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Abstract

Over the past few decades, dynamic solid mechanics has become a major field of in-

terest in industrial applications involving crash simulation, impact problems, forging

and many others to be named. These problems are typically nonlinear due to large

deformations (or geometrical nonlinearity) and nonlinear constitutive relations (or

material nonlinearity). For this reason, computer simulations for such problems are

of practical importance. In these simulations, the Lagrangian formulation is typi-

cally used as it automatically satisfies the mass conservation law. Explicit numerical

methods are considered to be efficient in these cases.

Most of the numerical methods employed for such simulations are developed

from the equation of motion (or momentum balance principle). The use of low-

order elements in these numerical methods often exhibits the detrimental locking

phenomena in the analysis of nearly incompressible applications, which produces an

undesirable effect leading to inaccurate results. Situations of this type are usual in

the solid dynamics analysis for rubber materials and metal forming processes. In

metal plasticity, the plastic deformation is isochoric (or volume-preserving) whereas,

the compressible part is due only to elastic deformation.

Recently, a new mixed formulation has been established for explicit Lagrangian

transient solid dynamics. This formulation, involving linear momentum, deforma-

tion gradient and total energy, results in first order hyperbolic system of equations.

Such conservation-law formulation enables stresses to converge at the same rate as

velocities and displacements. In addition, it ensures that low order elements can be

used without volumetric locking and/or bending difficulty for nearly incompressible

applications.

The new mixed formulation itself shows a clear advantage over the classical

displacement-based formulation, due to its simplicity in incorporating state-of-the-

art shock capturing techniques. In this research, a curl-preserving cell centred finite

volume computational methodology is presented for solving the first order hyperbolic

system of conservation laws on quadrilateral cartesian grids. First, by assuming that

the approximation to the unknown variables is constant within each cell. This will

lead to discontinuities at cell edges which will motivate the use of a Riemann solver

by introducing an upwind bias into the evaluation of the numerical flux function.

Unfortunately, the accuracy is severely undermined by an excess of numerical dis-

sipation. In order to alleviate this, it is vital to introduce a linear reconstruction

procedure for enhancing the accuracy of the scheme. However the second-order spa-
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tial method does not prohibit spurious oscillation in the vicinity of sharp gradients.

To circumvent this, a nonlinear slope limiter will then be introduced.

It is now possible to evolve the semi-discrete evolutionary system of ordinary

equations in time with the aid of the family of explicit Total Variation Diminishing

Runge Kutta (TVD-RK) time marching schemes. Moreover, a correction procedure

involving minimisation algorithm for conservation of the total angular momentum is

presented. To this end, a number of interesting examples will be examined in order

to demonstrate the robustness and general capabilities of the proposed approach.
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“You can know the name of a bird in all the languages of the world, but when

you’re finished, you’ll know absolutely nothing whatever about the bird. So let’s

look at the bird and see what it’s doing – that’s what counts. I learned very early

the difference between knowing the name of something and knowing something”.

Richard Feynman (1918− 1988)
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Chapter 1

Introduction

“There is one thing one has to have: either a soul that is cheerful by nature, or a

soul made cheerful by work, love, art and knowledge”.

Friedrich Nietzsche (1844− 1900)

3
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1.1 Motivation

Solid mechanics is concerned with the behaviour of a general solid continuum prob-

lem subjected to external actions. Historically, solid mechanics was of primary

interest for the constructions of buildings and structures, starting with the pioneer-

ing works of Leonardo da Vinci (1452-1519), Galileo Galilei (1564-1642) and Isaac

Newton (1642-1727). Following the successful achievement by Isaac Newton in stat-

ing the laws of motion, great progress was made from the early seventeenth to the

late nineteenth century, notably by James Bernoulli (1654-1705), John Bernoulli

(1667-1748), Euler (1707-1783), Charles-Augustine Coulomb (1736-1806), Augustin

Louis Cauchy (1789-1857), Robert Hooke (1635-1703) and others. At present, there

exists a considerable number of principles in continuum mechanics [1].

An understanding of the fundamental laws of solid mechanics is of practical im-

portance in mechanical, aeronautical and civil engineering. Additionally, with the

advent of modern materials, it is necessary to develop more sophisticated constitu-

tive theories1 in order to describe the phenomenological responses of materials [2–7].

In general, a solid typifies a body with a firm shape, as opposed to a fluid2, while a

structure refers to a solid which is comprised of cables3, beams4 and plates [8–11].

In practice, structural analysis is an indispensable tool that can drive an en-

gineering design process without having to test it. Its objective is to analyse a

structural system so as to predict the behaviour (i.e. deformations and stresses) of

the structure due to external forces. The relation of the analysis process to other

processes is depicted in Figure 1.1. In this thesis, the structural modelling and

analysis will be considered, but more focus is placed on the latter.

There are two broad classes of external loads, namely static and dynamical load-

ing [12]. Static forces are those that are applied slowly to a structure and thus

of steady-state in character. In contrast, dynamic forces5 are time-varying forces

which can cause the vibration of a structure. Many engineering problems in which

the dynamic effects are of particular importance are transportation, manufacturing

and civil engineering structures under environmental loadings (i.e. wind and snow

load). One of the most striking examples that has had a lasting effect on the field

of structural dynamics is due to the collapse of the Tacoma Narrows suspension

bridge that took place in Washington on November 7, 1940 (see Figure 1.2). The

1In civil engineering structures, some modern design codes are based on Limit State Design

(LSD) where plastic analysis has been pointed out. This analysis reveals that the structure is

capable of resisting loads after the elastic limit and will only collapse under the extent of plasticity.
2A fluid is a substance that continuously deforms under an applied shear stress.
3Cables are flexible structural elements. The deformed shape depends on the nature and mag-

nitude of the applied load. When a cable is pulled at either end, a straight shape is achieved. This

is known as tie-rod.
4Beams are the horizontal elements that carry loads by bending since the loads are applied

transversely to their longitudinal axis.
5In dynamic analysis, it is necessary to consider the inertial forces produced by the accelerating

masses.
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Figure 1.1: Role of structural analysis in the design process of a structure.
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destruction is used as a lesson in the necessity to consider both aerodynamics and

resonance effects in civil and structural engineering.

From an analytical viewpoint, the conventional linear analysis is restricted to

infinitesimal strain deformation theory; for instance, concrete and steel civil struc-

tures.6 Unfortunately, many problems of practical interest, such as forging, machin-

ing, crash and collision tests (see Figure 1.3), typically involve a considerable change

of shape and are often accompanied by nonlinear material behaviour [3, 4, 6, 7]. In

order to simulate these convoluted nonlinear problems, the displacement-based for-

mulation is used [17].

The traditional solid dynamics formulation, where its primary variable is the

displacement field, is solved by standard finite element spatial discretisation to-

gether with a family of Newmark time integration schemes. However, the resulting

space-time discretised formulation presents a series of shortcomings. First, New-

mark’s method has a tendency for high frequency noise to persist in the solution

and most importantly, its accuracy is remarkably degraded once artificial damp-

ing is employed. Some minor modifications were introduced to improve the accu-

racy of numerical dissipation without the inclusion of a discontinuity sensor, which

consequently made the Newmark scheme unsuitable for problems where shocks

are present [18–21]. Additionally, it is well known that using linear elements in

displacement-based FE leads to second order convergence for displacements but one

order less for strains and stresses.
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Aeroelastic instabilities of the Tacoma Narrows suspension bridge.

It is also known that constant stress elements exhibit volumetric locking in in-

compressible or nearly incompressible applications; for instance, plastic flows involv-

ing large isochoric strains. In order to eliminate the locking phenomena, a variety

of different approaches have been developed. First, p-refinement can be introduced

where high order interpolating functions are adopted [22]. Another general approach

6Infinitesimal strain theory deals with the small deformations in a continuum body [1, 13–16].
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(b)

Figure 1.3: (a) Crash test; and (b) Collision test

is to introduce a multi-field Veubeke-Hu-Washizu (VHW) type variational principle,

which enables the use of independent kinematic descriptions for the volumetric and

deviatoric deformations [7]. In particular, the mean dilatation technique, in which a

constant interpolation for volumetric variables over an element is involved, is widely

accepted. This specific technique can be identified as a particular case of Selective

Reduced Integration (SRI), where the volumetric stress components are suitably

underintegrated. Unfortunately, this scheme cannot be applied within the context

of low order elements (i.e. linear triangles and linear tetrahedrons) as these ele-

ments have already used the simplest Gaussian quadrature rule. In [23], Bonet and

Burton suggested that the volumetric strain energy is approximated by evaluating

averaged nodal pressures in terms of nodal volumes while the deviatoric component

is treated in a standard manner. However, the resulting solution behaved poorly

in bending dominated cases. To circumvent this difficulty, Dohrmann et al. [22]

proposed a new linear tetrahedron by applying nodal averaging process to the whole

small strain tensor. Furthermore, Bonet et al. extended this application to large

strain regime with the idea of employing an averaged nodal deformation gradient

tensor as the main kinematic variable [24].

This thesis offers an alternative computational framework to prevent the detri-

mental locking effects by developing a mixed formulation that permits the use of any

low order elements. Insofar as the formulation is expressed as a system of conserva-

tion laws, where both the velocities and deformation gradient tensor are the primary

conserved variables, stresses converge at the same rate as velocities and displace-

ments. Moreover, this system of equations can be discretised using a cell centred

Finite Volume Method (FVM), typically based on the use of Riemann solvers and

shock capturing schemes. A wealth of research has been carried out for developing

the FVM in Computational Solid Dynamics (CSD). The literature on this topic has

mushroomed in recent years and will be briefly summarised in the next section.
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1.2 State of the Art

1.2.1 Finite Volume Method vs Finite Element Method

Traditionally, Finite Element Method (FEM) has been extensively used for problems

in Computational Solid Mechanics (CSM) [10]. As a contemporary, Finite Volume

Method (FVM) has established itself within the field of Computational Fluid Dy-

namics (CFD) [25, 26]. Both schemes can be considered as methods of weighted

residuals where they differ in the choice of weighting functions [27]. The finite el-

ement Galerkin method treats the shape function as the weighting function and

can be easily extended to higher order by increasing the order of polynomial inter-

polation. In contrast, the finite volume method results by selecting the weighting

function as element piecewise unit constant. These two numerical techniques are

equivalent in many applications [28].

Over the past few decades a number of authors have used the FVM to dis-

cretise the traditional displacement-based equation in solid mechanics. It is now

possible to classify this method into two approaches: vertex-based [27, 29–32] and

cell-centred [33–37]. The first approach is based upon standard FEM [38] and em-

ploys shape functions to describe the variation of the displacement field over an

element and is very well suited to complex geometries [29, 32]. This approach can

be generally classified as cell-vertex FVM [25,27]. However, it should be noted that

there is a specific class of cell-vertex methods that employs non-overlapping control

volumes [28, 39, 40], which will be referred to as a vertex-based FVM. The second

approach is based upon traditional FVM [41] that has been widely used in CFD [25].

This particular technique has been applied in CSM involving structured [33,34] and

unstructured meshes [35–37,42].

Unfortunately, both of the finite volume approaches discussed above are re-

stricted to the second order dynamic equilibrium equation for the displacement

field [43, 44], which subsequently do not make use of any upwind-biased numerical

flux [45–57]. Recently, a new mixed-formulation based upon first order hyperbolic

system of conservation laws has been proposed for explicit solid dynamics [58, 59].

Numerical methods for solving nonlinear systems of hyperbolic conservation laws

require a monotone numerical flux [60]. The choice of the flux computation has

a profound influence on the properties of the resulting schemes [61, 62]. A refined

approach in utilising wave propagation information contained in the new mixed

formulation to construct the numerical flux is introduced in [63,64].

1.2.2 Locking

The standard low order elements exhibit severe locking for incompressible or nearly

incompressible materials. Rubber or rubber-like materials experience nearly incom-

pressible material behaviour and are characterised by a large ratio of bulk modulus

to shear modulus [65–68] (see Figure 1.4). In metal plasticity, the plastic deforma-
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Figure 1.4: Rubber or rubber-like materials: (a) Bridge bearing pad; (b) Structural

bearings; (c) Engine mountings; and (d) Tyre.
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tion is isochoric and the compressible part is due to elastic deformations that remain

small in many applications [7].

Problems can arise in the presence of incompressibility which lead to the so-called

volumetric locking phenomenon [22–24]. In this case, the standard linear elements

are not able to enforce a complete nullity of the volumetric strain. This leads to an

overestimation of the stiffness related to the volumetric part, which results in overly

stiff behaviour [38, 69,70].

To alleviate this, different approaches have been developed. Simo et al. [71]

proposed a three-field variational method with independent constant pressure and

constant dilatation. However, this proposed element is hampered by hourglassing7

under certain conditions [72]. In the so-called F -bar methodology, the standard de-

formation gradient F is replaced by a modified deformation gradient F̄ = (J̄/J)1/3F

with J = detF and J̄ = const. Nagtegaal et al. [73] introduced the dilatation pa-

rameter J̄ =
∫

V
JdV/

∫

V
dV , which coincides with the three-field variational method

discussed above. This method is widely known as mean dilatation approach. A

slightly different definition for J̄ = Je = detFe at the centroid of the element is

also performed in [74, 75]. First by noting that a family of geometrically linear En-

hanced Assumed Strain (EAS) elements has been developed by [76, 77]. Simo and

Armero [78] extended the original idea to finite strain range, where the indepen-

dent displacement gradient field is redefined as H = ∇0u + H̃ where H̃ denotes

the enhanced displacement gradient tensor. Another attractive alternative in the

treatment of nearly incompressible models is Selective Reduced Integration (SRI)

method. The crucial idea underlying SRI is that a full numerical integration is em-

ployed for the isochoric terms while a selective reduced integration is imposed for

the volumetric stress component [69, 79,80].

A clear advantage of using mixed variational, F-bar or EAS approaches is that

they are directly applicable to all constitutive models. In contrast, SRI method

is used for models with decoupled isochoric and volumetric behaviours. Insofar as

an isochoric-volumetric decoupled material behaviour is assumed for most practical

applications, the SRI method can be employed without any difficulties. All methods

described above are capable of producing locking-free results, but only restricted to

both four-node quadrilateral and eight-node hexahedron elements. Efforts to de-

velop linear triangular and linear tetrahedral elements that are effective in nearly

incompressible applications have only been partially successful, as the resulting for-

mulations suffer from artificial mechanisms similar to hourglassing [22–24].

1.3 Scope of the Thesis

This thesis deals with the numerical technique required to simulate the responses

of Lagrangian fast dynamic problems. The aim of this technique is to enable the

7Hourglassing is described as spurious zero-energy modes of deformation [6, 38, 69]. The exis-

tence of low-energy modes can only be detected via an eigenvalue analysis of the tangent matrix.
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development of a computer program that is capable of alleviating the problems

elucidated as follows:

• Non-physical oscillation in the vicinity of shock discontinuities.

• Volumetric or shear locking in nearly incompressible deformations or bending

dominated situations.

Furthermore, the proposed methodology should be able to predict the following

properties with respect to time:

• Deformed shape at particular time instant t.

• Other internal quantities such as pressure, internal and kinetic energy, linear

and angular momentum.

• Numerical dissipation.

The formulation of a Lagrangian fast dynamic analysis is based on a first order

hyperbolic system of conservation laws8, which is crucially governed by two phys-

ical laws, namely the momentum balance principle9 and the deformation gradient

conservation principle. Both phycial laws are coupled with each other; typical of a

so-called mixed formulation10 [38]. In the case of reversible process, these balance

principles have to be supplemented by an isothermal elastic constitutive law in order

to describe the mechanical behaviour of a particular class of materials. Nonethe-

less, many problems of physics and engineering have implications for irreversible

processes (i.e. thermal effects and dissipative inelastic mechanisms). In order to

underline such phenomenon, it is essential to solve for an additional state variable,

namely the first law of thermodynamics (or energy balance principle), where the

constitutive models are more refined than those of isothermal elasticity. It is worth

noting that, during a reversible process, the energy balance principle can be obtained

by suitable integration of the momentum conservation principle [3, 4].

Unfortunately, it is practically almost impossible to find analytical solutions that

satisfy the system of conservation laws for the majority of problems due to geomet-

ric and material nonlinearities11 [3, 6, 7]. In order to solve the system of equations

approximately, a cell centred FVM is used. The spatial semi-discretisation is per-

formed on a standard cell-centred cartesian grid, where the primary variables are

8The non-conservative form of governing equations is not suitable for numerical solutions with

strong discontinuities [26, 60,81–84].
9The momentum balance principle is also known as the balance of momentum principle or the

momentum conservation principle.
10The mixed formulation is defined by the fact that the number of dependent unknowns can

be reduced in the governing equations by suitable algebraic operation. Otherwise, an irreducible

formulation is recovered.
11The material nonlinearity is defined as the stress-strain behaviour which is given by an inelastic

constitutive relationship whereas, the geometric nonlinearity is important in large deformation

behaviour.
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defined at the centroid of the cells. Under this circumstance, any control volume

can be identified with the existing grid and typically, the field variables are approxi-

mated in every cell by means of piecewise constant shape functions, which yield first

order accuracy in space [85].

Higher order spatial accuracy can be achieved by introducing a suitable recon-

struction procedure for conservative variables within each cell, which then requires

the neighbouring or adjacent information relative to the particular cell under con-

sideration. A piecewise linear approximation to the solution variables is sufficient

to be considered. However, the linear approximation does not prohibit unphysi-

cal oscillations in shock dominated problems [26, 60, 84]. In order to rectify this,

a modern shock capturing technique which incorporates a nonlinear limiter is in-

troduced [84,86,87]. A general predictor-corrector reconstruction procedure will be

presented.

The discontinuity at every cell interface motivates the use of a Riemann solver

to evaluate the interface fluxes. Hence, a Lagrangian contact algorithm for the

computation of such fluxes will also be derived. Furthermore, the semidiscrete non-

linear evolution equations will be advanced forward in time by using a family of

Total Variation Diminishing Runge-Kutta (TVD-RK) time stepping schemes [88].

For consistency, the order of accuracy in time should be matched with the order of

spatial accuracy.

In order to guarantee the existence of a single-valued continuous displacement

field, it is essential to obtain a zero-curl deformation gradient tensor to ensure

compatible deformations12. Commonly available finite volume updated schemes

in [26, 60, 84] introduce disturbances in the solution as the treatment of this con-

straint is not handled properly. To alleviate this, it is necessary to control curl errors

in order to develop a robust and accurate scheme. A new conservative FVM that is

locally curl-preserving will be presented.

The proposed computational methodology mentioned above does not necessar-

ily preserve the total angular momentum of a system, which then induces energy

loss under long-term analysis. For this purpose, a correction procedure involving a

minimisation technique will be introduced.

To this end, a series of examples will be examined in order to demonstrate the

robustness and general capabilities of this numerical technique. Comparisons of the

proposed approach with the traditional displacement-based formulation will also be

performed.

1.4 Outline

In order to elaborate the objectives indicated in the previous section, this thesis is

organised as follows:

12In the classical infinitesimal strain deformation, these constraints are expressed by Saint-

Venant’s compatibility equations [89]; that is, ∇× (∇× ε) = 0.
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• Chapter II explores the fundamentals of reversible Lagrangian elastodynam-

ics [43,44,90]. The discussion starts with the derivations of the laws of physics

for Lagrangian fast dynamics. The physical laws are valid for any continuum

body, regardless of the material of which the body is made. A constitutive

model is introduced so as to distinguish between different types of material [6].

These physical laws can then be combined into a single system of conservative

equations [82,91].13 It becomes a basic ingredient for studying the eigenstruc-

ture, which in turn leads to the development of a linearised Riemann solver

that is required at interface fluxes [84].

• Chapter III discusses irreversible processes14 that are always encountered

in nature where constitutive relations are more complex than in isothermal

elasticity [3]. In such cases, thermal effects and other dissipative mechanisms

cannot be neglected. Laws of thermodynamics, hyperelastic-plastic materials

and the Rankine-Hugoniot relations will be introduced [2, 7].

• Chapter IV presents the numerical techniques required to solve the system

of conservative equations. These include: cell-centred based discretisation

[25, 60, 92]; Monotone Upstream Scheme for Conservation Law reconstruction

procedure [93–95]; nonlinear slope limiter [86, 87]; a family of TVD Runge-

Kutta time stepping schemes [88,96,97] and maximum time increment [98].

• Chapter V presents a general framework for describing the highly nonlinear

numerical interface flux function. This framework generalises the linearised

Riemann solver and is derived based upon the Rankine-Hugoniot jump condi-

tion of the linear momentum variable.

• Chapter VI examines the proposed computational methodology required to

conserve the total angular momentum of a system in order to ensure that

physically meaningful solutions are produced under long-time integration [99–

103].

• Chapter VII presents a new locally curl-preserving finite volume updated

scheme in a treatment for satisfying the compatibility condition of strains

[104,105].

• Chapter VIII deals with consistency and Von-Neumann stability analysis

of the one-dimensional linear convection equation [25, 60]. Once the method

is proven to be consistent and stable, it shall automatically satisfy the conver-

gence requirement [106].

13Navier-Stokes equations is widely used in computational fluid dynamics. A particular case,

known as Euler equations, is recovered if the viscosity and heat conduction are neglected. Discus-

sions about these mathematical models can be found in any CFD textbooks.
14Irreversible process is also regarded as natural process.
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• Chapter IX simplifies the general formulations derived previously for 1D

problems such as: governing equations; flux Jacobian matrix; eigenstructure;

linearised Riemann solver; predictor-corrector reconstruction procedure and

characteristic theory. Some 1D rod examples will be demonstrated.

• Chapter X is devoted to some practically interesting 2D examples: plate;

beam and column in bending application; a punch test; tensile case and impact

problems.

• Chapter XI concludes the thesis by summarising the main points and indi-

cating some suggestions for future research works.
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2.1 Introductory Remarks

This chapter is devoted to a general discussion on several formal aspects of explicit

Lagrangian fast dynamic analysis within the context of elastic wave propagation1.

There are many references available on the basic theory of elastodynamics (see

[32,37,90,107–112]). In spite of that, a great deal of literature is focussed on steady-

state (or elastostatic) problems [29,30,35,113], .

The classical displacement-based formulation is typically solved by standard fi-

nite element spatial discretisation together with a family of Newmark time inte-

grators. It is well known that constant stress elements exhibit volumetric locking

in incompressible or nearly incompressible dynamic applications and also perform

poorly in bending dominated situations [23,24,69,75,80,114]. One of the approaches

to surmount these difficulties is to treat deformation gradient tensor as an indepen-

dent variable [58].

This chapter begins with problem variables that constitute a new mixed for-

mulation for reversible elastodynamics. The conservative equations (also known as

balance principles) are then derived. Inasmuch as a rubber (or rubber-like) mate-

rial is considered, the most appropriate constitutive law for describing its behaviour

(such that the model can withstand very large strains without any permanent defor-

mation) will be the nearly incompressible Neo-Hookean (NH) hyperelastic material.

The conservation-law formulation is subsequently presented which motivates the

study of eigenstructure so that a linearised Riemann solver can be derived.

In order to achieve a better understanding of the sections that follow, it is nec-

essary to briefly discuss some mathematical preliminaries2. The flowchart in Figure

2.1 illustrates the structure of this chapter.

2.2 Problem Variables

Motion of a continuum body is defined by a deformation mapping from a reference

volume V to the corresponding current volume v(t) (see Figure 2.2). During motion

φ, the position x of a material particle X at any arbitrary time t is of the form

x = φ(X, t); material coordinate X is used to label any particle of a body at time

t = 0. The deformation gradient tensor, F (X, t), is generally expressed as

F (X, t) =
∂φ(X, t)

∂X
=
∂x(X, t)

∂X
. (2.1)

This tensor is said to be a two-point tensor due to its ability to transform a vector

from the undeformed configuration to the deformed configuration [7] and transpires

that a body will experience a homogeneous deformation if F itself is independent of

X. In addition, the determinant of F (denoted by Jacobian J) relates differential

1Elastic wave propagation is alternatively known as elastodynamics.
2The basic knowledge of mathematical preliminaries (i.e. linear algebra, continuum mechanics

and hyperbolic equations) is summarised in Appendices (A - C).
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Figure 2.2: Motion of a body.

volumes in both material and spatial configurations dv = JdV . More precisely,

the condition, J ∈ R
+, has to be satisfied since a body is not allowed to penetrate

itself [115]. A situation in which J ≤ 0 is physically unacceptable. The material

velocity v(X, t) and linear momentum per unit of undeformed volume, p(X, t), are

given as

v(X, t) =
∂φ(X, t)

∂t
, p(X, t) = ρ0v(X, t). (2.2)

During isothermal process, it is sufficient to consider p and F as problem variables

for which the corresponding standard conservation laws can be derived. This pro-

cess allows the energy balance principle, ET , to be uncoupled from the rest of the

conservation laws [1, 3]. A general energy principle will be presented in Section 3.2

with the aid of the laws of Thermodynamics.

2.3 Conservation Laws of Physics

This section presents the Total Lagrangian description3 for a new mixed formulation

of Lagrangian explicit dynamics solid mechanics. The formulation is crucially gov-

erned by two physical laws, namely the momentum balance principle [3, 4, 6, 7, 116]

and the deformation gradient conservation principle [58, 59, 63, 64, 117, 118]. In

essence, these physical laws are collectively known as a general statement which

is not restricted in their application to any class of material.

3In Total Lagrangian Formulation (TLF), all variables are referred to undeformed configuration.

The decisive advantage is that all derivatives with respect to spatial co-ordinates are calculated

based upon an original undeformed configuration [115].
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2.3.1 Momentum Balance Principle

For a continuum, momentum balance principle states that the rate of change of linear

momentum of particles (which lie within a material volume V ) is equal to resultant

forces applied to these particles. Mathematically, this principle is expressed as

d

dt

∫

V

p(X, t) dV =

∫

V

ρ0b(X, t) dV +

∫

∂V

t dA; p(X, t) = ρ0v(X, t), (2.3)

where p is the linear momentum per unit of material volume, ρ0 represents the

constant material density, v is the velocity field, b stands for the body force per

unit mass and t denotes the nominal traction vector. Since the material volume

integral does not evolve in time4, (2.3) then leads to a local differential momentum

conservation law

∂p(X, t)

∂t
−∇0 · P (X, t) = ρ0b(X, t); [∇0 · P ]i = [DIVP ]i =

∂PiI
∂XI

, (2.4)

with the help of t = PN together with the divergence theorem [3, 7, 115]. The

two-point tensor P describes the first Piola-Kirchhoff stress tensor, N represents

the material outward unit normal vector and ∇0 denotes the gradient operator in

undeformed space. It is worth noting that (2.4) is a standard Lagrangian equation of

motion for continuum mechanics and most importantly, it reduces to the equilibrium

equation if the inertial term is neglected [1, 6]. Note that the partial derivative of

p(X, t) is taken at constant X, or in other words, (2.4) is derived by following the

material particle X.5

2.3.2 Deformation Gradient Conservation Principle

Deformation gradient tensor, F , plays a key role in describing kinematics for large

deformation analysis6 [3, 6, 7, 115, 116, 123, 124]. In order to alleviate shear locking

4If a control volume deforms with body motion, the volume will be transformed from a spatial

representation to a reference representation. This procedure is known as Reynolds Transport

Theorem (RTT). Literature such as [1, 13,115,119–122] review this concept.
5In a purely mechanical reversible process, an energy equation can be derived as follows. Mul-

tiplying the momentum conservation law by a velocity vector v gives

∂p

∂t
· v − (∇0 · P ) · v = ρ0b · v.

Then, integrating over an arbitrary domain V with the aid of divergence theorem yields

d

dt

∫

V

1

2
ρ0v · v dV +

∫

V

P :
∂v

∂X
dV =

∫

∂V

t · v dA+

∫

V

ρ0b · v dV.

By noting that P : ∂v
∂X = P : Ḟ , equation above can be re-written as

d

dt

∫

V

1

2
ρ0v · v dV +

∫

V

P : Ḟ dV =

∫

∂V

t · v dA+

∫

V

ρ0b · v dV. (2.5)

This energy balance principle will be revisited in Section 3.2.
6In linear elasticity, deformation gradient tensor is approximated by F ≈ I, which implies that

the magnitude of the engineering strain ε is restricted to an infinitesimal value.
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as well as volumetric locking, one of the locking-free methods is to treat F as an

independent variable with the aim of increasing the degrees of freedom (or flexibility)

of a problem [24]. For this purpose, conservation of deformation gradient tensor has

to be derived by noting that the time derivative of F (X, t) is related to the velocity

vector v(X, t) as

∂F

∂t
= ∇0v. (2.6)

With the help of the identity tensor I, (2.6) can be alternatively written as

∂F

∂t
−∇0 · (v ⊗ I) = 0. (2.7)

This can be considered as a generalisation of continuity equation in fluid dynamics.7

Nonetheless, it is essential to express (2.7) in a general integral form

d

dt

∫

V

F dV =

∫

∂V

v ⊗N dA; v = p/ρ0,

with the aid of the divergence theorem.

2.4 Constitutive Relationship: Perfectly Elastic

Material

In order to close the coupled system, viz. (2.4) and (2.7), both derived balance prin-

ciples have to be supplemented by a constitutive law satisfying two fundamental

requirements, namely frame invariance8 (or objectivity) and the laws of Thermody-

namics [80].

Rubber9 (or rubber-like) materials are used in various engineering applications,

like engine mounts, building and bridge bearings, tyres and vibration-isolation de-

vices (see Figure 1.4). In general, these materials are characterised by high de-

formability and reversibility of deformation. As a result, they exhibit a nonlinear

hyperelastic behaviour. Theoretical analysis of hyperelasticity has been performed

in [65–68]. From a phenomenological viewpoint, the strain energy function ψ is

7Eulerian description of mass conservation law in fluid mechanics is

∂ρ

∂t
+∇x · (ρv) = 0,

where ∇x = ∂/∂x.
8Constitutive equations must remain invariant when rigid body motion is superimposed on a

deformed configuration. A basic review of this concept can be found in [1, 3, 6].
9Rubber has flexible molecular structures which able to be stretched up to several times its

original length. This material can be treated as a linearly elastic model at small strains. However,

a nonlinear elasticity should be considered when analysing rubber behaviour in large deformations.
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postulated as a function which depends wholly on F , ψ = ψ(F ). Additionally, ψ

can also be represented in terms of invariants10 for isotropic behaviour11.

2.4.1 Isotropic Finite Hyperelasticity Theory

For a hyperelastic (or Green-elastic) model, the existence of a Helmholtz free energy

functional, which is defined per unit of undeformed volume, is postulated [3]. Based

on the definition of Legendre transformation, a general free energy functional is

expressed as

ψ(F , θ) = e(F , η)− θη. (2.8)

Under isothermal process, thermodynamic variables (i.e. entropy η and temperature

θ) are neglected. The above equation is thus reduced to ψ(F ) = e(F ) where e is

the internal energy.

By using Clausius-Planck inequality, an internal dissipation rate is generally

denoted as

Dint = P : Ḟ − ė+ θη̇ ≥ 0. (2.9)

Note that internal dissipation Dint is zero in a reversible process. For the class of

isothermal perfectly elastic materials, (2.9) degenerates to the following equality

Dint = P : Ḟ − ψ̇ =

(

P − ∂ψ(F )

∂F

)

: Ḟ = 0. (2.10)

Since Ḟ can assume arbitrary values, the First Piola-Kirchhoff stress tensor is de-

duced as

P =
∂ψ(F )

∂F
. (2.11)

Laws of Thermodynamics within the context of irreversible processes will be dis-

cussed in the next chapter.

The strain (or stored) energy functional can be conveniently decomposed into

the summation of deviatoric12 ψdev(J
−1/3F ) and volumetric components ψvol(J) as

ψ(F ) = ψdev(J
−1/3F ) + ψvol(J), (2.12)

which in turn, leads to

P = Pdev + Pvol; Pdev =
∂ψdev
∂F

; Pvol =
∂ψvol
∂F

. (2.13)

10It is easy to demonstrate that invariants of C are identical to invariants of b: [7]

IC = tr(C) = tr(F TF ) = tr(FF T ) = tr(b) = Ib;

IIC = tr(CC) = tr(F TFF TF ) = tr(FF TFF T ) = tr(bb) = IIb;

IIIC = det(C) = det(F TF ) = det(FF T ) = det(b) = IIIb.

Here, the right and left Cauchy-Green deformation tensors are defined by C = F TF and b = FF T ,

respectively.
11Isotropy is defined by requiring the constitutive behaviour to be identical in any material

direction.
12Deviatoric is alternatively known as isochoric or volume-preserving.
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The volumetric stress term can also be further developed by introducing pressure p,

Pvol =
dψvol
dJ

∂J

∂F
= pJF−T ; p =

dψvol(J)

dJ
; J = detF . (2.14)

The simplest model satisfying the conditions described above is the nearly incom-

pressible Neo-Hookean (NH) material. Its deviatoric and volumetric parts are de-

scribed as13

ψdev =
1

2
µ [J−2/3(F : F )− 3]; ψvol =

1

2
κ(J − 1)2. (2.15)

Here, κ is the bulk modulus which only appears in the volumetric term whereas

the shear modulus µ, on the other hand, appears in the deviatoric counterpart. In

addition, the expressions for deviatoric component of stress tensor and pressure p

can be obtained as

Pdev = µJ−2/3[F − 1

3
(F : F )F−T ], p = κ(J − 1), (2.16)

respectively.14

2.4.2 Linear Elasticity

Engineering materials (i.e. concrete, steel and metal) usually undergo a very small

change in shape. Under this circumstance, there is no difference between deformed

and undeformed configurations.

To this effect, a linear elastic constitutive relationship is considered as an excel-

lent model to describe small deformation behaviour for these engineering materials.

The stored energy functional, ψ, is defined by15

ψ (ε) =
1

2
λ (trε)2 + µ (ε : ε) , (2.17)

where µ and λ are the so-called Lamé constants. It is worth mentioning that Saint-

Venant Kirchhoff material is recovered if ε is replaced by the Green-Lagrange strain

tensor E, which is defined as E = (C − I) /2 where C = F TF .

In general, a deformation gradient tensor is conveniently split into a displacement

gradient H = ∂u/∂X and a unit (or identity) matrix I; that is, F = I + H . In

13The strain energy functional of Neo-Hookean material can be alternatively denoted in an

invariant form:

ψ(IC , IIC , IIIC) =
1

2
µ
(

III
−1/3
C

IC − 3
)

+
1

2
κ
(

III
1/2
C
− 1
)2

.

14Note that the deviatoric nature of Pdev implies that Pdev : F = 0, instead of tr(Pdev) = 0

(see [7]).
15In linear elasticity, material description of strain energy functional can be expressed in an

invariant form as

ψ(Iε, IIε, IIIε) =
1

2
λ I2ε + µ IIε.
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the context of infinitesimal strain, an assumption is made such that only linear

contributions of H are considered. In what follows, the engineering (or true) strain

ε and its trace can be further developed as

ε =
1

2

(
H +HT

)
=

1

2

(
F + F T − 2I

)
; tr(ε) = tr(H) = tr(F )− 3. (2.18)

In the absence of deformation (F = I), the stored energy functional vanishes as

expected (ψ(ε) = 0). Based on (2.11), after some simple algebraic manipulations,

the stress tensor is easily obtained as

P (F ) = σ(F ) = µ

[

F + F T − 2

3
tr(F )I

]

+ κ (tr(F )− 3) I. (2.19)

The above stress tensor (widely known as engineering stress σ) is clearly a symmetric

tensor field [1, 6, 7, 13, 115,120,121,125].

2.5 Conservation-Law Formulation

The physical laws for linear momentum and deformation gradient are summarised

here for convenience:16

∂p

∂t
−∇0 · P = ρ0b, (2.20a)

∂F

∂t
−∇0 · (v ⊗ I) = 0, (2.20b)

where v = p/ρ0. These laws of physics
17 can then be combined into a single system

of first order hyperbolic equations as

∂U

∂t
+
∂F I

∂XI

= S, ∀ I = 1, 2, 3; (2.21)

16An alternative notation, ∇0 · (·) ≡ DIV(·), is also used in [7, 92].
17Conservation law in differential form is characterised by all space derivative terms grouped as

a divergence operator.
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where their components are illustrated as

U =

























p1
p2
p3
F11

F12

F13

F21

F22

F23

F31

F32

F33

























, F I =

























−P1I(F )

−P2I(F )

−P3I(F )

−δI1v1
−δI2v1
−δI3v1
−δI1v2
−δI2v2
−δI3v2
−δI1v3
−δI2v3
−δI3v3

























, S =

























ρ0b1
ρ0b2
ρ0b3
0

0

0

0

0

0

0

0

0

























. (2.22)

Here, a homogeneous equation is simply recovered in the absence of body force b.

The conservation-law (2.21-2.22) is capable of yielding the physically correct values

in problems where discontinuities are present.

2.5.1 Interface Flux

At a given interface defined by the material outward unit normal vector N =

(N1, N2, N3)
T , the interface flux will be denoted as

FN = F INI =

























−t1(F )

−t2(F )

−t3(F )

−N1v1
−N2v1
−N3v1
−N1v2
−N2v2
−N3v2
−N1v3
−N2v3
−N3v3

























, ∀ I = 1, 2, 3, (2.23)

with the help of t = PN .

2.6 Eigenstructure

2.6.1 Quasi-Linear Structure

The Flux Jacobian matrix is generally given as
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AN = AINI =
∂F I

∂U
NI =

∂FN

∂U
, ∀I = 1, 2, 3, (2.24)

where AI = ∂F I/∂U and FN = F INI .

In order to fully understand the eigenstructure of this matrix, it is useful to

separate the momentum and deformation gradient components of U and FN as

U =

(
p

F

)

, FN =

( −t
−v ⊗N

)

, t = PN , v =
1

ρ0
p, (2.25)

where the tensors in the above expression should be interpreted as column vectors

of 9 entries corresponding to each of the tensor components, as explained in Remark

2.1. Consequently, AN can be written as

AN =




−∂(PN)

∂p
−∂(PN)

∂F

−∂
(

1
ρ0

p⊗N
)

∂p
−∂

(

1
ρ0

p⊗N
)

∂F



 =

(

03×3 −CN
− 1
ρ0
IN 09×9

)

, (2.26)

where

[CN ]ijJ =
∂PiI
∂FjJ

NI , [IN ]iIk = δikNI . (2.27)

Note that CN denotes a normal component of any constitutive material fourth-

order tensor C = ∂P /∂F . For the case of nearly incompressible Neo-Hookean (NH)

material, recall first that the stress tensor is formulated as

P (F ) = µJ−2/3

[

F − 1

3
(F : F )F−T

]

+ κ(J − 1)JF−T , (2.28)

the nonlinear elasticity tensor C can then be derived as

C(F ) =
∂P

∂F
=− 2

3
µJ−2/3F ⊗ F−T +

2

9
µJ−2/3(F : F )F−T ⊗ F−T

+ µJ−2/3
I − 1

3
µJ−2/3(F : F )H− 2

3
µJ−2/3F−T ⊗ F

+ κJ(2J − 1)F−T ⊗ F−T + κJ(J − 1)H.

(2.29)

Here, H = ∂F−T/∂F = −F−T
iJ F−T

jI , ∂J/∂F = JF−T and I = δijδIJ . More

specifically, some of the engineering problems exhibit relatively small deformation

behaviour. Hence, the linear elasticity tensor18 is usually simplified to

C(F ≈ I) = λI ⊗ I + µ(I + Ī), (2.30)

with the equivalent indicial notations

18This is a standard linear isotropic elasticity tensor which can be found in references such

as [1, 6, 7, 115,121,125,126].
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I ⊗ I = δiIδjJ ; Ī = δiJδIj. (2.31)

It is worth mentioning that (2.30) is conspicuously a constant material elasticity

tensor. In addition, the Lamé constants µ and λ are expressed in terms of other

physical measurements as

µ =
E

2(1 + ν)
, λ =

νE

(1 + ν)(1− 2ν)
, κ = λ+

2

3
µ, (2.32)

where E is the Young’s modulus, ν represents the Poisson’s ratio and κ denotes the

bulk modulus.

Remark 2.1 Let S be a second order tensor and its components are shown as:

S =





S11 S12 S13

S21 S22 S23

S31 S32 S33



 =





ST
1

ST
2

ST
3



 , (2.33)

where

S1 =





S11

S12

S13



 , S2 =





S21

S22

S23



 , S3 =





S31

S32

S33



 . (2.34)

The tensor S is then reshaped into a column vector as

S =





S1

S2

S3



 =



















S11

S12

S13

S21

S22

S23

S31

S32

S33



















. (2.35)

This sort of convention is very useful in studying the eigenstructure of a matrix.

2.6.2 The Eigendecomposition

With the above definitions at hand, it is now possible to study the eigendecompo-

sition of a Flux Jacobian matrix in order to develop the linearised Riemann solver

that will be used to calculate the interface flux. It is well known that the right and

left eigenvectors of AN , namely Rα and Lα, and their corresponding eigenvalues

Uα are solutions of equations as follows:

ANRα = UαRα (2.36a)

L
T
αAN = UαL

T
α . (2.36b)
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The orthogonality condition19 between the left and right eigenvectors allows the flux

Jacobian (or decoupling) matrix to be expressed as:

AN =
12∑

α=1

Uα
RαL

T
α

R
T
αLα

. (2.37)

In order to derive expressions for these eigenvectors, it is of paramount impor-

tance to separate their components into

Rα =

(
pRα
F R
α

)

, Lα =

(
pLα
F L
α

)

. (2.38)

Substituting the explicit expression for AN , viz. (2.26b), into (2.36a), it becomes

−CN : F R
α = Uαp

R
α (2.39a)

− 1

ρ0
pRα ⊗N = UαF

R
α . (2.39b)

Eliminating F R
α by inserting (2.39b) into (2.39a) then yields a symmetric eigenvalue

problem for pR as

CNNp
R
α = ρ0U

2
αp

R
α , (2.40)

where the symmetric 3× 3 tensor CNN (also known as acoustic tensor) is given as

[CNN ]ij =
3∑

I,J

CiIjJNINJ . (2.41)

In the present nonlinear elastic context, the eigenproblem discussed above leads to 3

pairs of wave speeds, which correspond to the volumetric (or P-wave) Up and shear

(or S-wave) Us:

U1,2 = ±Up, (2.42a)

U3,4 = U5,6 = ±Us, (2.42b)

where

Up =

√

β +
(
α
Λ2 + 2γ

)

ρ0
; Us =

√

β

ρ0
, (2.43)

with further expansions of

α = κJ2 +
5

9
µJ−2/3 (F : F ) , (2.44a)

β = µJ−2/3, (2.44b)

γ = −2

3
µJ−2/3, (2.44c)

Λ =
1

‖F−TN‖ . (2.44d)

19Orthogonality is discussed in Appendix C.
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Here, µ denotes the shear modulus, κ describes the bulk modulus and ρ0 represents

the mass density. Expression (2.42) concludes that the remaining six eigenvalues of

matrix AN are zero. The matrix AN can thus be reconstructed in terms of non-zero

wave speeds as

AN =
6∑

α=1

Uα
RαL

T
α

R
T
αLα

. (2.45)

Moreover, the eigenvalue structure, viz. (2.40), also leads to 3 pairs of orthogonal

eigenvectors, in which the first one n corresponds to the outward unit normal vector

in spatial configuration associated to material vector N and the remaining two are

arbitrary tangential vectors t1,2 orthogonal to n. These orthogonal eigenvectors are

given by

R1,2 =

(

n

± 1
ρ0Up

n⊗N

)

; R3,4 =

(

t1

± 1
ρ0Us

t1 ⊗N

)

(2.46a)

and

R5,6 =

(

t2

± 1
ρ0Us

t2 ⊗N

)

. (2.46b)

On the other hand, the following set of left eigenvectors is obtained in an analogous

manner as

L1,2 =

(

n

± 1
Up
C : (n⊗N )

)

; L3,4 =

(

t1

± 1
Us
C : (t1 ⊗N )

)

(2.47a)

and

L5,6 =

(

t2

± 1
Us
C : (t2 ⊗N )

)

. (2.47b)

In the case of infinitesimal elastic deformations where n ≈ N , the volumetric

and shear waves can be reduced to

Up =

√

λ+ 2µ

ρ0
; Us =

√
µ

ρ0
, (2.48)

due to the fact that F ≈ I and J ≈ 1. Both waves propagate at constant velocity

with their shape unchanged. See Appendix D for a detailed derivation of linear and

nonlinear elastic wave speeds.

Noting that R
T
αLα = 2 for α = 1, 2, . . . , 6, the Flux Jacobian matrix AN can

now be re-written as
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AN =
1

2

6∑

α=1

UαRαL
T
α (2.49a)

=
1

2
(R1, . . . ,R6)












Up 0 0 0 0 0

0 −Up 0 0 0 0

0 0 Us 0 0 0

0 0 0 −Us 0 0

0 0 0 0 Us 0

0 0 0 0 0 −Us

















L
T
1
...

L
T
6




 (2.49b)

=
1

2

[
Up(R1L

T
1 −R2L

T
2 ) + Us(R3L

T
3 −R4L

T
4 +R5L

T
5 −R6L

T
6 )
]
. (2.49c)

This expression is very useful in deriving a linearised Riemann solver due to the

necessity of evaluating the matrix |AN |.

2.7 Linearised Riemann Solver

The use of Flux Jacobian matrix AN (2.49) enables development of an accurate

Riemann solver. In general, the interface flux across a surface defined by the material

outward-pointing unit normal vector N (where there is a physical or computational

discontinuity in the problem variables U− 6= U
+) is written as20

FN =
1

2

[
FN(U

−) +FN(U
+)
]

︸ ︷︷ ︸

unstable flux

−1

2

∫
U

+

U
−

|AN | dU
︸ ︷︷ ︸

stabilising term

, (2.50)

where the above integral is taken along an arbitrary path from U
− to U

+. From

equation above, the first term denotes the unstable flux (simple arithmetic average

from the left and right states), implying no consideration for wave directional char-

acter. The second (stabilising) term can be interpreted as artificial diffusion that

damps the instabilities arising in the first term. It is worth pointing out that the

integration paths of Osher’s numerical flux are taken to be integral curves associ-

ated with a set of right eigenvectors [53–57]. Another conventional Roe’s approxi-

mate Riemann solver reveals that an averaged Jacobian matrix ÂN is first sought,

which then leads to the calculations of averaged eigenvalues, eigenvectors and wave

strengths [45–52].

20The flux computation can be identified as a particular case of Jameson-Schmidt-Turkel (JST)

scheme.
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Firstly, the Jacobian matrix |AN | reads as follows:

|AN | =
1

2

6∑

α=1

|Uα|RαL
T
α (2.51a)

=
1

2
(R1, . . . ,R6)












Up 0 0 0 0 0

0 Up 0 0 0 0

0 0 Us 0 0 0

0 0 0 Us 0 0

0 0 0 0 Us 0

0 0 0 0 0 Us

















L
T
1
...

L
T
6




 (2.51b)

=
1

2

[
Up(R1L

T
1 +R2L

T
2 ) + Us(R3L

T
3 +R4L

T
4 +R5L

T
5 +R6L

T
6 )
]
. (2.51c)

Substituting (2.46) and (2.47) into (2.51), after some simple but lengthy algebra,

leads to the following expression:

|AN | =
(

UsI3×3 03×9

09×3
1

ρ0Us
C
∗

)

+

(

(Up − Us)n⊗ n 03×9

09×3 ( 1
ρ0Up
− 1

ρ0Us
)(n⊗N )⊗ [C : (n⊗N )]

)

where the tensor C∗ is shown as

[C∗]iIjJ =
∑

a

CiajJNaNI .

Since Us grows with
√
µ and C grows with µ, |AN | will not become unbounded

in the absence of shear strength (terms appeared as divided or multiplied by Us
will simply vanish). The integral of stabilising term across the discontinuity can be

reduced to

∫
U

+

U
−

|AN | dU =

∫
U

+

U
−

(

Us dp
1

ρ0Us
dt⊗N

)

+

(

(Up − Us)n dpn
( 1
ρ0Up
− 1

ρ0Us
)(n⊗N ) dtn

)

(2.52)

where

dt = (C : dF )N = (dP )N ; dpn = dp · n; dtn = dt · n.

It is normally impossible to integrate (2.52) exactly in a nonlinear case. However,

the assumption of linearity in engineering analysis (for which the wave speeds are

independent of the state of deformation (2.48)) enables (2.52) to be evaluated exactly

as

∫
U

+

U
−

|AN | dU =

(

Us(p
+ − p−)

1
ρ0Us

(t+ − t−)⊗N

)

+

(
(Up − Us)(p+n − p−n )n(

1
ρ0Up
− 1

ρ0Us

)

(t+n − t−n )(n⊗N )

)

.

(2.53)

A generalisation of this linearised Riemann solver will be described in Chapter 5 (a

method for nonlinear cases).
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Chapter 3

Irreversible Processes and

Elements of Lagrangian Rapid

Dynamics

“Although mechanical energy is indestructible, there is a universal tendency to its

dissipation, which produces throughout the system a gradual augmentation and

diffusion of heat, cessation of motion and exhaustion of the potential energy of the

material Universe”.

Lord Kelvin (1824− 1907)

37
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3.1 Introductory Remarks
 

 

3.2 Energy Balance 

Principle: First Law of 

Thermodynamics 

3.3 Dissipative Model: 
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Material 

3.3.1 Incremental 

Framework 
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Law Formulation 

Appendix E 

Laws of Thermodynamics 
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Chapter 5 
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Figure 3.1: Content and guide to this chapter.

Many applications in engineering and physics deal with irreversible processes,

where the constitutive models are more sophisticated than those of isothermal elas-

ticity. Under such circumstances, thermal effects and inelastic dissipative mechanism

cannot be neglected.

Recently, problems concerned with non-isothermal elasticity are arising in con-

nection with materials and structures employed in aerospace, nuclear fields and other

specialised applications. These problems are generally known as thermoelasticity.
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In principle, thermoelasticity deals with the interaction between temperature, stress

and elastic deformation due to mechanical and thermal loadings. A wealth of lit-

erature has been devoted to the numerical solutions of dynamic thermoelasticity.

These numerical methods include Laplace-transform FEM and semi-discrete meth-

ods [127–129]. In recent years, Discontinuous Galerkin (DG) method has been used

by [130–132] for solving coupled thermoelastic problems. For simplicity, this the-

sis only deals with an isothermal process where the thermodynamic variables (i.e.

entropy η and temperature θ) can be ignored. In order to achieve a complete un-

derstanding on non-isothermal process, it is necessary to include a chapter dealing

with entropy and Second Law of Thermodynamics (see Appendix E).

Many materials of practical importance do not behave in an elastic manner at

high level of stress. They exhibit plastic (or irrecoverable) behaviour by virtue of the

fact that these materials fail to return to their undeformed state when surface forces

are relaxed.1 A conservative Eulerian formulation of plasticity was first proposed

by Plohr and Sharp [133]. Numerical solutions for elastoplastic flows based on this

formulation2 have been discussed in [118,134–136].

This chapter is organised as follows. In order to describe an equation governs such

irreversible processes, it is essential to solve for an additional state variable, namely

the energy, by using the First Law of Thermodynamics (or energy balance princi-

ple3), which does not specify the direction of energy transfer. With the inclusion

of this principle a complete conservation-law formulation will be developed. More-

over, the Rankine-Hugoniot relations are introduced in dealing with the behaviour

of shocks waves. In particular, the jump condition of linear momentum variable will

be used to derive a general Riemann solver which is applicable to nonlinear cases.

Figure 3.1 shows the suggested roadmap to this chapter.

3.2 Energy Balance Principle: First Law of Ther-

modynamics

The rate of change of the total energy in a continuum is formulated mathematically

as

d

dt

∫

V

ET dV =

∫

∂V

t · v dA−
∫

∂V

Q ·N dA, (3.1)

where ET is the total energy per unit of undeformed volume, t describes the trac-

tion vector, v stands for the velocity vector, Q denotes the heat flow vector and N

represents the outward-pointing unit normal vector in reference configuration. For

1The irrecoverable behaviour depends on the deformation history of an inelastic material.
2The use of Eulerian coordinates avoids the problems of mesh tangling and remeshing. In

contrast, Lagrangian formulation is simpler and faster in computation, but it suffers from severe

mesh distortions especially in problems having large deformations.
3The famous quote made by Clausius in 1865: The energy of the universe is constant. This

statement is rather loose from rigorous theoretical standpoint.
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simplicity, the heat source term is neglected in the equation above. The correspond-

ing differential balance law of (3.1) is given by

∂ET
∂t

+∇0 ·
(
Q− P Tv

)
= 0. (3.2)

In order to derive a more physically meaningful equation, it is useful to combine

(2.4) and (2.7) into (3.2), which yields

∂e

∂t
= P :

∂F

∂t
−∇0 ·Q, e = ET − ψkin − ψext, (3.3)

where ψext = −ρ0b · x is the potential energy due to body force, ψkin = (p · p)/2ρ0
represents the kinetic energy and e denotes the internal energy per unit of unde-

formed volume. For the case of thermoelasticity, e contains both the elastic strain

energy and the heat component.

3.3 Dissipative Model: Hyperelastic-plastic Ma-

terial

Many practical applications often exhibit some permanent inelastic deformations. In

order to describe this irrecoverable behaviour, the simplest case of rate-independent

Von-Mises plasticity with isotropic hardening will be considered [2, 6, 7].

First, it is essential to define a strain energy functional in terms of the elastic

principal stretches λe,α:
4

ψ(λe,1, λe,2, λe,3) = ψdev(J
−1/3λe,1, J

−1/3λe,2, J
−1/3λe,3) + ψvol(J), (3.4)

where

ψdev = µ
[
(lnλe,1)

2 + (lnλe,2)
2 + (lnλe,3)

2
]
− 1

3
µ(ln J)2 (3.5)

and

ψvol =
1

2
κ(ln J)2; κ = λ+

2

3
µ; ln J =

3∑

α=1

lnλe,α. (3.6)

The Kirchhoff stress tensor is conveniently decomposed into its principal components

as

ταα = Jσαα = τ
′

αα + Jp, ∀ α = 1, 2, 3. (3.7)

Here, the deviatoric stress component τ
′

αα is

τ
′

αα =
∂ψdev
∂ lnλe,α

= 2µ lnλe,α −
2

3
µ ln J (3.8)

and the pressure p is defined as

p =
dψvol
dJ

= κ
ln J

J
. (3.9)

4Formulations can be greatly simplified if the principal directions are used.
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3.3.1 Incremental Framework

The typical initial hypothesis in plasticity is postulated such that no further per-

manent deformation takes place during the motion from time n to n + 1. This

hypothesis then leads to a trial left Cauchy-Green tensor5 which is established as

btriale,n+1 = Fn+1C
−1
p,nF

T
n+1. (3.10)

The expression above represents an exact time integration of be that results from

the overall change in deformation based on the assumption that there is no further

change in irrecoverable strain, that is, [dbe(F ,Cp)/dt]Cp
.

Insofar as the principal direction is being used, a spectral decomposition can be

performed on btriale,n+1, which yields

btriale,n+1 =
3∑

α=1

(
λtriale,α

)2
ntrial
α ⊗ ntrial

α , (3.11)

where λtriale,α describes the trial elastic stretches and ntrial
α denotes the principal di-

rections. With the help of λtriale,α , the trial deviatoric Kirchhoff stress tensor can be

subsequently computed:

τ
′trial =

3∑

α=1

τ
′trial
αα ntrial

α ⊗ ntrial
α ; τ

′trial
αα = 2µ lnλtriale,α −

2

3
µ ln Jn+1. (3.12)

By virtue of the equation above, no plastic deformation involved during time incre-

ment ∆t = tn+1 − tn. However, further permanent behaviour will generally occur

in order to accommodate the inelastic constitutive requirement. To this effect, the

so-called return mapping procedure should be carried out to ensure that the trial

deviatoric stress tensor returns to the yield surface. This represents the change of

be at constant F but varying Cp (that is, [dbe(F ,Cp)/dt]F ) and the total evolution

of be is
dbe
dt

=
dbe
dt

∣
∣
∣
∣
Cp

+
dbe
dt

∣
∣
∣
∣
F

. (3.13)

Since the Von Mises plasticity is considered, its plastic flows is restricted to

behave in a purely isochoric manner, det(Fp) = 1. Under such circumstance, Jn+1 =

Je,n+1 = det(Fn+1). This plasticity is defined by a yield criterion which depends on

deviatoric Kirchhoff stress tensor τ ′ and the hardening variable ε̄p:

f(τ ′, ε̄p) =

√

3

2
(τ ′ : τ ′)− τ̄y ≤ 0; τ̄y = τ̄ 0y +Hε̄p, (3.14)

where τ̄ 0y is the initial yield stress and H denotes the constant hardening parameter.

The yield function, viz. (3.14), is basically determined by a generalised scalar Von

Mises equivalent stress
√

3
2
(τ ′ : τ ′) and this inequality has to be satisfied. Otherwise,

5The left Cauchy-Green deformation tensor is often called the Finger deformation tensor.
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∆γ and νn+1
α need to be evaluated to ensure that τ ′ returns back to the yield surface

(which will be discussed in the following section).

Now assume that an updated elastic stretch λn+1
e,α has been accomplished, it is

then easy to determine the resulting elastic left Cauchy-Green tensor be,n+1 (which

includes an additional change in regard to the permanent deformation) as

be,n+1 =
3∑

α=1

(
λn+1
e,α

)2
nn+1
α ⊗ nn+1

α , (3.15)

where nn+1
α = ntrial

α [7]. Consequently, the updated inverse plastic right Cauchy-

Green strain tensor is obtained as

C−1
p,n+1 = F−1

n+1be,n+1F
−T
n+1. (3.16)

3.3.2 Return Mapping Procedure

As discussed previously, some modifications are made to the elastic stretch λn+1
e,α and

the deviatoric Kirchhoff stress τ
′

αα under the condition of f(τ ′ trial, ε̄p,n) > 0.

The updated deviatoric Kirchhoff stress in principal direction is corrected as

follows:

τ
′

αα = τ
′trial
αα − 2µ∆γνn+1

α . (3.17)

Equation above indicates that τ
′

is proportional to τ
′trial with a corrected magnitude

of −2µ∆γ. This is obviously known as radial return mapping [6,7] (see Figure 3.2).

The dimensionless direction vector ν is represented as

νn+1
α =

τ
′trial
αα

√
2
3
‖τ ′trial‖

; ‖τ ′trial‖ =
√
τ

′trial : τ ′trial, (3.18)

and eventually, the only remaining unknown in (3.17) is ∆γ. With the aid of ∆ε̄p =

∆γ [7], the incremental plastic multiplier, ∆γ, can be derived as

∆γ =

{
f(τ ′ trial,ε̄p,n)

3µ+H
if f(τ ′ trial, ε̄p,n) > 0;

0 if f(τ ′ trial, ε̄p,n) ≤ 0.
(3.19)

Once ∆γ and νn+1
α are known, the elastic stretch is readily computed

λn+1
e,α = Exp

(
lnλtriale,α −∆γνn+1

α

)
. (3.20)

By substituting (3.18) into (3.17) for νn+1
α , the corrected deviatoric stress yields

τ
′

αα =

(

1− 2µ∆γ
√

2/3‖τ ′trial‖

)

τ
′trial
αα . (3.21)
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Figure 3.2: Radial return mapping procedure: (a) Perfect plasticity; (b) Isotropic

linear hardening plasticity.
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Recall that within the elastic domain (∆γ = 0), no further update for be,n+1 is

required:

λn+1
e,α = λtriale,α ; τ

′

αα = τ
′trial
αα . (3.22)

In order to move on to the next time step, it is necessary to record the current state

of inelastic deformations as

ε̄p,n+1 = ε̄p,n +∆γ, (3.23)

where ε̄p,n+1 is the updated value of Von Mises equivalent plastic strain.

An algorithmic procedure for implementing the rate-independent Von Mises plas-

ticity with isotropic hardening is illustrated in Algorithm (3.3.1).

�

�

�

�

Algorithm 3.3.1: Evaluation of P (Fn+1,C
−1
p,n, ε̄p,n)

(1).Given Fn+1, C
−1
p,n and ε̄p,n .

(2). Initiate ∆γ = νn+1
α = 0.

(3).Evaluate Jn+1 = det Fn+1.

(4). Solve pressure p = κ ln Jn+1

Jn+1
.

(5).Compute trial left strain tensor btriale,n+1 = Fn+1C
−1
p,nF

T
n+1.

(6). Spectral decomposition: btriale,n+1 =
∑3

α=1(λ
trial
e,α )2 ntrial

α ⊗ ntrial
α .

(7). Set nn+1
α = ntrial

α .

(8).Trial Kirchhoff stress: τ ′ trialαα = 2µ lnλtriale,α − 2
3
µ ln Jn+1 .

if (f(τ ′ trial, ε̄p,n) > 0)

then







(9).Direction vector: νn+1
α = τ ′ trialαα√

2
3
‖τ ′ trial‖

.

(10).Plastic Multiplier: ∆γ = f(τ ′ trial,ε̄p,n)

3µ+H
.

(11).Elastic stretch: λn+1
e,α = Exp ( lnλtriale,α −∆γνn+1

α ).

(12).Return map: τ ′αα =

(

1− 2µ∆γ√
2/3‖τ ′ trial‖

)

τ ′ trialαα .

(13).Update stress: ταα = τ ′αα + Jp; τ =
∑3

α=1 τααn
n+1
α ⊗ nn+1

α .

(14).First Piola-Kirchhoff stress tensor: P = τF−T .

(15).Update be,n+1 =
∑3

α=1(λ
n+1
e,α )2 nn+1

α ⊗ nn+1
α .

(16).Update C−1
p,n+1 = F−1

n+1be,n+1F
−T
n+1; ε̄p,n+1 = ε̄p,n +∆γ.

return (Pn+1)

3.3.3 The Dissipation Inequality

The strain energy functional of Von Mises plasticity with isotropic hardening is

postulated as:

ψ = ψ(εe, ε̄p); εe = lnVe =
1

2
ln be, (3.24)

where εe denotes the elastic logarithmic stretch tensor and ε̄p represents the accum-

mulated plastic strain. The time derivative of (3.24) gives

ψ̇ =
∂ψ

∂εe
: ε̇e +

∂ψ

∂ε̄p
˙̄εp;

∂ψ

∂ε̄p
= Hε̄p, (3.25)
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where the scalar-valued function, ∂ψ/∂ε̄p, associated to isotropic hardening curve [2].

The evolution of the internal variable, ε̄p, is described as ˙̄εp = γ̇, which follows from

the hypothesis of associativity [6]. By employing chain rule to εe in (3.25a) yields

ψ̇ =
1

2

∂ψ

∂εe
:
∂(ln be)

∂be
: ḃe + γ̇Hε̄p (3.26a)

=
1

2

∂ψ

∂εe
:
∂(ln be)

∂be
be

︸ ︷︷ ︸

∂ψ/∂εe

: ḃeb
−1
e + γ̇Hε̄p (3.26b)

=
1

2

∂ψ

∂εe
: ḃeb

−1
e + γ̇Hε̄p (3.26c)

=
∂ψ

∂εe
: le + γ̇Hε̄p (3.26d)

= τ : le + γ̇Hε̄p. (3.26e)

where le = ḞeF
−1
e is the velocity gradient and be = FeF

T
e = FF−1

p F−T
p F T . During

isothermal process, the Clausius-Planck inequality simplifies to

Dint = P : Ḟ − ψ̇ ≥ 0 (3.27a)

= τ : l− ψ̇ ≥ 0. (3.27b)

Substituting (3.26e) into above expression gives

Dint = τ : (l− le)− γ̇Hε̄p ≥ 0 (3.28a)

= τ : lp − γ̇Hε̄p ≥ 0 (3.28b)

= ẇp

(

1− Hε̄p
τ̄

)

≥ 0, (3.28c)

where lp = l − le. Here, ẇp = τ : lp = γ̇τ̄ describes the rate of plastic dissipation

and the Von Mises equivalent stress, τ̄ , is defined as

τ̄ =

√

3

2
τ ′ : τ ′.

For the case of perfectly plastic material, that is H = 0, (3.28) reduces further to

Dint = ẇp = τ : lp ≥ 0.

3.4 Full Conservation-Law Formulation

More generally, the conservation-law formulation can be further developed by in-

cluding the energy balance principle ET (or First Law of Thermodynamics). For

the sake of convenience, the differential laws of these balance principles are presented

as follows:
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∂p

∂t
−∇0 · P = ρ0b, (3.29a)

∂F

∂t
−∇0 · (v ⊗ I) = 0, (3.29b)

∂ET
∂t
−∇0 · (P Tv −Q) = 0, (3.29c)

where p = ρ0v is the linear momentum per unit of material volume, ρ0 represents

the material density, v is the velocity field, b stands for the body force per unit

mass, F indicates the deformation gradient tensor, P is the first Piola-Kirchhoff

stress tensor, ET is the total energy per unit of undeformed volume, Q is the heat

flux vector and ∇0 denotes the material gradient operator in undeformed space.

The above laws can be formulated in a first order system of conservative equations

as

∂U

∂t
+
∂F I

∂XI

= S, ∀ I = 1, 2, 3; (3.30)

where

U =




























p1
p2
p3
F11

F12

F13

F21

F22

F23

F31

F32

F33

ET




























, F I =




























−P1I

−P2I

−P3I

−δI1v1
−δI2v1
−δI3v1
−δI1v2
−δI2v2
−δI3v2
−δI1v3
−δI2v3
−δI3v3

QI − PiIvi




























, S =




























ρ0b1
ρ0b2
ρ0b3
0

0

0

0

0

0

0

0

0

0




























. (3.31)

3.5 Rankine-Hugoniot Relations

One of the most striking features in computational problems is the presence of shock

waves in the solution. The conservation laws described above accept solutions with

discontinuity travelling at certain propagation speed through the medium. In order

to derive the jump conditions across such discontinuity surfaces, it is worth noting

that the discontinuity in the problem variables U (across a surface Γ defined by the

material outward unit normal vector N ) travelling with speed U takes the following

form:
d

dt

∫

V

U dV =

∫

V

∂U

∂t
dV −

∫

Γ

U U dA. (3.32)
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Similarly, the flux term in the presence of discontinuity yields

∫

V

∂F I

∂XI

dV =

∫

∂V

FN dA−
∫

Γ

FN dA. (3.33)

Note that the notation

A = A
+ −A

−

denotes jump in variable A when crossing the discontinuity. Combining (3.32) and

(3.33) into a general integral conservation law, that is

d

dt

∫

V

U dV +

∫

∂V

FN dA = 0,

leads to a local differential law in V as

∂U

∂t
+
∂F I

∂XI

= 0, ∀ I = 1, 2, 3; (3.34)

coupled with discontinuity (or jump) conditions

U U = FN in Γ. (3.35)

This is generally known as Rankine-Hugoniot relations, which in turn can be par-

ticularised for the cases of linear momentum p, deformation gradient tensor F and

total energy ET :

U p = − P N (3.36a)

U F = − 1

ρ0
p ⊗N (3.36b)

U ET = − 1

ρ0
P Tp ·N (3.36c)

where heat flux Q is neglected. The jump condition of linear momentum variable

will be used to derive a general Riemann solver for nonlinear cases (see Chapter 5).
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Numerical Technique

49





Chapter 4

Finite Volume Discretisation and

Time Integration Scheme

“Everything should be made as simple as possible, but not simpler”.

Albert Einstein (1879− 1955)

51
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4.1 Introductory Remarks

There are numerous numerical methods available for solving a first order hyperbolic

system of conservation laws. Finite Volume Method (FVM) is one of the most

widely used numerical techniques in the area of computational mechanics and will

be employed herein.

However, the computational tool based on Finite Element Method (FEM) has

evolved to become the most popular numerical method in modern Computational

Solid Mechanics (CSM). FEM has firmly established itself as a pioneering approach

for linear and nonlinear problems in CSM (see [10,137]). In [41,138], both standard

spatial semi-discretisations, namely FVM and FEM, are described by integrating

the governing equation over any predefined control volume where they only differ

with regard to the type of weighting functions used. As a matter of fact, a standard

FVM is a particular case of FEM where a non-Galerkin approach is employed.1 A

comprehensive review of this subject is detailed in [27].

In recent years, a number of researchers have applied FVM to problems within

the context of Computational Structural Dynamics (CSD); for instance, plate bend-

ing analysis has been performed in [139–141]. Furthermore, dynamic analysis of solid

mechanics was also investigated in [32,37]. Surge of interest in further developing the

FVM is not surprising since it posesses some very interesting properties: 1) FVM, as

well as FEM, are formulated in an integral (or weak) form and are suitable to deal

with complex geometries in multi-dimensional problems, as the integral formulations

do not rely in any special mesh structure.2 2) FVM allows for the strict conservation

of physical properties in the control volume [27, 30, 31, 35]. 3) FVM shows a clear

advantage in problems where shocks (or discontinuities) are present [142]. An ex-

cellent ability for capturing shock discontinuities is demonstrated by allowing great

flexibility in defining local interpolation functions, where problem variables vary dis-

continuously between elements. This procedure leads to a Riemann problem and

is very well explained in [60, 84]. 4) FVM, like FEM, can also be applied in other

areas of physics and sciences (i.e. Maxwell’s and Magnetohydrodynamic (MHD)

equations have been studied [104,143]).

A finite volume method for the numerical solution of a new mixed formulation

based upon a first order hyperbolic system of conservation laws is presented. First, a

general monotone upstream scheme for conservation law (MUSCL) technique associ-

ated with a first order cell-centred3 finite volume spatial discretisation is briefly intro-

duced in Section 4.2. A more detailed discussion can be found in [33–36,42,139,140].

In Section 4.3, the extension to second order spatial approximation using a monos-

lope MUSCL method is then derived. The main idea is to construct (or predict)

1FVM is alternatively known as subdomain collocation FEM.
2Finite Difference Method (FDM) is the oldest method (which based upon the application of

a local Taylor series expansion) to approximate a system of differential equations. It encounters

difficulties when dealings with complex geometry in multiple dimensions.
3General discussion on vertex-centred finite volume scheme can be found in [27,29,30,32,33].
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a local piecewise linear reconstruction of the solution by a minimisation procedure.

The predicted slope is then corrected by employing a slope limiter so as to respect

the stability condition [93–95, 144]. Subsequently, the resulting semi-discrete non-

linear evolution equation will be advanced forward in time by adopting a Total

Variation Diminishing (TVD) Runge-Kutta time stepping scheme (see Section 4.5).

The roadmap for this chapter is summarised in Figure 4.1.

4.2 Cell-Centred Based Discretisation

A system of nonlinear conservative equations takes a general form of

∂U

∂t
+
∂F I

∂XI

= S, ∀ I = 1, 2, 3, (4.1)

where U denotes the vector of conserved variables, {F1,F2,F3} is a set of con-

servative flux vectors and S describes the source term. These variables are defined

explicitly for a new mixed formulation in Section 2.5.

Integrating (4.1) over any arbitrary material control volume Ve and applying the

divergence theorem to the flux integral results in4

d

dt

∫

Ve

U dV = −
∫

∂Ve

F̂ ·N dA = −
∫

∂Ve

FN dA, (4.2)

where the source term S is neglected for simplicity. N = (N1, N2, N3)
T represents

the outward pointing unit vector normal to the material boundary ∂Ve and the no-

tation F̂ = (F1,F2,F3) is used for the sake of a compact presentation. By defining

U e to be an average value of U over a control volume Ve and also approximating the

boundary integral with the aid of quadrature rule5, equation above thus leads to a

general spatial discretisation

dU e

dt
= − 1

Ve

Nf∑

k=1
k∈e







Ngp∑

g=1
g∈k

(F̂ g ·Ng)Wg






, (4.3)

where F̂ g represents the numerical flux functions at gth Gauss point, Ve indicates

the volume of grid cell e, Nf denotes the number of surfaces of the control volume

Ve, Ngp is the number of Gauss quadrature points of kth surface, Ng denotes the

outward pointing unit vector normal to kth surface at gth flux integration point, and

Wg represents the gth quadrature weight. In equation (4.3), it is evident that a

lumped mass is implied due to the presence of Ve [27, 32].

4The main idea of using FVM is to discretise a computational domain into a set of non-

overlapping cells in which the conservative equations are enforced locally.
5Gaussian quadrature rule is a numerical integration technique which evaluates an integral

as the weighted sum of function values at selected locations. Further explanation can be found

in [38,69,114,145].
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In particular, a general semi-discrete formulation, viz. (4.3), can be reduced to

a two-dimensional finite volume discretisation:6

dU e

dt
= − 1

Ae

Ned∑

k=1
k∈e

(F̂k ·Nk) lk (4.4a)

= − 1

Ae

Ned∑

k=1
k∈e

[FC
N ]k lk (4.4b)

= −Re. (4.4c)

Here, Ae is the area of cell e, Ned denotes the number of edges belongs to cell e

and lk indicates kth edge length. It is worth noting that a single Gauss quadrature

point (that is Ngp = 1), which is located at the mid-edge, is sufficient for obtaining

the spatial accuracy up to second order. Perhaps more importantly, its quadrature

weight Wg at kth mid-edge is equal to the edge length lk. Insofar as the control

volumes coincide with the grid cells, the numerical contact flux function [FC
N ]k is

an approximation to the flux at kth mid-edge (or contact point).

First it is assumed that the approximation to U is constant within each cell. This

will lead to discontinuities at cell edges which motivate the use of a Riemann solver

by introducing an upwind bias into the evaluation of the numerical flux function

F
C
N . In the case of linear elasticity (or nonlinear elasticity at the origin), that is

n = N , the upwinding flux evaluation is given by7

[FC
N ]k = F

C
N(U e,Uα)k =

1

2
(F̂ e + F̂α) ·Nk −

1

2
|Â ·Nk|(Uα − U e), α = 1, . . . ,m,

(4.5)

where the Flux Jacobian matrix in two dimensions is denoted as Â = (A1,A2) and

Uα describes the vector of conserved variables in the adjacent grid cell α (see Figure

4.2a). m represents the number of adjacent cells (for structured grids); m = 3 and

m = 4 for triangular and quadrilateral cells, respectively. In addition, the nonlinear

upwinding flux evaluation will be fully discussed in Chapter 5. A first order scheme

will be introduced so long as U e and Uα are treated as cell averaged values to the left

and right states of kth edge. Unfortunately, the accuracy is severely undermined by

an excess of numerical dissipation. In order to alleviate this, it is vital to introduce

a reconstruction procedure for choosing better values to the left and right states.

6In two dimensions, the flux F̂ and the material unit normal vector N can be simplified to

F̂ = (F1,F2) and N = (N1, N2)
T .

7A general nonlinear contact flux will be fully explored in Section 5.2. Nevertheless, this non-

linear flux can be linearised as the one shown in Section 2.7, which is only applicable to linear

elasticity.
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Figure 4.2: Reconstruction of the solution for quadrilateral control volumes: (a)

Piecewise constant reconstruction; and (b) Piecewise linear reconstruction.



58 Chapter 4. Finite Volume Discretisation and Time Integration Scheme

4.3 Monotone Upstream Scheme for Conserva-

tion Law Technique (MUSCL)

Higher order spatial accuracy is achieved by introducing a suitable reconstruction

procedure for variables within each cell [60, 84, 93–95]. In particular, a piecewise

linear approximation to the solution leads to a method which is of second order

accuracy in space due to the fact that this approximation is exact for linear initial

data (see Figure 4.2b).

First note that an initial averaged solution value Ue is given within an arbitrary

cell e. In order to achieve second order spatial accuracy, a local linear reconstruction

procedure is then carried out, which can be expressed mathematically as

Ue(X) = Ue +Ge · (X −Xe), (4.6)

where X ∈ cell e. X −Xe denotes a position vector relative to the centroid of cell

e, Ge represents a gradient operator at cell e and yet to be defined. It is easy to

show that such a reconstruction is conservative [60] since

1

Ae

∫

Ae

Ue(X) dA = Ue.

The numerical flux function, viz. (4.5), at kth mid-edge is now written in terms of

the reconstructed solution values on either side of the edge, that is

[FC
N ]k = F

C
N(U eα,Uαe)k, (4.7)

where

Ueα = Ue +Ge · (Xeα −Xe). (4.8)

Here, Xeα −Xe is the position vector from the centroid of cell e to the mid-edge

between cells e and α. An appropriate gradient operator Ge will be presented in

the following section.

4.4 Gradient Operator

In general, the MUSCL technique consists of two steps. First, a local vectorial

slope is predicted based upon the neighbouring values and information from the

current cell itself. The predicted slope is then corrected in order to respect the

maximum principle (or total variation diminishing constraints) [146, 147]. This

predictor-corrector technique is collectively known as monoslope method since the

reconstructed values are obtained using the same vectorial slope on each grid cell.8

8Recently, a new class of MUSCL method (namely multislope method) has been proposed but

will not be considered herein. Its general discussion is detailed in [94,95].
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4.4.1 Predictor Step: Minimisation Method

Given a set of m+1 cell averaged values (i.e. {Ue,U1,U2, . . . ,Um}) the slope within
a cell e, Ge, can be approximated in a coherent way such that

∆U = Uα − (Ue +Ge ·∆X) ≈ 0; ∆X = Xα −Xe, (4.9)

where Xα and Xe denote the centroids of the cells α and e, respectively. The

expression ∆U represents the difference between the centroid value Uα and the value

obtained by extrapolating the function Ue from cell e to α.

Firstly, the functional D is defined by

D(Ge) =
1

2

m∑

α=1

Weα [Unα − (Une +Gn
e ·∆X)]2 , Weα =

1

d2eα
. (4.10)

A scalar value, deα, is a material distance from the centroid of cell e to α. In order

to determine a local vectorial slope Ge at cell e, the above functional has to be

minimised with respect to Ge which, after some simple algebraic manipulations,

yields

Gn
e =

[
m∑

α=1

νeα ⊗ νeα

]−1 m∑

α=1

(Unα − Une
deα

)

νeα, (4.11)

where the unit vector ν is expressed as

νeα =
Xα −Xe

deα
. (4.12)

In two dimensions, Gn
e = 0 if and only if a single neighbouring information (m = 1)

is available. Substituting Ge from (4.11) into (4.8) leads to second order accuracy in

space but does not prohibit overshoots and undershoots at flux integration points.9

In order to rectify this, the predicted gradient operator Ge has to be corrected by

employing a slope limiter [26, 60, 86].

4.4.2 Corrector Step: Slope Limiter

By including a slope limiter during reconstruction, no new local extrema can be

formed. Barth and Jespersen [86] introduced the very first limiter for unstructured

grids. In essence, the proposed scheme is to find a limiter value φe of the form

Ueα = Ue + φeGe · (Xeα −Xe); φe = [0, 1]. (4.13)

By virtue of the equation above, it is essential to obtain the largest φe which still

prevents the formation of local extrema at flux integration point. In order to achieve

this, the following standard procedure is used:

9Or equivalently, the spatial semi-discretisation scheme does not satisfy the local maximum

principle [147].
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1. Find the smallest and largest averaged values among adjacent cells α and the

current cell e:

Umin = min(Ue,Uα) and Umax = max(Ue,Uα)

∀α = 1, . . . ,m.

2. Compute an unlimited reconstructed value at each flux integration point; for

instance, Ueα with φe = 1.

3. Obtain a maximum allowable value of φeα for each cell edge k.

φeα =







min
(

1, U
max−Ue

Ueα−Ue

)

, if Ueα − Ue > 0

min
(

1, U
min−Ue

Ueα−Ue

)

, if Ueα − Ue < 0

1, if Ueα − Ue = 0

4. Select φe = minα∈Ve(φeα).

5. Evaluate the correct reconstructed value Ueα at each flux integration point;

using (4.13) together with φe obtained from step 4.

In practice, the non-differentiability of step 3 causes the greatest degradation in

convergence performance [148]. For this reason, Venkatakrishnan (1993) [87] intro-

duced an alternative smooth function by replacing the min(1, y) with min(1, P (y))

where

P (y) =
y2 + 2y

y2 + y + 2
.

Note that Venkatakrishnan limiter is slightly more dissipative than the standard

Barth-Jespersen limiter [149].

4.5 Time Marching Scheme

The application of the method of lines10 leads to a system of ordinary coupled

differential equations:
dU e

dt
= −Re. (4.14)

This approach offers a great deal of flexibility since different levels of approximation

can be easily selected for the fluxes, as well as the temporal scheme. A system of

equations (4.14) has to be integrated in time so as to obtain either a steady-state

solution (Re = 0) or a time history of an unsteady flow. The most popular and

widespread explicit time integrator, namely Runge-Kutta time stepping scheme, will

be adopted.

10The method of lines is a technique to semi-discretise first the spatial term of a governing

equation into a system of Ordinary Differential Equations (ODEs), which in turn can be integrated

using any temporal scheme that exists in literature.
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4.5.1 Multistage Schemes: Runge-Kutta Methods

In numerical analysis, a family of Runge-Kutta methods is one of the most impor-

tant explicit time integration techniques. Jameson et al.(1981) [150] have reported

that the advantage of using Runge-Kutta schemes is such that no any special start-

ing procedure is required, in contrast to LeapFrog and Adams-Bashforth methods.

Crucially, they have been successfully applied in the numerical solutions for Euler

equations [151–153].

The multistage schemes advance the solution in a number of steps, which is called

Runge-Kutta stages. In order to achieve a sequence of updates from U
n
e to U

n+1
e ,

it is essential to re-evaluate the residual Re at points intermediate between U
n
e and

U
n+1
e . A basic general form of jth-stage Runge-Kutta method is denoted as follows:

U
(1)
e = U

n
e

U
(2)
e = U

n
e − α12∆tR

(1)
e

U
(3)
e = U

n
e − α13∆tR

(1)
e − α23∆tR

(2)
e

...

U
(j)
e = U

n
e −∆t

j−1
∑

k=1

αkjR
(k)
e

U
n+1
e = U

n
e −∆t

j
∑

k=1

βkR
(k)
e

(4.15)

The notation R
(k)
e implies that

R(k)
e = R

(

U
(k)
e

)

. (4.16)

Note that the order of temporal accuracy is defined by the values of α and β. These

coefficients are shown as follows [154]:

• Euler Method (First Order Accuracy). Defined by j = β1 = 1.

• The Improved Euler Method (Second Order Accuracy). Suppose that

j = 2 and their coefficients are α12 = 1, β1 = β2 = 1/2.

Low-storage Explicit Runge-Kutta Schemes

Unfortunately, the family of classical Runge-Kutta schemes described above requires

a large memory storage; at stage j, all intermediate residuals of previous jth stage,

R
(k)
e ∀ k = 1, . . . , j − 1, need to be stored. In order to rectify this, a family of



62 Chapter 4. Finite Volume Discretisation and Time Integration Scheme

low-storage Runge-Kutta schemes, which is demonstrated as

U
(1)
e = U

n
e

U
(2)
e = U

n
e − α1∆tR

(1)
e

U
(3)
e = U

n
e − α2∆tR

(2)
e

...

U
(j)
e = U

n
e − α(j−1)∆tR

(j−1)
e

U
n+1
e = U

n
e −∆t

j
∑

k=1

βkR
(k)
e ,

(4.17)

is usually applied. For consistency,

j
∑

k=1

βk = 1. (4.18)

A particular choice of

βk = 0, ∀ k = 1, . . . , j − 1; βj = 1, (4.19)

is adopted which eventually yields

U
n+1
e = U

n
e −∆tR(j)

e . (4.20)

Table (4.1) shows a list of coefficients for a low-storage jth stage first order

Table 4.1: Multistage schemes: optimised stage coefficients (α)

Stages Three Four Five

α1 0.1481 0.0833 0.0533

α2 0.4 0.2069 0.1263

α3 1 0.4265 0.2375

α4 1 0.4414

α5 1

scheme [98]. These selected coefficients are chosen to extend the stability of a

scheme. A larger stability region can be achieved if higher Runge-Kutta stages

is used.11 Furthermore, a family of second order schemes will be introduced if and

only if αj−1 = 1/2. See [146] for detailed discussion. Shu and Osher(1988) [88]

proved that non-TVD stable Runge-Kutta time stepping schemes can produce un-

physical oscillations even for spatial discretisation satisfying maximum principle (or

total variation diminishing constraints). Therefore, a family of TVD Runge-Kutta

methods (TVD-RK) is crucial in practical applications and will be explored in the

next section.
11The stage coefficients can be tuned to extend the stability region, which in turn increase the

maximum time increment (see references [155,156]).
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4.5.2 Total Variation Diminishing Runge-Kutta Scheme

Time integration schemes pose a threat in respect to the monotonic solution. Al-

though any slope limiter ensures that no new local extrema can be created during

spatial reconstruction process, however, it does not automatically guarantee that

monotonicity will still be satisfied when evolves to the next time step. In order

to achieve this, [88] proposed the second order TVD Runge-Kutta time integration

scheme12 satisfying the monotonicity criteria. This integrator has been successfully

used in [96,97]. At the outset, the conserved variables Un
e are given at time step n,

the time scheme then proceeds in two stages in order to obtain the updated field

variables Un+1
e as

U
(1)
e = U

n
e (4.21a)

U
(2)
e = U

n
e −∆tRe(U

(1)
e , tn) (4.21b)

U
n+1
e =

1

2
U
n
e +

1

2
U

(2)
e −

1

2
∆tRe(U

(2)
e , tn +∆t), (4.21c)

where Re represents the residual of a conservative formula (see Section 4.2). In

[88], Shu and Osher also identified that the first order Euler’s method fulfills TVD

constraint. For any given computational examples, the order of time accuracy should

be matched if possible with the spatial accuracy. A clear disadvantage of using any

explicit scheme is such that the time increment, ∆t, is severely restricted by the grid

geometry as well as the characteristics of a governing equation.

4.5.3 Determination of the Maximum Time increment

Evaluation of the time increment ∆t is of particular importance since it is closely re-

lated to the stability of any explicit time marching scheme. The maximum allowable

time increment is defined by making use of the Courant-Friedrichs-Lewy number13,

αCFL [157]:

∆t = αCFL
hmin
Un
max

, (4.22)

where hmin is the minimum grid size and Un
max describes the maximum wave speed

presents at time level n. The maximum wave speed can then be found as

Un
max = max

e

(
Un
p

)
, (4.23)

where {e} includes a set of data arising from the physical domain and Un
p is the

local volumetric speed at time step n. Note that inappropriate choice of Un
max in

12The second order TVD-RK method coincides with the Improved Euler method discussed in

the previous section.
13It is a necessary stability condition that required by any type of explicit time integration

schemes. This condition states that the domain of dependence of the numerical method should

include the domain of dependence of the PDE. An excellent discussion can be found in [81].
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(4.22) might lead to an unstable scheme. In the context of homogeneous linear

elasticity, the time increment becomes constant (∆t ≡ const) due to the fact that

the volumetric speed Up solely depends on material properties (see equation (2.48a)).

The CFL number αCFL is yet to be specified and will be investigated in Chapter 8.



Chapter 5

Lagrangian Contact Algorithm

“If people do not believe that mathematics is simple, it is only because they do not

realize how complicated life is”.

John Louis Von Neumann (1903− 1957)
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5.1 Introductory Remarks

A new computational methodology comprising of a MUSCL cell-centred finite vol-

ume method and a TVD Runge-Kutta time integrator was presented in the previous

chapter. However, the highly nonlinear numerical interface flux function F
C
N is yet

to be defined (see Section 4.2). In order to achieve this, a generalised Riemann

solver (also known as contact flux) will be introduced.

Interface fluxes including contact fluxes can be generally treated as a Riemann

problem. Section 5.2 presents an overview of a generalised Riemann solver. This

Riemann solver will be used to derive the specific boundary flux by specifying the

boundary conditions without resorting to ghost method1. Section 5.3 provides de-

tailed descriptions for various boundary fluxes. An improper implementation of

these fluxes yields inaccurate result, therefore the numerical treatment at the bound-

ary requires particular care. Otherwise, the stability and convergence rate of a

numerical scheme can be adversely affected [98].

Figure 5.1 summarises the guide through this chapter.

5.2 Generalised Riemann Solver: Contact Flux

In Lagrangian dynamic problems, it is often the case that two surfaces, which lie on

the reference configuration with the unique outward normal vector N at initial time

t = 0, become in contact with each other after some time t in current configuration

(see Figure 5.2). Physically, this is the result of an impact between two bodies

or two parts of the same body. Numerically, contacts may arise from the use of

discontinuous interpolations for problem variables at a given point. For instance,

the interface flux F
C
N(U

−,U+), which depends on the left and right states, will

emerge in the numerical solutions of a Godunov-type finite volume scheme.

In order to derive a contact flux, it is necessary to evaluate the linear momentum

and traction vectors at contact point immediately following the impact. Note first

that the impact will generate two types of shock waves travelling from the contact

point into each of the two bodies. In the case of frictionless contact, the generated

shock waves will travel with volumetric speed Up. Perhaps most importantly, the

normal components of the momentum and traction vectors after contact must be

identical for both surfaces. From (3.36a), equation for the linear momentum jump

across the left and right shock waves can be deduced:

U−
P (p

−
n − pCn ) = t−n − tCn , (5.1a)

U+
p (p

+
n − pCn ) = −(t+n − tCn ), (5.1b)

1Another approach is to extend the computational domain to include a few dummy (or ghost)

cells, whose values depend on the the boundary conditions and interior solutions. For this purpose,

a general ghost method will be discussed in Appendix F.



68 Chapter 5. Lagrangian Contact Algorithm

 

 

 

 

 

 

 

Appendix F 

Ghost or Dummy Cells 

5.2 Generalised 

Riemann Solver: 

Contact Flux 

5.2.1 Compact Version of 

Contact Conditions 

5.3.1 Sticking 

Surface Case 

5.3 Boundary 

Conditions 

5.3.2 Sliding 

Surface Case 

5.3.3 Free 

Surface Case 

Figure 5.1: Content and guide of this chapter.
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Figure 5.2: Contact generated shock waves.
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where p−n and p+n denote the left and right normal components of the momentum

vector before contact, that is p−,+n = p−,+ ·n. Analogously, t−,+n describe the normal

components of the traction vector before contact such as t−,+n = n · (P−,+N ). Note

that the surface normal is defined outwards for the left body and inwards, on the

contrary, for the right body so as to define a unique traction vector after contact tC

(i.e. N = N− = −N+ and n = n− = −n+). Furthermore, (5.1) can be expanded

which leads to the expressions of the momentum and traction vectors following the

contact:

pCn =
U−
p p

−
n + U+

p p
+
n

U−
p + U+

p

+
t+n − t−n
U−
p + U+

p

(5.2a)

tCn =
U−
p U

+
p

U−
p + U+

p

(
t−n
U−
p

+
t+n
U+
p

)

+
U−
p U

+
p

U−
p + U+

p

(p+n − p−n ). (5.2b)

An additional pair of shock waves will propagate with shear speed Us under the

infinite friction contact. The derivation performed above can now be followed for

the tangential components of the momentum and traction vectors such as

pCt =
U−
s p

−
t + U+

s p
+
t

U−
s + U+

s

+
t+t − t−t
U−
s + U+

s

(5.3a)

tCt =
U−
s U

+
s

U−
s + U+

s

(
t−t
U−
s

+
t+t
U+
s

)

+
U−
s U

+
s

U−
s + U+

s

(p+
t − p−

t ). (5.3b)

With the help of above expressions, the complete contact momentum and trac-

tion vectors are defined by

pC = pCt + pCnn ; tC = tCt + tCnn. (5.4)

This enables the contact flux to be evaluated as

F
C
N =






−tC
− 1
ρ0
pC ⊗N

− 1
ρ0
tC · pC




 (5.5)

where the heat flux term Q has been ignored for simplicity. The above expression

generalises the linearised Riemann solver (derived from the eigenstructure of a flux

Jacobian matrix) to the case where the energy balance principle is considered and

also the wave speeds are different across the contact surface (see Section 2.7). It is

easy to show that the solution obtained from the contact flux is identical to that of

linearised Riemann solver if U−
p = U+

p and U−
s = U+

s .

5.2.1 Compact Version of Contact Conditions

An alternative form of contact fluxes, in principle, is conveniently decomposed into

[13]
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pC = (n⊗ n)pC + (I − n⊗ n)pC (5.6a)

tC = (n⊗ n)tC + (I − n⊗ n)tC . (5.6b)

Note here that n⊗ n is the projection of pC and tC in the direction of n, whereas

I − n⊗ n projects them onto the plane perpendicular to n. With the aid of (5.2),

(5.3) and (5.4), the above expressions are expanded to become

pC =(n⊗ n)
U−
p p

− + U+
p p

+

U−
p + U+

p

+ (I − n⊗ n)
U−
s p

− + U+
s p

+

U−
s + U+

s

+ (n⊗ n)
(P+ − P−)

U−
p + U+

p

N + (I − n⊗ n)
(P+ − P−)

U−
s + U+

s

N ,

tC =(n⊗ n)
U−
p U

+
p

U−
p + U+

p

(p+ − p−) + (I − n⊗ n)
U−
s U

+
s

U−
s + U+

s

(p+ − p−)

+ (n⊗ n)
(U+

p P
− + U−

p P
+)

U−
p + U+

p

N + (I − n⊗ n)
(U+

s P
− + U−

s P
+)

U−
s + U+

s

N .

(5.7)

As discussed in Section D.2, n is simply a push forward mapping for N to spatial

configuration, that is

n =
F−TN

‖F−TN‖ .

Additionally, (5.7) can be further reduced to

pC =
1

2
(p− + p+) +

1

2

[
1

Up
(n⊗ n)(P+ − P−)N +

1

Us
(I − n⊗ n)(P+ − P−)N

]

,

tC =
1

2
(P− + P+)N +

1

2

[
Up(n⊗ n)(p+ − p−) + Us(I − n⊗ n)(p+ − p−)

]
,

(5.8)

within the context of homogeneous linear elasticity (i.e. Up = U−
p = U+

p and Us =

U−
s = U+

s ).

5.3 Boundary Conditions

Making use of contact flux derived above, it is now convenient to develop special

formulas for use near the boundaries. In general, there are three types of boundary

conditions that commonly encountered:
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5.3.1 Sticking Surface Case

Under this circumstance, it imposes a no-slip condition2 where the velocity vector

v+ at outer domain (+) becomes

v+ = p+ = 0. (5.9)

Due to the fact that no deformation is allowed in this particular case, the wave

speeds are then denoted by

U+
p = U+

s →∞. (5.10)
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Figure 5.3: Sticking Case

By substituting the conditions described above into (5.2)

and (5.3), the velocity and traction vectors at contact

point are easily derived:

pC = 0

tCn = t−n − U−
p p

−
n , tCt = t−t − U−

s p
−
t .

(5.11)

Or alternatively, the above expression can be represented

as

pC = 0

tC = t− − U−
p (n⊗ n)p− − U−

s (I − n⊗ n)p−.
(5.12)

Here, n = N denotes the outward unit normal vector to

the boundary face.

5.3.2 Sliding Surface Case 
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Figure 5.4: Sliding Case

For sliding surface boundary condition, the velocity only

slips over the tangent plane. It is equivalent to the con-

dition such that there is no flow normal to the surface:

v+ · n = v+n = p+n = 0.

With the help of the above equation together with

U+
p →∞, U+

s = 0 and t+t = tBt ,

the contact fluxes are obtained as

pCn = 0, pCt = p−
t +

1

U−
s

(tBt − t−t ) (5.13)

and

tCn = t−n − U−
p p

−
n , tCt = tBt . (5.14)

2In fluid dynamics, velocity at the surface vanishes when viscous fluid passes a solid wall [25,

81,83].
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These fluxes can also be written in an alternative form:

pC = (I − n⊗ n)p− +
1

U−
s

(I − n⊗ n)(tB − t−)

tC = (n⊗ n)t− + (I − n⊗ n)tB − U−
p (n⊗ n)p−.

(5.15)

The definition of n is identical to the sticking surface case; that is, n = N defined

at the boundary face.

5.3.3 Free Surface Case

This type of boundary condition concludes that

U+
p = U+

s = 0 and t+ = tB.
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Figure 5.5: Free Case

The normal and tangential components of contact veloc-

ity are thus

pCn = p−n+
1

U−
p

(tBn−t−n ) and pCt = p−
t +

1

U−
s

(tBt −t−t ),
(5.16)

respectively. The traction vector at contact point, on the

other hand, is described as

tC = tB. (5.17)

For the sake of a compact representation, equations

above can be conveniently re-expressed as

tC = tB

pC = p− +
1

U−
p

(n⊗ n)(tB − t−) +
1

U−
s

(I − n⊗ n)(tB − t−).
(5.18)

In contrast to the previous boundary cases, n is defined by the spatial outward unit

normal vector to the interface of v−(t).
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Chapter 6

Discrete Angular Momentum

Conserving Algorithm

“No knowledge can be certain, if it is not based upon mathematics or upon some

other knowledge which is itself based upon the mathematical sciences”.

Leondardo da Vinci (1452− 1519)

75
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6.1 Introductory Remarks

The numerical technique that has been developed so far does not ensure the con-

servation of angular momentum of a system, which then induces energy loss under

long-term analysis. In order to rectify this, an exact angular momentum conserving

time stepping algorithm for Lagrangian rapid dynamic analysis will be introduced.

Energy-momentum conserving schemes for integration of the momentum balance

principle in nonlinear elastodynamics were a matter of intense research over the past

few decades. In the early 1990s, an exact energy-momentum conserving algorithm

for nonlinear dynamics was first proposed by Simo et al.(1992) [99]. This class

of schemes was successfully further extended to nonlinear shells in [101], as well

as to nonlinear rods [100]. Unfortunately, the proposed conserving algorithm can

only be applied in hyperelastic material with quadratic potentials, namely Saint-

Venant Kirchhoff material, as pointed out by Laursen and Meng (2001) [103]. Some

modifications were made to allow for any hyperelastic materials [102,103] .

This chapter begins by establishing the condition that has to be satisfied for

preserving angular momentum of a system. Section 6.2 presents a generic constraint

derived from the above condition where the conservation property is inherent in the

time integrator. In Section 6.3, a correction procedure based on a minimisation

method will then be presented. This procedure does not involve any extra variables

(or equations).

Figure 6.1 summarises the roadmap of this chapter.

6.2 A Generic Constraint

In general, the total angular momentum of a system is given as

A =

∫

V

x× p dV ; p = ρ0v. (6.1)

Alternatively, the equation above can also be represented in a discrete form:

A =

Nelem∑

e=1

xe ×meve. (6.2)

Note here that xe denotes the centroid coordinate of cell e, Nelem indicates the total

number of elements in the computational domain, me and ve describe the mass

and velocity vector at cell e. In essence, the total angular momentum of a system of

particles should stay conserved unless an external torque acts on it. Mathematically,

this principle is given by

An+1 −An = 0. (6.3)

By inserting (6.2) into the above expression gives

Nelem∑

e=1

xn+1
e ×mev

n+1
e −

Nelem∑

e=1

xne ×mev
n
e = 0 (6.4)
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with the aid of mass conservation law, that is mn+1
e = mn

e = me. Making use of

the second order TVD Runge-Kutta time integrator for dx/dt = v, the trapezoidal

numerical approximation rule of xn+1
e is given as

xn+1
e = xne +

∆t

2
(vne + vn+1

e ). (6.5)

Expression (6.4) then yields

Nelem∑

e=1

xn+1/2
e ×me(v

n+1
e − vne ) = 0; xn+1/2

e = xne +
∆t

2
vne , (6.6)

by using vn+1
e × vn+1

e = vne × vne = 0. The updated coordinate of xn+1
e at time step

n+ 1 is expressed as

xn+1
e = xn+1/2

e +
∆t

2
vn+1
e . (6.7)

By virtue of (6.6b) and (6.7), (6.5) is simply recovered.

Alternatively, the derivation performed above can now be followed for the first

order TVD Runge-Kutta time stepping scheme:

Nelem∑

e=1

xn+1
e ×me(v

n+1
e − vne ) = 0; xn+1

e = xne +∆tvne . (6.8)

Noting that the only unknown left in (6.6a) or (6.8a) is vn+1
e , it is essential to

relate this term to the time integration for the momentum balance principle [88]:

1. First order Euler temporal scheme: This is usually expressed as

∆ve = −
1

ρe0
∆tRn

p,e, (6.9)

where

Rn
p,e = Rp(t

C,n
k , lk, Ae) = −

1

Ae

Ned∑

k=1
k∈e

t
C,n
k lk. (6.10)

Inserting above equation into (6.8a) yields

Nelem∑

e=1




xn+1

e ×∆t

Ned∑

k=1
k∈e

t
C,n
k lk




 = 0. (6.11)

∆t ≡ const is neglected for simplicity. Furthermore, the above expression is

rearranged to be a summation over all the interior edges Nedint
:

Nedint∑

k=1
e,α∈k

(xn+1
α − xn+1

e )× t
C,n
k lk = 0. (6.12)
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This implies that the total moment of the traction vectors at the interior

edges of the cells vanishes. By virtue of (6.12), the boundary edges are not

considered as they will contribute towards an external torque. Note that α

is the neighbouring cell which shares a particular interior kth-edge with cell e

and xn+1
β denotes the centroid coordinate of cell β at time step n + 1, where

β = {e, α} (see Figure 6.2).

2. Second order Improved Euler temporal scheme: The general framework

is shown as
v(1)
e = vne

v(2)
e = vne −

1

ρe0
∆tR(1)

p,e

vn+1
e =

1

2
vne +

1

2
v(2)
e −

∆t

2

1

ρe0
R(2)

p,e.

More specifically, the above expression reduces to

∆ve = −
∆t

2

1

ρe0

(
R(1)

p,e +R(2)
p,e

)
, (6.13)

where

R(1)
p,e = Rp(t

C,(1)
k , lk, Ae) = −

1

Ae

Ned∑

k=1
k∈e

t
C,(1)
k lk,

R(2)
p,e = Rp(t

C,(2)
k , lk, Ae) = −

1

Ae

Ned∑

k=1
k∈e

t
C,(2)
k lk.

(6.14)

By substituting (6.13) into (6.6a) for ∆ve = vn+1
e − vne yields

Nelem∑

e=1

xn+1/2
e ×

[

−∆t

2
Ae

(

R
(1)
p,e +R

(2)
p,e

)]

= 0. (6.15)

By virtue of the equation above, it is easy to demonstrate that these conditions

Nelem∑

e=1




xn+1/2

e ×
Ned∑

k=1
k∈e

t
C,(1)
k lk




 = 0;

Nelem∑

e=1




xn+1/2

e ×
Ned∑

k=1
k∈e

t
C,(2)
k lk




 = 0, (6.16)

have to be strongly satisfied. Nevertheless, (6.16) are equivalently restructured into

a summation over all interior edges, Ntedint
, as

• First stage:
Nedint∑

k=1
e,α∈k

(xn+1/2
α − xn+1/2

e )× t
C,(1)
k lk = 0. (6.17)
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Figure 6.2: Constraint for preserving the total angular momentum of a system.
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• Second stage:
Nedint∑

k=1
e,α∈k

(xn+1/2
α − xn+1/2

e )× t
C,(2)
k lk = 0. (6.18)

Here, ∆ve = vn+1
e − vne . Ae represents the area of cell e, lk describes the length

of contact kth-edge, tCk indicates the traction vector at a contact kth-point which is

computed based upon Riemann solver, ∆t is the time increment, ρe0 stands for the

local material density and Ned describes the number of edges belong to cell e. These

constraints, viz. (6.12), (6.17) and (6.18), will be used to correct the traction vector

at contact point through minimisation procedure, which shall be discussed in the

next section.

6.3 Minimisation Method: Proper Traction Vec-

tor at Contact Point

In order that the total angular momentum of a system stays constant under long-

term response analysis, it is essential to satisfy the constraint of the form

Nedint∑

k=1
e,α∈k

(xn+ηα − xn+ηe )× t
C,(β)
k lk = 0. (6.19)

Here, β describes Runge-Kutta stages, η = 1 and η = 1/2 for first and second

order overall numerical accuracy, respectively. For the sake of convenience, the

time argument will be ignored in the development below. The constraint (6.19) is

therefore re-expressed as

Nedint∑

k=1

tCk lk ×∆xk = 0; ∆xk|e,α∈k = xα − xe. (6.20)

It is now convenient to introduce a functional Π defined by

Π(t̂Ck ,λ) =




1

2

Nedint∑

k=1

l2k(t̂
C
k − tCk ) · (t̂Ck − tCk )



+ λ ·
Nedint∑

k=1

lkt̂
C
k ×∆xk, (6.21)

where t̂Ck indicates the corrected traction vector at contact point and λ describes the

Lagrange multiplier vector perpendicular to the plane in which t̂C and ∆x lie (see

Figure 6.2). The stationary condition of the above functional (6.21) with respect to

λ and t̂Ck will be considered separately.

To this effect, note firstly that the derivative of Π with respect to λ is

∂Π

∂λ
=

Nedint∑

k=1

lkt̂
C
k ×∆xk = 0. (6.22)
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Equation above implies that the total angular momentum of a system remains con-

stant if and only if the corrected traction vector t̂Ck satisfies above condition. Addi-

tionally, the derivative of (6.21) with respect to t̂Ck is given as

∂Π

∂t̂Ck
=

Nedint∑

k=1

l2k(t̂
C
k − tCk ) +

Nedint∑

k=1

lk∆xk × λ = 0. (6.23)

By using ∆xk × λ = −λ × ∆xk, the corrected traction vector t̂Ck is eventually

obtained as

t̂Ck = tCk +
1

lk
λ×∆xk

︸ ︷︷ ︸

correction term

. (6.24)

Once λ is determined, the traction vector tCk can now be corrected by substituting

λ into (6.24). In order to achieve this, it is vital to insert (6.24) into (6.22) for t̂Ck
which then yields

Nedint∑

k=1

lk(t
C
k +

1

lk
λ×∆xk)×∆xk = 0. (6.25)

To this end, λ is derived as follows:

Nedint∑

k=1

∆xk × (λ×∆xk) =

Nedint∑

k=1

lkt
C
k ×∆xk

λ

Nedint∑

k=1

(∆xk ·∆xk) =

Nedint∑

k=1

lkt
C
k ×∆xk

λ =

∑Nedint
k=1 lkt

C
k ×∆xk

∑Nedint
k=1 ∆xk ·∆xk

. (6.26)

Note that (∆xk · λ) vanishes due to the fact that their directions are orthogonal to

each other, that is ∆xk⊥λ.
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Involution: Compatibility

Condition

“Numerical precision is the very soul of science”.

Sir D’Arcy Wentworth Thompson (1860− 1948)
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7.1 Introductory Remarks

Many evolution equations in engineering and science come with intrinsic constraints.

The evolution of F considered in this work is

∂F

∂t
= ∇0v = ∇0 · (v ⊗ I) .

It is clear that the components of F must satisfy some compatibility conditions

(i.e. curlF = 0) in order to guarantee the existence of a single-valued continuous

displacement field. These conditions (also known as involutions1) are such that

they are satisfied under exact integration provided they are satisfied by the initial

condition, which implies that the curl preservation is an inherent analytical property

of the evolution operator. The most challenging aspect of designing a reliable and

robust numerical method is the ability to control curl errors (modes) under long-

term response analysis. These errors usually accummulate and lead to a breakdown

of classical numerical schemes. Two approaches have been used for constructing a

curl-free method. The first one is based upon the local projection, at every step

of the time integration process, of the deformation gradient tensor onto the space

of curl free tensors [59, 64]. The second approach, introduced by Miller and Colella

(2001) [118], is to formulate a modified system of equations based on the assumption

that curlF 6= 0. This new system contains additional terms which advect the errors

out of the computational domain. More recently, a general framework for a locally

curl-preserving finite volume method on two-dimensional structured quadrilateral

grids has been proposed in [104]. This latter approach, based on the introduction

of a set of special curl-preserving flux distributions, will be explored and expanded

in this chapter for the curl preservation of the deformation gradient tensor F for

two-dimensional structured (i.e. quadrilateral and triangular) grids.

The roadmap of this chapter is depicted in Figure 7.1.

7.2 Curl-preserving Updated Scheme

A locally constraint-preserving finite volume method has been successfully employed

in shallow water equations [105]. This section will extend its use by exploring a more

physically meaningful alternative framework. In Jeltsch and Torrilhon (2006) [105],

the evolution equation is given by

∂m

∂t
+∇x · (pI) = 0. (7.1)

This is equivalent to

ṁ = −∇x p, (7.2)

1Involution (as opposed to a classical constraint) is not necessary to close the system of conser-

vation laws, but must be an inherent property of the evolution operator.
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where m describes the momentum variable, p represents the pressure and ∇x de-

notes the gradient operator in deformed configuration. The evolution equation (7.2)

reveals the constraint curlm = const and notably, the expression above shows an

interesting structural similarity with Ḟ , given as

∂F i

∂t
= ∇0vi, ∀ i = 1, 2, 3. (7.3)

Note that F i is the ith-row of deformation gradient tensor and vi denotes the velocity

in respective ith direction of cartesian axes. Consequently, curl F i = const at all

times.

In order to preserve this constraint in a discrete formulation, ṁ can be expressed

as a linear combination of curl-preserving functions Φe,curl-free [105]. In the case of

quadrilateral grid cells, the adjacent elements of a given node a are demonstrated

as
ΦNE,curl-free
a = (∆y,∆x)T , ΦNW,curl-free

a = (−∆y,∆x)T ,
ΦSE,curl-free
a = (∆y,−∆x)T , ΦSW,curl-free

a = (−∆y,−∆x)T ,
(7.4)

(see Figure 7.2a). These curl-preserving functions enable the evolution of m to be

expressed as

ṁe =
Nn∑

a=1
e∈a

f(p)Φe,curl-free
a . (7.5)

f(p) denotes an arbitrary function of element pressures andNn describes the number

of nodes. It is useful to notice that the functions Φe,curl-free
a are proportional to the

gradients of standard bilinear shape function N̂a, that is

Φe,curl-free
a = −2Ae∇xN̂

e
a ; Ae = ∆x∆y, (7.6)

where the gradient is evaluated at the centroid of the cell e. Expression (7.5) is thus

equivalent to

ṁe = −
Nn∑

a=1
e∈a

pa∇xN̂
e
a , pa = 2Aef(p). (7.7)

Here, pa are some nodal values of p obtained from element pressures that are yet

to be defined. Expression (7.7) is obviously curl-preserving as the evolution of m is

formulated by the gradient of an artificially constructed pressure field. In addition,

equation above can be further extended to triangular mesh by simply changing the

shape function N̂a to that of linear triangle. The real challenging questions are

two-fold:

• How to relate (7.7) to a finite volume formulation and,

• how to obtain the nodal pressure pa.
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Figure 7.3: Flux distributions of a given kth-edge: (a) A classical finite volume

method; and (b) Curl-free updated scheme.

The standard finite volume spatial discretisation for (7.1) is denoted as

ṁe = − 1

Ae

Nted∑

k=1
e∈k

pknklk (7.8a)

=
1

Ae

Nted∑

k=1
e∈k

pkΦ
e,class
k (7.8b)

Note that pk is evaluated at contact point, nk stands for the spatial unit outward

normal vector, Ae denotes the area of cell e, lk represents the length of boundary

face and Nted describes the total number of edges in the physical domain including

boundary edges. The classical edge distribution functions for an arbitrary kth-edge

are defined as follows (see Figure 7.3a),

ΦN,class
k = (0,∆x)T , ΦS,class

k = (0,−∆x)T . (7.9)

In order to make this update compatible with (7.5), Φe,class
k is replaced by a linear

combination of curl-preserving Φe,curl-free defined as

Φe,class
k = α(Φe,curl-free

L +Φe,curl-free
R ), L,R ∈ k, (7.10)

where α is a coefficient that ensures the consistency of this new approach and

L,R are the two nodes connected to edge k (see Figure 7.3b). In this approach,

an arbitrary kth-edge contributes to a set of the surrounding elements e, namely

{NW,SW,N, S,NE, SE} (see Figure 7.3b) whereas, only two adjacent elements

{N,S} are updated in the classical finite volume scheme (see Figure 7.3a). It is

now possible to evaluate the coefficient α by inserting (7.10) into (7.8b) for ṁ, and

relate it back to (7.5). By rearranging the sum, it gives

ṁe =

Nted∑

k=1
e,L,R∈k

α

Ae
pk(Φ

e,curl-free
L +Φe,curl-free

R ) =
Nn∑

a=1
e∈a

α

Ae






4∑

k=1
k∈a

pk




Φe,curl-free

a . (7.11)
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Substituting (7.6) into above one yields

ṁe = −
Nn∑

a=1
e∈a




2α

4∑

k=1
k∈a

pk




∇xN̂

e
a = −

Nn∑

a=1
e∈a

pa∇xN̂
e
a . (7.12)

The expression in square bracket denotes an averaged evaluation of nodal pressure

obtained from Riemann values at contact points. For consistency, the coefficient α

has to be α = 1/8.

An extension to Ḟ is trivial such that2

Ḟ e =
Nn∑

a=1
e∈a

va ⊗∇0N̂
e
a . (7.13)

Note that change in sign convention is required (see equation (7.2)). More gener-

ally, the nodal velocity va can be computed based upon area-weighted averaging

technique:

va =
1

Aa

4∑

k=1
k∈a

vkAk. (7.14)

For a regular quadrilateral mesh, a simple averaging process will be recovered, that

is

va =
1

4

4∑

k=1
k∈a

vk,

where Ak and vk denote the area and contact velocity at kth-edge.

7.2.1 Correction to Boundary Nodes

The area-weighted averaging procedure described above, viz. (7.14), produces good

results at interior nodes but leave something to be desired at boundary nodes. In

order to improve this, it is essential to introduce a correction at each boundary

node [69]. Two types of boundary node corrections, specifically for quadrilateral

grid cells (see Figure 7.4a), are carried out in the following two steps:

Step 1: Non-corner boundary nodes. A typical situation is depicted in Figure

7.4b. For a uniform mesh, the weighted averaged nodal velocity at non-corner

boundary node a, va, has to be corrected by a linear extrapolation from interior

node b and velocity at contact point k, that is

va ←−
1

2
(va + 2vk − vb). (7.15)

2The gradient of a shape function will be discussed in Appendix J.
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Figure 7.4: Four-noded quadrilateral cell: (a) Mesh; (b) Non-corner boundary node;

and (c) Corner node.
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Step 2: Corner nodes. A linear extrapolation is employed through corrected non-

corner boundary nodes b, d and interior node c (see Figure 7.4c):

va ←−
L̂bvb + L̂cvc + L̂dvd

L
(7.16)

where
L = Lb + Lc + Ld

Lb = XcYd −XdYc

Lc = XdYb −XbYd

Ld = XbYc −XcYb

L̂b = Lb + (Yc − Yd)Xa + (Xd −Xc)Ya

L̂c = Lc + (Yd − Yb)Xa + (Xb −Xd)Ya

L̂d = Ld + (Yb − Yc)Xa + (Xc −Xb)Ya.

Here, X and Y are cartesian coordinates. Expression (7.16) can be further

reduced to

va ←− vb + vd − vc (7.17)

for a uniform mesh.
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Chapter 8

Analysis of Numerical Scheme

“This definitive source on the accuracy and stability of numerical algorithms is

quite a bargain and a worthwhile addition to the library of any statistician heavily

involved in computing”.

Robert L. Strawderman, Journal of the American Statistical Association 1999
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8.1 Introductory Remarks

The overall numerical strategy has now to be analysed for its validity and accuracy.

In order to investigate this, it is essential to introduce a certain number of concepts

such as consistency, stability and convergence. These fundamental concepts are of

paramount importance in ensuring that the result obtained from computer simula-

tion represents a valid approximation of reality. More detailed numerical analysis of

any numerical method can be found in [25,60,92,98,158].

The chapter is organised as follows. Firstly, the numerical scheme has to be con-

sistent with the mathematical model by introducing a small error in a single time

step (see Section 8.2). This truncation error leads to an important source of infor-

mation on the expected accuracy of the particular scheme. Section 8.3 is focusing

on the Von Neumann stability analysis1 so as to avoid errors grow catastrophically.

Once the method is proven to be consistent and stable, it shall automatically satisfy

the convergence requirement [106]. This fundamental theorem will be discussed in

Section 8.4.

Interrelations between consistency, stability and convergence are illustrated in

Figure 8.1. The consistency establishes a relation between the differential equation

and its discrete formulation counterpart; stability condition defines a relation be-

tween the computed solution and exact solution of discrete formulation; convergence

relates the computed solution to the exact solution of differential equation.

Figure 8.2 illustrates the structure of this chapter.

Differential 

equation 

Discretised 

equation 

Stability 

Exact solution of 

discretised 

equation 

Computed 

solution 

Consistency 

Exact solution of 

differential 

equation 

Computed 

solution 

Convergence 

Figure 8.1: Relations between consistency, stability and convergence.

1In numerical analysis, Von Neumann stability analysis is also known as Fourier stability anal-

ysis.
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Figure 8.2: Structure of this chapter.
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8.2 Consistency

Consistency implies that the numerical scheme tends to the original differential

equation (or mathematical model) when the mesh size ∆x is refined. This condition

leads to a very important property of numerical discretisation, namely truncation

error, which expresses a new vision of the relationship between the numerical scheme

and the original differential equation. The major conclusion of this study is that

the numerical solution does not satisfy a given differential equation but instead,

a solution to an equivalent differential equation (or modified equation). See [25,

60] for some further discussions. For simplicity, a one dimensional linear constant

convection equation, that is

qt + aqx = 0, (8.1)

will be considered. Here, a ≡ const describes the constant wave speed flows in a

positive direction, q represents an unknown variable and (·)k = ∂(·)/∂k.
In general, an explicit numerical method can be written in the form

un+1
i = N (unα). (8.2)

Note that N (·) is a numerical operator for mapping the approximate solution, u, at

time step n to the following time step n + 1. Perhaps most importantly, the local

truncation error, τn, is defined by comparing the solution obtained from applying

the numerical operator to the analytical solution q at time step n with the analytical

solution at time step n+ 1 and then dividing this by ∆t, from which gives

τn =
1

∆t
[N (qn)− qn+1]. (8.3)

The method is said to be consistent with the original differential equation if the local

truncation error vanishes as ∆x (or ∆t) −→ 0. To this end, a numerical analysis of

(8.1) will be carried out.

Firstly, it merits noting that (8.1) is integrated over the length ∆x = Xi+1/2 −
Xi−1/2. By employing the divergence theorem2, the integral equation then yields

d

dt

∫ Xi+1/2

Xi−1/2

q dX = −a
∫

∂A

qNX dA, (8.4)

where NX is the material outward unit normal vector in X direction. Subsequently,

(8.4) can be approximated as

dui
dt

= − a

∆x
(uCi+1/2 − uCi−1/2) (8.5a)

= − a

∆x
(u+i − u+i−1). (8.5b)

2Divergence theorem is alternatively known as Gauss’ theorem. This fundamental theorem is

discussed in any Calculus textbook.
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Due to the fact that only a single wave is travelling towards the right at speed a,

unknowns at contact points are easily reduced to uCi+1/2 = u+i and uCi−1/2 = u+i−1

[25, 26, 60–62, 84]. The expression above leaves a wide range of choices for time

integration schemes. The definitions of u+i and u+i−1 will be clearly presented as

follows (see Figure 8.3).
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Figure 8.3: Definitions of u+i−1 and u+i : (a) Piecewise constant reconstruction; and

(b) Piecewise linear reconstruction.

8.2.1 Godunov-Type Method: First Order Accuracy

In the Godunov-type method, the problem (or unknown) variable, u, is reconstructed

as a piecewise constant over the grid cells at each time step. This constant recon-

struction process is mathematically expressed by

ui−1 = u+i−1 = u−i−1, ui = u+i = u−i (8.6)

With the aid of above conditions, an upwind method based on (8.5) is reduced to

dui
dt

= −R; R =
a

∆x
(ui − ui−1). (8.7)

Furthermore, the first-order explicit Euler time scheme is chosen to advance forward

in time
un+1
i − uni
∆t

= −Rn; Rn =
a

∆x
(uni − uni−1). (8.8)

Equation above can be rearranged to

un+1
i = uni − αCFL(uni − uni−1), (8.9)

where αCFL = a∆t/∆x. This expression represents a two-point stencil method by

means of only two grid points are needed for updating un+1
i , which can be generally

expressed as

un+1
i = N (uni−1, u

n
i ). (8.10)
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With the numerical operator N defined above, it is possible to determine the

local truncation error τn . By substituting the analytical solution into (8.9), the

truncation error (8.3) yields

τn =
1

∆t

[
qni − qn+1

i + αCFL(q
n
i−1 − qni )

]
. (8.11)

Here, (·)ba = (·)(a, b). Using Taylor series expansion techniques, the above terms

involving (·)ba (where a 6= i and b 6= n) are expanded about (xi, t
n):

τn = − [qt + aqx]
n
i

︸ ︷︷ ︸

equal to 0

+
1

2

[
a∆xqxx −∆tqtt +O(∆x)2

]n

i
. (8.12)

Note here that the terms in [·] are computed at (xi, t
n). The first term in the

expression above vanishes due to the fact that analytical solution satisfies the cor-

responding differential equation; that is, qt + aqx = 0. Based upon the definition of

qtt = a2qxx, (8.12) reduces to

τn =
a∆x

2
(1− αCFL)[qxx]ni +O(∆x)2. (8.13)

It is obvious that the local truncation error, τn, is dominated by O(∆x), which
clearly depends upon diffusive term qxx. Therefore, the numerical scheme is of first

order accuracy in space and time.

8.2.2 Second Order Numerical Scheme

This section demonstrates the local truncation error, τ , of a second-order finite

volume spatial discretisation together with an Improved Euler time integrator. The

gradient operators (as discussed in Section 4.4) are represented as

Gi−1 =
ui − ui−2

2∆x
; Gi =

ui+1 − ui−1

2∆x
. (8.14)

Thus, the reconstructed values at contact points are shown as

u+i−1 = ui−1 +
1

4
(ui − ui−2), (8.15a)

u+i = ui +
1

4
(ui+1 − ui−1). (8.15b)

By substituting them into (8.5b), after some simple algebraic manipulations, it gives

dui
dt

= −R; R =
a

4∆x
(ui+1 + 3ui − 5ui−1 + ui−2). (8.16)

It is now convenient to evolve the ordinary differential equation (8.16) by the second

order Improved Euler time integrator [88]:

u
(1)
i = uni (8.17a)

u
(2)
i = uni −∆t R(u(1)) (8.17b)

un+1
i =

1

2
uni +

1

2
u
(2)
i −

1

2
∆t R(u(2)), (8.17c)



100 Chapter 8. Analysis of Numerical Scheme

where the residual terms are

R(u(1)) =
a

4∆x
(uni+1 + 3uni − 5uni−1 + uni−2), (8.18a)

R(u(2)) =
a

4∆x
(u

(2)
i+1 + 3u

(2)
i − 5u

(2)
i−1 + u

(2)
i−2). (8.18b)

By simple inspection, it transpires that the variables to be determined are

u
(2)
α where α = {i− 2, i− 1, i, i+ 1}. Based on (8.17b), u

(2)
i is stated as

u
(2)
i = uni −

1

4
αCFL(u

n
i+1 + 3uni − 5uni−1 + uni−2); αCFL =

a∆t

∆x
. (8.19)

Furthermore, the rest of the unknowns can be evaluated in a similar manner as

u
(2)
i+β = uni+β −

1

4
αCFL(u

n
i+1+β + 3uni+β − 5uni−1+β + uni−2+β); ∀ β = {−2,−1, 1}

(8.20)

Substituting (8.20) into (8.18b), the residual term yields

R(u(2)) =
a

4∆x
(uni+1 + 3uni − 5uni−1 + uni−2)

− a2∆t

16∆x2
(uni+2 + 6uni+1 − uni − 28uni−1 + 31uni−2 − 10uni−3 + uni−4),

(8.21)

and in turn the updated un+1
i is obtained as

un+1
i = uni −

1

4
αCFL(u

n
i+1 + 3uni − 5uni−1 + uni−2)

+
1

32
α2
CFL(u

n
i+2 + 6uni+1 − uni − 28uni−1 + 31uni−2 − 10uni−3 + uni−4).

(8.22)

Alternatively, (8.22) is explicitly stated as

un+1
i = N (unα); ∀α = i− 4, i− 3, . . . , i+ 2. (8.23)

Here, a larger stencil is needed for updating the unknown un+1
i than was the case in

(8.10).

In order to achieve the local truncation error, τn, a Taylor series expansion about

(xi, t
n) will be performed which eventually gives

τn =
a∆x2

6

(

α2
CFL +

1

2

)

[qxxx]
n
i +O(∆x)3. (8.24)

The error τn is dominated by O(∆x)2, where its leading error term depends on the

dispersive nature of qxxx [25, 60, 81, 83]. The expression above confirms that the

overall numerical method is of second order accuracy.
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8.3 The Von Neumann Stability Analysis

Once consistency has been verified, it is necessary to establish the stability behaviour

of a numerical scheme. The Von Neumann method3 offers an easy and simple way of

assessing the stability properties of linear schemes with constant coefficients, where

the boundary conditions are assummed periodic. The key innovation of this analysis

is to introduce an arbitrary harmonic function into the numerical scheme such that

its amplitude, V , should not grow indefinitely in time. Excellent discussion can be

found in [25,60].

8.3.1 Methodology

In order to study the Von Neumann stability analysis, the following procedure will

be used [25]:

1. Replace the unknown variable un+qi+p by

un+qi+p = V n+qeI(i+p)φ; I =
√
−1. (8.25)

2. Since all the terms of the subsequent expansion contain eIiφ, the resulting

equation can be simplified by this factor.

3. Derive an explicit form for the amplification factor G = V n+1/V n.

4. Ensure that the Von Neumann stability condition is satisfied as follows:

|G| ≤ 1 ∀φ ∈ [−π, π]. (8.26)

Apply this methodology to the numerical schemes derived previously, viz. (8.9) and

(8.22), for the linear constant convection equation qt + aqx = 0.

8.3.2 First Order Finite Volume Scheme: Diffusive Nature

The stability analysis of the first order numerical scheme, which depends upon

piecewise constant reconstruction together with an explicit Euler time integrator

(see equation (8.9)), will be studied. For clarity, the discretised equation4 is shown

again below:

un+1
i = uni − αCFL(uni − uni−1); αCFL =

a∆t

∆x
. (8.27)

3Von Neumann technique, developed by John Von Neumann, has emerged as the most widely

applied method in stability analysis.
4In the usual terminology of finite differences, the discretised equation (8.9) is widely regarded

as first order upwind scheme (FOU) in which the first order backward discretisation in space with

an explicit first order difference in time have been adopted.
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Firstly, replace the above terms using (8.25) to give:

V n+1eIiφ = V neIiφ
(
1− αCFL + αCFLe

−Iφ
)
. (8.28)

Next, cancel the common factor eIiφ and the amplitude G is then obtained in terms

of any arbitrary harmonic function as5

G =
V n+1

V n
= 1− αCFL + αCFLe

−Iφ

= 1− αCFL + αCFL cosφ
︸ ︷︷ ︸

Re(G)

+(−αCFL sinφ
︸ ︷︷ ︸

Im(G)

)I.
(8.30)

In order to satisfy the Von Neumann stability condition (8.26), a certain range of

CFL number, αCFL,

0 ≤ αCFL ≤ 1, ∀φ ∈ [−π, π] (8.31)

has to be fulfilled.

8.3.3 Second Order Finite Volume Scheme: Dispersive Na-

ture

In order to obtain a higher order finite volume scheme, it is essential to introduce

an appropriate reconstruction procedure for choosing better values for the left and

the right states. By applying a piecewise linear reconstruction, the updated variable

un+1
i , viz. (8.22), is shown as:

∆ui =−
αCFL
4

(uni+1 + 3uni − 5uni−1 + uni−2)

+
α2
CFL

32
(uni+2 + 6uni+1 − uni − 28uni−1 + 31uni−2 − 10uni−3 + uni−4),

(8.32)

where ∆ui = un+1
i − uni . With the aid of (8.25), the amplification factor is reduced

to

G =
V n+1

V n
= 1− 1

4
αCFLη +

1

32
α2
CFLβ, (8.33)

where

η = eIφ + 3− 5e−Iφ + e−2Iφ, (8.34a)

β = e2Iφ + 6eIφ − 1− 28e−Iφ + 31e−2Iφ − 10e−3Iφ + e−4Iφ. (8.34b)

By substituting the exponential property (eIθ = cos θ + I sin θ) into the equation

above, after some simple but tedious algebra, yields

G = Re(G) + Im(G)I, (8.35)

5The modulus of G can be achieved by

|G| =
√

Re(G)2 + Im(G)2. (8.29)
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where

Re(G) =1− 3

4
αCFL −

1

32
α2
CFL +

1

4
αCFL (4 cosφ− cos 2φ)

+
1

32
α2
CFL (−22 cosφ+ 32 cos 2φ− 10 cos 3φ+ cos 4φ) ,

(8.36)

and

Im(G) =
1

4
αCFL (sin 2φ− 6 sinφ)+

1

32
α2
CFL (34 sinφ− 30 sin 2φ+ 10 sin 3φ− sin 4φ) .

(8.37)

By virtue of (8.35), (8.36) and (8.37), |G| seems to be very complex but doable6.

Its modulus |G| ≤ 1 if and only if

0 ≤ αCFL ≤ 1, ∀φ ∈ [−π, π] (8.38)

is satisfied.

8.4 Convergence

Convergence is defined by the numerical solution should approach the exact solution

of the original differential equation when ∆x (or ∆t) tends to zero. The fundamental

Equivalence Theorem of Lax states that for a well-posed linear initial value problem,

stability is the only necessary condition for convergence provided that the numerical

method is consistent [106] (see Figure 8.1).

8.4.1 Accuracy

The quality of a numerical scheme is often summarised by a single parameter s,

namely order of accuracy. Firstly by noting that the error is expected to behave

like7

En
i = C(∆x)s +H.O.T (8.39)

as the grid is refined (or ∆x → 0). Here, C is the constant that depends upon the

particular solution being computed and also time t. Mesh refinement analysis will

be performed in the forthcoming chapters by means of the analytic and computed

pointwise solutions will be compared on a sequence of grids at a certain time instant.

The error is plotted as a function of grid size (∆x) in a log-log scale. From (8.39),

a linear behavior is anticipated in the plot as

6Commerical programming software (such as Matlab) can be used to obtain the result efficiently.
7En

i describes the pointwise error at time step n. This error can be denoted by

En
i =

|qni − uni |
|qni |

,

where uni denotes the computed solution and qni represents an analytical pointwise value.
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logEn
i ≈ logC + s log∆x (8.40)

with a slope given by the order of accuracy s. Note that a higher order method is

not inevitably more accurate on a certain grid size [60] (depend upon constant C in

the above equation).
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Numerical Examples
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Chapter 9

One Dimensional Problems

“The essence of mathematics is not to make simple things complicated, but to make

complicated things simple”.

Stanley Gudder, mathematician

107



108 Chapter 9. One Dimensional Problems



9.1. Governing Equations 109

9.1 Governing Equations

Under a reversible process, the one dimensional mixed formulation easily reduces

to1

∂U

∂t
+
∂F1

∂X
= 0, (9.1)

where their components are illustrated as

U =

(
p1
F11

)

; F1 =

( −P11

−p1/ρ0

)

. (9.2)

Note that the unknowns are linear momentum p1(X, t) and deformation gradient

F11(X, t), ρ0 denotes a constant material density. These conservation laws (viz.

(9.1) and (9.2)) have to be supplemented by a constitutive law so as to close the

coupled system; that is, P11 = ∂ψ/∂F11. In the small strain linear regime, the

(engineering) stress is expressed by (see equation 2.19)

P11 = σ11 = (λ+ 2µ)(F11 − 1). (9.3)

With the aid of above relationship, (9.1) and (9.2) can be further expanded as

∂p1
∂t
− (λ+ 2µ)

∂F11

∂X
= 0,

∂F11

∂t
− 1

ρ0

∂p1
∂X

= 0.
(9.4)

When written in a matrix form, this system reads2

U t +A1UX = 0 (9.5)

with

U =

(
p1
F11

)

, A1 =

(
0 −(λ+ 2µ)

−1/ρ0 0

)

. (9.6)

More specifically, the imposition of a null Poisson’s ratio (ν = 0) leads to3

λ =
νE

(1 + ν)(1− 2ν)
= 0 and E = 2µ(1 + ν) = 2µ.

Consequently, the Jacobian matrix, A1, can be alternatively denoted as

A1 =

(
0 −E

−1/ρ0 0

)

. (9.7)

1General discussion on the conservation-law formulation has been presented in Section 2.5.
2Notation [·]a = ∂ [·] /∂a.
3In general, a non-zero value of ν could have been chosen.
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9.2 Eigenstructure

The eigenvalues of a system are defined by zeros of the characteristic polynomial:

|A1 − UαI| = det

( −Uα −(λ+ 2µ)

−1/ρ0 −Uα

)

= 0. (9.8)

By virtue of the equation above, the system has two real and distinct solutions,

namely

U1 = Up, U2 = −Up, (9.9)

where

Up =

√

λ+ 2µ

ρ0
. (9.10)

It is now possible to find the eigenvectors R1, R2 corresponding to their eigen-

values U1 and U2 counterparts. The eigenvector R1 for U1 = Up is found as follows

such that R1 is a right eigenvector of A1; that is, A1R1 = U1R1. Writing this in

full gives

(
0 −(λ+ 2µ)

−1/ρ0 0

)( R(1)
1

R(2)
1

)

= U1

(

R(1)
1

R(2)
1

)

, (9.11)

which produces two linear algebraic equations for the unknowns R(1)
1 and R(2)

1 . Due

to the fact that these two equations are equivalent, only a single linear algebraic

equation has to be considered and then yields a one-parameter family of solutions.

By selecting an arbitrary non-zero scaling factor β1 and set R(1)
1 = β1, the first right

eigenvector becomes

R1 = β1

(
1

−1/ρ0Up

)

. (9.12)

On the other hand, the eigenvector R2 of U2 = −Up is derived in a similar manner:

R2 = β2

(
1

1/ρ0Up

)

(9.13)

where β2 is a scaling factor. The complete right eigenvector matrix is presented as

follows:

R = (R1|R2) =

(
β1 β2

−β1/ρ0Up β2/ρ0Up

)

. (9.14)

By noting that LT
αA1 = UαL

T
α , the left eigenvectors of matrix A1 can be obtained

as

L
T = R

−1 =

(
L
T
1

L
T
2

)

=
1

2

(
1/β1 −ρ0Up/β1
1/β2 ρ0Up/β2

)

. (9.15)

Set the scaling factors to unity (i.e. β1 = β2 = 1), the right eigenvectors
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R1 =

(
1

−1/ρ0Up

)

, R2 =

(
1

1/ρ0Up

)

, (9.16)

and the left eigenvectors

L1 =
1

2

(
1

−ρ0Up

)

, L2 =
1

2

(
1

ρ0Up

)

, (9.17)

can be easily achieved. These eigenvectors satisfy the well-known orthogonality

condition.

The linearised solid dynamics system of equations (viz. (9.5) and (9.6)) is strictly

hyperbolic since U1 and U2 are real and distinct. This ensures the existence of a set

of linearly independent eigenvectors (see Appendix C).

9.3 Linearised Riemann Solver

A variety of different approaches have been used to derive the linearised Riemann

solver for a one-dimensional rapid dynamics system of equations:

1. Expanding the initial data U
− and U

+ in terms of eigenvectors.

2. Expanding the total jump U in terms of waves.

3. Using the Rankine-Hugoniot conditions across each wave.

4. Applying the Generalised Riemann Invariants (GRI).

A complete and thorough description of this subject is provided in [60,62,82,84].

9.3.1 Expanding the Initial Data in terms of Eigenvectors

Firstly, the left state U− is decomposed into a summation of their linearly indepen-

dent eigenvectors, namely

U
− ≡

(
p−1
F−
11

)

= γ1R1 + γ2R2 ≡ γ1

(
1

−1/ρ0Up

)

+ γ2

(
1

1/ρ0Up

)

.

From expression above, the coefficients γ1 and γ2 are solved as

γ1 =
1

2

(
p−1 − ρ0UpF−

11

)
, γ2 =

1

2

(
p−1 + ρ0UpF

−
11

)
, (9.18)

respectively. Analogously, the unknowns ζ1 and ζ2 of the right state U
+ can also be

achieved:

ζ1 =
1

2

(
p+1 − ρ0UpF+

11

)
, ζ2 =

1

2

(
p+1 + ρ0UpF

+
11

)
. (9.19)
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By noting that the unknown variable at contact point is

U
C ≡

(
pC1
FC
11

)

= γ1R1 + ζ2R2 ≡ γ1

(
1

−1/ρ0Up

)

+ ζ2

(
1

1/ρ0Up

)

, (9.20)

the above equation can be further extended to

pC1 =
1

2
(p−1 + p+1 ) +

ρ0Up
2

(F+
11 − F−

11), (9.21a)

FC
11 =

1

2ρ0Up
(p+1 − p−1 ) +

1

2
(F−

11 + F+
11), (9.21b)

with the aid of γ1 and ζ2.

9.3.2 Expanding the Total Jump in terms of Waves

The total jump U 4 consists of a series of waves, that is

U = η1R1 + η2R2 = η1

(
1

−1/ρ0Up

)

+ η2

(
1

1/ρ0Up

)

. (9.22)

It is trivial to evaluate the coefficients of η1 and η2:

η1 =
1

2
( p1 − ρ0Up F11 ) , η2 =

1

2
( p1 + ρ0Up F11 ). (9.23)

Insofar as the unknown variable at contact point is represented as

U
C ≡

(
pC1
FC
11

)

= U
− + η2

(
1

1/ρ0Up

)

= U
+ − η1

(
1

−1/ρ0Up

)

,

(9.24)

the expression above can then be concluded, after some simple algebraic manipula-

tions, as

pC1 =
1

2
(p−1 + p+1 ) +

ρ0Up
2

(F+
11 − F−

11), (9.25a)

FC
11 =

1

2ρ0Up
(p+1 − p−1 ) +

1

2
(F−

11 + F+
11). (9.25b)

9.3.3 Rankine-Hugoniot Relations

Applying the Rankine-Hugoniot conditions5 across the U1-wave gives

Up

(
p+1 − pC1
F+
11 − FC

11

)

=

(

−(λ+ 2µ)(F+
11 − FC

11)

− 1
ρ0
(p+1 − pC1 )

)

. (9.26)

4Discontinuity of a variable is denoted as · = (·)+ − (·)−.
5For a linear system with constant coefficients, the Rankine-Hugoniot relations across the wave

speed Uα read

Uα U = F1 .
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Expanding and solving for pC1 yields

pC1 = p+1 + ρ0Up(F
+
11 − FC

11). (9.27)

Likewise, for the U2-wave, the contact linear momentum is derived as

pC1 = p−1 + ρ0Up(F
C
11 − F−

11). (9.28)

The solutions to the simultaneous linear algebraic equations are

pC1 =
1

2
(p−1 + p+1 ) +

ρ0Up
2

(F+
11 − F−

11), (9.29a)

FC
11 =

1

2ρ0Up
(p+1 − p−1 ) +

1

2
(F−

11 + F+
11), (9.29b)

respectively. A basic introduction to this underlying technique was presented in

Section 5.2.

9.3.4 Generalised Riemann Invariants (GRI)

A linearised Riemann solver based upon Generalised Riemann Invariants technique6

is demonstrated in this section. Across the U1-right wave, dp1 is defined as

dp1 =
dF11

−1/ρ0Up
, (9.30)

which, after some simple rearrangements, gives

dF11 +
1

ρ0Up
dp1 = 0. (9.31)

By integrating the equation above, this produces

IR = F11 +
1

ρ0Up
p1 = const. (9.32)

Similarly, the U2-left wave leads to

IL = F11 −
1

ρ0Up
p1 = const. (9.33)

Applying IL across the left wave connecting U
− and U

C yields

FC
11 −

1

ρ0Up
pC1 = F−

11 −
1

ρ0Up
p−1 . (9.34)

6For a certain α-wave, the Generalised Riemann Invariants are relations that hold true across

the wave structure:

dU1
R(1)

α

=
dU2
R(2)

α

; U =

( U1
U2

)

; Rα =

(

R(1)
α

R(2)
α

)

.

Further discussion can be found in [91].
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On the other hand, the application of IR across the right wave gives

FC
11 +

1

ρ0Up
pC1 = F+

11 +
1

ρ0Up
p+1 . (9.35)

The simultaneous equations for unknowns pC1 and FC
11 can then be computed as7

pC1 =
1

2
(p−1 + p+1 ) +

ρ0Up
2

(F+
11 − F−

11), (9.36a)

FC
11 =

1

2ρ0Up
(p+1 − p−1 ) +

1

2
(F−

11 + F+
11). (9.36b)

Note that the above solutions are identical to those obtained from other techniques

(see (9.21), (9.25) and (9.29)).

9.4 Notation of Cell-Centred Scheme

The spatial semi-discretisation is performed on a cell-centred cartesian grid, where

the primary variables are defined at the centroids of the cells. Under this circum-

stance, any control volume can be identified with the existing grid; for instance,

i = (Xi−1/2, Xi+1/2) (see Figure 9.1). In order to be compatible with the definitions

discussed in Section 9.3, for any arbitrary contact point (such as (·)C = (·)i−1/2),

(·)+ and (·)− represent (·)i and (·)i−1 in the case of first-order Godunov scheme.

 

 

 

 

 

 

 

 

 

i-1 i-3/2 i+1 i+3/2 i+2 

X

i+1/2i-1/2 i+5/2i 

Figure 9.1: The position of a control volume with respect to the grid cell. Integer in-

dexes, . . . , i−1, i, i+1, . . ., are the centroids of grid cells whereas non-integer indexes,

. . . , i− 3/2, i− 1/2, i+ 1/2, . . . , are the grid (or contact) points correspondingly.

9.5 Godunov’s and Explicit Euler Time Scheme

As discussed previously, the differential law of a system of conservation equations is

∂U

∂t
+
∂F1

∂X
= 0, (9.37)

7The contact variables (i.e. pC1 and PC
11) can be alternatively stated as

pC1 =
1

2
(p−1 + p+1 ) +

1

2Up
(P+

11 − P−

11),

PC
11 =

Up

2
(p+1 − p−1 ) +

1

2
(P−

11 + P+
11),

with the aid of linear constitutive relation; that is, F11 = P11/(λ+ 2µ) + 1.
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and their components are illustrated in (9.2). In order to yield a physically consistent

solution where discontinuities are present, it is essential to introduce the weak form

of its corresponding differential law:

d

dt

∫

Vi

U(X, t) dX = F1(U(Xi−1/2, t))−F1(U(Xi+1/2, t)). (9.38)

Note that the volume of i-th grid cell is described as Vi = ∆x = Xi+1/2 − Xi−1/2.

The above equation is then divided by ∆x which gives

d

dt

(
1

∆x

∫

Vi

U(X, t) dX

)

=
1

∆x

(
F1,i−1/2 −F1,i+1/2

)
, (9.39)

where

F1,i−1/2 ≡ F1(U(Xi−1/2, t)); F1,i+1/2 ≡ F1(U(Xi+1/2, t)).

By giving an approximation of the averaged value over i-th cell

U i ≈
1

∆x

∫

Vi

U(X, t) dX, (9.40)

and the use of explicit Euler time integration scheme, (9.39) yields

U
n+1
i = U

n
i −

∆t

∆x

(
F
n
1,i+1/2 −F

n
1,i−1/2

)
. (9.41)

The expression above (widely known as flux differencing formula) offers a great

variety of different possibilities to update the cell averaged U i at one time step,

which clearly depends on the flux computation. The simplest form of interface flux

evaluation, Fn
1,i−1/2, can be obtained by choosing the cell averaged values as the left

and right states, that is

F
n
1,i−1/2 = F1(U

n
i−1,U

n
i ). (9.42)

Any method of this type is an explicit numerical scheme with three-point spatial

stencil, where its resulting solution is of first order accuracy in both space and time.

In short, Godunov’s method is implemented in two-folds:

• Solve the Riemann problem at cell interface (refer to contact algorithm intro-

duced in Chapter 5).

• Apply the flux differencing formula (9.41).

An alternative wave propagation framework allowing for application on more gen-

eral hyperbolic systems is described in [60]. It is worth noting that the first-

order accurate numerical schemes are becoming less acceptable to the CFD com-

munity due to their poor performance in predicting advection-dominated flows

(see [25, 26, 60, 81–84]). In order to rectify this, it is vital to introduce a linear

reconstruction procedure for selecting better values for the left and the right states

(which will be presented in Section 9.6).
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9.6 Linear Reconstruction Procedure

It is well known that Godunov’s method achieves only first order accuracy in space,

which therefore introduces a great deal of numerical diffusion into the solution

(see [25, 26, 60–62, 81–84, 98]). A second-order spatial accuracy can be obtained

by introducing a suitably linear reconstruction procedure, as already generally dis-

cussed in Section 4.4. Nevertheless, a simplified one-dimensional reconstruction

framework is provided in this section.

A local piecewise linear reconstruction8 at cell i is represented as:

U(X)|i = Ui +
∂ U
∂X

∣
∣
∣
∣
i

(X −Xi), (9.43)

where U(X)|i varies linearly within cell i and the slope ∂U/∂X|i is yet to be specified.
Here, Ui describes an averaged value over cell i and X ∈ [Xi−1/2, Xi+1/2] (see Figure

9.1). There are various techniques available to solve for the slope [60, 84]. The

standard second-order centred finite difference approximation, that is

∂ U
∂X

∣
∣
∣
∣
i

≈ 1

2∆x
(Ui+1 − Ui−1), (9.44)

is employed. Note that the slope at cell i is approximated by adjacent information

(i−1, i+1) relative to the particular cell under consideration. By substituting (9.44)

into (9.43), the explicit formulas for cell interfaces at cell i can be obtained as

Ui,i+1 = Ui +
1

4
(Ui+1 − Ui−1); Ui,i−1 = Ui −

1

4
(Ui+1 − Ui−1). (9.45)

The relation of Ui,i−1 = Ui,i+1 = Ui is recovered in Godunov’s method (see Section

9.5).

Since at least two neighbouring information are required, (9.45) is not applicable

to cells near the physical boundary points.9 However, slopes near both ends can be

reconstructed based upon a single neighbouring information and the end cell itself:

∂ U
∂X

∣
∣
∣
∣
iL

≈ 1

∆x
(UiL+1 − UiL)

︸ ︷︷ ︸

central difference approximation

;
∂ U
∂X

∣
∣
∣
∣
iR

≈ 1

∆x
(UiR − UiR−1)

︸ ︷︷ ︸

central difference approximation

, (9.46)

With the aid of equations above, the reconstructed unknown variables at two bound-

ary points can be represented by

ULB = UiL −
1

2
(UiL+1 − UiL); URB = UiR +

1

2
(UiR − UiR−1), (9.47)

where LB and RB describe left and right boundary points, respectively. Graphical

representation is depicted in Figure 9.2.

8Consistency is satisfied since the origin is located at the centroid of cell i.
9Otherwise, it is essential to extend the computational domain to include a few additional

dummy cells, whose values depend on the boundary conditions and interior solutions. A general

framework for assigning ghost values is developed in Appendix F.
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Figure 9.2: Depiction of piecewise linear reconstruction.

9.7 Slope Limiter

Godunov (1969) [85] concluded that only first-order linear schemes are monotonicity-

preserving. High order spatial discretisation schemes exhibit unphysical oscillatory

behaviour in the vicinity of discontinuities. For this reason, a nonlinear slope limiter

will be introduced so as to control the spurious oscillations, where the limiting func-

tion depends upon the solution values (see [60,84,86,87,93]). The use of slope limiter

φi (aims at correcting the solution gradient) enables the polynomial reconstruction

over cell i to be expressed as

U(X)|i = Ui + φi
∂ U
∂X

∣
∣
∣
∣
i

(X −Xi). (9.48)

Note that φi = 0 corresponds to piecewise constant representation, whereas φi =

1 represents unlimited piecewise linear reconstruction (see equation (9.43)). The

evaluation of φi has been fully discussed in Section 4.4.2.

9.8 Initial Value Problem: Characteristic Theory

The general Initial Value Problem (IVP) of the new conservation law formulation is

presented where its system of equations are shown in (9.5) and (9.6). Note that the

initial conditions and characteristic variable are defined as

(
p1(X, 0)

F11(X, 0)

)

=

(

p̊1(X)

F̊11(X)

)

and W = R
−1
U , (9.49)
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respectively.10 In order to gain a better understanding of an initial value part of the

Cauchy problem, it is advisable to review Appendix C.4 in advance.

Since U1 = Up and U2 = −Up, the characteristic variables can be written as

(
w1

w2

)

t

+

(
Up 0

0 −Up

)(
w1

w2

)

X

= 0, (9.50)

or in full
∂w1

∂t
+ Up

∂w1

∂X
= 0,

∂w2

∂t
− Up

∂w2

∂X
= 0, (9.51)

where their initial conditions satisfy

(
ẘ1(X)

ẘ2(X)

)

= R
−1

(

p̊1(X)

F̊11(X)

)

=






1

2

[

p̊1(X)− ρ0UpF̊11(X)
]

1

2

[

p̊1(X) + ρ0UpF̊11(X)
]




 . (9.52)

Expressions in (9.51) are typically known as linear advection equations. The solu-

tions for characteristic variables (i.e. w1 and w2) are displayed as

w1(X, t) = ẘ1(X − Upt), w2(X, t) = ẘ2(X + Upt), (9.53)

with

ẘ1(X − Upt) =
1

2

(

p̊1(X − Upt)− ρ0UpF̊11(X − Upt)
)

,

ẘ2(X + Upt) =
1

2

(

p̊1(X + Upt) + ρ0UpF̊11(X + Upt)
)

.
(9.54)

Transformation (such as U = RW) is then performed, which in turn yields the

final solutions as

p1(X, t) =
1

2
(p̊1(X − Upt) + p̊1(X + Upt)) +

ρ0Up
2

(

F̊11(X + Upt)− F̊11(X − Upt)
)

,

F11(X, t) =
1

2ρ0Up
(p̊1(X + Upt)− p̊1(X − Upt)) +

1

2

(

F̊11(X + Upt) + F̊11(X − Upt)
)

.

(9.55)

An analytical example (extracted from [60]) is demonstrated with an initial data

such as v1 = 0 and F11 = 1 everywhere except v1 in some small region near the

origin:

v1(X, 0) =
1

2
exp(−80X2) + G(Z); F11(X, 0) = 1, ∀X ∈ [−1.5, 1.5]

where

G(Z) =
{

1 if − 0.3 < Z < −0.1,
0 Otherwise.

Figure 9.3 and Figure 9.4 illustrate the time evolution of unknown variables (i.e.

v1 and F11) with the initial conditions desribed above. In this example, Young’s

modulus E and density ρ0 are treated as unity, Poisson’s ratio ν = 0. For small

10The right eigenvector matrix R and its inverse R
−1 have been introduced in Section 9.2.
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Figure 9.3: Characteristic Theory: Evolution of v1 waves travel with two different

propagation speeds −Up and Up with their shapes unchanged. Poisson’s ratio ν = 0,

Young’s modulus E and density ρ0 are unity.
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Figure 9.4: Characteristic Theory: Evolution of F11 waves travel with two different

propagation speeds −Up and Up with their shapes unchanged. Poisson’s ratio ν = 0,

Young’s modulus E and density ρ0 are unity.
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time the solutions change in a seemingly haphazard way as the left-going and right-

going waves superpose. Nevertheless, it is essential to observe that two separate

waves, as time advances, travel at constant propagation speeds with their shapes

unchanged. In the next section, numerical example will be presented to examine

both the accuracy and computational capabilities of the proposed algorithm.

9.9 Shock Dominated Case: Pile Driving Exam-

ple
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Figure 9.5: Pile driving example: configuration.

The first example which will be considered is that of the wave propagation on

a one-dimensional linear elastic steel pile. This example is taken from Clough and

Penzien (1993) [44]. The bottom end of the pile is fixed and a forcing function

is applied at its free top end. The configuration (see Figure 9.5) consists of a

structural element of length L = 10m and unit cross sectional area; the material

properties are Young’s modulus E = 200GPa, density ρ0 = 8Mg/m3 and Poisson’s

ratio ν = 0. This implies that the wave speed of this elastic material is given by

Up =
√

E/ρ0 = 5× 103 m/s. The example is first discretised with 100 cells (or grid

size h = 0.1m) and the time step has been chosen as ∆ t = 1× 10−5 s, which results

in a Courant-Friedrichs-Lewy number [157] αCFL
11 = Up∆ t/h = 0.5. The applied

step function force is described as (see Figure 9.6a)

P (L, t) =

{
0 t < 0

−P0 t ≥ 0
, P0 = 5× 107N. (9.56)

11The effect of various CFL number on the accuracy of the numerical solutions will be assessed

in the following chapter (see Section 10.3.2).
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Figure 9.6: Forcing function: (a) Step function loading; and (b) Sinusoidal loading.

A stress shock of −5× 107Pa propagates down the pile due to a suddenly applied

load P0. This shock wave reflects at the fixed end (or x = 0) and the amplitude of

the stress shock is then doubled at t = 2 × 10−3 s. Both the classical FEM12 and

the new proposed methodology predict the correct arrival time of the stress shock.

However, the first order FVM introduces considerable numerical diffusion and then

leads to inaccurate solution in the long term, as depicted in Figure 9.7a. To enhance

the accuracy, it is essential to introduce a piecewise linear reconstruction within each

cell. The second order FVM (see Figure 9.7b) gives much better accuracy but fails

near discontinuities, where oscillations are generated due to its dispersive nature.

In order to control these spurious oscillations, slope limiter is implemented. A great

improvement is observed in Figure 9.7c. As it is well known, the standard displace-

ment based FEM formulation produces non-physical oscillations in the vicinity of

sharp solution gradients, as observed in Figure 9.7d.

In addition, a convergence analysis by means of the L1-norm and L2-norm has

been carried out on a sequence of grids. To achieve a smooth solution, a sinusoidal

forcing function is employed by

P (L, t) = K
(

sin
( π

20
t− π

2

)

+ 1
)

; t ≥ 0, (9.57)

where the constant K = 1× 10−3 (see Figure 9.6b). In this particular case, Young’s

modulus E and density ρ0 are taken to be unity and the Poisson’s ratio is chosen

as ν = 0.3. Figure 9.8 demonstrates the expected accuracy of the scheme (with

and without slope limiters) for different variables. As can be observed, the inclusion

of slope limiters is expected to be less accurate (than those without it) as limiters

generate diffusion into the solution. It can be concluded that FVM-limiter scheme

achieves second order of accuracy in stress (only first order precision for displacement

12See Appendix G for detailed explanation of standard finite element computational methodol-

ogy.
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Figure 9.7: Pile Driving Example (Step Function Loading): Stress history at fixed

end, x = 0, in the elastic case: (a) Piecewise constant reconstruction; (b) Piecewise

linear reconstruction; (c) With limiters; and (d) Standard finite element method-

ology (Newmark trapezoidal rule). This test case is run with the linear elastic

model and material properties are such that Poisson’s ratio ν = 0, Young’s modulus

E = 200GPa, density ρ0 = 8Mg/m3 and αCFL = 0.5. Discretisation of 100 cells.

Time step ∆t = 1× 10−5s.
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based formulation) and performs well in the vicinity of sharp gradients.
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Figure 9.8: Pile Driving Example (Sinusoidal Loading): Results obtained with

P (L, t) = K (sin (πt/20− π/2) + 1). First column shows the L1-norm convergence

and second column shows the L2-norm convergence. First and second rows show the

velocity and displacement errors. Last row illustrates the stress error. The linear

elastic model is used and material properties are Poisson’s ratio ν = 0.3, Young’s

modulus E = 1Pa, density ρ0 = 1kg/m3 and αCFL = 0.5.
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10.1 The Plane Strain Equations for 2D Elasticity

The generic form of the new mixed system of equations, viz. (2.21) and (2.22),

reduces to two space dimensions by assuming that there is no variation in X3 direc-

tion. Under this circumstance, the small strain ε33 must vanish1, which thus implies

that deformation gradient in X3 direction has to be F33 = 1. The stress P33 (or

widely known as σ33
2), however, will not generally be zero and can be determined

in terms of F11 and F22:

P33 = σ33 = λ



(F11 − 1
︸ ︷︷ ︸

ε11

) + (F22 − 1
︸ ︷︷ ︸

ε22

)



 . (10.1)

Dropping all the components involved in X3 space dimension of (2.21-2.22), the

remaining six equations are

∂U

∂t
+
∂F1

∂X1

+
∂F2

∂X2

= 0, (10.2)

where

U =












p1
p2
F11

F12

F21

F22












; F1 =












−P11

−P21

−p1/ρ0
0

−p2/ρ0
0












; F2 =












−P12

−P22

0

−p1/ρ0
0

−p2/ρ0












. (10.3)

The expression above is often called the two-dimensional plane strain equations.

The system (10.2) models P-wave and S-wave for which the motion is confined in

X1-X2 plane. The S-wave modeled by this system has material motion orthogonal

to the direction of wave propagation, but still remained in the X1-X2 plane. This is

a reasonable model for plane waves propagating through a three-dimensional elastic

body in the case where there is no variation in X3 direction. For instance, the body

will try to expand in X3 direction if it is compressed in the X1 or X2 direction.

However, this will be prevented by the adjacent material, which is trying equally

hard to expand in other direction. It is important to note that (10.2) will not be

able to model the elastic waves in thin plate [38].

10.2 Eigenstructure

Eigenstructure of the system above is discussed as follows. Rather than displaying

the matrices A1 and A2 separately, it is essential to perform the linear combination

1Plane strain is defined to be a state of strain where the strain normal to X1-X2 plane, ε33,

and the shear strains, ε13 and ε23, are assumed to be zero [8, 114,159].
2The difference between P and σ disappears in small strain theory.
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of AN such that AN = A1N1+A2N2, where N = (N1, N2)
T describes the material

outward unit normal vector to the interface. Consequently, the matrix AN is given

by

AN =












0 0 −(λ+ 2µ)N1 −µN2 −µN2 −λN1

0 0 −λN2 −µN1 −µN1 −(λ+ 2µ)N2

−N1/ρ0 0 0 0 0 0

−N2/ρ0 0 0 0 0 0

0 −N1/ρ0 0 0 0 0

0 −N2/ρ0 0 0 0 0












(10.4)

By setting N = (1, 0)Tor (0, 1)T , the matrices A1 and A2 are easily recovered. The

eigenvalues of AN are

U1,2 = ±Up; U3,4 = ±Us; U5,6 = 0. (10.5)

Their corresponding P-wave and S-wave eigenvectors are

R1 =












N1

N2

−N2
1/ρ0Up

−N1N2/ρ0Up
−N1N2/ρ0Up
−N2

2/ρ0Up












; R2 =












N1

N2

N2
1/ρ0Up

N1N2/ρ0Up
N1N2/ρ0Up
N2

2/ρ0Up












(10.6)

and

R3 =












N2

−N1

−N1N2/ρ0Us
−N2

2/ρ0Us
N2

1/ρ0Us
N1N2/ρ0Us












; R4 =












N2

−N1

N1N2/ρ0Us
N2

2/ρ0Us
−N2

1/ρ0Us
−N1N2/ρ0Us












(10.7)

respectively. Observe that P-wave has velocity components directed in N direction.

The S-wave, on the contrary, has motion in the orthogonal direction T = (N2,−N1)
T

where T⊥N (or T ·N = 0).

10.3 Numerical Examples

A series of examples will be examined in order to illustrate the performance of the

proposed method. In all instances, numerical results will be compared with either

the analytical solution or finite element simulations to assess the validity and quality

of this new computational methodology.
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2
X

Figure 10.1: Plane strain test case.

10.3.1 A Plane Strain Case: Low Dispersion Wave Propa-

gation

This first example has been extracted from Peraire et al. (2006) [58]. A square flat

plate of unit side length under plane strain is considered. The west and south bound-

aries are allowed to move only tangentially, whereas the north and east boundaries

are restricted to move normally (see Figure 10.1). In the small deformation case,

this problem has an analytical solution (displacement) of the form

u(t) =

[
u1(t)

u2(t)

]

= U0cos

(
cdπt√

2

)[
sin
(
πX1

2

)
cos
(
πX2

2

)

−cos
(
πX1

2

)
sin
(
πX2

2

)

]

; cd =

√
µ

ρ0
.

(10.8)

With the aid of equation above, the deformation gradient can also be expressed as

(by using the definition of F = I + ∂u/∂X)

F = α

[
cos
(
πX1

2

)
cos
(
πX2

2

)
+ α−1 −sin

(
πX1

2

)
sin
(
πX2

2

)

sin
(
πX1

2

)
sin
(
πX2

2

)
−cos

(
πX1

2

)
cos
(
πX2

2

)
+ α−1

]

(10.9)

where

α =
U0π

2
cos

(
cdπt√

2

)

.

For values of U0 below 0.001, the solution can be considered to be linear. This plate

is initially loaded with deformation gradient at time t = 0 (substituting t = 0 into

(10.9)) without any initial velocity. The purpose of this example is to show con-

servation property (dominated by low dispersion wave propagation) and pointwise

convergence order of the proposed methodology.

The square domain is discretised into 20× 20 equal quadrilateral cells per edge

and run for a large number of cycles with U0 = 5 × 10−4, where the small de-

formation behaviour is observed. The simulation is performed by assuming near

incompressibility for a value of κ/µ = 2(1+ ν)/3(1− 2ν) = 9.67, which corresponds
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to a Poisson’s ratio of ν = (1 − µ/κ)/2 = 0.45, Young’s modulus E = 1.7 × 107Pa

and density ρ0 = 1.1 × 103kg/m3. The velocity and displacement in X1 direction

at point (1, 0) are monitored and compared in Figure 10.2. The time histories of

stress at point (0, 0), linear momentum L, angular momentum A, kinetic energy

K, elastic potential energy ψ and total energy (K + ψ) are also illustrated. It can

be observed that first order FVM (piecewise constant representation) produces un-

reliable solutions over long-term responses due to diffusion. To eliminate this, a

second order FVM (piecewise linear reconstruction) has to be employed and the

agreement with the analytical solutions (i.e. displacement, velocity and stresses) is

excellent. For completeness, the incorporation of slope limiters (i.e. Barth-Jespersen

and Venkatakrishnan) into second order FVM is also illustrated (there is no advan-

tage of introducing slope limiters since shocks do not form in this particular case). It

is clear that the total energy should stay conserved since no forces applied externally

to the system. As expected, higher order FVM (with and without slope limiters)

improve significantly the energy conservation. Figure 10.3 shows the numerical dis-

sipations for various mesh sizes. Here, less dissipative results (regardless of the order

of FVM) can be obtained as the discretisation is refined. Grid convergence error

analysis is also performed in Figure 10.4. Note that the numerical solution converges

to the analytical solution by increasing the mesh resolution. The inclusion of slope

limiter produces less accurate results (translational difference) than those without

it whilst maintaing the expected order of convergence.

10.3.2 Spinning Plate

This example was considered in Laursen and Meng (2001) [103]. A unit thickness

square plate (without any constraints) is released without any initial deformation

but with an initial angular velocity of Ω = 105 rad/s (see Figure 10.5). In this

case, the initial velocity field (classical rigid-body dynamics) relative to the origin

is denoted as

v(X) = ω ×X; ω = (0, 0,Ω)T ; X = (X1, X2, 0)
T . (10.10)

The angular momentum dominated example is chosen to illustrate the conservation

properties of Total Variation Diminishing Runge-Kutta (TVD-RK) time stepping

algorithm. Since TVD-RK is not a time-reversible integrator3 (unlike Leapfrog time

scheme) the conservation of angular momentum has to be incorporated as part of

the space-time integrator, in the form of a geometric marching scheme (see Chapter

6). Moreover, the effect of different Courant-Friedrichs-Lewy (CFL) number on the

accuracy of the numerical solutions is also examined. The plate is made of a nearly

incompressible rubber material with Young’s modulus E = 1.7 × 107Pa, density

ρ0 = 1.1 × 103 kg/m3 and Poisson’s ratio ν = (1 − µ/k)/2 = 0.45. Note that the

3Time reversibility is important because it guaranteess conservation properties (i.e. angular

momentum and energy).
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Figure 10.2: Plane Strain Test Case: Results obtained with U0 = 5 × 10−4 where

analytical solution is available. First column shows the results based upon piecewise

constant reconstruction, second column for piecewise linear reconstruction, third

for Barth-Jespersen limiter and last for Venkatakrishnan limiter. First and second

rows show the time history of horizontal velocity and horizontal displacement at

point (1, 0) compared to analytical solution. Third and fourth rows demonstrate

the P11 and P22 at point (0, 0). Fifth row shows linear and angular momentum.

Last row illustrates the kinetic, potential and total energy. The linear elastic consti-

tutive model is used and material properties are such that Poisson’s ratio ν = 0.45,

Young’s modulus E = 1.7 × 107Pa, density ρ0 = 1.1 × 103kg/m3 and αCFL = 0.5.

Discretisation of 20× 20 cells per edge. Time step ∆t ≈ 1× 10−4s.
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Figure 10.3: Plane Strain Test Case: Results obtained with U0 = 5×10−4. Numerical

dissipations of various mesh sizes are illustrated: (a) FVM First order; (b) FVM

second order; (c) Barth-Jespersen limiter; and (d) Venkatakrishnan limiter. This

example is run with the linear elastic constitutive model and material properties

are such that Poisson’s ratio ν = 0.45, Young’s modulus E = 1.7 × 107Pa, density

ρ0 = 1.1 × 103kg/m3 and αCFL = 0.5. Time steps for three different mesh sizes:

∆t|5×5 ≈ 4× 10−4s, ∆t|10×10 ≈ 2× 10−4s and ∆t|20×20 ≈ 1× 10−4s.
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Figure 10.4: Plane Strain Test Case: Mesh convergence errors of (a) Velocity; (b)

Displacement; (c) P11; and (d) P22 stresses. Results obtained with U0 = 5 × 10−4

where analytical solution is available. The linear elastic model is used and material

properties are such that Poisson’s ratio ν = 0.45, Young’s modulus E = 1.7×107Pa,

density ρ0 = 1.1× 103kg/m3 and αCFL = 0.5. 
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Figure 10.5: Spinning plate.
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initial conditions used here are such that there is no steady-state solution, even in

a rotating reference frame. Figure 10.6 presents the results using a discretisation of

20×20 equal quadrilateral cells per edge. First by noting that the linear momentum,

L =
∫

V
p dV , is very small (nearly zero) at all times as no movement of the centre

of mass is appreciated. Both the angular momentum (A =
∫

V
‖x × p‖ dV ) and

total energy (K + ψ) are expected to be conserved at its initial value during time

integration (see Figure 10.6). The numerical dissipation for different mesh sizes

is also studied in Figure 10.7. Note that the second order FVM (piecewise linear

reconstruction) with a discretisation of 20× 20 cells is low-dissipative and therefore

very well suited for long-term responses. Figure 10.8 shows the pressure distribution

of the deformed shape at various time instants. It is seen that the plate experiences

deformations due to centrifugal (radially outward) force tending to stretch the plate.

A comparison of different Courant-Friedrichs-Lewy (CFL) number for a fixed

number of mesh elements (10 × 10 quadrilateral cells per edge) is also performed

in this particular case (see Figure 10.9). It can be shown that small CFL number

implies relatively large numerical dissipation (compared to large CFL number), as

a large number of time steps are required (which in turn introduces undesirable

dissipation through evaluation of contact flux).

10.3.3 Uniform Cantilever Thick Beam in Bending Appli-

cation

This example (extracted from Izian et al. 2011 [64]) represents the large deformation

(dynamic) response of an end-loaded cantilever thick beam of length L = 10m with

a unit section (H = 1m). The forcing function is prescribed as Papp(t) = 5 × 103N

where t ≥ 0 (see Figure 10.10). A nearly incompressible rubber beam is chosen

with material properties stated as belows: Young’s modulus E = 1.7 × 107Pa,

density ρ0 = 1.1 × 103kg/m3 and Poisson’s ratio ν = 0.45. The purpose of this

example is to illustrate the performance of the proposed methodology in bending

application. For validation purposes, the standard FEM simulations will be used

to assess the quality of the proposed methodology. A qualitative comparison of

the difference between various numerical techniques is illustrated in Figure 10.11

(where the deformation patterns at four identical times are shown). It is clear that

the finite element solution with standard four-noded quadrilateral elements is far

stiffer than proposed formulation. The deformed shapes (locking free) obtained with

proposed algorithm compare extremely well with those of mean dilatation technique

(a particular case of Selective Reduced Integration (SRI)).

10.3.4 Large Deformation of a Short Column: Highly Non-

linear Behaviour

The same problem was originally analysed by Bonet et al. (2001) [24]. A large strain

vibration of a short column, which is given by a uniform initial velocity V0 = 10m/s
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Figure 10.6: Spinning Plate: Results obtained with angular velocity Ω = 105 rad/s.

First row shows the results based upon piecewise constant reconstruction, second

row for piecewise linear reconstruction, third for Barth-Jespersen limiter and last for

Venkatakrishnan limiter. First column shows linear and angular momentum. Second

column illustrates the kinetic, potential and total energy. The nearly incompressible

Neo-Hookean (NH) constitutive model is used and material properties are such that

Poisson’s ratio ν = 0.45, Young’s modulus E = 1.7 × 107Pa, density ρ0 = 1.1 ×
103kg/m3 and αCFL = 0.5. Discretisation of 20 × 20 cells per edge. Time step

∆t ≈ 1× 10−4s.
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Figure 10.7: Spinning Plate: Results obtained with angular velocity Ω = 105 rad/s.

Numerical dissipations of various mesh sizes are illustrated: (a) FVM First order; (b)

FVM second order; (c) Barth-Jespersen limiter; and (d) Venkatakrishnan limiter.

This example is run with the nearly incompressible Neo-Hookean (NH) constitutive

model and material properties are such that Poisson’s ratio ν = 0.45, Young’s

modulus E = 1.7 × 107Pa, density ρ0 = 1.1 × 103kg/m3 and αCFL = 0.5. Time

steps for three different mesh sizes: ∆t|5×5 ≈ 4 × 10−4s, ∆t|10×10 ≈ 2 × 10−4s and

∆t|20×20 ≈ 1× 10−4s.
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Figure 10.8: Spinning Plate: Evolution of pressure distribution at different time

instants. Results obtained imposing a piecewise linear reconstruction and Ω =

105rad/s. This test case is run with the nearly incompressible Neo-Hookean (NH)

constitutive model such that Poisson’s ratio ν = 0.45, Young’s modulus E = 1.7 ×
107Pa, density ρ0 = 1.1× 103kg/m3 and αCFL = 0.5. Discretisation of 20× 20 cells

per edge. Time step ∆t ≈ 1× 10−4s.
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Figure 10.9: Spinning Plate: Results obtained with angular velocity Ω = 105 rad/s.

Numerical dissipation (second order FVM) of various CFL numbers with a fixed

number of elements is illustrated. This example is run with the nearly incom-

pressible Neo-Hookean (NH) constitutive model and material properties are such

that Poisson’s ratio ν = 0.45, Young’s modulus E = 1.7 × 107Pa and density

ρ0 = 1.1× 103kg/m3. Discretisation of 10× 10 cells per edge.
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Figure 10.10: Cantilever beam configuration.
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Figure 10.11: Cantilever Thick Beam: Sequence of deformed shapes for the can-

tilever beam using: (a) Mean dilatation approach; (b) Standard FEM procedure; and

(c) Proposed methodology imposing a piecewise linear reconstruction. The nearly

incompressible Neo-Hookean (NH) constitutive model is used such that Poisson’s

ratio ν = 0.45, Young’s modulus E = 1.7× 107Pa and density ρ0 = 1.1× 103kg/m3.

Discretisation of 40× 4 cells per edge. Time step ∆t = 5× 10−4s.
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Figure 10.12: Short column definition.
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whilst the unit width base is kept fixed, is considered (see Figure 10.12). This

problem is highly nonlinear and involves large deformations. The main objective

is to illustrate the performance of the proposed algorithm in bending dominated

scenario. The properties of the material being used are described as belows: Young’s

modulus E = 1.7×107Pa, density ρ0 = 1.1×103kg/m3 and Poisson’s ratio ν = 0.45.

Length L of the column is taken to be 6m. For comparison purposes, the same

problem is also discretised using a standard FEM procedure and mean dilatation

technique. Figure 10.13 depicts the positions of the column at various times for

three cases: mean dilatation approach, standard FEM and proposed methodology.

It is clear that the proposed formulation can be used without bending difficulty. The

deformed shapes obtained from new methodology are found to be in good agreement

with the conventional mean dilatation approach, whereas the standard formulation

experiences the well-known locking phenomena. By making use of the proposed

method, a series of deformed states are shown in Figure 10.14, where the colour

contour plot indicates the pressure distribution.

The same example is now solved with the introduction of Von-Mises plasticity

model (isochoric plastic flow) where yield stress is given by τ̄ 0y = 1.5MPa and the

hardening modulus H = 0.25MPa. Linear variation of velocity distribution is given

in this case; that is, vlinear = V̄ X2/L where X2 ∈ [0, L] and V̄ = 15m/s. This prob-

lem is first analysed using two-tep Taylor-Galerkin approach4 (curl-projection and

ᾱ = 0.2) and then with the new proposed methodology. See [64] for detailed discus-

sion on choosing the value ᾱ (problem-dependent parameter). Deformed shapes for

both cases are shown in Figure 10.15. It can be clearly seen that the new proposed

approach performs well in the case of near incompressibility.

10.3.5 A Punch Test

A punching test case is considered [160]. A flat square rubber plate of unit side length

is constrained with rollers at the bottom and on the left and right hand sides. The

right half of the domain experiences a prescribed punch velocity, vpunch = 100m/s

(see Figure 10.16). The nearly incompressible rubber material is chosen where the

Young’s modulus E = 1.7 × 107Pa, Poisson’s ratio ν = 0.45 and material density

ρ0 = 1.1 × 103kg/m3. The objective of this example is to show that the proposed

algorithm eliminates both the locking effect and the appearance of spurious (checker-

board) pressure modes in the case of near incompressibility. It is well-known that

volumetric locking is commonly encountered in standard FEM analysis for nearly

incompressible rubber material. To alleviate this, the mean dilatation approach is

usually employed but unfortunately, the results obtained containing spurious pres-

sure modes caused of the resolution of stress. This can be corrected by the use of new

proposed methodology (see Figure 10.17). Figure 10.18 shows the numerical result

obtained by proposed method compares well with the two-step Taylor-Galerkin solu-

tion of ᾱ = 0.1. It is observed that the existence of curl errors (ᾱ = 0) in the solution

4Two-step Taylor-Galerkin computational methodology is briefly discussed in Appendix I.
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Figure 10.13: Short Column: Sequence of deformed shapes for the short column us-

ing: (a) Mean dilatation approach; (b) Standard FEM procedure; and (c) Proposed

methodology imposing a piecewise linear reconstruction. The nearly incompressible

Neo-Hookean (NH) constitutive model is used such that Poisson’s ratio ν = 0.45,

Young’s modulus E = 1.7× 107Pa and density ρ0 = 1.1× 103kg/m3. Discretisation

of 4× 24 cells per edge. Time step ∆t = 5× 10−4s.
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Figure 10.14: Short Column: Evolution of pressure distribution at different time

instants. Results obtained with proposed methodology imposing a piecewise linear

reconstruction and V0 = 10m/s. The nearly incompressible Neo-Hookean (NH)

constitutive model is used and its material properties are such that Poisson’s ratio

ν = 0.45, Young’s modulus E = 1.7 × 107Pa, density ρ0 = 1.1 × 103kg/m3 and

αCFL ≈ 0.5. Discretisation of 4× 24 cells per edge. Time step ∆t = 5× 10−4s.
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Figure 10.15: Short Column: Sequence of deformed shapes for short column with

plasticity: (a) Two step Taylor-Galerkin technique (curl-projection and ᾱ = 0.2)

of 8 × 48 × 2; and (b-d) Proposed methodology imposing a piecewise linear re-

construction with discretisation of 4 × 24, 8 × 48 and 12 × 72, respectively. The

Von-Mises plasticity model is used such that Poisson’s ratio ν = 0.45, Young’s mod-

ulus E = 1.7 × 107Pa, density ρ0 = 1.1 × 103kg/m3, yield stress τ̄ 0y = 1.5MPa

and hardening modulus H = 0.25MPa. Time steps for four different meshes:

∆t|4×24 = 4× 10−4s, ∆t|8×48 or 8×48×2 = 2× 10−4s and ∆t|12×72 = 1× 10−4s.
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Figure 10.16: A punch test case.

leads to a breakdown of the numerical scheme. Numerical dissipation and pressure

distribution are depicted in Figure 10.19 and Figure 10.20, respectively. Reliable

solution over long time integration can be obtained by refining the mesh elements.

This problem is also analysed by making use of Von-Mises plasticity model with

yield stress τ̄ 0y = 10MPa and hardening parameter H = 2.5MPa. A comparison

between the proposed methodology and two-step Taylor-Galerkin method is pre-

sented in Figure 10.21. It shows that both algorithms produce similar deformation

behaviours.

10.3.6 Tensile Case

Similar to the punching problem, a tensile test case is considered [160]. A square steel

plate, with material properties defined as Young’s modulus E = 2.1×1010Pa, density
ρ0 = 7× 103kg/m3 and Poisson’s ratio ν = 0.3, is pulled rapidly by vpull = 500m/s,

as shown in Figure 10.22. In this particular example, the incompressibility limit,

given by κ/µ = 2.1667, is used. In these circumstances, the standard FEM proce-

dure should be able to produce convincing results, which can be treated as reference

solutions for comparison purposes (see Figure 10.23). The numerical predictions

obtained by the new methodology and a two-step Taylor-Galerkin approach quali-

tatively agree quite well with those of convectional standard FEM analysis. Pressure

evolution is also depicted in Figure 10.24. Moreover, the same problem is further

analysed by employing Von-Mises plasticity model with yield stress τ̄ 0y = 5GPa and

hardening modulus H = 1GPa. In Figure 10.25, the deformed shapes of proposed

methodology are found to be in good agreement with the existing two-step Taylor-

Galerkin solutions. Figure 10.27 illustrates the evolution of pressure distribution

for the tensile test case with plasticity model implemented. Irrecoverable (perma-

nent) behaviour has taken place near the bottom fixed end, as the plate is stretched

vertically.
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Figure 10.17: Punch Test Case: Sequence of pressure distribution of deformed shapes

using: (a) Mean dilatation technique; (b) Standard FEM procedure; and (c) Pro-

posed methodology imposing a piecewise linear reconstruction. Initial compressive

velocity vpunch = 100m/s is applied. A rubber plate is used and its material proper-

ties are such that Poisson’s ratio ν = 0.45, Young’s modulus E = 1.7 × 107Pa and

density ρ0 = 1.1 × 103kg/m3. Discretisation of 10 × 10 cells per edge. Time step

∆t = 2× 10−4s.
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(c)

Figure 10.18: Punch Test Case: Deformed shapes at a particular time instant with

vpunch = 100m/s. (a-b) Two step Taylor-Galerkin technique (curl-projection and

discretisation of 20 × 20 × 2) with ᾱ = 0 and ᾱ = 0.1, respectively. (c) Proposed

methodology imposing a piecewise linear reconstruction with discretisation of 28×
28. The nearly incompressible Neo-Hookean (NH) model is used and its material

properties are such that Poisson’s ratio ν = 0.45, Young’s modulus E = 1.7×107Pa,

density ρ0 = 1.1× 103kg/m3. Time step ∆t = 5× 10−5s.
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Figure 10.19: Punch Test Case: Results obtained imposing a piecewise linear re-

construction with an initial compressive velocity vpunch = 100m/s. Numerical

dissipation of various mesh sizes are illustrated. The nearly incompressible Neo-

Hookean (NH) constitutive model is used where properties are such that Poisson’s

ratio ν = 0.45, Young’s modulus E = 1.7 × 107Pa, density ρ0 = 1.1 × 103kg/m3

and αCFL = 0.5. Time steps for three different mesh sizes: ∆t|10×10 ≈ 2 × 10−4s,

∆t|20×20 ≈ 1× 10−4s and ∆t|40×40 ≈ 5× 10−5s.
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Figure 10.20: Punch Test Case: Evolution of pressure distribution at different time

instants. Results obtained imposing a piecewise linear reconstruction and vpunch =

100m/s. The nearly incompressible Neo-Hookean (NH) constitutive model is used

and its material properties are such that Poisson’s ratio ν = 0.45, Young’s modulus

E = 1.7 × 107Pa and density ρ0 = 1.1 × 103kg/m3. Discretisation of 40 × 40 cells

per edge. Time step ∆t = 2× 10−5s.
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Figure 10.21: Punch Test Case: Deformed shapes for punch case with plasticity

and vpunch = 100m/s. (a) Two-step Taylor-Galerkin technique (curl-projection and

ᾱ = 0.2) of 20× 20× 2; and (b) Proposed methodology imposing a piecewise linear

reconstruction with discretisation of 28 × 28. The Von-Mises plasticity model is

used and its material properties are such that Poisson’s ratio ν = 0.45, Young’s

modulus E = 1.7 × 107Pa, density ρ0 = 1.1 × 103kg/m3, yield stress τ̄ 0y = 10MPa

and hardening modulus H = 2.5MPa. Time step ∆t = 5× 10−5s.
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Figure 10.22: Tensile test case.

10.3.7 Beam Bending Case: Buckling

Another bending-dominated example is demonstrated [161]. A vertical cantilever

beam of length L = 10m with a unit width base is considered (see Figure 10.26).

The beam is fixed at the bottom and a vertical velocity, v0 = 5m/s, is prescribed at

right half of the beam. The material properties of the beam are Young’s modulus

E = 1.17 × 107Pa, Poisson’s ratio ν = 0.35 and density ρ0 = 1.1 × 103kg/m3. As

discussed previously, the standard FEM procedure encountered problems near in-

compressibility where it exhibits volumetric locking and bending difficulty. This can

be resolved by using the averaged nodal finite element [23, 24]. However, the nodal

averaging process develops artificial mechanisms similar to hourglassing in some 2D

plane strain cases [22]. To remedy this problem, Lahiri (2006) [161] proposed a sta-

bilised internal potential energy comprising of linear combinations of standard and

averaged nodal element. With the new conservation-law formulation, the proposed

methodology can be simulated without encountering any non-physical behaviours

(or spurious energy modes); see Figure 10.28.
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Figure 10.23: Tensile Test Case: Sequence of pressure distribution of deformed

shapes using: (a) Standard FEM procedure (15× 15); (b-c) Proposed methodology

imposing a piecewise linear reconstruction with meshes of 15 × 15 and 30 × 30;

and (d) Two-step Taylor-Galerkin technique (curl-projection and ᾱ = 0.2) with

20 × 20 × 2. Initial tensile velocity vpull = 500m/s is applied. A steel plate is used

and its material properties are such that Poisson’s ratio ν = 0.3, Young’s modulus

E = 2.1×1010Pa and density ρ0 = 7×103kg/m3. Time steps for various mesh sizes:

∆t|15×15 = 1× 10−5s and ∆t|30×30 or 20×20×2 = 5× 10−6s.
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Figure 10.24: Tensile Test Case: Evolution of pressure distribution at different time

instants. Results obtained based upon proposed methodology imposing a piecewise

linear reconstruction with an initial vertical tensile velocity vpull = 500m/s. A

nearly incompressible Neo-Hookean (NH) constitutive model is used and its material

properties are such that Poisson’s ratio ν = 0.3, Young’s modulus E = 2.1× 1010Pa

and density ρ0 = 7× 103kg/m3. Discretisation of 40× 40 cells per edge. Time step

∆t = 5× 10−6s.
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Figure 10.25: Tensile Test Case: Sequence of pressure distribution of deformed

shapes with plasticity implemented using: (a) Two step Taylor-Galerkin technique

(curl-projection, ᾱ = 0.2 and 20 × 20 × 2); (b) Proposed methodology imposing

a piecewise linear reconstruction with meshes of 30 × 30. Initial tensile velocity

vpull = 500m/s is applied. The Von-Mises plasticity model is used such that Poisson’s

ratio ν = 0.3, Young’s modulus E = 2.1× 1010Pa, density ρ0 = 7× 103kg/m3, yield

stress τ̄ 0y = 5GPa and hardening modulus H = 1GPa. Same time step is used for

two different approaches: ∆t = 5× 10−6s.
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Figure 10.26: Beam buckling test case.
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Figure 10.27: Tensile Test Case: Evolution of pressure distribution at different time

instants. Results obtained based upon proposed methodology imposing a piecewise

linear reconstruction with an initial vertical tensile velocity vpull = 500m/s. The

Von-Mises plasticity constitutive model is used and its material properties are such

that Poisson’s ratio ν = 0.3, Young’s modulus E = 2.1 × 1010Pa, density ρ0 = 7 ×
103kg/m3, yield stress τ̄ 0y = 5GPa and hardening modulusH = 1GPa. Discretisation

of 40× 40 cells per edge. Time step ∆t = 5× 10−6s.
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Figure 10.28: Beam Buckling: Evolution of pressure distribution at different time

instants. Results obtained imposing a piecewise linear reconstruction with an initial

vertical velocity, v0, applied at right half of the beam. The nearly incompressible

Neo-Hookean (NH) constitutive model is used and its material properties are such

that Poisson’s ratio ν = 0.35, Young’s modulus E = 1.17 × 107Pa, density ρ0 =

1.1× 103kg/m3 and αCFL ≈ 0.5. Discretisation of 6× 60 cells per edge. Time step

∆t = 6× 10−4s.
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Concluding Remarks

“The engineer has been, and is, a maker of history”.

James Kip Finch (1883− 1967)
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11.1 Conclusions

This thesis deals with the physical responses of structures with small and/or large

deformations for nearly incompressible applications without bending and locking dif-

ficulties. For this purpose, a new mixed formulation based on a first order hyperbolic

system of conservation laws has been developed and implemented in the context of

cell centred finite volume method. The guideline to the overall organisation of this

thesis is summarised on the following chart (See Figure 11.1).

11.1.1 The New Mixed Formulation

Solid dynamics explicit finite element codes are oftenly used for the simulation of

finite (large) deformation dynamics problems by aerospace, automotive and mili-

tary industries [162]. In these codes, the traditional solid dynamics formulation for

displacement field is employed. This second-order dynamics equilibrium equation

is discretised by standard Galerkin finite element procedure in conjunction with a

family of classical Newmark time integration schemes.

Many practical applications of engineering interest involve the analysis of rubber

hyperelastic behaviour, as well as elastoplastic simulations under the assumption of

isochoric plastic flow (such as metal plasticity model [2, 6]). In such situations,

spurious volumetric locking and overly stiff solutions are frequently encountered in

standard Galerkin FEM with low-order elements, due to the fact that the low-order

interpolation polynomials are unable to adequately represent the volume-preserving

displacement field [80]. For this reason, a rich variety of different approaches have

been proposed for low-order finite elements based on four-noded quadrilaterals (or

eight-noded hexahedra). Among others, mixed u/p formulation, F-bar, B-bar, En-

hanced Assummed Strain method (EAS) and Selective Reduced Integration scheme

(SRI) are possible alternatives that allow the use of these elements near the incom-

pressibility limit [6, 69–74,76–79].

Unfortunately, some applications involving complex geometries are sometimes

preferred to be meshed using triangles (or tetrahedra) [161]. The presence of large

strains may lead to poorly shaped elements even for simple initial geometry. Mesh

adaptation is then required but can only be achieved at a reasonable cost with sim-

ple triangular (or tetrahedra) element [160]. Efforts to develop locking-free tetra-

hedral elements based on simple averaging process that are effective in nearly in-

compressible and bending-dominated situations have only been partially successful.

The resulting formulation suffers from artificial mechanisms similar to hourglass-

ing [6, 22–24].

Another limitation of using linear elements in traditional displacement-based

formulation is that it leads to second-order convergence for displacement field but

one order less for strains and stresses [58,59,63,64]. This is not sufficiently accurate

for problems where stress analysis is of primary interest [163].

With the purpose of targeting these shortcomings, a new mixed solid dynam-
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ics formulation as a first-order system of hyperbolic Partial Differential Equations

(PDE) was proposed (a modification of that used in [117, 118]). The new formula-

tion is derived from balance laws describing the conservation of linear momentum,

deformation gradient and total energy, which consists of a set of thirteen conserva-

tion equations in three dimensions [58]. There are three equations for conservation

of linear momentum, nine equations for deformation gradient and one equation for

conservation of total energy. However, these equations involve twenty-three un-

knowns: linear momentum p, deformation gradient F , First Piola-Kirchhoff stress

tensor P , total energy E and temperature θ. In order to close the system, ten addi-

tional relationships among these unknowns must be specified. Two different types

of constitutive equations are required to complete the system. The first type con-

sists of constitutive laws that characterise the material [7]; for instance, the stress

tensor is related to the deformation gradient by a kinetic equation of state for elas-

tic material. Another type of constitutive equation (known as thermo-mechanical

constitutive law) allows the stress to be dependent upon temperature with the aid

of Laws of Thermodynamics [3].

More crucially, the curl-free constraint has to be fully satisfied by the evolution

of deformation gradient [117]. If the constraint is satisfied initially, it will then be

satisfied for all later times [104, 105]. An unphysical wave propagation property

(spurious curl modes) arises without imposing this constraint properly, as it plays

an essential role in analysis of the characteristic structure of the system [58].

The proposed formulation (a mixed linear momentum-deformation gradient-total

energy) enables stresses to converge at the same rate as velocities and displacements

[63, 64]. With this sort of framework, it is convenient to apply a state-of-the-art

shock capturing technique for problems where discontinuities are present [26,60,84,

86,87]. Such conservation-law formulation also permits the use of low-order elements

without volumetric locking and bending difficulty [59,63]. This will lead to a cheap

and easy-to-implement code [69].

11.1.2 Computational Methodology

Some key conclusions can be summarised as follows:

• The proposed computational methodology is developed based on the philos-

ophy of the Method of Lines (MOL). In the method of lines, the space and

time discretisations of a Partial Differential Equations (PDE) are decoupled

and analysed independently [98]. First, a spatial method is selected to discre-

tise the differential equation in space and incorporates the suitable boundary

conditions. An arbitrary time integrator is then used for integrating the semi-

discrete equations in time.

• The dissipative effects of a numerical method are crucial for constructing reli-

able schemes of conservation laws [82,83]. This is particularly important when

the solution is discontinuous in the vicinity of sharp gradients. Making use of
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a numerical scheme with appropriate dissipation helps building up the success

of the numerical calculation.

• The projection-evolution approach for space discretisation is employed and

consists of two key steps [84]: (1) a reconstruction (or projection) step where

the data are approximated by polynomials within each cell; (2) upwind (or

contact flux) step where the fluxes at each interface are evaluated by a proce-

dure that takes into account the wave directions. In particular, the classical

Godunov scheme (1959) [85] employs the simplest reconstruction; that is, the

piecewise constant reconstruction. This classical scheme is only first-order ac-

curate in space which then introduces a great deal of numerical diffusion into

the solution [25]. Consequently, it is essential to enhance accuracy by using

higher-order polynomials in the reconstruction step [26]. Accurate interpola-

tions (i.e. linear and higher orders) are derived by assuming that the data

are smooth [93]. These interpolations create unwanted oscillatory behaviours

in the vicinity of shocks. To prevent such oscillations, it is vital to intro-

duce a monotonicity constraint (also known as nonlinear slope limiter) into

the scheme [86,87].

• A family of Total Variation Diminishing (TVD) Runge-Kutta time integration

explicit schemes is used to integrate the evolutionary system of equations.

This type of temporal schemes shows a clear advantage over a family of non-

TVD Runge-Kutta time integration schemes, where the latter can generate

oscillations even for TVD spatial discretisation [88].

• The standard finite volume algorithm loses the desirable angular momentum

conservation property (especially in the angular momentum dominated sce-

nario) and thus induces energy dissipation under long-term response analy-

sis [99–103]. One purpose of this thesis is to propose an algorithm that con-

serves the total angular momentum of a system, which requires a predictor-

corrector strategy (incorporates the conservation of angular momentum as part

of the space-time integrator).

• The new mixed hyperbolic system of equations has added complexity of pos-

sessing involutions, where the components of deformation gradient F must

satisfy some compatibility conditions [117]. An involution is an additional

equation that has to be satisfied for all time, provided that this equation is sat-

isfied at some initial time [118] (inherent property of the evolution operator).

Such involutions introduce difficulties into the development of any numerical

scheme since discrete preservation properties are not easily established [104].

The numerical method that obeys involutions on a discrete level is designed

so as to avoid spurious modes (curl errors) for long-term analysis [63].

• Mesh convergence analysis [60] has been performed on a sequence of mesh

sizes for various numerical examples. This analysis measures the numerical
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(i.e. pointwise and global) errors at a particular time and an optimal conver-

gence O(hp+1) can be obtained where p denotes the polynomial orders. Finite

volume schemes equipped with piecewise linear reconstruction (with and with-

out limiters), in conjunction with TVD Runge-Kutta time stepping scheme,

achieved second order accuracy in overall numerical scheme. Of course those

schemes with limiters are expected to be less accurate since they introduce

numerical dissipation into the solution.

• A series of numerical examples involving the analysis of infinitesimal (small)

and/or finite (large) deformations for nearly incompressible rubber material

and/or plastic-dominant deformations (isochoric plastic flow) were demon-

strated. As expected, the locking behaviour was clearly observed in the

standard FEM procedure. The locking-free responses obtained by proposed

methodology compared extremely well with those of mean dilatation tech-

nique.

• Both the standard FEM procedure and mean dilatation technique produced

spurious pressure modes (checkerboard) in the case of near incompressibil-

ity [114]. However, this can be eliminated by introducing of the new mixed

conservation law formulation (high order of precision for stress variable).

• The proposed numerical algorithm provides a good balance between accuracy

and speed of computation.

11.2 Recommendations for Further Research

Future research lines have been open-up after the developments presented in this

thesis. A few directions are pointed out:

• Non-Cartesian Geometries. All physical domains presented are Cartesian

by means of their boundaries been perfectly aligned with the Cartesian coor-

dinate directions. Unfortunately, most domains are not Cartesian in practice.

The well known approach for dealing with general domain is that of mapping

the irregular domain in physical space to a regular domain in computational

space [84, 145].

• Extension to Triangular Mesh. Some operations like curl-preserving up-

dated scheme and discrete angular momentum conserving algorithm are gen-

erally applicable to any arbitrary (i.e. structured and unstructured) meshes

in 2D problems. High order spatial discretisation (i.e. gradient operator and

slope limiter) has to be modified for computational efficiency in 2D unstruc-

tured mesh, preferably Jameson-Schmidt-Turkel (JST) scheme.
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• Thermo-Mechanical Process. Many applications in engineering and sci-

ence have to consider irreversible process where thermal effects are of prac-

tical importance (see Appendix E). Realistic problems involving thermo-

elastodynamic analysis are of great interest.

• Complex Constitutive Models. The consideration of viscoelastic model

[4], as well as some other basic plasticity models1 [6], could be implemented

in source code library.

• Vertex-Based Finite Volume Method [27]. It should be noted that when

a solid body undergoes deformation, the application of mechanical boundary

conditions is best modelled if they can be assigned at physical boundary. For

a cell centred approach, the displacements at boundary have to be projected

from the nearest node of discretisation.

• Mesh Adaptation Algorithm. Lagrangian mesh often suffers from issues

related to mesh tangling in cases of large deformations for dynamic simula-

tions. Several types of mesh adaptive updates can be used to reduce mesh

distortions: (a) h-adaptation which reduces the element size in a specified re-

gion to improve the solution accuracy [164]; (b) r-adaptation in which an initial

mesh is modified by changing the position of nodes [165]; and (c) p-adaptation

which increases the polynomial order of the shape function without changing

the initial mesh configuration [166]. Special care has to be exercised since such

updates introduce advection error to the solution [160].

• Parallelisation. The use of parallel algorithm is becoming increasingly vi-

tal for large-scale analysis due to the requirement of large memory size and

computational time.

1Other plasticity models: (1) Tresca model; (2) Mohr-Coulomb model; and (3) Drucker-Prager

model.
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A.1 Introductory Remarks

This appendix reviews some fundamentals of linear algebra which are extensively

employed in this thesis. The use of a Cartesian coordinate system is sufficient for

applications considered. A more in-depth explanation can be found in [6, 7, 13, 119,

121,167–169].

A.2 Vectors

Let E be an n-dimensional Euclidean space and U be the space of n-dimensional

vectors associated with E . A set of vectors {u,v,w} ∈ U will be used in the

following section.

A.2.1 Inner Product, Norm and Orthogonality

Inner product of two arbitrary vectors is defined by

u · v. (A.1)

Let

‖u‖ =
√
u · u. (A.2)

describes the Euclidean norm of a vector u and u is said to be a unit vector if

‖u‖ = 1. (A.3)

A vector u is said to be orthogonal with respect to a vector v if

u · v = 0. (A.4)

A.3 Second Order Tensors

Any second order tensor is a linear transformation from U into U ; that is, L :

U −→ U . It maps a vector u into another vector v such as

v = Lu. (A.5)

In particular,

0u = 0; Iu = u, (A.6)

where 0 represents the zero tensor and I denotes the identity tensor.
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A.3.1 Symmetric and Skew Tensors

An arbitrary second order tensor L can be conveniently decomposed into

L = sym(L) + skew(L). (A.7)

Their symmetric and skew parts are denoted as

sym(L) =
1

2
(L+LT ); skew(L) =

1

2
(L−LT ). (A.8)

A.3.2 Tensor Product

The tensor product of two vectors u and v is dictated by u ⊗ v. Such resulting

product maps an arbitrary vector w into the vector (w · v)u:

(u⊗ v)w = (w · v)u. (A.9)

This is also known as a dyadic process.

A.3.3 Trace, Inner Product and Euclidean Norm

The trace of the tensor (u⊗ v) is a linear map defined by

tr(u⊗ v) = u · v. (A.10)

For a generic tensor L, its trace is the summation of the diagonal terms of its matrix

representation, that is

trL =
3∑

i=1

Lii. (A.11)

The inner product of two tensors, T : L, is described as

T : L = tr(T TL) = tr(TLT ) =
3∑

i,j=1

TijLij. (A.12)

Euclidean norm of a tensor L is then dictated by

‖L‖ =
√
L : L =

(
3∑

i,j=1

L2
ij

)1/2

. (A.13)

A.3.4 Invariants

In general, the Cartesian components of vectors and second order tensors will vary

when the axes are rotated. However, certain intrinsic magnitudes associated with

them will remain invariant under such transformations. The first of these magni-

tudes, IL, is given by

IL = tr(L) =
3∑

i=1

Lii. (A.14)
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Analogous to the scalar product of vectors, the second independent invariant for

any second-order tensor L can be defined as

IIL = L : L =
3∑

i,j=1

L2
ij. (A.15)

The last invariant is provided by its determinant represented by

IIIL = det(L). (A.16)

A.3.5 Spectral Decomposition

Given a tensor L, a non-zero vector n is said to be an eigenvector of L associated

with the eigenvalue ω if

Ln = ωn. (A.17)

The expression above represents the characteristic space of L corresponding to ω

and the following properties hold:

1. The eigenvalues of a positive definite tensor are strictly positive.

2. The characteristic spaces of a symmetric tensor are mutually orthogonal.

Let L be a symmetric tensor, then admits the representation of

L =
3∑

α=1

ωαnα ⊗ nα. (A.18)

Here, {n1,n2,n3} are eigenvectors of L, which can also be used as an alternative

Cartesian base. {ω1, ω2, ω3} denote the set of corresponding eigenvalues. The above

expression is called the spectral decomposition of L.

A.4 Isotropic Tensors

A tensor is said to be isotropic if its components are invariant under an orthogonal

change of basis (or rotation).

A.4.1 Isotropic Second Order Tensors

A second order tensor L is isotropic if

L = RTLR; Lij = RmiRnjLmn (A.19)

for any rotation tensor R. Spherical tensors, αI, with any scalar α are the only

second order isotropic tensors.
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A.4.2 Isotropic Fourth Order Tensors

A fourth-order tensor, L, is isotropic if

Lijkl = RmiRnjRokRplLmnop (A.20)

for any rotation R. Any isotropic fourth-order tensor, C, can be represented as a

linear combination of three basic isotropic tensors:

C = αI + βÎ + γ(I ⊗ I), (A.21)

where α, β and γ are scalars. These three isotropic tensors are described as follows.

The fourth-order identity tensor, I , is given by

Iijkl = δikδjl. (A.22)

For any second-order tensor L, the fourth-order identity tensor satisfies

I : L = L : I = L. (A.23)

Furthermore, this tensor gives

I : L = L : I = L, (A.24)

for any fourth-order tensor L. The tensor Î is the transposition tensor which maps

any second-order tensor L onto its transpose:

Î : L = L : Î = LT ; Îijkl = δilδjk. (A.25)

Multiplying any tensor L with (I ⊗ I) yields

(I ⊗ I) : L = (trL)I. (A.26)

Another important isotropic tensor (symmetric projection or symmetric identity)

that frequently used in continuum mechanics is defined by

S : L = L : S = sym(L), (A.27)

where S = (I + Î)/2.
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B.1 Introductory Remarks

This appendix summarises some kinematic aspects regarding the deformation for a

continuous medium without considering the applied loads and the constitutive be-

haviour of the material. See [1,3,6,7,13,15,89,115,121,170] for detailed explanation

on this subject.

B.2 Motion

Let B be a body which occupies an open region V of the three-dimensional Euclidean

space E with a boundary ∂V in its reference configuration. The motion (or time-

dependent deformation) of a continuum body B is defined by a mapping from a

reference or material volume V to a current or spatial volume v(t) as

φ : V × R
+ −→ v(t) in E . (B.1)

For each time t, the mapping function, φ(·, t), is a deformation of B. Material

domain, V ⊂ R
nsd , consists of material particles X, whereas the spatial domain is

made up of spatial points x, v(t) ⊂ R
nsd . Here, nsd denotes spatial dimensions.

B.3 The Deformation Gradient

The deformation gradient tensor is defined by

F (X, t) =
∂φ(X, t)

∂X
=

∂x

∂X
. (B.2)

This can be conveniently decomposed into a purely volumetric deformation followed

by a deviatoric (or isochoric) deformation or vice-versa:

F = FdevFvol = FvolFdev, (B.3)

where the deviatoric and volumetric components are, respectively, described as

Fdev = (detF )−
1
3F ; Fvol = (detF )

1
3I. (B.4)

B.3.1 Volume Changes

The Jacobian J relates the volume element in both reference and current configura-

tions. For this reason, consider an infinitesimal volume element in material configu-

ration with all edges parallel to Cartesian axes such as dX1 = dX1E1, dX2 = dX2E2

and dX3 = dX3E3, where {E1,E2,E3} is a set of orthonormal vectors. The elemen-

tal material volume dV is clearly given as dV = (dX1×dX2) · dX3.
1 To obtain the

1In mathematics, the scalar triple product of three vectors represents the volume of the paral-

lelepiped defined by these three vectors.
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corresponding deformed volume, dv, material vectors have to undergo push forward

operation such as dv = (F dX1 × F dX2) · F dX3, which concludes that

dv = JdV ; J = detF . (B.5)

B.3.2 Polar Decomposition

Polar decomposition of the deformation gradient is of the form

F = RU = V R, 2 (B.6)

where U and V denote the right and left stretch tensors. R describes the local

rotation tensor3. From equation above, the right and left stretch tensors are related

as

V = RURT . (B.7)

Alternatively, U and V can also be expressed as

U =
√
C, V =

√
b. (B.8)

where C and b are the right and left Cauchy-Green strain tensors.

Spectral Decomposition of the Stretch Tensors

Since U and V are symmetric tensors, they follow from the spectral theorem that

U =
3∑

α=1

λαNα ⊗Nα, V =
3∑

α=1

λ̄αnα ⊗ nα. (B.9)

Note that {λ1, λ2, λ3} and {λ̄1, λ̄2, λ̄3} are the principal stretches of U and V . Nα

and nα are represented as the Lagrangian and Eulerian principal directions. By

substituting (B.9) into (B.7), some interesting relationships can be derived:

λα = λ̄α, nα = RNα ∀α = 1, 2, 3. (B.10)

This expression implies that the two point tensor, R, rotates the material vector

triad {N1,N2,N3} into the corresponding set of spatial vector triad {n1,n2,n3}.

B.4 Strain Measures

As discussed previously, pure rotation within an infinitesimal neighbourhood of a

material particle X can be distinguished from pure stretching by means of polar

decomposition. Strain measures have to be performed under stretching. In general,

the Green-Lagrange strain tensor is defined by

2U and V are symmetric positive definite tensors.
3Determinant of the rotation tensor R must be equal to 1.
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E(2) =
1

2
(C − I) =

1

2

(
H +HT +HTH

)
; F = I +H . (B.11)

Here, C is the right Cauchy-Green tensor and the meaning of the superscript on

E(2) will become clearer below. If no straining occurs, that is H = 0, the expression

above thus implies that E(2) = 0 (or C = I).

With the aid of spectral decomposition theorem, E(2) can be re-expressed as

E(2) =
3∑

α=1

1

2
(λ2α − 1)Nα ⊗Nα, (B.12)

by using

C = U 2 =
3∑

α=1

λ2αNα ⊗Nα. (B.13)

Note that if the set of principal stretches {λ1, λ2, λ3} is of particular interest, it is

considerably easy to obtain by taking a square root of the eigenvalues of C.

B.4.1 Family of Strain Measures

An important family of material strain tensors is defined as

E(m) =

{
1
m
(Um − I) m 6= 0

ln(U ) m = 0
(B.14)

where m ∈ R. Equivalently, the equation above can be re-expressed in terms of

principle values by

E(m) =
3∑

α=1

G(λα)Nα ⊗Nα, (B.15)

where

G(λα) =
{

1
m
(λmα − 1) m 6= 0

lnλα m = 0
(B.16)

Analogously, the family of Eulerian strain measures is represented as

e(m) =

{
1
m
(I − V −m) m 6= 0

ln(V ) m = 0
(B.17)

or, alternatively

e(m) =
3∑

α=1

H(λα)nα ⊗ nα; H(λα) =
{

1
m
(1− λ−mα ) m 6= 0

lnλα m = 0
(B.18)

Consequently, the Lagrangian and Eulerian strain tensors are related by

e(−m) = RE(m)RT . (B.19)

Commonly used strain measures are Green-Lagrange (m = 2), Biot (m = 1) and

Hencky (m = 0) tensors.
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B.5 Directional Derivative

To introduce the infinitesimal kinematic descriptions in small strain regime, it is

essential to linearise some of the nonlinear kinematic magnitudes described above.

The directional derivative concept is introduced for that purpose [6, 7].

Consider a small displacement u(x, t) imposed in the spatial configuration x =

φ(X, t). With the the aid of DF [u] = ∇0u = (∇xu)F
4, the right and left

Cauchy-Green deformation tensors can then be linearised in the direction of u(x, t):

DC [u] = F TDF [u] +DF T [u]F (B.21a)

= F T
[

∇xu+ (∇xu)
T
]

F (B.21b)

= 2F T

[
1

2

(

∇xu+ (∇xu)
T
)]

F (B.21c)

= 2F TεF (B.21d)

and

Db [u] = FDF T [u] +DF [u]F T (B.22a)

= FF T (∇xu)
T + (∇xu)FF T (B.22b)

= b (∇xu)
T + (∇xu) b (B.22c)

respectively. Note that the term inside [ ], viz. (B.21c), is known as small strain

tensor ε. Making use of (B.21d), the Green-Lagrange strain tensor (B.11) can be

linearised as follows:

DE(2) [u] =
1

2
DC [u] (B.23a)

= F TεF . (B.23b)

Similarly , the linearised Eulerian-Almansi finite strain tensor e(2) can be expressed

4Show that DF [u] = ∇0u = (∇xu)F :

DF (φ (X, t)) [u (x)] =
d

dε

∣
∣
∣
ε=0

∂ (φ (X, t) + εu)

∂X
(B.20a)

=
∂u (x)

∂X
(B.20b)

= ∇0u (B.20c)

= (∇xu)F . (B.20d)

Note that ∇0 indicates the material gradient with respect to undeformed space whereas, ∇x

denotes spatial gradient in deformed space.
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as

De(2) [u] = −1

2
Db−1 [u] (B.24a)

=
1

2

[
b−1Db [u] b−1

]
(B.24b)

=
1

2

[

b−1 (∇xu) + (∇xu)
T
b−1
]

. (B.24c)

In the case of linear elasticity, the linearisations of E(2) and e(2) should be per-

formed at initial material configuration (F = I) and hence

DE
(2)
0 [u] = De

(2)
0 [u] = ε. (B.25)

Indeed, the general expression for a family of linearised strain tensors is denoted as

DE
(m)
0 [u] = De

(m)
0 [u] = ε. (B.26)
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C.1 Introductory Remarks

Some elementary properties of the class of one-dimensional hyperbolic Partial Dif-

ferential Equations (PDEs) are summarised in this section. The selected aspects

are those thought to be essential for the development of the numerical procedure

presented in the main body of the thesis. Section C.2 introduces a general represen-

tation of conservation laws. In order to study its eigenstructure, it is then necessary

to obtain the Jacobian matrix A1 (see Section C.3). In addition, characteristic

theory is of paramount importance in hyperbolic system of equations. Section C.4

briefly explains the diagonalisation and characteristic variable in a general Initial

Value Problem (IVP). Riemann problem, which is simply a given equation together

with a special initial data, is further explored in Section C.5.

C.2 Conservation-Law

Conservation-law is a system of partial differential equations, which can be written

as

∂U

∂t
+
∂F1

∂X
= 0, (C.1)

where

U =








u1
u2
...

um







, F1(U) =








f1
f2
...

fm







. (C.2)

Here, U is defined as a vector of conserved (or problem) variable and F1 ≡ F1(U)

describes the vector of conservative flux, in which each of the component fα is a

function of the components of U .

C.3 Quasi-Linear Equation

This section studies a system of first order partial differential equations in the form

of

∂uα
∂t

+
m∑

β=1

aαβ(X, t, u1, . . . , um)
∂uβ
∂X

= sα(X, t, u1, . . . , um), ∀α = 1, . . . ,m.

(C.3)

The expression above is a system of m equations in m unknowns which depend upon

space X and time variable t. X and t are independent variables whereas, uα denotes

dependent variable. Here, uα ≡ uα(X, t), ∂uα/∂t describes the partial derivative of

uα(X, t) with respect to t and ∂uα/∂X indicates the partial derivative of uα(X, t)

upon space X.
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For the sake of compact representation, subscript is introduced to denote partial

derivative; for instance, (·)η ≡ ∂(·)/∂η. System (C.3) can also be written in a matrix

form

U t +A1 UX = S, (C.4)

with

U =








u1
u2
...

um







, A1 =








a11 . . . a1m
a21 . . . a2m
...

. . .
...

am1 . . . amm







, S =








s1
s2
...

sm







. (C.5)

By virtue of the equation above, it is worth mentioning that the system is linear

with constant coefficients if the components of matrix A1 and vector S are constant.

If aαβ = aαβ(X, t) and sα = sα(X, t), the system is called linear with variable

coefficients. Expression (C.4) is also known as homogeneous equation if the source

term S vanishes.

In general, a PDE alone (without any initial and auxiliary boundary conditions)

will either have no solution, or have an infinity of solutions. For this reason, one

needs to specify the range of variation for independent variables X and t. X usually

lies in a subinterval of the real line, X ∈ [Xl, Xr]. This subinterval is called the

spatial domain of the PDEs. At boundary points of Xl and Xr, the boundary con-

ditions (BCs) have to be imposed. As to variation of time t, some initial conditions

(ICs) have to be specified at the initial time, which is typically chosen to be t0 = 0.

C.3.1 Jacobian Matrix

The Jacobian matrix of a flux function F1 in (C.1) is

A1(U) =
∂F1

∂U
=








∂f1/∂u1 . . . ∂f1/∂um
∂f2/∂u1 . . . ∂f2/∂um

...
. . .

...

∂fm/∂u1 . . . ∂fm/∂um







. (C.6)

The component aαβ (of A1(U)) is defined by the partial derivative of component fα
of the vector F1 with respect to the component uβ of problem variable U ; that is,

aαβ = ∂fα/∂uβ.

First by noting that the conservation law, viz. (C.1) and (C.2), can be expressed

in a quasi-linear form (C.4) with the aid of chain rule such as

∂F1(U)

∂X
=
∂F1

∂U

∂U

∂X
. (C.7)

By assuming that, for simplicity, the source term vanishes, (C.1) then becomes

U t +A1(U)UX = 0. (C.8)

This is a special case of (C.4), widely regarded as a homogeneous equation.
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C.3.2 Eigenvalues

The eigenvalues Uα of a matrix A1 are solutions of the characteristic polynomial

equation

det(A1 − UαI) = |A1 − UαI| = 0, (C.9)

where I is the identity matrix. Physically, eigenvalues represent the information

propagation speeds.

C.3.3 Eigenvectors

The right eigenvector of a matrix A1, which corresponds to its eigenvalue counter-

part Uα, is denoted by Rα = (R(1)
α ,R(2)

α , . . . ,R(m)
α )T that satisfies A1Rα = UαRα.

Similarly, the left eigenvector of a matrix A1 is a vector LT
α = (L(1)

α ,L(2)
α , . . . ,L(m)

α )

such that LT
αA1 = UαL

T
α .

C.3.4 Orthogonality Condition

Making use of Rα and Lα, it is now possible to define a condition, namely orthog-

onality, which defines

R
T
αLβ =

{
1 if α = β,

0 Otherwise.
(C.10)

C.4 Characteristic Theory: Constant Coefficient

Linear System of Equations

A set of m hyperbolic PDEs is generally expressed as

U t +A1UX = 0, (C.11)

where the coefficient matrix A1 is constant. If A1 has real eigenvalues Uα and

linearly independent eigenvectors Rα, the system is simply hyperbolic. If these

eigenvalues are real and distinct, the system is called strictly hyperbolic.

C.4.1 Diagonalisation and Characteristic Variable

It is useful to introduce a variable transformation technique to transform the depen-

dent variable U(X, t) to a new set of variable W(X, t). The definition is described

as follows.

Diagonalisable System

The Jacobian matrix A1 is said to be diagonalisable if it can be decomposed into
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A1 = RΛR
−1 or Λ = R

−1
A1R, (C.12)

where the diagonal matrix Λ and R are denoted as

Λ =






U1 . . . 0
...

. . .
...

0 . . . Um




 , R = [R1, . . . ,Rm], (C.13)

respectively. The column vector Rα of R is the right eigenvector of A1 corresponds

to its real eigenvalue Uα; that is, A1Rα = UαRα.

Characteristic Variable

The existence of the inverse matrix R
−1 makes it possible to define a new set of

dependent variable W = (w1, w2, . . . , wm)
T such that

W = R
−1
U or U = RW , (C.14)

where new variable W is regarded as characteristic variable. Since A1 and R are

constant, the linear system (C.11) can be decoupled as

W t +ΛWX = 0. (C.15)

This is known as canonical (or characteristic) form of (C.11). When written in full,

(C.15) yields








w1

w2

...

wm








t

+








U1 . . . 0

0 . . . 0
...

. . .
...

0 . . . Um















w1

w2

...

wm








X

= 0. (C.16)

The α-th PDE is
∂wα
∂t

+ Uα
∂wα
∂X

= 0, α = 1, . . . ,m. (C.17)

The above system is clearly decoupled, each of which can be treated as a linear

advection equation.

C.4.2 Initial Value Problem (IVP)

The general solution of IVP (viz. (C.11)) can be achieved by first solving the

corresponding canonical system (C.15). In order to achieve this, it is worth noting

that the initial condition of characteristic variable can be obtained as

W̊ = R
−1
Ů ; Ů = (̊u1, . . . , ům)

T . (C.18)

By considering each unknown wα(X, t) of (C.17), its solution is simply stated as

wα(X, t) = ẘα(X − Uαt), ∀α = 1, . . . ,m. (C.19)
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Consequently, the solution of original variable U is followed by variable transforma-

tion technique in accordance with (C.14b); that is, U = RW .

C.5 Riemann Problem for a Linear System

The Riemann problem consists of a hyperbolic system of equations together with

a set of special initial conditions, each of which is defined by a piecewise constant

with a single jump discontinuity at X:

U(X, 0) = Ů(X) =

{
U

− ifX < 0,

U
+ ifX > 0.

(C.20)

The discontinuity (U+ − U
−) propagates only along the characteristic curve and

therefore can be decomposed into the linear combination of the eigenvectors of A1:

U
+ − U

− = η1R1 + . . .+ ηmRm = W1 + . . .+Wm. (C.21)

Note that ηα is a scalar multiple (or α-th wave strength) and Wα describes α-th

wave. Thus, the solution of U(X, t) is denoted as

U(X, t) = U
− +

m∑

α=1

H(X − Uαt)Wα, (C.22)

where H(ξ) is the Heaviside function

H(ξ) =

{
0 if ξ < 0,

1 if ξ > 0.
(C.23)
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D.1 Wave Speeds: Linear Case

The standard linear isotropic elasticity tensor is typically represented by

C = λI ⊗ I + µ(I + Ī), (D.1)

where µ and λ are Lamé constants. It is now convenient to perform indicial tensor

manipulation for the derivation that will be demonstrated below. Firstly by noting

that the indicial notation of the expression above is written as

CiIjJ = λδiIδjJ + µδijδIJ + µδiJδIj, (D.2)

where

I ⊗ I = δiIδjJ ; I = δijδIJ ; Ī = δiJδIj, (D.3)

CNN can then be easily defined:

[CNN ]ij = CiIjJNINJ (D.4a)

= λNiNj + µδij + µNiNj. (D.4b)

Or simply,

CNN = λN ⊗N + µI + µN ⊗N (D.5a)

= (λ+ 2µ)N ⊗N + µT1 ⊗ T1 + µT2 ⊗ T2, (D.5b)

with the aid of I = N ⊗N + T1 ⊗ T1 + T2 ⊗ T2. Here, {N ,T1,T2} is a set of

orthonormal vectors. Recall first that the eigenstructure is of the form

CNNp
R
α = ρ0U

2
αp

R
α , (D.6)

substituting (D.5b) into the above expression leads to

[
(λ+ 2µ)

ρ0
N ⊗N +

µ

ρ0
T1 ⊗ T1 +

µ

ρ0
T2 ⊗ T2

]

pRα = U2
αp

R
α . (D.7)

By simple inspection, it transpires that 3 pairs of linear wave speeds can be obtained:

U1,2 = ±Up; U3,4 = U5,6 = ±Us, (D.8)

where

Up =

√

(λ+ 2µ)

ρ0
; Us =

√
µ

ρ0
. (D.9)

Note that Up and Us travel in the direction of N and {T1,T2}, respectively.
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D.2 Wave Speeds: Nonlinear Case

In order to solve the eigenvalue problem (D.6) for nonlinear case, recall first that the

first Piola-Kirchhoff stress tensor of the nearly incompressible Neo-Hookean material

model, P , is given by

P (F ) = µJ−2/3

[

F − 1

3
(F : F )F−T

]

+ κ(J − 1)JF−T . (D.10)

By taking in account that ∂J/∂F = JF−T , the nonlinear elasticity tensor can then

be computed:

C =
∂P

∂F
=− 2

3
µJ−2/3

[

F − 1

3
(F : F )F−T

]

⊗ F−T

+ µJ−2/3

[

I − 1

3
(F : F )

∂F−T

∂F
− 2

3
F−T ⊗ F

]

+ κJ(2J − 1)F−T ⊗ F−T + κJ(J − 1)
∂F−T

∂F
.

(D.11)

With the aid of HiIjJ := ∂F−T/∂F = −F−T
iJ F−T

jI , equation above can be written as

C =
∂P

∂F
=− 2

3
µJ−2/3F ⊗ F−T +

2

9
µJ−2/3(F : F )F−T ⊗ F−T

+ µJ−2/3
I − 1

3
µJ−2/3(F : F )H− 2

3
µJ−2/3F−T ⊗ F

+ κJ(2J − 1)F−T ⊗ F−T + κJ(J − 1)H.

(D.12)

Multiplying the above expression byNINJ and defining F−TN = m and FN = m⋆

yields

[CNN ]ij = CiIjININJ =− 2

3
µJ−2/3m⋆ ⊗m+

2

9
µJ−2/3(F : F )m⊗m

+ µJ−2/3I +
1

3
µJ−2/3(F : F )m⊗m− 2

3
µJ−2/3m⊗m⋆

+ κJ(2J − 1)m⊗m− κJ(J − 1)m⊗m.
(D.13)

The matrix CNN is rearranged and gives

CNN = α(m⊗m) + βI + γ(m⋆ ⊗m+m⊗m⋆), (D.14)

where

α = κJ2 +
5

9
µJ−2/3(F : F ) (D.15a)

β = µJ−2/3 (D.15b)

γ = −2

3
µJ−2/3. (D.15c)
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Assuming for simplicity that N is a principal direction of the deformation (which

thus implies that FN = Λn = m⋆ and F−TN = n/Λ = m), (D.14) can be further

reduced to

CNN = (α + 2γΛ2)m⊗m+ βI. (D.16)

This expression is comprised of three eigenvectors: n = Λm and two arbitrary unit

vectors orthogonal to n (where Λ = 1/‖F−TN‖). The associated longitudinal and

shear wave speeds are

Up =

√

β +
(
α
Λ2 + 2γ

)

ρ0
; Us =

√

β

ρ0
, (D.17)

respectively.
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E.1 Entropy and Second Law of Thermodynam-

ics: The Clausius-Duhem Inequality

The First Law of Thermodynamics governs the energy transfer within a thermo-

dynamic process, but it places no restriction on the direction of the process. For

this purpose, it is necessary to introduce a fundamental state variable, namely en-

tropy, which satisfies an inequality known as the Second Law of Thermodynamics

(responsible for the direction of energy transfer).

It is important to firstly note that the total production of entropy per unit time1,

E(t), is postulated to be a non-negative scalar-valued function and described as

E(t) = d

dt

∫

V

η(X, t) dV

︸ ︷︷ ︸

rate of change of entropy

−
[

−
∫

∂V

(
Q

θ

)

·N dA

]

︸ ︷︷ ︸

rate of entropy input

≥ 0, (E.1)

where η denotes the entropy, Q indicates the heat flux vector and N is the material

outward unit normal vector. By virtue of (E.1), negative sign is required in the

entropy flux due to the fact that the heat flows from hot to cold and the heat source

term is neglected for simplicity. This expression is widely known as the Lagrangian

Clausius-Duhem inequality and its local counterpart becomes

∂η

∂t
+∇ ·

(
Q

θ

)

≥ 0. (E.2)

Equation above can then be expanded to

∂η

∂t
+

1

θ
∇ ·Q− 1

θ2
Q ·∇θ ≥ 0. (E.3)

By substituting the First Law (3.3) into (E.3) for ∇ ·Q, an alternative expression

concludes as belows:

η̇ +
1

θ

(

P : Ḟ − ė
)

− 1

θ2
Q ·∇θ ≥ 0. (E.4)

The last term in the above equation (−(Q ·∇θ)/θ2) determines the entropy produc-

tion due to heat conduction. This term must be a non-negative scalar value function

which implies that the condition2

Q ·∇θ ≤ 0 (E.5)

has to be satisfied.

A stronger form of the Clausius-Duhem inequality (often referred to as Clausius-

Planck inequality) is established as

Dint = θη̇ + P : Ḟ − ė ≥ 0, (E.6)

1Total production of entropy is determined by the difference between the rate of change of

entropy and the rate of entropy input.
2This condition is widely known as heat conduction inequality. For instance, Q = 0 is implied

if and only if there is no temperature gradient exists.
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where Dint describes the internal dissipation (or local production of entropy). With

the help of the Legendre transformation, that is

ψ(F , θ) = e(F , η)− θη, (E.7)

equation (E.6) can be expressed as

Dint = P : Ḟ − ψ̇ − ηθ̇ ≥ 0. (E.8)

Here, Dint = 0 holds for all admissible thermoelastic processes. In an isothermal

process (thermal effects such as η and θ are neglected), inequality (E.8) reduces to

Dint = P : Ḟ − ψ̇ ≥ 0. (E.9)

By considering the isothermal perfectly elastic material, the above inequality can be

degenerated to

Dint = P : Ḟ − ψ̇ = 0 (E.10)

This expression shows that the rate of change of internal mechanical work per unit

of undeformed volume (P : Ḟ or equivalently known as stress power) equals to the

rate of Helmholtz free energy functional, that is

ψ̇(F ) = P : Ḟ . (E.11)

E.1.1 Thermo-mechanical Constitutive Equations

Many important stress analysis problems of engineering interest involve structures

that are subjected to both mechanical and thermal loadings. Most solids exhibit

a volumetric change with temperature variation, which in turn generally induce

stresses. In the case where temperature variation is sufficiently high, these stresses

can reach an ultimate level that lead to structural failure. More detailed information

can be found in [171].

It is worth mentioning that the constitutive equations for irreversible thermo-

dynamics are more complex than those of reversible elastodynamics. First it is

necessary to provide a material relationship between the heat flux vector Q and the

temperature θ3

Q = −h∇θ, (E.12)

where h denotes the material thermal conductivity tensor. Inserting (E.12) into

(E.5) leads to (h∇θ) ·∇θ ≥ 0. This clearly implies that h is a positive semidefinite

matrix4. The conductivity tensor of a thermally isotropic material can be further

simplified to h = hI, which yields

Q = −h∇θ; ∀h ≥ 0 (E.13)

3This is generally known as Duhamel’s law of heat conduction.
4A positive semidefinite matrix is defined for which all its eigenvalues are non-negative.
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and is typically known as Fourier’s law.

For all admissible thermoelastic processes, the expression for Clausius-Planck

inequality degenerates to

Dint = P : Ḟ − ψ̇ − ηθ̇ = 0

and it can be further rearranged as

∂ψ(F , θ)

∂t
= P :

∂F

∂t
− η∂θ

∂t
. (E.14)

By applying the chain rule, the time differentiation of Helmholtz free energy func-

tional, ψ, is obtained as

∂ψ(F , θ)

∂t
=
∂ψ(F , θ)

∂F

∣
∣
∣
∣
θ

:
∂F

∂t
+
∂ψ(F , θ)

∂θ

∣
∣
∣
∣
F

∂θ

∂t
. (E.15)

The physical expressions can then be deduced by comparing terms in (E.14) and

(E.15):

P =
∂ψ(F , θ)

∂F

∣
∣
∣
∣
θ

; η = −∂ψ(F , θ)
∂θ

∣
∣
∣
∣
F

(E.16)

for any given F and θ. From equation above, it is necessary to define the free energy

function ψ(F , θ) which expressed in terms of deformation gradient and temperature.

Note first that the relationship between the internal energy and temperature

is usually denoted in terms of the specific heat coefficient at constant deformation

CF (defined by the amount of energy required to produce a unit increase in the

temperature of a unit mass). In order to achieve this, the specific heat capacity,

ρ0CF , is generally defined to be a positive function of the form

ρ0CF (F , θ) = −θ
∂

∂θ

(
∂ψ(F , θ)

∂θ

)

> 0. (E.17)

Using (E.16b) and ∂e/∂η = θ, the above expression can be derived as

ρ0CF (F , θ) = θ
∂η(F , θ)

∂θ

∣
∣
∣
∣
F

=
∂e(F , η)

∂η

∣
∣
∣
∣
F

∂η(F , θ)

∂θ

∣
∣
∣
∣
F

=
∂e(F , θ)

∂θ

∣
∣
∣
∣
F

.

(E.18)

By integrating (E.18c) with respect to temperature, it then leads to

∆e = e(F , θ)− e0(F ) =

∫ θ

θ0

ρ0CF (F , θ) dθ; e0(F ) = e(F , θ0), (E.19)
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where θ0 denotes a reference temperature. Hence, the change in the internal energy

∆e can be determined. Analogously, the entropy change simply results from (E.18a)

as

∆η = η(F , θ)− η0(F ) =

∫ θ

θ0

ρ0CF (F , θ)

θ
dθ, (E.20)

where η0(F ) = η(F , θ0) denotes the entropy at a reference temperature.

With the aid of (E.19) and (E.20), a general Helmholtz free energy functional

(note that the internal energy e(F , η) 6= e(F , θ)) can be easily obtained as

ψ(F , θ) = ψ0(F )− η0(F )∆θ + ρ0CF

(

∆θ − θ ln θ
θ0

)

; ∆θ = θ − θ0 (E.21)

provided that CF does not change with temperature and deformation gradient

(CF ≡ const). Here, ψ0(F ) = ψ(F , θ0) and η0(F ) = η(F , θ0). The stress ten-

sor is thus conveniently evaluated as

P = P0 −
∂η0(F )

∂F
∆θ; P0 =

∂ψ(F , θ0)

∂F
, (E.22)

where η0(F ) couples the thermal and mechanical effects. Most solids experience

volumetric change under temperature variation by means of η0(F ) depends only

on Jacobian J ; that is, η0(F ) = η0(J). Under this circumstance, the deviatoric

component of the First Piola-Kirchhoff stress tensor is computed directly from ψ0(F )

whereas, the pressure becomes

p(J, θ) = p0(J)− η′0(J)∆θ; η′0(J) =
∂η0(J)

∂J
(E.23)

where

∆θ =
e− e0(F )

ρ0CF

= θ − θ0. (E.24)

A particular form of function η0(J) is shown in the next section.

E.1.2 Mie-Gruneisen Model

The Mie-Gruneisen equation of state is derived as

Γ(J) = −J ∂p(J, θ)
∂e

∣
∣
∣
∣
J

= −J ∂p(J, θ)
∂θ

∣
∣
∣
∣
J

∂θ(J, e)

∂e

∣
∣
∣
∣
J

= − J

ρ0CF

∂p(J, θ)

∂θ

∣
∣
∣
∣
J

=
Jη′0(J)

ρ0CF

,

where ∂θ/∂e = 1/ρ0CF from which

θ(J, e) = θ0 +
e− e0(J)
ρ0CF

.

Assuming that Mie-Gruneisen coefficient Γ remains constant with respect to J (that

is, Γ = Γ(J)), the entropy at reference temperature can be integrated as

η0(J) = ρ0CFΓ ln(J)
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and hence the total entropy for Mie-Gruneisen equation of state is

η(J, θ) = ρ0CF ln

(
θJΓ

θ0

)

.

It is now possible to derive an explicit expression for pressure p as

p(J, θ) = p0(J)−
ρ0CFΓ

J
∆θ. (E.25)

The change in temperature emerges as

∆θ =
e− e0(J)
ρ0CF

, (E.26)

where e0(J) = ψ0(J) + ρ0CFΓθ0 ln(J).

E.2 Artificial Viscosity

In problems which are highly nonlinear, it is essential to introduce an artificial

viscosity term which is aimed at eliminating the high frequencies in the solution.

The amount of viscosity required for stability is determined by the resolution of

the approximating space and therefore varies proportionally to the order of the

approximating polynomial.

The artificial viscosity is initially applied in the whole computational domain,

where no discontinuity sensor is implemented. A simple dissipative formulation can

be derived based on

σv = Cv : d, (E.27)

where σv describes the viscous component of symmetric Cauchy stress tensor and

d represents the rate of deformation tensor. In addition, Cv is a fourth-order con-

stitutive tensor, which can be expressed in its simplest form, defined by

Cv = λvI ⊗ I + µv(I + Î), (E.28)

where

IiIjJ = δijδIJ ; ÎiIjJ = δiJδIj; λv = κv −
2

3
µv. (E.29)

Here, κv denotes the volumetric viscosity and µv indicates the shear viscosity. By

substituting (E.28) into (E.27), the viscous stress can be obtained as

σv = λv(trd)I + 2µvd, (E.30)

with the aid of symmetric fourth-order tensor, that is S = 1/2(I+Î). This symmet-

ric tensor projects the rate of deformation tensor d onto its symmetric component:

S : d =
1

2

(
d+ dT

)
. (E.31)
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In order to develop a viscous formulation such that the volumetric component is

decoupled from shear one, it is necessary to decouple the rate of deformation tensor

into the deviatoric distortional ddev and volumetric parts dvol:

d = ddev + dvol

= ddev +
1

3
(trd)I.

(E.32)

Consequently, the viscous stress can be easily reduced to

σv = κv(trd)I + 2µvddev. (E.33)

This expression clearly depends on the spatial configuration due to the fact that the

rate of deformation tensor d is fundamentally defined as the symmetric part of the

velocity gradient l [6, 7, 38, 115,125,126]; that is d = (l + lT )/2.

To describe the viscous stress within the Total Lagrangian framework, it is vital

to re-express the rate of deformation tensor in terms of Lagrangian velocity gradient

as

d =
1

2ρ0

[
(∇0p)F

−1 + F−T (∇0p)
T
]
, (E.34)

where ∇0 denotes the gradient operator in undeformed configuration. Recall first

that the stresses are related by Pv = JσvF
−T , the viscous component of the stress

tensor can be eventually found as

Pv =
Jκv
ρ0

(
F−T : ∇0p

)
F−T +

Jµv
ρ0

F−T (∇0p)
TF−T +

Jµv
ρ0

(∇0p)C
−1 − 2Jµv

3ρ0

(
F−T : ∇0p

)
F−T

=
Jκv
ρ0

(
F−T : ∇0p

)
F−T

︸ ︷︷ ︸

volumetric

+
Jµv
ρ0

(

F−T (∇0p)
TF−T + (∇0p)C

−1 − 2

3

(
F−T : ∇0p

)
F−T

)

︸ ︷︷ ︸

shear

,

(E.35)

where C = F TF .

Viscous Parameters

It is now necessary to compute the viscous material parameters (i.e. κv and µv) by

first recalling that the maximum time increment of the convective nature, ∆tc, is

defined by

∆tc = αCFL
hmin
Un
max

, (E.36)

where hmin is the minimum grid size, Un
max describes the maximum wave speed

presents at time level n and αCFL denotes the Courant-Friedrichs-Lewy number.

See Section 4.5.3 for detailed explanation. However, this convective time increment

needs to be modified by taking account of the artificial viscosity that described

above. For this reason, the new time increment can be defined as

∆t =
αCFLh

2
min

2ναCFL + Un
maxhmin

; ν =
αµ

ρ0
∆tc, (E.37)
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where α describes a set of constant parameters. In the absence of viscosity, ν, the

convective time increment (E.36) is simply recovered. Consequently, the viscous

material parameters are evaluated as

λv = αλ∆t; µv = αµ∆t; κv = λv +
2

3
µv; (E.38)

where α = [0, 1].

E.2.1 Internal Energy Dissipation Rate

In isothermal irreversible process, the Clausius-Planck inequality (E.9) is repeated

here for convenience:

Dint = P : Ḟ − ψ̇ ≥ 0. (E.39)

Recall first that the perfectly elastic strain energy functional can be described as

ψ = ψ(F ), its time derivative then leads to

∂ψ(F )

∂t
=
∂ψ(F )

∂F
:
∂F

∂t

= Pe : Ḟ ,
(E.40)

where Pe := ∂ψ(F )/∂F denotes the elastic contribution of First Piola-Kirchhoff

stress tensor. Substituting ψ̇ from above equation into (E.39) yields

Dint = (P − Pe) : Ḟ ≥ 0

= Pv : Ḟ ≥ 0

= Pv : ∇0v ≥ 0

= JσvF
−T : ∇0v ≥ 0

= J(Cv : d) :
(
∇0vF

−1
)
≥ 0

= J(d : Cv : d) ≥ 0.

(E.41)

Note the dissipation rate will be positive provided that the viscosity tensor Cv is

positive semidefinite.
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F.1 Introductory Remarks

The concept of dummy cells is very popular on structured grids [60, 98]. First by

noting that the dummy cells are additional layers of virtual cells outside the bounded

domain and clearly, their geometrical arrangements depend upon topological meshes

inside the physical domain. For this purpose, it is necessary to develop a general

framework for assigning the appropriate values of conservative variables at ghost

cells.

F.2 Velocity and Traction Vectors

It is convenient to establish the linear momentum vector p+ and traction vector t+

at dummy cells. With the aid of these ghost values, the special formulas derived

for boundary fluxes (discussed in Section 5.3) will be recovered. Three types of

boundary conditions are presented as follows:

1. Sticking Surface Case: By assuming p+ = −p− and t+ = t− leads to

• pC = 0.

• tC = t− − U−
p (n⊗ n)p− − U−

s (I − n⊗ n)p−.

2. Sliding Surface Case: The normal component of the linear momentum

vector and the tangential component of the traction vector should vanish at

contact point, which are mathematically defined by (n⊗n)p+ = −(n⊗n)p−

and (I − n ⊗ n)t+ = −(I − n ⊗ n)t−. In contrast, the tangential linear

momentum vector and normal traction vector are (I − n⊗ n)p+ = (I − n⊗
n)p− and (n⊗ n)t+ = (n⊗ n)t−, respectively. Above conditions imply

• pC = (I − n⊗ n)p− + 1
U−

s
(I − n⊗ n)(tB − t−).

• tC = (n⊗ n)t− + (I − n⊗ n)tB − U−
p (n⊗ n)p−.

3. Free Surface Case: The conditions of linear momentum and traction vectors

at ghost cells are described as p+ = p− and t+ = 2tB − t−, which then yield

• pC = p− + 1
U−

p
(n⊗ n)(tB − t−) + 1

U−

s
(I − n⊗ n)(tB − t−).

• tC = tB.

Here, tB describes the applied traction vector. Note that the linear momentum (p+)

and traction vector (t+ = P+N ) at ghost cells are introduced. However, a more

general discussion on assigning the deformation gradient (which in turn leads to

stresses) will be presented.
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F.3 Deformation Gradient Tensor

This section demonstrates a general framework for which the deformation gradi-

ent tensor F can be assigned into dummy (or ghost) cells. For this purpose, two

conditions have to be fulfilled:

1. F+
⊥N = F−

⊥N .

2. The traction vector t+ = P (F+)N , which is already known and discussed in

Section F.2.

Here, + and − represent ghost and interior domains, respectively. The tangential

component of deformation gradient, F⊥N , plays a crucial role in the development

below. In general, the deformation gradient F is conveniently decomposed into the

combination of tangential and normal components:

F = F⊥N + a⊗N , (F.1)

where a is an arbitrary spatial vector. Note that F⊥N denotes the tangential part

and a ⊗N describes the normal component of deformation gradient. The above

expression can be written as

F⊥N = F (I −N ⊗N ) (F.2)

with the aid of a = FN . Since there is no jump in the direction orthogonal to N

across the boundary face, F⊥N must remain the same

F+
⊥N = F−

⊥N = F⊥N . (F.3)

Therefore, the deformation gradient at ghost cell is defined by

F+ = F⊥N + a⊗N (F.4)

where a is yet to be specified.

In order to achieve this, it is necessary to establish a Newton-Raphson algorithm

[7] to linearise the traction relationship t+ = P (F⊥N + a⊗N )N , which is clearly

a nonlinear equation in a. First by noting that the solution of a set of nonlinear

algebraic equations is considered

R(a) = 0; R = P (F⊥N + a⊗N )N − t+. (F.5)

This type of nonlinear behaviour equations is generally solved based on Newton-

Raphson iterative process. By giving an estimate solution ak at iteration k, a

new value ak+1 is obtained through the increment ∆a by establishing the linear

approximation

R(ak+1) ≈ R(ak) +DR(ak)[∆a] = 0; DR(ak)[∆a] = K(ak)∆a, (F.6)
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where the tangent stiffness matrix is described by

K(ak) =
dR

da

∣
∣
∣
∣
ak

. (F.7)

Substituting (F.7) for the directional derivative into (F.6a) leads to a linear set of

equations for ∆a to be solved at each iterative process as

∆a = −
[

dR

da

∣
∣
∣
∣
ak

]−1

R(ak); ak+1 = ak +∆a. (F.8)

The residual vector at iteration k is denoted by

R(ak) = P (F⊥N + ak ⊗N )N − t+. (F.9)

Note that K = dR/da = CNN
1 is detailed in Appendix D. The resulting Newton-

Raphson algorithm is summarised in Algorithm F.3.1.

�

�

�

�

Algorithm F.3.1: Assigning Ghost Values(F+,P+)

(1).Given F− and P− of interior domain.

(2). Initialize a = F−N and set ∆a = [1, 0]T and tolerance.

(3).Find F⊥N from (F.2).

while (‖∆a‖ > tolerance)

do







(4).Find F+ = F⊥N + a⊗N .

(5). Solve P+ = P (F+). (Depends on constitutive model)

(6).Evaluate R = P+N − t+. (See Section F.2 for t+)

(7).Find CNN . (see Appendix D)

(8). Solve ∆a = −[CNN ]−1R.

(9).Update a = a+∆a.

return (F+,P+)

1The derivation for obtaining K = dR/da = CNN is performed below:

Kik =
dRi

dak
=
dPiI

dak
NI (F.10a)

=
dPiI

dFjJ

dFjJ

dak
NI (F.10b)

= CiIjJ
d(ajNJ)

dak
NI (F.10c)

= CiIkJNINJ . (F.10d)
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G.1 Introductory Remarks

A variety of different classical time integration schemes have been proposed for

solving structural dynamic problems [69]. The general semi-discrete displacement-

based system of equations is given by [43,44]

Mün+1 + T (un+1, u̇n+1) = F̂ (un+1), (G.1)

where M denotes the mass matrix, T describes the internal force vector and F̂

indicates the external force vector1. To solve this algebraic system of equations, the

acceleration vector ün+1 has to be integrated in time for displacement field un+1.

The most widely used time integrator in structural dynamics is the method devel-

oped by Newmark (1959) [172]. A major drawback of this scheme is the tendency

for high frequency noise to persist in the solution. Some minor modifications have

been made in order to dissipate the high frequencies numerically for problems in-

volving short wavelength [18–21]. Rather than providing a general overview of a

large number of different approaches, detailed description of only Newmark method

will be presented.

G.2 Newmark Method

G.2.1 Methodology

Newmark developed a family of time-stepping methods based on the following equa-

tions [172]:

u̇n+1 = u̇n +∆t [(1− γ)ün + γün+1] (G.2a)

un+1 = un +∆tu̇n +
(∆t)2

2
[(1− 2β) ün + 2βün+1] (G.2b)

where ∆t is the time increment. The parameters γ and β determine the stability

and accuracy of the algorithm.2 In general, the Newmark family of implicit methods

is unconditionally stable if γ ≥ 1/2 and β ≥ (γ + 1/2)2/4 whereas, these implicit

methods are conditionally stable provided that γ ≥ 1/2 and β < γ/2 with the

stability criterion ω∆t ≤ Ωcrit. Here, Ωcrit denotes the stability condition and ω

describes the natural frequency. Typical selection for γ = 1/2 and β = 1/4 yields

a second-order, implicit and unconditionally stable trapezoidal Newmark scheme.

Other Newmark family methods can be found in [69].

These two expressions (G.2a) and (G.2b), combining with second order dynamic

equation (G.1) at time step n+ 1, provide the basis for computing un+1, u̇n+1 and

ün+1 at time n + 1 from the known un, u̇n and ün at time n. In order to achieve

1Do not confuse with deformation gradient tensor F .
2Positive damping is introduced if γ > 1/2, whereas negative damping for γ < 1/2.
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this, first by noting that (G.2b) can be rewritten as

ün+1 =
1

β(∆t)2
(un+1 − un)−

(
1

β∆t

)

u̇n −
(

1

2β
− 1

)

ün, (G.3)

substitute the above expression into (G.2a) yields

u̇n+1 =
γ

β∆t
(un+1 − un)−

(
γ

β
− 1

)

u̇n −
[

∆t

(
γ

2β
− 1

)]

ün. (G.4)

With the aid of ün+1 and u̇n+1, the second order dynamic equation (G.1) gives

1

β(∆t)2
Mun+1+T (un, u̇n, ün,un+1)−F̂ (un+1) = M

[
1

β(∆t)2
un +

1

β∆t
u̇n +

(
1

2β
− 1

)

ün

]

.

(G.5)

This nonlinear algebraic equations is solvable for un+1 by using the conventional

Newton-Raphson iterative method. With un+1 at hand, the values for ün+1 and

u̇n+1 are subsequently obtained (see (G.3) and (G.4)).

G.2.2 Alternative Implementation: Predictor-Corrector

Step

An alternative implementation for computing ün+1 is presented as follows [69]. By

defining predictors as

ũn+1 = un +∆tu̇n +
(∆t)2

2
(1− 2β)ün; ˜̇un+1 = u̇n + (1− γ)∆tün, (G.6)

expressions (G.2a,b) can be consequently re-written as

un+1 = ũn+1 + β(∆t)2ün+1
︸ ︷︷ ︸

corrector

; u̇n+1 = ˜̇un+1 + γ∆tün+1
︸ ︷︷ ︸

corrector

. (G.7)

First by noting that the residual form is given by

Rn+1 = F̂n+1 −Mün+1 − Tn+1. (G.8)

This expression can be approximated linearly by using Taylor series expansion about

the known solution ük−1
n+1 which then yields

Rk
n+1 ≈ Rk−1

n+1 +
∂R

∂ü

∣
∣
∣
∣

k−1

n+1

∆ü = 0, (G.9)

where k is the Newton-Raphson iterative process. By defining tangent stiffness

matrix as M̂ = −∂R/∂ü, equation above can be rearranged as

∆ü =
[

M̂−1
]k−1

n+1
Rk−1
n+1; M̂ = M + γ∆tC + β(∆t)2K. (G.10)

Here, C is the damping matrix. For simplicity, Rayleigh damping (which is a linear

combination of stiffness and mass matrices) is used: C = ξM + ηK where ξ and
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η are the mass and stiffness constants, respectively. Consequently, a new updated

accelerating vector at iteration k is then obtained through the increment ∆ü by

ükn+1 = ük−1
n+1 +∆ü. (G.11)

For k = 1 iteration, the predictor for ük−1
n+1 at time step n+ 1 is estimated from the

converged solution at previous time step n; that is, ü0
n+1 = ün. This iterative process

continues until a certain convergence criterion is satisfied. Once the converged value

ükn+1 is obtained, it is trivial to compute u̇n+1 and un+1 with the aid of (G.7).

In order to give an overview of the implementation described above, the com-

putational algorithm for standard finite element procedure in conjunction with a

family of Newmark time integration schemes is illustrated as follows:

SOLUTION ALGORITHM

• INPUT geometry, material properties and solution parameters.

• FIND mass matrix M (see BOX G.1).

• INITIALISE u0, u̇0, ü0, x = X (initial geometry), F̂ = 0, R = 0.

• LOOP over time

• SET F̂ , i = 0.

• PREDICT solution variables: ũ, ˜̇u (see (I.2)).

• UPDATE geometry: x = X + ũ.

• FIND T (see BOX G.3), K (see BOX G.4).

• COMPUTE C = ξM + ηK, M̂ (viz. (G.10b)), R = F̂ −Mü− T .

• DO WHILE(‖R‖/‖F̂ ‖ > tolerance AND i < max. iter )

• SOLVE ∆ü = M̂−1R.

• UPDATE ü = ü+∆ü, i = i+ 1.

• CORRECT solution variables: u, u̇ (typically (G.7)).

• UPDATE geometry: x = X + u.

• FIND T , K, C, M̂ , R.

• END DO

• OUTPUT increment results

• END LOOP
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G.2.3 Components Required

Elemental Mass Matrix

The elemental consistent mass matrix is given by [115]

M
C,(e)
ab =

(∫

V (e)

ρ0N̂aN̂b dV

)

I. (G.12)

It clearly shows that the mass matrix does not change with time (since it depends

on material density ρ0 and elemental undeformed volume V (e). This expression

does not have to be recomputed during the simulation. In many applications, it is

advantageous to use a diagonal (or lumped) mass matrix for computational cost.

Making use of the row-sum technique, the diagonal mass matrix is obtained by

ML,(e)
a =

∑

b

M
C,(e)
ab =

(
∫

V (e)

ρ0N̂a

(
∑

b

N̂b

)

dV

)

I

=

(∫

V (e)

ρ0N̂a dV

)

I.

(G.13)

Note that the sum of the shape functions must equal to 1 [114].

BOX G.1: Elemental Mass Matrix M
(e)
ab

• Consistent Mass Matrix:

M
C,(e)
ab =

(∫

V (e)

ρ0N̂aN̂b dV

)

I

• Lumped Mass Matrix:

ML,(e)
a =

(∫

V (e)

ρ0N̂a dV

)

I

Constitutive Model

The boxes below summarise three different types of materials. These constitutive

equations are presented in an indicial form for simplicity.
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BOX G.2.1: 2D PLANE STRAIN COMPRESSIBLE

NEO-HOOKEAN

• Cauchy stress tensor:

σ =
µ

J
(b− I) +

λ

J
(lnJ)I; σij =

µ

J
(bij − δij) +

λ

J
(lnJ)δij

• Spatially isotropic tensor:

C = λ′I ⊗ I + µ′(I + Î); Cijkl = λ′δijδkl + µ′(δikδjl + δilδjk)

λ′ =
λ

J
; µ′ =

µ− λ lnJ
J

; bij = FiIFjI

BOX G.2.2: 2D PLANE STRAIN NEARLY INCOMPRESSIBLE

NEO-HOOKEAN

J̄ =
v(e)

V (e)
; v(e) =

∫

v(e)
dv; V (e) =

∫

V (e)

dV

p = κ2D(J̄ − 1); κ2D = λ+ µ

κ̄ = κ2D
v(e)

V (e)

σ′
ij = µJ−2(bij −

1

2
Ibδij); Ib = tr(b) = bkk

σij = σ′
ij + pδij

Ĉijkl =
µJ−2

2
[Ib(δikδjl + δilδjk)− 2bijδkl − 2δijbkl + Ibδijδkl]

Cp,ijkl = p(δijδkl − δikδjl − δilδjk)
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BOX G.2.3: 2D PLANE STRAIN HYPERELASTIC-PLASTIC IN

PRINCIPAL DIRECTIONS

J̄ =
v(e)

V (e)
; κ2D = λ+ µ

p = κ2D
ln J̄

J̄
; κ̄ =

κ2D
J̄
− p; Cp,ijkl = p(δijδkl − δikδjl − δilδjk)

b
(e)
trial = F̃ (e)C−1,(e)

p F̃ T,(e);
[

b
(e)
trial

]

ij
=

3∑

α=1

(

λ
(e)
α,trial

)2

TαiTαj

τ
′,(e)
αα,trial = 2µ lnλ

(e)
α,trial −

2

3
µ ln J ; J = detF

(e)
(2×2)

f(τ
′,(e)
trial, ε̄p) ≤ 0; f(τ

′,(e)
trial, ε̄p) =

√

3

2
(τ

′,(e)
trial : τ

′,(e)
trial)− τ̄y; τ̄y = τ̄ 0y +Hε̄p

τ ′,(e)αα = τ
′,(e)
αα,trial; ∆γ = 0; να = 0

IF f > 0 THEN

να =
τ
′,(e)
αα,trial

√
2
3
‖τ ′,(e)

trial‖
; ∆γ =

f(τ
′,(e)
trial, ε̄p)

3µ+H

τ ′,(e)αα =

(

1− 2µ∆γ
√

2/3‖τ ′,(e)
trial‖

)

τ
′,(e)
αα,trial

END

σ
(e)
ij = σ

′,(e)
ij + pδij; σ

′,(e)
ij =

3∑

α=1

σ′,(e)
αα TαiTαj; σ′,(e)

αα =
1

J
τ ′,(e)αα

Ĉijkl =
3∑

α,β=1

1

J
CαβTαiTαjTβkTβl −

3∑

α=1

2σ′
ααTαiTαjTαkTαl

+
3∑

α,β=1
α 6=β

σ′
αα(λ

(e)
β,trial)

2 − σ′
ββ(λ

(e)
α,trial)

2

(λ
(e)
α,trial)

2 − (λ
(e)
β,trial)

2
(TαiTβjTαkTβl + TαiTβjTβkTαl)

Cαβ =

(

1− 2µ∆γ
√

2/3‖τ ′,(e)
trial‖

)(

2µδαβ −
2

3
µ

)

− 2µνανβ

(

2µ

3µ+H
− 2µ

√

2/3∆γ

‖τ ′,(e)
trial‖

)

λ(e)α = EXP(lnλ
(e)
α,trial −∆γνα); b

(e)
ij =

3∑

α=1

(λ(e)α )2 TαiTαj

C−1,(e)
p = F̃−1,(e)b(e)F̃−T,(e); ε̄p = ε̄p +∆γ
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Note that F̃ (e) and C
−1,(e)
p are described by

F̃ (e) =






F
(e)
(2×2) 0

0

0 0 1




 C−1,(e)

p =






C
−1,(e)
p,(2×2) 0

0

0 0 C
−1,(e)
p,(3,3)




 , (G.14)

where C
−1,(e)
p,(3,3) = 1/detC

−1,(e)
p,(2×2).

Elemental Internal Nodal Forces

The calculation of the equivalent elemental internal nodal forces, T
(e)
a , depends

explicitly on the cauchy stress σ (which is found from an appropriate constitutive

model). See [7] for futher details.

BOX G.3: EQUIVALENT ELEMENTAL NODAL FORCE T
(e)
a

T (e)
a =

∫

v(e)
σ∇xN̂a dv; T

(e)
a,i =

3∑

j=1

∫

v(e)
σij
∂N̂a

∂xj
dv.

Tangent Substiffness Matrix

The complete elemental tangent substiffness matrix is given by [7]

K
(e)
ab = K

(e)
C ,ab +K

(e)
σ,ab +K

(e)
κ,ab, (G.15)

where K
(e)
C ,ab denotes the constitutive component of the tangent matrix, K

(e)
σ,ab de-

scribes the initial stress matrix andK
(e)
κ,ab represents the dilatational tangent stiffness

component. K
(e)
κ,ab vanishes if the standard finite element procedure is used.

BOX G.4: COMPLETE ELEMENT TANGENT MATRIX K
(e)
ab

[

K
(e)
ab

]

ij
=
[

K
(e)
C ,ab

]

ij
+
[

K
(e)
σ,ab

]

ij
+
[

K
(e)
κ,ab

]

ij
; ∀ i, j = 1, 2, 3

[

K
(e)
C ,ab

]

ij
=

∫

v(e)

3∑

k,l=1

∂N̂a

∂xk
Cikjl

∂N̂b

∂xl
dv

[

K
(e)
σ,ab

]

ij
=

∫

v(e)

3∑

k,l=1

∂N̂a

∂xk
σkl

∂N̂b

∂xl
δij dv

[

K
(e)
κ,ab

]

ij
= κ̄v(e)

∂N̂a

∂x̄i

∂N̂b

∂x̄j
where

∂N̂a

∂x̄α
=

1

v(e)

∫

v(e)

∂N̂a

∂xα
dv
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H.1 Introductory Remarks

The evolution of deformation gradient, Ḟ , has to satisfy some compatibility condi-

tions (or the so-called involutions) in order to produce reliable solutions for long-term

analysis. A great variety of different techniques have been developed but require a

more in-depth study for future works.

H.2 New Governing Equations

This approach modifies the evolution equation (rate of deformation gradient) so that

the curl errors in the constraint is advected away. Such approach is used to correct

an existing error of the constraint.

The first order hyperbolic system of equations (see Chapter 2) is repeated for

the sake of convenience

∂p

∂t
−∇0 · P = ρ0b, (H.1a)

∂F

∂t
−∇0 · (v ⊗ I) = 0, (H.1b)

where v = p/ρ0. The Rankine-hugoniot jump conditions for the above expressions

are denoted by

U p = − P N , (H.2a)

U F = − 1

ρ0
p ⊗N , (H.2b)

which in turn lead to six zero wave speeds. For instance, the jump of F in the

direction of Tα (such that Tα ·N = 0) is

U F Tα = 0; ∀α = 1, 2.

To correct this, it is essential to introduce an additional term into the fluxes of

∂F /∂t by first noting that ∇0F
i should be symmetric, that is

∇0F
i = (∇0F

i)T ; F i
I,J = F i

J,I , (H.3)

where F i is the ith-row of deformation gradient tensor. To this end, a new evolu-

tionary equation for the deformation gradient (based on the assumption that curl

F i 6= 0) is expressed as

∂F

∂t
= ∇0 ·



v ⊗ I + FH ⊗ I − F ⊗H
︸ ︷︷ ︸

additional term



 . (H.4)

Note that the additional term disappears if F satisfies the compatibility constraint

(such as ∇0 × F i = 0). By virtue of (H.4), the jump relation becomes

U F = − 1

ρ0
p ⊗N − F H ⊗N + (H ·N ) F . (H.5)
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Here, H denotes an arbitrary constant wave propagation directional vector and is

yet to be defined.

For this purpose, it is necessary to consider the jump of F in the direction of N ,

F N , that has to be identical to (H.2b). This implies that the wave propagation

directional vector, H , is defined by

H = αUsN ; Us =

√
µ

ρ0
; α = [0, 1]. (H.6)

In contrast, the jump in F Tα is now convected with travelling speed (U = H ·N ),

that is

U F Tα = (H ·N ) F Tα; ∀α = 1, 2. (H.7)

H.2.1 Linearised Riemann Solver

The interface fluxes (i.e. tC and pC) at contact point have been derived using

exclusively the jump condition of linear momentum variable, that is

U p = − P N , (H.8)

and therefore will not be affected (even with the new terms appeared in space-

time evolution of F ). However, the new additional term in the rate of deformation

gradient implies that the contact flux of F component, F
C
N,F , is no longer just

−pC/ρ0 ⊗N but will become

F
C
N,F = − 1

ρ0
pC ⊗N +HN : F C , (H.9)

where

HN : F C = (H ·N )F C − F CH ⊗N . (H.10)

Note that the additional term, HN : F C , is linear in F .

The eigenstructure of HN is

HN : F = (H ·N )F , F = a⊗ Tα (H.11)

for any arbitrary spatial vector a. Tα denotes the vector orthogonal toN (Tα·N = 0

where α = 1, 2). It is worth noting that the wave speeds vanish if there is a jump

of F in the direction of N . For instance, HN : F = 0 if F = a ⊗N . The above

expression then leads to

|HN | : F =

{
HN : F if (H ·N > 0)

−HN : F if (H ·N < 0)
. (H.12)

Making use of (H.12) and the linearised Riemann solver (as described in Chapter

2), that is

HN : F C =
1

2
HN : (F− + F+)− 1

2
|HN | : (F+ − F−), (H.13)
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the additional contact flux can be derived as

HN : F C =

{
HN : F− if (H ·N > 0)

HN : F+ if (H ·N < 0)
(H.14)

The complete interface flux of F component at contact point is denoted by

F
C
N,F = − 1

ρ0
pC ⊗N +HN : F−

= − 1

ρ0
pC ⊗N + (H ·N )F− − F−H ⊗N ,

(H.15)

since H ·N > 0 (see (H.6)).

H.3 Extended Approach for Curl-Preserving Up-

dated Scheme

The locally curl-preserving updated scheme discussed previously might lead to the

presence of non-physical low-energy modes. This can be explained by the nodal

collocation nature of the averaging algorithm employed. It is possible to remove

these unrealistic modes by defining a more refined approach for the computation of

the nodal velocity, va, as

va = vaν, (H.16)

where the magnitude and the direction of the velocity at node a are

va =

∥
∥
∑

k
Akvk

∥
∥

∑

k
Ak

(H.17)

and

ν =







∑

k Akvk

‖∑k Akvk‖ if
∥
∥
∑

k
Akvk

∥
∥ > tol

vmax

‖vmax‖
Otherwise

, (H.18)

respectively. Here, ‖vmax‖ = max ‖vk‖, tol denotes the tolerance and kth-edge

belongs to node a. Note that if
∥
∥
∑

k
Akvk

∥
∥ > tol is satisfied, the area-weighted

averaging process will simply be recovered, that is

va =
1

Aa

∑

k
k∈a

Akvk; Aa =
∑

k
k∈a

Ak. (H.19)

In principle, the procedure described above eliminates the spurious modes of defor-

mation. However, none of the computational examples demonstrated in this thesis

has shown any evidence of spurious (or hourglassing) modes and the area-weighted

averaging process has been used throughout.
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H.4 Two-Dimensional Orthogonal Curl-Free Pro-

jection

Another alternative approach for eliminating curl errors in the context of finite ele-

ment method will also be introduced (see [173] for detailed explanations). The main

idea is to correct the nodal deformation gradient by making use of the orthogonal

derivative of the shape functions in an element-wise manner. First by noting that

the curl F can be expressed as

∇0 × F = F∇
⊥
0 ; F =

(
F11 F12

F21 F22

)

; ∇
⊥
0 =

(

− ∂
∂X2
∂

∂X1

)

. (H.20)

Discretise the above curl-free condition gives

∇0 × F = F∇
⊥
0 =

Nne∑

a=1
a∈e

F a
∇

⊥
0 N̂a; ∇

⊥
0 N̂a =

(

−∂N̂a

∂X2

∂N̂a

∂X1

)

. (H.21)

Note that ∇⊥
0 N̂a denotes the orthogonal derivative of the shape functions (such as

∇⊥
0 N̂a ·∇0N̂a = 0) and Nne describes the total number of nodes that belong to the

element e.

It is now convenient to introduce a functional Π defined by

Π(F̂ a,λ) =





1

2

Nne∑

a=1
a∈e

(F̂ a − F a) : (F̂ a − F a)




+ λ ·






Nne∑

a=1
a∈e

F̂ a
∇

⊥
0 N̂a




 , (H.22)

where F̂ a describes the corrected deformation gradient at node a and λ denotes

the Lagrange multiplier vector. The stationary condition of the above functional

(H.22) with respect to λ and F̂ a will be considered separately. Note firstly that the

derivative of Π with respect to λ is

∂Π

∂λ
=






Nne∑

a=1
a∈e

F̂ a
∇

⊥
0 N̂a




 = 0. (H.23)

This implies that the elemental curl-free condition will be achieved if and only if

the summation of all the corrected nodal deformation gradients multiply by their

corresponding orthogonal derivative shape functions vanishes. Additionally, the

derivative of (H.22) with respect to F̂ a is given as

∂Π

∂F̂ a
=

Nne∑

a=1
a∈e

(F̂ a − F a) +
Nne∑

a=1
a∈e

λ⊗∇
⊥
0 N̂a = 0. (H.24)

Rearrange the above expression gives the corrected deformation gradient as

F̂ a = F a − λ⊗∇
⊥
0 N̂a

︸ ︷︷ ︸

correction term

. (H.25)
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Once λ is determined, the corrected deformation gradient F̂ a can be obtained by

substituting λ into (H.25). For this reason, it is essential to insert (H.25) into (H.23)

for F̂ a which then yields

Nne∑

a=1
a∈e

F a
∇

⊥
0 N̂a − λ

Nne∑

a=1
a∈e

(∇⊥
0 N̂a ·∇⊥

0 N̂a) = 0. (H.26)

Consequently, λ is derived as follows:

λ =

∑Nne
a=1
a∈e

F a∇⊥
0 N̂a

∑Nne
a=1
a∈e

∇⊥
0 N̂a ·∇⊥

0 N̂a

. (H.27)

This ensures that the orthogonal projection onto curl-free space is obtained in an

element-wise manner.

H.5 Curl Viscous Flux

To prevent spurious modes for long time integration, it is essential to introduce a

diffusive term into the evolution of deformation gradient as [118]

∂F

∂t
−∇0 ·

(
1

ρ0
p⊗ I

)

+ αvisc∇0 × (∇0 × F )
︸ ︷︷ ︸

diffusive term

= 0, (H.28)

where αvisc ∈ [0, 1]. With the aid of vector calculus identity, the diffusive term can

be expanded to

∇0 × (∇0 × F ) = ∇0 · [(∇0 · F )⊗ I −∇0F ] . (H.29)

Substituting the above expression into (H.28) yields

∂F

∂t
−∇0 ·

[
1

ρ0
p⊗ I + αvisc (∇0F − (∇0 · F )⊗ I)

]

= 0. (H.30)

This approach has been implemented in two-step Taylor Galerkin framework with

only partially successful [64].
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I.1 Two Step Taylor-Galerkin Method

I.1.1 Computational Methodology

In this section, a two-step predictor-corrector scheme (or Runge-Kutta type) is in-

troduced [64]. Such procedure avoids the evaluation of the flux Jacobian matrix,

AN , that appears in one-step Taylor-Galerkin approach [83]. First, it is necessary

to predict the unknown variables, U , at half time step tn+1/2 with the aid of Taylor

series expansion, that is

U
n+1/2 = U

n +
1

2
∆t
∂Un

∂t
= U

n − 1

2
∆t
∂Fn

I

∂XI

;
∂U

∂t
= −∂F I

∂XI

. (I.1)

For simplicity, the source term S is neglected. We shall then discretise the kinematics

in the above expression as

U
n+1/2
a = U

n
a −

1

2
∆t

Nne∑

b=1
b∈e

F
b,n
I

∂N̂b

∂XI

︸ ︷︷ ︸

elemental increment

; ∀a ∈ e (I.2)

or in complete form

pn+1/2
a = pna +

1

2
∆t

Nne∑

b=1
b∈e

P n
b

∂N̂b

∂X
(I.3a)

F n+1/2
a = F n

a +
1

2
∆t

Nne∑

b=1
b∈e

vnb ⊗
∂N̂b

∂X
(I.3b)

En+1/2
a = En

a +
1

2
∆t

Nne∑

b=1
b∈e

[P T ]nbv
n
b ·

∂N̂b

∂X
(I.3c)

where F
b,n
I = F I(U

n
b ) and Nne denotes the total number of local nodes belongs to

element e. This implies that the evolution step is entirely contained in element e,

as the elemental increment is evaluated locally.

Unfortunately, the predicted deformation gradient obtained above (see equation

(I.3b)), develops some non-physical low-energy modes in the solution [59]. To al-

leviate this, Izian et al. [64] introduced a stiffness stabilisation with the aim at

eliminating these spurious modes, which can be written as

F n+1/2
a ←− (1−ᾱ)F n+1/2

a +ᾱ






Nne∑

b=1
b∈e

x
n+1/2
b ⊗ ∂N̂b

∂X






︸ ︷︷ ︸

stiffness stabilisation

; x
n+1/2
b = xnb+

∆t

2
vnb , (I.4)

where ᾱ ∈ [0, 1]. By virtue of (I.4), the added stabilising term is introduced locally

using the standard finite element discretisation for F n+1/2 = ∇0x
n+1/2. The choice
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of ᾱ parameter allows removing of instabilities observed in bending-dominated situ-

ations [59]. Here, ᾱ = 0 leads to the Taylor-Galerkin predictor step, whereas ᾱ = 1

recovers the standard finite element formulation for F n+1/2, which clearly exhibits

overly stiff behaviour [7]. The expression above can also be alternatively represented

as

F n+1/2
a = (1− ᾱ)F n

a +

Nne∑

b=1
b∈e

(

ᾱxnb +
∆t

2
vnb

)

⊗ ∂N̂b

∂X

︸ ︷︷ ︸

elemental contribution

. (I.5)

In addition, the deformation gradient Fa has to be corrected by using curl-free

projection in order to satisfy the compatibility constraint:

F̂ n+β
a = F n+β

a − λn+β ⊗∇
⊥
0 N̂a; λn+β =

∑Nne
a=1
a∈e

F n+β
a ∇⊥

0 N̂a

∑Nne
a=1
a∈e

∇⊥
0 N̂a ·∇⊥

0 N̂a

; β = 0, 1/2.

(I.6)

See Section H.4 for detailed development of this particular approach.

It is now convenient to evolve the unknown variable to full time step tn+1 (or

corrector-step) by employing conventional Taylor expansion as

U
n+1 = U

n +∆t
∂Un+1/2

∂t
= U

n −∆t
∂F

n+1/2
I

∂XI

, (I.7)

where F
n+1/2
I = F I(U

n+1/2). Multiplying the above expression with shape function

N̂a and integrate over the elemental volume Ve, with the aid of integration by parts,

gives
Nne∑

b=1
b∈e

MC
abU

n+1
b =

Nne∑

b=1
b∈e

MC
abÛ

n

b +∆tR̂n+1/2
a ; ∀a ∈ e, (I.8)

where

MC
ab =

(∫

Ve

N̂aN̂b dV

)

I; R̂n+1/2
a =

∫

Ve

∂N̂a

∂XI

F̂
n+1/2

I dV −
∫

∂Ve

N̂aF̂
n+1/2

N dA,

(I.9)

and

F̂
n+1/2

N = F̂
n+1/2

I NI ; F̂
n+1/2

I = F I(Û
n+1/2

); Û = (p, F̂ , E)T . (I.10)

Here, MC
ab denotes the consistent mass matrix and the interface flux FN will be

computed based upon nonlinear Riemann solver (see Chapter 5). For computational

efficiency, this matrix will be replaced by lumped mass matrix, that is

ML
a =






∫

Ve

N̂a

Nne∑

b=1
b∈e

N̂b dV




 I =

(∫

Ve

N̂a dV

)

I, (I.11)

with the aid of
∑Nne

b=1
b∈e

N̂b = 1.
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I.1.2 Solution Procedure

The solution procedure for two-step Taylor Galerkin method satisfying involution is

illustrated as follows [173]:

SOLUTION ALGORITHM

• GIVEN U
n
a = (pna ,F

n
a , E

n
a )
T .

• FIND lumped mass matrix ML
a (or consistent mass matrix MC

ab); see

(I.11b)(or (I.9a)).

• EVALUATE fluxes Fa,n
I = F I(U

n
a).

• LOOP over time

• UPDATE time increment ∆t (see (E.2)).

� PREDICTOR STEP: ELEMENT-BASED

• CORRECT F n
a by using elemental curl-free projection, F̂ n

a (see

(I.6)).

• PREDICT element nodal unknown variables Un+1/2
a (use (I.2)).

• INTRODUCE stiffness stabilisation for F
n+1/2
a (viz. (I.4)).

• CORRECT F
n+1/2
a by using elemental curl-free projection, F̂

n+1/2
a

(see (I.6)).

• INTERPOLATE corrected local unknown variables Û
n+1/2

a at Gauss

point g (that is, Û
n+1/2

g ).

• COMPUTE fluxes at Gauss point, F
g,n+1/2
I = F I(Û

n+1/2

g ).

• FIND viscous first Piola-Kirchhoff stress tensor Pv at Gauss point if

necessary (see (E.35)).

� CORRECTOR STEP: NODE-BASED

• EVALUATE the residual vector R̂
n+1/2
a (viz. (I.9b)), which consists

of the volumental contribution T
n+1/2
a and boundary term B

n+1/2
a at

Gauss point (that is, R̂
n+1/2
a = T

n+1/2
a +B

n+1/2
a ).

• UPDATE global unknown nodal variables

U
n+1
a = (pn+1

a ,F n+1
a , En+1

a )T using (I.8).

• APPLY strong boundary conditions on pn+1
a and F n+1

a , except for

the case where F n+1
a at free surface boundary (see Section I.3).

• COMPUTE fluxes at node a, Fa,n+1
I = F I(U

n+1
a ).

• APPLY strong boundary conditions on the first Piola-Kirchhoff

stress tensor P n+1
a at free boundary case (see Section I.3).
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• UPDATE nodal velocity vn+1
a and mesh coordinates xn+1

a .

• OUTPUT increment results.

• END time loop

I.2 Curl-Free Cell Centred Upwind Finite Vol-

ume Scheme

I.2.1 Solution Procedure

The solution procedure for cell centred finite volume methodology is presented as

belows:

SOLUTION ALGORITHM (Global node a, Centroid of element e)

• GIVEN U
n
e = (pne ,F

n
e , E

n
e )
T .

• EVALUATE P n
e = P (F n

e ) (depends on constitutive model).

• LOOP over time

• UPDATE time increment ∆t (see (4.22)).

• EVOLVE centroid coordinates x
n+ 1

η
e = xne +

1
η
∆tvne , where η

describes the Runge-Kutta stages (viz. (6.6b) and (6.8b)).

• LOOP over Runge-Kutta stages

• EXTRAPOLATE averaged component value Ue ∈ {pe,Fe,Pe}
to contact point k; that is, Ueα where {e, α} ∈ k (See Section

4.4).

• COMPUTE nonlinear flux, [FC
N ]k, at contact point k by using

Lagrangian contact algorithm (as discussed in Chapter 5).

• CORRECT the contact traction vector at point k, [tC ]k, for

preserving the total angular momentum of a system (see Section

6.3).

• FIND nodal velocity va by making use of the area-weighted

averaging technique. Boundary nodal velocities are then

corrected via linear extrapolation from interior known values

(see Chapter 7).

• APPLY strong boundary conditions on nodal velocity va.



I.3. 2D Strong Boundary Conditions: Node-based 239

• COMPUTE averaged velocity ve by linearly interpolating nodal

velocities, va, at centroid of the element. This will be used for

updating the centroid coordinates xe.

• UPDATE centroid, xe, and nodal coordinates xa, and also the

unknown variables U e (see (4.21)).

• EVALUATE P n
e = P (F n

e ) (depends on constitutive model).

• END Runge-Kutta loop

• OUTPUT increment results.

• END time loop

I.3 2D Strong Boundary Conditions: Node-based

Variables (i.e. linear momentum, deformation gradient and first Piola-Kirchhoff

stress) have to be corrected at every time step to ensure that they satisfy the correct

physical behaviour at the boundary. This correction is of paramount importance

and will lead to spurious-free solutions [173]. As discussed previously, three types

of boundary conditions are considered:

I.3.1 Sticking Surface Case

The nodal linear momentum vanishes due to no-slip condition [26], which yields

pa = va = 0, (I.12)

(see Figure 5.3). The tangential material line vector, T , does not allow for rotation

and stretching. This gives the nodal deformation gradient, Fa, to be corrected as

Fa ←− Fa − (N · FaT )N ⊗ T
︸ ︷︷ ︸

rotation

+(1− T · FaT )T ⊗ T
︸ ︷︷ ︸

stretching

, (I.13)

where T is perpendicular to N such that T ·N = 0. No modification is made to

the first Piola-Kirchhoff stress due to the fact that Pa = P (Fa).

I.3.2 Sliding Surface Case

For sliding surface case (see Figure 5.4), it is essential to observe that the velocity

only slips over the tangent plane. Mathematically, this condition reveals that

pa ←− (I −N ⊗N )pa. (I.14)
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Here, (I −N ⊗N ) projects the nodal linear momentum, pa, onto the plane or-

thogonal to N ; that is, (I −N ⊗N ) = (T ⊗ T ). This boundary case restricts the

rotation of material line vector, T , and gives

Fa ←− Fa − (N · FaT )N ⊗ T . (I.15)

Consequently, the first Piola-Kirchhoff stress tensor can be computed by using an

appropriate constitutive relationship, Pa = P (Fa).

I.3.3 Free Surface Case

In this case, no correction is made to the linear momentum vector (see Figure 5.5).

However, the first Piola-Kirchhoff stress tensor has to be corrected such that the

traction vector at the boundary node is in equilibrium with the applied traction

vector tB:

Pa ←− Pa + (tBt − t · PaN )t⊗N + (tBn − n · PaN )n⊗N , (I.16)

where tBn = tB · n and tBt = tB · t. Note that (t · n) vanishes due to the fact that

their directions are perpendicular to each other; that is, n ⊥ t. For simplicity, the

correction on the nodal deformation gradient, Fa, is not being carried out (since it

requires the Newton-Raphson iterative process) due to computational inefficiency

(see Appendix F).
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J.1 Gradient of a Shape Function

This appendix will derive the gradient of a shape function at centroid of cell e from

neighbouring node a, ∇0N̂
e
a where e ∈ a and ∇0 ≡ ∂/∂X. For this purpose, it is

convenient to introduce the shape function stated in parent coordinates ξ as [7]

∇0N̂
e
a(X) =

(
∂X

∂ξ

)−T

∇ξN̂
e
a(ξ); e ∈ a, (J.1)

where ∇ξ ≡ ∂/∂ξ.1 The derivative of material coordinates with respect to parent

coordinates (also known as Jacobian matrix) is typically expressed by

∂X

∂ξ
=

Nne∑

a=1
a∈e

Xa ⊗∇ξN̂
e
a , (J.2)

where Nne denotes the total number of nodes that belong to a given cell e. 
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Figure J.1: Two dimensional isoparametric linear shape functions: (a) Quadrilateral

mesh; and (b) Triangular mesh.

J.1.1 Quadrilateral Mesh

The shape function in parametric coordinates is written as

N̂a =
1

4
(1 + ξaξ)(1 + ηaη), (J.3)

and its derivatives are

∇ξN̂a =
1

4
ξa(1 + ηaη); ∇ηN̂a =

1

4
ηa(1 + ξaξ), (J.4)

1Shape functions in parent coordinates are clearly discussed in [38,82,107,145,174].
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∀a = 1, 2, 3, 4 (see Figure J.1a). Note that the gradient of the shape function is

computed at the centroid of cell e, that is the origin of the parametric coordinates

(ξ = 0, η = 0), which can be concluded as

∇0N̂
NE
a =

( −1/(2∆x)
−1/(2∆y)

)

; ∇0N̂
NW
a =

(
1/(2∆x)

−1/(2∆y)

)

; (J.5)

and

∇0N̂
SW
a =

(
1/(2∆x)

1/(2∆y)

)

; ∇0N̂
SE
a =

( −1/(2∆x)
1/(2∆y)

)

. (J.6)

J.1.2 Triangular Mesh

It is well known that shape functions of linear triangle are defined by (see Figure

J.1b)

N̂1 = 1− ξ, N̂2 = ξ − η, N̂3 = η. (J.7)

Their derivatives can be easily obtained as

∇ξN̂1 =

( −1
0

)

, ∇ξN̂2 =

(
1

−1

)

, ∇ξN̂3 =

(
0

1

)

. (J.8)

As usual, it is now necessary to evaluate the transformation (or Jacobian) matrix,

∂X/∂ξ, in preparation for the development of the material gradient of an interpo-

lating function. To this end, ∇0N̂
e
a are summarised as follows:

∇0N̂
NW
a =

(
1/∆x

−1/∆y

)

; ∇0N̂
NN
a =

(
0

−1/∆y

)

; ∇0N̂
NE
a =

( −1/∆x
0

)

;

(J.9)

and

∇0N̂
SW
a =

(
1/∆x

0

)

; ∇0N̂
SS
a =

(
0

1/∆y

)

; ∇0N̂
SE
a =

( −1/∆x
1/∆y

)

.

(J.10)

Graphical representation is depicted in Figure 7.2b.
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