brief outline of boundary elements methods is presented in Appendix E.2, see Bandara

et al. [5] for more details of the particular implementation used in the present work.

In the present work, a direct boundary element formulation based on Green’s formula [5]

is used for solving the direct (6.31) and adjoint (6.35) problems necessary for evaluating

the shape derivative (6.33). In a regular BEM setting, the system matrices are fully

populated restricting the problem size that can be efficiently computed. The curvature

H required for the shape derivative (6.34) is estimated with discrete differential operators

as given in Meyer et al. [93].

6.6. Electrostatic shape optimisation examples

Two example problems are presented, the first is an introductory example with a known

optimal shape and the other being a real-world example inspired by the Corporate Re-

search Department of ABB Switzerland Ltd. located in Baden–Dättwil, Switzerland.

During the optimisation only the shape of the boundary Γf,t is updated with subdivi-

sion based multiresolution shape optimisation described in Section 4.3. Note that only

Loop subdivision is used in the following examples. The boundary Γ0 and its mesh

resolution remains unchanged. As in previous cases, the discretised optimisation prob-

lem is solved with the MMA algorithm [124]. The input to the used nlopt optimisation

library [76] consists of the cost function J(x`c , u(x`c)) evaluated in the fine resolution

and the position vectors x`oi and the gradients g`oi for each coarse geometry node in the

free boundary Γ`of . In addition suitable geometric bounds for the design variables are

provided to the nlopt library.
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(a) Initial geometry at `o = 0. (b) Optimised geometry at `o = 0.

(c) Optimised geometry at `o = 1. (d) Final optimised geometry at
`o = 2.

Figure 6.20.: Box in a sphere. Initial and optimised geometries with isocontours of the
normal flux. The shown meshes indicate the optimisation level `o. The
shown isocontours belong to the fine computational mesh at `c = 2. The
geometries shown in (b) and (c) represent intermediate results and (d)
represents the final result.

6.6.1. Box in a sphere

This introductory example consists of optimising the shape of a box placed inside a

sphere. It can be shown that the optimal shape for the box is a sphere. The box,

representing Γf,t has dimensions 0.16× 0.2× 0.24 and the outer sphere, representing Γ0,

has radius 0.2. The coarse mesh for the box contains 48 elements which increases to

768 elements in the twice subdivided fine mesh at level `c = 2. During the subdivision

refinement the creases in the coarse mesh are maintained as creases using extended

Loop subdivision stencils [14]. Note that on the limit surface the creases are only C0-

continuous. The resolution of the outer sphere remains fixed with 320 elements. Hence,

the meshes for the boundary element analysis of the cube and sphere consist of 768 and

320 elements, respectively.
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Figure 6.21.: Box in a sphere. Rendering of the limit surface of the final optimised shape.

Figure 6.20a shows the initial coarse geometry yielding a cost function value of 52.37.

Note that the expected value Q in (6.30) is set to 20. First this coarse geometry is

selected as optimisation level, i.e. `o = 0, resulting in the optimised geometry shown in

Figure 6.20b. After consecutively selecting `o = 1 and `o = 2 and optimising the final

optimised geometry shown in Figure 6.20d is obtained. This final shape of the initial box

is nearly a sphere of radius 0.215 and the cost function value is 16.48, which represents

a reduction of 68.54%. As to be expected, the optimisation leads to a geometry with

nearly uniform distribution of normal flux, see Figure 6.20d. In Figure 6.21 a rendering

of the limit surface of the final optimised geometry is shown. Notice the high smoothness

of the optimised geometry.

In order to demonstrate the robustness and benefits of the proposed multiresolution

optimisation approach the problem is recomputed using the same level for optimisation

and computation, i.e. `o ≡ `c. Figure 6.22 shows the geometries obtained with `o ≡ `c ≡
0, `o ≡ `c ≡ 1 and `o ≡ `c ≡ 2. The corresponding reduction of the objective function

are 45.2%, 67.41%, 31.34%, respectively. Notice in Figure 6.22 the stark differences

in the three geometries obtained and the unphysical geometry oscillations for the finer

meshes. Moreover, the result obtained with `o ≡ `c ≡ 0 is highly questionable because

of the coarseness of the computational mesh. The unphysical oscillations obtained in

Figure 6.22b are reminiscent of problems reported in the finite element context [18, 63].
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(a) `o ≡ `c ≡ 0 (b) `o ≡ `c ≡ 1 (c) `o ≡ `c ≡ 2

Figure 6.22.: Box in a sphere. Optimisation without multiresolution using the same
level for shape control and computation, i.e. `o ≡ `c. The shown meshes
indicate the level `o ≡ `c. Isocontours indicate the normal flux.

6.6.2. Gas insulated switchgear

In this example, the proposed multiresolution shape optimisation framework is applied

to the design of an electrode in an gas insulated switchgear component, Figure 6.23a.

Such electromechanical components are widely used as circuit breakers in high-voltage

power transmission. The objective of shape optimisation is to reduce the propensity of

the component for electric breakdown with the ultimate aim to enable more compact

component geometries. This can be achieved by modifying the electrode geometries so

that the maximum normal flux is minimised. This is substituted by minimising the

L2-norm of the normal flux (6.30) as previously explained.

In Figure 6.23 the gas insulated switchgear component with the electrode in the form

of a primitive cylinder is shown. The cylinder represents the electrode geometry Γf,t

to be optimised. The initial coarse mesh of the cylinder contains 264 elements. The

creases on the cylinder are not tagged so that the geometry becomes smoother while

it is subdivision refined. As a design constraint, the inner surface of the cylinder is

required to have a constant radius for a bolt passing through it. Geometric bounds on

the positions of vertices lying on the inner surface are applied to prevent any radial

movement that would violate this design requirement, Figure 6.23b.

The once subdivision refined mesh with 1056 elements is chosen as the computational

level, i.e. `c = 1. As can be seen in Figure 6.24, the ends of the cylinder become smoother

because the usual (vs. extended) subdivision stencils are applied throughout the mesh.

In this example, we consider the geometry at level `o = 0 for optimisation. In the initial

design, Figure 6.24, the maximum normal flux is Jmax = 81.63 before optimisation, and
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(a) The cylindrical electrode boundary Γf,t

to be optimised is shown in dark blue
and the other surfaces representing Γ0

are shown in light grey.

(b) Close-up of the cylindrical electrode.
Vertices on the inner surface of the cylin-
der shown in dark blue are only allowed
to move along the axis of the cylinder.

Figure 6.23.: Gas insulated switchgear. Initial geometry and geometric optimisation
constraints.

(a) Overall component (b) Close-up of the electrode.

Figure 6.24.: Gas insulated switchgear. Isocontours of the normal flux for the initial
cylindrical electrode design.

reduces to Jmax = 66.99 in the optimised shape shown in Figure 6.25, corresponding to

a reduction of 17.94%. However the reduction of the objective function L2-norm of the

normal flux is much higher being 38.24%. Figure 6.26 shows the component with the

electrode geometry as currently manufactured by ABB. This electrode geometry has been

obtained over the years by combining engineering intuition with simple calculations and

testing. The similarities between the methodically shape optimised and the electrode

geometry in production are striking . Notice in particular the saddle shape at the two

ends of the original cylinder which helps to lower the large normal flux at the sharp

crease at the boundary of the inner hole.
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(a) Overall component (b) Close-up of the electrode.

Figure 6.25.: Gas insulated switchgear. Isocontours of normal flux for the optimised
electrode design.

(a) Manually optimised electrode. (b) Limit surface of the multiresolution op-
timised electrode.

Figure 6.26.: Gas insulated switchgear. Comparison of multiresolution shape optimised
design with manually optimised electrode produced by ABB.
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7. Conclusions and Future Research

7.1. Conclusions

This dissertation proposes the use of a hierarchy of meshes with varying resolutions for

integrated geometric design, analysis and optimisation of shells and solids. The motiva-

tion behind the multiresolution framework were twofold: (i) facilitate the seamless inte-

gration of different software modules required during the iterative product development,

and (ii) avoid the one-to-one correspondence between the geometric design variables

and the finite element mesh to facilitate parameter-free shape optimisation of shells and

solids. Functionality of the proposed multiresolution framework was demonstrated for a

variety of validation and industry strength examples in shell and solid optimisation. In

summary, the following conclusions can be made:

� In practice, changes to a geometric design need to be made iteratively based on

simulation and optimisation results. A multiresolution framework based on subdi-

vision surfaces (Section 4.3) has been developed in this dissertation as a suitable

solution for such scenarios. The subdivision refinement operation provides a natu-

ral means for propagating information from coarse to fine resolutions. The reverse

subdivision operation can be performed with least squares fitting as used in the

present work (Section 4.3.3). The introduced subdivision surface based framework

requires the starting geometry to be a coarse resolution mesh. Hence this is es-

sentially a top-down approach where the multiresolution hierarchy is constructed

starting from a coarse resolution, down to a fine resolution.

� This dissertation has also introduced an alternative bottom-up approach (Sec-

tion 4.4) where the initial input is a fine resolution mesh of arbitrary connectivity

containing many small-scale geometric features. This is desirable in situations
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where various geometric design features are already present by the time the opti-

misation stage is reached. In this setting, the multiresolution hierarchy is created

in a bottom-up manner starting from the given fine resolution mesh. A suitable

framework was assembled to this end by combining quadric based mesh decimation

with Laplacian smoothing following the progressive mesh approach (Chapter 3).

� In both top-down and bottom-up approaches introduced, the position vectors of a

coarse resolution mesh are used as the design variables while analysis is performed

using a fine resolution. The optimisation process is controlled by this difference

in resolutions and the corresponding subdivision (2.14) or smoothing (3.10) op-

erations used in translating data from coarse to fine resolutions. This enables

parameter-free optimisation without any additional mesh or geometry smoothing

typically required to obtain meaningful results from shape optimisation (c.f. Fig-

ure 6.22).

� Shape optimisation is required during various stages of product development. Dif-

ferent stages require varying degrees of emphasis on globalisation of geometric

design features. In initial design stages, large shape changes are expected dur-

ing optimisation whereas more minimal and localised shape changes are expected

during later design stages. In the presented examples, this is demonstrated by

gradually diminishing the difference between coarse and fine resolutions. Essen-

tially the design variables are migrated to progressively finer resolutions during

optimisation. This also eliminates mesh dependency of the optimised result to

some extent (see Figures 5.6 and 6.2).

� Parameter-free shape optimisation of Kirchhoff-Love shells is demonstrated using

the proposed multiresolution frameworks in Chapter 5. For the shells, analytical

shape derivatives are derived (Section 5.3) with respect to the position vector of

each node in the finite element mesh. A subdivision based isogeometric solver mod-

ule is used for solving the mechanical problem and computing the shape deriva-

tives. Shape optimisation of a real world example (Section 5.4.3) is presented

where various alternative design constraints are present. It is shown how these

design constraints can be incorporated in each of the multiresolution frameworks

underlining their potential in industrial applications.

� Use of standard finite elements for computing solid objects require a volumetric

mesh which is likely to be distorted during shape optimisation. Solid optimisation
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is presented in this dissertation by using either immersed or boundary element

methods (Chapter 6). A volumetric mesh is not required and a multiresolution

hierarchy is created to represent only the boundary of the solid domain. Various

shape (Section 6.2) and topology (Section 6.3) optimisation examples of linear

elastic solids are presented to demonstrate the robustness of combining the mul-

tiresolution optimisation approach with immersed methods.

7.2. Future Research

Several extensions and improvements of the proposed multiresolution optimisation ap-

proach are listed below:

� The introduced top-down subdivision based optimisation approach is only capable

of accepting an initial coarse resolution subdivision control mesh. It is possible to

extend this to include initial fine resolution meshes. The necessary input mesh can

be created by fitting a mesh with subdivision connectivity to the original input

mesh [43, 87]. The difference between the original and the fitted mesh can be

expressed in detail vectors (4.9) and stored in local frames as demonstrated in

Section 3.3.2. A similar method is described in Zorin et al. [132].

� A limitation of the current bottom-up framework is that coarse resolution field data

is only a subset of the fine resolution data without any averaging or smoothing

(Section 4.4.3). This can be addressed as suggested in Figure 4.14 by adding a

pre-smoothing step. However having two smoothing steps may result in longer

details and amplification of the non-uniform geometry editing effects highlighted

in Section 4.4.2.

� In addition to the subdivision and progressive mesh multiresolution frameworks

presented, alternative schemes can be developed. NURBS compatible subdivi-

sion [20] offers an attractive option in this context as it combines features of both

NURBS and subdivision.

� Finally, the extension to topology optimisation presented in Section 6.4 requires

manual generation of the new topology boundary. This process can be automated
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by extracting iso-contours of the topology derivative (6.26). This implies the ex-

tracted surface has approximately the same element size as the background mesh

requiring use of the progressive mesh approach in subsequent optimisation steps.
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A. Appendix

A.1. Eigenanalysis of subdivision matrix

The study of the subdivision surface geometry near the vicinity of a particular vertex

requires knowing only the control points in its local neighbourhood. Specifically the one-

ring neighbours, all vertices sharing an edge with the vertex in question, are required in

Loop and Catmull-Clark subdivision. Let x0 be coordinates of all the control points of

such a neighbourhood. The effect of subdividing x0 infinite times results in the control

polygon converging to the surface

x∞ = lim
n→∞

Snx0 (A.1)

The properties of the subdivision matrix can be analysed via an eigen-decomposition.

Let λI = {λ0, λ1, . . . , λn−1}, LI = {L0,L1, . . . ,Ln−1} and RI = {R0,R1, . . . ,Rn−1}
be the eigenvalues and the left and right eigenvectors of S, respectively with λi ≥ λi+1.

The control polygon x0 can be expressed as linear combination of eigenvectors

x0 =
n−1∑
i=0

a0
iRi, a0

i = Li · x0 (A.2)

Now (A.1) can be expressed as

x∞ = lim
n→∞

Sn
n−1∑
i=0

a0
iRi

= lim
n→∞

n−1∑
i=0

a0
iS

nRi

= lim
n→∞

n−1∑
i=0

a0
iλ

n
iRi
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(a) Control points and limit curve. (b) Control points projected onto the
limit curve.

Figure A.1.: Application of 1D cubic limit masks. Control points of non-interpolating
subdivision schemes like Loop, Catmull-Clark can be projected in the limit
curve/surface using limit masks.

The above eigenanalysis reveals several interesting properties about subdivision:

Convergence: For the subdivision scheme to be convergent, the largest eigenvalue λ0 >

λi has to be λ0 = 1.

Affine invariance: λ0 = 1 and Ri = {1, 1, . . . , 1} for affine invariance, i.e. affine trans-

formation is applied to the subdivision surface by applying it to the control points.

Limit position: The limit position of x0 is

x∞ = a0
iRi = a0

i = L0 · x0 (A.3)

The affine combinations in L0 can be used in a similar way to subdivision masks

and can be expressed using limit masks. This results in the control points being

projected in the limit curve/surface, see Figure A.1.

Tangents: The tangents at the limit position are

t1 = L1 · x0, t2 = L2 · x0 (A.4)

and the surface normal is

n = t1 × t2 (A.5)

A more detailed discussion of the above can be found in [131].

141



B. Appendix

B.1. Incremental mesh decimation with quadrics

The following describes an algorithm for incremental decimation using halfedge collapse.

It is assumed some binary oracle is present and quadric based error measures are used as

the continuous oracle. The original algorithm was presented by Garland [54] for general

edge collapse.

1. Allocate initial quadric Qn
i (3.7) for each vertex xni in starting mesh Ωn.

2. Collect list of all halfedge collapses.

3. Use binary oracles to eliminate disallowed halfedge collapses.

4. Compute error for each halfedge collapse (xni ,x
n
j )→ xn−1

i in list:

– The error of removing xnj during the collapse can be computed using the sum

of quadrics of the two vertices (x̂nj )T (Qn
i + Qn

j )x̂nj .

5. Form priority queue:

– The list of allowable halfedge collapses is sorted by ascending error.

6. Collapse halfedge at the top of the priority queue:

– After the halfedge (xnp ,x
n
q ) → xn−1

p is collapsed, the quadric of vertex xn−1
p

is updated; (Qn
p + Qn

q )→ Qn−1
p .

7. Go to step 2.
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Note that the binary oracle needs to be re-evaluated only for halfedges in the neighbour-

hood of the previous collapse due to local geometry changes. For example, the aspect

ratio of elements will be different and will change the outcome of a binary oracle for

aspect ratio.
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C. Appendix

C.1. Exact evaluation of subdivision surfaces

(a) Irregular region before subdi-
vision.

(b) Irregular region after subdivi-
sion.

Figure C.1.: A Catmull-Clark control mesh after a single subdivision. Initially, the five
elements connected to the extraordinary vertex (blue square) are irregular
and cannot be evaluated as a bi-cubic B-spline patch. However after a single
subdivision step, the area covered by irregular elements (blue) is reduced.

Catmull-Clark subdivision is equivalent to uniform B-splines in the regular setting and

only needs special rules for exact evaluation in the vicinity of extraordinary vertices.

An efficient method for exact evaluation in such regions was proposed by Stam [121].

Subdivision is equivalent to midpoint uniform B-spline knot insertion, implying that

after sufficient number of subdivisions any point in the irregular region can be made

to coincide with a known parametric representation. For example in Catmull-Clark

surfaces, it is a bi-cubic B-spline patch.
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(a) Near extraordinary Vertex (b) Near boundary

Figure C.2.: Exact evaluation of Catmull-Clark subdivision. The mesh is subdivided
(only once here) until evaluation point (red circle) is within a regular el-
ement. Any point within the regular element can be evaluated using a
bi-cubic B-spline patch (grey).

Let xo denote coordinates of the patch of control vertices in the irregular region. A single

subdivision is equivalent to multiplication by subdivision matrix S

x1 = Sx0 (C.1)

After a single subdivision step, 3 of the 4 new elements in the subdivided irregular

element are regular as shown in Figure C.1. This can be repeated (say ` times) until

the required evaluation point belongs to a regular vertex patch (Figure C.2), which can

be extracted using a picking matrix P comprising of 1’s and 0’s.

x̂` = PS`x0 = PS`x0 (C.2)

where x̂` contains the vertices corresponding to the known B-spline patch with the shape

function vector Φ. The desired evaluation point can now be obtained using

x(θ1, θ2) = ΦT(θ̃1, θ̃2)x̂` = ΦT(θ̃1, θ̃2)A`x0 (C.3)

The compact supports of B-splines imply that the interpolation of a given element

does not depend on the entire mesh. Only a particular neighbourhood of the element,

for example the one ring neighbours for Loop and Catmull-Clark, is sufficient. When

using (C.3), x0 is replaced by this local neighbourhood and yields the required regular
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patch x̂` used for parametrisation using a known B-spline patch Φ

xh(θ1, θ2) =
k∑
i=1

Ni(θ1, θ2)xi, xi ∈ x0 (C.4)

where k is the size of the local neighbourhood. The subdivision shape functions are

given by Ni = (ΦTA`)i. The derivatives can be computed as follows

∂Ni(θ1, θ2)

∂θj
=
∂(ΦTA`)i

∂θj
=

(
Φ(θ̃1, θ̃2)

∂θ̃i

∂θ̃i
∂θj

A`

)
i

, j ∈ {1, 2} (C.5)

Computation of the subdivision matrix

The exact evaluation described above requires the subdivision matrix S and picking

matrix P for which either of the following two methods can be employed;

� Maintain a particular ordering for the vertices in a patch

This implies the subdivision matrix has a particular block structure and can be

evaluated directly through eigen analysis similar to the approach by Stam [121]

for Catmull-Clark surfaces. The picking matrix P can be explicitly defined to pick

the regular vertex patch for the requred element. However this process is very

complicated for extended subdivison surfaces with corner, crease and edge tags.

� Compute P and Sn

Examining (C.1), it is obvious that each column of S can be computed by setting

a value of 1 for one vertex and 0 in others [31]. Let x0 denote the starting mesh

with n vertices. Set a unit value for the J th vertex

x0 = (0,0, . . . ,xJ , . . . ,0), xJ = 1, J ∈ [1, n] (C.6)

and subdivide once; x1 = Sx0. Now the J th column of the subdivision matrix SJ

is given by

SJ = x1 (C.7)

Similarly, A` can also be computed directly using the previous method. Simply

collect the values of the required regular patch after ` subdivisions of the initial
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mesh with of 1’s and 0’s set as in (C.6);

A`
J = x̂` (C.8)
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D. Appendix

D.1. Shape derivatives of covariant and contravariant

basis vectors

The covariant basis (5.3) is defined using the finite element discretisation (5.19)

aα =
k∑
i=1

Ni,αxi (D.1)

The partial derivative of the covariant basis with respect to a design variable xi is given

by

aα,xi
= Ni,α1 (D.2)

Note that in practice, the derivatives with respect to each component in xi are required,

this is not distinguished in the present work for brevity. The derivative of the unit

normal is more involved;

a3,xi
=
∂
[
a1×a2

|a1×a2|

]
∂xi

=
(a1 × a2),xi

|a1 × a2| − (a1 × a2)|a1 × a2|,xi

|a1 × a2|2

(D.3)

with the derivative of the magnitude

|a1 × a2|,xi
=

(a1 × a2) · (a1 × a2),xi

|a1 × a2|
(D.4)

Finally the derivative of the cross product is

(a1 × a2),xi
= (a1,xi

× a2) + (a1 × a2,xi
) (D.5)
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Figure D.1.: Domain truncation

The derivative of the contravariant basis requires the definition of the Jacobian of the

mapping J = [a1 a2 a3]T. From the definition of the contravariant basis āi · āj = δij, it

follows that

[a1 a2 a3]T,xi
= (JT)−1

,xi
(D.6)

For non-singular J, the following relationship holds;

JT(JT)−1 = I

JT
,xi

(JT)−1 + JT(JT)−1
,xi

= 0
(D.7)

The derivative of the inverse of the Jacobian can now be computed from;

(JT)−1
,xi

= −(JT)−1JT
,xi

(JT)−1 (D.8)

D.2. Topological-shape sensitivity method

Introduced by Novotny et al. [99], the topological-shape sensitivity method represents

the topology derivative using the shape sensitivity. The key idea is that the hole Br

already exists and is perturbed by a small amount δr, creating a new hole Bt and a

domain Ωt = Ω \ Bt. It is evident that Ωt|t=0 = Ωr. The following transformation can

be used to represent this mapping between Ωt and Ωr (c.f. Section 4.2)

xt = x+ tδv, xt ∈ Γt, x ∈ Γr (D.9)
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The shape change in this context is restricted to the expansion of the hole Bτ , giving

the following definition for design velocity δv

δv = −n on Γr (D.10)

Shape sensitivity of the objective function J (Ωr) with respect to the perturbation tδv

reads
dJ
dt

(Ωt)

∣∣∣∣
t=0

= lim
t→0

J (Ωt)− J (Ωr)

t
=

dJ
dr

(Ωr) (D.11)

Note that the above is valid only for small t. The relationship between the topology

derivative (6.26) and the above shape sensitivity of the hole can be established by taking

the derivative of 6.25a

dJ
dr

(Ωr) = +f(r)′DT (x0) + O(f(r)) ′f ′(r) (D.12)

substituting (D.11) and rearranging

dJ
dt

(Ωt)

∣∣∣∣
t=0

= f ′(r)
(
DT (x0) + O(f(r)) ′

)
DT (x0) = lim

r→0

1

f ′(r)

dJ (Ωt)

dt

∣∣∣∣
t=0

(D.13)

Refer to Novotny et al.[99, 101] for complete proof. A link between the topology deriva-

tive and shape sensitivity concepts is established in (D.13). The next task is to deter-

mine f(r) such that 0 < |DT (x0)| <∞ as r → 0. Considering the original linear elastic

boundary value problem (6.1) formulated in the truncated domain Dr = Ωt \Ωr (Figure

D.1);

−∇ · σ(ûr) = 0 in Dr

ûr = ψ on Γt

σ(ûr) · n = 0 on Γr

(D.14)

with ψ = ur|Γt
, where ur is the solution to the problem formulated in Ωr (6.24). Note

that the domain truncation concept from Garreau et al. [57] implies the following iden-

tity;

ur = ûr|Dr
(D.15)

Essentially problems 6.24 and D.14 now have the same solution in Dr. The latter is

given by the analytical solution for stress distribution around a circular/spherical void.
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Given property D.15, an asymptotic analysis of (D.13) using the solution of D.14 as

r → 0 will give f(r) and the topology derivative.
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E. Appendix

E.1. Features of immersed method

The following is a brief outline of the immersed method [109, 110] used in Sections 6.2

and 6.4 as the solver module in shape and topology optimisation of linear elastic solids.

� The boundary Γ of the physical domain Ω is represented in the background grid

ω using an implicit signed distance function φ

φ(x,Γ) =


distance(x,Γ) if x ∈ Ω

0 if x ∈ Γ

−distance(x,Γ) otherwise

(E.1)

� In immersed methods, auxiliary procedures are required to integrate the physical

domain boundaries into the solution from the block-structured background mesh.

Consider the weak form of the linear elastic boundary value problem (6.1)∫
Ω

σ(u) : ε(v) dΩ =

∫
Ω

f · v dΩ +

∫
ΓN

t · v dΓ +

∫
ΓD

t(u) · v dΓ . (E.2)

In classical finite element analysis, the last term disappears due to the assumption

that v = 0 on ΓD. In [109], an integral equation formulation based on Nitsche’s

method is used to enforce essential boundary conditions.

� Tensor product B-splines of polynomial degree p are used as the shape functions

on the background grid;

Ni,p = Ni1,p × · · · ×Nid,p (E.3)
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where d is the dimension, i = {i1, . . . , id} is the multi-index of a grid point and

Ni1,p, . . . , Nid,p are the univariate B-splines (2.2).

� Let Ωk denote a cut-cell which is partially inside the domain Ω, i.e. Ωk ∩ Γ 6= ∅.
As |Ωk ∩ Γ| → 0 the condition number of the system matrix increases which is

addressed using a subdivision based stabilisation method method.

E.2. Introduction to boundary element methods

A boundary element solver using the fast multipole method presented in Of et al. [102]

is used in Section 6.6 as the solver module. The boundary element formulation is based

on the direct method using Green’s formula, a brief outline of which is presented below

following Hsiao and Wendland [72] and Banerjee [7].

Let ω(x,y) denote the fundamental solution to the Laplacian in 3D given by

ω(x,y) =
1

4π|x− y|
x,y ∈ R3 (E.4)

The solution of the boundary value problem (6.31) at any point inside the domain

u(x), x ∈ Ω is now given by the boundary integral equation

u(x) =

∫
Γ

ω(x,y)
∂u

∂n
(y) d Γ−

∫
Γ

u(y)
∂ω

∂n
(x,y) d Γ x ∈ Ω, y ∈ Γ (E.5)

Similarly the solution on the boundary u(x), x ∈ Γ takes the following form

1

2
u(x) =

∫
Γ

ω(x,y)
∂u

∂n
(y) d Γ−

∫
Γ

u(y)
∂ω

∂n
(x,y) d Γ x,y ∈ Γ (E.6)

In contrast to the finite element method that contain domain integrals requiring Ω to be

discretised, (E.5) and (E.6) contain only boundary integrals requiring a discretisation

of only the boundary Γ. Assume the boundary is discretised into ne elements, E.6 can

be written for the kth element as follows

1

2
u(xk) =

ne∑
i=1

∂u

∂n
(yi)

∫
Γi

ω(xk,yi) d Γ−
ne∑
i=1

u(yi)

∫
Γi

∂ω

∂n
(xk,yi) d Γ (E.7)
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This can be expressed in matrix form and rearranged to yield a format similar to the

standard discretised equilibrium equation given in (5.23)

1

2
Mhuh = Vhqh −Khuh

Vhqh =

(
1

2
Mh + Kh

)
uh (E.8)

with

Vh[i, j] =

∫
Γi

∫
Γj

ω(xi,yj) d Γj d Γi, Kh[i, j] =

∫
Γi

∫
Γj

∂ω

∂n
(xi,yj) d Γj d Γi

Mh[i, j] =

∫
Γi

ψj d Γi qh[i] =
∂u

∂n
(xi)

where ψ are the piecewise constant basis functions For each element uh =
∑
ψiui and

uh is given by

uh[i] =

{
0 for Γi ∈ Γ0

ũ for Γi ∈ Γf
(E.9)

with ũ = 1 for problem 6.31 and ũ = ∂u
∂n

(xi)−Q for problem 6.35
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[88] N. Litke, A. Levin, and P. Schröder. Fitting subdivision surfaces. Proceedings

Visualization, VIS ’01., pages 319–568, 2001. 51, 55

[89] E.H. Lockwood. A book of curves. Cambridge University Press, 1971. 78

[90] Q. Long. Subdivision finite elements for geometrically complex thin and thick shells.

PhD thesis, University of Cambridge, 2009. 74

[91] C. Loop. Smooth subdivision surfaces based on triangles. Master’s thesis, Univer-

sity of Utah, 1987. 23

162



[92] M. Lounsbery, T.D. DeRose, and J. Warren. Multiresolution analysis for surfaces

of arbitrary topological type. ACM Transactions on Graphics (TOG), 16(1):34–73,

1997. 48
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[132] D. Zorin, P. Schröder, and W. Sweldens. Interactive multiresolution mesh editing.

In SIGGRAPH 1997 Conference Proceedings, pages 259–268. ACM Press/Addison-

Wesley Publishing Co., 1997. 37, 138

166


	1 Introduction
	1.1 Motivation
	1.2 Methodology
	1.3 Objectives and layout

	2 CAD geometry representation techniques
	2.1 B-splines
	2.2 NURBS
	2.3 Subdivision surfaces
	2.3.1 Univariate subdivision
	2.3.2 Bivariate subdivision
	2.3.3 Multiresolution geometry editing


	3 Progressive meshes
	3.1 Multiresolution modeling on arbitrary meshes
	3.2 Mesh decimation
	3.2.1 Quadrics
	3.2.2 Feature preserving decimation of CAD geometry

	3.3 Progressive meshes
	3.3.1 Smoothing operator
	3.3.2 Multiresolution editing


	4 Multiresolution geometry representation
	4.1 Multiresolution shape optimisation
	4.2 Design sensitivity
	4.3 Top-down multiresolution framework
	4.3.1 Wavelets
	4.3.2 Subdivision coarsening
	4.3.3 Coarsening methods
	4.3.4 Integrated geometric design, finite element analysis and optimisation

	4.4 Bottom-up multiresolution framework
	4.4.1 Basis function analogy
	4.4.2 Uniform geometry editing
	4.4.3 Coarsening of field data
	4.4.4 Integrated design, analysis and optimisation algorithm


	5 Kirchhoff-Love shell optimisation
	5.1 Review of thin shell mechanics
	5.1.1 Kinematics
	5.1.2 Discretisation of the energy functional

	5.2 Subdivision shells
	5.3 Discrete shape derivative
	5.4 Examples
	5.4.1 Catenary curve
	5.4.2 Bi-parabolic roof shell
	5.4.3 Architectural roof design


	6 Optimisation of solids
	6.1 Linear elastic shape optimisation
	6.1.1 Shape derivative
	6.1.2 Immersed methods for optimisation

	6.2 Linear elastic shape optimisation examples
	6.2.1 Two-dimensional plate with hole
	6.2.2 Optimal shapes of a cavity in an elastic domain
	6.2.3 Shape optimisation of skate helmet

	6.3 Linear elastic topology optimisation
	6.3.1 Topology derivative

	6.4 Topology optimisation examples
	6.4.1 Cantilever truss
	6.4.2 Arch to truss transition
	6.4.3 Shape and topology optimisation of a table

	6.5 BEM-based shape optimisation in electrostatics
	6.5.1 Shape derivative and computation

	6.6 Electrostatic shape optimisation examples
	6.6.1 Box in a sphere
	6.6.2 Gas insulated switchgear


	7 Conclusions and Future Research
	7.1 Conclusions
	7.2 Future Research

	A Appendix
	A.1 Eigenanalysis of subdivision matrix

	B Appendix
	B.1 Incremental mesh decimation with quadrics

	C Appendix
	C.1 Exact evaluation of subdivision surfaces

	D Appendix
	D.1 Shape derivatives of covariant and contravariant basis vectors
	D.2 Topological-shape sensitivity method

	E Appendix
	E.1 Features of immersed method
	E.2 Introduction to boundary element methods

	Bibliography

