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Abstract

in structural theories such as the shear-deformable Timoshenko beam and Reissner-Mindlin
plate theories have seen wide use throughout engineering practice to simulate the response of
structures with planar dimensions far larger than their thickness dimension. Meshlessmethods
have been applied to construct numerical methods to solve the shear deformable theories.

Similarly to the ĕnite elementmethod, meshlessmethodsmust be carefully designed to over-
come the well-known shear-locking problem. Many successful treatments of shear-locking in
the ĕnite element literature are constructed through the application of a mixed weak form. In
the mixed weak form the shear stresses are treated as an independent variational quantity in
addition to the usual displacement variables.

We introduce a novel hybrid meshless-ĕnite element formulation for the Timoshenko beam
problem that converges to the stable ĕrst-order/zero-order ĕnite element method in the local
limit when usingmaximum entropy meshless basis functions. e resulting formulation is free
from the effects shear-locking.

We then consider the Reissner-Mindlin plate problem. e shear stresses can be identiĕed as
a vector ĕeld belonging to the Sobelov space with square integrable rotation, suggesting the use
of rotated Raviart-omas-Nedelec elements of lowest-order for discretising the shear stress
ĕeld. is novel formulation is again free from the effects of shear-locking.

Finally we consider the construction of a generalised displacement method where the shear
stresses are eliminated prior to the solution of the ĕnal linear system of equations. We imple-
ment an existing technique in the literature for the Stokes problem called the nodal volume
averaging technique. To ensure stability we split the shear energy between a part calculated
using the displacement variables and the mixed variables resulting in a stabilised weak form.
e method then satisĕes the stability conditions resulting in a formulation that is free from
the effects of shear-locking.
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. Graph showing L2 error in ẑ3h using two locking-free methods for a thin plate

̄t = 0.001. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. Plot of z3h, MaxEntmixedmethod 16×16 grid, simply-supported plate, ̄t = 0.001
. Plot of θ1h, MaxEntmixedmethod 16×16 grid, simply-supported plate, ̄t = 0.001
. Plot of θ1h, MaxEnt + NED mixed method 16 × 16 grid, clamped plate, ̄t = 0.001
. Graph showing normalised central deĘection z3(0.5, 0.5) of CCCC square plate

for varying ̄t. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. Illustration of splitting of shear energy in stabilised mixed weak form. . . . . . 
. Various ĕnite element designs available in the literature for the stabilisedmixed

weak form. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. Graph showing convergence for transverse displacement and rotation variables

for varying values of α. TRIA element hK = 1/8 on a uniform mesh. . . . . 
. Graph showing convergence for transverse displacement and rotation variables

for varying thickness ̄t with constant α = h−2K = 64. . . . . . . . . . . . . . . . . 
. Graph showing convergence for transverse displacement and rotation variables

for varying thickness ̄t with modiĕed variable α = h−2̄t . . . . . . . . . . . . . . . 
. Graph showing convergence of transverse displacements in H1 norm for vary-

ing α choices. Square domain with SSSS boundary conditions. . . . . . . . . . 
. Graph showing convergence of transverse displacements in L2 norm for vary-

ing α choices. Square domain with SSSS boundary conditions. . . . . . . . . . 





Contents

. Sparsity pattern of mixed stabilised Reissner-Mindlin system, reduced system
and the Schur complement, using TRIA element on a two element square
mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. Illustration showing node set Nh and triangulation Th on a domain Ω with
boundary Γ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. Illustration showing the degrees of freedom for the displacement spaceUh (two
per ĕlled circle) and for the pressure spacePh (one per open circle) . . . . . . . 

. Illustration showing a pressure degree of freedom pa and the associated inte-
gration domain Ωa for the computation of the volume-averaged pressure . . . . 

. Illustration of the local patch projection procedure. See text for description of
each subĕgure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. Leaky lid cavity problem. Unit horizontal displacement ux = 1, uy = 0 is
applied to the top side, all other sides ĕxed ux = uy = 0. . . . . . . . . . . . . . 

. Horizontal displacement ux for leaky-lid cavity Ęow problem with LPP Maxent
and MINI methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. Vertical displacement uy for leaky-lid cavity Ęow problem with LPP Maxent
and MINI methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. Vertical displacement uy across line QQ. . . . . . . . . . . . . . . . . . . . . . 
. Horizontal displacement ux across line PP. . . . . . . . . . . . . . . . . . . . . 
. Graph showing for a ĕxed discretisation of 8×8 grid + `bubble' nodes and ĕxed

α = 32.0 the effect of changing ̄t on convergence. . . . . . . . . . . . . . . . . . 
. Contour plot showing sensitivity of eL2(z3) with respect to stabilisation param-

eter α and number of degrees of freedom dim(U). . . . . . . . . . . . . . . . . 
. Contour plot showing sensitivity of eH1(z3)with respect to stabilisation param-

eter α and number of degrees of freedom dim(U). . . . . . . . . . . . . . . . . 
. Contour plot showing sensitivity of eL2(θ1) with respect to stabilisation param-

eter α and number of degrees of freedom dim(U). . . . . . . . . . . . . . . . . 
. Contour plot showing sensitivity of eH1(θ1)with respect to stabilisation param-

eter α and number of degrees of freedom dim(U). . . . . . . . . . . . . . . . . 
. Plot showing convergence of proposedLPPMaxEntmethod for simply-supported

plate problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. Plot of z3h, LPPMaxEntmethod. 10×10 grid+ `bubble' nodes, simply-supported

plate, ̄t = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 





Contents

. Plot of θ1h, LPPMaxEntmethod. 10×10 grid+ `bubble' nodes, simply-supported
plate, ̄t = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. Plot of z3h, LPPMaxEntmethod. 10×10 grid+ `bubble' nodes, simply-supported
plate, ̄t = 0.001. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. Plot of θ1h, LPPMaxEntmethod. 10×10 grid+ `bubble' nodes, simply-supported
plate, ̄t = 0.001. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. Plot of z3h, LPP MaxEnt method. 10 × 10 grid + `bubble' nodes, Chinosi
clamped plate, ̄t = 0.001. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. Plot of θ1h, LPP MaxEnt method. 10 × 10 grid + `bubble' nodes, Chinosi
clamped plate, ̄t = 0.001. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. Plot showing convergence of proposedLPPMaxEntmethod forChinosi clamped
plate problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. Plot showing convergence of unprojectedMaxEntmethod for the simply-supported
plate problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Tables

. Summary of properties of various meshless basis functions . . . . . . . . . . . 
. Commonly used radial basis functions. . . . . . . . . . . . . . . . . . . . . . . 

. e effect of h-reĕnement on the error z3h(L)/z3(L) at the tip of the cantilever
beam. CG1 FEM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. e effect of p-reĕnement on the error z3h(L)/z3(L) at the tip of the cantilever
beam. CGp FEM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. e effect of h-reĕnement on the error z3h(L)/z3(L) at the tip of the cantilever
beam. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. e effect of support size on the error z3h(L)/z3(L) at the tip of the cantilever
beam with ε = 0.01. MaxEnt meshless. . . . . . . . . . . . . . . . . . . . . . . 

. e effect of support size on the sparsity of the linear system nnz(A)/(dimU)2

for the cantilever beam problem. MaxEnt meshless. . . . . . . . . . . . . . . . 
. e effect of p-reĕnement on the error z3h(L)/z3(L) at the tip of the cantilever

beam. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 





Contents

. Algebraic convergence rate ρ for mixed methods using different meshless basis
functions for the thick ε = 1.0 cantilever beam problem subject to a point load. 

. Algebraic convergence rate ρ for mixed methods using different meshless basis
functions for the thin ε = 0.001 cantilever beam problem subject to a point load.

. Algebraic convergence rate ρ for mixed methods using different meshless basis
functions for the cantilever beam in pure bending. . . . . . . . . . . . . . . . . 

. Algebraic convergence rate ρ for mixed methods using different meshless basis
functions for the clamped-clamped beam. . . . . . . . . . . . . . . . . . . . . 

. Convergence rates for series in ĕgs. . and .. Calculated from ĕrst-order ĕt
to curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 













List of frequently used nomenclature

(u, v)V Inner product between u and v on spaceV

|u|c Semi-norm of u induced by a bilinear form c

αρ Scaling factor for calculating support size

Ω̄ Closure of Ω

̄t Normalised plate thickness ̄t = t/L

δij Kronecker-delta function

dim(Vh) Dimension of spaceVh

ε Small parameter in Timoshenko beam problem

η Rotation (test)

Γ Problem boundary

Γ0 Boundary of mid-surface of plate

ΓD Subset of boundary with prescribed Dirichlet boundary conditions

ΓN Subset of boundary with prescribed Neumann boundary conditions

K̂ Reference triangular element

κ Shear correction factor = 5/6





List of frequently used nomenclature

λ Plate shear modulus = Eκ/(2(1 + ν))

{}h Discrete counterpart of continuous variable eg. V3h andV3

ε Small strain tensor

ε(⋅) Small strain operator

η Rotation vector (test)

γ Shear stress vector (trial)

φ Partition of unity basis function vector

ψ Shear stress vector (test)

σ Stress tensor

θ Rotation vector (trial)

I Identity tensor

L[⋅] Bending stress operator

N Finite element basis functions vector

n Unit normal on Γ

u Displacement vector

γ Shear stress (trial)

L Operator of partial derivatives

Nh Node set

O(f) Varies on the order of some function f (Big-O notation)

R Function space for rotations θ

S Function space for shear stress

Sh Connectivity set





Th Triangulation with standard deĕnition

V T Function space for Timoshenko beam problem

V T
0 Function space of pure bending displacements for Timoshenko beam problem

V3 Function space for transverse displacements z3

V 0
3 Function space for Bernoulli beam problem

Z Kernel function space

||u||V Norm of u on spaceV

ν Poisson's ratio

Ω Problem domain

ω Support domain set

Ω0 in structure mid-surface domain

φi Partition of unity basis function associated with degree of freedom i

Πh General projection operator

Πp
h Local patch projection operator

ψ Shear stress (test)

ρ Slope of e vs dim(Uh) convergence plot

ρ Support radius set

rot Rotation operator

θ Rotation (trial)

θ1 Rotation around x2 axis

θ2 Rotation around x1 axis

m̃ Scaled moment in Timoshenko beam problem





List of frequently used nomenclature

p̃ Scaled load in Timoshenko beam problem

P̃k(Σ) Space of homogeneous polynomials of order p deĕned on geometrical entity Σ

ab(θ; η) Bilinear form relating to bending energy

as(θ, z3; η, y3) Bilinear form relating to shear energy

CGp(Ω;Th) Space of continuous Lagrangian ĕnite elements of order p

D Bending modulus = E/12(1 − ν2)

dΓ Surface measure

dΩ Volume measure

DGp(Ω;Th) Space of discontinuous Lagrangian ĕnite elements of order p

E Young's modulus

e Error

e(u)V Error of variable u calculated in norm of spaceV

ei Edges of reference element

F Push-forward from reference element to general element in mesh

FK Push-forward between general triangular element to general element in mesh

G Beam shear modulus

g(y3) Linear form relating to transverse loading

h Cell size

H(rot; Ω) Sobolev space of square integrable functions with square integrable rotation

H1(Ω) Sobolev space of square-integrable functions with square-integrable weak derivatives

H−1(div;Ω) Sobolev space deĕned as the dual space of H(rot;Ω)

I Second moment of inertia of the cross section





K General triangular element

L Characterisic in-plane dimension of thin structure

L2(Ω) Space of square-integrable functions

ME(Ω;Nh, ρ) Space of maximum-entropy basis functions

MLSp(Ω;Nh, ρ) Space of MLS basis functions of polynomial order p

Ni Finite element basis functions associated with degree of freedom i

NEDp(Ω;Th) Space of rotated Raviart–omas-Nédélec ĕnite elements of order p

p Polynomial order

p3 Transverse loading function

Pk(Σ) Space of polynomials of order p deĕned on geometrical entity Σ

r Constraint ratio

Rh MITC reduction operator

RPIMp(Ω;Nh, ρ) Space of RPIM basis functions of polynomial order p

T General element

t ickness of thin structure in x3 direction

wi Weight function associated with node i

x1, x2, … Nodes in node set

x1, x2 Coordinates on mid-surface of plate or beam

x3 Coordinate through thickness of plate or beam

y1, y2, y3 Generalised displacements along coordinates x1, x2, x3 (test)

z1, z2, z3 Generalised displacements along coordinates x1, x2, x3 (trial)









 Introduction

. General

Many physical problems can be described by a set of partial differential equations (PDEs) that
contain a mathematical description of the underlying physical phenomenon. Usually it is im-
possible to obtain a classical analytical solution to such problems, except in speciĕc cases with
simple domain geometries and boundary conditions. erefore numerical methods are re-
quired to ĕnd approximate solutions to these PDEs.

e physical problems we study in this thesis are the mechanical deformation of beam and
plate structures. e PDEs that describe these physical phenomenon are known as beam and
plate theories, and are a speciĕc subset of a more general class of PDEs known as shell theories
which describe the mechanical deformation of shell structures. Simply put, shells are curved
three-dimensional bodies that are thin in one dimension and long in the other two. Plates can
then be viewed as shells without curvature, and beams are just plates with one long dimension
instead of two. We will refer to beams, plates and shells collectively as thin structures and the
PDEs that describe their behaviour as thin structural theories.

e reason that shell structures are so important is that they are extremely efficient; they can
carry huge applied loads over vast areas using very little material. ey are found abundantly in
the natural world precisely because of the evolutionary advantages afforded by these efficiencies.
Humans also recognise the utility of shell structures. ey can be found in all sorts of ĕelds of
human endeavour, including civil and naval architecture, mechanical engineering, aerospace
engineering and the automotive industry. In many cases shell structures can be remarkably
beautiful as well as practical, such as the Great Court roof at the British Museum shown in
ĕg. ..

Because of the wide use of thin structures in modern engineering practice, designers require
robust and effective numerical methods for the solution of thin structural theories. A great
deal of research effort has been expended on the development of the ĕnite element method for
the numerical solution of these theories. Because of the asymptotic behaviours of thin struc-
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 Introduction

Figure .: Great Court roof at the British Museum, London. Source: Andrew Dunn/Wikime-
dia Commons,  - ..

tural theories it turns out that this task is somewhat difficult. Particularly in the case of shear-
deformable shell theories this task is very complex due to the multiple asymptotic behaviours
that arise which are dependent on the geometry, loading and boundary conditions of the partic-
ular shell problem at hand. For a numerical method to be effective it must be able to reproduce
all of the asymptotic behaviours present in the structural theory. It is only relatively recently
that ĕnite element methods have become available that are capable of reproducing all of the
complicated asymptotic behaviours of the shear-deformable shell theories. e uniĕed analyt-
ical proof that these shell ĕnite elementmethods work in all of these asymptotic cases is still not
available, and the evidence of their efficacy is primarily numerical. Nonetheless, in many ways
these ĕnite elementmethods represent one of the pinnacles ofmodern numerical mathematics.

Despite these successes, ĕnite element methods are not without disadvantages, primarily
due to their reliance on constructing the basis functions for the numerical solution of the PDE
using a mesh of the problem domain. A relatively recent development in the ĕeld of numerical
methods, meshless methods, construct the basis functions for the solution of the PDE using
just the speciĕcation of nodal locations and support sizes in the domain. is lack of mesh
bestows meshless numerical methods with various advantages over the ĕnite element method.
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. Meshless methods

Because of these advantages it is natural to want to develop meshless numerical methods
capable of solving the thin structural theories. is thesis is concerned with the develop-
ment of novel meshless numerical methods for the simulation of beam and plate structures de-
scribed using the shear-deformable beam and plate theories. e shear-deformable beam and
plate theories contain one asymptotic behaviour of the shear-deformable shell theory, which
is the bending-dominated asymptotic behaviour. If a numerical method fails to be able to
represent this bending-dominated asymptotic behaviour the common problem of numerical
shear-locking will occur, which leads to entirely erroneous results. e bending-dominated
asymptotic behaviour is one of the most commonly encountered behaviours in thin structural
theories. erefore the development of effective meshless numerical methods for the shear-
deformable beam and plate theories that are free from shear-locking is a key step towards tack-
ling the more complicated asymptotic behaviour of the shear-deformable shell theory.

e outline of this introductory chapter is as follows. In the next section we will give a his-
torical overview of the development of meshless numerical methods. We will then discuss the
development of plate and shell theories before turning our attention to the problem of shear-
locking. In particular, we will discuss existing solutions in the meshless literature to the prob-
lem of shear-locking. We will then outline the structure of this thesis and the unique contribu-
tions that this thesis makes to the ĕeld.

. Meshless methods

ere is little doubt that the ĕnite element method (FEM) has grown to be the pre-eminent
numerical method for the numerical solution of partial differential equations in the physical
sciences and engineering. e FEM is a mature and well understood technology and it will un-
doubtedly continue to attract a huge amount of research effort across a wide range of academic
disciplines.

In contrast, meshless methods are a relatively recent development in the ĕeld of numerical
methods. It is only recently that meshless methods have become available in commercial com-
putational simulation soware, and to most practicing engineers they are still viewed as being
somewhat exotic and different to the FEM. However, in the context of numerical methods con-
structed via the application of a weak or variational form, meshless methods in fact have a great
deal in common with the FEM. ese commonalities were ĕrst formalised in the seminal work
of Babuška and Melenk as the partition of unity method (PUM) []. Simply put, ĕnite element
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methods and meshless methods can be viewed as different approaches for the construction of a
partition of unity (PU). A partition of unity is any set of basis functions φ that are constructed
with the following property everywhere in the problem domain []:

􏾜
i
φi = 1 (.)

It is this fundamental property which links many seemingly disparate numerical techniques
including ĕnite element methods and meshless methods.

In the FEM the problem domain upon which the PDE is posed is divided into a ĕnite num-
ber of non-overlapping subdivisions known as elements, see ĕg. .. ese subdivisions are
connected together using a topological map known as a mesh. A suitable basis is then con-
structed on a reference element before being pushed forward to the elements in the mesh via
a suitable map, see ĕg. .. e resulting basis forms a partition of unity. e solution of the
entire system is then assembled from the contribution from each ĕnite element in the mesh.
is approach is not without limitations; due to themesh-based interpolation, heavily distorted
or low-quality meshes can frequently lead to numerical errors requiring expensive re-meshing
operations. Furthermore, the task of meshing is also expensive in terms of human time for the
engineer or scientist tasked with the computational simulation of the physical phenomenon
of interest. Simulation of moving discontinuities such as cracks and inclusions also requires
constant re-meshing as the discontinuity evolves with time.

Meshless or meshfree methods were conceived with the objective of relieving some of the
difficulties associated with using a mesh to construct the approximation space for the solution
of the partial differential equations. In meshless methods the approximation space is built only
from the speciĕcation of the position of the nodes in the problemdomain and a support domain
associated with each node, see ĕg. .. e basis functions are usually constructed in the global
coordinate system, so there is no push-forward as in the ĕnite element method. e resulting
meshless basis forms a partition of unity. We expand on the construction of meshless basis
functions in chapter .

In the following paragraphs, rather than focus on papers that use meshless methods for a
particular physical application, we will primarily concentrate on papers concerned with the
development of fundamental contributions to the ĕeld of meshless numerical methods. For
readers interested in a more general overview excellent treatments are given in review papers
by V. P. Nguyen et al. [] and Fries and Matthies []. e book by G. R. Liu [] also gives a
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(a) Problem domain Ω
described in CAD program

(b) Problem domain seeded
with nodes.

(c) Algorithm meshes the
nodes.

(d) e support and connectiv-
ity of each basis function is di-
rectly linked to the underlying
mesh.

Figure .: Mesh-based partition of unity construction paradigm.

Reference

Mesh

Figure .: In the ĕnite elementmethod basis functions are posed on the reference element then
pushed forward with a suitable mapping F to a general element in the mesh.
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(a) Problem domain Ω
described in CAD program.

(b) Problem domain seeded
with nodes.

(c) Every node is given a sup-
port domain.

(d) e support and connectiv-
ity of each basis function is a
natural consequence of the node
positions and support domains.

Figure .: Meshless partition of unity construction paradigm.





. Meshless methods

complete overview of meshless methods. e book by G. R. Liu and Gu [] gives a complete
description of the computer programming aspects of meshless method.

e ĕrst widely recognised meshless numerical method is the smoothed particle hydrody-
namics (SPH) method introduced by Lucy [] and Gingold and Monaghan []. e initial
application of the SPH method was modelling astrophysics phenomenon. Because of its speed
and simplicity the SPH method has become popular for numerical simulation of high velocity
impact [] and metal forming [] problems. Two major issues with the SPH method are the
tendency for spurious instabilities to develop and the inconsistent nature of the approximation
ĕeld, see Swegle et al. [] and Belytschko et al. [] for an in-depth discussion. ere has
been a great deal of theoretical and practical study into solving these stability problems. Liu. et
al. introduced a corrected kernel function in the reproducing kernel particle method (RKPM)
[] which helps solve many of the outstanding issues with SPH. e resulting approximation
scheme is identical to the moving least-squares approximation scheme of Lancaster and Salka-
usus []. An excellent overview of the SPH method and its modern variants is given in the
book by G. R. Liu and M. B. Liu [].

SPHmethods are based upon the strong formof the PDE.Another class ofmeshlessmethods,
and the one that is the focus of this thesis, are based upon the weak form of the PDE much like
the ĕnite element method. Nayroles et al. [] introduced the diffuse element method (DEM)
which used the moving least-squares (MLS) approximations of Lancaster and Salkauskas []
as the basis functions in a weak form of the PDE. Nayroles et al. [] omitted certain terms
in the derivatives of the MLS basis functions. By including the terms omitted by Nayroles et
al. [], Belytschko et al. [] proposed the element-free Galerkin method (EFG). In the EFG
method integration is carried out using background cells typically constructed using aDelaunay
triangulation of the nodal positions. e EFG method has been applied to the many areas of
engineering science, including the problem of thin shells and plates by Belytschko and Krysl
[, ] and dynamic fracture by Belytschko et al. [].

e EFG method is considered by many to be the archetypal meshless method. ere are
many other meshless methods in the same vein as the EFG method. e primary variation is
using a different meshless basis function construction, such as the point interpolation method
(PIM) [],maximum-entropymethod (MaxEnt) [], radial point interpolationmethod (RPIM)
[] and moving kriging interpolation []. We give an overview of some of these methods in
chapter . e meshless methods developed in this thesis can be considered descendants of the
element-free Galerkin method of Belytschko et al. [].

Another distinct approach was developed by Atluri et al. [] based upon local weak forms
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called the meshless local Petrov-Galerkin method (MLPG). As the name suggests the resulting
methods are of the Petrov-Galerkin type because different function spaces are chosen for the
trial and test functions. is is in contrast with most ĕnite element and meshless methods
where the same function spaces are chosen for the trial and test functions resulting in methods
of the Bubnov-Galerkin type. e MLPG method results in a weak form that is integrated over
the local subdomains attached to each node, meaning that no background mesh is required for
integration as in the EFG method.

Another class of meshless numerical methods rely heavily upon the partition of unity con-
cept of Babuška and Melenk []. Instead of using a basis which is intrinsically consistent like
standard Lagrangian ĕnite element or MLS basis functions this family of methods can use any
suitable partition of unity satisfying the mathematical properties outlined in []. To reach the
required order of consistency dictated by the weak form of the PDE the partition of unity is ex-
trinsically enriched. e Ęexibility of PU methods comes at the expense of additional degrees
of freedom associated with the extrinsic enrichment in the ĕnal linear system as well as prob-
lems with ill-conditioning. e partition of unity ĕnite element method (PUFEM) of Babuška
and Melenk [] uses polynomial ĕnite elements with PU enrichment. e generalised ĕnite el-
ementmethod (GFEM) of Strouboulis et al. [] includes enrichments allowing the FEMmesh
to not conform to the boundary of the problem domain. is allows the inclusion of corners,
voids and other singularities in the problem without any modiĕcation of the mesh.

As the GFEM and PUFEM use a mesh based partition of unity they can be considered close
relatives of the more widely used extended ĕnite element method (XFEM) []. ere are
also partition of unity methods which use meshless PUs. e hp-cloud method of Oden et al.
[] uses partition of unity concepts to enrich zero-order consistent Shepard functions. e
particle-partition of unity method of Griebel and Schweitzer [] also uses partition of unity
concepts to enrich zero-order consistent Shepard functions []. Griebel and Schweitzer study
parabolic and hyperbolic PDEs as well as the more common elliptic problems. Oh and Jeong
[] use the Ęat-top partition of unity method to ease ill-conditioning problem and simplify
the issue of integration of the weak form. Oh et. al extend the Ęat-top construction to three
dimensions in []. Some of the major advantages of meshless methods can be summarised as
follows; the basis functions are particularly good at handing problems withmoving discontinu-
ities, large deformations, phase transformations and evolving boundaries; nodes can be easily
added, equivalent to an h-adaptivity process in ĕnite elements; the basis functions can reach
arbitrary order of consistency via intrinsic or extrinsic enrichment; the basis functions have
high continuity and compact support resulting in a sparse linear system and meshless methods
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can provide more accurate approximations for problems with complex domain geometries.
We take this moment to emphasise our view that meshless methods are not intended to be a

replacement for the ĕnite elementmethod, rather that they are complementary in the sense that
meshlessmethods can be usedwhen the inherent limitations of constructing a partition of unity
using amesh become too great. Meshlessmethods should be viewed as an additional tool which
can be used to simulate complex PDEs. Because it is possible to couple regions of the problem
domain discretised with meshless methods to regions discretised with ĕnite elements they can
even be used in the same computational simulation. In our view it is unlikely that meshless
methods will ever surpass the speed and ease of implementation of the FEM. Nonetheless, it
is clear that via theoretical developments born from the study of meshless methods that the
existing ĕnite element method can be improved to handle new problems. e extended ĕnite
element method and the more recent smoothed ĕnite element method (SFEM) are excellent
examples of this cross-pollination between meshless methods and ĕnite element methods [].

We give an in-depth discussion of the construction and mathematical properties of various
meshless basis functions in chapter .

. Plate theories

A plate is a structure with two in-plane dimensions much larger than its thickness. Typically,
the thickness is no greater than /th of the smallest in-plane dimension []. Because of
the small relative size of the thickness dimension there is no need to model the plate using the
full three-dimensional equations of elasticity. Instead, it is possible to pose a simpliĕed two-
dimensional theory which can accurately predict the behaviour of the three-dimensional elastic
body.

Plate theories have traditionally been formulated by making informed assumptions about
the functional form of the displacement ĕeld based on the behaviour of an elastic body with
constrained geometry []. Bymaking differing hypothesis about the formof the displacements
we can come up with differing plate theories of varying accuracy with respect to the full three-
dimensional equations of elasticity. However, this method of engineering intuition is not the
only way of deriving thin-structural theories, and in answering the question of exactly how
the thin-structural theory converges to the full three-dimensional elastic body more advanced
techniques such as variational methods are required. We do not discuss this topic any further,
and refer the reader to S. Zhang [] for further details.
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In chapter  we will discuss two of the most widely used plate theories which are the subject
of the thesis. e ĕrst plate theory is theKirchhoff-Love or classical platemodel. eKirchhoff-
Love model was originally formulated by Love [] based upon the kinematical assumptions
of Kirchhoff []. e second plate theory is a ĕrst-order relaxation of the Kirchhoff-Love
model which is known as the Reissner-Mindlin, or ĕrst-order shear deformable plate model.
e Reissner-Mindlin plate model was originally formulated by Reissner [, ] and Mindlin
[]. Of course, these are by no means the only plate theories available, but they are amongst
some of the most widely used in practice. Higher-order shear-deformable theories such as the
third-order shear deformable theory of Reddy [] give an even better approximation than the
Reissner-Mindlin theory, at the expense of additional unknowns. In this thesis we restrict our
discussion to the Kirchhoff-Love and Reissner-Mindlinmodels which are themost widely used
in practice.

. Shear-locking

A common problem encountered in numerical formulations of the displacement weak form of
the Reissner-Mindlin plate problem is the phenomenon of shear-locking. is problem man-
ifests itself as an overly stiff system as the plate thickness ̄t → 0 and can be attributed to the
inability of the numerical approximation functions to be able to represent the Kirchhoff asymp-
totic limit []. Ultimately, the problem of shear-locking in a numerical formulation leads to
entirely erroneous results.

Physically speaking, it is intuitive that given the Kirchhoff model and the Reissner-Mindlin
model purport to model the same phenomenon, namely a three-dimensional elastic plate un-
der mechanical load, that both models should coincide with each other when placed under the
same kinematical restrictions. is kinematical restriction is known as the Kirchhoff limit or
constraint. Indeed, it is relatively straightforward to show that the Reissner-Mindlin problem
coincides with the Kirchhoff-Love problem as the thickness of the plate approaches zero. Un-
fortunately, when we discretise the displacement weak form of the Reissner-Mindlin problem
using simple numerical schemes such as the standard Lagrangian ĕnite element method and
enforce the Kirchhoff limit by letting ̄t→ 0 the numerical solution will fail to coincide with that
given by the Kirchhoff-Love problem. is failuremanifests itself as totally incorrect numerical
solutions and is commonly referred to as the shear-locking problem. Shear-locking is the in-
ability of the constructed basis functions to be able to richly represent the Kirchhoff limit. It is
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the construction of meshless numerical methods that are free from this shear-locking problem
that is the subject of this thesis.

e shear-locking problem was ĕrst studied extensively in the context of the FEM. It is well
known that using low-order Lagrangian elements for all of the displacement ĕelds will result in
shear-locking in the Kirchhoff limit []. A huge number of remedies have been introduced in
the FEM literature to overcome this problem, including, but not limited to; selective reduced
integrationmethods [], the assumed natural strain (ANS) ormixed interpolation of tensorial
components (MITC)method eg. [–], the enhanced assumed strains (EAS)method eg. [,
], and the discrete shear gap method eg. [, ]. A modern and relatively comprehensive
mathematical overview of the ĕnite element analysis of Reissner-Mindlin plates is given by Falk
[]. e underlying mathematical reasoning for these methods can in most cases be found in
analysis via mixed weak forms [] where some combination of stresses, strains and displace-
ments are treated as independent variational quantities. Simo et al. [] give a mixed analysis
of EAS-type methods and Chapelle and Bathe [] give a mixed analysis of ANS/MITC-type
methods.

It is well-known that upon moving to a mixed variational formulation that stability of a nu-
merical method is no longer guaranteed and that a great deal of caremust be taken in the design
of such methods. e seminal work of Babuška on ĕnite elements with Lagrange multipliers
[] and the later developments of Brezzi [] describe in general terms the conditions needed
for stability of numerical methods based upon mixed weak forms. A contemporary paper by
Bathe and Brezzi [] gives an overview of the stability conditions of mixed ĕnite elements
using linear algebra concepts before shiing across to a more rigorous functional analysis ap-
proach. Another paper by Arnold [] covers similar ground but assumes some knowledge of
functional analysis.

In the meshless literature various distinct procedures have been introduced to overcome the
shear-locking problem. We will also discuss a few approaches in the meshless literature to the
problem of volumetric locking which arises in incompressible elasticity problems, as it is re-
lated to the problem of shear-locking. We note that this is not an exhaustive review of papers
which simulate shell or plate structures with meshless numerical methods, but an overview of
those with a particular focus on novel methods for alleviating the shear-locking problem. e
review paper by Tiago and Leitão [] gives an in-depth overview of shear-locking in mesh-
less numerical methods. A recent review paper with particular emphasis on the application
of meshless methods to the simulation of laminated and functionally graded plates is given by
Liew et al. [].
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One of the simplest methods for curing the shear-locking problem is increasing the polyno-
mial consistency of the approximation. is method is equivalent to p-reĕnement in the FEM.
Increasing the consistency of the approximating functions means that the Kirchhoff mode can
be better represented and thus locking is partially alleviated. However, spurious oscillations
can occur in the shear strains and the convergence rate is usually non-optimal []. Further-
more, high-order consistency meshless basis functions are more computationally expensive.
is is due to the larger number of nodes that must be in the nodal support to ensure a well-
posed basis function problem. is increase in support size then leads to an increase in the
bandwidth of the assembled stiffness matrix []. Works using this approach in the hp-cloud
context include those by Garcia et al. [] for shear-deformable plates andMendonça et al. []
for shear-deformable beams. In the context of the element-free Galerkin (EFG) method this
approach has also been used by Choi and Kim []. e p-reĕnement method has also seen
widespread use in the isogeometric method, see eg. Benson et. al [] for the Reissner-Mindlin
(née Naghdi) shell model.

Another popular remedy is thematching ĕeldsmethod. In this approach theKirchhoffmode
is matched exactly by approximating the rotations using the derivatives of the basis functions
used to approximate the transverse displacement. is idea was originally introduced by Don-
ning and Liu [] using cardinal spline approximation and later in the context of the EFG
method by Kanok-Nukulchai et al. []. More recently the matching ĕelds approach has been
used by Bui et al. [, ]. However, as shown by Tiago and Leitão [] using either the m-
consistency condition II of Liu et al. [] or the Partition of Unity concept of Babuška and
Melenk [], the resulting system of linear equations are always nearly singular because of a lin-
ear dependency in the basis functions for the rotations. is is because the basis functions for
the rotations do not form a partition of unity []. A more elegant approach, and one with-
out the drawbacks of the method of Kanok-Nukulchai et al. [] has recently been introduced
for the isogeometric method by Martinelli et. al []. In this approach the basis functions for
the rotations and displacements are constructed using polynomial spline spaces such that they
satisfy the Kirchhoff constraint exactly.

Nodal integration schemes integrate the weak form using points at the nodal positions of the
meshless approximation. ese schemes essentially work along the same lines as the reduced
integration approach in ĕnite elements. Beissel and Belytschko [] showed that meshless re-
duced integration techniques can suffer from spurious modes, similar to their FE counterparts.
Some form of stabilisation is required to neutralise these problems. Wang and Chen [] intro-
duced smoothed conforming nodal integration method (SCNI), a form of curvature smooth-
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ing, to alleviate locking.
Some authors have modiĕed the underlying plate model to bypass the problem of shear-

locking entirely. is approach is called the change of variables approach. In the analysis of
Timoshenko beams Cho and Atluri [] use a change of dependent variables, from transverse
displacement and rotation to transverse displacement and shear stress to bypass the problem
of shear-locking. is approach has been extended to plates by Tiago and Leitão []. We note
that the exact relationship between the plate model written with the displacement and shear
stresses as primary variables and the standard Reissner-Mindlin model has not been studied in
much depth at this point.

Another approach, and the one we use in this thesis, is to use a mixed formulation where
ĕelds such as stresses, strains and pressures, as well as the usual displacement ĕelds, are treated
as independent quantities in the weak form. In the ĕeld ofmeshless numericalmethods this ap-
proachhas primarily been applied to the problemof volumetric locking in nearly-incompressible
elasticity problems. Vidal et al. [] used diffuse derivatives to construct pseudo-divergence-
free approximation for the displacement that would satisfy the incompressibility constraint a
priori. González et al. enriched the displacement approximation in a Natural Element Method
formulation []. e B-bar method from the FE literature [] was introduced into the EFG
method by Recio et al. []. Sorić and Jarak apply a mixed formulation in a three-dimensional
solid shell formulation []. Recently Ortiz et al. [, ] constructed a method where the
pressure variables are eliminated by calculating volume-averaged pressures across domains at-
tached to a node to formulate a generalised displacement method. In this thesis we develop a
generalisation of the volume-averaging technique of Ortiz et al. which we call the local-patch
projection (LPP) procedure. We then use the LPP procedure to construct a generalised dis-
placement method for the Reissner-Mindlin plate problem that is free from shear-locking.

. Outline of this thesis

e aim of this thesis is to develop novel meshless numerical methods for the simulation of
shear-deformable beam and plate structures that are free from the adverse effects of shear-
locking. To do this we apply the canonical method used by many authors in the ĕnite element
method of using a mixed weak form where the shear stresses are treated as an independent
variational quantity.

e remaining chapters of this thesis are structured as follows:
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Chapter : An overview ofmeshlessmethods. In this chapter we give an overview ofmesh-
less methods, meshless basis function construction and imposing Dirichlet boundary condi-
tions inmeshless methods. Because they are a relatively new innovation in the ĕeld of meshless
methods we give a particularly thorough overview of the maximum-entropy basis functions
which are used throughout this thesis.

Chapter : A study of the shear-locking problem in the Timoshenko beam problem with
meshless methods. In this chapter we study the Timoshenko beam problem which is the one-
dimensional analogue of the Reissner-Mindlin plate problem. We perform numerical experi-
ments showing the behaviour of meshless and ĕnite element methods with respect to h and p
reĕnement, and additionally in meshless methods the role of the support width. ese funda-
mental experiments clearly identify the shear-locking behaviour of meshless numerical meth-
ods with respect to the meshless discretisation parameters.

Chapter : Meshless methods for the shear-deformable beam problem based on a mixed
weak form. In this chapter we examine the ability of a mixed weak form to produce numerical
methods for the Timoshenko beam problem that are free from the effects of shear-locking. We
move from the primal or displacement form of the Timoshenko beam problem to amixed form
where the shear stresses are treated as independent variational quantities in the weak form. e
proposed scheme is free from the effects of shear-locking.

Chapter : Meshless methods for the shear-deformable plate problem based on a mixed
weak form. In this chapter we examine the ability of a mixed weak form to produce numerical
methods for the Reissner-Mindlin plate problem that are free from the effects of shear-locking.
To construct a conforming approximation of the shear stresses we use the lowest-order rotated
Raviart–omas-Nédélec ĕnite elements. Meshlessmaximum-entropy basis functions are used
to discretise the displacements.

Chapter : Generalised displacement meshless methods for the shear-deformable plate
problem. In this chapter we examine the use of a stabilised mixed weak form to construct a
generalised displacement meshless method for the Reissner-Mindlin problem that is free from
the effects of shear-locking.

At the end of the thesis we give some conclusions and suggest ideas for future research topics.
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.. International journals
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Hale, J. & Baiz, P. Mixed and generalised displacement meshfree methods for the simulation of
shear-deformable beams. (In preparation)
Hale, J. &Baiz, P. A comparative study of the shear-locking behaviour of the displacement-based
ĕnite element and meshfree methods. (In preparation)
Ortiz, A. & Hale, J. Meshfree volume-averaged projection methods for nearly incompressible
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.. Conference papers and presentations
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Method (XFEM) (June ) Second place, Best PhD Student Paper and Presentation Competi-
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. Introduction

In this chapter we give an overview of the construction of meshless numerical methods via
the application of a weak or variational form. e distinct properties of different meshless
basis functions, such as continuity, consistency and computational complexity greatly affect
the performance of the resulting numerical method. We give a full treatment of these different
properties and the mathematical construction of various common meshless basis functions.

. Galerkin methods

.. Strong form to weak form

Consider a domainΩ ⊂ ℝd bounded by a surface Γ forming the closed region Ω̄. We can deĕne
a boundary value problem (BVP) as the problem of ĕnding an unknown function u ∶ Ω̄ → ℝ
such that []:

L[u] = f ∀x ∈ Ω (.a)

u = ū ∀x ∈ ΓD (.b)
𝜕u
𝜕n

= ḡ ∀x ∈ ΓN (.c)

where L is an operator of partial derivatives with respect to x and f ∶ Ω̄ → ℝ is a speciĕed
right hand side. ΓD and ΓN correspond to the portions of the boundary where Dirichlet and
Neumann boundary conditions are applied respectively, such that ΓD ∪ ΓN = Γ. n is the unit
normal on the boundary Γ. We denote dΩ the volumemeasure inΩ and dΓ the surfacemeasure
on Γ.

We now deĕne a corresponding weak or variational form of the BVP by forming the inner
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product of the PDE with an arbitrary test function v []:

􏾙
Ω
􏿺L[u] − f 􏿽 v dΩ = 0 (.)

Roughly speaking, we are requiring that the differential equation holds in an average sense
across the domainΩ by using the test function v toweight the average and requiring the residual
be equal to zero. is is why the method is oen called the method of weighted residuals.

At this stage it is instructive to restrict our discussion to a speciĕc BVP, in this case the well
known elliptic Poisson equation where the differential operator L is deĕned as []:

L ∶= Δ = ∇2 ∶=
n
􏾜
i=1

𝜕2u
𝜕x2

i
(.)

Furthermore we assume homogeneous Dirichlet boundary conditions ū = 0 on all of the
boundary ΓD = Γ. Substituting L into the weak form gives []:

􏾙
Ω
∇2u v dΩ = 􏾙

Ω
fv dΩ (.)

Using the well known Green's identity (divergence theorem) we can show that the weak form
of our BVP is: Find u ∈ V such that:

􏾙
Ω
∇u ⋅ ∇v dΩ = 􏾙

Ω
fv dΩ ∀v ∈ V (.)

.. Sobolev spaces

In loose terms a function space qualiĕes certain classes of functions into groups called function
spaces. A familiar function space for most engineers is the space of continuous functions de-
noted by Ck(Ω) which is the set of functions that are k times continuously differentiable in Ω.
In the classical variational formulation solutions to the variational formulation are constructed
in these Ck(Ω) spaces. is approach has numerous issues and the Ck(Ω) spaces are usually
abandoned in favour of a more general deĕnition of function spaces known as Sobolev spaces
[].
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For a non-negative integer m the Sobolev space Hm(Ω) is deĕned as []:

Hm(Ω) = {v ∈ L2(Ω) | Dαv ∈ L2(Ω), ∀ |α| ≤ m} (.a)

Dα = 𝜕 |α|
𝜕xα1

1 …𝜕x
αd
d

(.b)

where α is a multi-index of order m and L2(Ω) is the set of functions with bounded or ĕnite
square integral on Ω []:

L2(Ω) = 􏿼v | 􏾙
Ω
|v|2dΩ < ∞􏿿 (.)

In other words the Sobolev spaces are composed of functions and their weak derivatives up to
order m that are ĕnite or bounded. We can also deĕne an inner product for the space Hm(Ω)
[]:

(u, v)Hm(Ω) = 􏾜
|α|≤m

􏾙
Ω
(Dαu) ⋅ (Dαv) dΩ (.)

which induces the following norm:

||u||Hm(Ω) = (u, u)
1/2
Hm(Ω) = 􏾜

|α|≤m
􏿶􏾙

Ω
|(Dαu)|2 dΩ􏿹

1/2

(.)

is requirement that the integrals of the functions be ĕnite is intuitive given that most PDEs
model physical behaviour where the energy integral must be bounded for the PDE to make
sense [].

For the speciĕc weak form in section .. to be well-posed we require that V = H1(Ω),
which means that any function in the space and its weak ĕrst derivatives are square integrable
[]:

H1(Ω) = 􏿼v | v ∈ L2(Ω), 𝜕v
𝜕xi

∈ L2(Ω), i = 1, … , n􏿿 (.)

with inner product:
(u, v)H1(Ω) = 􏾙

Ω
(uv + ∇u ⋅ ∇v) dΩ (.)

which induces the norm:

||u||H1(Ω) = 􏿶􏾙
Ω
|u|2 + |∇u|2 dΩ􏿹

1/2

(.)
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Furthermore because we have speciĕed Dirichlet boundary conditions on the entire boundary
Γ we can deĕne the subset H1

0(Ω) ⊂ H1(Ω) as []:

H1
0(Ω) = {v ∈ H1(Ω) | v = 0 ∀x ∈ Γ} (.)

So aer this brief discussion of Sobolev spaces we can write the variational problem in eq. (.)
as: Find u ∈ H1

0(Ω) such that []:

􏾙
Ω
∇u ⋅ ∇v dΩ = 􏾙

Ω
fv dΩ ∀v ∈ H1

0(Ω) (.)

Comparing the strong formulation with the weak or variational formulation in eq. (.) we
can see that the requirement that u ∈ C2(Ω) has been weakened to that of u ∈ H1(Ω). is
makes the solution of the variational form easier than that of the strong form since it is less
demanding on the regularity of the solution u [].

Finally we re-write eq. (.) in the following standard form: Find u ∈ H1
0(Ω) such that []:

a(u, v) = f(v) ∀v ∈ H1
0(Ω) (.)

where a(u, v) is a bilinear form and f(v) is a linear form deĕned by:

a(u, v) = 􏾙
Ω
∇u ⋅ ∇v dΩ (.a)

f(v) = 􏾙
Ω
fv dΩ (.b)

.. Constructing a Galerkin numerical method

In the framework of Galerkin methods, we can split the construction of a numerical method
into the following ĕve steps:

. Transfer the strong form of the PDE and boundary conditions into a weak or variational
form.

Problem  (Inĕnite dimensional weak form). Find u ∈U such that:

a(u, v) = f(v) ∀v ∈ V (.)

whereU andV are inĕnite dimensional function spaces.
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. Construct an appropriate basis φi and ψi such thatUh = span {φi}Ni=1 ⊂ U and Vh =
span {ψi}Mi=1 ⊂ V respectively, allowing us to write uh and v in the form:

uh =
N
􏾜
i=1

φiui (.a)

v =
M
􏾜
i=1

ψi (.b)

Again, speciĕc choices of how to construct this basis give rise to a huge number of numer-
icalmethods, such as ĕnite elementmethods, discontinuousGalerkinmethods, meshless
methods, natural element methods, collocation methods and so on. Also note that the
trial spaceUh is not necessarily the same the test spaceVh, and these choices give rise to
a whole host of numerical methods, such as Petrov-Galerkin methods, Bubnov-Galerkin
methods, Rayleigh-Ritz methods, boundary element methods and so on.

. Transfer the inĕnite dimensional problem to a ĕnite dimensional one by introducing the
subspaces Uh ⊂ U and Vh ⊂ V. We can write the same variational formulation as
before, but replacing the inĕnite spaces with these new ĕnite dimensional subspaces:

Problem  (Finite dimensional weak form). Find uh ∈ Uh such that:

a(uh, v) = f(v) ∀v ∈ Vh (.)

whereUh ⊂U andVh ⊂ V are ĕnite dimensional function spaceswith sizedim(Uh) = N
and dim(Vh) = M.

e subscript h is used frequently in the Finite Element literature to denote the depen-
dence of the vector spaces on the characteristic element size of the mesh. Note that it is
also possible to make the choiceUh ⊄ U or Vh ⊄ V resulting in a non-conforming
numerical method.

. Substitute the basis into the ĕnite dimensional weak form resulting in a linear system of
equations. For the Bubnov-Galerkin type method whereUh = Vh:

N
􏾜
j=1

a(φj,φi) = f(φi), i = 1, 2, … , N (.)
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or alternatively:
Ku = f (.)

whereK is sometimes called the stiffness matrix, u is the solution vector and f is the force
vector.

. Solve the linear system of equations to ĕnd the vector of unknowns u.

Now that we have discussed how to construct a Galerkin numerical method in a general sense
we move on to the problem of constructing the ĕnite dimensional subspaceUh using meshless
methods.

. Constructing ameshless basis

e construction of a meshless basis typically begin by discretising the domain into a setNh of
N nodes or points located at positions xi in the domain Ω̄, where Ω̄ is the closure of the domain
Ω ⊂ ℝn for n = 1, 2, 3:

Nh = {x1, x2, x3, … , xN}, xi ∈ Ω (.)

We mimic the tradition from the ĕnite element literature of subscripting with h to denote some
form of characteristic length which describes the node set. We associate each node in the set
Nh with a region ωi in the neighbourhood of xi which we call the support domain:

ω = {ω1, ω2, ω3, … , ωN}, ωi ⊂ Ω̄ (.)

e support domains ω must form a covering of the domain Ω̄:

Ω̄ ⊆
N

􏾌
i=1

ωi (.)

Note that there is no requirement that the union of the support domains exactly cover the
original domain.

roughout this work we use circular support domains which can be uniquely described by
a radius of support. erefore instead of associating each node in the node set with a support
domain, we explicitly associate each node in the node set with a support radius ρi:

ρ = {ρ1, ρ2, ρ3, … , ρN}, ρi ∈ ℝ+ (.)


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Basis Kronecker delta Continuity Compact support Consistency Pass patch test

MLS No p ∈ Ck(Ω), wi ∈ Cl(Ω)∴ φ ∈ Cmin(k,l)(Ω) Yes Yes, trivial to Ck Yes
MaxEnt Yes, weak C∞ Yes ĕrst-order Yes

RBF Yes Dependent on RBF ψ ∈ Cl(Ω) No No No
CSRBF Yes Dependent on CSRBF ψ ∈ Cl(Ω) Yes No No
RPIM Yes C−1 Yes Yes No

Table .: Summary of properties of various meshless basis functions

en for any general point in the domain x ∈ Ω̄we can deĕne the connectivity set Sh as a subset
of the overall node setNh:

Sh = 􏿺Nh | 􏿖􏿖x − xi􏿖􏿖 ≤ ρi􏿽 (.)

With this notation established we can now use a multitude of methods to deĕne a meshless
basis constructed from the pairing of the node setNh and associated support radius vector ρ.

. Mathematical properties of meshless basis functions

Before continuing to discuss speciĕcmethods for constructingmeshless basis functions we will
outline some of the general mathematical properties of meshless basis functions. In table .
we give a summary of these properties for speciĕc methods. In the following sections we will
discuss the construction and properties of different methods in detail.

Kronecker-delta property

ebasis functionsφi are said to verify the Kronecker-delta property if the following holds []:

φi(xj) = δij ∀ i, j (.)

δij =
⎧⎪
⎨⎪⎩

1 i = j

0 i ≠ j
(.)
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Futhermore if the basis functions do satisfy the Kronecker-delta property then:

uh(xj) = 􏾜
i∈Sh

φi(xj)ui (.)

= 􏾜
i∈Sh

δijui (.)

= uj (.)

Meshless basis functions do not always satisfy the Kronecker-delta property. erefore we ĕnd
that uh(xi) ≠ ui and imposing essential boundary conditions is not as trivial as in the ĕnite
element method. We will explain why this is the case now.

LetB be the set of all of the indices of the nodes that lie on the boundary ΓD with prescribed
Dirichlet boundary conditions []:

B = 􏿺Nh | xi ∈ ΓD􏿽 (.)

We now let φi be basis functions that do satisfy the Kronecker-delta property. We can write our
function approximation for any x ∈ Ω̄ by splitting the summation between the nodes that are
on the boundary j ∈ B and those that are not i ∉ B []:

uh(x) = 􏾜
i∈Sh

φi(x)ui =􏾜
i∉B

φi(x)ui +􏾜
j∈B

φj(x)ū(xj) (.)

Due to the Kronecker-delta property for all of the nodes not on the boundary i ∉ B we know
that φi ∈ H1

0(Ω) ∀i ∉ B. us the approximation written above gives u = ū at the nodes on the
boundary ΓD if and only if the approximation satisĕes the Kronecker-delta property []. If the
approximation does not satisfy the Kronecker-delta property then imposing u = ū and v(x) = 0
on ΓD is not as straightforward, and the standard bilinear weak form in eq. (.) cannot be used
[]. ere are various modiĕed variational forms that can overcome this problem and these
are discussed in section ..

Continuity

Continuity deĕnes the smoothness of the approximation. A function is calledCn(Ω) continuous
if all j of its derivatives 0 ≤ j ≤ n exist and are continuous in the entire domain Ω [].


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Consistency

Consistency is the capability of an approximation scheme to exactly reproduce a polynomial
function of certain order locally within the elements or cells that make up the entire problem
domain []. A certain minimum level of consistency is required to solve a particular PDE.
For a PDE of order 2k, weakened using the standard Garlerkin technique, we require that the
approximation is at least k consistent. If an approximation is called k-order complete then it is
consistent from zero to k.

An absolute requirement for any approximation scheme is that it can reproduce constant
functions exactly:

􏾜
i∈Sh

φi(x) ⋅ 1 = 1 ∀x (.)

If an approximation can fulĕl this requirement then it is called zero-order consistent. is
property is also called the partition of unity property.

Furthermore we might require the approximation to be ĕrst and second order consistent:

􏾜
i∈Sh

φI(x) ⋅ x = x ∀x (.)

􏾜
i∈Sh

φI(x) ⋅ x2 = x2 ∀x (.)

Second-order consistency is particularly desirable in the solution of the fourth-order PDEs
found in plate and beam theorieswhere partial derivatives of nd order appear in the variational
or weak form.

Interpolation or approximation

is difference between interpolation and approximation is a subtle distinction and it is com-
mon to see these terms used interchangeably. Given a function w ∈ V whereV is a function
space, an interpolant Ih creates a function that lives in a ĕnite subspaceVh ⊂ VwithN dimen-
sions, such that Ihw ∈ Vh []:

Ihw(x) =
N
􏾜
i=1

φi(x)w(xi) (.)
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Figure .: Oscillatory function u interpolated using RPIMbasis functions on unit interval with
N = 30 nodes and constant support size ρ = 0.1. e interpolated function uh is
nearly indistinguishable from the function u in this plot. e values of the unknown
vector are equal to the approximated function itself, ie. ui = uh(xi).

and satisĕes the following interpolation condition:

Ihw(xi) = w(xi) i = 1, 2, … ,N (.)

In other words, an interpolant creates a function wh that passes through the nodal values of
w exactly. Conversely, an approximate creates a new function that does not pass through the
nodal values exactly. It should be clear that to satisfy eq. (.) we require that the interpolant Ih
has the Kronecker-delta property. In ĕg. . we show a meshless interpolation of an oscillating
function, and in ĕg. . we show a meshless approximation of the same oscillating function.

Computational cost

Every computational algorithm has an associated computational cost. We can expect that each
method of constructing meshless basis functions will use varying amounts of resources, and
thus speed and memory usage might be a factor in choosing the meshless basis function. Little
information in the literature is available comparing different constructionmethods. Producing
accurate, and most importantly fair, measurements can be difficult.

However, we can say a few things with some certainty. Firstly, meshless basis functions gen-
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Figure .: Oscillatory function u approximated using MaxEnt basis functions on unit interval
with N = 30 nodes and constant support size ρ = 0.1. e approximated function
uh is nearly indistinguishable from the function u in this plot. e values of the
unknown vector are not equal to the approximated function itself, ie. ui ≠ uh(xi).

erally involve some computationally intensive process, such asmatrix inversion or optimisation
in multiple variables, which must be carried out at every integration point in the domain. is
means that meshless basis functions are almost always more expensive to compute per eval-
uation than ĕnite element basis functions which are usually pre-calculated on the reference
element K̂. e primary cost is then the push-forward from the reference element to the global
element in the mesh.

Second of all, the total computational time of all of the meshless basis function evaluations
scales linearly with the number of integration points in the domain, that is, with n integration
points the complexity of the algorithm is ofO(n). e solution of a linear system with n nodes
scales at anywhere between O(n log n) and O(n3) depending on the properties of the linear
system to be solved and the algorithm used. us we can say with some certainty that as prob-
lem size increases the assembly and solution of the linear system begins to dominate the total
amount of computational resources used for the computation of the basis functions. Finally,
the evaluation of the basis functions at all the integration points is relatively trivial to parallelise
across multiple computing cores, so if we need to speed up the shape function construction we
can expect to see roughly linear scaling with the number of computing nodes.

All these factors mean that as long as the algorithms used to construct meshless basis func-
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tions are comparable on speed to roughly the same order ofmagnitude, themathematical prop-
erties mentioned above should probably dominate the selection criteria.

. Moving least-squares

e Moving Least-Squares (MLS) method has its origins in scattered data approximation. A
zero-order complete MLS method was introduced by Shepard [], before being generalized to
m-th order consistency by Lancaster and Salkauskas []. Shepard's method [] is a speciĕc
case of the more general method presented by Lancaster and Salkauskas []. e MLS ap-
proximation scheme is used in the Element Free Galerkin (EFG) method [] as well as many
other meshless and particle methods.

Construction

We can deĕne a local approximation uh ∶ Ω→ ℝd of the function u ∶ Ω→ ℝd at a point x ∈ Ω
as:

uh(x) = pT(x) ⋅ a(x) (.)

where pT(x) is a complete vector of polynomials of order m. For example, in ℝ2 where x =
{x1, x2} the complete second order polynomial vector is:

pT(x) = 􏿮1 x1 x2 x1x2 x2
1 x2

2􏿱 (.)

e vector a(x) contains non-constant coefficients that depend on x:

aT(x) = [a0(x) a1(x) a2(x) a3(x) … am(x)] (.)

e key thing to note about eq. (.) is that the coefficients a(x) are a function of x and
therefore vary throughout the domain Ω. It is this property that gives the preĕx moving to the
standard least-squares minimisation procedure from elementary statistics.

We now deĕne a weighting function w(x− xi) centred at each node. is gives nodes nearest
to x the highest inĘuence, whilst those further away have little or even no inĘuence.

We now proceed to ĕnd the coefficients a(x) by posing a minimisation of the weighted least-
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squares function J:

J(x) = 􏾜
i∈Sh

wi(x − xi) [uh(xi, x) − ui]2 (.)

= 􏾜
i∈Sh

wi(x − xi) 􏿮pT(x) ⋅ a(x) − ui􏿱
2

(.)

e minimisation problem we are trying to solve is to ĕnd the coefficients a∗(x) such that:

a∗(x) = argmina J(x) (.)

We will show that this minimisation problem has a semi-analytical solution.

Weighting Function

It is the weighting function at each node i wi(x − xi) that makes the MLS approximation a local
approximation scheme. More speciĕcally, we deĕne a function for each node wi ∶ Ω↦ ℝ with
the following properties:

wi(x − xi) =
⎧⎪
⎨⎪⎩

1 x = xi

0 x − xi ≥ ρ
i

(.a)

dwi
dx (x − xi = 0) = dwi

dx (x − xi = ρi) = 0 (.b)

wi(b) < wi(a) ∀ {a, b ∈ [xi, ρi] | b > a} (.c)

lim
ρ→0

wi(x − xi) → δ(x − xi) (.d)

Ck continuous k ≥ 0 (.e)

where ρ
i
deĕnes the support size of node i. eq. (.c) states that the functionmust bemonoton-

ically decreasing. An example of a weighting function, commonly used in the EFG literature,
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Figure .: Quartic spline weight function

is the quartic spline with circular support centred at xi, as shown in ĕg. .:

wi(r) =
⎧⎪
⎨⎪⎩

1 − 6r2 + 8r3 − 3r4 r ≤ 1

0 r > 1
(.a)

r = ‖x − xi‖
ρi

(.b)

From the deĕnition of theweight functionwe cannowdeĕne the connectivity setSh at a general
point x ∈ Ω̄ as a subset of the overall node setNh associated with a non-zero weight function
wi at x:

Sh = {Nh | wi(x − xi) ≠ 0} (.)

and we can then deĕne the number of nodes n that contribute to the approximation at point x
as:

n = |Sh| (.)





. Moving least-squares

Solution

We can now write the summation in eq. (.) in an equivalent matrix form where:

J = 1
2 (Pa − u)T W (Pa − u) (.a)

P =

⎡
⎢
⎢
⎢
⎢
⎣

p1(x1) p2(x1) … pm(x1)
p1(x2) p2(x2) … pm(x2)
⋮ ⋮ ⋱ ⋮

p1(xn) p2(xn) … pm(xn)

⎤
⎥
⎥
⎥
⎥
⎦

(.b)

W =

⎡
⎢
⎢
⎢
⎢
⎣

w1(x − x1) 0
w2(x − x2)

⋱
0 wn(x − xn)

⎤
⎥
⎥
⎥
⎥
⎦

(.c)

uT = [u0(x) u1(x) u2(x) u3(x) … un(x)] (.d)

aT = [a0(x) a1(x) a2(x) a3(x) … am(x)] (.e)

We now ĕnd the minimum of function J with respect to the unknown approximation coeffi-
cients a:

𝜕J
𝜕a

= (Pa − u)TWP = 0

⇒ PTWPa = PTWu
(.)

We now deĕne:

A = PTWP (.a)

B = PTW (.b)

And therefore the solution for the coefficients a(x) is:

a = A−1Bu (.)

Substituting back into the original approximation eq. (.) gives the ĕnal approximation as:

uh(x) = pT(x) ⋅ A−1(x)B(x)u (.)
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We can write this in the more familiar form:

uh(x) = 􏾜
i∈Sh

φi(x)ui (.a)

φ(x) = pT(x)A−1(x)B(x) (.b)

Derivatives of the basis functions can be found by repeated application of the chain rule to
eq. (.b):

φT
,k = pT,kA−1B + pTA−1,k B + pTA−1B,k (.a)

A−1,k = −A−1A,kA−1 (.b)

A,k = PTW,kP (.c)

B,k = PTW,k (.d)

where ,k refers to partial differentiation in direction k:

,k =
𝜕
𝜕xk

(.)

In ĕg. . we show the basis functions constructed using the MLS method outlined above. For
comparison in ĕg. . we show the standard linear Lagrangian ĕnite element basis functions
constructed on the triangulation of the same node set.

In this thesis we will refer to an approximation space constructed using the above moving
least-squares method eq. (.b) of order p on a speciĕed node set Nh with N nodes in the
problem domain Ω with associated support radius vector ρ as:

MLSp(Ω;Nh, ρ) ∶= span {φi}Ni=1 (.)

Consistency

One of the primary advantages of the MLS approximation is that it is trivial to build approxi-
mations of very high order consistency simply by increasing the order of the polynomial basis
p(x) and the weight function wI. is is particularly attractive in the context of plate and shell
systems as building basis functions with C1 continuity that also fulĕl second order consistency
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Figure .: Basis functions constructed using ĕrst-order MLS method on unit interval with 
evenly spaced nodes and uniform support size. Note the lack of Kronecker-delta
property and the non-vanishing contributions of the basis functions associated with
the internal nodes on the boundary of the domain.
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Figure .: Basis functions constructed using P1 ĕnite element method on unit interval with 
evenly spaced nodes ( elements). is basis has the Kronecker-delta property both
on the boundary and on the inside of the domain.
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is straightforward.

Continuity

It has been shown [] that if p ∈ Ck(Ω) and wI ∈ Cl(Ω) then the basis functions are φ ∈
Cmin(k,l)(Ω). For example, if we are using the fourth order spline wI ∈ C2(Ω) and a ĕrst order
polynomial basis p(x) = [1 x1] and x = [x1], which implies that p ∈ C1(Ω), our ĕnal MLS
approximant will be φ ∈ C1(Ω).

Kronecker-delta property

e MLS approximants do not satisfy the Kronecker-delta property, meaning that in general:

uh(xi) ≠ ui ∀i (.)

erefore we need to use special methods for imposing the essential boundary conditions on
ΓD when using the standard MLS approximants in a Galerkin formulation.

However, by using a singular weighting function limx→xI wI → ∞ Lancaster and Saulskus
[] showed that the Kronecker-delta property could be obtained with MLS-based approxi-
mants. A singular weight function is used successfully in [] and [] as the basis for an EFG
formulation. However Most and Bucher [] state that using a singular weighting function
produces highly singular coefficient matrices A at the nodes xI. eir solution is to introduce a
regularized weighting function in [] that allows very close approximation of the Kronecker
Delta property.

Computational complexity

To efficiently compute the MLS basis functions the formulas used above should not be used
directly as they require large numbers of matrix-matrix multiplications and the direct compu-
tation of the matrix inverse of A. Belytschko et al. [] demonstrate a method for the efficient
computation of MLS basis functions that utilises a single LU decomposition and repeated back
substitution with matrix-vector multiplication to ĕnd the derivatives of the basis functions.
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. Shepard functions

Shepard functions are the zero-order consistent variant of the MLS approximation. If we let:

p(x) = 1 (.)

then the resulting Shepard basis functions are given by:

φi(x) =
wi(x − xi)

∑N
j wj(x − xj)

(.)

e primary advantage of Shepard's method is that no matrix inversion is required and there-
fore the computational complexity compared to a p-order consistent MLS approximation with
p ≥ 1 is far lower. However, the zero-order consistency means that the Shepard functions are
not able to solve even a second order BVP. One solution to this problem is to extrinsically en-
rich the Shepard functions to the required consistency using the partition of unity approach
[].

. Maximum-Entropymethod

Background

Shannon's [] measure of informational entropy was postulated by Jaynes [] as a means of
least-biased statistical inference when insufficient information about a probability distribution
is available. e Shannon entropy H of a discrete probability distribution p = {p1, p2, … , pn}
associated with N events x = 􏿺x1, x2, … , xN􏿽 is deĕned by:

H(p) = E(− ln p) = −
N
􏾜
i=1

pi ln pi (.)

where E is the usual expectation function. Jaynes proposed that in the case when insufficient
information is available, the least-biased probability distribution p is the one that maximises
Shannon's measure of entropy H(p) subject to the known prior information about the distri-
bution []. Shannon originally introduced his measure of uncertainty in the context of com-
munication theory [], and it has been widely applied in ĕelds as diverse as biology [] and
machine learning [].
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emaximum-entropy postulate is best explained using a few simple examples from elemen-
tary probability. Consider a situation where we have no prior information about a particular
pdf pwith n possible outcomes. In this case it would seem logical to propose that each outcome
is equally likely (pi = 1/n) given thatwe have no information thatwould suggest otherwise. And
indeed the maximum informational entropy, max[S(p)], occurs when pi = 1/n.

A more interesting example occurs when we do have some testable information. e Bran-
deis dice problem was introduced by Jaynes during his  lecture series on the maximum-
entropy principle []. Consider an unfair -sided die with n = 6 outcomes x = {1, 2, 3, 4, 5, 6}
associated with the unknown discrete pdf p = {p1, p2, p3, p4, p5, p6}. We wish to ĕnd the most
likely pdf p given the information I that the expected value of the probability distribution is .:

I = E[x] =
N
􏾜
i=1

xipi = 4.5 (.)

is type of problemhas a general solution originally proposed byGibbs in the context of statis-
tical mechanics. Given constraints that consist of specifying the mean values Fk ofm functions
{f1(x), f2(x), … , fm(x)}:

n
􏾜
i=1

pifk(xi) = Fk k = 1, … ,m (.)

the solution can be found using the method of Lagrange multipliers {λ1, … , λm}:

Pi =
1

Z(λ1, … , λm)
exp 􏿮−λ1f1(xi) + … + −λmfm(xi)􏿱 (.)

where Z(λ1, … , λm) is called the partition function and is deĕned by:

Z(λ1, … , λm) =
N
􏾜
i=1

exp 􏿮λ1f1(xi) + … + λmfm(xi)􏿱 (.)

and the Lagrange multipliers can be determined via a system of m simultaneous equations:

𝜕
𝜕λk

Z(λ1, … , λm) = Fk k = 1, … ,m (.)

We can apply this general framework to the Brandeis dice problem by letting m = 1, N = 6,
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f1 = {1, 2, 3, 4, 5, 6} and∑N
i=1 pif1(xi) = 4.5. Our partition function, Z(λ) is []:

Z(λ) =
6
􏾜
i=1

exp(−iλ) (.)

= x + x2 + x3 + x4 + x5 + x6 (.)

= x1 − x6

1 − x (.)

where x = exp(−λ) and the ĕnal form was found using the geometric series expansion. We
now proceed to ĕnd the value of λ []:

− 𝜕
𝜕λ

lnZ = − 𝜕
𝜕λ

ln 􏿯x ⋅ 1 − x6

1 − x 􏿲 (.)

= 1 − 7x6 + 6x7

(1 − x)(1 − x6) (.)

= 4.5 (.)

is results in the equation []:

3x7 − 5x6 + 9x − 7 = 0 (.)

with solution x = 1.44925 giving Z = 26.66365, λ = −0.37105. e ĕnal least-biased proba-
bility distribution according to Jaynes' maximum-entropy principle that also satisĕes the con-
straints can therefore be calculated by []:

pi =
1
Z exp(−λfi) (.)

p = {0.05435, 0.07877, 0.11416, 0.16545, 0.23977, 0.34749} (.)

Jaynes states that this distribution "represents a state of knowledge in which one has only ()
the enumeration of the six possibilities; and () the mean value constraint; and no other infor-
mation. e distribution is maximally non-commital with respect to all other matters; it is as
uniform (by the criterion of the Shannon information measure) as it can get without violating
the given constraint" [].

In the ĕrst paper by Sukumar [] the principle of maximum-entropy was used to generate
interpolants on polygonal convex domains. In the context of constructing a meshless approx-
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imation scheme, Sukumar [] established that the basis functions φi could be identiĕed as
discrete probabilities pi associated with the nodes located at xi. In the words of Sukumar et
al. []: "the basis function value φi is viewed as the probability of inĘuence of a node i lo-
cated at a point xi." With this identiĕcation made, Sukumar [] employed Jaynes' principle of
maximum-entropy inference to generate a least-biased meshless basis.

Arroyo and Ortiz [] then introduced a modiĕed entropy functional of the form:

H(φ, x) = −
N
􏾜
i=1

φi(x) lnφi(x) − β(x)
N
􏾜
i=1

φi(x) 􏿖􏿖xi − x􏿖􏿖2 (.)

where β(x) ∈ ℝ is a parameter that can be varied to adjust the support width of the meshless
basis functions. When β→∞ the Delaunay (linear ĕnite element) interpolant is obtained, and
for β → 0 Shannon's standard measure of entropy is recovered. Adjustment of the parameter
β(x) across the domain can allow for seamless transition between regions discretised using ĕnite
elements and regions discretised with meshless basis functions.

Later, in the most general approach, Sukumar and Wright [] proposed the use of a relative
entropy functional which allows the choice of any sufficiently smooth prior weight function wi

associated with each node i:

H(φ,w) = −
N
􏾜
i=1

φi(x) ln 􏿶
φi(x)
wi(x)

􏿹 (.)

It can easily be shown that for the choice of a Gaussian Radial Basis Function (RBF) for the
prior weight function wi(x) = exp(−β(x) 􏿖􏿖xi − x􏿖􏿖2) the modiĕed entropy functional eq. (.)
of Arroyo and Ortiz may be recovered []. In this thesis we use the C2 quartic spline as our
prior weight function:

wi(r) =
⎧⎪
⎨⎪⎩

1 − 6r2 + 8r3 − 3r4, 0 ≤ r ≤ 1

0, r > 1
(.)

where r = 􏿖􏿖xi − x􏿖􏿖 /ρi and ρi is the support radius of node i.
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Construction

We follow the approach of Sukumar and Wright [] to construct the basis functions, and a
brief overview is given here. e maximum-entropy basis functions φi may be found from the
solution of a convex optimisation problem of the form []:

min
φ∈ℝn

+

N
􏾜
i=1

φi(x) ln 􏿶
φi(x)
wi(x)

􏿹 (.a)

subject to the constraints []:
N
􏾜
i=1

φi(x) = 1 (.b)

N
􏾜
i=1

φi(x)xi = x (.c)

φi(x) ≥ 0 ∀i, x (.d)

Constraint eq. (.b) is the same as the condition of partition of unity and constraint eq. (.d)
is required to ensure that the basis functions can be interpreted as probabilities in the context
of Shannon's entropy functional. Constraint eq. (.c) ensures that the basis functions can
exactly reproduce linear polynomials.

e resulting convex optimisation problem is solved numerically using standard techniques
from the convex optimisation literature by considering the dual formulation, see eg. Boyd and
Vandenberghe []. e solution is []:

φi(x) =
Zi(x; λ)
Z(x; λ) (.a)

Zi(x, λ) = wi(x) exp (−λ ⋅ (x − xi)) (.b)

Z(x; λ) =
N
􏾜
i=1

Zi(x, λ) (.c)

where λ = [λ1, λ2, … , λd]T is a vector of Lagrange multipliers and d is the dimensionality of
the domain. e solution for the Lagrange multipliers λ∗ can be found from the following
optimisation problem:

λ∗ = argmin lnZ(λ) (.)
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Denoting φ∗ as the basis function solution corresponding to the Lagrange multipliers λ∗ calcu-
lated at a particular point x we can then write the basis functions as:

φ∗i (x) =
Zi(x; λ∗)
Z(x; λ∗) (.)

and the basis function spatial derivatives as:

∇φ∗i (x) = φi􏿰 (x − xi) ⋅ 􏿴H−1 −H−1 ⋅ A􏿷

+∇wi
wi

−
n
􏾜
j=1

φj
∇wj

wj
􏿳

(.)

where:

A =
N
􏾜
j=1

φj (x − xi) ⊗
∇wj

wj
(.)

and H is the Hessian matrix calculated with respect to the Lagrange multipliers:

H =
N
􏾜
j=1

φj (x − xi) ⊗ (x − xi) (.)

e above equations for the shape function derivatives ∇φ∗i (x) simplify signiĕcantly when the
Gaussian prior weight function is used []:

∇φ∗i (x) = φiH−1 ⋅ (x − xi) (.)

In this thesis we will refer to an approximation space constructed using the above maximum-
entropy method eq. (.) on a speciĕed node setNh with N nodes in the problem domain Ω
with associated support radius vector ρ as:

ME(Ω;Nh, ρ) ∶= span {φi}Ni=1 (.)

In ĕg. . we show the basis functions constructed using theMaxEntmethod outlined above.
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Figure .: Basis functions constructed using maximum-entropy method on unit interval with
 evenly spaced nodes and uniform support size. Note that whilst the basis lacks
the Kronecker-delta property inside the domain, the basis has the Kronecker-delta
property on the boundary of the domain. All basis functions associated with the
internal nodes vanish on the boundary of the domain. is is the so-called `weak'
Kronecker-delta property.

Maximum-entropy basis functions have various advantageous properties over themore com-
monly used MLS basis functions which have seen wide application in the EFG method [].
ese properties include []; variation diminishing property (roughly speaking, the approxi-
mation is not more oscillatory than the data that it approximates), C0 continuity [] derived
using variational methods, C∞ continuity derived using the inverse function theorem [],
positivity φi ≥ 0 which leads to a positive mass matrix, and a `weak' Kronecker-delta property.

We will expand on the weak Kronecker-delta property here. It is well-known that the MLS
basis functions do not satisfy the Kronecker-delta property and therefore the trial and test func-
tion spaces cannot be built to satisfy the Dirichlet (essential) boundary conditions a priori [].
We discuss special methods which solve this problem in section ..

For maximum-entropy basis functions there is no need to resort to any special methods to
enforce Dirichlet boundary conditions. Arroyo and Ortiz [] prove that for a node setNh

with convex hull convNh that the basis functions φi corresponding to nodes on the interior
of the convex domain vanish on the boundary. Furthermore, if a node is an extreme point of
convNh then the basis functions will have the Kronecker-delta property φj(xi) = δji. ese
ideas are illustrated in ĕgs. . to ..e outcome of this is that imposing essential boundary
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Figure .: A node setNh and its (weakly) convex hull convNh shown by the yellow shaded re-
gion. Nodes {1, 3, 4, 5, 6} have the Kronecker-delta property (interpolatory), whilst
node 2 has the 'weak' Kronecker-delta property. All internal nodes (eg. node ) are
non-interpolatory in a similar way to basis functions constructed with MLS. All ba-
sis functions associated with the internal nodes (eg. node ) vanish on the convex
hullNh.

conditions is as simple as in the FEM, greatly easing the implementation of meshless methods
based onmaximum-entropy basis functions. For this reasonmaximum-entropy basis functions
are used widely in this thesis, although the developed mixed methods are generally applicable
to any type of meshless basis function construction.

Some other applications of maximum-entropy approximants include extension to second-
order consistency [, ], variational optimisation of the support width parameter β [],
constructing smoothmanifolds on scattered data points [] and co-rotational elasticity [].

. Radial basis functions

We can trace the routes of radial basis functions (RBFs) back to scattered data approximation
problems in areas such as geophysics, mapping andmeteorology []. Hardy [] introduced
the class of RBFs known as multiquadrics in , primarily for the purpose of interpolation
in mapping. Since then RBFs have become a popular choice in many applications that require
data interpolation on irregular grids of points in high dimensional space.
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Figure .: MaxEnt basis function associated with the central node on a uniform 9 × 9 grid of
nodes.
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Figure .: MaxEnt basis functions associated with the upper-right corner node on a uniform
9× 9 grid of nodes. As the corner node is an extreme point of the convex hull of the
node set the basis function associated with the corner node has the Kronecker-delta
property.
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Figure .: MaxEnt basis function associated with a mid-side node on a uniform 9× 9 grid of
nodes. As the side node is on the convex hull of the grid of nodes it has the weak
Kronecker-delta property. Unlike the corner node, the value of the shape function
at the node does not equal one, but all interior basis functions vanish. An example
of a vanishing basis function is shown in the ĕgure below.
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Figure .: MaxEnt basis function associated with a node near the convex hull on a uniform
9 × 9 grid of nodes. e basis function associated with this node vanishes on the
convex hull.
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Construction

We begin with a set of nodesNh with locations xi. We can deĕne the Radial Basis Function
interpolation as []:

uh(x) =
N
􏾜
i
ciϕ(‖x − xi‖2) (.)

where ci are coefficients to be found, ϕ is a radial basis function, and ‖⋅‖2 denotes the euclidean
norm inℝd.

We require that the approximation exactly interpolates the function at the nodes i giving the
condition at every node xj []:

uh(xj) =
N
􏾜
i=1

ciϕ(‖xj − xi‖2) (.)

= c1ϕ(‖xj − x1‖2) +⋯ + cIϕ(‖xj − xN‖2) = uj (.)

erefore for every node j we have one interpolating condition equation, resulting in a set of
linear equations of the form []:

⎡
⎢
⎢
⎢
⎢
⎣

ϕ(‖x1 − x1‖2) ϕ(‖x1 − x2‖2) … ϕ(‖x1 − xN‖2)
ϕ(‖x2 − x1‖2) ϕ(‖x2 − x2‖2) … ϕ(‖x2 − xN‖2)

⋮ ⋮ ⋱ ⋮
ϕ(‖xN − x1‖2) ϕ(‖xN − x2‖2) … ϕ(‖xN − xN‖2)

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

c1
c2
⋮
cN

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

u1

u2

⋮
uN

⎤
⎥
⎥
⎥
⎥
⎦

(.)

Ac = u (.)

By solving the above system of linear equations for c we have found a solution for the scattered
data interpolation problem with RBFs.

Choice of RBF

From linear algebra we know that the system of linear equations will have a unique solution
if the matrix A is non-singular. e matrix A is non-singular if and only if its determinant
|A| ≠ 0. Currently there is no way of ĕnding a class of radial basis functions that produce a
non-singular matrix A for any set of nodesNh []. However, if we restrict the discussion
to positive deĕnite matrices (which are always non-singular) then we can ĕnd classes of RBFs
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Radial basis function φ Parameters Continuity

Polyharmonic splines rv v > 0, v ∉ 2ℕ m = v/2
r2k log(r) k ∈ ℕ m = k + 1

Gaussians exp(−r2) None m = 0
Multiquadrics (1 + r2)v v > 0, v ∉ ℕ m = v

Inverse multiquadrics (1 + r2)v v < 0 m = 0

Table .: Commonly used radial basis functions [].

ϕ(‖x‖) called positive deĕnite radial functions that always produce a positive-deĕnite A.

A real symmetric matrix A is positive deĕnite if:

cAcT > 0 ∀c = [c1, … , cN]T ∈ ℝN (.)

If the matrixA is positive deĕnite then all of its eigenvalues are positive and therefore a positive
deĕnite matrix is always non-singular:

detA ≠ 0 if cAcT > 0 ∀c = [c1, … , cN]T ∈ ℝN (.)

A function Φ ∶ ℝd ↦ ℝ is called a positive deĕnite function onℝd if and only if []:

cAcT > 0 ∀c = [c1, … , cN]T ∈ ℝN (.)

A =

⎡
⎢
⎢
⎢
⎢
⎣

φ(‖x1 − x1‖) φ(‖x1 − x2‖) … φ(‖x1 − xN‖)
φ(‖x2 − x1‖) φ(‖x2 − x2‖) … φ(‖x2 − xN‖)

⋮ ⋮ ⋱ ⋮
φ(‖xN − x1‖) φ(‖xN − x2‖) … φ(‖xI − xN‖)

⎤
⎥
⎥
⎥
⎥
⎦

(.)

for any set of pairwise distinct nodes x1, … , xN ∈ ℝd. Bochner's theorem [, ] can then
be used to show that a particular function is indeed positive deĕnite on all ℝd d ≥ 1 and will
produce an invertible interpolation matrix A. A selection of commonly used positive deĕnite
RBFs are shown in table . [].
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. Radial point interpolationmethod

e main drawback of the above approach is that approximations schemes are not even ĕrst-
order consistent []. is means that RBFs will not pass the patch test []. However we
can add in polynomial consistencywith a simple polynomial extension to the RBF interpolation
[]. is approachwas originally proposed by Powell in  [] in the context of function
approximation, and then introduced by Wang and Liu in the context of meshless methods as
the radial point interpolation method (RPIM) [].

e consistent approximation can be written []:

uh(x) =
N
􏾜
i=1

ciϕ(‖x − xi‖2) +
M
􏾜
j=1

djpj(x) (.)

where p(x) is a complete monomial of order m with M terms in x as used in the moving least-
squares approximation method and dj is a further set of coefficients to be found. By enforcing
the interpolating conditions as in the standard RBF interpolation and including a further set of
conditions to ensure a unique solution []:

M
􏾜
j=1

djpk(xj) = 0 (.)

we can construct an augmented system of equations of the form []:

⎡
⎢
⎣

A P
PT 0

⎤
⎥
⎦

⎡
⎢
⎣

c
d
⎤
⎥
⎦
=
⎡
⎢
⎣

y
0
⎤
⎥
⎦

(.)

It can be shown that the above augmented equation is non-singular and has a unique solution
[]. If we let:

G =
⎡
⎢
⎣

A P
PT 0

⎤
⎥
⎦

(.)

en we can write the consistent approximation in vector form as:

uh(x) = {ϕT(x) pT(x)}G−1u (.)
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And the basis function vector is therefore deĕned by:

φ(x) = {ϕT(x) pT(x)}G−1 (.)

In this thesis we will refer to an approximation space constructed using the above radial point
interpolation method eq. (.) of order p on a speciĕed node setNh with N nodes in the
problem domain Ω with associated support radius vector ρ as:

RPIMp(Ω;Nh, ρ) ∶= span {φi}Ni=1 (.)

Continuity

Even thoughwe have added consistency to the RBF approximation we have introduced another
problem; the RPIM basis functions are, in general, not continuous across the entire domain [].
is happens because as new nodes enter and exit the connectivity set Sh the Pmatrix changes
abruptly. is means that RPIM basis functions whilst being smooth almost everywhere, typ-
ically have very small discontinuities meaning that strictly speaking the RPIM basis functions
are only members of the space L2(Ω). erefore, technically speaking, RPIM is not a suitable
meshless basis function for discretising many weak forms arising from physical systems where
we require at least H1(Ω) continuity. In practice, and in our experience, it seems this is not a
particularly signiĕcant issue, and the huge number of successful papers in the literature using
RPIM basis functions would support this.

G. R. Liu has recently introduced the G space theory [, ]. It allows the basis functions
to have lower continuity inΩ and thus allowsRPIM functions to be used in so-calledweakened-
weak (W2) variational forms. is works by relaxing or weakening the requirement that the
basis function lie in the space H1. e ĕrst derivatives are then calculated by constructing
appropriate smoothing domains using background cells. is is a large topic that cannot be
covered in full here, further details can be found in [, , ].

Computational Efficiency

Similarly to the MLS method, the equations used above should not be used directly to compute
the basis functions. Liu and Gu [] present an efficient method for computing the RPIM basis
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Figure .: Wendland C2 compactly supported radial basis function

functions utilising one LU-decomposition of GT and then solving repeatedly for varying right
hand sides of the linear system for increasing orders of derivatives.

. Compactly supported radial basis functions

Anew class of compactly supported radial basis functions (CSRBFs) were introduced byWend-
land in  []. ese RBFs have compact support, in contrast to the RBFs introduced in
the previous section that have global support. e primary advantage of compactly supported
RBFs is that the interpolation matrix A becomes sparse, allowing for optimised sparse solvers
to be used.

Buhmann's CSRBFs [] contain the earlier CSRBFs of Wendland [] and Wu [] as a
special case. An example of one of Buhmann's strictly positive deĕnite CSRBF is []:

ϕ(r) = 12r4 log r − 21r4 + 32r3 − 12r2 + 1, 0 ≤ r ≤ 1 (.)

(.)

is function ϕ ∈ C2(Ω) and is positive deĕnite and radial onℝd for d ≤ 3.
Like the globally supported RBFs, CSRBFs also need polynomial extension to construct ap-

proximations that will pass the patch test. CSRBFs with ĕrst order polynomial consistency
have been used successfully by Itoh et al. to reconstruct D surfaces from a set of scattered data
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Figure .: Basis functions constructed using Radial Point Interpolation Method (Wendland
C2 CSRBF) method on unit interval with  evenly spaced nodes and uniform sup-
port size. is basis has the Kronecker-delta property both on the boundary and
on the inside of the domain.

points from an object scanner []. e augmented system of equations is of a very similar
form to that for globally supported RBFs.

. Enforcing Dirichlet boundary conditions

In the FEM the basis functions satisfy the Kronecker-delta property and therefore Dirichlet
boundary conditions can be imposed simply by modiĕcation of the ĕnal system of linear equa-
tions. However, meshless basis functions do not typically satisfy the Kronecker-delta property
and special techniques must be used to impose Dirichlet boundary conditions.

According to Fernandez-Mendez and Huerta [] these special techniques can be classiĕed
into twomain groups; the ĕrst are those based onmodifying the weak form, such as themethod
of Lagrange multipliers, the penalty method and Nitsche's method. e second are those that
modify the basis functions so that they do interpolate and satisfy the Kronecker-delta property
on ΓD, thus allowing direct imposition of the Dirichlet boundary conditions as in the FEM. In
this section we discuss the the method of Lagrange multipliers, the penalty method, Nitsche's
method and coupling to ĕnite elements as these are the most commonly used and generally
applicable techniques used in the literature.
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.. Lagrangemultipliers

e Lagrange multiplier approach was introduced in the context of ĕnite element methods by
Babuska []. By usingHamilton's principle we canwrite a general energy function of eq. (.)
in the form []:

Π(v) = T − V −W (.)

whereT is the kinetic energy,V is the internal strain energy, andW is the work done by external
forces on the system. e solution u ∈H1(Ω)minimises the energy functional and veriĕes the
essential boundary conditions on ΓD []:

u = arg inf
v∈H1(Ω)
v=ū ∀x∈ΓD

Π(v) (.)

Alternatively, if we cannot enforce the boundary conditions due to the lack of Kronecker-delta
property we can re-write the above minimisation problem using the Lagrange multiplier λ(x)
as []:

(u, λ) = arg inf
v∈H1(Ω)

sup
γ∈H−1/2(ΓD)

Π(v) +􏾙
ΓD
γ(v − ū) dΓ (.)

is constrained minimisation problem leads to a system of equations in the standard saddle-
point form []:

⎡
⎢
⎣

K GT

G 0
⎤
⎥
⎦

⎡
⎢
⎣

u
λ
⎤
⎥
⎦
=
⎡
⎢
⎣

f
q
⎤
⎥
⎦

(.)

where K is the standard stiffness matrix, G is a matrix of the integrated basis functions that
approximate the Lagrange multipliers λ on ΓD, f is the standard force vector, and q is a vector
of the prescribed Dirichlet boundary conditions ū integrated on ΓD.

Whilst the Lagrange multiplier method is broadly applicable and straightforward to imple-
ment, the augmented systemof equations has increased dimensions overK, is no longer positive
deĕnite like K, and can be singular if too many Lagrange multipliers are used to constrain the
solution. ese issues are discussed in depth by Fernandez-Mendez and Huerta [].

.. Penalty method

epenaltymethodwas introduced in context ofmeshlessmethods by Zhu andAtluri []. In
the penaltymethod theminimisation problem can be solved by the use of the penalty parameter
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α []:
u = arg inf

v∈H1(Ω)
Π(v) + 1

2α􏾙ΓD
(v − ū)2 dΓ (.)

e constraint has been enforced by adding the square of the constraints ū multiplied by a
very large number α. e penalty method has the advantage that the size of the system of
linear equations remains the same and is still positive deĕnite []. However, with increasing
α the system of equations becomes increasingly ill-conditioned []. Choosing α so that the
boundary conditions arewell imposedwhilst still ensuring that the systemof equations remains
sufficiently well-conditioned can be difficult.

.. Nitsche's method

Nitsche's method [] can be interpreted as a consistent improvement of the penalty method
[]. Only very low values of the new penalty parameter β need to be used, on the order of
β ∽ 100 in Nitsche's method compared with to α ∽ 106 in the penalty method, resulting in
well-conditioned systems of equations []. e main problem with Nitsche's method is that
the modiĕed weak form must be specially derived for each problem, whereas for the Lagrange
multiplier approach and penalty method generalisation to arbitrary weak forms is straightfor-
ward [].

.. Coupling to önite elements

Coupling meshless approximants to ĕnite elements is useful on two levels: ĕrstly the FE basis
functions satisfy the Kronecker-delta property and therefore boundary conditions can be di-
rectly imposed, and secondly it allows for regions of the problem solution to be approximated
using computationally cheaper ĕnite elements.

ere have been multiple efforts to couple mesh-free approximations with ĕnite elements.
Belytschko et al. [] used a ramp function to continuosly blend in a transition element
between a coupled approximation consisting of the MLS approximation and ĕnite elements.
Huerta and Fernandez-Mendez [] generalised Belytschko's approach to allow arbitrary con-
sistency without any ramping function. Wagner and Liu [] proposed a method that allows
the mixing of different interpolation spaces with ĕnite elements. As a side effect they found
that it also solves the problem of imposing Dirichlet boundary conditions in meshless methods
[].
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. Implementation

All of the meshless numerical methods developed in this thesis have been implemented in the
framework of a general meshless and ĕnite element framework called pymĘ. pymĘ is primarily
implemented in Python with various small pieces implemented in C/C++ for performance rea-
sons. To calculate themeshless basis functions the pymĘ package uses our external C++ library
meshless wrapped via Boost.Python []. e meshless library supports maximum-entropy,
MLS and RPIM basis functions. e pymĘ package also uses various open-source soware
components. DOLFIN is used for the mesh data structure [] and FIAT [] for the ĕnite
element basis function tabulation. Nearest-neighbour searching is accelerated using the ckdtree
library from Scipy []. Sparse linear algebra is handled using the PyTrilinos framework from
Sandia National Labs. Because of the object-oriented design of pymĘ it is relatively easy to im-
plement new problems quickly into the framework. We show an example pymĘ solver for the
Timoshenko beam problem in the following chapter.

. Conclusions

In this chapter we have explored various methods for constructing meshless basis functions
and their corresponding mathematical properties. Particularly important is the problem of
enforcing Dirichlet boundary conditions. Currently there are two options; the ĕrst option is to
use a modiĕed variational form with a basis function with the Kronecker-delta property, and
the second is to use a basis function with the Kronecker-delta property. Whilst the maximum-
entropy approach does have the `weak' Kronecker-delta property allowing direct enforcement
of Dirichlet boundary conditions on convex node sets, this advantage comes at the expense of
allowing easy extension to second-order or higher consistency. e radial point interpolation
method (RPIM) has the standard Kronecker-delta property just like the FEM, but the basis
functions are not necessarily continuous across the domain and strictly speaking requires the
use of special weakened-weak variational forms for the best accuracy. erefore in our view
there is currently no meshless basis function construction which is suitable for all problem
types and the best option must be chosen on a case-by-case evaluation.
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 A study of the shear-locking problem in the
Timoshenko beam problemwithmeshless
methods

In this chapterwe outline the assumptions and theweak formof the Reissner-Mindlin plate
problem before moving on to perform numerical experiments with the Reissner-Mindlin
problem's one-dimensional analogue, the Timoshenko beam problem.

We deĕne parameters ε and p̃ allowing an appropriate scaling of the applied load ensuring
a sequence of problems with ĕnite limit solution (Bernoulli) as the small parameter ε→ 0.
We then transfer from the continuous problem to a discrete form suitable for solution via
ĕnite element or meshless methods. Using simple function space arguments we show that
the origin of the locking problem in both the meshless and ĕnite element methods; the
inability of the basis functions to richly represent the limiting Kirchhoff mode.

We then present numerical results from both meshless and ĕnite element methods show-
ing the broadly similar behaviour with respect to the small parameter ε under h and p re-
ĕnement. Additionally, we study the effect of the support width parameter β in meshless
methods. We clearly identify the sensitivity of the meshless numerical methods shear-
locking behaviour with respect to the discretisation parameters. is understanding is a
key aspect in designing a meshless numerical method that is free of shear-locking. To our
knowledge these fundamental experiments have not been performed using meshless basis
functions before.

. Introduction

Before solving a problem it is important to understand its origins. e aim of this chapter is
to explore the origins of shear-locking problem in numerical methods and understand in what
way the magnitude of the shear-locking problem depends on the discretisation parameters. In
this chapter we perform a set of numerical experiments using both ĕnite element and meshless
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methods which reveal in a simple way the dependence of shear-locking upon the discretisa-
tion parameters in both meshless and ĕnite element methods. To ascertain this we perform
a numerical extended versions of an experiment originally suggested by Chapelle and Bathe
[]. To our knowledge this is the ĕrst time these experiments have been performed for the h
and p-reĕnement ĕnite element methods as well as h and p-reĕnement meshless methods and
analysed in a comparative manner.

. Plate theories

In this section we give an overview of the assumptions of both the Kirchhoff and the Reissner-
Mindlin plate models and give an outline of the weak formulation of the Reissner-Mindlin
problem.

.. The Kirchhoff-Love plate problem

eKirchhoff-Love plate problem is illustrated in ĕg. .. e assumptionsmade in the deriva-
tion of the Kirchhoff-Love plate problem are as follows:

Geometry e three-dimensional elasticity problem domainΩ ⊂ ℝ3 has one thin dimension
in the x3 direction. e plate mid-surface is then described by the domain Ω0 ⊂ ℝ2

and the thickness by a function t ∶ Ω0 → (0,∞). e coordinates (x1, x2) lie on the
mid-surface of the plate. erefore the whole domain Ω ⊂ ℝ3 can be written as:

Ω ≡ 􏿺(x1, x2, x3) ∈ ℝ3 ∶ (x1, x2) ∈ Ω0, x3 ∈ [−t(x1, x2)/2, t(x1, x2)/2]􏿽 (.)

Mechanics Straight lines perpendicular to the mid-surface of the plate before loading occurs
remain straight aer loading. e transverse normals do not elongate. erefore plane
stress assumptions apply σ33 = 0.

Kinematics e transverse normals rotate such that they remain perpendicular to the mid-
dle surface aer loading. We can then assume that the three-dimensional displacement
vector u ∶ Ω→ ℝ3 can be written in the following form:

u(x1, x2, x3) = 􏿶z1(x1, x2) −
𝜕z3
𝜕x1

x3, z2(x1, x2) −
𝜕z3
𝜕x2

x3, z3(x1, x2)􏿹 (.)
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Figure .: Illustration of the Kirchhoff plate problem.

.. The Reissner-Mindlin plate problem

e Reissner-Mindlin plate problem is illustrated in ĕg. .. e assumptions made in the
derivation of the Reissner-Mindlin problem are as follows:

Geometry e same geometrical assumptions are made as in the Kirchhoff-Love hypothesis.

Mechanics e same mechanical assumptions are made as in the Kirchhoff-Love hypothesis.

Kinematics e transverse normals are allowed to rotate relative to the middle surface aer
loading. We assume that the three-dimensional displacement vector u ∶ Ω→ ℝ3 can be
written in the following form:

u(x1, x2, x3) = (z1(x1, x2) − θ1(x1, x2)x3, z2(x1, x2) − θ2(x1, x2)x3, z3(x1, x2)) (.)

In other words, the motion of a material line normal to the plate mid-surface can be decom-
posed into an in-plane displacement (z1, z2) alongwith a rotation θ = (θ1, θ2) around the (x2, x1)
axis respectively, along with a normal displacement z3. ese kinematic assumptions lead to
transverse shear stresses εα3(x) ≠ 0 α = 1, 2. Contrast this with the Kirchhoff plate model
where it is assumed that θ = ∇z3, or material lines normal to the plate mid-surface remain nor-
mal to the surface aer deformation, giving εα3(x) = 0. In this context the Reissner-Mindlin
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Figure .: Illustration of the Reissner-Mindlin plate problem.

model can be seen as a ĕrst-order relaxation of the Kirchhoffmodel constraint θ−∇z3 = 0. e
relaxation of the Kirchhoff hypothesis in the Reissner-Mindlin model has three main advan-
tages, two of which relate to the accuracy of the physical model of the plate, and one relating
to the ease of constructing appropriate numerical methods. Firstly, the interior solution (far
away from the edges) includes the effect of shear deformation, and is therefore more accurate
than the Kirchhoff hypothesis for thicker plates []. Secondly, the Reissner-Mindlin model
has a more physically representative approximation to the behaviour of the plate at the edge-
zone portion [], which typically includes boundary layer phenomenon []. Finally, the
resulting weak form of the Reissner-Mindlin equations requires only that the solution (z3, θ)
be in the Sobolev space [H1(Ω0)]3, whereas the Kirchhoff weak form requires that the solution
z3 has greater regularity in the Sobolev spaceH2(Ω0) []. e practical outcome of this is that
to solve the Reissner-Mindlin problem C0 continuous ĕnite element can be used, whereas for
the Kirchhoff problem more exotic C1 continuous ĕnite elements such as the Argyris triangle
[] are required.

e actual derivation of the Reissner-Mindlin problem is somewhat lengthy and we opt to
jump directly to the weak form of the Reissner-Mindlin plate problem here. A full derivation
is given by Hardesty []. In this derivation it assumed that the thickness is independent of
position ie. t(x1, x2) = t, that the plate material behaviour is homogeneous and isotropic and
that loading is applied only in the transverse direction z3.

Problem  (Displacement weak form of the Reissner-Mindlin plate problem). Find the trans-
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verse deĘection and rotations (z3, θ) ∈ V3 ×R such that:

̄t3􏾙
Ω0

L[ε(θ)] ∶ ε(η) dΩ + λ ̄t􏾙
Ω0

(∇z3 − θ) ⋅ (∇y3 − η) dΩ = 􏾙
Ω0

p3y3 dΩ ∀(y3, η) ∈ V3 ×R

(.a)

e operators ε ∶ [H1(Ω0)]2 → [L2(Ω0)]2×2 and L ∶ [L2(Ω0)]2×2 → [L2(Ω0)]2×2 are deĕned as:

ε(v) = 1
2 􏿴(∇v) + (∇v)

T􏿷 L[ε] ≡ D [(1 − ν)ε + νtr(ε)I] (.b)

where I is the usual identity tensor, D = E/12(1− ν2) is the bending modulus, λ = Eκ/(2(1+ ν)) is
the shear modulus, κ = 5/6 is a shear correction factor, ν is Poisson's ratio, E is Young's modulus,
̄t = t/L is the plate thickness scaled with respect to the characteristic in-plane dimension L and p3

is the transverse loading function.

We can write the above problem in a simpliĕed short-hand form by deĕning:

ab(θ; η) ∶= 􏾙
Ω0

L[ε(θ)] ∶ ε(η) dΩ (.a)

as(θ, z3; η, y3) ∶= 􏾙
Ω0

(∇z3 − θ) ⋅ (∇y3 − η) dΩ (.b)

g(y3) ∶= 􏾙
Ω0

p3y3 dΩ (.c)

as the bilinear and linear forms relating to the bending energy, shear energy and external load-
ing of the plate, respectively, then we can re-write the Reissner-Mindlin problem in the follow-
ing short-hand form:

̄t3ab(θ; η) + λ ̄tas(θ, z3; η, y3) = g(y3) (.)

. The Timoshenko beam problem

e Timoshenko beam problem is a reduced-dimension version of the Reissner-Mindlin prob-
lem; it encapsulates the similar physics, that is, the deformation of a three-dimensional struc-
ture with planar dimensions far greater than the the thickness whilst taking into account the

In the three dimensional elastic body the shear stresses vanish on the top and bottom surfaces of the plate, but
the Reissner-Mindlin assumptions enforce a linear variation in shear stress. To correct this discrepancy the
shear energy is multiplied through by κ.
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effect of transverse shear stresses. Furthermore, naive numerical discretisations of the Timo-
shenko problem suffer from exactly the same shear-locking problem as those of the Reissner-
Mindlin problem. In the more exacting mathematical aspects the Timoshenko beam problem
is considerably simpler the the Reissner-Mindlin problem, and in terms of understanding how
the discretisation parameters effect the strength of the shear-locking problem it is also much
simpler. is makes it a good candidate problem for performing initial numerical experiments
whichwill assist in the development of locking-freemethods for the Reissner-Mindlin problem.

.. Continuous form

By setting Poisson's ratio ν = 0, neglecting all terms involving variables in the x2 direction
and setting θ1 = θ in the Reissner-Mindlin plate problem eq. (.) we arrive at the following
continuous form of the Timoshenko beam problem:

Problem  (Displacement form of the Timoshenko beam problem). Consider a straight beam
of length L with constant rectangular cross-section depth b and constant thickness t. e problem
domain is Ω = (0, L). e weak form of the problem can be written as follows:
Find the transverse displacements and rotations (z3, θ) ∈ V T such that:

EI􏾙
Ω
θ′η′ dΩ + Gbtκ􏾙

Ω
(z3′ − θ)(y3

′ − η) dΩ = 􏾙
Ω
p3y3 dΩ ∀(y3, η) ∈ V T (.)

where E is Young's modulus, G is the shear modulus, κ is a shear correction factor and I is the
second moment of inertia of the cross section.

Boundary conditions are speciĕed as being clamped at both ends giving the following spec-
iĕcation for the function spaceV T:

V T = 􏿻(y3, η) ∈ V3 ×R = 􏿮H1
0(Ω)􏿱

2
􏿾 (.)

whereH1
0(Ω) ⊂ H1(Ω) is the standard Sobelev space of square integrable functions with square

integrable derivatives in Ω with vanishing values on the boundary Γ. We now deĕne the fol-
lowing parameters:

ε = 1
L􏽰

EI
Gbtκ , p̃ = p3L2

EI (.)

allowing us to scale the load by a factor of ε3. In rough terms, this scaling with ε ensures a ĕnite
solution as the beam thickness t is reduced whilst keeping the other problem variables ĕxed.
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Aer performing the appropriate scaling we have the following scaled version of the original
problem:

Problem  (Scaled displacement Timoshenko beam problem). Find (zε3, θε) ∈ V T such that:

L2􏾙
Ω
θε′η′ dΩ + 1

ε2 􏾙Ω
(zε′3 − θε)(y3

′ − η) dΩ = 􏾙
Ω
p̃y3 dΩ ∀(y3, η) ∈ V T (.)

We can now deĕne a sequence of problems 􏿺(zε3, θε)􏿽ε that converges in the limit as ε→ 0 to
the thin beam or Bernoulli solution (z03, θ0). Wewill refer to the solution (z03, θ0) as the Bernoulli
solution or thin beam solution and this solution can be found by solving the following limit
problem:

Problem  (Scaled Bernoulli beam problem in rotation variable). Find (z03, θ0) ∈ V T
0 such

that:
L2􏾙

Ω
θ0′η′ dΩ = 􏾙

Ω
p̃y3 dΩ ∀(y3, η) ∈ V T

0 (.)

whereV T
0 is the set of pure bending displacements:

V T
0 = 􏿺(y3, η) ∈ V T | v′3 − η = 0 􏿽 (.)

en by substituting θ0 = z′3 and η = y′3 into eq. (.) we can eliminate the rotation variables
to obtain the classical Bernoulli beam problem in terms of the transverse displacement z03 only:

Problem  (Scaled Bernoulli beam problem in transverse displacement variable). Find z03 ∈
V 0

3 such that:
L2􏾙

Ω
z03′′y3

′′ dΩ = 􏾙
Ω
p̃y3 dΩ ∀y3 ∈ V 0

3 (.)

whereV 0
3 is the space of square integrable functions with square integrable ĕrst and second deriva-

tives with vanishing value and derivatives on Γ:

V 0
3 = H2

0(Ω0) = {y3 ∈ H2(Ω) | v(0) = v′(0) = v(L) = v′(L) = 0} (.)

e classical Bernoulli beam problem is the reduced-dimension version of the Kirchhoff-
Love plate problem. e strong form of the Bernoulli beam problem is a fourth-order PDE
which results in a weak form with second-order partial derivatives requiring a solution z3 ∈
H2

0(Ω0).
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We can now see that in the limit as ε→ 0 the Timoshenko problem coincides exactly with the
classical Bernoulli problem. is is what we would expect on an intuitive physical level; given
that both mathematical models claim to accurately describe the deformation of a beam under
mechanical loading we would naturally expect that both models would give the same answer
for a thin beam. Of course, for moderately thick beams, the relaxed hypothesis of the Timo-
shenko theory gives a more physically accurate model of the three-dimensional body than the
Bernoulli theory. We have seen mathematically that in the continuous form the two problems
do indeed agree. However, on moving to a discretised form of the Timoshenko beam problem
we typically ĕnd that as ε → 0 the sequence of problems fails to converge to the correspond-
ing Bernoulli solution, resulting in wildly inaccurate results. It is this problem which we call
shear-locking. It is important to emphasise that the shear-locking problem is caused only by
poorly designed numerical methods, not by any inherent issues with the mathematical models
which describe the underlying physical phenomenon. We will demonstrate the shear-locking
issue both mathematically and numerically in the following sections.

.. Discretised form and locking

To discretise the Timoshenko beam problem we introduce the ĕnite-dimensional conforming
subspaceV T

h ⊂ V T constructed with any standard partition of unity process such as the FEM
ormeshless methods. We then have the following discretised version of the scaled Timoshenko
beam problem:

Problem  (Discretised scaled Timoshenko beam problem). Find (zε3h, θεh) ∈ V T
h such that:

L2􏾙
Ω
θ′η′ dΩ + 1

ε2 􏾙Ω
(z3′ − θ)(y3

′ − η) dΩ = 􏾙
Ω
p̃y3 dΩ ∀(y3, η) ∈ V3h ×Rh (.)

Remember previously that we deĕned the thin-beam or Bernoulli solution (z03, θ0) as the
solution to the limit problem. In exactly the same manner we can deĕne the discrete Bernoulli
solution (z03h, θ0

3h) as the solution to the following discrete limit problem:

Problem  (Discrete scaled Bernoulli beam problem in rotations). Find (z03h, θ0
h) ∈ V0h such

that:
L2􏾙

Ω
θ0′η′ dΩ = 􏾙

Ω
p̃y3 dΩ ∀ (y3, η) ∈ V0h (.)





. e Timoshenko beam problem

Figure .: Illustrative Venn diagram of the space of discrete pure bending displacements.

whereV0h is the set of discrete pure bending displacements:

V0h = 􏿺(y3, η) ∈ V3h ×Rh | v′3 − η = 0 􏿽 (.)

e key to understanding locking is to examine the function spaceV0h closely. We can re-
write the function spaceV0h as:

V0h = 􏿴V3h ×Rh􏿷 ∩V0 (.)

at is, the space of discrete pure bending displacements is the intersection of the discrete
spaces (V3h,Rh) and the space of pure bending displacements. It is the `richness' of this inter-
section space which governs the quality of the solution; if the space is not `rich' enough, then
shear-locking will occur.

In some extreme cases the spaceV0h reduces to the zero function. We can show this extreme
case using a very simple example. We take V3h and Rh to be constructed using piecewise
linear ĕnite elements on a mesh with uniform element size. We enforce fully clamped Dirichlet
boundary conditions at both ends of the beam, that is:

V3h = Rh ⊂ H1
0(Ω) (.)

First note that the rotations θh must be zero on the boundary. Furthermore as a natural con-
sequence of using piecewise linear elements the derivatives of the transverse displacements are
piecewise constant. Because we are looking for a pure bending solution, that is, one that satis-
ĕes the Kirchhoff constraint z′3h − θh = 0, then the only possible solution is θh = 0 and z3h = 0.
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e ĕnite element discretisation has produced a numerical model that is overly-stiff, hence the
term `locking'. Essentially this discretisation scheme is useless.

.. Shear-locking in the önite element method

We can demonstrate shear-locking numerically and examine the effect of h and p reĕnement on
shear-locking using theDOLFINĕnite element framework []. We choose a simple problem,
namely a cantilever beam with a point load as illustrated in ĕg. .. Using the same scaling as
for the weak form of the problem, the strong form has the following classical analytical solution
for the tip deĘection:

zT3 (x3 = L) = p̃L
3 (1 + 3ε2) (.)

which in the limit as ε→ 0 corresponds to the well-known Bernoulli solution:

z03(x3 = L) = p̃L
3 = PL3

3EI (.)

We set p̃ = 3 and L = 1 so that our limit Bernoulli solution is exactly 1 and the Timoshenko
solution is:

zT3 (L) = 1 + 3ε2 (.)

We then implement a numerical scheme usingN equal-sized linear polynomial ĕnite elements
CG1 to discretise the domain Ω. An example solver implemented using DOLFIN is shown in
algorithm .

Locking

In ĕgs. .(a) to .(c) we show deĘection z3 plotted along the length of the beam [0, L] for three
values of ε = {1.0, 0.01, 0.001} respectively, whilst keeping the discretisation ĕxed with N = 10
ĕnite elements along the length of the beam. For ε = 1.0 the numerical solution clearlymatches
the exact solution. For ε = 0.01 there is a signiĕcant discrepancy between the numerical and
exact solutions. Finally for ε = 0.001 shear-locking has produced the zero function, matching
the theoretical prediction above. e shear-locking phenomenon has effectively rendered this
discretisation scheme completely useless for thin beams.
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Algorithm  Code for implementing cantilever beam problem in the Python interface to
DOLFIN

import numpy as np
from dolfin import *

# Mesh and functions
nx = 10
mesh = UnitInterval(nx)
degree = 1
V_3 = FunctionSpace(mesh, "CG", degree)
R = FunctionSpace(mesh, "CG", degree)
U = MixedFunctionSpace([R, V_3])
R, V_3 = U.split()

theta, z_3 = TrialFunctions(U)
eta, y_3 = TestFunctions(U)

# Loading
end_point = Point(1.0)
f = PointSource(V_3, end_point, 1.0)

# Constants
epsilon = 1.0
L = 1.0
C_s = Constant(epsilon**-2.0)
C_b = Constant(L**2.0)

# Bilinear and linear forms
A = inner(grad(theta), grad(eta))*dx + epsilon**-2*inner(grad(z_3) - theta,

grad(y_3) - eta)*dx
L = Constant(0.0)*y_3*dx

# Cantilever BC
def left_boundary(x, on_boundary):

tol = 1E-14
return on_boundary and np.abs(x[0]) < tol

zero = Constant(0.0)
bc1 = DirichletBC(V_3, zero, left_boundary)
bc2 = DirichletBC(R, zero, left_boundary)
bcs = [bc1, bc2]

# Assemble, apply boundary conditions, apply point load and solve
u_h = Function(U)
A_matrix = assemble(A)
b_vector = assemble(L)
for bc in bcs:

bc.apply(A_matrix, b_vector)
f.apply(b_vector)

solver = LUSolver(A_matrix)
solver.solve(u_h.vector(), b_vector)
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Figure .: Cantilever beam loaded with transverse point load at tip.

h-reönement

Let's take a closer look at the effect of the parameter ε on the convergence of the transverse
deĘection at the tip of the beam x1 = L. We take as a measurement of error the value of
z3h(L)/zT3 (L), therefore a value close to  denotes a very large error, and a value close to  denotes
a very small error. is is a suitable error measure for the one-dimensional problem because
point-wise convergence implies convergence in the H1 norm.

We run the simulation for varying values of ε and varying numbers of elements N. is ex-
periment was also performed by Chapelle and Bathe []. e results are shown in table ..
Increasing the number of elementsN corresponds to the classical h-reĕnement procedure. First
of all we note that for any N the convergence of the numerical scheme always deteriorates for
decreasing values of ε. Secondly, to achieve convergence for small values of ε we require ex-
tremely large values of N. Finally, there is a clear diagonal pattern in the table; for example, to
achieve a ĕxed convergence value of . for decreasing ε the number of elements must be
varied as 1/ε.

From a practical perspective it is clear that the standard CG1 ĕnite element scheme is inca-
pable of obtaining convergence without using an unfeasibly high number of elements which
naturally consumes signiĕcantly more computational resources. For example, to achieve an
error of ., for a moderately thin structure with ε = 0.01 we must use  CG1 ĕnite
elements, resulting in a linear system of size 3003 × 3003. However if our numerical scheme
behaved in amore uniformmanner with respect to εwemight expect in the best case to achieve
the same level of convergence with only  CG1 ĕnite elements, which results in a linear sys-
tem of size 33 × 33. A rough estimate based on a solver with O(N logN) complexity results
in the linear system solve alone taking roughly  times longer for the larger problem, not to
mention the increased memory requirements and assembly time. In summary, the CG1 ĕnite
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(a) Beam deĘection z3 for ε = 1.0 along the length of the
beam. Numerical solution and exact solution are nearly
indistinguishable.
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(b) Beam deĘection z3 for ε = 0.01 along the length of the
beam. Numerical locking is beginning to occur.
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(c) Beam deĘection z3 for ε = 0.001 along the length of
the beam. e numerical scheme produces the zero func-
tion.

Figure .: Beam deĘection z3 for increasingly thin beams using CG1 ĕnite element method.
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Table .: e effect of h-reĕnement on the error z3h(L)/z3(L) at the tip of the cantilever beam.
CG1 FEM.

N dim(U) ε = 1 ε = 0.1 ε = 0.01 ε = 0.001 ε = 0.0001
1  . . . . .

10  . . . . .
100  . . . . .

1000  . . . . .
10000  . . . . .

element scheme requires unfeasibly large computational resources to achieve only mediocre
results for the Timoshenko beam problem.

e above numerical results can be summarised with the following standard error bound
[]:

||z3 − z3h||L2(Ω) ≤ C (ε−n,Ω) h2 |z3|H2(Ω) (.)

where C is a positive constant that is a function of the parameter ε raised to some negative
power n ∈ ℕ and h = 1/N is the element length. e above standard estimate states that
the error in the solution ||z3 − z3h||L2(Ω) is bounded by three main quantities; ĕrstly the second
derivatives of the solution |z3|H2 , secondly the element size squared h2, and ĕnally the constant
C which is dependent on both the small parameter raised to some negative power ε−n and the
domain Ω. If ε is very small, the constant C will consequently be extremely large. As |z3|H2 is
ĕxed for any given problem the only way to counteract the effect of a largeC on the error bound
is to drastically decrease the element size h. is analytical result reĘects exactly the numerical
results shown in table ..

p-reönement

e analytical result in section .. can be extended to cover Lagrangian elements CGp of
arbitrary polynomial order p. e resulting error bound is []:

||z3 − z3h||L2(Ω) ≤ C (ε−n,Ω) hp+1 |z3|Hp+1(Ω) (.)

is immediately suggests that another way of combating the growing constantC is to increase
the polynomial order p of the approximation. To investigate this approach we run the simu-
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lation for varying values of ε and varying values of p, whilst keeping the discretisation ĕxed
with N = 10. e results are shown in table .. We can see that convergence does improve
for increasing polynomial order p, although it still deteriorates as ε → 0. Furthermore there
appear to be some numerical issues when p = 5, probably related to ill-conditioning of the
ĕnite element basis for higher p.

Table .: e effect of p-reĕnement on the error z3h(L)/z3(L) at the tip of the cantilever beam.
CGp FEM.

p dim(U) ε = 1 ε = 0.1 ε = 0.01 ε = 0.001 ε = 0.0001 ε = 1e − 05 ε = 1e − 06

1  . . . . . . .
2  . . . . . . .
3  . . . . . . .
4  . . . . . . .
5  . . . . . . .

.. Shear-locking inmeshless methods

Similar results can be obtained using the pymĘmeshless package. e purpose of this section is
to demonstrate thatmoving tomeshlessmethods does not solve the shear-locking problem, and
to compare and contrast the behaviour of the meshless method to the ĕnite element method.
An example solver using the pymĘ library is shown in algorithm .

Locking

Similarly to before, in ĕgs. .(a) to .(c) we show the deĘection z3 plotted along the length
of the beam [0, L] for three values of ε = {1.0, 0.01, 0.001} respectively, whilst keeping the dis-
cretisation ĕxed (maximum-entropy basis functions, N = 10, ĕxed and constant support size
ρ = 0.24). We can see that for ε = 1.0 the numerical solution and the exact solution are nearly
indistinguishable, and as ε decreases severe numerical locking begins to occur. is is the same
behaviour that the CG1 ĕnite element scheme shows, and demonstrates that there is nothing
inherent in moving to a meshless formulation that alleviates locking.

In ĕg. . we compare the behaviour of the CG1 and meshless formulation by plotting the tip
deĘection z3(x1 = L) against the parameter ε. Additionally, we show both the Bernoulli and
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Algorithm  Code for implementing cantilever beam problem using the pymĘ library

import numpy as np

import dolfin as df
import pymfl as mfl

from pymfl.forms.timoshenko import Bending, Shear

nx = 10
beta = 2.0

mesh = df.UnitInterval(nx)
nodes = mfl.UnitInterval(nx + 1)

support_radius = (1.0/float(nx))*beta*1.2
nodes.set_constant_support_radius(support_radius)
nodes.init()

V_3 = mfl.MaxEnt(mesh, nodes, description='transverse displacement')
R = mfl.MaxEnt(mesh, nodes, description='rotations')

U = mfl.MixedFunctionSpace(mesh, [R, V_3], description='timoshenko beam space')
U.finalise()

R, V_3 = U.split()

quadrature_order = 6
points_hat, weights_hat = mfl.quadrature_schemes.create_quadrature("interval",

quadrature_order)

R.clone_basis_functions_cache(V_3)

bending = Bending(R=R, points_hat=points_hat, weights_hat=weights_hat)
shear = Shear(U=U, epsilon=epsilon, points_hat=points_hat, weights_hat=weights_hat)

a = [bending, shear]
L = []

u_h = mfl.Function(U)
problem = mfl.LinearVariationalProblem(a, L, u_h)
problem.assemble()

end_point = np.array([1.0])
f = mfl.PointSource(V_3, end_point, 3.0)
f.apply(problem.b_vector())

d = lambda x: 0.0
bc_left_theta = mfl.DirichletBC(R, d, left_boundary)
bc_left_w = mfl.DirichletBC(V_3, d, left_boundary)
bcs = [bc_left_theta, bc_left_w]

for bc in bcs:
bc.apply(problem.A_matrix(), problem.b_vector())

problem.solve()
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(a) Beam deĘection z3 for ε = 1.0 along the length of the
beam. Numerical solution and exact solution are nearly
indistinguishable.
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(b) Beam deĘection z3 for ε = 0.01 along the length of the
beam. Numerical locking is beginning to occur.
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(c) Beam deĘection z3 for ε = 0.001 along the length of
the beam. Servere numerical locking has occurred.

Figure .: Beam deĘection z3 for increasingly thin beams using MaxEnt meshless method.
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Figure .: Graph showing the tip deĘection computed with CG1 FE and MaxEnt meshless
methods with N = 10 for varying values of ε. e analytical Timoshenko solu-
tion coincides exactly with the analytical Bernoulli solution in the thin plate limit
at around ε < 5 × 10−2.

Timoshenko analytical solutions. Neither numerical method matches the Timoshenko analyti-
cal solution for the full range of ε. Additionally we can see that whilst the meshless formulation
behaves better than the CG1 formulation, both have begin to lock in the range 10−2 ≤ ε ≤ 10−1.

h-reönement

Webegin by performing the equivalent of anh-reĕnement experiment usingmaximum-entropy
basis functions. e domain is discretised usingN+ 1 equally spaced nodes. We keep the sup-
port size ρa constant with respect to the average nodal spacing; that is, if h is the distance to
the nearest node, then 2h is the distance to the second nearest node. We then multiply by a
small constant factor αρ = 1.2 to ensure that a total of  nodes are in the support of every node
situated far away from the boundary:

ρa = αρ × 2h (.)

We run the simulation for varying values ofN and varying values of ε and the results are shown
in table .. For N = 1 the errors are identical to those for the CG1 FE scheme, due to the
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. e Timoshenko beam problem

maximum-entropy shape functions coinciding with the linear ĕnite element in the limit. For
any N the convergence of the numerical method always deteriorates for decreasing values of
ε, and extremely large values of N are required to obtain convergence with small values of ε.
Finally, there is a clear diagonal pattern in the table once N > 1 or once the meshless character
of the shape functions is activated. us to achieve a ĕxed convergence value of around .
the nodal spacing must be varied on the order of 1/ε. In summary the meshless method shows
broadly similar behaviour with respects to the parameter ε to that of the ĕnite element method
under an equivalent of the h-reĕnement procedure.

Table .: e effect of h-reĕnement on the error z3h(L)/z3(L) at the tip of the cantilever beam.
N dim(U) ε = 1 ε = 0.1 ε = 0.01 ε = 0.001 ε = 0.0001
1  . . . . .

10  . . . . .
100  . . . . .

1000  . . . . .
10000  . . . . .

Support radius

In addition to being able to perform h and p reĕnement it is also possible to increase the support
width of the shape functions ρ. is parameter is not available in the CG1 FE scheme where
we are naturally limited to the local approximation. We introduce a parameter β ∈ ℕ+ which
controls the support size as follows:

ρa = αρ × βh (.)

In table . we show the effect of varying the support size for various discretisations on the error
at the tip of a moderately thin cantilever beam ε = 0.01. For N = 1 adjusting the support-size
has no effect; this is already the most-local approximation and the shape functions are identical
for any β. For N > 1 when the meshless nature of the shape functions is realised we see that
increasing β improves convergence for all of the discretisations considered. However this also
increases the bandwidth of the assembled stiffness matrix, which in turn increases assembly
time, storage requirements and linear system solution time. e effect of support size on the
sparsity of the linear system is shown in table .. Clearly a proper solution the shear-locking
problem would retain the relatively local character of the meshless shape functions whilst pro-
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viding optimal convergence for all values of ε. In conclusion it is our view that increasing the
support size of the shape functions is not a satisfactory or particularly robust remedy of the
shear-locking problem.

Table .: e effect of support size on the error z3h(L)/z3(L) at the tip of the cantilever beam
with ε = 0.01. MaxEnt meshless.

N β = 1 β = 2 β = 3 β = 4 β = 5

1 . . . . .
10 . . . . .

100 . . . . .
1000 . . . . .

Table .: e effect of support size on the sparsity of the linear system nnz(A)/(dimU)2 for the
cantilever beam problem. MaxEnt meshless.

N β = 1 β = 2 β = 3 β = 4 β = 5

1 . . . . .
10 . . . . .

100 . . . . .
1000 . . . . .

p-reönement

We perform an equivalent of a p-reĕnement experiment using RPIM basis functions. MaxEnt
basis functions do not allow p-reĕnement without loss of the Kronecker-delta property. e
domain is discretised using N + 1 equally spaced nodes and β = 4. e results are shown
in table .. We can see that p-reĕnement does improve convergence, but still deteriorates as
ε→ 0. e meshless method therefore shows similar trends to the FE method.

. Conclusions

By considering the one-dimensional counterpart of the Reissner-Mindlin plate problem, the
Timoshenko beam problem, we have demonstrated the shear-locking phenomenon numeri-
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Table .: e effect of p-reĕnement on the error z3h(L)/z3(L) at the tip of the cantilever beam.
p ε = 1 ε = 0.1 ε = 0.01 ε = 0.001 ε = 0.0001 ε = 1e − 05 ε = 1e − 06

1 . . . . . . .
2 . . . . . . .
3 . . . . . . .
4 . . . . . . .

cally and explained its origins through simple function space arguments. e shear-locking
problem is the inability of the basis functions to richly represent the Kirchhoff or thin beam
limit. Analogously, in the shear-deformable Reissner-Mindlin plate problem the shear-locking
problem is the inability of the basis functions to richly represent theKirchhoffor thin plate limit.
We have performed simple numerical experiments to compare the behaviour of the standard
Lagrangian ĕnite element method and meshless methods with respect to the small parameter
ε under both h and p reĕnement. In addition for the meshless method we have examined the
role of the parameter β which controls the basis function support size.

Under h-reĕnement, themeshless basis functions show broadly similar behaviour to theCG1

ĕnite element method with roughly a 1/ε scaling of the nodal spacing required to ensure con-
vergence. Similarly, under p-reĕnement the meshless and ĕnite-element basis functions are
better able to richly represent the limiting Kirchhoff mode and convergence can be improved.
Both results can be explained using a traditional error bound argument from the ĕnite element
method literature. e parameter β, which controls the shape function width only in themesh-
less method can also be used to improve convergence with respect to the small parameter ε, but
at signiĕcant computational cost.

In summary, none of the above methods ensure optimal rates of convergence for any ε as
they all essentially work by attempting to beat the rapidly growing constant C(ε−n,Ω) which
bounds the error. Furthermore all require additional computational resources without neces-
sarily providing improved convergence. As a result, all offer sub-optimal convergence that is
dependent on the small parameter ε. All of the above methods will lock if ε is small enough.
is situation is far from ideal, andmotivates the construction of ameshless numerical method
that removes the dependence of the constant C on the small parameter ε, providing uniform,
consistent and reliable convergence behaviour for any ε. Such a method will be free from the
negative effects of shear-locking. It is this goal that is the topic of the remaining chapters of this
thesis.
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 Meshless methods for the shear-deformable
beam problem based on amixed weak form

In this chapter we demonstrate the ability of a mixed variational formulation to produce
meshless numerical methods for the Timoshenko beam problem that are free from shear-
locking. We begin by moving from the primal or displacement form of the Timoshenko
beam problem to a mixed formulation where the shear stresses are treated as an indepen-
dent variational quantity in the weak form.

Wepresent a solution to the discretisationproblemusing a hybridmeshless-elementmethod
where the shear stresses are approximated directly on anunderlyingmesh. As no transform
is used between reference and global elements of the mesh the robustness of the meshless
approximation ĕeld is retained and the implementation is greatly simpliĕed.

In the particular case of maximum entropy shape functions we prove that the scheme D
converges to the well-known CG1−DG0 Timoshenko beam ĕnite element in the Delaunay
limit. One of the proposed schemes, D, suffers from spurious or zero-energy modes due
to it not satisfying the kernel coercivity condition.

We demonstrate the good performance of the proposed method using three test problems
with known analytical solutions in polynomial form. Using the problem of a beam in
pure bending we present new insight into the `Kirchhoff mode reproducing conditions'
(KMRC) of Wang and Chen. Whilst it is necessary to use a second-order monomial basis
to ensure bending exactness tomachine precision, it is not necessary to ensure convergence
in general problems.

We show that using a ĕrst-order maximum entropy basis with our method we can obtain
convergence rates of ρ = −h ∼ −2.5 in the L2 norm for the transverse displacement vari-
able, and using a second-order RPIM basis we can obtain convergence rates of ρ ∼ −3.3, in
comparison with the work of Wang and Chen who achieve a convergence rate of ρ ∼ −2.8
using a second-order monomial basis.

For two standard test problems ourmethod shows convergence in all relevant norms for all
problem variables. Because of the lack of results available in the literature for other norms


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we are unable to make a comparison with other meshless methods.

. Introduction

In the previous chapter we demonstrated that standard meshless methods suffer from shear-
locking when solving the Timoshenko beam problem in a very similar manner as the standard
ĕnite element method. Whilst it was possible to alleviate locking to some extent via either h
or p reĕnement, and additionally in meshless methods by increasing the support size ρ, none
of these approaches alleviates locking entirely or does so with optimal use of computational
resources. erefore the aim is to remove the dependency on the small thickness parameter
ε on the convergence of the numerical method in a robust and computationally inexpensive
manner.

Following the experience from the FEM community, the most robust and effective method
for removing this dependency on the small parameter ε is designing a meshless discretisation
scheme based on a mixed weak form, where shear stresses are treated as an independent varia-
tional quantity. We will derive the mixed weak form of the Timoshenko beam problem directly
from the displacement form already shown. We will then discuss the importance of consider-
ing the issue of stability; in numerical methods based on displacement weak forms stability is
usually inherited directly from the stability of the continuous weak form, however for numer-
ical methods based on mixed weak forms stability is no longer guaranteed. Two conditions,
commonly known as the Ladyzhenskaya-Babuška-Brezzi condition, LBB condition, or inf-sup
condition [], in addition to the kernel coercivity or coercivity condition [], must be met if
the numerical method based on the mixed weak form is to be stable.

We then introduce three novel discretisation designs for the mixed weak form. e dis-
placement variables are approximated by a meshless method on a set of nodes and the shear
stresses on an underlying ĕnite element mesh. Because no derivatives of the basis functions
are required no map is needed between reference and global elements in the mesh and there
is therefore no need to use a second meshless basis. We ĕnd that one of the discretisation de-
signs, namely scheme D, suffers from spurious or zero-energy modes due to it not satisfying
the kernel coercivity condition. Fortunately schemes D and D prove to be stable. We also
show that scheme D coincides with the well known CG1 − DG0 ĕnite element method in the
local limit, for which an analytical proof of stability is readily available.
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. Formulation

In this section we derive the mixed form of the scaled Timoshenko problem directly from the
displacement form. We then identify the mixed problem as one in the general form of a saddle
point problem with a penalty parameter. We discuss the CG1 − DG0 ĕnite element method
and introduce three discretisation schemes and develop the discrete matrix equations. e
designs are implemented into the pymĘ library. We then perform some basic tests to examine
the performance of the three proposed schemes.

.. Derivation of mixed weak form

We begin with the scaled Timoshenko beam problem originally derived in chapter :

Problem  (Scaled Timoshenko beam problem). Find (zε3, θε) ∈ VT such that:

L2􏾙
Ω
θε′η′ dΩ + 1

ε2 􏾙Ω
(zε′3 − θε)(y3

′ − η) dΩ = 􏾙
Ω
p̃y3 dΩ ∀(y3, η) ∈ VT (.)

We then introduce the shear stress trial function γε ∈ S as a new variable, where S is an
appropriate function space:

γε = ε−2(zε′3 − θε) ∈ S (.)

Upon substituting eq. (.) into eq. (.) we obtain the following equation:

L2􏾙
Ω
θε′η′ dΩ +􏾙

Ω
γε(y3

′ − η) dΩ = 􏾙
Ω
p̃y3 dΩ (.)

As we now have an extra unknown γε we clearly require an additional equation to solve. With
this goal in mind we deĕne the associated test function ψ ∈ S and derive the weak form of
eq. (.) in the standard Galerkinmanner bymultiplying through with ψ and integrating across
the domain Ω:

􏾙
Ω
γεψ dΩ = 􏾙

Ω
ε−2(zε′3 − θε)ψ dΩ (.)

Rearranging gives the following mixed weak form of the Timoshenko beam problem where the
shear stress γε is now treated as an independent variational quantity:
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Problem  (Mixed scaled Timoshenko beam problem). Find (zε3, θε, γε) ∈ VT × S such that:

L2􏾙
Ω
θε′η′ dΩ +􏾙

Ω
γε(y3

′ − η) dΩ = 􏾙
Ω
p̃y3 dΩ ∀(y3, η) ∈ VT (.a)

􏾙
Ω
(zε′3 − θε)ψ dΩ − ε2􏾙

Ω
γεψ dΩ = 0 ∀ψ ∈ S (.b)

Examining Problem  we notice that no derivatives of either the trial or test shear stresses
appear in the weak form, allowing us to identify the space S as:

S = L2(Ω) (.)

erefore the shear stresses have signiĕcantly less regularity than the primary problemvariables
(zε3, θε)which lie in the spaceH1

0(Ω)2, which in practical terms means that a basis function with
low continuity (C−1) can be used for discretisation. Now in a general sense, that is without
making any speciĕc design choices at this stage, we introduce the discrete function spacesVT

h ⊂
VT andSh ⊂ S allowing us towrite themixed problem in the following equivalent discrete form:

Problem  (Discrete mixed scaled Timoshenko beam problem). Find (zε3h, θεh, γεh) ∈ V T
h ×Sh

such that:

L2􏾙
Ω
θε

′

h η′ dΩ +􏾙
Ω
γεh(y3

′ − η) dΩ = 􏾙
Ω
p̃y3 dΩ ∀(y3, η) ∈ V T

h (.a)

􏾙
Ω
(zε′3h − θεh)ψ dΩ − ε2􏾙

Ω
γεhψ dΩ = 0 ∀ψ ∈ Sh (.b)

All of the discretisations in this chapter are based upon the discretemixed scaledTimoshenko
beam problem in eq. (.).

.. Stability

e problem derived in the previous section can be identiĕed as a saddle-point problem with
a penalty term controlled by the small parameter ε and ĕts into the framework introduced by
Braess [], which is an extension of the classic work of Brezzi []. is mixed formulation
has the clear advantage over the original displacement formulation in that the thickness-type
parameter ε now enters as a small parameter with positive exponent. When ε = 0 the shear
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stress variables γ and ψ take the role of Lagrange multipliers which act to enforce the Kirchhoff
constraint zε

′

3 − θ = 0 [].

It is well known thatwhilst any reasonable discretisationVT
h ⊂ VT of the displacement formu-

lation are automatically stable, the required conditions for good performance of discretisations
of saddle point problem are signiĕcantly more difficult to achieve. We give an overview of the
results of Braess [] and Brezzi [] here, results which are crucial in giving us an insight into
how to design a stable discretisations of the mixed Timoshenko beam problem.

Deönition  (General form of a penalised saddle point problem (Braess [])). Let X and
M be Hilbert spaces with norms ||⋅||X and ||⋅||M and letMc be a dense linear subset ofM. e
penalised saddle point problem can be described by three bilinear forms

a ∶ X ×X→ ℝ, a(u; v) = a(v; u) (.a)

b ∶ X ×M→ ℝ, (.b)

c ∶ Mc ×Mc → ℝ, c(p; q) = c(q; p) (.c)

en given f ∈ X′ and g ∈ M′
c the generalised form of a penalised saddle point problem can be

stated as: Find (u, p) ∈ X ×Mc such that:

a(u; v) + b(p; v) =< f, v > ∀v ∈ X (.a)

b(u; q) − t2c(p; q) =< g, q > ∀q ∈Mc (.b)

where X′ andM′
c are the associated duals of the spaces X andMc respectively and the notation

<,> denotes a dual pairing between both arguments. e notation (; ) has been used to denote
the split between trial and test functions in the bilinear forms. Furthermore we assume that the
bilinear forms a and b are bounded. e form c gives rise to a semi-norm:

|q|c ∶= c(q, q)1/2 , q ∈Mc (.)

e saddle point problem is then simply the speciĕc case of the above problem when ε = 0:

Deönition  (General formof a saddle point problem). (Brezzi [])]Given f ∈ X′ and g ∈M′
c
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the generalised form of a saddle point problem can be stated as: Find (u, p) ∈ X×Mc such that:

a(u; v) + b(p; v) = ⟨f, v⟩ ∀v ∈ X (.a)

b(u; q) = ⟨g, q⟩ ∀q ∈Mc (.b)

We can then recognise the mixed Timoshenko problem eq.  as a penalised saddle point
problem in the form of eqs. (.) and (.) with the following choices:

X ∶= VT ∶= H1
0(Ω)2, a(z3, θ; v3, η) ∶= L2(θ; η)L2(Ω) (.a)

M ∶= S ∶= L2(Ω), b(y3, η;ψ) ∶= (∇y3 − η;ψ)L2(Ω) (.b)

Mc ∶= L2(Ω), c(γ,ψ) ∶= (γ;ψ)L2(Ω) (.c)

where the notation (; )L2(Ω) has been used as shorthand to denote the L2 inner product on the
domain Ω between the trial and test arguments:

(v; q)L2(Ω) = 􏾙
Ω
v ⋅ q dΩ (.)

We can write the above penalised saddle point problem in the following combined form []:

A(u, p; v, q) = a(u; v) + b(p; v) + b(u; q) − t2c(p; q) (.)

which gives rise to the following natural norm:

􏿖􏿖􏿖(v, q)􏿖􏿖􏿖 = ||v||X + ||q||M − t |q|c (.)

en it is possible to show that the penalised saddle point problem will be stable if and only if
there exists a constant γ for all (u, p) ∈ X ×Mc and 0 ≤ t ≤ 1:

sup
v,q

􏿖A(u, p; v, q)􏿖
􏿖􏿖􏿖(v, q)􏿖􏿖􏿖

≥ γ 􏿖􏿖􏿖(u, p)􏿖􏿖􏿖 (.)

enwe can recall the following theorem due to Brezzi's splitting theorem []. As the name
suggests, Brezzi's splitting theorem splits the very general stability condition stated in eq. (.)
into two constituent parts suitable for the analysis of problems in the saddle point form of
eq. (.).
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Theorem . e classical saddle point problem ( ̄t = 0) is stable, if and only if, the following
conditions hold:

. (Z-Ellipticity of a) ere exists a constant α ≥ 0 such that:

a(v, v) ≥ α ||v||2X ∀v ∈ Z (.)

where Z is the kernel of the bilinear form b:

Z ∶= 􏿺v ∈ X | b(v, q) = 0 ∀q ∈M􏿽 (.)

. (inf-sup condition on b) e bilinear form b satisĕes an inf-sup condition:

inf
q∈M

sup
v∈X

b(v, q)
||v||X ||q||M

= β > 0 (.)

en if the classical saddle point problem is stable then the penalised form is stable if either
the following two cases applies []:

Theorem . (Boundedness of c) If the classical saddle point problem ( ̄t = 0) is stable, and if there
exists a positive constant C such that:

c(p, q) ≤ C ||p||M ||q||M ∀p, q ∈M (.)

then the penalised saddle point problem is stable.

or alternatively:

Theorem . (X-Ellipticity of a) If the classical saddle point problem ( ̄t = 0) is stable, and if there
exists a positive constant α such that:

a(v, v) ≥ α ||v||2X ∀v ∈ X (.)

then the penalised saddle point problem is stable.

With these three theorems in mind we make the following remarks about the mixed for-
mulation of the Timoshenko beam problem; Firstly, the bilinear form a ∶= ab in the mixed
formulation eq.  is not coercive on the entire space X ∶= VT ∶= H1

0(Ω0)2, but only on the
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subset of functions which satisfy the Kirchhoff constraint z′3−θ = 0. is is due to the loss of the
quadric terms in transverse displacement which were present in the bilinear form a ∶= ab + as
for the displacement formulation in eq. (.). Indeed, this loss of coercivity in a is typical of
most mixed formulations, except notably for the Stokes problem.

Secondly, for a discretisation of Problem  to be successful, that is, the construction of the
subspaces Xh ⊂ X andMh ⊂ M to be suitable, we must satisfy the discrete equivalents of
theorems  to . e satisfaction of these conditions is not a trivial matter. We will refer to
condition  of theorem  as the kernel coercivity condition, and condition  of theorem  as
the inf-sup condition.

Very broadly speaking, we must choose a larger (or `richer') space Xh (whilst keeping the
same Mh) to ensure the inf-sup condition is satisĕed []. However, if Xh is too rich then
the kernel coercivity condition becomes harder to satisfy []. It is these two competing re-
quirements that make the design of mixed discretisations for the Timoshenko beam problem
so difficult.

.. FE discretisation

e most successful and widely used discretisation of the mixed Timoshenko problem is the
CG1 − DG0 ĕnite element method. In this ĕnite element design the transverse displacement
zε3 and rotation θε are approximated using CG1 continuous Lagrangian ĕnite elements and the
transverse shear stress γε is approximated using DG0 discontinuous Lagrangian ĕnite elements
[].

is commonly used element design is part of a broader (and less widely known and used)
family of elements CGp − DG(p−1) parameterised by the index p ∈ ℕ for p ≥ 1 where CGp

continuous elements are used to discretise the transverse displacement zε3 and rotation θε whilst
DG(p−1) discontinuous Lagrangian elements are used to discretise the shear stress γε []. We
show the two lowest-order members of this family in ĕg. ..

e space of discontinuous Lagrange elements DGp form a subspace of L2 meaning that the
approximated quantity can be discontinuous between elements. e basis functions are iden-
tical to those used in the standard Lagrangian ĕnite element space CGp ⊂ H1, but adjacent
elements do not share degrees of freedom. For example, in one-dimension a DG1 space con-
structed on a two element mesh will have four degrees of freedom, whilst a CG1 space con-
structed from the same mesh will only have three degrees of freedom due to the two elements
sharing an internal degree of freedom.
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Figure .: First two members of the family CGp − DG(p−1) for the mixed Timoshenko beam
problem. Black circles represent degrees of freedom. For the DGp discontinuous
Lagrangian elements degrees of freedom are internal to each element..

A formal proof that the CGp − DG(p−1) family of elements satisĕes the discrete counterparts
of the kernel coercivity condition and inf-sup condition is given by Chapelle and Bathe in [].
Given the success of this discretisation family it seems to make sense to use it as the starting
point for the design of novel meshless discretisations of the mixed Timoshenko beam problem
as well.

With regards to the broad conditions regarding stability outlined above, we can see that the
space for the transverse displacement and rotation:

(zε3h, θεh) ∈ V T
h ≡ [CGp]2 ⊂ H1

0(Ω)2 (.)

is indeed richer than the space chosen for the transverse shear stress:

γε ∈ Sh ≡ DG(p−1) ⊂ L2(Ω) (.)

It is also worth noting that the construction CGp −DG(p−1) has taken advantage of the fact that
the shear space Sh can be a subset of the low-regularity space L2 (allowing lower C−1 continuity
between elements) rather than the higher regularity required forV T

h (requiring C0 continuity
between elements).

We can also examine the constraint ratio of the familyCGp−DG(p−1). For ameshTh consisting
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of n cells of length h we can easily obtain that the dimension of the space [CGp]2 is:

dim([CGp]2) = 2(pn − 1) (.)

and the dimension of the space DGp is:

dim([DGp]) = n(p + 1) (.)

and therefore we can state the constraint ratio of unknowns for the transverse displacement
and rotation degrees of freedom to the shear stress degrees of freedom can be written:

dim(V T
h )

dim(Sh)
∶=

dim([CGp]2)
dim([DG(p−1))

= 2(pn − 1)
pn (.)

which in the limit as the mesh becomes inĕnitely reĕned becomes:

lim
n→∞

2(pn − 1)
pn = 2 (.)

so the constraint ratio tends to the value  for the family ofCGp−DG(p−1) ĕnite elements, which
means that the necessary (but not sufficient) condition for stability that dim(V T

h ) > dim(Sh) is
at least satisĕed. With this in mind it seems sensible to design a mixed meshless method along
similar lines.

.. Meshless discretisation

In this section wewill outline the design and computational implementation of the novelmesh-
less discretisations. In this sectionwewill introduce three discretisation designs; the ĕrst, which
will refer to as discretisation , or D we will explain in full whilst the other two, discretisation
 and discretisation , or D or D respectively, are simple modiĕcations of D. e three
discretisations D, D and D are shown in ĕgs. .(a) to .(c).

Discretisation Design

Beginning with D, we deĕne a node setNh and support size set ρh upon which our meshless
discretisations for the rotations and transverse displacementsVT

h will be constructed. We dis-
cretise the problem domain Ω using N equally spaced nodes resulting in characteristic nodal
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spacing of length h:

Nh = {x1, x2, … , xN ∈ Ω | ||xi+1 − xi|| = h ∀ i ∈ {1, 2, … ,N − 1}} (.)

andwith each node xi inNh we associate a support radius ρi resulting in the following deĕnition
of the support radius vector ρ:

ρ = {ρ1, ρ2, … , ρN} (.)

On a regular distribution of nodes where 􏿖􏿖xi+1 − xi􏿖􏿖 = h ∀ i ∈ {1, 2, … ,N − 1} we can deĕne
a uniform support size for all nodes with the formula:

ρi = αρβh ∀i (.)

and we set αρ = 1.05 and we take β = 2. We now have everything we need to deĕne a unique
meshless discretisation based on theMLS,MaxEnt or RPIMmethods. For theMaxEnt method
we set:

V T
h ∶= [ME(Ω;Nh, ρh)]2 (.)

for the MLS ĕrst-order method we set:

V T
h ∶= [MLS1(Ω;Nh, ρh)]2 (.)

and ĕnally for the RPIM ĕrst-order and second-order using p = 1, 2 we set:

V T
h ∶= [RPIMp(Ω;Nh, ρh)]2 (.)

Turning to the speciĕcation of the discretisation for the shear space Sh we introduce a mesh
Th by partitioning the problem domainΩ into a ĕnite set of cells T with disjoint interiors such
that:

∪T∈Th
= Ω (.)

e straightforward choice is to choose the end-points of the cells to be coincident with the
nodes speciĕed in Nh which also makes sense when considering the computational imple-
mentation of the method, resulting in a meshTh consisting of n cells with characteristic length
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h. We then choose the space Sh to be constructed from discontinuous Lagrangian elements:

Sh ∶= DG0(Ω;Th) (.)

D and D are then slight modiĕcations of D. With D (ĕg. .(b)) additional meshless nodes
are inserted equidistant between each pair of existing meshless nodes, resulting in a character-
istic nodal spacing of h/2. Note that the mesh Th for D is le unchanged from the original in
D. Finally, with D (ĕg. .(c)) we keep the underlying node setNh and meshTh the same as
in D, but instead choose the space Sh to be constructed from continuous Lagrangian elements
of lowest order:

Sh ∶= CG1(Ω;Th) (.)

An interesting mathematical aspect of scheme D is that in the local limit (ρ → 2h) the
scheme [ME(Ω;Nh, ρh)]2×DG0(Ω;Th) is identical to the [CG1(Ω;Th)]2×DG0(Ω;Th)) scheme
from the ĕnite element literature. is is because the MaxEnt shape functions always tend
towards the linear interpolant CG1(Ω;Th) in the local limit []. erefore we can say that,
at least in this local limit, the D scheme satisĕes the discrete kernel coercivity and inf-sup
conditions by virtue of the proof for the corresponding CG1-DG0 ĕnite element scheme [].

Discrete equations

Now we will develop the discrete stiffness matrix K and force vector f equations required to
implement the proposed D, D and D methods. We begin by writing the approximated
transverse displacement z3h(x1), y3(x1) and rotation θh(x1), η(x1) trial and test functions using
the meshless basis φi(x1) ∈ V T

h :

z3h(x1) =
N
􏾜
i=1

φi(x1)z3i y3(x1) =
N
􏾜
i=1

φi(x1) (.)

θh(x1) =
N
􏾜
i=1

φi(x1)θi y3(x1) =
N
􏾜
i=1

φi(x1) (.)

whereN is the number of meshless nodes inNh. z3i and θhi are the associated nodal unknowns
for the transverse displacements and rotations, respectively.

Similarly wewrite the approximated shear stress γh(x1) trial and test functions using the ĕnite
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~
~

(a) Discretisation  (D): MaxEnt discretisation with characteristic nodal spacing of h to discretise the
displacementsV T

h and discontinuous Lagrangian elements of zero-order with element vertices coinciding
with the nodal positions of the MaxEnt discretisation to discretise the shear stress Sh

~
~

(b) Discretisation  (D): e same as D, but with an additional meshless node inserted equidistant
between each pair of existing meshless nodes, resulting in characteristic nodal spacing of h/2

~
~

(c) Discretisation  (D): e same as D, except continuous Lagrangian elements of ĕrst-order are used
to discretise the shear stress Sh

Figure .: e three discretisation D, D and D considered in this chapter. Green hollow
circles represent degrees of freedom for the meshless discretisation used for the dis-
placements (ie. two per circle), solid black circles represent degrees of freedom for
the ĕnite element discretisation used for the shear stress, and (integration and ĕnite
element) cell vertices are shown by black vertical lines.
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element basis functions Ni(x1) ∈ Sh:

γh(x1) =
M
􏾜
j=1

Ni(x1)γi ψ(x1) =
M
􏾜
j=1

Ni(x1)γi (.)

where M is the number of cells in Th if Sh ∶= DG0(Ω;Th) and M is the number of vertices in
Th if Sh ∶= CG1(Ω;Th).

For simplicity the explicit dependence on x1 is dropped, and the above expressions are re-
written in vectorial form as follows:

z3h = φz3, y3 = φ (.a)

θ3h = φθ, η = φ (.b)

γh = Nγ, ψ = N (.c)

where φ is a vector of size 1 × N, N is a vector of size 1 ×M containing the ĕnite element basis
functions, z3 and θ are vectors of sizeN× 1 containing the displacement nodal unknowns, and
γ is a vector of sizeM× 1 containing shear stress nodal unknowns. Substituting eq. (.) into
eq. (.) results in the following discrete equations written in terms of the basis functions and
nodal unknowns:

L2􏾙
Ω
φ′Tφ′ dΩ θ +􏾙

Ω
BT
s N dΩ γ = 􏾙

Ω
φTp̃ dΩ (.a)

􏾙
Ω
NTBs dΩ

⎧⎪
⎨⎪⎩

θ
z3

⎫⎪
⎬⎪⎭
− ε2􏾙

Ω
NTN dΩ γ = 0 (.b)

where Bs is the discretised shear matrix of size 2 × 2N:

Bs =
⎡
⎢
⎣

−φ 0
0 φ′

⎤
⎥
⎦

(.)
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e above equations is a linear system in the following block form:

⎡
⎢
⎢
⎢
⎣

Kb 0
0 0 C

CT V

⎤
⎥
⎥
⎥
⎦

⎧⎪⎪
⎨⎪⎪⎩

θ
z3
γ

⎫⎪⎪
⎬⎪⎪⎭

=

⎧⎪⎪
⎨⎪⎪⎩

0
f
0

⎫⎪⎪
⎬⎪⎪⎭

(.a)

where the block entries are deĕned as follows from section ..:

Kb = L2􏾙
Ω
φ′Tφ′ dΩ (.b)

C = 􏾙
Ω
BT
s N dΩ (.c)

V = −ε2􏾙
Ω
NTN dΩ (.d)

where the matrices Kb ∈ ℝN×N, C ∈ ℝ2N×M and V ∈ ℝM×M and the vector f ∈ ℝN×1. e linear
system for the entire problem has 2N+M unknowns, orMmore than a standard displacement
discretisation. Designs D, D and D are implemented into the pymĘ framework.

Basic testing of schemes D, D and D

Before continuing to in-depth testing we examine the basic performance of the proposed dis-
cretisation schemes D, D and D.

We begin with D, that is the discretisation with the additional degrees of freedom, and solve
the cantilever beam problem with point load described previously in chapter . D has more
displacement degrees of freedom than D, or a relatively `richer' space V T

h than D (which
is stable in the local limit) and therefore we might expect that D will fail to meet the kernel
coercivity condition. is indeed appears to be the case. In ĕg. . we show the transverse
displacements z3h plotted along with the analytical solution. e solution is highly oscillatory
and this oscillation is the result of a spurious or zero-energy mode. is spurious oscillation
occurs regardless of the value of the small parameter ε (results not shown). We note that this
spurious oscillation in the transverse displacement z3h does not propagate to the rotation θh, as
shown in ĕg. .. Despite this, schemeD is essentially useless due to its highly unstable nature.
We already know that when using MaxEnt meshless shape functions the scheme D converges
to the stable [CG1(Ω;Th)]2 × DG0(Ω;Th) FE scheme. In ĕg. . we show the cantilever beam
problem with point load solved using the D scheme in the local limit, resulting in the stable
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Figure .: Transverse displacement for the cantilever beam problem solved using scheme D,
resulting in dim(V T

h ) = 42 and dim(Sh) = 10. Spurious or zero-energy modes
occur, this scheme is unstable as it fails the kernel coercivity condition. Numerical
results are plotted at  uniformly distributed points in [0, 1].
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Figure .: Rotation for the cantilever beam problem solved using scheme D, resulting in
dim(V T

h ) = 42 and dim(Sh) = 10. Even though the transverse displacements have
spurious or zero-energy modes, the rotations are unaffected. Numerical results are
plotted at  uniformly distributed points in [0, 1].
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Figure .: Transverse displacements for the cantilever beam problem solved using scheme D
in the local limit, resulting in dim(V T

h ) = 22 and dim(Sh) = 10. Numerical results
are plotted at  uniformly distributed points in [0, 1].

FE scheme. Clearly the solution is not affected by the spurious modes which made the D
scheme useless, which is the result we expect given the analytical proof available. Increasing
the support size (β = 2, 3, 4)makes no difference to the stability of this scheme and no spurious
modes develop. e transverse displacement for β = 3 is shown in ĕg. ..

Finally we examine schemeD, which is the same asD except that the shear space is selected
to be CG1(Ω;Th) instead of DG0(Ω;Th). In terms of constraint ratio dim(V T

h )/ dim(Sh) this
results in a constraint ratio of  (the same asD) as the discretisation becomes inĕnitely reĕned.
Because of this we might expect D to be a successful design and this turns out to be the case
(results not shown).

In ĕg. . we compare the convergence of schemes D and D in the H1 norm. e conver-
gence rate ρ is the slope of the line created by plotting the error e(u)V of the problem variable
u in the norm V against the number of degrees of freedom dim(Uh) on a log-log plot. e
convergence performance in the transverse displacement variable z3 of schemes D and D is
almost identical. In the rotation variable θ the performance of scheme D is slightly better with
a convergence rate ρ of -. against -. for scheme D. On these results alone there is not
much to separate schemes D and D. However, as we will see in chapter  because of the L2

continuity of the shear stress variable in scheme D it is easier to eliminate the shear stress a
priori to the solution of the linear system of equations in terms of the displacement unknowns
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Figure .: Transverse displacements for the cantilever beam problem solved using scheme D
with β = 3, resulting in dim(V T

h ) = 22 and dim(Sh) = 10. Numerical results are
plotted at  uniformly distributed points in [0, 1].

only. For this reason all further results in this chapter are computed with scheme D.

. Results

In this section we examine three simple test cases and show that scheme D is free from the
effects of shear-locking. All of the results in this section are performed with scheme D and
β = 2. Additionally, we implement scheme D with MaxEnt, MLS and RPIM ĕrst-order and
second-order basis functions to examine the generality of the approach.

.. Cantilever beam subject to point load

We consider a cantilever beam of length L = 1 and varying thickness parameter ε subject
to a point load p̃ = 3 at the tip as shown in ĕg. .. is problem is the same as that used to
demonstrate numerical locking in chapter . Using the same normalisation procedure as before
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Figure .: Comparison of convergence in H1 norm between schemes D and D.

Figure .: Scaled cantilever beam loaded with transverse point load at tip.

the Timoshenko theory solution to this problem is:

z3(x1) =
p̃L
6 􏿶2 −

3(L − x1)
L + (L − x1)3

L3 + 6ε2 􏿰1 −
(L − x1)

L 􏿳􏿹 (.)

θ(x1) =
p̃
2 􏿶1 −

(L − x1)2
L2 􏿹 (.)

In ĕg. . we show the computed tip deĘection for both the MaxEnt displacement and the
proposedMaxEntmixedmethod alongside the analytical tip deĘections predicted by Kirchhoff
and Timoshenko theory for a wide range of ε. As before, the MaxEnt displacement method
locks at around ε < 10−2 whilst the proposed MaxEnt mixed method matches the Timoshenko
solution for a full range of ε. We can see that moving to a mixed formulation has alleviated
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the numerical shear locking problem. Results for MLS and RPIM basis functions (not shown)
demonstrate that the proposed mixed method eliminates shear-locking in a generic way for a
variety of meshless basis constructions.

We now examine the convergence behaviour of the mixed method using MaxEnt, ĕrst-order
MLS, ĕrst-orderRPIMand second-orderRPIMbasis functions for both thick ε = 1.0 (ĕgs. .,
. and . and section ..) and thin ε = 0.001 (ĕgs. ., ., . and .) beams. e
algebraic convergence rates ρ for eachmethod are summarised in tables . and .. We remark
that the expected algebraic convergence rates ρ for ĕrst-order shape functions (MaxEnt, MLS,
RPIM ĕrst-order) are  in the L2 norm and  in the H1 norm for both problem variables z3
and θ. MaxEnt achieves an additional -. increase in the rate of convergence over MLS and
ĕrst-order RPIM, both of which achieve the expected values. Second-order RPIM gains an
additional -. increase in the rate of convergence over ĕrst-order RPIM which is the expected
behaviour when moving from a ĕrst to second order approximation scheme. Because of the
quadratic polynomial nature of the Timoshenko analytical solution for the rotation variable
the second-order RPIM scheme which is capable of reproducing second-order polynomials
exactly provides rapid convergence to machine precision for the rotation variable in both the
L2 and H1 norms. is behaviour should not be expected for more complicated problems.

Table .: Algebraic convergence rate ρ for mixed methods using different meshless basis func-
tions for the thick ε = 1.0 cantilever beam problem subject to a point load.

e MaxEnt MLS RPIM ĕrst-order RPIM second-order

eL2(z3) -. -. -. -.
eH1(z3) -. -. -. -.
eL2(θ) -. -. -. -.
eH1(θ) -. -. -. -.

In ĕgs. . and . we show the convergence of z3h and θh in the H1 norm for the MaxEnt
mixed method for three values of ε. In ĕg. . we can see that there is a slight deterioration of
approximately one half an order of magnitude in absolute convergence of z3h in the H1 norm
when moving from a thick through to a thin beam, however the rate of convergence stays the
same. In ĕg. . we can see that the absolute convergence of θh is entirely insensitive to the
thickness parameter ε. Results for MLS and RPIM basis functions (not shown) demonstrate
similar trends. In summary for this problem the proposed methods are free of shear-locking
in the limit as ε→ 0.
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Figure .: Graph showing the tip deĘection for the cantilever beam problem with point load
computed for MaxEnt displacement method and MaxEnt mixed method with N =
10 for varying values of ε. e analytical Timoshenko solution coincides exactlywith
the analytical Kirchhoff solution in the thin plate limit. e MaxEnt displacement
method locks at around ε < 10−2 whilst the proposed MaxEnt mixed method is free
from the effects of shear locking and matches the Timoshenko solution for all ε.
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Figure .: Convergence of MaxEnt mixed method for a thick cantilever beam problem ε =
1.0.
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Figure .: Convergence of MaxEnt mixed method for the thin cantilever beam problem ε =
0.001.
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Figure .: Convergence of MLS (ĕrst-order) mixed method for the thick cantilever beam
problem ε = 1.0.
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Figure .: Convergence of MLS (ĕrst-order) mixed method for the thin cantilever beam
problem ε = 0.001.

Figure .: Convergence of RPIM (ĕrst-order) mixed method for the thick cantilever beam
problem ε = 1.0.
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Figure .: Convergence of RPIM (ĕrst-order) mixed method for the thin cantilever beam
problem ε = 0.001.

Figure .: Convergence of RPIM (second-order)mixedmethod for the thick cantilever beam
problem ε = 1.0. Note: Flattening of results at around e = 10−12 due to reaching
limits of arithmetic precision (Intel Core i using double-precision arithmetic).
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Figure .: Convergence of RPIM (second order) mixed method for the thin cantilever beam
problem ε = 0.001. Note: Flattening of results at around e = 10−12 due to reaching
limits of arithmetic precision (Intel Core i using double-precision arithmetic).
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Figure .: Graph showing convergence of z3 in the H1 norm of the MaxEnt mixed method
for the cantilever beam problem for varying values of ε. Absolute convergence
deteriorates marginally for thinner beams. Rate of convergence stays ĕxed. Note:
Convergence lines for ε = 10−3 and ε = 10−1 coincide.
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Table .: Algebraic convergence rate ρ for mixed methods using different meshless basis func-
tions for the thin ε = 0.001 cantilever beam problem subject to a point load.

e MaxEnt MLS RPIM ĕrst-order RPIM second-order

eL2(z3) -. -. -. -.
eH1(z3) -. -. -. -.
eL2(θ) -. -. -. -.
eH1(θ) -. -. -. -.
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Figure .: Graph showing convergence of θ in theH1 norm of the MaxEnt mixed method for
the cantilever beam problem for varying values of ε. Convergence is insensitive to
varying ε. Note: All convergence lines coincide.

.. Cantilever beam in pure bending

A beam is in a state of pure bending when the shear term bilinear form as is inactive. is set
of solutions was deĕned asVT

0 previously, and as a reminder it is deĕned by:

V T
0 = 􏿺(y3, η) ∈ VT | v′3 − η = 0 􏿽 (.)

en, for our numerical solution of the Timoshenko problem (z3h, θh) ∈ V T
h to be free of shear-

locking, the space of discrete pure bending displacementsV0h = V T
h ∪V T

0 must be sufficiently
`rich' to ensure convergence:

V0h = V T
h ∩V T

0 (.)
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is idea expressed in function space theory by Chapelle and Bathe [] is very similar to the
concept introduced by Wang and Chen [] called the Kirchhoff mode reproducing conditions
(KMRC). ey identiĕed the cause of the shear-locking problem in both the Reissner-Mindlin
plate problem and the Timoshenko beam problem to be related to twomain issues []; the ĕrst
is the inability of the approximation functions to reproduce the Kirchhoff mode, and the sec-
ond is the inability of the numerical method to achieve pure bending exactness in the Galerkin
approximation. ey conclude that tomeet KMRC the numerical methodmustmeet two crite-
ria; the basis employed to approximate the transverse displacement and rotation variables must
be able to reproduce quadratic functions, and the integration must be accurate so that bending
exactness is achieved. is integration criteria is not typically considered in the FE literature
as integration rules can be designed to integrate the discretised variational form exactly, but in
meshless methods it becomes an additional concern.

However, we have just demonstrated in the previous section that it is indeed possible to con-
struct a method using three different types of ĕrst-order meshless basis and still achieve con-
vergence in all of the relevant norms for all values of ε (ie. in a bending dominated situation).
Furthermore the classic CG1 − DG0 Timoshenko beam element also only employs a basis ca-
pable of reproducing linear functions only and is used widely in its reduced integration form.
So a natural question to ask is why is this possible and does it invalidate the KMRC hypothesis
proposed in the paper by Wang and Chen []?

To examine this potential contradiction we use the same problem proposed by Wang and
Chen in [] to demonstrate the KMRC. We consider a cantilever beam of length Lwith thick-
ness parameter ε loaded with a scaled moment m̃ at the tip as shown in ĕg. .:

m̃ = L
EI (.)

e analytical solution for this problem given by both the Bernoulli and Timoshenko theory is:

z3(x1) =
m̃x2

2L (.)

θ(x1) =
m̃x
L (.)

e reasoning behind the stipulation of a basis capable of reproducing a second-order poly-
nomial should be clear upon examining the analytical solution for this problem. If the basis is
capable of reproducing a second-order polynomial then the displacement solution will be re-
produced exactly (towithinmachine precision) as long as the numerical integration of theweak
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Figure .: Scaled cantilever beam loaded with moment at tip.

form is sufficiently accurate (bending exactness). If the basis is only capable of reproducing a
ĕrst-order polynomial, as is the case with MaxEnt and ĕrst-order MLS basis functions, then
the function will not be reproduced exactly. However, not being able to reproduce a function
exactly is not necessarily a barrier to achieving a method which converges.

We will now demonstrate that the proposed method is capable of achieving bending exact-
ness when used with a second-order RPIM basis, but that convergence can still be achieved
using ĕrst-order RPIM basis functions and a reduced rate of convergence can still be achieved
when using MaxEnt and ĕrst-order MLS basis functions. In ĕg. . we show the convergence
of the proposed method using second-order RPIM basis functions. e proposed method
clearly achieves bending exactness as the errors are on the order of machine-precision for all
the discretisations considered. In ĕgs. . and . it is clear that the method does not achieve
bending exactness using ĕrst-order MaxEnt and MLS basis functions, but convergence is still
achieved in all norms, albeit at a reduced rate for the rotation variable θh. Interestingly, for the
ĕrst-order RPIM method we do not achieve bending exactness, but the convergence rates for
the rotation variable θh is above the optimal rates and higher than that achieved by the ĕrst-
order RPIM for other problems. e reason for this result is currently unclear and is under
further investigation.

Table .: Algebraic convergence rate ρ for mixed methods using different meshless basis func-
tions for the cantilever beam in pure bending.

e MaxEnt MLS RPIM ĕrst-order RPIM second-order

eL2(z3) -. -. -. exact
eH1(z3) -. -. -. exact
eL2(θ) -. -. -. exact
eH1(θ) -. -. -. exact
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Figure .: Convergence of RPIM (second-order) mixed method for a cantilever beam in
pure bending. Note: RPIM achieves machine-precision for this problem for all
discretisations.

Figure .: Convergence of MaxEnt mixed method for a cantilever beam in pure bending.
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Figure .: Convergence of MLS (ĕrst-order) mixed method for a cantilever beam in pure
bending.

Figure .: Convergence of RPIM (ĕrst-order) mixed method for a cantilever beam in pure
bending.
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Figure .: Scaled clamped-clamped beam loaded with point load at centre. Full beam is
shown, only half beam is modelled in numerical simulations.

In summary, we have demonstrated that to meet bending exactness a basis capable of re-
producing a second-order polynomial is required, along with accurate integration of the weak
form of the problem. is ĕnding conĕrms the KMRC hypothesis of Wang and Chen [].
However, in practice we have not found it necessary to meet KMRC to ensure the convergence
of a numerical method in bending dominated situations. Our ĕndings are supported by the
many shell and plate ĕnite elements available in the literature and used in practice which use
ĕrst-order polynomial basis functions.

.. Clamped-clamped beam subject to point load

We consider a clamped-clamped beam of length L = 2 and thickness parameter ε = 10−4 with
a point load p̃ = 3 at the centre as shown in ĕg. .. Due to the inherent symmetry only half
of the beam is modelled. is problem is the same as the one used by Wang and Chen in []
to demonstrate the performance of their SCNI method. Using the same normalisation of the
loading as before the Kirchhoff theory solution to this problem is []:

z3(x1) = p̃L2 􏿰
x2
1

16L2 −
x3
1

12L3 􏿳 (.)

θ(x1) = p̃L 􏿰
x1
8L −

x2
1

4L2 􏿳 (.)

In this example we compare the convergence of the Timoshenko problemwith a very low thick-
ness parameter (ε = 0.0001) to the Kirchhoff solution. e convergence for MaxEnt, MLS,
ĕrst-order RPIM and second-order RPIM are shown in ĕgs. . to . and the convergence
rates for each method is summarised in table .. MaxEnt again achieves an additional -. in-
crease in the rate of convergence over the expected values for a ĕrst-order shape function. MLS
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Figure .: Convergence of MaxEnt mixed method for a clamped-clamped beam with centre
loading with ε = 0.0001.

has sub-optimal convergence in both the transverse displacement and rotation variables. First-
order RPIM eithermatches or achieves an additional rate of convergence over the expected val-
ues. RPIM second-order matches the expected rate of convergence for a second-order shape
function in the transverse displacement variable, and rapidly achieves machine precision for
the rotation variable due to the second-order polynomial nature of the analytical solution.

Table .: Algebraic convergence rate ρ for mixed methods using different meshless basis func-
tions for the clamped-clamped beam.

e MaxEnt MLS RPIM ĕrst-order RPIM second-order

eL2(z3) -. -. -. -.
eH1(z3) -. -. -. -.
eL2(θ) -. -. -. -.
eH1(θ) -. -. -. -.

. Conclusions

In this chapter we have demonstrated that using themixed weak form of the Timoshenko beam
problem is an effective and robust method of designing meshless methods that are convergent
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Figure .: Convergence of ĕrst-order MLS mixed method for a clamped-clamped beam with
centre loading with ε = 0.0001.
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Figure .: Convergence of ĕrst-orderRPIMmixedmethod for a clamped-clamped beamwith
centre loading with ε = 0.0001.
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Figure .: Convergence of second-order RPIM mixed method for a clamped-clamped beam
with centre loading with ε = 0.0001.

and free from the negative effects of shear-locking.
e proposed design, scheme D, is a hybrid meshless-ĕnite element formulation where

meshless basis functions are used to discretise the displacement variables, and discontinuous
Lagrangian ĕnite elements are used to discretise the shear stresses. We have also demonstrated
that it is important to consider both the kernel coercivity condition and inf-sup condition when
designing such a method. One of the proposed designs, scheme D, which added additional
displacement degrees of freedom, fails the kernel coercivity condition, resulting in spurious or
zero-energy modes which lead to a highly oscillatory and unstable solution for the transverse
displacements.

We have shown that the Kirchhoff mode reproducing conditions (KMRC) [] of Wang and
Chen are necessary if the transverse displacement is a second-order polynomial and must be
reproduced exactly to within machine precision. If the basis functions are only ĕrst-order as
is the case with MaxEnt and ĕrst-order MLS basis functions, then the function will not be
reproduced exactly. However, we have clearly demonstrated that this lack of exactness is not
necessarily a barrier to achieving a method which converges.

In summary we have shown that employing amixed weak form is a viable way of eliminating
shear-locking in meshless methods, just like in the ĕnite element method. erefore it seems
that thismethodology can equally be applied to solving the shear-locking problem in the related
Reissner-Mindlin plate problem. We will explore this possibility in the following two chapters.





 Meshless methods for the shear-deformable
plate problem based on amixed weak form

In this chapterwe examine the ability of amixedweak form to produce a numericalmethod
for the Reissner-Mindlin problem which is free of shear-locking. Similarly to the previ-
ous chapter, we begin by moving from the primal or displacement form of the Reissner-
Mindlin problem to a mixed problem where the shear stresses are treated as an indepen-
dent variational quantity in the weak form.

Using standard arguments we identify the correct function space setting for the shear
stresses as the Sobolev space of functions with square integrable rotation. To construct a
conforming subspace of the shear stressesweuse the lowest-order rotatedRaviart–omas-
Nédélec elements. is has parallels with the classic mixed interpolation of tensorial com-
ponents (MITC) family of plate ĕnite elements which are considered some of the most
robust designs available. Meshless maximum-entropy basis functions are used to discre-
tise the displacements. Because of the inherent properties of the maximum-entropy basis
functions our method allows for the direct imposition of Dirichlet (essential) boundary
conditions, in contrast to methods based on moving least squares (MLS) basis functions.

Wepresent standard benchmarkproblems that demonstrate the accurate and shear-locking
free nature of the proposed method.

Note: is chapter contains material from and is closely based upon the following interna-
tional journal paper: Hale, J. & Baiz, P. A locking-free meshfree method for the simulation
of shear-deformable plates based on a mixed variational formulation. Computer Methods
in Applied Mechanics and Engineering –, – ()

. Introduction

In this chapter an approach based on the mixed weak form of the Reissner-Mindlin plate prob-
lem is used within the context of a meshless method to solve the problem of shear-locking. To
our knowledge this is the ĕrst time this approach has been used in the context of a meshless
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method. We use ĕrst order consistent maximum-entropy basis functions [, ] combined
with lowest-order rotated Raviart-omas-Nédélec [, ] ĕnite elements to construct a
hybrid meshless/ĕnite element method that is free of shear-locking. Due to the inherent prop-
erties of the maximum-entropy basis functions our method possesses a so-called `weak' Kro-
necker delta property and positive mass matrix amongst other advantages. We show that the
approach alleviates shear-locking for a variety of test problems.

. Formulation

.. Derivation of mixed weak form

In this sectionwe derive themixedweak form of the Reissner-Mindlin plate problem. e steps
required for this are broadly the same as for the derivation of the scaled mixed Timoshenko
problem in chapter , however the shear stress and rotation ĕelds are now vectorial quantities.
As a consequence, the identiĕcation of the correct Sobolev space for the shear stresses is a more
delicate issue.

We begin with a reminder of the displacement or primal weak form of the Reissner-Mindlin
problem:

Problem  (Displacementweak formof theReissner-Mindlin plate problem). Find the trans-
verse deĘection and rotations (z3, θ) ∈ V3 ×R such that:

̄t3􏾙
Ω0

L[ε(θ)] ∶ ε(η) dΩ + λ ̄t􏾙
Ω0

(∇z3 − θ) ⋅ (∇y3 − η) dΩ = 􏾙
Ω0

p3y3 dΩ ∀(y3, η) ∈ V3 ×R

(.a)

e operators ε ∶ [H1(Ω0)]2 → [L2(Ω0)]2×2 and L ∶ [L2(Ω0)]2×2 → [L2(Ω0)]2×2 are deĕned as:

ε(v) = 1
2 􏿴(∇v) + (∇v)

T􏿷 L[ε] ≡ D [(1 − ν)ε + νtr(ε)I] (.b)

where I is the usual identity tensor, D = E/12(1− ν2) is the bending modulus, λ = Eκ/(2(1+ ν)) is
the shear modulus, κ = 5/6 is a shear correction factor, ν is Poisson's ratio, E is Young's modulus,
̄t = t/L is the plate thickness scaled with respect to the characteristic in-plane dimension L and p3

is the transverse loading function.
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We can write the above problem in a simpliĕed short-hand form by deĕning:

ab(θ; η) ∶= 􏾙
Ω0

Lε(θ) ∶ ε(η) dΩ (.a)

as(θ, z3; η, y3) ∶= 􏾙
Ω0

(∇z3 − θ) ⋅ (∇y3 − η) dΩ (.b)

g(y3) ∶= 􏾙
Ω0

p3y3 dΩ (.c)

as the bilinear and linear forms relating to the bending energy, shear energy and loading of
the plate, respectively, then we can re-write the Reissner-Mindlin problem in the following
equivalent form:

̄t3ab(θ; η) + λ ̄tas(θ, z3; η, y3) = g(y3) (.)

In a similar manner to the Timoshenko beam problem we scale the loading to ensure that we
have a bounded solution as the scaled plate thickness ̄t = t/L approaches zero:

p3 = g ̄t3 (.)

e scaled weak form of the Reissner-Mindlin plate problem can then be written as:

Problem  (Scaled Reissner-Mindlin plate problem). Find the transverse deĘection and ro-
tations (z3, θ) ∈ V3 ×R such that :

􏾙
Ω0

Lε(θ) ∶ ε(η) dΩ+ λ ̄t−2􏾙
Ω0

(∇z3 −θ) ⋅ (∇y3 −η) dΩ = 􏾙
Ω0

gy3 dΩ ∀(y3, η) ∈ V3×R (.)

Again, in rough terms this scaling ensures a ĕnite solution as the scaled plate thickness ̄t
approaches zero whilst keeping the other problem variables ĕxed.

We then deĕne the scaled shear stress trial function γ as a new variable, where S is an appro-
priate function space:

γ = λ ̄t−2(∇z3 − θ) ∈ S (.)

Note that the shear stress is now a vectorial quantity, ie.:

γ =
⎧⎪
⎨⎪⎩

γ13

γ23

⎫⎪
⎬⎪⎭
= λ ̄t−2

⎧⎪
⎨⎪⎩

𝜕z3
𝜕x1
− θ1

𝜕z3
𝜕x2
− θ2

⎫⎪
⎬⎪⎭

(.)
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which is a natural consequence of themove from the one-dimensional Timoshenko beamprob-
lem to the two-dimensional Reissner-Mindlin plate problem. Multiplying eq. (.) with test
functions ψ ∈ S and integrating across the domain Ω0 gives:

􏾙
Ω0

γ ⋅ ψ dΩ = λ ̄t−2􏾙
Ω0

(∇z3 − θ) ⋅ ψ dΩ (.)

By substituting eq. (.) into our original displacement weak form eq. (.) and re-arranging
we arrive at the following mixed variational formulation []:

Problem  (Mixed scaled Reissner-Mindlin plate problem). Find (z3, θ, γ) ∈ V3 × R × S
such that:

􏾙
Ω0

Lε(θ) ∶ ε(η) dΩ +􏾙
Ω0

γ ⋅ (∇y3 − η) dΩ = 􏾙
Ω0

gy3 dΩ (.a)

􏾙
Ω0

(∇z3 − θ) ⋅ ψ dΩ − ̄t2
λ 􏾙Ω0

γ ⋅ ψ dΩ = 0 ∀(y3, η,ψ) ∈ V3 ×R × S (.b)

.. Function space identiöcation

On ĕrst inspection of eq. (.) we can see that no derivatives of the shear stress trial γ or test
functions ψ appear as part of the weak form. is would suggest that a possible identiĕcation
of the function space Smight be:

S ∶= [L2(Ω0)]2 (.)

However, it is possible to come up with a more speciĕc result. We begin by deĕning the rot
or rotation operator which acts on a two-component vector ĕeld q = {q1, q2}T as:

rot(q) = 𝜕q2

𝜕x1
− 𝜕q1

𝜕x2
(.)

e rot operator is identical to the curl operator inℝ2, the latter notation used more frequently
in electromagnetic applications, see eg. []. However, the curl operator extends its deĕnition
toℝ3 so we will use rot here to denote the restriction for our application.

Now, given that our transverse displacements z3 ∈ H1
0(Ω0) (ie. a sufficiently smooth scalar

ĕeld) it must hold that:

rot(grad z3) = rot
⎧⎪
⎨⎪⎩

𝜕z3
𝜕x1
𝜕z3
𝜕x2

⎫⎪
⎬⎪⎭
= 𝜕2z3
𝜕x1𝜕x2

− 𝜕2z3
𝜕x2𝜕x1

= 0 ∈ L2(Ω0) (.)
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Futhermore, for θ ∈ [H1
0(Ω0)]2 it holds that rot θ ∈ L2(Ω0), and we then have:

γ = λ ̄t−2∇z3 − θ ∈ H(rot;Ω0) (.)

where the space H(rot; Ω0) is the Sobolev space of square integrable functions with square
integrable rotation and is deĕned as []:

H(rot;Ω0) ∶= 􏿺q ∈ [L2(Ω0)]2 | rot q ∈ L2(Ω0)􏿽 (.)

us the shear space S for ĕxed ̄t can be identiĕed with the space H(rot;Ω0):

S ∶= H(rot;Ω0) (.)

By inspection it is possible to see that this space is somewhere `in-between' the spaces [L2(Ω)]2

and [H1
0(Ω)]2 in terms of smoothness, and the following chain of inclusions holds:

[H1(Ω0)]2 ⊂ H(rot;Ω0) ⊂ [L2(Ω0)]2 (.)

is result has important ramiĕcations in that we are no longer limited to discretising the shear-
stress ĕeld with compounded vector discontinuous Lagrangian elements. By compounded vec-
tor discontinuous Lagrangian elements, it is meant that each individual component of a vector
ĕeld qh = {q1h, q2h}T is discretised by its own individual discontinuous Lagrangian space, that
is:

q1h ∈ DGp(Ω0;Th) ⊂ L2(Ω), q2h ∈ DGp(Ω0;Th) ⊂ L2(Ω) (.)

whereTh is a triangulation of the plate mid-surfaceΩ0 and p ∈ ℕ is the polynomial order. e
two discretised components are then compounded to discretise the vector ĕeld qh as:

qh ∈ DGp(Ω0;Th) × DGp(Ω0;Th) = [DGp(Ω0;Th)]2 ⊂ [L2(Ω0)]2 (.)

However, because we have the result q ∈ H(rot;Ω0) we can use the family of rotated Raviart–
omas-Nédélec elements NEDp to build conforming subspace of H(rot;Ω0). ese elements
naturally discretise a vector ĕeld with the higher level of smoothness without the need to com-
pound two individual spaces, that is we have:

qh ∈ NEDp(Ω0;Th) ⊂ H(rot;Ω0) (.)
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We will cover the construction of the spaces NEDp in section ...

.. Stability

With regards to stability, we can recognise the mixed Reissner-Mindlin problem eq. (.) as a
penalised saddle point problem in the form of eqs. (.) and (.), just like the mixed Tim-
oshenko problem, but with the following choices for ĕxed ̄t and for fully clamped boundary
conditions []:

X ∶= V3 ×R ∶= H1
0(Ω0) ×H1

0(Ω0)2, a(z3, θ; v3, η) ∶= ab(θ; η) (.a)

M ∶= S ∶= H(rot;Ω0), b(y3, η;ψ) ∶= (∇y3 − η;ψ)L2(Ω0) (.b)

Mc ∶= [L2(Ω0)]2, c(γ,ψ) ∶= (γ;ψ)L2(Ω0) (.c)

e saddle point problem is then simply the speciĕc case of the above problem when ̄t = 0,
where the shear stress γ takes the role of a Lagrange multiplier which acts to enforce the Kirch-
hoff constraint∇z3 − θ = 0. When ̄t = 0 it is no longer the case that S = H(rot;Ω0) and instead
the following result holds:

S ∶= H−1(div;Ω0) (.)

because of the duality pairing between the two spaces []:

(H(rot;Ω0))′ = H−1(div;Ω0) (.)

In comparison, for the Timoshenko beam problem we have the signiĕcantly simpler result for
both ĕxed ε and ε = 0 that:

S ∶= L2(Ω0) (.)

is is because the L2 space is dual to itself, that is:

(L2(Ω0))′ = L2(Ω0) (.)

We refer the reader to the book by Chapelle and Bathe for a more in-depth discussion of these
results [].

Similarly to the Timoshenko beam problem we can make the following observations about
the mixed formulation of the Reissner-Mindlin problem with theorems  to  in mind. Firstly,
the bilinear form a ∶= ab in the mixed formulation eq.  is not coercive on the entire space
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X ∶= V3×R ∶= H1
0(Ω0)3, but only the subset of functionswhich satisfy theKirchhoff constraint

∇z3 − θ = 0. is is due to the loss of the quadric terms in transverse displacement which were
present in the bilinear form a ∶= ab + as for the displacement formulation in eq. (.). Indeed,
this loss of coercivity in a is typical of most mixed formulations, except notably for the Stokes
problem.

Secondly, for a discretisation of eq. (.) to be successful, that is, the construction of the
subspaces Xh ⊂ X andMh ⊂ M to be suitable, we must satisfy the discrete equivalents of
theorems  to . e satisfaction of these conditions is not a trivial matter. Just as before, we
will refer to condition  of theorem  as the kernel coercivity condition, and condition  of
theorem  as the inf-sup condition.

In a similar way to the Timoshenko beam problem a larger or `richer' discretised space Xh

(whilst keeping the sameMh)must be chosen to ensure the inf-sup condition is satisĕed, whilst
ifXh is too rich then the kernel ellipticity condition becomes harder to satisfy. ese two com-
peting requirements make the design of good discretisations of mixed weak forms particularly
tricky.

.. FE discretisation

One of the most commonly used and widely studied approaches to the shear-locking problem
in the ĕnite element literature is themixed interpolation of tensorial components (MITC) tech-
nique. e particularly appealing aspect of the MITC technique is that instead of treating the
shear stress directly it is treated implicitly via a reduction operator which acts upon the stan-
dard displacement variables. erefore the weak form in the MITC formulation is expressed
in terms of the displacements only. Nonetheless, the underlying reason that the MITC family
of elements work is that they are based upon the application of a mixed weak form.

In the MITC approach a reduction operator Rh is deĕned which maps values in the discrete
space to an underlying shear space Sh:

Rh ∶ H(rot;Ω0) → Sh (.)

So instead of using the standard discrete displacement formulation:

ab(θh; ηh) + λ ̄t−2(∇z3h − θh; ∇y3 − ηh)L2(Ω0) = g(y3) ∀(y3, η) ∈ V3h ×Rh (.)
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 Meshless methods for the shear-deformable plate problem based on a mixed weak form

the following is used instead:

ab(θh; ηh) + λ ̄t−2(Rh(∇z3h − θh);Rh(∇y3 − ηh))L2(Ω0) = g(y3) ∀(y3, η) ∈ V3h ×Rh (.)

e reduction operatorRh essentially unlocks the element by allowing the Kirchhoff constraint
to hold for a richer set of displacement functions than the zero set. e underlying shear space
Sh is typically chosen to be a conforming subspace ofH(rot;Ω0)which can be constructed using
rotated Raviart-omas-Nédélec elements. ese elements are sometimes referred to as `edge'
elements as the degrees of freedom lie on the edges of the element. Higher-order versions also
have internal moment degrees of freedom. Given the success of the MITC family of elements
it seems logical to use similar ideas for the discretisation of the shear stress ĕeld.

.. Meshless discretisation

We begin by discretising the shear stress γ. To build a conforming subspace of H(rot; Ω0)
we use rotated Raviart-omas-Nédélec [, ] elements of lowest order on a triangular
background mesh. ese elements are oen referred to as edge elements as their degrees of
freedom are deĕned as integrals along the element edges. We refer to this family of elements as
NEDq for q = 1, 2, … , where q refers to the order of polynomial included in the basis. ese
elements can be viewed as rotated versions of those introduced by Raviart and omas [] to
build conforming subspaces ofH(div; Ω) as the rot and div operator can be related by a rotation
of a two component vector ĕeld q by π/2. We denote the discrete solution for the shear stress
as γh(x) ∈ Sh where Sh ∶= NED1(Ω0;Th) ⊂ H(rot;Ω0). Th is a triangulation on Ω0 with edges
Eh. For a reference triangle K̂ with edges ei ∈ Eh(K̂) and degrees of freedom Σi deĕned on the

In Raviart and omas's original paper [] on constructing conforming subspaces of H(div; Ω) they num-
bered their elements starting with q = 0, so the lowest-order element is called RT0. In this paper we use the
convention of Nédélec [] and start with q = 1 as the ĕnal polynomial space for the element includes terms
of order Pq(K̂)
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Figure .: Geometry of reference element K̂ with vertices v1, v2, v3, and edges e1, e2, e3 associ-
ated with tangential vectors τ1, τ2, τ3.

edges ei as shown in ĕg. . the interpolation across K̂ can be written as:

γ
h
(x̂1, x̂2) =

3
􏾜
i=1

Niγi

=
⎡
⎢
⎣

⎛
⎜
⎝

−x̂2

x̂1

⎞
⎟
⎠

⎛
⎜
⎝

x̂2

1 − x̂1

⎞
⎟
⎠

⎛
⎜
⎝

1 − x̂2

x̂1

⎞
⎟
⎠

⎤
⎥
⎦

⎧⎪⎪
⎨⎪⎪⎩

γ1

γ2

γ3

⎫⎪⎪
⎬⎪⎪⎭

= Nγγ ∀(x̂1, x̂2) ∈ K̂

(.)

where (x̂1, x̂2) is the coordinate system in the reference triangle K̂. We plot these vector basis
functions in ĕg. .. An overview of the construction of these shape functions on the reference
element and the transformation to a general element K in the mesh is given in the following
section.

Rotated Raviart-Thomas-Nédélec element

is section gives a brief overview of the construction of the lowest-order rotated Raviart-
omas-Nédélec elements denoted NED1. Whilst these elements are well known in the math-
ematics literature they seem to be less well known in the engineering community so we give a
full overview here.
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We begin with the classical Ciarlet triple deĕnition of a ĕnite element (T,V,L) where T is
an element geometry (interval, triangle, tetrahedron, quadrilateral etc.),V is a function space
(typically a polynomial) deĕned on T, and L = {l1, l2, … , ln} is a set of degree of freedom which
are a set of linear functions onV []. e degrees of freedom li must be linearly independent.

First of all we will deĕne some polynomial spaces that will be used to deĕne the spaceV for
our elementNED1. We denote Pk(Σ) as the set of polynomials of degree k onΣ, whereΣ is entity
of the reference element T such as the edges, faces, or the element itself. So as an example, the
set P2(K̂) of polynomials on the reference triangle K̂ is:

P2(K̂) = 􏿺1, x̂1, x̂2, x̂2
1, x̂1x̂2, x̂2

2􏿽 (.)

Similarly, we denote P̃k(Σ) as the set of homogeneous polynomials of degree k on Σ. So for
example, the set P̃2(K̂) of homogeneous polynomials of second-order on the reference triangle
is:

P̃2(K̂) = 􏿺x̂2
1, x̂1x̂2, x̂2

2􏿽 (.)

We now deĕne a new polynomial space Sk(K̂) as:

Sk(K̂) ∶= 􏿺p ∈ [P̃(K̂)]2 | p ⋅ x̂ = 0􏿽 (.)

We nowhave all the necessary components ready to deĕne the ĕnite elementNED1(K̂)which
will construct a conforming subspace of H(rot,Ω0):

Geometry e geometry is the standard reference triangle K̂ ⊂ ℝ2 as shown in ĕg. ..

Function Space Nédélec characterised the function space VNEDk
in ℝd for d = 2, 3 as the

polynomial space:
VNEDk

∶= 􏿴Pk−1(K̂)􏿷
d
⊕ Sk (.)

where the symbol ⊕means the direct sum of the two vector spaces.

Inℝ2 this space can be written in an equivalent form:

VNEDk
= 􏿴Pk−1(K̂)􏿷

2
⊕ P̃k−1

⎛
⎜
⎝

−x̂2

x̂1

⎞
⎟
⎠

(.)

As we will only be deriving the lowest-order element k = 1 we can write the spaceVNED1
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as:

VNED1
= 􏿴P0(K̂)􏿷

2
⊕ P̃0

⎛
⎜
⎝

−x̂2

x̂1

⎞
⎟
⎠

(.)

= 􏾋
⎛
⎜
⎝

1
0
⎞
⎟
⎠
,
⎛
⎜
⎝

0
1
⎞
⎟
⎠
,
⎛
⎜
⎝

−x̂2

x̂1

⎞
⎟
⎠
􏽾 (.)

We can therefore write the shape functions Ni ∈ VNED1
(ℝ) as:

Ni = ai + bi
⎛
⎜
⎝

−x̂2

x̂1

⎞
⎟
⎠

(.)

Degrees of Freedom e set of degrees of freedomL deĕned onVNED1
in the  dimensional

case consist of two types of linear functionals:

. edge degrees of freedom on ê

l(v) = 􏾙
ê
(v ⋅ τ̂)p dŝ ∀p ∈ Pk−1(ê) ∀ê ∈ K̂ (.)

giving a total of 3k edge degrees of freedom.

. inner degrees of freedom on K̂

l(v) = 􏾙
K̂
v ⋅ p dx̂ ∀p ∈ (Pk−2(K̂))2 k ≥ 2 only (.)

giving a total of k(k − 1) inner degrees of freedom

Fortunately in our case k = 1 we only have  edge degrees of freedom speciĕed by
eq. (.) and the calculations are relatively simple.

We label the edges as in ĕg. . and orient the unit tangent vectors as shown giving:

τ̂1 =
1

√2

⎛
⎜
⎝

−1
1
⎞
⎟
⎠
, τ̂2 =

⎛
⎜
⎝

0
1
⎞
⎟
⎠
, τ̂3 =

⎛
⎜
⎝

1
0
⎞
⎟
⎠

(.)

We can then write the set of edge degrees of freedom li using eq. (.) as:

li(v) = 􏾙
êi
(v ⋅ τ̂i) × 1 dŝ i = 1, 2, 3 (.)
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e ĕnal step is to construct a ĕnite-element basis N1,N2,N3. To do this we require:

li(Nj) = δij (.)

We will perform this calculation for the degree of freedom l1 deĕned across the edge e1 as this
is the trickiest calculation.

l1(Nj) = 􏾙
ê1

⎛
⎜
⎝
aj + bj

⎛
⎜
⎝

−x̂2

x̂1

⎞
⎟
⎠

⎞
⎟
⎠
⋅ 1

√2

⎛
⎜
⎝

−1
1
⎞
⎟
⎠
dŝ (.)

We then parametrise the edge ê1 as:

r(t) = ⟨1 − t, t⟩ , x̂1 = 1 − t, x̂2 = t (.)

dŝ2 = (−dt)2 + (dt)2 = 2dt2 (.)

giving the transformed line integral as:

l1(Nj) =
1

√2
􏾙

t=1

t=0
􏿴−a1j + a2j + bjt + b(1 − t)􏿷√2 dt (.)

= −a1j + a2j + bj (.)

Aer repeating the above integration procedure for l2 and l3 we get the following set of equa-
tions for i = 1, 2, 3:

⎡
⎢
⎢
⎢
⎣

−1 1 1
0 1 0
1 0 0

⎤
⎥
⎥
⎥
⎦

⎛
⎜
⎜
⎜
⎝

a1i

a2i

bi

⎞
⎟
⎟
⎟
⎠

=

⎡
⎢
⎢
⎢
⎣

1 0 0
0 1 0
0 0 1

⎤
⎥
⎥
⎥
⎦

(.)

Solving gives:
a11 = a21 = a12 = a23 = 0 (.a)

b1 = a22 = a13 = b3 = 1 (.b)

b2 = −1 (.c)

e coefficients are then substituted into eq. (.) giving the ĕnal set basis functions as shown
in eq. (.).





. Formulation

Figure .: Transform between reference element K̂ and physical element K

Conforming affine transform

We deĕne an affine map FK between a general cell K in the global coordinate system x and the
reference cell K̂ as:

K̂ ∋ x = FK(x̂) = BKx̂ + bK (.)

To ensure that we construct anH(rot;Ω) conforming ĕeld across the triangulationTh we must
use the covariant vector-ĕeld transform. To obtain the element shape functions Ni(x) from the
reference shape functions N̂i(x̂) we use the following covariant transform:

Ni(x) = ( ̂DFK
−TN̂i) ∘ F−1K (x) (.)

where ̂DFK ∈ ℝ2×2 is the Jacobian of the element map:

̂DFK =
𝜕
𝜕x̂FK(x̂) (.)

is transform is the same as that used to transform the gradients of the shape functions in
the standard H1(Ω) conforming ĕnite element methods. In the case of the affine map deĕned
above the Jacobian is simply a constant for each K:

̂DFK = BK (.)

In other words, the components of the vector ĕeld transform in a manner similarly to the
derivatives of the standard Lagrangian ĕnite element basis functions.
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Figure .: Basis functions Ni associated with edge ei on the reference triangle K̂.

Similarly, we denote the discrete solution for the transverse displacement and rotations as
z3h ∈ V3h and θh ∈ Rh whereV3h = Rh ∶= ME(Ω0; Nh, ρ) ⊂ H1

0(Ω0). Nh is a set of nodes in
Ω0 associated with a set of support sizes ρ. Here we assume that Ω0 is a convex domain so that
all basis functions φi associated with nodes inside the domain vanish on the boundary. We can
then write the trial functions for the displacement and rotations as:

z3h(x) =
N
􏾜
i=1

φiz3i = 􏿮φ1 φ2 … φN􏿱

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

z31
z32
⋮

z3N

⎫⎪⎪⎪
⎬⎪⎪⎪⎭

= φ
z3
z3 ∀x ∈ Ω0

(.a)
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θh(x) =
N
􏾜
i=1

φiθi

=
⎡
⎢
⎣

φ1 φ2 … φN 0 0 … 0
0 0 … 0 φ1 φ2 … φN

⎤
⎥
⎦

⎧⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎩

θ11

θ12

⋮
θ1N

θ21

θ22

⋮
θ2N

⎫⎪⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎪⎭

=
⎡
⎢
⎢
⎣

φ
θ1

0
0 φ

θ2

⎤
⎥
⎥
⎦

⎧⎪
⎨⎪⎩

θ1

θ2

⎫⎪
⎬⎪⎭

= Φθθ ∀x ∈ Ω0

(.b)

We deĕne the trial functions using the same basis as the test functions:

y3h = φ
z3
, η

h
= Φθ, ψ

h
= Nγ (.)

We can then write the discrete linear set of equations as:

􏾙
Ω0

BT
bDbBb dΩ θ +􏾙

Ω0

BT
s Nγ dΩ γ = 􏾙

Ω0

φ
z3
g dΩ (.a)

􏾙
Ω0

NT
γBs dΩ

⎧⎪
⎨⎪⎩

θ
z3

⎫⎪
⎬⎪⎭
− ̄t2D−1

s 􏾙
Ω0

NT
γNγ dΩ γ = 0 (.b)

where the Bb ∈ ℝ3×3N and Bs ∈ ℝ2×3N are matrices containing component-wise derivatives of
the shape function vectors:

Bb =

⎡
⎢
⎢
⎢
⎣

𝜕φθ1
𝜕x1

0

0 𝜕φθ2
𝜕x2

𝜕φθ1
𝜕x2

𝜕φθ2
𝜕x1

⎤
⎥
⎥
⎥
⎦

(.)

Bs =
⎡
⎢
⎢
⎣

−φ
θ1

0 𝜕φz3
𝜕x1

0 −φ
θ2

𝜕φz3
𝜕x2

⎤
⎥
⎥
⎦

(.)
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and Ds ∈ ℝ2×2 and Db ∈ ℝ3×3 are matrices containing the material properties of the plate:

Ds =
⎡
⎢
⎣

λ 0
0 λ

⎤
⎥
⎦

(.)

Db = D

⎡
⎢
⎢
⎢
⎣

1 ν 0
ν 1 0
0 0 1−ν

2

⎤
⎥
⎥
⎥
⎦

(.)

e above set of equations is a linear system of the following form:

⎡
⎢
⎢
⎢
⎣

Kb 0
0 0 C

CT −V

⎤
⎥
⎥
⎥
⎦

⎧⎪⎪
⎨⎪⎪⎩

θ
z3
γ

⎫⎪⎪
⎬⎪⎪⎭

=

⎧⎪⎪
⎨⎪⎪⎩

0
f
0

⎫⎪⎪
⎬⎪⎪⎭

(.a)

where
Kb = 􏾙

Ω0

BbDbBb dΩ (.b)

C = 􏾙
Ω0

BT
s Nγ dΩ (.c)

V = 􏾙
Ω0

NT
γNγ dΩ (.d)

f = 􏾙
Ω0

φ
z3
g dΩ (.e)

whereKb ∈ ℝ2N×2N, C ∈ ℝ3N×|Eh |,V ∈ ℝ|Eh|×|Eh| and f ∈ ℝN×1 where |Eh| is the number of edges
in the triangulation Th and N is the number of nodes in the node setNh. e total solution
vector sizes is of size 3N + |Eh|.

. Results

.. Methods used for comparison

FE  displacement Weuse standard linearC0 continuous Lagrangian elements, denoted CG1,
for all ĕelds (θ, z3) in a displacements-only weak form eq. (.). is formulation is prone
to shear-locking.
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Figure .: FE  mixed element; transverse deĘections are approximated using continuous
second-order Lagrangian element CG2 whilst the rotations are approximated using
CG2 enriched with third-order bubble functions B3. e shear stresses are approxi-
mated using NED2 elements which have two internal `moment' degrees of freedom
in addition to two degrees of freedom on each edge.

FE  displacement We use standard quadratic C0 continuous Lagrangian elements, denoted
CG2, for all ĕelds (θ, z3) in the displacements-only weak form eq. (.). is formulation
is prone to shear-locking.

FE mixed We use the element structure shown in ĕg. . in a mixed weak form eq. (.).

Maximum-Entropy (MaxEnt) mixed is novel method we propose in this chapter using
maximum-entropy basis functions for the displacements and rotated Raviart-omas-
Nédélec elements of lowest-order for the shear stresses.

.. Parameters

We deĕne the following parameters as quantities of interest in the construction of bothNh and
Th.

On node setNh we deĕne ha as the distance between node i and its nearest neighbouring
node. On a regular grid the distance hwill be the same for all nodes. We then deĕne the support
ρi of node i with the following formula:

ρa = αρβha ∀a (.)
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On uniform grids of nodes we will take values β = √2, 2,√4 + 1, 3 and αρ = 1.05 in an attempt
to ĕnd a roughly optimal value.

We deĕne the constraint ratio r as the ratio of the number of degrees of freedom in the dis-
placement variable function spaces (Vh,Rh) to the number of degrees of freedom in the shear
stress function space Sh:

r = dimVh + dimRh

dimSh
(.)

is quantity is of interest because it gives a rough measure of the relative sizes of the spaces
which is inherently related to the stability and performance of the ĕnal linear system of equa-
tions. We will show through numerical experiments that if the ratio r is too low themethod be-
comes over-constrained and solution quality decreases, and if the ratio r is too high themethod
becomes under-constrained and unstable.

.. Simply supported square plate with uniform pressure

We use the common setup of a simply supported square plate with uniform pressure as a test
problem as it has a closed-form analytical solution []. e problem domainΩ0 is deĕned by:

Ω0 = 􏿺(x1, x2) ∈ ℝ2 ∶ 0 < x1 < 1, 0 < x2 < 1􏿽 (.)

and the boundary conditions are hard simply supported:

θ ⋅ τ = n ⋅ Lε(θ)n = z3 = 0 ∀x ∈ Γ0 (.)

where n is the unit normal vector to the boundary and τ is the unit tangent vector to the bound-
ary. e SSSS domain and boundary conditions are shown in ĕg. .a.

We take the following numerical values: E = 10920, ν = 0.3, κ = 5/6, g = 1 and deĕne the
following normalised transverse displacement ẑ3 []:

ẑ3 =
E

12(1 − ν2)z3 × 102 = z3 × 105 (.)

Note that there is no factor of ̄t3 as in Reddy [] as we have already scaled the loading f by a
factor of g ̄t3 in the governing weak form to ensure the solution is bounded as ̄t→ 0.

We deĕne the L2 relative error in eL2(uh, u) between the numerical solution uh and exact
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Figure .: (a)DomainΩ0 for the SSSS square plate showing boundary conditions on each edge.
(b) Example discretisation of square domain.

solution u as:

eL2(uh, u) =
||u − uh||L2(Ω)

||u||L2(Ω)
=
􏿵∫

Ω0
(u − uh)2 dΩ􏿸

1/2

􏿵∫
Ω0
u2 dΩ􏿸

1/2 (.)

In the case of the simply supported plate where we have an analytical solution available we will
use the above as an indicator of solution quality.

Parameters

In ĕg. . we show the effect of the parameter β on the error in the L2 norm for thick ̄t = 0.2
and thin ̄t = 0.001 plates. We can see that a value of β = √2 is insufficient and that values of
β ≥ 2 appear to be optimal. For β ≥ √4 + 1 there seems to a slight increase in error for the
thick plate, whilst error is minimised at β = √4 + 1 for the thin plate. However these variations
are small enough that we take a value of β = 2 to minimise the bandwidth of the linear system
as well as shape function computation time.

We discretise the domain as shown in ĕg. .b, using a uniform triangulationTh withN cells
along an edge, and a uniform node setNh with M nodes along an edge.

In ĕg. . we demonstrate the effect of the constraint ratio r on the error in the L2 norm for
varying ̄t. We use a ĕxedmaximum-entropy node setNh withM = 12 and vary the underlying
uniform triangulation Th by adjusting N to achieve combinations of 􏿴Nh,Th􏿷 with varying
constraint ratios r.
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MaxEnt Mixed, t̄ = 0.001

Figure .: Graph showing the effect of the parameter β on convergence. N = 8,M = 12. ese
results correspond with those in series  (green dashed line) of ĕg. .
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M = 12, N = 10, r = 1.35
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M = 12, N = 8, r = 2.07

M = 12, N = 7, r = 2.683

Figure .: Graph showing the effect of the constraint ratio r on the solution for varying ̄t. β = 2.
e slightly better performance of the method for thin-plates agrees with the results
shown in ĕg. .
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We note that for thick plates t ≥ 10−1 the combinations of 􏿴Nh,Th􏿷 with the lowest r value
achieve the lowest error, whilst those with the highest r values have the highest error. However,
it is clear that the differences in error for thick plates for varying r are small compared to those
when the plate is thin ̄t ≤ 10−2 thus we make decisions on the optimal values of r based on
results for thin plates alone. We can see that for N = 9, 10 corresponding to r = 1.35, 1.65
the error increases rapidly as ̄t decreases. However, for N = 8, corresponding to r = 2.07, the
error stays bounded at around 10−3. For N = 7, corresponding to r = 2.683 we have uniformly
worse convergence across the entire range of ̄t. Furthermore to the results shown in ĕg. .,
we found that the method became unstable for N ≤ 6 corresponding to values of r ≥ 3.6
and for N ≥ 10 we found increasingly poor convergence performance. For the discretisations
used in our convergence studies we have found that constraint ratios between . and . to be
satisfactory.

Because of the non-polynomial nature of the maximum-entropy shape functions accurate
integration of the weak form typically requires quadrature rules of higher order than those used
in the FEM. In this study we use the collapsed quadrature rules of Karniadakis and Sherwin
[]. To ensure that we are integrating the weak form with sufficient accuracy we examined
the effect of quadrature order on the error in the L2 norm. We begin by computing the solution
using a quadrature rule of order  ( points per cell) per cell giving our `reference' error as
erefL2 = 6.9243 × 10−3. In ĕg. . we show the difference between the reference solution and the
solutions computed with increasing quadrature order. e difference is highest for quadrature
of order  ( points per cell), but for quadrature order  ( points per cell) the difference is
reduced to around 2.0 × 10−4, which is less than the solution error of 7.1 × 10−3. With this in
mindwe use an excessive quadrature rule of order  ( points per cell) in all subsequent results
to guarantee accurate integration whilst still maintaining acceptable computational times.

Locking

In ĕg. . we demonstrate the shear-locking-free property of the proposedmethod through the
convergence of the centre point transverse deĘection ẑ3h(0.5, 0.5) to the Kirchhoff thin plate so-
lution. We show both the Kirchhoff and Reissner-Mindlin analytical solutions; for thin plates
10−4 ≤ ̄t ≤ 10−2 the two almost coincide, whilst for thicker plates t ≥ 10−2 they diverge as
the Reissner-Mindlin theory's relaxation upon the rotation of the transverse normals ∇z3 ≠ θ
becomes increasingly important. e FE  Displacement result clearly shows the pitfalls of
using an unmodiĕed displacement-based formulation with severe shear-locking for values of
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(ẑ

3
h
,ẑ
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Figure .: Graph showing the effect of the order of the Gauss quadrature rule used for integra-
tion on convergence. N = 8, M = 12, β = 2.0. Note that the y-axis scale is linear,
not logarithmic as in the other convergence plots.

̄t ≤ 10−2. We note that shear-locking would also occur using themaximum-entropy basis func-
tions, or indeed any other type of standard basis functions using an unmodiĕed displacement-
based weak form. Clearly the proposed maximum-entropy mixed method matches, as desired,
the analytical solution throughout the full range of thick and thin plates.

In ĕg. . we show the convergence of ẑ3h to the analytical solution ẑ3 in the L2-norm for
varying ̄t. e error for the proposed maximum-entropy mixed method stays bounded below
10−2 as ̄t → 0 whilst for the FE  displacement method error increases rapidly for t < 10−1

as the formulation locks. e FE  mixed formulation also provides results that are free from
shear-locking.

In ĕg. . we show the convergence of z3h to the analytical solution ẑ3 in the L2-norm against
number of degrees of freedom for various shear-locking and shear-locking-free methods for
a thick plate ̄t = 0.2. We note that all of the methods converge in the L2-norm. e FE 
mixed, maximum-entropy mixed and maximum-entropy displacement formulations provide
signiĕcantly lower errors than the FE  mixed and FE  displacement methods. e FE 
mixed formulation has the highest rates of convergence at around ρ = O(dof−3/2) ∼ O(h3),
consistent with quadratic interpolation. e FE  displacement, maximum-entropy mixed
and maximum-entropy displacement formulations have convergence rates of ρ = O(dof−1)
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Figure .: Graph showing normalised central deĘection z3(0.5, 0.5) of SSSS square plate for
varying ̄t.
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Figure .: Graph showing error in ẑ3h for varying ̄t. Maximum-entropy mixed: N = 8, M =
12, β = 2.0. FE  displacement: N = 30. FE  mixed N = 8.
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Figure .: Graph showing L2 error in ẑ3h against number of degrees of freedom using various
shear-locking and shear-locking-free methods for a thick plate ̄t = 0.2.

∼ O(h2), consistent with linear interpolation/approximation. We note that comparing the
purely meshless approach vs. our hybrid FE/meshless mixed approach that both convergence
rates and errors are marginally worse for the latter. However, our approach still seems to
be competitive with the FE  mixed method and signiĕcantly better than FE  displacement
method.

In ĕg. . we show the convergence of z3h to the analytical solution ẑ3 in the L2-norm against
number of degrees of freedom for the proposed maximum-entropy mixed and FE  mixed
shear-locking-free methods for a thin plate ̄t = 0.001. e maximum-entropy mixed approach
has a convergence rate of ρ = O(dof−1) ∼ O(h2) whilst the FE  mixed approach has a con-
vergence rate of ρ = O(dof−3/2) ∼ O(h3). For thin plates the proposed method appears to be
superior to the FE  mixed formulation.

.. Fully clamped square plate with uniform pressure

Using the same domain Ω̄0 as deĕned in eq. (.) we now apply fully clamped boundary con-
ditions:

θ = z3 = 0 ∀x ∈ Γ0 (.)
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Figure .: Graph showing L2 error in ẑ3h using two locking-free methods for a thin plate ̄t =
0.001.

Figure .: Plot of z3h, MaxEnt mixed method 16× 16 grid, simply-supported plate, ̄t = 0.001
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Figure .: Plot of θ1h, MaxEnt mixed method 16× 16 grid, simply-supported plate, ̄t = 0.001

Due to the lack of analytical solution we compute a reference solution on a highly reĕned mesh
Th with N = 70 using the FE  mixed formulation. We take the Kirchhoff centre point de-
Ęection as ẑ3 = 0.126401 according to İmrak et al. []. Our reference FE Reissner-Mindlin
solution agrees with this value to  decimal places.

In ĕg. . we show the central deĘection of the plate for the proposed method and the
FE  mixed method alongside the reference solutions. We can see that the proposed method
provides competitive results with the FE  mixed method.

In ĕg. . we show a contour plot of θ1h with ̄t = 0.001. Smooth results are easily obtained
with no post-processing required.

. Conclusions

In this chapter we have proposed amethod for the locking-free simulation of Reissner-Mindlin
plates using a novel combination of maximum entropy basis functions and rotated Raviart-
omas-Nédélec elements.

e use of maximum entropy basis functions has allowed simple and direct imposition of
Dirichlet boundary conditions. is `weak' Kronecker-delta property is an inherent property
of the maximum entropy approach, and we believe this affords signiĕcant advantages over the
more commonly used moving-least-squares basis functions.

We comment that our approach has only required ĕrst-order consistency in the meshless
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Figure .: Plot of θ1h, MaxEnt + NED mixed method 16 × 16 grid, clamped plate, ̄t = 0.001
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Figure .: Graph showing normalised central deĘection z3(0.5, 0.5) of CCCC square plate for
varying ̄t. Maximum-entropy mixed: N = 10, M = 16, dofs = 1088. FE  mixed
N = 10, dofs = 2253. FE  mixed N = 15, dofs = 5323.
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basis functions, whereas approaches from other authors have typically required second-order
or higher consistency. is reduces the support size of the basis functions and creates a stiffness
matrix with lower bandwidth.

e approach of using a mixed variational form, although well established in the FEM, has
not to our knowledge been used to solve the problem of shear-locking in the mesh-free plate
literature. rough some simple test problems we have shown the efficacy of the proposed
method which seems to be competitive with the quadratic FEM.

Althoughwe have had to use an underlyingmesh for the generation of aH(rot;Ω0) conform-
ing ĕeld, we believe that this is a technological gap between meshless and FE that is already
partially closed, thus opening up the possibility of making our method `truly' meshless. We
support this assertion by referring to a paper by Buffa et al. [] where H(curl,Ω) conform-
ing B-spline shape functions are constructed for the solution of isogeometric electro-magnetics
problems.

Again, mimicking the approach used in many successful FE approaches such as the MITC
family of elements, the elimination of the shear-strain ĕeld γ via some kind of projection or
reduction operator (typically denoted Πh or Rh respectively in the literature) may also be pos-
sible. We support this by referring to papers by Sukumar et al. and Ortiz et al. [, ] where,
although not explicitly referred to as such, a form of projection operator is deĕned by volume-
averaging the pressure ĕeld over elements attached to each node, eliminating the pressure ĕeld
from the ĕnal stiffness matrix. We will explore this possibility in the following chapter.
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for the shear-deformable plate problem

In this chapterwe explore the use of a stabilisedmixedweak form to construct a generalised
displacement meshless method for the Reissner-Mindlin plate problem that is free from
shear-locking.

Generalised displacement methods are a class of numerical methods including techniques
such as MITC, B̄, EAS and reduced integration which whilst being based upon an under-
lying mixed formulation are expressed in terms of the original problem unknowns only.

We use a stabilised mixed weak form originally introduced by Boffi and Lovadina, which
is a more general version of an idea introduced by Arnold and Brezzi, where the bilinear
form representing the shear energy is split using a parameter between a part calculated
using only the displacement variables and a part calculated using the independent mixed
shear variable. is modiĕcation has the effect of ensuring the mixed problem is coercive
on the entire displacement space, and not just the kernel onwhich theKirchhoff hypothesis
holds.

epractical outcomeof thismodiĕcation is that a range of simpler andpreviously unavail-
able ĕnite element and meshless designs suitable for the Stokes problem can be adapted
for use with the Reissner-Mindlin problem. To help inform the design of our novel mesh-
less method we examine some available designs in the ĕnite element literature using the
DOLFIN ĕnite element framework. Two have continuous shear stresses, and two have dis-
continuous shear stresses. We examine the effect of the parameter α on the convergence of
the method. We ĕnd that an optimal choice of α is closely related to the local discretisation
size h.

To move from the stabilised mixed weak form back to a generalised mixed method where
the problem is expressed in terms of displacement unknowns only we use a variation on
the inf-sup stable volume averaged nodal pressure technique of Ortiz et al.. We interpret
this technique as an L2 projection operator from a high-order to a low-order space and
thus it has close mathematical similarities to existing techniques. We provide a detailed al-
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 Generalised displacement meshless methods for the shear-deformable plate problem

gorithmic and graphical overview of the procedure which was not presented in the original
papers of Ortiz et al..

We then present standard benchmark problems which demonstrate the shear-locking free
nature of the proposed method. We achieve convergence for the transverse displacement
variable in the L2 and H1 norms and for the rotation variables in the L2 norm, but not in
the H1 norm. Given the similarities between our approach and various successful ĕnite
element designs this is an unexpected result. We examine two potential causes of this
problem; the selection of the parameter α, which must be related to the local discretisation
size and the design and implementation of the projection operator. Even aer reverting to
the unprojected system the convergence problems in the rotation variables remain. is
suggests that the choice of the parameter α is probably the issue. We then discuss some
on-going work that may help alleviate this problem.

Note: e author of this thesis spent a two week period working with Dr. A. Ortiz at the
Universidad deChile in Santiago, Chile. Dr. A.Ortiz is one of the authors of the two papers
on the volume averaged nodal pressure technique. e work undertaken with Dr. A. Ortiz
relates to the application of the volume averaged nodal pressure technique to the problem
of incompressible hyperelasticity. e work in this chapter on the Reissner-Mindlin plate
problem is independent of this collaboration with Dr. A. Ortiz.

. Introduction

In the previous chapter we demonstrated the effectiveness of using a mixed variational form to
eliminate shear-locking in the Reissner-Mindlin plate problem. However, utilising the mixed
variational formulation was not without cost, primarily that the number of degrees of freedom
in the ĕnal system increased signiĕcantly.

Other issues also arisewhich are speciĕc to ourmethod. Because the rotatedRaviart-omas-
Nédélec elements require the use of the covariant transform between the reference element and
an arbitrary element of the mesh, which is calculated from the derivatives of the element map,
accuracy will decrease with heavily distorted element shapes which are typically found in large
deformation problems. is problem is identical to the issues that occur in H1(Ω) ĕnite ele-
ment methods. Ultimately, this may negate some (although not all) of the advantages of using
a meshless basis for the displacement unknowns.

Another issue is that practitioners, particularly for structural mechanics applications, have
been reluctant to implement and use mixed ĕnite element methods. is is probably due to a
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variety of factors; complexity of implementation and lack of available open-source codes may
be some of the underlying reasons. However, schemes which are understood mathematically
and designed using a mixed weak form but are only expressed in terms of the original displace-
ment unknowns are widely used in practice. Methods of this type are oen called generalised
displacement methods [].

Generalised displacement methods have three main advantages []; they are oen easier to
implement than the mixed method, they have similar or identical numbers of unknowns as in
the original displacement problem, and ĕnally the resulting linear system is typically symmetric
positive deĕnite, greatly easing the design of robust linear solvers. ese advantages have led
generalised displacement methods, such as enhanced assumed strains (EAS), assumed natural
strains (ANS), mixed interpolation of tensorial components (MITC) and reduced integration,
to becoming popular and widely used techniques in the computational structural mechanics
community.

With this in mind it seems clear that the ideal meshless method for the Reissner-Mindlin
problem would be a generalised displacement method. e method would be based upon
a mixed weak form, inheriting the superior qualities of that approach such as being shear-
locking free, and then some suitable procedure would be designed that eliminated the auxiliary
unknowns relating to the shear stresses, leaving a linear system in the original displacement
unknowns only. e method should use a basis for the shear stresses that does not require the
use of an element map, thus retaining the advantageous properties of the meshless basis used
for discretising the displacement unknowns.

e thinking behind the proposed generalised displacementmeshlessmethod for theReissner-
Mindlin plate problem is as follows. Ortiz et al. [, ] introduced a generalised displace-
ment meshless method for the Stokes Ęow problem (or equivalently, the problem of nearly-
incompressible elasticity) which works by volume-averaging the pressure across representative
domains attached to each node deĕned by a triangulation, allowing the pressure to be written
in terms of the displacement unknowns. e pressure is then eliminated from the problem, re-
sulting in a generalised displacementmethod. e inf-sup condition is satisĕed by the addition
of extra degrees of freedom in the displacements, similar to the addition of bubble functions in
theMINI ĕnite element method. e resultingmethod is free from volumetric locking. Unfor-
tuanately, when we apply the technique of Ortiz et al. directly to the Reissner-Mindlin problem
the method completely fails to converge because it is unstable. is instability is caused by the
violation of the kernel coercivity condition, a necessary condition for convergence and stability
in any discretisation of the mixed Reissner-Mindlin problem.
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equestion then arises, is it possible to adapt the generalised displacementmeshlessmethod
of Ortiz et al. so that it will work for the mixed Reissner-Mindlin problem? An answer lies in
a small number of papers examining the adaptation of ĕnite element designs for the Stokes
problem to the Reissner-Mindlin problem. e key is recognising the mathematical difference
between the Stokes problem and the Reissner-Mindlin problem within the framework of the
penalised saddle point problem theory of Braess discussed in section ... e difference is
that the Stokes problem is coercive on the entire displacement space, rather than just the ker-
nel as in the Reissner-Mindlin problem. e trick then lies in making the Reissner-Mindlin
problem look more like the Stokes problem in a mathematical sense. is modiĕcation en-
tails splitting the shear energy between a part calculated using the displacement unknowns and
a part calculated using the mixed unknown using a parameter α. is modiĕcation ensures
that the new Reissner-Mindlin problem is coercive on the entire displacement space, not just
on the subspace on which the Kirchhoff hypothesis holds. is greatly opens up the design
possibilities for stable numerical schemes.

We begin this chapter by deriving the stabilisedmixed weak form from the original displace-
ment form of the Reissner-Mindlin problem. We show that the stabilised form is essentially a
blending of the advantageous properties of the displacement and themixed weak form and that
the stabilised form contains the displacement and mixed weak form as limiting cases.

en to help inform the design of the novelmeshlessmethodwe then examine some available
designs suggested in the ĕnite element literature using the DOLFIN ĕnite element package.
We present results for TRIA, which is based on the classic CG2 − DG0 Stokes element.
We examine the effect of the parameter α on the convergence of each design. We ĕnd that an
effective choice of α is closely related to the local discretisation size h.

en we turn to the design of the proposed meshless method. No computational algorithm
is given of the generalised displacement meshless method proposed in the papers of Ortiz et
al. erefore we give a full overview of the volume-averaging technique and perform some
basic tests with comparison to the MINI element implemented in the DOLFIN ĕnite element
package to ensure our implementation of the procedure is correct.

We then fully develop the proposed discretisation for the Reissner-Mindlin problem using a
modiĕcation of the volume-averaged pressure technique of Ortiz et al.. We call the technique
the local patch projection operator, a more general term than volume-averaged pressure tech-
nique which we feel better reĘects the general mathematical foundation this type of procedure
is based upon.

Clearly a critical aspect of our formulation is the selection of the parameter α. For optimal
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performance the parameter must be in someway related to the local discretisation size of the
node setNh. We perform sensitivity studies to examine potential schemes for selecting α.

Whilst convergence is achieved for the transverse displacement variable z3 in the L2 and
H1 norms and for the rotation variable in the L2 norms, we do not achieve convergence in
the rotation variable in the H1 norm. Because of the similarities between our approach and
the stabilised MINI design this was an unexpected result. We postulate that the cause of this
problemmust either be to do with the selection of the parameter α or the underlying properties
of the local patch projection operator. To try andnarrowdown the cause of the issuewe perform
studies with the unreduced system (ie. without the local patch projection operator). We ĕnd
that the issue with convergence of the rotations in the H1 norm still remains, suggesting that
the choice of parameter α is probably the issue.

. Formulation

.. Derivation of stabilisedmixed weak form

In this section we will derive the stabilised mixed weak form directly from the displacement
version of the Reissner-Mindlin problem. We will then explain why it is so much easier to
design successful discretisations for this problem rather than for the standard mixed problem.

We begin with the following simpliĕed form of the scaled Reissner-Mindlin plate problem:

ab(θ; η) + λ ̄t−2as(θ, z3; η, y3) = g(y3) (.)

We then split the shear bilinear form as(θ, z3; η, y3) into two parts using a parameter 0 < α < ̄t−2
[]:

ab(θ, η) + λas(θ, z3; η, y3)
= ab(θ, η) + λαas(θ, z3; η, y3) + λ( ̄t−2 − α)as(θ, z3; η, y3)
= g(y3)

(.)

Now, instead of substituting themixed shear stress variable γ into both parts of as, we substitute
the following modiĕed shear stress variable into the third term of eq. (.) only []:

γ ∶= λ( ̄t−2 − α)(∇z3 − θ) (.)
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 Generalised displacement meshless methods for the shear-deformable plate problem

Figure .: e entire shear energy contained in the shear bilinear form, represented by the en-
tire circle, is split into two parts, one calculated from the mixed shear stress variable
and one from the displacement variables. When the splitting parameter reaches
the two limiting values the displacement formulation or the mixed formulation is
recovered.

which gives:
ab(θ, η) + λαas(θ, z3; η, y3) + (γ, y3 − η) = g(y3) (.)

We then form a second equation by performing the standard Galerkin procedure using the
shear stress test functions ψ ∈ S on eq. (.), resulting in the following new problem []:

Problem  (Stabilised mixed scaled Reissner-Mindlin problem). Find the transverse deĘec-
tion, rotations and transverse shear stresses (z3, θ, γ) ∈ (V3,R,S) such that for all (y3, η,ψ) ∈
(V3,R,S):

ab(θ, η) + λαas(θ, z3; η, y3) + (γ, ∇y3 − η)L2(Ω0) = g(y3) (.a)

(∇z3 − θ,ψ)L2(Ω0) −
̄t2

λ(1 − α ̄t2) (γ,ψ)L
2(Ω0) = 0 (.b)

We illustrate this shear splitting graphically in ĕg. ..

e key difference in comparisonwith the standardmixed formulation eq. (.) in the frame-
work of the general theory presented in section .. is that the bilinear form a for our stabilised
problem eq. (.):

a(z3, θ; v3, η) ∶= ab(θ, η) + λαas(θ, z3; η, y3) (.)

is now coercive on the entire spaceX, not just on the subset of functionsZ on which the Kirch-
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hoff constraint holds. More speciĕcally, in our new stabilised problem, there exists a constant

δ ≥ 0 such that:

a(v; v) ∶= ab(θ, η) + λαas(θ, z3; η, y3) ≥ δ ||v||2X ∀v ∈ X (.)

where X = V3 × R = H1
0(Ω) × [H1

0(Ω)]2. is is in contrast with with the standard mixed
formulation where there only exists a constant δ ≥ 0 such that:

a(v; v) ∶= ab(θ; η) ≥ δ ||v||2X ∀v ∈ Z (.)

where:
Z = 􏿺v ∈ X | b(v; q) = as(z3, θ; v3, η) = 0 ∀q ∈M􏿽 (.)

is the kernel of the full space X on which the Kirchhoff hypothesis holds. us in the new
stabilised Reissner-Mindlin problem eq. (.) part  of theorem  and theorem  are satisĕed
automatically. us we have a `good' problem on the condition that the inf-sup condition on
b in part  of theorem  is satisĕed. is is why the parameter α is referred to as a stabilisation
parameter as its addition generates a mixed weak form that is stable for a far less restrictive set
of conditions than for the original mixed problem.

We can express the above ideas in simpler terms; we know that the displacement formeq. (.)
is prone to shear-locking but is always stable when discretised, whilst the standard mixed form
is typically unstable when discretised, but behaves well as the small parameter ̄t approaches
zero. erefore by splitting the shear energy between a part calculated using the standardmixed
form and a part calculated using the standard displacement form, the advantageous properties
of both the mixed form and the displacement form are blended together.

e new stabilised problem contains both the displacement form and the mixed form as
special cases. By substituting α = ̄t−2 into the stabilised form eq. (.) we recover the original
displacement form eq. (.). By substituting α = 0 into the stabilised form eq. (.) we recover
the fully mixed form previously derived in eq. (.).

A stabilised mixed weak form of this type was ĕrst introduced in the context of the Reissner-
Mindlin plate problem by Arnold and Brezzi []. eir aim was to design some new simple
and low-order elements for the Reissner-Mindlin problem. ey introduced two element de-
signs with discontinuous Lagrangian shear approximation of zero order [DG0]2 and two with

We denote the coercivity constant δ here instead of the α suggested by Braess earlier in this thesis to avoid
confusion with the stabilisation parameter α.
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continuous Lagrangian shear approximation of ĕrst order [CG1]2. e developments in this
paper are primarily mathematical, and thus no numerical results are presented, which explains
why no actual stabilisation parameter is introduced; the parameter, which we refer to as α is
implicitly set to be equal to one, which is sufficient to ensure the coercivity of the problem on
the whole displacement spaceX, but not the optimal performance of a numerical method.

It was in the later and more general papers by Boffi and Lovadina [] and Lovadina []
that recognised for the optimal performance of this stabilisedmixedweak form itwas important
to have a stabilisation parameter αwhich was related to the local characteristic size of the mesh
hK. In fact, they found that a judicious choice of αwill actually improve the rate of convergence.
e paper of Boffi and Lovadina also recognised the similarity of the technique to the method
of the augmented Lagrangian outlined in Fortin and Glowinski [], a connection that was
not made in the original paper of Arnold and Brezzi [].

. FE discretisation

In this section we will show an example discretisation of the stabilised mixed weak form using
ĕnite elements. e aim of this is to answer two questions; ĕrstly, can the design of a stabilised
ĕnite element scheme help inform the design choices made in a novel meshless scheme, and
secondly, are there any signiĕcant differences in behaviour between the ĕnite element schemes
and the meshless scheme?

As we are now talking about discretisations of the stabilised mixed weak form eq. (.) we
introduce discrete spaces for the displacements z3h ∈ V3h ⊂ V3, the rotations θh ∈ Rh ⊂ R,
and the shear stresses γh ∈ Sh ⊂ S giving:

Problem  (Discrete stabilisedmixed scaled Reissner-Mindlin problem). Find the transverse
deĘection, rotations and transverse shear stresses (z3h, θh, γh) ∈ (V3h,Rh,Sh) such that for all
(y3, η,ψ) ∈ (V3h,Rh,Sh):

ab(θh, η) + λαas(θh, z3h; η, y3) + (γh, ∇y3 − η)L2(Ω0) = g(y3) (.a)

(∇z3h − θh,ψ)L2(Ω0) −
̄t2

λ(1 − α ̄t2) (γh,ψ)L
2(Ω0) = 0 (.b)

In ĕg. . we show four different ĕnite element designs for the discrete stabilised mixed form
of the Reissner-Mindlin problem in eq. (.). In this section we will concentrate on the ele-
ment design TRIA. e element design studied in this section is closely related to the





. FE discretisation

Figure .: Various ĕnite element designs available in the literature for the stabilised mixed
weak form. MINI (CG2⊕B3)×[CG2]2×CG1 [] andMINI (CG1⊕B3)×[CG1]2×
CG1 [] (red) have continuous shear stresses, whist TRIACG2×[CG2]2×DG0
[] and TRIAB (CG1 ⊕ B3) × [CG2]2 ×DG0 [] (green) have discontinuous
stresses. e open circle represents a degree of freedom associated with the cubic
bubble function space B3 which vanishes on the element edge.

classic Stokes [CG2]2-DG0 element, where displacements are approximated using second-order
Lagrangian elements, and pressure is approximated using discontinuous zero-order Lagrangian
elements. It is the `richness' of the displacement approximation space with respect to the pres-
sure approximation space which ensures that the inf-sup condition is satisĕed [].

e TRIA discretisation can be speciĕed as follows []:

V3h ∶= CG2(Ω0;Th) = 􏿺y3 ∈ H1
0(Ω0) | y3|K ∈ P2, ∀K ∈ Th􏿽 (.a)

Rh ∶= [CG2(Ω0;Th)]2 = 􏿺η ∈ H1
0(Ω0)2 | η|K ∈ [P2]2, ∀K ∈ Th􏿽 (.b)

Sh ∶= [DG0(Ω0;Th)]2 = 􏿺ψ ∈ L2(Ω0)2 | ψ|K ∈ [P0]2, ∀K ∈ Th􏿽 (.c)

In the context of Reissner-Mindlin plates and the discrete stabilisedmixedweak form in eq. (.)
the element design TRIA was ĕrst suggested by Lovadina []. With the stabilisation pa-
rameter α = 1, Lovadina [] showed analytically that the method is ĕrst-order convergent in
the H1 norm for both displacement z3h and rotation θh variables. is is actually sub-optimal
given that the spaceV3h consists of quadratic functions which normally give second-order con-
vergence in theH1 norm, and is related to the imbalance in approximation quality between the
approximation spacesV3h and Sh inherited from the classical Stokes P2-P0 element. Interest-
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ingly however, Lovadina [] showed analytically that by making the factor α dependent on
the characteristic local mesh size hK and by setting α ∼ O(h−1K ) that the order of convergence
can be increased to 3/2. In an extended numerical analysis of the method, Chinosi and Lovad-
ina [] demonstrate that the element design actually works best for α varying as α ∼ O(h−2K )
which is the dimensionally consistent choice. Clearly a `good' choice of α, which will be in
some way based on the characteristic local size of the discretisation, is necessary to ensure the
optimal performance of the method, although as we will see there is a reasonable amount of
leeway in selecting such a value.

We have implemented TRIA (and all the other element designs shown in ĕg. .) into
the DOLFIN ĕnite element framework []. In algorithm we show a code snippet specifying
the function spaces deĕned in eq. (.), and in algorithm  we show a code snippet specifying
the weak form in eq. (.). Because of the uniĕed form language (UFL) and just-in-time
compilation techniques built into theDOLFINĕnite element framework changing to a different
element design, such as the MINI element shown in ĕg. ., is just a matter of changing the
deĕnition of the function spaces in the Python code, as shown in algorithm .

Algorithm  Python code snippet for specifying ĕnite element function spaces for TRIA
element in DOLFIN

...
def TRIA0220(mesh):

DG0 = FunctionSpace(mesh, "DG", 0)
CG2 = FunctionSpace(mesh, "Lagrange", 2)

S = MixedFunctionSpace([DG0, DG0])
V_3 = CG2
R = MixedFunctionSpace([CG2, CG2])

...
return (V_3, R, S)

...
V_3, R, S = TRIA0220(mesh)
U = MixedFunctionSpace([V_3, R, S])

In ĕg. . we begin by examining the effect of varying the stabilisation parameter α on the
convergence of the variables in various norms for a ĕxed disretisation and plate thickness. We
reiterate the effect α has on the underlying discrete weak form; as α → 0 (le hand side of
ĕg. .) we tend towards the original mixed weak form eq. (.), which violates the kernel
coercivity condition. Conversely, as α→ ̄t−2 (right hand side of ĕg. .) we recover the standard
displacement weak form eq. (.) which locks. Broadly speaking we can see that an optimal
value of α lies somewhere between these two extreme points. We remark that the convergence
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Algorithm  Python code snippet for specifying ĕnite element function spaces for MINI
element in DOLFIN

...
def MINI1(mesh):

CG1 = FunctionSpace(mesh, "Lagrange", 2)
B3 = FunctionSpace(mesh, "Bubble", 3)

S = MixedFunctionSpace([CG1, CG1])
V_3 = CG1 + B3
R = MixedFunctionSpace([CG1, CG1])

...
return (V_3, R, S)

...
V_3, R, S = MINI1(mesh)
U = MixedFunctionSpace([V_3, R, S])

Algorithm  Python code snippet for specifying stabilised mixed weak form in DOLFIN

z_3, theta, gamma = TrialFunctions(U)
y_3, eta, psi = TestFunctions(U)
...
E = 10920.0
kappa = 5.0/6.0
nu = 0.3
thickness = 0.001

D_c = E/(12.0*(1.0-nu**2))
G_c = E*kappa/(2.0*(1.0 + nu))

D = Constant(D_c)
# The variable G is the shear modulus \lambda
G = Constant(G_c)
t = Constant(thickness)
nu = Constant(nu)

h = CellSize(mesh)
alpha = h**-2.0

# Note: lambda is a python keyword, not a material parameter!
e = lambda u: 0.5*(grad(u) + grad(u).T)
L = lambda epsilon: D*((1.0 - nu)*epsilon + nu*tr(epsilon)*Identity(2))

a_b = D*inner(L(e(theta)), e(eta))*dx
a_s = G*alpha*inner(grad(z_3) - theta, grad(y_3) - eta)*dx

A = a_b + a_s + inner(gamma, grad(y_3) - eta)*dx + \
inner(grad(z_3) - theta, psi)*dx + \
- t**2.0/(G*(1.0 - alpha*t**2.0))*inner(gamma, psi)*dx

l = y_3*dx
...
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Figure .: Graph showing convergence for transverse displacement and rotation variables for
varying values of α. TRIA element hK = 1/8 on a uniform mesh. Square Do-
main with SSSS boundary conditions, E = 10920, ν = 0.3, ̄t = 10−3. e vertical
dotted lines denote the choices α ∼ 􏿺O(h−1K ),O(h−2K )􏿽 suggested by Chinosi and Lo-
vadina [].

for the rotation variable θ is relatively insensitive to the choice of the parameter α. e choice
for the transverse displacement is clearlymore critical with an acceptable convergence occuring
in the range 100 < α < 103 and the best convergence in the range 101 < α < 102. is range is
bounded nicely by the choices α ∼ 􏿺O(h−1K ),O(h−2K )􏿽 suggested by Chinosi and Lovadina []
which are shown with vertical dotted lines.

We now examine how the convergence is affected for varying thickness ̄t. Clearly the ideal
method would perform reasonably consistently for thick through to very thin plates. In ĕg. .
we show convergence for varying thickness ̄t, whilst keeping α constant. We can see for thin
plates 10−4 < ̄t < 10−1 that performance in the z3 variable is essentially constant, but deterio-
rates slightly when the plate becomes thick ̄t > 10−1. We have marked the point where ̄t = hK,
that is, the point where the plate thickness is equal to the characteristic element size. Clearly at
such a point the employment of a mixed method to avoid shear-locking is unnecessary. With
this in mind we employ the following modiĕcation to the parameter α which effectively turns





. FE discretisation

10−4 10−3 10−2 10−1 100

t̄

10−3

10−2

10−1

e hK = 1/8

eL2(θ)

eL2(z3)

Figure .: Graph showing convergence for transverse displacement and rotation variables for
varying thickness ̄t with constant α = h−2K = 64. Note that there is a slight decrease
in performance as the plate becomes thick with respect to the characteristic mesh
size hK. TRIA element hK = 1/8 on a uniform mesh. Square Domain with SSSS
boundary conditions, E = 10920, ν = 0.3, ̄t = 10−3.

off the mixed formulation when ̄t > hK:

α ∼ O(h−2̄t ) (.a)

h ̄t = max ( ̄t, hK) (.b)

With this modiĕcation made we repeat exactly the same experiment but with the modiĕed
form of h ̄t. e results shown in ĕg. . suggest that the modiĕcation has been effective in
suppressing the deterioration in performance for ̄t > hK, and in fact we see slightly improved
performance for ̄t > hK.

We now examine convergence for different recipes of α. To do this we generate convergence
results using the following choices for α for increasingly ĕne meshes:

α = 􏿺O(h−1̄t ), O(h
−3/2
̄t ), O(h−2̄t )􏿽 (.)

In ĕgs. . and . we show the convergence of the transverse displacement in the L2 and H1

norms respectively for varying choices of the stabilisation parameter α. Convergence rates are
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Figure .: Graph showing convergence for transverse displacement and rotation variables for
varying thickness ̄twith modiĕed variable α = h−2̄t . e use of the modiĕed form of
h ̄t results in a method which performs slightly better for thick plates. TRIA ele-
ment hK = 1/8 on a uniform mesh. Square domain with SSSS boundary conditions,
E = 10920, ν = 0.3, ̄t = 10−3.
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Figure .: Graph showing convergence of transverse displacements in H1 norm for varying
α choices. Square domain with SSSS boundary conditions, E = 10920, ν = 0.3,
̄t = 10−3.
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Table .: Convergence rates for series in ĕgs. . and .. Calculated from ĕrst-order ĕt to
curves.

α ρL2 ρH1

O(h−1̄t ) -. -.
O(h−3/2̄t ) -. -.
O(h−2̄t ) -. -.

given in table .. We note that it is clearly possible to improve the convergence rate of the
TRIA element by judicious choice of the parameter α. e results for θ (not shown) are
less sensitive to the choice of α, reinforcing the results in ĕg. ..

We draw the following conclusions from this numerical experiment performed with the
TRIA element:

. If α is too small, that is, if the coercivity of the discrete bilinear form is lost, then the
convergence of z3 deteriorates whilst θ is unaffected.

. If α is too large, then the formulation suffers from the shear-locking effect, and the con-
vergence of both z3 and θ deteriorates.

. Convergence is acheived over a sufficiently large range ofα to suggest that there is a decent
chance of designing a method that performs well

. For optimal convergence, the parameter α must in some way be based upon the local
discretisation size. At least for the TRIA element, the choice α ∼ O(h−2), which is
the dimensionally consistent choice, appears to be optimal.

We will come back to these four conclusions when examining the performance of the proposed
meshless method later in this chapter.

. Techniques for developing generalised displacement

methods

Before continuing to develop the proposed meshless method, we take a look at various ways
of developing a generalised meshless displacement method, with particular emphasis on the
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Figure .: Graph showing convergence of transverse displacements in L2 norm for varying
α choices. Square domain with SSSS boundary conditions, E = 10920, ν = 0.3,
̄t = 10−3.

mathematics and implementation of the volume-averaged pressure technique of Ortiz et. al
[, ].

For simplicity, we will use the nearly-incompressible elasticity problem, which is similar in
nature to the Stokes' problem, which is in turn similar to the stabilised Reissner-Mindlin prob-
lem developed in this chapter. e discrete mixed nearly-incompressible elasticity problem
with homogeneous Dirichlet boundary conditions can be stated as follows []:

Problem  (Discrete mixed nearly-incompressible elasticity problem). Given a domain Ω ⊂
ℝn containing a nearly-incompressible elastic body ĕnd the displacements and pressure (uh, ph) ∈
Uh ×Ph ⊂ [H1

0(Ω)]2 × L2(Ω)/ℝ such that:

μ􏾙
Ω
ε(uh) ⋅ ε(v) dΩ +􏾙

Ω
ph div v dΩ = 􏾙

Ω
f ⋅ v dΩ ∀v ∈Uh (.a)

􏾙
Ω
div uh q dΩ − 1

λe
􏾙

Ω
phq dΩ = 0 ∀q ∈ Ph (.b)

where μ and λe are Lame's ĕrst and second constants and ε(v) is the usual small strain operator.
L2(Ω)/ℝ is the space of square-integrable functions which differ up to a constant.

is problem ĕts in to the penalised saddle point problem framework of Braess eq. (.),
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with the following choices:

X ∶=U ∶= H1
0(Ω)2, a(u, v) ∶= μ􏾙

Ω
ε(u) ⋅ ε(v) dΩ (.a)

M ∶= P ∶= L2(Ω)/ℝ, b(v, q) ∶= 􏾙
Ω
div v q dΩ (.b)

Mc ∶= L2(Ω)/ℝ, c(p, q) ∶= 􏾙
Ω
pq dΩ (.c)

and with the small parameter t2 = 1/λe. Recall that the Lame's second parameter λe is deĕned
for an isotropic material in terms of the Young's modulus E and Poisson's ratio ν as:

λe =
νE

(1 + ν)(1 − 2ν) (.)

so when the body under consideration is nearly incompressible with ν → 0.5 then the small
parameter will vanish t = 1/λe → 0, resulting in a well-deĕned problem. When 1/λe = 0 the
pressure variable acts as Lagrange multipliers which enforce the incompressibility constraint.

In very general terms, without making any speciĕc choices, the development of a generalised
displacement method can be expressed mathematically as follows. We ĕrst ensure that we have
chosen aUh and Ph which satisfy the inf-sup condition. We do not need to worry about the
kernel coercivity condition here because the form a(u, v) is coercive on the entire spaceX, not
just the kernelZ. We then rearrange eq. (.b) to ĕnd ph in terms of the displacement variable
uh:

ph = λe Πh(div uh) (.)

whereΠh is a projection operator from the discrete displacement spaceUh to the discrete pres-
sure spacePh:

Πh ∶Uh → Ph (.)

en we simply substitute our new expression for ph back into eq. (.a) resulting in the fol-
lowing expression in terms of the original unknowns only:

μ􏾙
Ω
ε(uh) ⋅ ε(v) dΩ +􏾙

Ω
Πh(div uh) div v dΩ = 􏾙

Ω
f ⋅ v dΩ ∀v ∈Uh (.)

e link between the mixed method and the generalised displacement method should now
be clear; in the generalised displacement method the mixed variable (in this case, the pres-
sure) is assumed implicitly via the projection operator Πh, whereas in the mixed method the
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mixed variable is included in the formulation explicitly. e reduction operatorΠh is a discrete
modiĕcation of the usual problem variable uh, such that the generalised displacement method
inherits the advantageous properties of the underlyingmixedmethod, whichmost importantly
in our case is the robustness with respect to the small parameter λe.

Of course, we haven't actually discussed how the projection operator can be implemented.
It turns out that many methods can be used to construct the operation Πh. In the following
sections we will discuss some of these methods with particular regards to their applicability in
meshless methods.

.. Static condensation

Static condensation, or more speciĕcally the Schur Complement, is a projection at the linear
algebra level, that is, working with the assembled matrices. e problem shown in eq. (.)
results in a linear system with the following block matrix form:

⎡
⎢
⎣

A B
BT −C

⎤
⎥
⎦

⎧⎪
⎨⎪⎩

u
p

⎫⎪
⎬⎪⎭
=
⎧⎪
⎨⎪⎩

f
0

⎫⎪
⎬⎪⎭

(.)

where thematrixA,B andC are thematrices associatedwith the bilinear forms a(uh, v), b(uh, q)
and c(ph, q) respectively. f is the vector associated with the operator ⟨f, v⟩ and the vectors u and
p are the vectors of unknowns for the displacements and pressures respectively.

We can then re-write eq. (.) as two equations:

Au + Bp = f (.a)

BTu − Cp = 0 (.b)

Solving eq. (.b) for p gives:
p = C−1BTu (.)

Comparing eq. (.) to eq. (.) we can see that the expression C−1BT is equivalent to the
projection operator Πh. We can then substitute eq. (.) back into eq. (.a) giving:

(A + BC−1BT)u = f (.)

e matrix BC−1BT is called the Schur complement.
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Because the above process requires the inversion ofC, the structure of the matrixC is critical
in determining whether the static condensation procedure is practical. If C is a general sparse
matrix then the inverse C−1 is in general not sparse. Recall that the matrix C is associated with
the bilinear form c(ph, q):

c(ph, q) ∶= 􏾙
Ω
phq dΩ (.)

If we construct pressure space using discontinuous Lagrangian elements Ph ⊂ L2 = DGp for
any polynomial order p then degrees of freedom in each element are decoupled. e integration
across the entire domain in eq. (.) then decouples into integration across element domains
ΩK:

c(ph, q) ∶= 􏾜
K
􏾙

ΩK

phq dΩ (.)

Each summation term in eq. (.) is then associated with a dense matrix CK which results in
a matrix C with the following block diagonal form:

C =

⎡
⎢
⎢
⎢
⎢
⎣

C1

C2

⋱
CK

⎤
⎥
⎥
⎥
⎥
⎦

(.)

e matrix C will be either diagonal for DG0 or block diagonal for DGp with p ≥ 1. If the
matrix C is in diagonal or block-diagonal form then the inverse C−1 will also be block-diagonal
or diagonal and the inverse can be calculated by individually inverting each block:

C−1 =

⎡
⎢
⎢
⎢
⎢
⎣

C−11

C−12

⋱
C−1K

⎤
⎥
⎥
⎥
⎥
⎦

(.)

With this block-diagonal form of C the static condensation procedure can be performed with
minimal use of memory due to the preserved sparsity pattern and low computation time due to
the cheap blockwise inversion procedure. In ĕg. . we show the sparsity pattern of the mixed
stabilised Reissner-Mindlin system using the TRIA element assembled on a two element
square mesh. is procedure was implemented at the linear algebra level into the DOLFIN
ĕnite element framework using the CBC.Block package [].
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Figure .: Sparsity pattern of mixed stabilised Reissner-Mindlin system, reduced system and
the Schur complement, using TRIA element on a two element square mesh.
Note the diagonal nature of thematrixC and that the sparsity pattern of the displace-
ment degrees of freedom is unchanged by the addition of the Schur complement.

With regards to the implementation of a generalised displacementmeshlessmethodusing the
static condensation procedure, the high-continuity of meshless methods means that in general
we would have Ph ⊂ H1(Ω). erefore the matrix C associated with the bilinear form c(ph, q)
will not be in block-diagonal or diagonal form, making the inversion procedure prohibitively
expensive.

.. Reduced integration

One of the earliest remedies for the problem of volumetric locking was the reduced integration
method. Reduced integration is the use of a quadrature rule for the integration of the weak
form of lower accuracy than required to integrate the weak form exactly. e procedure was
an effective remedy for the problem of shear locking, but theoretical understanding of exactly
why it worked was missing for a long time. It was considered a `trick' by many. Later, Malkus
and Hughes [] showed that in some cases the use of a reduced integration method corre-
sponds to an implicit choice of amixed scheme, and therefore reduced integrationmethods can
be analysed using the mathematical framework of mixed schemes. A modern presentation of
these results is given in Boffi et al. []. It should be noted that there is not a reduced integra-
tion procedure that corresponds to every mixed scheme, especially when considering meshes
containing arbitrarily shaped elements [].
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.. Reduction operator

We have already discussed the use of a reduction operator in the context of the MITC element
in section ...

.. Nodal integration

Beissel andBelytschko [] introduced the nodal integrationmethod for the element-freeGalerkin
method. In nodal integration methods the bilinear form is integrated by placing integration
points at the nodes only, rather than using full Gauss quadrature. In this aspect nodal inte-
gration methods are very much in the spirit of the reduced integration methods discussed in
section ... However, because of the vanishing derivatives of the basis functions at the nodal
points nodal integrationmethods typically suffer from spuriousmodes. Beissel and Belytschko
[] solved this problem by adding a residual of the equilibrium equation to the bilinear form
representing the mechanical energy to stabilise the method.

In a later paper J.S. Chen et al. [] introduced the stabilised conforming nodal integration
method (SCNI). In this method the spurious modes associated with the vanishing derivatives
of the basis functions are stabilised by pushing the integration from the nodal positions to the
local boundary using the divergence theorem. ere is no longer any need to evaluate the basis
functions at the nodal points, which eliminates the issue found in the method of Beissel and
Belytschko []. e local boundary is deĕned by the Voronoi diagram, which is the dual of
the Delaunay tessellation or mesh []. Each Voronoi cell deĕnes a single smoothing domain
for each node in the discretisation.

Wang and Chen [] applied the SCNI technique to the Reissner-Mindlin problem. A single
smoothing cell is used to calculate the integral in the bending bilinear form only, in the same
manner as the original SCNI paper of Chen et al. []. e shear bilinear form is integrated
using a standard nodal integration procedure in the style of the original paper of Beissel and
Belytschko []. Although the distinction is not made clear in the paper of Wang and Chen
[], it is our view that the shear-locking problem is eliminated in this paper because of the
nodal integration applied to the shear bilinear form, rather than the SCNI procedure applied
to the bending bilinear form. erefore with regards to solving the shear-locking problem the
formulation of Wang and Chen [] is very similar to a reduced integration procedure.

In a later work G. R. Liu et al. [] considered how to apply the SCNI method to the ĕnite
element method. e resulting method is called the smoothed ĕnite element method (SFEM).
e key advance made in the SFEM [] is that instead of there being a single smoothing cell
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associated with each node, each cell in the mesh can be divided up into any number of smooth-
ing cells. e integral within the volume of each smoothing cell is pushed to the boundary of
the cell using the divergence theorem, in a similar fashion to the SCNI method. By varying the
number of smoothing cells the fundamental properties of the SFEM change. When the num-
ber of smoothing cells is equal to one the element is under-integrated and suffers from spurious
modes. e authors found the best results when using four smoothing cells.

e link between the SFEM (and by analogy, the SCNI method) and a mixed method was
shown analytically by G.R. Liu et al. [] by considering a three-ĕeld Hu-Washizu energy
functional, which can be expressed as a mixed weak form. It is shown in [] that when using
one smoothing cell on a parallelogram element the element stiffness matrix generated by the
SFEM is identical to that produced by the reduced integration procedure in the standard FEM.
When an inĕnite number of smoothing cells are used the element stiffness matrix generated by
the SFEM is identical to that produced using a full integration procedure in the standard FEM
[]. Intermediate numbers of smoothing cells sit in between these two extreme points [].

erefore there is a strong mathematical link between the SFEM, the use of a mixed vari-
ational formulation and the classical reduced integration procedure, so the SFEM and SCNI
methods can certainly be classed as generalised displacement methods.

e ability of the SFEM to alleviate volumetric lockingwas explored in papers byT. T.Nguyen
et al. [] andN. Hung []. Both papers rely upon the SFEMs coincidence with the reduced
integration method to produce SFEM schemes that are free from volumetric locking. Classical
nodal integration techniques have been applied to the problem of incompressible locking in the
FEM by Krysl and Zhu [].

Bordas et al. considered a SFEM design for the Reissner-Mindlin problem in []. In this
paper the smoothing cells are used to calculate the integral in the bending bilinear form only,
similarly to the work of Wang and Chen [] but using a varying number of smoothing cells
as in []. e shear-locking problem is eliminated by applying the same reduction operator
used in the quadrilateral MITC element. No smoothing is used on the shear bilinear form.
erefore with regards to solving the shear-locking problem the formulation of Bordas et al. is
identical to the MITC element of Bathe and Dvorkin [].

.. Volume-averaged nodal pressure technique

evolume-averagednodal pressure techniquewas introduced byOrtiz et. al for two-dimensional
incompressible elasticity problems in [] and extended to three-dimensional incompressible
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elasticity problems in []. In this paper we refer to the more general implementation of the
volume-averaged nodal pressure technique in the Reissner-Mindlin problem as the local patch
projection (LPP) method.

e volume-averaged nodal pressure technique works by volume-averaging the pressure
across representative domains attached to each node. e representative domains are deĕned
by a triangulation of the nodes. is allows the pressure to be written in terms of the displace-
ment unknowns. e pressure can then be eliminated from the mixed problem, resulting in a
generalised displacement method.

e volume-averaged nodal pressure procedure has similarities with both nodal integration
methods and static condensation, but differs considerably in mathematical development and
implementation from both. e generalised displacement method that results is derived di-
rectly from the mixed weak form of the problem in a straightforward manner. erefore the
link between the generalised displacement method and the underlying mixed method is im-
mediately clear, unlike in reduced integration or nodal integration type procedures.

Representative nodal volumes are derived directly from the Delaunay triangulation of the
nodal domain,meaning that there is noneed to implement data structures to handle theVoronoi
diagram as in the SCNI method of Chen et. al [].

e inf-sup condition is satisĕed by the addition of extra bubble degrees of freedom at the
barycenters of the Delaunay triangulation of the nodal domain. Furthermore, the method has
been shown to be numerically inf-sup stable using the procedure proposed by Chapelle and
Bathe []. No analytical proof of inf-sup stability is currently available.

Becausewewill use an extension of thismethod in our development of a generalised displace-
mentmeshlessmethod for the Reissner-Mindlin platemodel, in conjunctionwith the stabilised
weak form outlined in section .., we will detail the mathematical development and compu-
tational implementation here. e presentation here differs from that in the original papers
of Ortiz et al. [, ] which in particular lack a detailed description of the computational
implementation of the procedure.

Mathematical overview

We begin with the discrete mixed nearly-incompressible elasticity problem in eq. (.). First
of all an initial node set is speciĕed on the domainΩwhichwe denoteN s

h . en a triangulation
Th of the node setN s

h is generated using any suitable mesh generation method. e position
of vertices of the triangulationTh are therefore coincident with the node positions of the nodes
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Figure .: Illustration showing node setNh and triangulationTh on a domainΩwith bound-
ary Γ. e nodes in the initial node setN s

h are shown with blue circles. e vertices
of the triangulation Th are coincident with these nodes. e extra node setN b

h are
inserted at the barycenters of cells of the triangulation and are shownwith green cir-
cles. e total node setNh is the union of the initial node setN s

h and the barycenter
nodesN b

h .

in the node setN s
h . Based on the constructed triangulation Th we then deĕne an additional

set of nodesN b
h which are located at the barycenter of each cell in the triangulationTh. Using

this new node set we deĕne the ĕnal node setNh for the problem as the union of the original
node setN s

h and the barycenter node setN b
h :

Nh =N b
h ∪N s

h (.)

We show this construction on an example domain Ω in ĕg. ..
We then introduce the following speciĕc choices for the discretised spaces for the displace-

mentsUh and pressures Ph. For the displacement spaceUh we use maximum-entropy basis
functionsME on the ĕnal node setNh, which includes the original node set and the barycenter
node set:

Uh ∶= [ME(Ω;Nh, ρ)]2 (.)

where ρ is a vector containing the support radius associated with each node in Nh. For the
pressure spacePh we use continuous ĕrst-order Lagrangian elements CG1 on the triangulation
Th of the original node setNh:

Ph ∶= CG1(Ω;Th) (.)

We show the degrees of freedom for the displacement and pressure approximation in ĕg. ..
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Figure .: Illustration showing the degrees of freedom for the displacement spaceUh (two
per ĕlled circle) and for the pressure spacePh (one per open circle)

Now we can write the approximation for the displacements uh using the maximum-entropy
meshless basis functions φ associated with the nodes in the node setNh as:

uh(x) =
N
􏾜
i=1

φiui

=
⎡
⎢
⎣

φ1 φ2 … φN 0 0 … 0
0 0 … 0 φ1 φ2 … φN

⎤
⎥
⎦

⎧⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎩

ux1
ux2
⋮

uxN
uy1
uy2
⋮

uyN

⎫⎪⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎪⎭

=
⎡
⎢
⎢
⎣

φ
ux

0
0 φ

uy

⎤
⎥
⎥
⎦

⎧⎪
⎨⎪⎩

ux

uy

⎫⎪
⎬⎪⎭

= Φuu ∀x ∈ Ω

(.)

and the approximation for the pressures ph using the ĕrst-order Lagrangian basis functions Ni
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associated with the degrees of freedom at vertices of the triangulation Th as:

ph =
M
􏾜
i=1

Nipi

= 􏿮N1 N2 … NM􏿱

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

p1

p2

⋮
pM

⎫⎪⎪⎪
⎬⎪⎪⎪⎭

= Npp ∀x ∈ Ω

(.)

e same spaces and thus basis functions are used for discretising the test spaces for the dis-
placements v ∈Uh and for the pressures q ∈ Ph:

v = Φu, q = Np (.)

We can then substitute the basis functions deĕned above into the weak form of the incompress-
ible elasticity problem eq. (.) giving:

􏾙
Ω
BTDB dΩ u +􏾙

Ω
BTmNp dΩ p = 􏾙

Ω
ΦT

u f dΩ (.a)

􏾙
Ω
NT

pmTB dΩ u − 1
λe
􏾙

Ω
NT

pNp dΩ p = 0 (.b)

where the B results from the small strain operator ε acting upon the basis functions for the
displacements Φu and is deĕned by:

B =

⎡
⎢
⎢
⎢
⎢
⎣

𝜕φux
𝜕x1

0

0
𝜕φuy
𝜕x2

𝜕φux
𝜕x2

𝜕φuy
𝜕x1

⎤
⎥
⎥
⎥
⎥
⎦

(.)

e m vector converts the B matrix to the divergence operator:

m = 􏿺1 1 0􏿽
T

(.)
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and the matrix D contains the material property μ as:

D =

⎡
⎢
⎢
⎢
⎣

2μ 0 0
0 2μ 0
0 0 μ

⎤
⎥
⎥
⎥
⎦

(.)

e volume-averaged pressure technique then develops directly from eq. (.b). We re-
write eq. (.b) equation for every row a as:

N
􏾜
b=1
􏾙

Ω
NpamTBb dΩ ub −

1
λe

M
􏾜
b=1
􏾙

Ω
NpaNpb dΩ pb = 0 (.)

Performing row-sum in the pressure term leads to:

N
􏾜
b=1
􏾙

Ω
NpamTBb dΩ ub −

1
λe

M
􏾜
a=1
􏾙

Ω
Npa dΩ pa = 0 (.)

is row-sum procedure is a equivalent to the diagonalisation of the matrix C, which is a nec-
essary procedure for the fast inversion of C−1 in the static condensation procedure described
in section ... e integral across the entire domain Ω is then restricted to the domain Ωa

across the cells attached to the vertex associated with the nodal pressure degree of freedom pa:

N
􏾜
b=1
􏾙

Ωa

NpamTBb dΩ ub −
1
λe

M
􏾜
a=1
􏾙

Ωa

Npa dΩ pa = 0 (.)

We show a typical pressure degree of freedom a and the associated integration domain Ωa in
ĕg. .. e ĕnal step is to re-arrange the previous equation giving the nodal pressure pa in
terms of the displacement unknowns ub:

pa = −λe
N
􏾜
b=1

⎧⎪
⎨⎪⎩

∫
Ωa
NpamTBb dΩ

∫
Ωa
Npa dΩ

⎫⎪
⎬⎪⎭
ub (.)

e above quantity in the curly brackets is the average of the discrete divergence operatormTB
across the cells attached to the particular node a.

Before continuing let's consider the formof eq. (.). e size of the nodal pressure is pa ∈ ℝ
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Figure .: Illustration showing a pressure degree of freedom pa and the associated integration
domain Ωa for the computation of the volume-averaged pressure

and the size of the nodal displacement vector ub ∈ ℝ2×1 and therefore the size of the quantity
in the curly brackets relating the two must beℝ1×2. We can therefore subsume the summation
over b into a vector qa ∈ ℝ1×2N as:

pa = qau (.)

so we now have a relationship between the single pressure degree of freedom pa and the dis-
placement degrees of freedom in the vector u. en it is convenient to express all of pressure
degrees of freedom p in terms of the displacement degrees of freedom vector u. To do this we
deĕne a new matrix Q ∈ ℝM×2N where the rows of the matrix Q are constructed from the row
vectors qa:

p = Qu =

⎡
⎢
⎢
⎢
⎢
⎣

q1

q2

⋮
qM

⎤
⎥
⎥
⎥
⎥
⎦

u (.)

With this expression we can then eliminate the pressure unknowns p from eq. (.a):

􏾙
Ω
BTDB dΩ u +􏾙

Ω
BTmNpQ dΩ u = 􏾙

Ω
ΦT

uf dΩ (.)

resulting in a generalised displacement method. Looking at the second integral on the le-
hand side of eq. (.) we can see that the matrix Q is pre-multiplied by Np, the ĕnite element
basis functions associatedwith the pressure spacePh. erefore the volume-averaged pressures
which satisfy the incompressibility constraint in an average sense are interpolated using the
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ĕnite element basis functions in the calculation of the bilinear form related to the volumetric
energy of the solid.

Before concluding this section we will deĕne an operator which describes the above volume-
averaged nodal pressure procedure. is will be useful later when we will apply an identical
procedure to the Reissner-Mindlin problem. Because of the generality of the procedure we will
call the operator the local patch projection operator.

Deönition  (Local patch projection operator). Let vh ∈ Uh and wh ∈ Ph where Uh and
Ph with dim(Uh) = N and dim(Ph) = M are a meshless space and a ĕnite element space that
satisfy the inf-sup condition. e spaces are associated with degrees of freedom v and w and basis
functions φ and N respectively such that:

vh = φv, wh = Nw (.)

en the local patch projection operator Πp
h(L[vh]) ∶Uh → Ph is deĕned by:

Πp
h(L[vh]) = NQv (.)

where L[vh] is a differential operator and the matrix Q ∈ ℝM×N is:

Q =

⎡
⎢
⎢
⎢
⎢
⎣

q1

q2

⋮
qM

⎤
⎥
⎥
⎥
⎥
⎦

(.)

with each qa being the volume-average of the differential operatorL acting upon the basis functions
φ across the representative volume Ωa attached to the degree of freedom wa deĕned by:

qa =
∫
Ωa
NaL[φ] dΩ

∫
Ωa
Na dΩ

(.)

Using the above deĕnition the volume-averaged nodal pressure technique is the speciĕc case
of the local patch projection method with the following speciĕc choice for the differential op-
erator L:

L[vh] = div vh (.)
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Computer implementation

We will now describe the computer implementation of the local patch projection procedure.
In the original papers by Ortiz et. al [, ] very little description of the computer implemen-
tation is given. In this description of the LPP procedure we will use the concrete terminology
of the nearly-incompressible elasticity problem with displacement uh and pressure ph as the
unknowns, but of course the procedure applies equally to the Reissner-Mindlin problem with
generalised displacements (θh, z3h) and shear stresses γh as the unknowns that we develop later.

e local patch projection procedure can be split down into three main steps:

. e construction of the vector qa in eq. (.) for every pressure degree of freedom pa.
is involves an integration across each domain Ωa which is the union of the cells at-
tached to the vertex associated with the pressure degree of freedom pa.

. Assembly of the large sparse matrix Q eq. (.) which relates the displacement degrees
of freedom to the nodal pressures.

. e assembly of the stiffnessmatrix generated by the second integral on the le-hand side
of eq. (.). is involves an integration in the usual manner across the entire domain
Ω. e volume-averaged pressure unknowns p = Qu are interpolated using the ĕnite
element basis functions Np associated with the spacePh.

Before describing the algorithms for implementing this process we will describe the process
visually. In ĕg. . we show a series of ĕgures a)-g) with the same example discretisation that
was developed in ĕgs. . to .. Five vertices have been labelled one through ĕve. We are
interested in the construction of the stiffness matrix resulting from the interaction between the
displacement degrees of freedom located at vertices one and two which we denote K12:

K12 = 􏾙
Ω1

BT
1DB2 dΩ −􏾙

Ω2

BT
1m

⎧⎪
⎨⎪⎩
􏾜
c=d,e,f

NcQc2

⎫⎪
⎬⎪⎭

dΩ (.)

e domains Ω1 and Ω2 denote the two domains across which each integral is calculated, and
these two domains are different ie. Ω1 ≠ Ω2.
Ω1 is the intersection of the supports of the basis functions associated with the nodes at

vertices  and . In ĕg. .a) we show the supports supp(φ1) and supp(φ2) as red circles
surrounding nodes  and . ereforeΩ1 = supp(φ1) ∩ supp(φ2) is the darkly shaded red area
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. Techniques for developing generalised displacement methods

Figure .: Illustration of the local patch projection procedure. See text for description of each
subĕgure.
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in .a). is is the `standard' integral domain inmeshlessmethods relating to the intersecting
supports.
Ω2 is somewhat more complex due to the local patch-projection procedure. e support of

the term BT
1 is supp(φ1), the same as before, but the support of the functions Nc is of course

deĕned by the triangulationTh just as in the ĕnite element method. Qc2 is a particular entry of
the matrix Q.

In ĕg. .b we choose a speciĕc gauss point xg located at the black circle. At this point
the basis functions N2, N3 and N4 associated with the pressure degrees of freedom located at
vertices two, three and four are active. erefore the contribution from the gauss point xg to
the second integral in eq. (.) reads:

BT
1 (xg)m

⎧⎪
⎨⎪⎩
􏾜

c=2,3,4
Nc(xg)Qc2

⎫⎪
⎬⎪⎭

(.)

In ĕgs. .c, .d and .e we show the support of the basis functionsN2,N3 andN4 respec-
tively as coloured shaded areas. ese shaded areas are also all shown together on ĕg. .b.

e ĕnal term to consider in the second integral of eq. (.) is Qc2 for c = {2, 3, 4}. Re-
member that the Q is a matrix with rows relating to the pressure degrees of freedom and with
columns relating to the displacement degrees of freedom. For example, Q32 relates the third
node pressure degree of freedom to the second node displacement degree of freedom. In ĕg.
.f we consider the integration domain for the entry Q32. e support of the pressure de-
gree of freedom supp(N3) is shaded light blue, whilst the support of the displacement degree of
freedom supp(φ2) is shaded light red. e integration domain Ω̄ is therefore the intersection
of these two supports Ω̄ = supp(N3) ∩ supp(φ2).

We can conclude from the above that:

. In the ĕrst integral of eq. (.) the interaction between displacement degrees of freedom
one and two is direct, as in the standard meshless method.

. In the second integral of eq. (.) the interaction between displacement degrees of free-
dom one and two is indirect. e primary interaction is between displacement degree
of freedom one and the ĕnite element basis Nc. e interaction between displacement
degree of freedom one and two occurs is at a secondary level due to the matrix entries
Qc2 which relate the pressure degree of freedom c to the displacement degree of freedom
two.
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. e assembled stiffness matrix resulting from the second integral of eq. (.) will have
higher bandwidth than that resulting from the ĕrst integral of eq. (.). is is be-
cause displacement degrees of freedom which do not interact with each other in the
ĕrst integral of eq. (.) may interact indirectly via the local patch-projection proce-
dure in the second integral. In ĕg. .g we show an example of this; displacement
degrees of freedom one and ĕve will not interact with each other in the ĕrst integral
because supp(φ1) ∩ supp(φ5) = ∅. However, because displacement degree of free-
dom one interacts with pressure degree of freedom three supp(φ1) ∩ supp(N3) ≠ ∅
and pressure degree of freedom three interacts with displacement degree of freedom ĕve
supp(N3) ∩ supp(φ5) ≠ ∅ creating an entryQ35 there will be a stiffness matrix entry K15.

We give numpy-like pseudo-code for the local-patch projection procedure in algorithms 
and . ese algorithms are implemented in the pymĘpackage for both the nearly-incompressible
elasticity problem and the Reissner-Mindlin problem.

Algorithm  Pseudo-code for assembling Q

Q = sparse matrix size: M by N
denominators = vector size: M by 1
for each vertex in mesh:

for each cell attached to vertex:
for each gauss point in cell:

N = finite element basis function associated \
with vertex evaluated at gauss point

w = gauss point weight
B = B matrix evaluated at gauss point

numerator = w*N*B
denominator = w*N

dofs = displacement dof numbers
Q[vertex, dofs] += numerator
denominators[vertex] += denominator

for each vertex in mesh:
Q[vertex, :] = denominators[vertex]*Q[vertex, :]

Veriöcation

In this section we verify the correct implementation of the local patch-projection procedure
for the nearly-incompressible elasticity problem using the leaky-lid cavity problem. e cavity
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Algorithm  Pseudo-code for assembling K

K = sparse matrix size: N by N
for each cell in mesh:

for each gauss point in cell:
N = finite element basis functions evaluated at gauss

point
w = gauss point weight
B = B matrix evaluated at gauss point

U_dofs = displacement dof numbers

for vertex in cell:
K_contribution = w*B.T*m*N[vertex]*Q[vertex,:]

q_dofs = q dof numbers
K[U_dofs, q_dofs] += K_contribution

problem is the standard benchmark for testing the performance of discretisations of the nearly-
incompressible or Stokes' Ęow problem. is example was also used by Ortiz et al. in []. We
compare the local patch-projectionmethodwith theMINI element of Arnold et al. [] which
we implement in the DOLFIN ĕnite element package [].

In ĕg. . we show the leaky-lid cavity Ęow problem. e domain has sides of unit-length,
and a unit tangential displacement is applied along the top surface. On all the other boundaries
displacement is ĕxed in both the x and y directions. Material properties are taken to be E = 1
and ν = 0.4999. ese properties match those found in [].

In ĕg. . we compare the horizontal displacement ux ĕelds for the LPP MaxEnt method
of Ortiz et al. [] on an 11 × 11 grid of nodes + `bubble' nodes and the MINI element of
Arnold et al. []. We can see that the LPP MaxEnt method provides a signiĕcantly smoother
solution due to the high continuity of the MaxEnt basis functions. Crucially, it is clear that
the smoothness of the displacement solution is unaffected by the use of ĕnite element basis
functions for the pressure space. We remark that if the LPP MaxEnt method was not free of the
volumetric-locking problem the results would not match at all for ν = 0.4999.

In ĕg. . we compare the vertical displacement uy ĕelds for the LPP MaxEnt method and
the MINI element method. Again, we can see that the LPP MaxEnt method provides a signiĕ-
cantly smoother solution than the MINI element method.

To give a better indication of the relative accuracy of the LPP MaxEnt method we plot the
vertical displacement ĕeld uy in ĕg. . extracted across the line QQ (see ĕg. .). In addition
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Figure .: Leaky lid cavity problem. Unit horizontal displacement ux = 1, uy = 0 is applied
to the top side, all other sides ĕxed ux = uy = 0.

(a) LPP MaxEnt 11 × 11 grid + `bubble' nodes (b) MINI element 10 × 10 mesh

Figure .: Horizontal displacement ux for leaky-lid cavity Ęow problemwith LPPMaxent and
MINI methods.
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(a) LPP MaxEnt 11 × 11 grid + `bubble' nodes (b) MINI element 10 × 10 mesh

Figure .: Vertical displacement uy for leaky-lid cavity Ęow problem with LPP Maxent and
MINI methods.

to the LPP MaxEnt method on the coarse grid 11× 11 we include results for the MINI element
method on a very ĕne mesh 30 × 30 to act as a converged `reference' solution. Whilst all three
methods perform well it is clear that the LPP MaxEnt method on the coarse grid can match the
performance of the MINI element on the very ĕne mesh. In ĕg. . we plot the horizontal dis-
placement uy across the line PP (see ĕg. .). Here the difference between the three solutions
is less pronounced but the LPP MaxEnt method on the coarse grid still outperforms the MINI
element on the coarse mesh. We note that theMINI element on the ĕnemesh results in a linear
system with  degrees of freedom whilst the LPP MaxEnt method on the coarse mesh has
only  degrees of freedom.

In summary the LPP MaxEnt method is an effective way of solving the volumetric-locking
problem. Excellent performance can be achievedwith relatively low numbers of degrees of free-
dom when compared with the MINI ĕnite element method. More results for the LPP MaxEnt
method are given in Ortiz et. al [, ].

. Meshless discretisation

We will now develop the meshless discretisation of the stabilised discrete Reissner-Mindlin
problem eq. (.) using the local patch projection procedure in deĕnition . Much of the
notation that was introduced for the volume-averaged pressure procedure will be re-used here.
We repeat the stabilised discrete Reissner-Mindlin problem here for convenience:
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Figure .: Vertical displacement uy across line QQ.
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Figure .: Horizontal displacement ux across line PP.
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Problem  (Discrete stabilisedmixed scaled Reissner-Mindlin problem). Find the transverse
deĘection, rotations and transverse shear stresses (z3h, θh, γh) ∈ (V3h,Rh,Sh) such that for all
(y3, η,ψ) ∈ (V3h,Rh,Sh):

ab(θh, η) + λαas(θh, z3h; η, y3) + (γh, ∇y3 − η)L2(Ω0) = g(y3) (.a)

(∇z3h − θh,ψ)L2(Ω0) −
̄t2

λ(1 − α ̄t2) (γh,ψ)L
2(Ω0) = 0 (.b)

We use the same node set construction with standard and `bubble' nodesNh =N b
h ∪N s

h

and triangulation of the standard node set Th as for the incompressible elasticity problem. We
then introduce the following similar speciĕc choices of maximum-entropy basis functions for
the rotation and displacement variables:

Rh ∶= [ME(Ω0;Nh, ρ)]2, V3h = ME(Ω0;Nh, ρ) (.)

and continuous Lagrangian ĕnite elements of ĕrst order for the shear stress variable:

Sh ∶= [CG1(Ω0;Th)]2 (.)

We then use the deĕnition of the local patch-projection operator in deĕnition  with the fol-
lowing speciĕc choices:

Uh ∶= Rh ×V3h (.a)

Ph ∶= Sh (.b)

L[z3h, θh] ∶= ∇z3h − θh (.c)

Using this patch projection operator, which for the Reissner-Mindlin problem takes the form:

Πp
h ∶ Rh ×V3h → Sh (.)

we can re-arrange eq. (.b) to give an expression for the shear stress variable γh in terms of
the rotations and transverse displacements:

γh =
λ(1 − α ̄t2)

̄t2 Πp
h(∇z3h − θh) (.)
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Substituting back into eq. (.a) to eliminate the shear stress variable gives:

ab(θh, η) + λαas(θh, z3h; η, y3) +
λ(1 − α ̄t2)

̄t2 (Πp
h(∇z3h − θh), ∇y3 − η)L2(Ω0) = g(y3) (.)

We will now develop the discrete equations. We can write the trial functions using the basis
functions deĕned for the transverse displacements, rotations and shear stresses as:

z3h(x) =
N
􏾜
i=1

φiz3i = 􏿮φ1 φ2 … φN􏿱

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

z31
z32
⋮

z3N

⎫⎪⎪⎪
⎬⎪⎪⎪⎭

= φ
z3
z3 ∀x ∈ Ω0

(.a)

θh(x) =
N
􏾜
i=1

φiθi

=
⎡
⎢
⎣

φ1 φ2 … φN 0 0 … 0
0 0 … 0 φ1 φ2 … φN

⎤
⎥
⎦

⎧⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎩

θ11

θ12

⋮
θ1N

θ21

θ22

⋮
θ2N

⎫⎪⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎪⎭

=
⎡
⎢
⎢
⎣

φ
θ1

0
0 φ

θ2

⎤
⎥
⎥
⎦

⎧⎪
⎨⎪⎩

θ1

θ2

⎫⎪
⎬⎪⎭

= Φθθ ∀x ∈ Ω0

(.b)
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γh =
M
􏾜
i=1

Niγi

=
⎡
⎢
⎣

N1 N2 … NM 0 ⋯ 0
0 0 ⋯ 0 N1 N2 … NM

⎤
⎥
⎦

⎧⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎩

γ13 1

γ13 2

⋮
γ13 M

γ23 1

γ23 2

⋮
γ23 M

⎫⎪⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎪⎭

= Nγγ ∀x ∈ Ω0

(.c)

We deĕne our trial functions using the same basis as the test functions:

y3h = φ
z3
, η

h
= Φθ, ψ

h
= Nγ (.)

allowing us to re-write eq. (.) as:

􏾙
Ω0

BT
bDbBb dΩ θ + λα􏾙

Ω0

BT
s Bs dΩ

⎧⎪
⎨⎪⎩

θ
z3

⎫⎪
⎬⎪⎭
+

λ(1 − α ̄t2)
̄t2 􏾙

Ω0

BT
s NγQ dΩ

⎧⎪
⎨⎪⎩

θ
z3

⎫⎪
⎬⎪⎭
= 􏾙

Ω0

φz3g dΩ

(.)

where the Bb ∈ ℝ3×3N and Bs ∈ ℝ2×3N are matrices containing component-wise derivatives of
the shape function vectors:

Bb =

⎡
⎢
⎢
⎢
⎣

𝜕φθ1
𝜕x1

0

0 𝜕φθ2
𝜕x2

𝜕φθ1
𝜕x2

𝜕φθ2
𝜕x1

⎤
⎥
⎥
⎥
⎦

(.)

Bs =
⎡
⎢
⎢
⎣

−φ
θx

0 𝜕φz3
𝜕x1

0 −φ
θy

𝜕φz3
𝜕x2

⎤
⎥
⎥
⎦

(.)
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Db ∈ ℝ3×3 is the matrix containing the bending material properties of the plate:

Db = D

⎡
⎢
⎢
⎢
⎣

1 ν 0
ν 1 0
0 0 1−ν

2

⎤
⎥
⎥
⎥
⎦

(.)

e Q ∈ ℝ2M×3N matrix is generated by the local patch-projection procedure outlined in deĕ-
nition . More speciĕcally, the matrix Q is:

Q =

⎡
⎢
⎢
⎢
⎢
⎣

q1

q2

⋮
qM

⎤
⎥
⎥
⎥
⎥
⎦

(.)

where the individual entries qa ∈ ℝ2×3M are now matrices instead of vectors deĕned by the
following equation:

qa =
∫
Ωa
NaBs dΩ

∫
Ωa
Na dΩ

(.)

e division by an integral of a matrix looks a little peculiar in this extension of the local-patch
projection to the shear-stress which is a vectorial quantity. To make the exact mathematics
clear, we re-write the above equation as:

qa = 􏿰􏾙
Ωa

Na dΩ􏿳
−1

􏾙
Ωa

NaBs dΩ (.)

e matrix ∫
Ωa
Na dΩ ∈ ℝ2×2 will be diagonal so its inverse is simply the inverse of each diag-

onal entry. We have implemented the above formulation into the pymĘ package.

. Results

In this section we examine two test problems, a simply-supported plate with uniform pressure
whichwe studied in the previous chapter, and a new problemwe refer to as the Chinosi clamped
plate problem. is problem has a special load function which gives closed form polynomial
displacement solutions.
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Figure .: Graph showing for a ĕxed discretisation of 8 × 8 grid + `bubble' nodes e LPP
MaxEnt method's performance is largely insensitive to changing values of ̄t and is
therefore free from the effects of shear-locking. LPP MaxEnt method for simply-
supported plate problem. Note: Series for eL2(θ1) and eH1(θ1) coincide.

.. Simply supported plate with uniform pressure

We examine the convergence of a simply supported plate with uniform pressure. is is the
sameproblemweused to examine the performance of theMaxEnt+NEDscheme in section ..
e boundary conditions are shown in ĕg. .a.

We begin by examining whether the scheme is indeed free from the negative effects of shear-
locking. It is also important that for a given discretisation the performance of the method
for varying thickness parameter α is broadly similar; if we have to choose a particular α for a
particular ̄t then clearly we do not have a reliable method. To determine this we take a ĕxed
discretisation with  divisions (ie.  nodes per side) and set α = 32.0. We then examine the
convergence of the method by varying ̄t over the range 10−4 ≤ ̄t ≤ 10−1. e results are shown
in ĕg. .. We can see that the errors eH1(z3), eL2(θ1) and eH1(θ1) are insensitive to changing
̄t. ere is a very minor deterioration in performance in the error eH1(z3) for ̄t ≥ 10−2. is
deterioration is the same as that for the TRIA element when ̄t > hK. A similarmodiĕcation
to eq. (.) can be made for the proposed LPP MaxEnt formulation which essentially turns off
themixed formulation at a certain point when it is no longer required (results not shown). is
improves the performance for thick plates. We conclude that as the convergence for ĕxed α is
largely independent of the thickness we can perform further studies using one value of ̄t only.
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We know from our experiments with the TRIA ĕnite element method that choosing α
to be constant does not give the optimal rate of convergence for increasingly ĕne discretisa-
tions. Furthermore we know that as α → 0 the convergence deteriorates as we recover the
fully mixed formulation, which suffers from spurious modes. Conversely as α → ̄t−2 the con-
vergence deteriorates due to the shear-locking problem. us an optimal value of α depends
on some characteristic discretisation length and lies somewhere inbetween these two extreme
points 0 ≤ α ≤ ̄t−2.

To examine the effect of α on the performance of the method we perform a sensitivity study
on the convergence behaviour of the method against the stabilisation parameter and discreti-
sation size. e methodology is as follows; we take a sequence of uniform discretisations with
degrees of freedom varying between 2.2 ≤ log(dimU) ≤ 3.7 and run for each discretisation a
set of simulations with the stabilisation parameter varying between −2 < log(α) < 4, resulting
in  individual simulations. e plate thickness is kept ĕxed at ̄t = 10−3.

Before discussing the results we give a description of the presentation of the sensitivity study
in ĕg. .. Along the x-axis is the number of degrees of freedom log(dimU) and along the
y-axis is the stabilisation parameter log(α) and in this case along the z-axis (contours) is the
L2 error in the transverse displacement z3 log(eL2(z3)). Dark red areas show areas of poor con-
vergence ranging through to dark blue areas which show good convergence. Each gradation
in colour between these two extreme points represents half an order of magnitude of conver-
gence. e small black circles represent a data point from one of the  individual experiments.
Between these data points the results are interpolated using the matplotlib Delaunay triangu-
lation module. Between each data point for a discretisation series (lines of data points parallel
with y-axis) there is half an order of magnitude difference for the stabilisation parameter α.

In ĕg. . we show the sensitivity study for the L2 error in the transverse displacements z3.
Roughly speaking, for each discretisation series (lines of data points parallel with y-axis) we can
see that there if α is selected as being either too small or too large the method fails to converge
due to the occurrence of spurious modes or shear-locking, respectively. If we were to keep α
ĕxed (lines parallel with x-axis) whilst reĕning the discretisation we would not remain near the
optimal convergence line. e optimal choice of α is then set by the optimal convergence line
which passes through the lowest point of error for each discretisation series.

For each discretisation series there seems to be around an order of magnitude leeway for the
selection of a good α. For example, for the third discretisation series with log(dimU) = 2.8 we
can achieve convergence in the range −3.0 ≤ log(eL2(z3) ≤ −3.5 using 1 ≲ log(α) ≲ 2.3. is is
encouraging in that it suggests that the convergence of the proposed method is not so sensitive
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Figure .: Contour plot showing sensitivity of eL2(z3) with respect to stabilisation parameter
α and number of degrees of freedom dim(U). Simply-supported plate problem.
LPP MaxEnt.

to the choice of α that it will be impossible to come up with a reliable scheme.
We recall that as 0 ≤ α < ̄t−2 and that the dimensionally consistent choice is then a measure

of the local discretisation length to the power of minus two. We take the support radius as the
natural measurement of the local discretisation length and for all of the simulations we take
ρ = const. In ĕg. . we plot the values ρ = const for each discretisation series as red circles
and then join these points together with a red line. We can see the choice of α ∼ 1/ρ2 tracks the
optimal convergence line reasonably well, suggesting that like the ĕnite element method, the
dimensionally consistent choice based on the local discretisation length is a sound one.

Of course, we have only examined the sensitivity of the L2 error in the transverse displace-
ment variable z3, which does not alone demonstrate that we have a good scheme with α ∼ ρ−2.
We will now examine the sensitivity of the other errormeasures. In all of the following sensitiv-
ity studies the x-axis and y-axis ranges are the same as in ĕg. .. e red line showing α ∼ 1/ρ2

remains providing a point of reference for comparison. e colours have been re-scaled, but
each gradation in colour still represents a half-order of magnitude of convergence.

In ĕg. . we show the sensitivity study for the H1 error in the transverse displacements z3.
We can see that the optimal convergence line now sits roughly one-half order of magnitude
above the red reference line. However, the red reference line still manages to match the best
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Figure .: Contour plot showing sensitivity of eH1(z3) with respect to stabilisation parameter
α and number of degrees of freedom dim(U). Simply-supported plate problem.
LPP MaxEnt.

error for a given discretisation series within one-half order ofmagnitude, except for the coarsest
discretisation series. e leeway for selecting a good α in the eH1(z3) errormeasure seems wider
than that for the eL2(z3) error measure.

In ĕg. . we show the sensitivity study for the L2 error in the rotation variable θ1. e opti-
mal convergence line matches well with the red reference line. e red reference line manages
to match the best error for a given discretisation within one-half order of magnitude for all dis-
cretisation series. Again, the leeway for selecting a good α in the eH1(θ1) error measure seems
wider than that for the eL2(z3) error measure.

In ĕg. . we show the sensitivity study for the H1 error in the rotation variable θ1. Here
we can see that the optimal convergence line lies in the range −1.5 ≤ eH1(θ1) ≤ −2.0 for every
convergence series, meaning that we do not achieve lower convergence as the discretisation is
reĕned. Consequently, it is easy to see from this sensitivity study that it is impossible to achieve
convergence in the H1 norm for the rotation variable with any ĕxed choice of α.

Now that we have ascertained that α ∼ ρ−2 is a roughly optimal choice (except, of course, in
the error measure eH1(θ1)) we perform a traditional convergence study using α ∼ ρ−2. We show
the results in ĕg. .. We can see that we achieve convergence for the transverse displacement
variable z3 in both the L2 and H1 norm. However, for the rotation variable θ we achieve a
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Figure .: Contour plot showing sensitivity of eL2(θ1) with respect to stabilisation parameter
α and number of degrees of freedom dim(U). Simply-supported plate problem.
LPP MaxEnt.
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Figure .: Contour plot showing sensitivity of eH1(θ1) with respect to stabilisation parameter
α and number of degrees of freedom dim(U). Simply-supported plate problem.
LPP MaxEnt.
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Figure .: Plot showing convergence of proposed LPP MaxEnt method for simply-supported
plate problem.

signiĕcantly reduced rate of convergence in the L2 norm, and almost no convergence in the
H1 norm. is negative result conĕrms the results shown in the sensitivity study ĕg. .. We
have not found any of the ĕnite element designs discussed previously to exhibit this lack of
convergence.

In ĕgs. . and . we show plots of the transverse displacement and rotation for a thick
plate ̄t = 0.1 using the LPPMaxEntmethod on a 10×10 grid of nodes + `bubble' nodes. We can
see that we retain the high continuity solution typical of meshless basis functions despite using
an underlying mesh to discretise the shear stresses. e central displacement of the plate is
given as z3h(0.5, 0.5) = 4.2727×10−6 which closelymatches the analytical solution z3(0.5, 0.5) =
4.2728 × 10−6.

In ĕgs. . and . we show plots of the transverse displacement and rotation for a thin
plate ̄t = 0.001 using the LPP MaxEnt method on a 10 × 10 grid of nodes + `bubble' nodes.
Again, we can see that we retain the high continuity solution typical of meshless basis functions
despite using an underlying mesh to discretise the shear stresses. e central displacement of
the plate is given as z3h(0.5, 0.5) = 4.0624 × 10−6 which closely matches the analytical solution
z3(0.5, 0.5) = 4.06237 × 10−6.
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Figure .: Plot of z3h, LPP MaxEnt method. 10× 10 grid + `bubble' nodes, simply-supported
plate, ̄t = 0.1.

Figure .: Plot of θ1h, LPP MaxEnt method. 10× 10 grid + `bubble' nodes, simply-supported
plate, ̄t = 0.1.
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Figure .: Plot of z3h, LPP MaxEnt method. 10× 10 grid + `bubble' nodes, simply-supported
plate, ̄t = 0.001.

Figure .: Plot of θ1h, LPP MaxEnt method. 10× 10 grid + `bubble' nodes, simply-supported
plate, ̄t = 0.001.
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.. Chinosi fully clamped square plate

To make sure that there is not a speciĕc issue with simulating the SSSS plate problem with the
proposed LPP MaxEnt method we will now examine the Chinosi plate problem. is problem
is set on a square domain with hard clamped boundary conditions and the following transverse
loading function:

f(x1, x2) =
E

12(1 − ν2) [12x2(x2 − 1)(5x2
1 − 5x1 + 1)(2x2

2(x2 − 1)2

+ x1(x1 − 1)(5x2
2 − 5x2 + 1))

+ 12x1(x1 − 1)(5x2
2 − 5x2 + 1)(2x2

1(x1 − 1)2

+ x2(x2 − 1)(5x2
1 − 5x1 + 1))]

(.)

giving the following closed-form analytical solutions:

θ1(x1, x2) = x3
2(x2 − 1)3x2

1(x1 − 1)2(2x1 − 1) (.a)

θ2(x1, x2) = x3
1(x1 − 1)3x2

2(x2 − 1)2(2x2 − 1) (.b)

z3(x1, x2) =
1
3x

3
1(x1 − 1)3x3

2(x2 − 1)3

− 2t2

5(1 − ν) [x
3
2(x2 − 1)3x1(x1 − 1)(5x2

1 − 5x1 + 1)

+ x3
1(x1 − 1)3x2(x2 − 1)(5x2

2 − 5x2 + 1)]

(.c)

In ĕgs. . and . we show the plots of the transverse displacement and rotation for a thin
plate ̄t = 0.001. e central displacement of the plate is given as z3h(0.5, 0.5) = 8.1242 × 10−5

which closely matches the analytical solution z3(0.5, 0.5) = 8.1381 × 10−5.
In ĕg. . we show the convergence behaviour for the proposed LPP MaxEnt method for

the Chinosi problem. e trends are the same as for the simply-supported plate, namely that
we do not achieve convergence in theH1 norm for the rotation variable. We conclude that this
is a general issue with the proposed LPP MaxEnt method in its current form.

. Evaluation

In this section we will evaluate the results obtained with the proposed LPP MaxEnt method
using the behaviour of the TRIA ĕnite element discussed in section . as a basis for com-
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Figure .: Plot of z3h, LPP MaxEnt method. 10 × 10 grid + `bubble' nodes, Chinosi clamped
plate, ̄t = 0.001.

Figure .: Plot of θ1h, LPP MaxEnt method. 10 × 10 grid + `bubble' nodes, Chinosi clamped
plate, ̄t = 0.001.
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Figure .: Plot showing convergence of proposed LPP MaxEnt method for Chinosi clamped
plate problem. Note: e convergence rates calculations exclude the ĕrst data point
of each series.

parison. We will then attempt to narrow down the cause of the failure to converge in the H1

norm for the rotation variable θ.
On page  we gave a list of conclusions for the numerical experiments performed with

the TRIA element. e following conclusions, which we draw from the numerical experi-
ments performed with the LPP MaxEnt method, differ in some notable ways with those for the
TRIA ĕnite element scheme:

. If α is too small, the coercivity of the discrete bilinear form is lost, and the convergence of
both z3 and θ deteriorates. In contrast, for the TRIA scheme only the convergence
of z3 deteriorates if α is too small.

. Ifα is too large, the formulation suffers from the shear-locking effect, and the convergence
of both z3 and θ deteriorates. is is identical to the behaviour of the TRIA scheme.

. Convergence is achieved over a large range of α, similarly to the TRIA scheme, ex-
cept of course in the H1 norm for the rotation variable.

. For optimal convergence, the parameter α must be based upon the local discretisation
size. e choice of α ∼ O(ρ−2) seems roughly optimal, which is the dimensionally consis-
tent choice. However, convergence cannot be achieved using any ĕxed α for the rotation
variable in the H1 norm.
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Figure .: Plot showing convergence of unprojected MaxEnt method for the simply-
supported plate problem.

e main difference between the performance of the LPP MaxEnt method and TRIA is
therefore the convergence behaviour of the rotation variable θ. For the LPP Maxent method
the loss of coercivity of the discrete bilinear form negatively effects the convergence of both z3
and θ, rather than just z3 for TRIA. Furthermore, the rate of convergence of θ in the L2

norm is reduced over the rate of convergence of z3 in the L2 norm, with ρ = −0.56 vs ρ = −1.45.
With such a low rate of convergence in the L2 norm it is perhaps no surprise that convergence
cannot be achieved in the H1 norm.

e question then arises, which aspect of the method is causing the poor convergence per-
formance in the rotation variable? We postulate that the LPP procedure could be causing the
deteriorated convergence perhaps due to the mass-lumping procedure, which is a variational
`crime' []. To test this we perform simulations without using the LPP procedure. We solve
eq. (.) using the same choices for the displacementsV3h andRh as in eq. (.) and shear
stresses Sh as in eq. (.). is results in a full saddle point system with explicit solution of the
shear stress unknowns γ. We show the convergence of the method without the LPP procedure
for the SSSS plate problem in ĕg. .. We can see that even without the LPP procedure the
rotation variable still fails to converge in theH1 norm. erefore we can rule out the possibility
that the LPP procedure is causing the problem.

We have also done a variety of numerical experiments with the MINI element. e design
of the MINI element is shown in ĕg. .. e MINI element is similar to our LPP Max-
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Ent method in that it uses ĕrst-order complete basis functions for all problem unknowns dis-
placements, rotations and shear stresses. e inf-sup condition is satisĕed using an additional
bubble function in the transverse displacement space whilst in the LPP MaxEnt we use an ad-
ditional meshless node inserted at the barycenter of each cell. e kernel coercivity condition
is guaranteed using the stabilised mixed weak form, similarly to our method. In our numerical
experiments we have not encountered any issues with achieving convergence using the MINI
element in any relevant norm and variable (results not shown).

We conclude this section by stating that there is a clearly an issue when using a meshless
basis function together with this particular stabilisation approach. Our sensitivity studies have
shown that it is impossible to achieve convergence in the H1 norm for the rotation variable θ
using a ĕxed value of α on a uniform discretisation. By performing numerical experiments
using the un-projected stabilised system we have ruled out the LPP procedure as the potential
cause of the problem. Furthermore numerical experiments performed using the MINI ĕnite
element design demonstrate that it is possible to use ĕrst-order basis functions and still achieve
convergence. It seems that other methods are required to ensure the kernel coercive condition
is met in meshless methods. We will discuss ongoing work towards this in the next section.

. Conclusions

In this chapter we have explored the possibility of developing a generalised mixed method for
the Reissner-Mindlin plate problem using a stabilised mixed weak form. e stabilised mixed
weak form has been used to ensure the kernel coercivity condition is satisĕed automatically.
is change opens up previously unavailable discretisation designs that are more suited to the
Stokes problem than the Reissner-Mindlin problem.

To develop the proposed method we generalised the volume-averaged nodal displacement
procedure of Ortiz et al. to the Reissner-Mindlin problem. We gave the volume-averaged
nodal displacement procedure a more general mathematical framework and we call the re-
sulting method the local patch-projection procedure. We have given a full mathematical and
algorithmic overview of the construction of the LPP method and veriĕed the correct imple-
mentation using the leaky-lid cavity Ęow problem as a benchmark.

In numerical testing of the proposed LPP MaxEnt method we have achieved convergence in
the L2 andH1 norms for the transverse displacement variable z3 and in the L2 norm for the rota-
tions θ. However, we have failed to achieve convergence in theH1 norm of the rotation variable.
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By examining the MINI ĕnite element method we have ruled out the cause being the use of
only ĕrst-order complete basis functions. Furthermore we have eliminated the cause being the
LPP procedure by numerical experiments with the unprojected mixed system. erefore we
conclude that the probable cause of this convergence failure is an incompatibility between the
use of the meshless basis functions and the proposed stabilisation procedure.

We believe the way forward is to design a generalised displacement method that naturally
satisĕes the discrete kernel coercivity condition without the addition of stabilisation. In our
collaboration with A. Ortiz at the Universidad de Chile we have been examining the applica-
tion of the LPP method to incompressible hyperelastic problems. e discrete linearised prob-
lem for each solution step of the non-linear incompressible hyper-elasticity problem also does
not uniformly satisfy the kernel coercivity condition []. We believe that new insight into
this problem will help us re-examine the kernel coercivity issue in the proposed LPP MaxEnt
method for the Reissner-Mindlin plate problem leading to an improved generalised displace-
ment method.
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. Introduction

In this ĕnal chapter we provide conclusions along with recommendations for possible direc-
tions for future work. ese conclusions are based upon the meshless numerical techniques
developed in chapters  to  of this thesis.

. General conclusions

e main objective of the research presented in this thesis was the development of novel mesh-
less numerical methods for the simulation of shear-deformable beam and plate structures that
are free from the adverse effects of shear-locking. e approach taken, for the ĕrst time in a
meshless framework, has been to move from the displacement weak form to the mixed weak
form where the shear stresses are treated as an independent variational quantity in the weak
form. Numerous authors have demonstrated in the ĕnite element literature that this approach
produces the most robust and general techniques.

In chapter  we presented a new method for the Timoshenko beam problem based upon a
mixed variational form. We approximate the shear stresses on an underlying mesh. In the case
of the ME − DG0 method using scheme D (see ĕg. .(a)) we demonstrate that the proposed
method converges to thewell-knownCG1−DG0 Timoshenko beamĕnite element in the local or
Delaunay limit. e CG1 − DG0 ĕnite element is uniformly LBB stable. Because no transform
is used between the reference and global elements of the underlying mesh the robustness of
the meshless approximation ĕeld is retained, and the implementation of the method is greatly
simpliĕed and computational time will be reduced over using two meshless basis functions.
Our method achieves convergence rates of ρ ∼ −2.5 in the L2 norm using ĕrst-order consistent
Maximum-Entropy basis functions for the clamped-clamped beam problem. is compares
well with the SCNI method of Wang and Chen who achieve a convergence rate of ρ ∼ −2.8
but using a second-order consistent basis function. Recently we have extended local patch-
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projection technique presented in chapter  to the scheme D presented in chapter , resulting
in a generalised displacement method for the Timoshenko beam problem. is work will be
presented in an upcoming journal paper.

In chapter  we presented a new method for the Reissner-Mindlin plate problem based upon
a mixed variational form. We identify the correct function space setting for the shear stresses
as the Sobolev space of functions with square integrable rotation. We use rotated Raviart–
omas-Nédélec elements to discretise the shear-stresses along with maximum-entropy ba-
sis functions to discretise the displacements. is technique has close similarities to the well
known mixed interpolation of tensorial component (MITC) family of ĕnite elements. We
present various standard benchmark problems that demonstrate the shear-locking free nature
of the proposed method.

In chapter  we explored the use of a stabilised mixed weak form of the Reissner-Mindlin
problem to construct a generalised displacement meshless method that is free from shear-
locking. e use of stabilisation is a necessary step to ensure that the kernel coercivity condition
is uniformly satisĕed and allows the adaptation of numerical methods originally intended for
the solution of the Stokes problem. Generalised displacement methods are a class of numer-
ical methods that whilst being based upon an underlying mixed formulation are expressed in
terms of the original displacement unknowns only. We implement the inf-sup stable volume-
averaged pressure technique originally proposed by Ortiz et al. [, ]. We develop a gener-
alisation of this technique which we call the local patch-projection (LPP) technique and apply
our formalised version to eliminate the shear stresses from the stabilised mixed weak form.
e resulting linear problem is expressed in terms of the displacement unknowns only. We
present various standard benchmark problems which show that whilst the proposed LPP Max-
Ent method is free from shear-locking and converges in the L2 norm for the transverse dis-
placement and rotation variables and theH1 norm for the transverse displacement variable, we
fail to obtain convergence in the H1 norm for the rotations. Sensitivity studies show that it is
not possible to achieve convergence for any constant choice of the stabilisation parameter on a
ĕxed and uniform grid of meshless nodes. By examining the unprojected (fully mixed) system
we eliminate the LPP procedure being the cause of the problem. By examining theMINI ĕnite
element design we rule out the use of the ĕrst-order consistent basis function being the prob-
lem. We therefore conclude that the likely cause of convergence failure is an incompatibility
between the use of this stabilised mixed weak form and the use of meshless basis functions.

We take this moment to emphasise that some authors working in the ĕeld of meshless meth-
ods for the thin-structural theories have oen failed to show all relevant convergence results.
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Some authors have only reported pointwise-type convergence results, for example, the dis-
placement at the centre of a clamped plate, or a comparison across a line with a super-imposed
analytical solution. Such graphs can be misleading in implying convergence when infact there
is sub-optimal convergence or no convergence at all. ey give little indication for how con-
vergence changes with respect to the small parameter. In this regard we consider the testing
methodology in this thesis to be of a higher standard than that typically found in the meshless
literature and we would encourage other authors to test using a similar methodology to fully
expose any shortcomings in the methods that they propose.

. Future work

ework presented in this thesismight be extended in the followingways. ese extensions are
ordered from the relatively achievable through to more long-term developments which would
constitute signiĕcantly new areas of research.

. Solve the outstanding issue relating to the stabilised mixed weak form and the use of
meshless basis functions. In collaboration with Dr. A Ortiz we are currently investi-
gating the kernel coercivity problem in the incompressible hyper-elasticity problem and
we believe that the outcomes of this work could help solve the kernel coercivity issue in
the current LPP MaxEnt method for the Reissner-Mindlin plate problem, resulting in a
method without the current issues.

. Extend the deĕnition of the local patch-projection operator to allow the use of meshless
basis functions for the auxiliary (pressure or stress) variable function space. It would
be interesting to see whether the additional computational expense of using a meshless
basis leads to any appreciable improvement in accuracy over the cheaper mesh-based
procedures used in this thesis.

. Extend the improved LPP MaxEnt method to the shell problem. is will involve the
application of two projections resulting in a method that is free from the effects of both
shear-locking and membrane-locking.

. Explore the possibility of approximating the shellmid-surface usingmeshless shape func-
tions. Because of their high continuitymeshless basis functions are an ideal candidate for
approximating the shell mid-surface from a smooth CAD geometry. Mesh-based tech-
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niques can struggle with this. is could be an interesting cross disciplinary project with
academics working in the ĕeld of computational geometry.

. Develop analytical tools for to examine the stability of meshless methods based onmixed
weak forms. Whilst we have used the kernel coercivity and LBB conditions as general
guidelines for the design of the mixed meshless methods in this thesis, it would certainly
be more satisfying to have a direct analytical proof that the methods are stable. To our
knowledge there is currently no work on extending well-known analytical methods such
as the macro-element technique from ĕnite element to meshless methods.

. Explore the development of enriched mixed and generalised displacement partition of
unity methods. Because of the generality of the mixed approach used in this thesis it
is a promising strategy for the development of new methods that are free from lock-
ing and use more complex basis functions and enrichments. For example, a family of
enriched MITC ĕnite elements with modiĕed reduction operators to eliminate shear-
locking would be a signiĕcant advance in ĕnite element technology.
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