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Summary

Currently standard first order single-point upstream weighting methods are employed in

reservoir simulation for integrating the essentially hyperbolic system components. These

methods introduce both coordinate-line numerical diffusion (even in 1-D) and cross-wind

diffusion into the solution that is grid and geometry dependent. These effects are par-

ticularly important when steep fronts and shocks are present and for cases where flow is

across grid coordinate lines.

In this thesis, families of novel edge-based and cell-based truly multidimensional upwind

formulations that upwind in the direction of the wave paths in order to minimise crosswind

diffusion are presented for hyperbolic conservation laws on structured and unstructured

triangular and quadrilateral grids in two dimensions. Higher resolution as well as higher

order multidimensional formulations are also developed for general structured and un-

structured grids.

The schemes are coupled with existing consistent and efficient continuous CVD (MPFA)

Darcy flux approximations. They are formulated using an IMPES (Implicit in Pressure

Explicit in Saturation) strategy for solving the coupled elliptic (pressure) and hyper-

bolic (saturation) system of equations governing the multi-phase multi-component flow

in porous media.

The new methods are compared with single point upstream weighting for two-phase and

three-component two-phase flow problems. The tests are conducted on both structured

and unstructured grids and involve full-tensor coefficient velocity fields in homogeneous

and heterogeneous domains. The comparisons demonstrate the benefits of multidimen-

sional and higher order multidimensional schemes in terms of improved front resolution

together with significant reduction in cross-wind diffusion.
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Chapter 1

Introduction and Background

Petroleum reservoir simulation involves the use of numerical methods to obtain the

solution of mass, momentum and energy conservation equations (in integral or partial

differential form) governing fluid flow in petroleum reservoirs. The need for accurate

and realistic reservoir simulation has always driven the field of research and development

of efficient and robust numerical discretisation techniques for reservoir simulation. There

exists a number of different numerical discretisation approaches which are used in reservoir

simulation. One such approach is the finite volume method (FVM). Most of the existing

numerical reservoir simulators employ a single point upstream weighting (SPU) first order

scheme for the fluid transport equations that suffers both excessive smearing at saturation

and concentration fronts as well as a grid dependency introducing a cross diffusion error

into the numerical solution. The main focus of this thesis is to investigate and develop

novel higher resolution finite-volume numerical discretisation techniques for the reservoir

simulation saturation equation.

1.1 Reservoir Simulation

1.1.1 Petroleum Reservoirs and Recovery processes

A subsurface reservoir is a geological formation in which fluids have accumulated over

millions of years by migration from source rocks. The reservoir rock is typically sedimen-

tary in nature subject to forces including fluid pressure, viscous, capillary and gravity.

Naturally occurring hydrocarbon systems found in petroleum reservoirs are mixtures of

organic compounds which exhibit multi-phase behavior over wide ranges of pressures and
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temperatures. These hydrocarbon accumulations may occur in the gaseous state, the

liquid state, the solid state, or in various combinations of gas, liquid, and solid.

In order to recover oil and gas wells are drilled into the reservoir, some of which produce

(producer) oil and others are used to inject (injector) water or gas to provide pressure

support. The recovery of oil by any of the natural drive mechanisms is called primary

recovery. This term refers to the production of hydrocarbons from a reservoir without

the use of any process (such as fluid injection) to supplement the natural energy of the

reservoir. Secondary recovery aims at increasing the efficiency of oil displacement to-

wards the production wells and uses techniques such as water flooding. Usually, tertiary

production methods also referred to as enhanced oil recovery processes are necessary

in order to attain efficient levels of oil recovery. These techniques include polymer flooding

and miscible displacement. Polymer flooding involves the addition of polymer substances

to injected water in order to increase the viscosity of the water and displace the trapped

oil in the rock pores. Miscible displacement consists of mixing gaseous fluids with oil

to form a single phase. The single flow regime between the oil and gas phase reduces

interfacial tensions and can result in more effective displacement.

In the oil industry the goal is to maximise hydrocarbon recovery under different con-

ditions. This depends on deriving mathematical and physical models for the processes

that occur in the reservoir. The models should incorporate as much geology and physics

as necessary to describe the essential phenomena and lead to coupled systems of non-

linear partial differential equations. Discretised numerical models are then derived that

has the required properties of accuracy and stability and which must produce solutions

representing the basic features without introducing spurious non physical phenomena.

1.1.2 Reservoir Simulation and Numerical Discretization

Reservoir simulation is that process whereby the behavior of a hydrocarbon reservoir

is inferred from the behavior of a mathematical model which describes it [128, 13]. The

degree to which the model duplicates the actual reservoir is a function primarily of the

input data used, and secondly the adequacy of the model to simulate the physical system.

The current state of the art in reservoir simulation is directly related to high speed comput-

ers, accurate geological models for reservoir description and robust numerical techniques.

With increased computer power, numerical simulation has become an efficient reservoir

management tool for all stages in the life of a reservoir, as larger amounts of data are
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incorporated in more geologically realistic models that describe the complex behaviour of

multi-phase flow in real reservoirs. Reservoir simulation has become very advanced over

the past decades. Simulation grids may be very large, and the level of details can be very

high. One of the reasons for the high level of details is the considerable effort which is

put into seismic measuring and other techniques prior to drilling exploration wells. Also,

the history may be well known for a reservoir that have been producing hydrocarbons for

many years through logging and measured production etc. This may be used to verify or

history match geophysical data. Parameter estimation is an important area in its own,

and production data is essential to recalculate/calibrate a model with respect to porosity

and permeability. Because the geology may be estimated at such a detailed level, one

may be required to model flow on grids incorporating general complex geometry.

Three basic problem areas have dominated much of the recent research in reservoir sim-

ulation. First, the need for an effective model to describe the complex fluid and rock

interactions that control recovery processes. Simulators are severely hampered by the

lack of knowledge of reservoir properties, heterogeneities, and relevant length scales and

of important mechanisms such as diffusion, dispersion, and viscous instabilities. Russell

and Wheeler [145] and Young [167] present excellent surveys of the influence of dispersion

and attempts to incorporate it in present reservoir simulators. Since the mixing and veloc-

ity variations are influenced at all relevant length scales by the heterogeneous properties

of the reservoir, there is a need for volume averaging of porosity and permeability. Re-

cently, developments have been made in homogenization [85, 96], renormalisation [98, 51],

scaled averaging [97], upscaling [20, 47], multi-scale methods [87, 27, 95, 12], and statisti-

cal methods have also been explored to obtain effective permeability [14, 72]. A review of

different upscaling techniques used in petroleum reservoir simulation is also presented in

[70]. Also, simulators are now used as an experimental tool to develop methods to model

the interrelations between localized and large scale media effects.

Next, the need to develop accurate discretisation techniques that retain the important

physical properties of the continuous models. Recently, a variety of new discretisation

techniques have been developed for both the pressure and transport equations. Discon-

tinuous Galerkin (DG) [135, 137], Mixed finite elements (MFEM) and related methods

[145, 67, 66, 44, 45, 69, 48, 11, 90], and finite volume methods (FVM) [61, 50, 62, 53,

2, 161, 3, 4, 5, 1] are being used to yield accurate mass-conservative approximations to

the pressure and Darcy velocity of the fluid. Eulerian-Lagrangian techniques [25, 42, 146]
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have also been developed that not only conserve mass but also take advantages of the

computed flow of the fluids to accurately model the transport phenomena. Adaptive local

grid refinement in space and time [65, 51] can be controlled by A posteriori error estima-

tors. Then multi-grid or multilevel iterative techniques [68, 84] can be used to efficiently

solve the discrete systems.

Finally, the need to develop efficient numerical solution algorithms that utilize the po-

tential of the emerging computing architectures. Major potential advantages in comput-

ing lie in emerging parallel computer architectures and use of parallel computation for

Large-Scale Reservoir Simulation [168]. Techniques such as domain decomposition e.g.

[165, 120] that naturally split a large problem into smaller pieces to be addressed sepa-

rately on distinct processors, which also allows modularized local grid refinement and can

play a significant role in developing effective and robust simulation codes.

1.2 Scope of Work and Research Contribution

The work documented in this thesis presents a number of developments in numerical

discretisation techniques for the subsurface reservoir simulation saturation equation. The

advantages and limitations of some of these formulations are discussed and analysed in this

work with the help of numerical tests. The major objective of this thesis is to address the

important aspects of higher resolution methods for flow in porous media on unstructured

grids in two space dimensions.

1.2.1 Summary of Major Work

The main objective of this thesis is to develop higher resolution multidimensional and

higher order cell vertex finite volume methods for convective flow in porous media on

structured and unstructured grids. The schemes are coupled with existing control volume

distributed full tensor Darcy flux approximations. The principal accomplishments of this

work are listed below:

(i) A study of a family of novel truly multidimensional schemes for convective flow in

porous media on structured and unstructured quadrilateral and triangular grids in

2D. Details of the formulation are documented in [107, 102, 105, 103, 104].

(ii) An extension of a class of higher order methods to unstructured highly distorted
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grids. A sequence of higher resolution non-uniform limiters are introduced and

tested for classical two phase flow problems in porous media on a range of unstruc-

tured grids. The outcome of this research is documented in [109, 108, 106].

(iii) The implementation of a novel class of higher order multidimensional schemes for

flow in porous media on unstructured meshes [101].

(iv) Applications of the above schemes to two phase flow and three component two-phase

flow systems driven by viscous and gravity forces in homogeneous and heterogeneous

domains.

The research outputs in this study are listed in the bibliography of this thesis.

1.2.2 Organization of the Thesis

The thesis is subdivided into eleven chapters, including an introduction and conclu-

sion. The synopsis of each chapter is as follows.

The flow equations of mass and momentum conservation for fluid flow in porous media

are introduced in Chapter 2. Description of the problem to be solved with specified

boundary and initial conditions is also presented in this chapter.

Chapter 3 presents a literature review of previous work on higher resolution and higher

dimensional upwind finite volume discretisation schemes employed in petroleum reservoir

simulation. Limitations of standard single point upstream weighing finite volume schemes

are discussed.

Chapter 4 is devoted to the details of the discretisation of the coupled system of hyper-

bolic and elliptic equations. Formulations of edge-based and cell-based vertex-centered

upwind finite volume approximations for the saturation equation are considered. Also,

a review of multi-point control-volume distributed CVD (MPFA) approximations of the

Darcy flux are presented. The solution strategy and time stepping algorithm are then

proposed. Finally, an overview of discrete local maximum principles for hyperbolic equa-

tions is presented.

Higher-order upwind schemes on highly distorted unstructured triangular grids in 2D, are

the subject of chapter 5. The schemes are coupled with consistent Darcy flux approxi-

mations. Non-uniform grid limiters are presented and the schemes are tested on a series

of test cases for two phase flow in porous media.
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Chapter 6 is devoted to a class of novel locally conservative edge based truly multi-

dimensional schemes, for structured and unstructured quadrilateral grids. Extensions to

triangular and hybrid meshes is proposed in chapter 7. Two phase flow results are tested

on a range of grids with variations in spacing and orientation. Numerical cases involve

both diagonal and full homogeneous permeability tensors for high mobility ratios.

Applications of the edge based schemes to gravity driven flows and to compositional flow

systems using different combinations of upwind and tracing formulations are investigated

throughout numerical case studies in chapter 8.

Chapter 9 presents novel families of cell-based multidimensional schemes for convective

flow in porous media on unstructured grids. A stability analysis is performed for linear

flux and a class of weighting factors is derived on triangular and quadrilateral elements.

Chapter 10 introduces novel families of higher order multidimensional schemes for con-

vective flow in porous media. The formulation of these methods is established using both

edge based and cell based finite volume approximations. Different versions of the schemes

are compared with the standard methods with the help of numerical tests on homogeneous

and heterogeneous permeability fields for different types of structured and unstructured

grids.

Finally, the last chapter summarizes the novel research contributions of this work and

recommendations are made for continuation of this work through future research.
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Chapter 2

Flow Equations

The purpose of this chapter is to introduce the principal equations governing the flow

in porous media, which are modelled in this thesis. Fluid flow in porous media is governed

by the fundamental laws of conservation of mass, momentum and energy. Additionally,

several empirical relations comprising PVT-relations, rock and fluid properties and multi-

phase flow behaviour are necessary to build a mathematical representation of the physical

problem that is as realistic as possible. For reference, textbooks including Peaceman

[128], Aziz and Settari [13], Bear [19] give further details on the subject. This chapter

is organised as follows. In section 2.1 we will briefly cover the primary physical and

geological parameters influencing the flow. Section 2.2 presents the Darcy’s Law and the

flow equations governing single and multi-phase flow. Throughout the dissertation, we

consider two different models for flow in porous media namely:

• a two-phase immiscible flow model and

• a three-component two-phase immiscible flow model,

The above models are discussed in more detail in section 2.3.

2.1 Model Parameters

2.1.1 Rock Parameters

Porous media are made up of pore spaces and a solid matrix. The distribution and

volume fraction of such pores in the rock determine the rock properties, which in turn are

the parameters governing the hydrocarbon flow in the reservoir.
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Porosity

The rock porosity, referred to as Ψ, is a scalar dimensionless static entity which cor-

responds to the void volume fraction of the medium, that is, 0 ≤ Ψ ≤ 1. The porosity

usually depends on the pressure. In simplified models, it is customary to assume that

Ψ only depends on the spatial coordinate. We assume, without loss of generality with

respect to the numerical methods presented, that the porosity is equal to unity.

Permeability

The absolute permeability, denoted by K, is a measure of the rock’s ability to trans-

mit a single fluid at certain conditions. In general, for flow in higher dimensions, the

permeability is modelled via a spatially varying full tensor K, which means that the per-

meability in the different directions depends on the permeability in the other directions.

In 2D, the permeability tensor takes the form:

K =

[

K11 K12

K12 K22

]

.

This tensor must be symmetric and positive definite to ensure a physically consistent

conductivity.

In the case where K is diagonal, the medium is said to be isotropic if K11 = K22, as

opposed to anisotropic corresponding to K11 6= K22.

Moreover, due to rock formations, the permeability may vary rapidly over several orders

of magnitude across the porous medium. Under the influence of insitu stress, fractures

may open or close at depth and therefore affect drastically the bulk permeability.

Furthermore, since the definition of permeability involves a certain fluid, different fluids

will experience different permeability in the same rock sample. This is usually modeled

through relative permeabilities discussed below.

2.1.2 Fluid properties

Saturation and Concentration

The void in the porous medium is assumed to be filled with different phases. The

volume fraction occupied by each phase p is the saturation Sp. By definition,

∑

p

Sp = 1. (2.1.1)
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For practical reservoir purposes, usually only three phases are considered namely aqueous

(w), oleic (o) and gaseous (g) phase. Each phase contains one or more components. A

hydrocarbon component is a unique chemical species. The mass fraction of a component

l in a phase p is denoted by Clp. In each of the phases, the mass fractions should add up

to unity, so that for N different components, we have:

N
∑

l=1

Clp = 1, for each phase p. (2.1.2)

Density and Viscosity

Next, we assign a density ρp and a viscosity µp to each phase p. In general, these

are functions of phase pressure φp and the composition of each phase. In this work,

compressibility effects are neglected. Also the phase densities are assumed to be constant

for the models considered.

Capillary Pressure

Due to interfacial tensions, the phase pressures are different, defining the capillary

pressure as:

φcij = φi − φj,

for the phases i, j. It is usually assumed that the capillary pressure is a function of the

saturation only. In the rest of the dissertation, capillary effects will be neglected.

Relative Permeabilities

The relative permeability, krp of phase p is introduced to account for the reduced

permeability of each phase due to the presence of the other phases. Typically, this pa-

rameter is chosen to be an empirical function of the phase saturation. For two phase

flow problems, Brooks and Corey [24], Corey [37] and Van Genuchen [158] have suggested

analytical expressions for the relative phase permeabilities. Here, we use the following

simplified model:

krp = Sζ
p , (2.1.3)

where Sp denotes the normalised saturation variable of phase p and ζ denotes the order

of mobility.
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Phase Mobilities

Fluid phase mobility is defined as the ratio of the relative permeability to phase vis-

cosity [39]. The pth phase mobility is written as:

λp = krp/µp. (2.1.4)

2.2 Constitutive Equations: Conservation Laws

2.2.1 Continuity Equations: Mass Conservation Laws

For multiphase flow, the mass conservation equation (continuity equation) takes the

form:
∂ρpΨSp

∂t
+ ∇ · (ρpVp) = ρpq, (2.2.1)

where Vp denotes the pth phase velocity and q refers to the source or sink term. We assume

throughout this thesis that:

• the flow is incompressible. Consequently, ρp is constant.

• Also, the porosity Ψ is set to unity.

Then Equation (2.2.1) simplifies to :

∂Sp

∂t
+ ∇ · Vp = q. (2.2.2)

2.2.2 Equation of Motion: Darcy’s Law

The movement of water, oil and natural gas through the subsurface is a very complex

phenomenon because of the involved microscopic scale and heterogeneity of the medium.

Usually the velocity of the flow is so small (Re << 1) and the flow passages are so narrow

that laminar flow may be assumed. Rigorous analysis of the flow is not possible because

of complexity of the shape of the individual flow passages. Although, several theories

have been formulated, credit is attributed to the French engineer Henry Darcy [40], who

published his famous work on the public fountain of the French city of Dijon. Darcy’s

law models the effective velocity across a representative elementary volume (REV).
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Phase Velocity Formulation

For single phase flow, the compact differential form of Darcy’s law is written as:

V = −K

µ
(∇φ + ρg∇h). (2.2.3)

Here, µ is the fluid viscosity, g is the gravitational constant, h is the spatial coordinate

in the upward direction and φ is the pressure. When several phases or components are

present in porous media, Darcy’s law may be extended to describe simultaneous flow of

more than one phase:

Vp = −λpK (∇φ + ρpg∇h) . (2.2.4)

Total Velocity Formulation

The total Darcy velocity, which is the sum of the phase velocities, is defined as: Define

the total Darcy velocity as:

VT = −ΛK(∇φ + ρg∆h), (2.2.5)

where

Λ =

Np
∑

p=1

λp, (2.2.6)

is the total mobility. Let

ρ =

Np
∑

p=1

ρpλp/Λ (2.2.7)

is the mean density and

∆ρ(S) = ρp − ρ. (2.2.8)

The pth phase velocity is then defined by

Vp = fp(VT − ∆ρ(S)gK∇h), (2.2.9)

where fp is the fractional flow of phase p, i.e.

fp(S) =
λp

Λ
. (2.2.10)
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2.3 Governing Equations

2.3.1 Immiscible Two Phase Flow

The Buckley-Leverett model for flow of two immiscible incompressible phases in a

porous medium is important to models of oil reservoirs and contaminated aquifers. In

this model, we assume that the fluid consists of two distinct phases. It is assumed that

the molecules forming the two phases do not interact or move from one phase to the other.

In the following, a water-oil system is considered, phase quantities bear suffices w for the

aqueous phase (water) and o for the oleic phase. Recall that the saturations of the phases

So and Sw are the ratios of the phase volumes to fluid volume. By definition,

Sw + So = 1.

Typically, water is the wetting phase, meaning that it prefers to move along the surface of

the rock pores. Oil is the non-wetting phase, and prefers to sit as disconnected droplets

in the centre of cell pores, or move as ganglia when the droplets can connect. Thus the

presence of both oil and water reduces the flow of the other. In the absence of capillary

forces, the Darcy velocities of the phases act so as to reduce the flow of each other and

take the form:

Vw = −λwK(∇φ + ρwg∇h), (2.3.1)

Vo = −λoK(∇φ + ρog∇h).

The Buckley Leverett flow model of two incompressible fluids is described, using the

fractional approach, by an elliptic equation for the pressure φ:

−∇Λ · K∇φ = M̃, (2.3.2)

and a hyperbolic equation for the saturation, neglecting the capillary pressure and dis-

persion. The saturation equation is written as:

Ψ
∂S

∂t
+ ∇ · Vw(S) = m, (2.3.3)

where S is the water saturation, m is the distributed source term, the porosity Ψ = 1 and

Vw takes the form:

Vw(S) = f(S)(VT − λog∆ρK∇h), (2.3.4)

where VT = Vw + Vo is the total velocity. Here, ∆ρ = ρw − ρo.
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Buckley-Leverett Model in 1D

In one dimension, in the absence of source and sink terms, the conservation equation

(2.3.3) reduces to:
∂S

∂t
+

∂Vw

∂x
= 0, (2.3.5)

and Equation (2.3.1) takes the form

Vw = −λwK(
∂φ

∂x
+ ρwg

∂h

∂x
). (2.3.6)

The phase velocity is expressed in terms of total velocity VT = Vw + Vo as

Vw = f(S)(VT − λo∆ρg
∂h

∂x
), (2.3.7)

where f is the fractional flow.

Then, the incompressible flow condition, in 1-D, reduces to

∂VT

∂x
= 0, (2.3.8)

from which it follows that the total velocity is spatially constant in 1-D for an incom-

pressible flow. Equations (2.3.7) and (2.3.8) are used to determine pressure and velocity

subject to initial and boundary conditions for the pressure and saturation. The satura-

tion of the oil phase is deduced from the volume balance equation, where saturations sum

to one. Dimensionless parameters that influence the Buckley-Leverett models considered

here are the gravity number:

γ =
Kg(ρw − ρo)

µoVT
, (2.3.9)

and the mobility ratio

M =
µo

µw
. (2.3.10)

The gravity number is the ratio of gravity to viscous forces. The mobility ratio is one

of the factors that determine the physical stability regime of the flow. In the case of

mobility ratios larger than unity, small instabilities (typically due to heterogeneities in

the medium) in the flow will grow and the displacement is destabilized [119, 43]. This leads

to the development of patterns at the interface between the two fluids. These phenomena

are referred to as viscous fingering. Gravity may act to stabilize or destabilize the flow.

The Buckley-Leverett flux function is neither convex nor concave. This model is especially
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interesting when both the total fluid velocity and gravity are nonzero. In the cases

presented in this work, we use fractional flow functions of the form,

f =
MSζ

MSζ + (1 − S)ζ
,

where ζ is the order of mobility, S denotes the normalised water saturation and M is the

mobility ratio defined above. Typical profiles of the Buckley-Leverett flux function for

different gravity numbers are depicted in Figure 2.1. Solutions of the Buckley-Leverett

equations exhibit sharp travelling wave fronts in oil and water saturations, followed by

smooth expansion regions.
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Figure 2.1: Buckley-Leverett flux function: Vw = f(S)(VT − g(1 − S)2) with f(S) =
S2

S2+(1−S)2
for ζ = 2.

2.3.2 Polymer Flood System: Three Component Two Phase

Flow

The hyperbolic system considered here is comprised of a miscible aqueous phase (wa-

ter and polymer concentration) together with an oil phase. Throughout the thesis, the

concentration of a polymer solute is denoted by C; by definition C is the volume fraction

of the polymer solute in the miscible phase. In one space dimension, the conservation

equation in the absence of source and sink terms takes the form:

∂S

∂t
+

∂F(S)

∂x
= 0, (2.3.11)

where

S =

[

S

SC

]

(2.3.12)
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denote the vector of conservative variables and

F =

[

Vw

CVw

]

(2.3.13)

is the nonlinear flux vector. Let

C =

[

S

C

]

(2.3.14)

denote the vector primitive variables. The phase velocity is defined by equations (2.3.6)

and (2.3.7). Here, the oil saturation is (1−S) and aqueous viscosity µw is now a function

of polymer concentration C.

Characteristic Decomposition

The decomposition matrices of system Equations (2.3.11) are presented in [21, 51] and

derived here for completeness.

Equation (2.3.11) can be expanded into the ”quasilinear form”:

∂S

∂C

∂C

∂t
+

∂F

∂C

∂C

∂x
= 0 (2.3.15)

where

T =
∂S

∂C
=

[

1 0

C S

]

,

and

J =
∂F

∂C
=









∂Vw

∂S
∂Vw

∂C

C ∂Vw

∂S
Vw + C ∂Vw

∂C









is the local jacobian of the system with respect to primitive variables.

Assume S 6= 0, then multiplying Equation (2.3.15) by ( ∂S

∂C
)−1 gives:

∂C

∂t
+ T−1J

∂C

∂x
= 0, (2.3.16)

with

T−1J =









∂Vw

∂S
∂Vw

∂C

0 Vw

S









.

In the form Equation (2.3.16), characteristic speeds are the diagonal entries (also corre-

sponding with the eigenvalues) of the matrix T−1J, namely

∂Vw

∂S
and

Vw

S
,
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corresponding respectively with the eigenvectors
[

1

0

]

and

[

∂Vw

∂C

Vw

S
− C ∂Vw

∂S

]

,

and the transformation matrix from conservative variables to characteristic variables W

is given by:

R =









1 ∂Vw

∂C

C C ∂Vw

∂C
+ S(Vw

S
− ∂Vw

∂S
)









. (2.3.17)

The matrix R can become singular if the eigenvalues∂Vw

∂S
and Vw

S
are equal.

2.4 Initial and Boundary Conditions

2.4.1 Hyperbolic Equation

For the initial value problem (IVP) field data is prescribed. For initial boundary value

problems (IBVP), considered here in two-dimensions, an initial flow field is prescribed

together with boundary values which are assigned according to the number of inward

pointing characteristics [13]. Zero normal flow is imposed on solid walls.

2.4.2 Elliptic Equation

The two most common kinds of boundary conditions used in reservoir simulators with

respect to the elliptic pressure equation are:

Dirichlet

This boundary condition requires the specification of pressure at the reservoir bound-

aries or wells. Typically, this involves specifying flowing bottom hole pressure at a well

and a constant pressure at physical boundaries of reservoir.

Neumann

This boundary condition requires the specification of flow rates at reservoir bound-

aries. Typically, it involves specifying flow rates at wells and no-flow across physical

solid boundaries of reservoir. Flow rates are specified or the pressure is specified at the

boundary.
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Chapter 3

Previous Work

In this chapter, some background work related to the topic of this thesis is described. A

brief overview of the development of higher resolution methods is presented in section 3.1

and recent advances in modern multidimensional schemes for the transport equations are

presented in section 3.2. Finally, section 3.3 presents state of the art of consistent Darcy

flux continuous approximations based on control volume distributed (CVD) schemes for

the pressure equation.

3.1 Motivation for the Development of Higher Reso-

lution Schemes in Reservoir Simulation

One of the most important tasks in the numerical simulation of fluid flow problems

is the reduction of numerical diffusion in the solution. Numerical diffusion is caused by

the use of first order interpolation schemes in the approximation of the convective terms

in the momentum equations introduced in chapter 2, Equation (2.2.4). First order up-

wind single-point upstream weighting schemes are still commonly employed in reservoir

simulation for integrating the essentially hyperbolic components of the system, due to its

simplicity and robustness of the resulting algorithm. However, these methods are known

to introduce false coordinate-line numerical diffusion (even in 1-D) also referred to as

longitudinal or streamline diffusion.

Also, as standard first order schemes rely upon upwind information that is determined

according to the grid geometry; directional diffusion is introduced into the solution that

is grid and geometry dependent. The effect can be particularly important for cases where
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steep fronts and shocks are present and for cases where flow streamlines are not closely

aligned with the grid coordinate lines and is known as transverse or cross-wind diffusion

[132, 21, 36, 141, 142, 88, 6, 152].

Higher order convection schemes continue to be developed for the essentially hyperbolic

systems of reservoir simulation [57, 51, 58, 56, 59, 21, 23, 48, 62, 157, 55]. These schemes

require an extended support to obtain higher order accuracy and are constructed such

that the solution remains free of spurious oscillations. These methods yield benefits in

terms of improved front resolution and have been successfully demonstrated for a variety

of multi-phase flow problems in reservoir simulation.

A more robust solution algorithm that is free of both cross-wind diffusion and spurious

oscillations remains an area of research for reservoir simulation and is the target of this

thesis.

Towards this goal, higher resolution schemes are presented for convective flow approxima-

tion on non-uniform distorted unstructured grids. This work continues with the develop-

ment of the higher order unstructured grid schemes presented in [58, 56]. The convection

schemes are coupled with continuous Darcy fluxes for approximation of the pressure equa-

tion and applied to multi-phase flow problems. The schemes are tested on unstructured

grids with variable grid spacing and benefits of the resulting schemes in terms of improved

front resolution are demonstrated for two-phase flow and three component two-phase flow

test cases in two dimensions.

3.2 Higher Resolution Methods for Hyperbolic Con-

servation Laws

3.2.1 One Dimensional Case

In the case of one space dimension, upwind finite volume schemes have reached a de-

gree of maturity where they can be considered as reliable tools for producing accurate

numerical approximations of hyperbolic systems of partial differential equations.

Among the popular schemes that preserve the monotonicity of the solution are the up-

wind schemes introduced by Godunov [74], Engquist and Osher [64] and Roe [140]. These

schemes are based on the solution of local or approximate Riemann problems. Central

schemes including Lax Friedrichs are also used. These schemes are the basis of devel-
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opment of higher order methods initiated by VanLeer [160] that provide second order

accuracy in smooth regions and prevent the development of nonphysical oscillations near

discontinuities.

High resolution schemes for conservation laws in one dimension are usually constructed

using some form of TVD (total variation diminishing) limiter [156] so that high order

accuracy can be achieved while avoiding spurious oscillations in the solution. Of interest

here is the slope limiting (MUSCL) approach of van Leer , in which the limiter is applied

in a geometric manner, to the gradients of a piecewise linear reconstruction of the solution,

to create a monotonicity preserving scheme. At a given accuracy, the higher order schemes

allow much coarser grids than the SPU scheme and hence require fewer calculations to

produce accurate solutions. The computational time saved on the calculations outweighs

the costs associated with higher order reconstructions. The details of such schemes is the

subject of chapter 4.

TVD based methods have been used in the petroleum literature by several authors e.g.

[143, 23]. The extension of higher order methods to compositional flow systems is nontriv-

ial due to the strong, nonlinear coupling of the advection equation. Thiele and Edwards

[157] developed novel TVD schemes for compositional streamline simulation in 1D.

Extensions to very high order methods include the piecewise parabolic method of Wood-

ward and Collela [166] as well as the essentially non-oscillatory (ENO) type schemes of

Osher-Shu [117] and weighted-ENO (WENO) schemes [116]. Harten et al. [77] introduced

the ENO reconstruction that uses an adaptive stencil to achieve third and higher orders

of accuracy.

In addition, the Runge-Kutta Discontinuous Galerkin (DG) methods [31, 35, 34, 32, 33,

29, 30], provide an attractive alternative to classical methods that have been employed

in several applications. There has been an increasing interest in such methods in reser-

voir simulation due to its high accuracy and adaptability to general meshes. Riviere

[135, 137, 136] applied the DG methods to solve the hyperbolic transport equations for

miscible flow problems. More recently Hoteit and Firoozabadi [86] combined the DG

methods with the mixed finite element methods to solve compositional flow problems.

3.2.2 Higher Order Schemes in Higher Dimensions

Extensions of one dimensional higher resolution methods to multi-dimensions were

first constructed using serial techniques such as operator splitting [154, 113]. Neverthe-
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less, the generalisation of these schemes on unstructured meshes rules out the use of the

TVD condition which proves to be prohibitively restrictive on Cartesian meshes because

the resulting scheme can be no more than first order accurate [74, 75], also monotonic-

ity has limited meaning in multi-dimensions and is a one dimensional concept. Early

TVD based extensions to higher dimensions in reservoir simulation include [143, 144, 26].

Spekreijse [153] proposed a new positivity criteria for unstructured grids, based on posi-

tivity of coefficients of the discrete form in a scalar conservation law. This resulted in a

solid framework for the development of modern truly multidimensional higher resolution

methods for conservation laws. The stability of the higher resolution formulations on gen-

eral unstructured grids is based on ensuring that some form of discrete local maximum

principle (DMP) is satisfied.

Work has been conducted by Jameson [91, 92] concerning limiting reconstructed solu-

tions. This lead to the introduction of the local extremum diminishing (LED) schemes

on unstructured triangular meshes in an edge-based finite volume framework. Unlike

the TVD interpolation, the LED interpolation can be extended to an unstructured mesh

while maintaining the positive coefficients of the discrete form for a scalar conservation

law. This can be performed by calculating gradients of appropriate neighbouring triangles

or edges and applying a discrete maximum principle [15].

Similar approaches have been carried out by Barth and Jesperson [16], Durlofsky et al.

[46], Liu [114] and Batten et al. [18] employing slope limiting procedures for multidi-

mensional cell-centered finite volume schemes for unstructured triangular meshes. More

specifically, the limiting procedure involves the construction of an appropriate linear rep-

resentation of the solution within a triangular element before it is limited in a manner

that enforces the positivity constraint.

In the field of reservoir simulation, higher order Godunov schemes have been tailored to

the equations of flow in a porous medium by Bell et al. [21] including application to black

oil and compositional flow systems. The authors used a characteristic decomposition of

the essentially hyperbolic system and adopted an Engquist-Osher (monotone) flux at the

sonic points in order to ensure entropy satisfaction for expansion shocks.

This method was extended by Edwards [51] who introduced a higher-order Godunov

scheme on non-uniform quadrilateral grids method with local dynamic grid adaptivity,

where grid blocks are inserted in highly active regions of the flow field and removed from

regions of inactivity. The new method was applied for two phase flow and three component
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two phase flow problems. The quality of results computed by the adaptive higher-order

scheme are comparable with those computed by the higher-order scheme on a uniform

grid, globally refined to the level of the finest adaptive grid zones, while great savings in

computer time are obtained (up to 64 times in two space dimensions) in comparison with

standard upstream weighting methods. The adaptive higher order scheme is shown to be

vastly superior compared to the first-order scheme on a uniform or adaptive grid.

Edwards [57] also presented higher order finite volume schemes based on the LED formal-

ism for the hyperbolic equations coupled with the general tensor flux-continuous CVD

(MPFA) approximation in 2D where both explicit and implicit time discretisations have

been implemented. The comparison between higher order schemes for multi-phase flow in

porous media coupled with CVD (MPFA) versus CVFE approximations for the pressure

equations and demonstrate the benefits of the CVD coupled with higher order convec-

tion for heterogenous permeability fields in the resolution of the saturation fronts. The

schemes have been formulated in a edge-based framework on general grids. Extensions of

the formulations on arbitrary 3D grids of any cell type have been presented in [58].

One of the aims of this work concerns the extension of the above schemes to highly

distorted unstructured grids and definition of the optimal non-uniform grid limiter. A

sequence of non-uniform mesh limiters are also introduced and tested in application to

multi-phase flow problems [106]. More details are given in chapter 5.

3.3 Modern truly Multi-dimensional Schemes for Hy-

perbolic Conservation Laws

3.3.1 Literature Review of Positive Multidimensional Schemes

While the use of higher order methods has been shown to be efficient in reducing the

dependency of the numerical solution on the grid geometry [21], these schemes focus on

reducing coordinate diffusion and require wide stencils.

An alternative approach, introduced in the literature in order to overcome cross-wind

diffusion effects is known as truly multidimensional upwinding [142, 88]. The term truly

or genuinely multidimensional schemes refers to schemes that consider the truly higher

dimensional wave vector structure of the problem in higher dimensions unlike the dimen-

sional splitting methods.



23

Multidimensional upwind schemes were developed initially for the approximation of steady

state solutions of the two-dimensional Euler equations on unstructured triangular grids

[142, 129, 83, 127].

More recently, several positive multidimensional advection schemes have been proposed in

the CFD (Computational Fluid Dynamics) literature. These methods include the corner

transport upwinding (CTU) [36], the N-scheme [138, 151] and the rotated grid H-box

methods [22, 81] for Cartesian grids. These methods use characteristic information to

determine the numerical fluxes via the tracing of pseudo-control volumes. They are de-

signed to monitor the average time evolution of the approximation to the solution within

a complete grid cell rather than concentrating on the activity at the interfaces.

Straightforward application of the above techniques to general non-uniform velocity fields,

that occur in heterogeneous media for example, does not guarantee positive solutions.

Also, the formulation of the schemes is closely related to the uniform structure of the grid

which require further consideration in taking them into general unstructured grids.

Skew Upstream Differencing Scheme

The early developments of multi-dimensional schemes date back to the 1970’s with

Raithby [132] who proposed the Skew Upstream Differencing Scheme (SUD) as an alter-

native to the conventional upstream difference scheme, in order to reduce false diffusion

errors in the region of flow where the computational grid coordinate line and flow stream-

lines are not closely aligned. The benefits of the scheme have been shown using numerical

results for uniform flows and for a non uniform rotational velocity field on a Cartesian

grid. The scheme was formulated with a finite difference technique and it formed the

basis for subsequent developments.

CVFEM Skew Upwind

In the control volume finite element (CVFEM) context, Schneider and Raw [147] pro-

posed an upwind procedure that accounts for the directionality of the flow field through a

skewed approach, while simultaneously precluding the possibility of negative coefficients.

The schemes were originally devised to solve the Navier Stokes equations. They recom-

mended both nodal and integration point values in the approximation of the convected

value at the integration point, in order to avoid negative coefficients, especially in a highly

non-uniform flow field. The 2-D work was formulated with bilinear quadrilateral elements
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and requires the inversion of 4x4 local matrices.

Although its 3-D extension appears straightforward, to perform inversion of 12x12 local

elemental matrices may become prohibitively expensive, especially if a more cost-effective

procedure could offer the same or comparable accuracy and stability. Local inversion is

required when convection upwind variables include both integration point and nodal vari-

ables, since each integration point variable must be written explicitly in terms of nodal

variables alone.

Optimal Linear Multidimensional Schemes

In 1992, Roe and Sidilkover [138] investigated the theory of optimal linear, positive

schemes for constant-coefficient advection in two and three dimensions. The schemes were

introduced as a single parameter family and were presented in a conservative form. They

observed that the optimum schemes have much lower numerical diffusion, and permit

larger time-steps. Quantitatively, the optimum scheme has about four times less dissipa-

tion than the dimensionally split scheme and allows stable time-steps that are greater by

a factor two.

In order to derive the optimum oscillation free, constant coefficient schemes, the authors

establish the residual formula, on Cartesian grids, that has the smallest possible trunca-

tion error and propose a quantification of the cross-wind diffusivity of the scheme following

the work of Hirsch et al. [82, 83]. The optimum linear scheme, referred to as the ”N-

scheme” - where N stands for narrow - uses a linear interpolation in the upwind triangle

forming the cell and depends on narrow three node stencil in two dimensions. As shown

by Roe and Sidilkover who gave its name, it is identical to the upwind scheme of Rice and

Schnipke [134] on regular quadrilateral grids, provided that the latter are triangulated

using the optimal choice for diagonals. Further details are presented in chapter 6, section

6.2.3.

Corner transport Upwind CTU scheme

The Corner Transport scheme introduced by Collela [36] uses a bilinear interpolation

on the cell as a first step to building a second order multidimensional scheme. The scheme

uses corner point data in order to enhance the stability of the upwind approximations.

In the same paper, explicit second-order time-dependent Godunov-type methods have

been derived in two space variables by using the wave propagation properties for mul-
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tidimensional hyperbolic equations and by limiting some of the second-order terms to

suppress oscillations. The algorithm coincides with the multidimensional upwind method

for hyperbolic conservation laws independently developed by van Leer [159] for the ad-

vection equation. However, unlike van Leer’s algorithm, the extension to systems is based

on a two step predictor corrector formalism on structured quadrilateral grids. Compar-

isons with second-order operator split methods have been established for gas dynamics

applications on rectangular grids.

Residual distribution schemes

Another approach towards the construction of genuinely two dimensional upwind ad-

vection schemes are the fluctuation (or residual) distribution schemes, which have been

developed in the last decade [141, 9, 6, 7, 10, 133, 88].

A review of fluctuations distribution methods is given in [155, 41].

These methods were originally developed for the scalar advection equations on triangular

meshes in the steady state [139]. Extensions to these methods to systems and unsteady

flows has followed due to the work of Abgrall and Barth [7] and more recently the work of

Ricchuito [133]. For the approximation of steady state flows on unstructured triangular

grids, these methods have reached a degree of maturity whereby the multidimensional

schemes reproduce most of the advantages of upwind schemes in one dimension: second

order approximation of smooth solutions, satisfying a discrete maximum principle in the

presence of discontinuities, and rapid convergence to the steady state without the neces-

sity for additional artificial viscosity. A distinctive and attractive feature of these schemes

is that they are computationally compact.

They can be written as loops over elements and when processing an element no reference

is made to data outside that element. This makes the methods efficient for parallelisa-

tion. Extensions to quadrilateral meshes of the residual distribution methods has been

proposed by Abgrall [8].

Unfortunately, most of the upwind distribution schemes developed for steady state prob-

lems are only first order accurate for time dependent flows. Also, these schemes use

average velocities over the elements and the generalisation to nonlinear fluxes requires

special treatment. In addition, the schemes are not formulated in a locally conserva-

tive framework when applied to unsteady nonlinear hyperbolic problems on unstructured

grids.



26

3.3.2 Recent developments of Multi-D schemes in Reservoir Sim-

ulation

Positive multidimensional upwind schemes for multi-phase flow transport equations

is an active area of research in reservoir simulation. A two parameter family of wave

oriented upwind schemes is presented by Edwards [54] on uniform quadrilateral grids. The

formulation of the schemes was given in a locally conservative finite volume framework and

formed the basis of the developments herein (chapters 6-10). Like the CTU scheme, the

scheme uses the corner point and uses characteristic tracing. The scheme uses a nine point

stencil instead of a five point stencil (as in SPU), and is based on a bilinear interpolation

of the saturation on the quadrilateral grid cell. In the same paper, positivity analysis was

conducted for linear advection on Cartesian grids and a generalisation to non-linear fluxes

was also proposed. The schemes are coupled with a consistent CVD (MPFA) Darcy flow

approximation and are identical to the N-scheme for the linear advection equation on a

Cartesian grid. The stability and benefits of these schemes were shown through numerical

cases involving full tensor permeability fields and high mobility ratios for two-phase flow

systems.

Extension of this work to unstructured quadrilateral and triangular grids is presented in

[107, 102] using an edge-based formulation and [101] using a cell-based formulation. A

complete description is given in this thesis.

The CVFEM approach has also been adopted in reservoir simulation by Kozdon et al.

[100] for simulating adverse mobility ratio displacements in for miscible gas injection into

homogeneous and heterogeneous porous media on Cartesian grids. The approximation of

the advection transport equation was also coupled with the MPFA method on Cartesian

grids. An IMPEC strategy (implicit pressure, explicit concentration) was used in order to

solve the coupled system of equations. In the same paper, the authors introduced the Flat

scheme that provides minimal constant diffusion at the cross-wind diffusion at the expense

of adding extra transverse diffusion in comparison with the optimal multidimensional

scheme on Cartesian meshes for linear advection.

3.4 Flux-Continuous Finite-Volume Schemes

Rapid variation in permeability is common in oil reservoirs where permeability coeffi-

cients can jump by several orders of magnitude. Continuity of normal flux and pressure
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at local physical interfaces between grid blocks with strong discontinuities in permeability

are fundamental laws that must be built into the discrete approximation of the pressure

equation.

Flux-continuous finite volume methods (FVM) [61, 2, 60, 161, 3, 62, 4, 53, 1, 122, 63]

have been developed for mass-conservative approximations to the pressure and Darcy

velocity of the fluid. Locally conservative flux-continuous full-tensor finite-volume schemes

have been developed for the essentially elliptic component of the reservoir simulation

system. These schemes are control-volume distributed (CVD) MPFA where flow variables

and rock properties are assigned to the control-volumes of the grid and provide a consistent

discretization of the porous medium pressure equation applicable to general geometry and

permeability tensors on structured and unstructured grids.

In this work the higher resolution convection schemes are coupled with existing continuous

Darcy-flux CVD approximations. Details of these schemes are presented in chapter 4,

section 4.2.1.
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Chapter 4

Numerical Discretisations

Numerical methods are necessary for the discretisation of reservoir simulation equa-

tions due to the complexity of the permeability and geometry of petroleum reservoirs

as well as the non-linearity and coupling involved. In this chapter, the focus is on the

formulation of state of the art finite volume methods for reservoir simulation. Section 4.1

includes a brief description of the finite volume method. Control volume cell vertex ap-

proximations are introduced in section 4.2 and are applied to the pressure and hyperbolic

equations for multi-phase flow. Edge based and cell based formulations are considered

for discretising the hyperbolic conservation form. Important distinctions between the

formulations will be highlighted in the subsections 4.2.2 and 4.2.3 as well as in chapter

9. Solution strategy and time discretisation techniques are also discussed in this section.

Finally, an overview of the discrete maximum principles for the hyperbolic equation is

presented in 4.3.

4.1 Finite Volume Methods

The finite volume methods (FVM) are related to the original integral equations, and

are derived from conservation of physical quantities over cell volumes. Fundamental to

FVM is the introduction of control-volume cell average. Godunov [74] pursued this inter-

pretation in the discretisation of the gas dynamics equations where the discrete solution

has a piecewise constant representation in each control-volume defined by the cell average

value. The finite volume form is suitable for discontinuity capturing and has been used

in obtaining solutions to nonlinear hyperbolic conservations laws [110, 111, 76, 112, 113].

When compared to other discretisation methods such as finite differences or finite ele-
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ments, the primary attraction of finite volume methods is numerical robustness by enforc-

ing a discrete maximum principle, applicability to general unstructured meshes

and the intrinsic local conservation properties of the resulting schemes [93, 89, 164, 17]

as the flux entering a given control volume is identical to that leaving the adjacent control

volume.

4.1.1 Integral Forms for Multi-phase Flow

The integral form of the flow equations is given, as the first step of the finite volume

discretisation. After integrating over a control volume Ωcv with surface ∂Ωcv via the Gauss

divergence theorem, the continuity equations for phases p = 1, Np are written as
∫

Ωcv

∂Sp

∂t
dΩ +

∮

∂Ωcv

Vp · n̂ds = mp (4.1.1)

where the integral is taken over the control volume Ωcv, n̂ is the outward unit normal

vector to the surface, ∂Ωcv, bounding the control volume Ωcv and where Sp, Vp and mp

are the pth phase saturation, Darcy velocity and specified phase flow rate respectively.

Since the pore volume must always be filled by the fluids present, this gives rise to the

volume balance where saturations sum to unity. Neumann boundary conditions apply

on solid walls with zero normal flux. Inflow-outflow conditions apply at wells where

fluxes/pressures are prescribed. Initial data in terms of saturation and pressure fields are

also prescribed [13]. Without loss of generality with respect to the numerical schemes

presented here, gravity and dispersion effects will be neglected in this chapter and will be

treated in chapter 8.

4.1.2 Finite Volume Formulation

In its most simple setting the steps involved in devising a finite volume approximation

for a system of conservation laws in integral form are the following [6]:

1. Decompose the domain in non-overlapping cells referred to as finite volumes or

control volumes, over which the discrete solution is defined by its cell averages.

2. Evaluate the numerical fluxes through the boundaries of the control volume. This

numerical flux is computed by means of a numerical flux function, with the two

solution states at the interface as arguments, either given by the cell average itself

or by a suitable reconstruction involving neighbouring cell averages.
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3. Use the computed flux balance for each finite volume to evolve the cell averages in

time by means of a suitable time integration scheme.

Finite volume methods are developed such that a close relationship to the physics of

the underlying conservation law is maintained, aiming to capture as much as possible

of the important properties of the weak solution. In its most sophisticated form in one

dimension, the nonlinear physics of the conservation law is included by applying the flux

function derived from the exact solution of the 1D Riemann problem associated with the

two adjacent states [94, 74, 140].

4.1.3 Gridding and Unstructured Meshes in Reservoir Simula-

tion

The simulation of fluid flow in petroleum reservoirs is performed by discretising the

actual domain into a number of sub-domains or grid blocks and locally approximating

the conservation law for each fluid component in the system via a finite volume scheme.

Although the actual physical processes are independent of discretisation of the domain,

the outcome of any flow simulation depends on the grid geometry and the discretisation

scheme.

While it is still common in the practice of petroleum reservoir simulation to use Carte-

sian grids, development and use of general grid methods is emerging increasingly in the

literature. The theory, implementation and application of unstructured grids has been

extensively discussed in literature since the late 1980’s. Heinemann and Brand [79] were

the first to introduce Voronoi type grids to petroleum engineering naming them PeBi

(Perpendicular Bisector) grids. Later, several researchers contributed to the development

of unstructured grids, Heinemann [80], Palagi [125, 126], Verma and Aziz [163], Fung et

al. [71] among others. Use of all elements in 3-D is presented in [122]. Here the focus is

on 2-D elements.

In general, unstructured gridding in 2D is a spatial discretisation that consists of poly-

gons, which locally vary in shape and size [162]. The use of unstructured grids provide

a flexible framework that enables more accurate and detailed representation of complex

geologic features. In many cases, the methodology of unstructured grid facilitates the

modelling of different geometries and enhances the accuracy of the solution with compar-

ison to Cartesian grids [163].
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Control Volumes

Schemes which use the cells of the mesh as control volumes are called cell centered

schemes. Vertex centered schemes on the other hand, use mesh duals as control volumes

where control volumes are formed by joining cell centers to cell edge midpoints for all

cells sharing common nodes as a geometric dual to the primal grid cells and flow solution

unknowns and rock properties are stored on a per cell vertex basis. In this work, a vertex

centered finite volume approximation is used. Control volume tessellation is flexible in

the finite volume method. Edges and faces about the central vertex are shown in Figure

4.1 for duals formed from median segments or centroid segments among others. These

geometric duals arise naturally for two dimensional finite-volume schemes. The dual cells

or polygons serve as control volumes with the solution unknowns (degrees of freedom)

stored on a per vertex basis with cell-wise assembly.

Figure 4.1: Triangulation duals: median (dashed), centroid (dotted).

4.2 Cell Vertex Finite volume Approximations

4.2.1 Flux Continuous Control Volume Distributed (CVD) Ap-

proximations

The main focus of this subsection is on the families of flux-continuous, locally con-

servative, control-volume distributed (CVD) finite volume schemes and the discretisation

issues related to these schemes.

In reservoir simulation flow variables and rock variables are assigned to control-volumes

so that they are control-volume distributed (CVD). Unstructured CVD multi-point flux

approximations CVD (MPFA) are presented in [163, 4, 52, 53]. The formulation presented
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here follows [52]. In this formulation flow and rock variables are vertex centered, i.e. dis-

tributed to the cell-vertex polygonal control-volumes, which are defined with respect to

a given grid vertex by the contour constructed by connecting cell-edge mid-points to cell

centres, for all cells sharing the common vertex.

The finite volume formulation is derived from the integral form of the flow equations

(4.1.1). A unique discrete flux is then constructed for each control-volume sub-face and

the closed integral of flux approximated by the sum of the discrete outward normal fluxes.

The fluxes are constructed in a cell-wise assembly process, for a triangular cell there are

three subcell fluxes, Fa, Fb, Fc, Figure 4.2. The subcell fluxes are accumulated with re-

i

ba

c

i

ba

c

Figure 4.2: Sub-cell flux basis (dashed triangles).

spect to their triangle cell edges within an assembly process. The edge index e(i, j) refers

to the jth edge attached to vertex i. The net edge based single phase flux Fe(i,j)(φ) as-

sociated with edge e(i, j) is comprised of the sum of adjacent sub-cell fluxes that belong

to the primal grid cells with common edge e(i, j). In the domain interior two adjacent

sub-cell fluxes are assembled for each cell edge, with reference to vertex i and local edge

e of Figure 4.3(a) and the local fluxes of Figure 4.3(c), the net edge based flux is given by

Fe(i,j) = Fa1 + Fb2 . (4.2.1)

Control-Volume Flux and Continuity

Here, flow variables are assigned to grid vertices and rock properties are piecewise

constant with respect to the control-volumes. A consistent normal flux approximation

is constructed for the three fluxes that respect the physical constraints of continuity of

pressure and flux across the control-volume interfaces separating different permeability
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Figure 4.3: (a) Segment of primal grid; (b) control-volume; (c) dual grid (bold) and fluxes
in cells sharing the edge e.

values within each primal grid cell.

Referring to the triangular cell, the locally numbered vertices have pressures

Φv = (φ1, φ2, φ3).

Three continuous interface pressures

Φf = (φa, φb, φc)

are introduced at points (a, b, c) on the control-volume sub-faces, Figure 4.2. Subcell

triangular basis functions are then formed by joining each cell-vertex to the two adjacent

interface points. The pressure field now assumes a piecewise linear variation over each

subcell triangle as shown in Figure 4.3. Consequently approximations of the derivatives

φξ, φη are linear functions of Φf and Φv. A piecewise constant gradient is then formed

over each subcell triangle and is used in turn to define local piecewise constant Darcy

fluxes. The general tensor T defined by the Piola transformation is formed locally by

resolving physical full-tensor fluxes with respect to the subcell geometry and control-

volume permeability. Three flux continuity conditions are imposed within each triangle

and are expressed as

FA = −(T12φξ + T22φη)|1A = −(T11φξ + T12φη)|3A,

FB = −(T11φξ + T12φη)|1B = −(T11φξ + T12φη)|2B,

FC = −(T12φξ + T22φη)|2C = −(T12φξ + T22φη)|3C ,

(4.2.2)
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where (ξ, η) is a local dimensionless coordinate system in each subcell. Here Γ |jσ denotes

interface flux Γ at location σ and state of volume j. The actual position of σ along each

subcell face defines both the point of continuous pressure and the flux quadrature (Figure

4.3(c)), and in turn leads to a family of unstructured schemes [52, 53, 124].

The system of Equations (4.2.2) is rearranged into the form

F = ALΦf + BLΦv = ARΦf + BRΦv, (4.2.3)

and thus the interface pressures can be expressed locally in terms of the cell vertex pres-

sures. After elimination of the Φf from Equation (4.2.3) it follows that

F = (AL(AL − AR)−1(BR − BL) + BL)Φv. (4.2.4)

The fluxes of Equation (4.2.4) can also be written as a linear combination of cell edge

potential differences [53], demonstrating the consistency condition that flux is zero for

constant potential and each component of flux takes the form

Fσ(φ) = −
NedC
∑

j=1

ασ
j ∆jφ (4.2.5)

where NedC is the number edges of the primal grid cell. The effect of quadrature point

upon accuracy and convergence is explored in [124].

The closed surface integral of phase velocity can now be expressed as the sum of outward

normal phase fluxes Fpi
over each of the surface increments of the control-volume Ωcv, viz

∮

∂Ωcv

Vp · n̂ds =

NS
∑

i=1

Fpi
(4.2.6)

where NS is the number of surface increments that enclose the volume Ωcv. The outward

normal phase flux in the ith normal direction is written in terms of the general tensor T

as

Fpi
= −

∫

∂Ωcv

fpΛ

2
∑

j=1

Tijφξj
dΓi (4.2.7)

where ξi are local curvilinear parametric coordinates, Γi is the parametric coordinate

surface increment and φξj
is the derivative of φ with respect to ξj and T = JJ−1KJ−T

is the general tensor defined via the Piola transformation which is a function of the

Cartesian permeability tensor and geometry, where Jij = ∂xi/∂ξj is the Jacobian of

the local curvilinear coordinate transformation, and J = xξyη − yξxη is the Jacobian
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determinant. The actual approximation of the transmissibility tensor T naturally arises

by normal resolution of Darcy flux across an interface [123]. The grids considered here

generally give rise to non-zero cross terms with Tij 6= 0 for i 6= j in the general tensor.

For incompressible flow, Equation (4.1.1) is summed over the Np phases and using the

sum of saturations is unity, yields the pressure equation

NS
∑

i=1

FTi
= 0 (4.2.8)

away from sources and sinks (or wells) where the total flux FTi
involves a product of total

mobility and single phase flow flux and is given by

FTi
= −

∫

∂Ωcv

Λ

2
∑

j=1

Tijφξj
dΓi. (4.2.9)

4.2.2 Edge Based Cell Vertex Multi-phase Flow Approximation

Consider the control volume corresponding to the node i Figure 4.3(b). Let NedV be

the total number of constitutive edges connected to vertex i and τi the ith control-volume

area. Define the control volume cell average as

Spi
=

1

τi

∫

Ωi

SpdΩ

for the pth phase. The finite volume approximation of Equation (4.1.1) can be interpreted

as producing an evolution equation for control volume averages

∂

∂t

∫

Ωi

SpdΩ = τi
d

dt
Spi

.

The flux integral appearing in Equation (4.1.1) is approximated by

∮

∂Ωcv

Vp · n̂ds =

NedV
∑

j=1

fp(S
n
L,Sn

R)FTe(i,j)
(φn+1). (4.2.10)

for the pth phase continuity equation, where Sn
L,Sn

R are the left and right hand values of

the phase saturation vectors with respect to edge e(i, j) and n denotes the time level of

the scheme. Here FTe(i,j)
= ΛFe(i,j)(φ), where Fe(i,j)(φ) is the single phase Darcy flux and

Mpi
denotes the pth phase flow rate, which is prescribed at wells and is zero otherwise.

The semi-discrete finite volume form of Equation (4.1.1) for multiphase flow on un-

structured grids is then written as

τi
d

dt
Spi

+

NedV
∑

j=1

fp(S
n
L,Sn

R)FTe(i,j)
(φn+1) = Mpi

, (4.2.11)
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The phase continuity equations are coupled through the discrete pressure equation

NedV
∑

j=1

Λ(Sn
L,Sn

R)Fe(i,j)(φ
n+1) = Mi, (4.2.12)

which is obtained by summing Equation (4.2.11) over the phases and using the volume

balance constraint. Equivalently Equation (4.2.12) can be expressed as

NedV
∑

e=1

Nq
∑

q=1

FTq = Mi, (4.2.13)

where iq sums over the flux quadrature points (one per sub-face), Nq = 1 at boundaries

(one subcell), Nq = 2 in the field where two subcell faces join at the edge midpoint

i j
Edge   e

i j
Edge   e

Figure 4.4: Left and Right convention.

4.2.3 Cell Based Cell Vertex Multi-phase Flow Approximation

In the absence of source terms, the cell based finite volume semi-discrete equation is

written as:

τi
d

dt
Spi

+

NedV
∑

e=1

Nq
∑

iq=1

fp(S
n
Lq

,Sn
Rq

)FTq = Mpi, (4.2.14)

for each phase p. The total Darcy-flux is computed from the pressure equation at a single

quadrature point per subcell [53], here we evaluate the subcell flux on the control volume

sub-face at the point of attachment to the cell edge e. Thus the quadrature points are

chosen to coincide with the center of the cell edges.
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4.2.4 Single Point Upstream Weighting Scheme

The approximate flux is defined according to the sign of the local wave direction wp,

evaluated here at the control volume sub-faces connected the edge e. Referring to Figure

4.4 with respect to a local frame of reference aligned with the direction i to j along the

edge e, the standard reservoir simulation upwind scheme is written as

fp(S
n
L,Sn

R) = { fp(S
n
L) wp ≥ 0

fp(S
n
R) wp < 0

(4.2.15)

and the first order upwind scheme, (known as single-point upstream weighting in the

reservoir simulation literature [13]) is defined with Sn
L = Sn

i and Sn
R = Sn

j .

Remark 4.2.1 Note that the control volume cell based and edge based single-point up-

stream weighting formulations coincide on Cartesian meshes. This observation extends

to unstructured grids in the case where the wave velocity at the quadrature points on each

side of the cell edges are of the same sign.

4.2.5 Solution strategy: Implicit Pressure Explicit Saturation

(IMPES) Algorithm

In conventional compositional simulations either pressure is treated implicitly and the

saturation variables are treated explicitly leading to implicit pressure explicit saturation

(IMPES) algorithm [13, 21] or all variables are treated implicitly (Fully Implicit). In

the first approach the time-step is restricted by the CFL condition and in the second

approach the amount of work per time-step increases sharply as the number of components

needed to describe the system increases. Here an IMPES formulation is adopted where

pressure is the implicit variable, and the saturation and concentration variables are treated

explicitly. This explicit treatment will reduce the number of unknowns we need to solve

simultaneously.

The system of Equations (4.2.11) (Equations (4.2.14) respectively) and (4.2.12) are solved

sequentially, Equation (4.2.12) is first solved implicitly for pressure while Equation (4.2.11)

(Equation (4.2.14 respectively) is solved explicitly in this formulation. Fully implicit and

semi-implicit formulations are presented in [57, 58].
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4.2.6 Runge-Kutta Time Discretisation

A common strategy for explicit time integration of semi-discrete equations of the form

in Equation (4.2.11) is to use Runge-Kutta (RK) methods. Here we have used the third

order monotonicity preserving Runge-Kutta method proposed in [148]. Let L denote the

local discrete spatial approximation operator on the extended stencil and ∆t be the local

time step, which can vary from a time step to another. Writing Equation (4.2.11) (or

Equation (4.2.14)) as
d

dt
Spi

= L(Sp),

the third order Runge-Kutta method is written as:

S
(1)
pi = Sn

pi
+ ∆tL(Sn

p ),

S
(2)
pi = 3

4
Sn

pi
+ 1

4
L(S

(1)
p ) + 1

4
∆tL(S

(1)
p ),

Sn+1
pi

= 1
3
Sn

pi
+ 2

3
L(S

(2)
p ) + 2

3
∆tL(S

(2)
p ).

Comparisons between numerical simulations using third order Runge-Kutta discretisation

and forward Euler time stepping have indicated little difference in results. Consequently,

the more efficient forward euler method is used for time integration unless stated other-

wise.

Therefore, the edge based vertex centered finite volume discretisation of Equation (4.2.11)

for multi-phase flow on unstructured grids now takes the form [57]:

(Sn+1
pi

− Sn
pi

)τi + ∆t

NedV
∑

j=1

fp(S
n
L,Sn

R)FTe(i,j)
(φn+1) = ∆tMpi

, (4.2.16)

and the cell-based vertex centered finite volume discretisation of Equation (4.2.14) is

written as:

(Sn+1
pi

− Sn
pi

)τi + ∆t

NedV
∑

e=1

Nq
∑

iq=1

f(Sn
Lq

,Sn
Rq

)FTq(φ
n+1) = ∆tMpi

. (4.2.17)

4.3 Local Discrete Maximum Principles for the hy-

perbolic equation

Discrete maximum principle analysis plays a central role in the design and analysis

of finite volume schemes suitable for non-oscillatory discontinuity capturing schemes. A

systematic analysis of the conditions required by a scheme to satisfy these requirements
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was given by Godunov [74] who introduced the concept of monotonicity. There is an

extensive literature on this very important topic and many definitions and criteria can

be found [38, 130]. Bounded total variation motivated the development of total variation

diminishing (TVD) schemes, introduced by Harten [76] as a general concept to ensure that

unwanted spurious oscillations are not generated by a numerical scheme. Spekreijse [153]

expressed monotonicity as a positivity condition. More recent general analysis has been

developed by Jameson [91] based on the definition of local extrema diminishing (LED)

schemes. In this section we present a review of different formulations of discrete maximum

principles following Barth [15].

4.3.1 One Dimensional Non Linear Scalar Conservation Laws

In this section we examine discrete total variation and maximum principles for scalar

conservation laws. Consider the nonlinear conservation law:

St + (f(S))x = 0; (4.3.1)

subject to the initial condition:

S(x, 0) = S0(x). (4.3.2)

Equation (4.3.1) is discretised in the conservation form:

Sn+1
j = Sn

j − ∆t

∆x
(fj+1/2 − fj−1/2) (4.3.3)

where fj+1/2 is a consistent numerical flux i.e. fj+1/2 = H(Sj−l+1, .., Sj+l) and H(S, .., S) =

f(S).

We shall first define the monotonic data and total variations.

Definition 4.3.1 Monotonic Data. A grid function S is called monotone if for all i,

if

min(Si−1, Si+1) ≤ Si ≤ max(Si−1, Si+1). (4.3.4)

Definition 4.3.2 Total variation. Define the total variation in one dimension:

TV (S) =

∞
∑

−∞

| Si − Si−1 | . (4.3.5)

According to Lax [111],
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”the total increasing and decreasing variations of a differentiable solution be-
tween any pair of characteristics is conserved.”

Furthermore, in the presence of shock wave discontinuities, information is lost and the

total variation decreases.

Strong Monotonicity HHL

A finite difference scheme Equation (4.3.3) is said to be monotone in the sense of

Harten, Hyman and Lax [78] if H is a monotone increasing function of each of its argu-

ments with
∂H

∂Si
(S−k, .., Sk) ≥ 0, ∀ − k ≤ i ≤ k. (4.3.6)

This is a strong definition of monotonicity. In [78], it is proven that schemes satisfy-

ing this condition also satisfy the entropy inequality which distinguishes the physically

relevant discontinuities. Unfortunately, they also prove that HHL monotone schemes in

conservation form are at most first order spatially accurate.

Weak Monotonicity: Monotonicity Preserving Schemes

To allow higher order accuracy, Harten [76] introduced a weaker concept of mono-

tonicity. A numerical scheme is called monotonicity preserving if monotonicity of Sn+1

follows from the monotonicity of Sn.

It follows immediately from the definition of monotonicity preservation that

• local maxima are non-increasing, and

• local minima are non-decreasing;

which is a property of the conservation law equation. VanLeer [160] interpreted the

monotonicity preserving condition using geometric considerations.

Total Variation Diminishing (TVD)

Harten [76] introduced the notion of total variation diminishing schemes using a weaker

form of monotonicity than the monotonicity preserving criteria. The total variation mea-

sures the total amount of oscillations in the function. A scheme is said to be total variation

diminishing (TVD) if

TV (Sn+1) ≤ TV (Sn). (4.3.7)
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Harten has proven that schemes which are HHL monotone are TVD and schemes that

are TVD are monotonicity preserving. Furthermore, it can be shown that all linear

monotonicity preserving schemes (i.e. the coefficients of the discrete form are independent

of S) are at most first order accurate. Thus high order accurate TVD schemes must

necessarily be nonlinear with solution dependent coefficients.

4.3.2 Discrete Maximum Principles on Unstructured Meshes

Monotonicity concept is restricted to one dimensional data. Here, a review of differ-

ent positivity criteria for hyperbolic conservation laws in higher dimensions is presented.

Consider the Cauchy initial value problem (ivp) on a closed domain Ω:

St + ∇ · F(S) = 0, in Ω; (4.3.8)

S(x, 0) = S0(x), in ∂Ω,

where F(S) denotes the flux function. Then, the semi discrete finite volume scheme

Equation (4.2.11) for each control volume Ωj ∈ Ω is written as:

d

dt
Sj +

1

τj

∑

e(j,k)∈∂Ωj

fjk(SLe, SRe) = 0, (4.3.9)

where τj is the control volume area, fjk is the discrete numerical flux at the center of the

edge e(j, k), which is a function of the left and right states SLe and SRe.

Entropy Satisfying Schemes and Monotonicity

In order to guarantee convergence to entropy satisfying weak solutions, we choose the

flux to be monotone or an E-flux [15]. Monotone fluxes include Godunov flux defined

as

fG(SL, SR) = {
minS∈[SL,SR] f(S) SL ≤ SR

maxS∈[SR,SL] f(S) SR ≤ SL

(4.3.10)

that relies on flux functions that are strictly convex, and the Local Lax Friedrichs (LLF)

flux defined as

fLF (SL, SR) =
1

2
(f(SL) + f(SR)) − 1

2
sup

S∈[SL,SR]

|f′(S)|(SR − SL), (4.3.11)
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that involves the derivatives of the flux function [117].

E-fluxes were introduced by Osher [121]. The most prominent E-flux is the Enquist-Osher

(EO) flux written as:

fEO
p (SL, SR) =

1

2
(f(SL) + f(SR)) − 1

2

∫ SR

SL

|f′(S)|dS. (4.3.12)

Further details on alternative numerical fluxes can be found in Godlewski and Raviart

[73] and Leveque [113]. A compelling motivation for the use of monotone fluxes in the

finite volume scheme Equations (4.3.9) is the obtention of discrete maximum principles

in the resulting numerical solutions of nonlinear conservation laws. A standard analy-

sis technique is to first construct local maximum principles which can then be applied

successfully to obtain global maximum principles and stability results. The first result

concerns the boundedness of local extrema in time for semi-discrete finite volume schemes

that can be written in nonnegative coefficient form.

LED Property

The semi discrete scheme for each control volume Ωj ,

d

dt
Sj =

1

τj

∑

e(j,k)∈∂Ωj

Cjk(Sh)(Sk − Sj), (4.3.13)

where the right hand side involves the sum over all nodes connected to node j, is local

extremum diminishing (LED) [91], i.e. local maxima are decreasing and local minima are

nondecreasing if

Cjk(Sh) ≥ 0 , for every e(j, k) ∈ ∂Ωj .

Here Sh(t) denotes a piecewise polynomial solution representation in space on each control

volume such that

Sj(t) =
1

τj

∫

Ωj

Sh(x, t)dx, (4.3.14)

and

Cjk = −fjk(Sk, Sj) − F(Sj) · n̂jk

Sk − Sj

, (4.3.15)

where n̂jk is the weighted outward normal to the edge ejk. Note here that by construction

∑

e(j,k)∈∂Ωj

F(Sj) · n̂jk = 0.
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Local Space-Time Discrete Maximum Principle

The fully discrete scheme for the time slab increment [tn, tn+1] and each Ωj ∈ Ω

Sn+1
j = Sn

j +
∆t

τj

∑

e(j,k)∈∂Ωj

Cjk(Sh)(Sk − Sj),

exhibits a local space-time discrete maximum principle

min
e(j,k)∈∂Ωj

(Sn
j , Sn

k ) ≤ Sn+1
j ≤ max

e(j,k)∈∂Ωj

(Sn
k , Sn

j ), (4.3.16)

if

Cjk(Sh) ≥ 0 , for every e(j,k) ∈ ∂Ωj ,

and satisfies the CFL-like condition

1 − ∆t

τj

∑

e(j,k)∈∂Ωj

Cjk(Sh) ≥ 0, for every e(j,k) ∈ ∂Ωj .

A global L∞-stability bound is then obtained for a scalar initial boundary condition

problem Equation (4.3.8).

Positivity Criteria

Definition 4.3.3 A scheme is said to be positive if the value of the solution at the new

time-step can be written as the convex sum of the values at the previous time-step,

Sn+1
j =

∑

k

αkS
n
k , with αk ≥ 0, ∀k, (4.3.17)

together with the consistency condition

∑

k

αk = 1. (4.3.18)

This ensures that no new extrema are created, since

min
k

(Sn
k ) ≤ Si ≤ max

k
(Sn

k ). (4.3.19)

As recalled by Roe in [139], the concept of positivity was initially introduced by Godunov

[74] for the one-dimensional linear advection equation. Spekreijse [153] extended the

concept to two dimensions for structured grids and a great many others e.g. [16, 141,

115, 6] have used it as a convenient criterion for the design of non-oscillatory schemes on

unstructured meshes.
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Local Positivity

A more restrictive property, referred to as local positivity is obtained by considering

the contribution from each grid element, taken separately, and demanding that the scheme

be positive for each contribution [6]:

Sn+1
j =

∑

cell c

∑

k∈c

αc
kS

n
k , with ∀c, ∀k ∈ c, αc

k ≥ 0. (4.3.20)

It follows that if a scheme is locally positive, it will also be positive for the global update

scheme.
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Chapter 5

Higher Order Schemes on

Unstructured Triangular Meshes

5.1 Introduction

In this chapter, higher resolution schemes are presented for convective flow approxi-

mation on distorted unstructured grids. This work continues with the development of the

higher order unstructured grid schemes presented in [57, 58, 56]. The convection schemes

are coupled with continuous Darcy fluxes for approximation of the pressure equation and

applied to multi-phase flow problems. Extension of the higher order schemes to general

unstructured grids is presented in section 5.2. An edge-based vertex-centered finite vol-

ume approximation is adopted here. Also, we refer to section 2.3.1 for the flow equations

and to section 4.2.2 for details on the discretisation. A sequence of higher resolution

non-uniform limiters are presented in 5.3. The schemes are tested on a range of highly

distorted structured and unstructured grids with variable grid spacing. Two-phase flow

results are presented in section 5.4 that demonstrate the advantages of the new higher

order flux-continuous formulation. Conclusions follow in section 5.5.

5.2 Higher Order Reconstructions

A higher order unstructured grid approximation is now presented with respect to

the saturation variables. This formulation follows [57] with higher order reconstruction

applied to the saturation field and relates to the Local Extrema Diminishing LED schemes

of [91], [118]. For the remainder of this section superfix n is omitted and it is understood
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that all saturations are computed at level n.

The scheme is expressed as a two-step process. The procedure involves calculating higher

order left and right hand side states relative to the mid-point of each edge e (along which

flux is to be defined) by expansions about the edge vertices at i and k, Figure 5.1. As

in one dimension [160], the expansions are constrained with slope limiters to ensure that

the higher order data satisfies a local maximum principle, preventing the introduction of

spurious extrema.

First we define the difference in S over the edge e as shown in Figure 5.1, as

∆Ski = Sk − Si (5.2.1)

where it is now understood that ∆S with a double suffix denotes a difference in S. Re-

ferring to Figure 5.1 the left and right states SL and SR at the midpoint of the key edge

e (joining vertices i and k) are expressed as

SL = Si +
1

2
Φ+∆Ski (5.2.2)

where Φ+ is a function of

r+
ki = (∆Siu/∆Ski) (5.2.3)

and

SR = Sk −
1

2
Φ−∆Ski (5.2.4)

where Φ− is a function of

r−ki = (∆Sdk/∆Ski) (5.2.5)

Extension to unstructured grids requires special construction of the differences ∆Siu and

∆Sdk. Directional differences are constructed by extrapolating along the key edge defined

by vector ∆rki in the respective upstream and downstream directions, see arrows in Figure

5.1. Extrapolation of the respective upstream and downstream data is constrained such

that a local maximum principle is imposed. The upstream triangle i, 1, 2 is labelled TU

and the downstream triangle k, 3, 4 is labelled TD. The space vector corresponding to

edge e (∆rki) is extrapolated into the respective triangles TU , TD, see arrows in Figure

5.1. This is illustrated further with respect to vertex i. The edge vector is extrapolated
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Figure 5.1: Higher Order Support.

to the point of intersection u, on the opposite edge of the triangle TU , Figure 5.1. The

upwind difference is equal to the convex average of triangle edge differences with

∆Siu = (1 − ξ)∆Si1 + ξ∆Si2 (5.2.6)

where 1− ξ ≥ 0 and ξ ≥ 0 is the ratio of area of sub-triangle i, 1, u to area of triangle TU .

In order to impose a maximum principle with respect to TU and edge e, the limiter Φ+

is defined so as to bound the higher order gradient approximation between the slopes on

triangle edges i1 and i2 and slope of edge e. The limiter is defined by

Φ+ = Φ(r+
ki) (5.2.7)

where r+
ki is defined by Equation (5.2.3) and Φ(r) can be any classical slope limiter [160]

and [156]. The higher order reconstruction is then bounded between Sk and Su, which by

convexity (Equation (5.2.6)), ensures that the bounds are such that

min
TU∪e

{S} ≤ SL ≤ max
TU∪e

{S} (5.2.8)

over triangle TU and edge e yielding a local maximum principle with reconstruction re-

ducing to first order locally at two dimensional extrema.

In cases where coincidence or near coincidence is detected between the extrapolated edge

and an upwind triangle edge the limiting is collapsed to be entirely edge based. A similar

convex average interpolant is constructed for vertex k using the right hand bold triangle

together with analogous limiter bounds that now depend on Φ(r−ki) and the edge slopes

∆Ski, ∆S3k and ∆S4k.
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This completes the definition of the higher order states. The second step of the scheme

uses the upwind flux where each higher order approximation of phase saturation is up-

winded according to the direction of the phase wave speed, using Equations (5.2.2), (5.2.4)

in Equation (4.2.15).

Here, while limiting is based on the van-Leer (Fromm) limiter

Φ(r) = max(0, min(2r, 2,
1 + r

2
)) (5.2.9)

where r is the ratio of neighbouring differences in solution, modifications for mesh distor-

tion are considered below. Further details on limiters are presented in [156].

Three dimensional extensions of this scheme are presented in [58, 56]. In this work we

consider possible extensions of the above schemes for arbitrary unstructured grid distor-

tions.

5.3 Limiters on Non-Uniform Meshes

For application to non-uniform distorted meshes we require that gradients and lim-

iters are modified according to mesh irregularity and non-uniformity. In this section, we

introduce a sequence of possible limiters which take into account the irregularity of the

grid.

On a non-uniform grid, the linear reconstruction is illustrated for the left hand state and

expressed as

SL = Si +
1

2
Φ+∇Si · ∆rki (5.3.1)

where ∇Si · ∆rki = ∆Ski denotes the constructed gradient defined with respect to node

i. The van-Leer MUSCL constraints on a non-uniform (cell-vertex) grid require that

Si +
1

2
Φ+∇Si · ∆rki ≤ Su (5.3.2)

Si −
1

2
Φ+∇Si · ∆riu ≥ Sd (5.3.3)

The inequalities of Equation (5.3.2) lead to the limiter upper bounds Φ+ ≤ min(2, 2r+
ki)

where r+
ki is a non-uniform grid limiter ratio defined by

r+
ki =

∆Siu/∆riu

∆Ski/∆rki

. (5.3.4)
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In this work the ratio of divided differences corresponds to the ratio of average gradients

on the triangle TU and on the edge e respectively. Possible non-uniform grid limiters are

proposed below for defining Φ+ in Equation (5.3.1). Here it is understood that when

defining Φ+ then r = r+
ki and an analogous definition is used for Φ−.

A common procedure to approximate the gradient is to use a least square fit to the

solution using the neighboring cells [15]. A least square fit of gradients at node i using

the gradients on TU and on the edge e is considered. The limiter in Equations (5.2.9) and

(5.3.1) takes the form

ΦLS(r) = max(0, min(2r, 2,
∆r2

iu + ∆r2
kir

∆r2
iu + ∆r2

ki

)). (5.3.5)

A second order accurate gradient approximation on a non uniform mesh derived via Taylor

series analysis is written as a linear combination of the adjacent gradients with weights

proportional to local grid spacing ratios. The corresponding limiter is written as

ΦTS(r) = max(0, min(2r, 2,
∆riu + ∆rkir

∆riu + ∆rki

)). (5.3.6)

The Green-Gauss approximation [15] gives the limiter

ΦG(r) = max(0, min(2r, 2,
∆rki + ∆riur

∆riu + ∆rki

)). (5.3.7)

Note that all the limiters introduced above are equivalent to the original Fromm limiter

described by Equation (5.2.9) when the grid is uniform.

Finally, in an attempt to improve the accuracy of the solution we introduce a weighted

limiter

Φθ(r) = max(0, min(2r, 2, 2
(1 − θ)∆riu + θ∆rkir

∆riu + ∆rki

)), (5.3.8)

where θ is a real parameter in [0, 1]. The case θ = 1
3

corresponds to a third order spatial

approximation on a uniform grid. The case θ = 1
2

corresponds to the limiter defined by

Equation (5.3.6).

5.4 Numerical Test Cases

The test cases involve two phase flow (oil-water) initial oil saturation is prescribed

and water is injected. Water saturation contours are shown in each case. Solid wall (zero

normal flow) boundary conditions are applied on all solid boundaries of each reservoir
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domain. In all cases flow rate is specified at the (inflow) injector and pressure is prescribed

at the (outflow) producer and a consistent Darcy flux approximation is used. The different

grid types employed are shown below.

For all cases, unit mobility ratio is used and Mp = 1 for p = w, o. The primary unknown

is the (normalized) water saturation S. In the first four cases, a linear flux is used for

the relative permeability. The water and oil mobilities are respectively λw(S) = S and

λo(S) = (1 − S).

5.4.1 Case 1: Linear Piston Flow

The first case is a study of a linear injection problem using perturbed and distorted

triangular grids shown in Figure 5.2(a) and Figure 5.4(a) respectively. Injection and pro-

duction wells are located along opposite sides of the rectangular domain. Total mobility is

constant and the permeability tensor is assumed to be diagonal isotropic so that the pres-

sure is solved exactly (in this particular case) using the consistent Darcy flux. Thus any

error in the saturation field is entirely due to the convective flux approximation. Water

saturation contours are shown at 0.7 pore volumes injected (PVI) for both unstructured

grids.

The first results, Figure 5.2(b) and Figure 5.4(b), show the effect of employing the first

order upwind scheme for the convective flux.

Contours of the analytical solution are projected on to the grid and shown in Figure 5.2(c)

and Figure 5.4(c). In this case, the analytical solution corresponds to

S(x, y, PV I) = 1|x<=PV I .

where 1A denotes the characteristic function on the domain A.

Higher order results computed using respectively the Fromm limiter defined in Equation

(5.2.9), the Taylor series limiter (Equation (5.3.6)) and the θ-weighted limiter (Equation

(5.3.8)) with θ = 1
3

are shown for each grid, Figures 5.3 and 5.5. Results using the Green-

Gauss limiter (Equation (5.3.7)) and Least Squares limiter (Equation (5.3.5)) are omitted

here as they are qualitatively similar to the ones using the Taylor Series limiter.

The first order scheme results show excessive numerical diffusion in the scheme, in addition

to a clear dependency on the grid structure. The contours of the projected analytical

solution suggest a contouring effect which might introduce some irregularity in the actual

appearance of the results.
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Figures 5.3 and 5.5 show that on both grids, the higher order schemes provide considerable

improvement in the resolution of the saturation front specially in the case of the random

perturbed grid which presents a strong irregularity. The Taylor Series limiter produces

similar results to the Fromm limiter without distance scaling in this case. Finally, the

results from the θ-limiter for θ = 1
3
, show similar resolution compared with the Taylor

Series limiter.

5.4.2 Case 2: Grid Orientation Study

The second case is a study of local grid orientation. Results are computed on a dis-

torted coarse grid and on a corresponding fine grid for different types of triangulation as

shown in Figure 5.6 and Figure 5.10. The permeability tensor is assumed to be diagonal

isotropic so that the pressure field is essentially Laplacian in this case. Injection and pro-

duction wells are located half way along opposite sides of the rectangular domain, water

saturation contours are shown at 0.2 PVI.

First order results for the coarse grid (14x15) in Figure 5.8 show that the direction of

triangulation effectively introduces a full tensor effect due to the strong local grid orien-

tation. The high order schemes improve front resolution but cannot completely remove

the effect of grid orientation on the solution due to the coarse grid level, Figure 5.9.

Similar results are obtained for all of the Fromm based non-uniform grid limiters in this

case. From Figure 5.7, we note that the discrete pressure field, obtained with a consistent

Darcy flux, also contributes a small bias in the numerical pressure field in this case.

For the finer grid (26x27), the first order results still retain a bias due to the direction of

triangulation. In comparison, the high order schemes improve front resolution and reduce

grid orientation effects, Figure 5.11.

5.4.3 Case 3: Full Tensor Point Source to Point Sink

The third case involves an anisotropic homogeneous tensor with principal axes oriented

at 45 degrees to the reservoir domain. The domain principal permeability direction is

parallel to y = x, creating a full tensor with respect to the uniform grid shown in Figure

5.13(a). The normalized tensors have components Kxx = 1.0, Kyy = 1.0, Kxy = 0.82.

Boundary conditions are imposed as in Case 2. The results are shown at time 0.2 PVI. The

effect of the full tensor is shown in Figure 5.13(b) for the first order scheme and Figure



52

5.13(c) for the higher order scheme. The strong cross flow effect due to the dominant

angled permeability field is apparent from the elongated saturation front.

Results for a principal axis at −45 degrees are shown in Figure 5.14. In both cases, the

higher order schemes capture the front with improved resolution. Note that the saturation

profiles corresponding to the two full tensor fields are mirror images.

5.4.4 Case 4: Taylor Series Limiter on Distorted High Aspect

Ratio Grid

In this case a classical quarter five-spot system is tested with water injection at the

bottom left corner and oil produced at the top right corner. The exact evolving front is

always symmetric about y = x. The nature of the grid (Figure 5.15(a)) used provides a

severe test for the schemes. The higher order results in Figures 5.16(a) and 5.16(b) both

provide significant improvement in front resolution compared to that of the first order

scheme in Figure 5.15(b). Here we also note that some improvement in symmetry of the

front is obtained with the spatial weighted Taylor series higher order Fromm limiter Figure

5.16(b), when compared to the standard higher order Fromm limiter Figure 5.16(a).

5.4.5 Case 5: Non Linear Buckley Leverett Problem on Delau-

nay Meshes

In this case a nonlinear Buckley-Leverett quarter five-spot problem is tested with water

injection at the bottom left corner and oil produced at the top right corner. Here the

water and oil mobilities are respectively λw(S) = S2 and λo(S) = (1 − S)2. A Delaunay

triangulation is used to define the grid. The coarse grid has 108 nodes and the fine grid has

290 nodes, Figures 5.17(a) and 5.18(a). The Fromm based Taylor Series limiter (Equation

(5.3.6)) is employed. Results are shown at time 0.3 PVI.

The higher order results in Figures 5.17(c) and 5.18(c) provide significant improvement in

front resolution compared to that of the first order scheme in Figures 5.17(b) and 5.18(b).

5.4.6 Case 6: Piston Flow in a Heterogeneous Medium

The last case involves linear injection into a heterogeneous medium where injection

and production wells are located along opposite sides of the rectangular domain. Results

are obtained using a 55x15 uniform grid (Figure 5.20(a)). The permeability distribution
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is from Layer 6 of Model 2 of the 10th SPE Comparative Solution Project [28]. This layer

is characterised by a smoothly varying lognormal permeability field that spans six orders

of magnitude. Logarithm of the upscaled permeability field is depicted in Figure 5.20(b).

Figure 5.21 shows saturation profiles after 0.5 PVI computed with the standard single-

point upwind (Figure 5.21(a)) method and the higher order method (Figure 5.21(b)).

The higher order method increases resolution significantly compared to the first order

single-point upwind method, the latter shows excessive numerical diffusion producing non-

physical features in the numerical solution. The higher order scheme is able to capture

the fingering front and provides much improved resolution of the solution.

5.5 Conclusions

Higher order convective flux approximations are presented for unstructured grids. The

schemes are coupled with consistent continuous Darcy-flux approximations and applied

to two-phase flow problems.

Two-phase flow comparisons between higher order and standard methods in reservoir

simulation are presented for a range of distorted unstructured grids. A sequence of non-

uniform mesh limiters are also presented and tested. The comparisons indicate that while

the higher order schemes are similar in performance, the Fromm based Taylor Series

limiter is more robust for distorted meshes. The results demonstrate the benefits of the

higher order schemes both in terms of improved front resolution and significant reduction

in unstructured local grid orientation for diagonal and full-tensor velocity fields.
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Figure 5.2: Case 1 - (a) Random perturbed Grid, (b) projection of the first order result,
(c) projection of the analytical solution.
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Figure 5.3: Case 1 - Projection of the higher-order results using the (a) non weighted
Fromm, (b) Taylor Series limiter (c) weighted limiter with θ = 1

3
on the random perturbed

grid.
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Figure 5.4: Case 1 - (a) Distorted Grid; projection of the (b) first order result and the (c)
analytical solution.
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Figure 5.5: Case 1 - Projection of the higher order results using the (a) non weighted
Fromm, the (b) Taylor Series limiter and the (c) weighted limiter with θ = 1

3
on the

distorted grid.
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Figure 5.6: Case 2 - Coarse grids.
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Figure 5.7: Case 2 - Pressure field on the coarse grids.
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Figure 5.8: Case 2 - First order results on the coarse grids.
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Figure 5.9: Case 2 - Higher order results on the coarse grids.
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Figure 5.10: Case 2 - Fine grids.
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Figure 5.11: Case 2 - First order results on the fine grids
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Figure 5.12: Case 2 - Higher order results on the fine grids.
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Figure 5.13: Case 3 - Full tensor 45 degrees -(a) Uniform grid (b) first order results and
(c) higher order results.
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Figure 5.14: Case 3 - Full tensor -45 degrees - (a) First order results and (b) higher order
results.
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Figure 5.15: Case 4 - (a) High aspect ratio grid and the (b) first order saturation profile.
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Figure 5.16: Case 4 - Higher order using the (a) standard Fromm limiter and the (b)
Taylor Series weighted limiter.
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Figure 5.17: Case 5 - (a) Coarse grid, (b) first order result and (c) higher order result
using Taylor Series Fromm based limiter.
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Figure 5.18: Case 5 - (a) Fine grid, (b) first order result and (c) higher order result using
Taylor Series Fromm based limiter.
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Figure 5.19: Case 5 - 1D Profiles along the diagonal for first Order results (solid) and
higher order results (dashed) on the (a) coarse grid and the (b) fine grid.
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(a) (b)

Figure 5.20: Case 6 - (a) Grid and (b) logarithm of the permeability field.
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Figure 5.21: Case 6 - (a) first order results and (b) higher order results using Taylor Series
Fromm Limiter.
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Chapter 6

Higher Dimensional Schemes on

Quadrilateral Grids

6.1 Introduction

The standard upwind scheme in two dimensions suffers from many deficiencies as dis-

cussed in [132, 36, 141, 142, 88] and illustrated with linear advection.

By definition, single-point upstream weighting chooses to define the control volume face

flux by using information that flows across the face. However, crucially when selecting

this data, while the criteria is based on the sign of the wave velocity at the control volume

face, the actual data is defined by the nearest neighbour coordinate value. In one dimen-

sion, this is sufficient to unambiguously define the scheme in terms of the incoming wave

direction. However, in higher dimensions the wave direction can be at an angle according

to the wave velocity vector direction. The deficiency of the standard scheme is its failure

to recognize exactly from where the wave is coming and consequently fail to use the real

upwind data.

The direct use of the standard scheme in multiple dimensions thus creates an additional

source of numerical diffusion referred to as cross-wind diffusion. The focus here is on

reducing cross wind-diffusion.

The actual physical wave direction which could be in any direction, not just along co-

ordinate lines will require that the scheme has extra information available within a cell

radius of each control-volume face. The main idea of the multidimensional scheme is to

trace back along the two-dimensional characteristic to the point of intersection with the
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upwind coordinated lines whenever possible.

In this chapter, higher dimensional convection schemes that minimize cross-wind diffusion

are presented for convective flow approximation on quadrilateral structured and unstruc-

tured grids. The higher dimensional schemes are coupled with full-tensor Darcy flux

approximations.

Formulation of the family of higher dimensional schemes on structured quadrilateral grids

is presented in section 6.2.3. Formulations for unstructured quadrilateral grids are pre-

sented in section 6.3. Two-phase flow results are presented in section 6.4 that demonstrate

the advantages of the new higher dimensional flux-continuous formulation.

Benefits of the resulting schemes are demonstrated for classical test problems in reservoir

simulation including cases with full tensor permeability fields. The test cases involve a

range of structured and unstructured grids with variations in orientation and permeability

that lead to flow fields that are poorly resolved by standard simulation methods.

The higher dimensional formulations are shown to effectively reduce numerical cross-wind

diffusion effect, leading to improved resolution of concentration and saturation fronts.

Gravity flow will be neglected in this chapter and will be considered in chapter 8.

6.2 Wave Oriented Upwind Schemes on Cartesian

Grids

A family of genuinely multidimensional conservative schemes for the transport equa-

tion is first presented on structured quadrilateral grids. This formulation was first intro-

duced by Edwards in reservoir simulation [54] and provides the basis of the developments

herein. In this section, we restrict ourselves to the study of the linear advection equation

with a uniform velocity field.

Consider a cartesian mesh with uniform spacing in the x and y directions, ∆x and ∆y,

as shown in Figure 6.1, on which we wish to solve the scalar wave equation of the form:

St + F (S)x + G(S)y = 0. (6.2.1)

The locally conservative form of the finite volume discretization is then written as:

Sn+1
i,j − Sn+1

i,j = −∆t

∆x
(Fi+1/2,j − Fi−1/2,j) −

∆t

∆y
(Gi,j+1/2 − Gi,j−1/2). (6.2.2)
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6.2.1 Study of a Constant Velocity Case

We shall first consider the case of linear advection where

St + aSx + bSy = 0. (6.2.3)

We assume that both a and b are positive treating the other cases by symmetry. The

exact solution to Equation (6.2.3) subject to the initial condition S(x, y, t = 0) = S0(x, y)

is given by:

S(x, y, t) = S0(x − ta, y − tb). (6.2.4)

The locally conservative form of the finite volume discretization is then written as:

Sn+1
i,j − Sn

i,j = −νx(Sn
i+1/2,j − Sn

i−1/2,j) − νy(Sn
i,j+1/2 − Sn

i,j−1/2). (6.2.5)

where νx = a∆t/∆x and νy = b∆t/∆y.

In this case, the standard first order accurate single point upwind scheme reduces to:

Sn+1
i,j − Sn

i,j = −νx(Sn
i,j − Sn

i−1,j) − νy(Sn
i,j − Sn

i,j−1). (6.2.6)

The scheme is defined on a five point stencil. It is positive and stable under the restrictive

CFL condition:

νx + νy ≤ 1. (6.2.7)

The stability condition of Equation (6.2.7) indicates a reduction in the time step compared

to one dimension due to the higher dimensional contribution. In order to account for

the genuine two dimensional wave direction within the upwind scheme, it is necessary

to include more information to resolve the wave direction and assign the corresponding

upwind data. For a cartesian grid, the natural extension of scheme is to extend the stencil

from a total of five possible nodes to a nine nodes including the corner point data [54, 36].

Family of Conservative Characteristic Tracing Schemes

A family of positive upwind schemes was introduced for flow in porous media in [54].

The method was presented on structured grids and applied to two phase flow problems

with strong cross-flow. Upwind data is interpolated on to the characteristics where the

upwind data is written as:

Si+1/2,j = (1 − η)Sn
i,j + ηSi,j−1 (6.2.8)

Si,j+1/2 = (1 − ξ)Sn
i,j + ξSi−1,j
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where ξ and η are the weighting factors with 0 ≤ ξ ≤ 1 and 0 ≤ η ≤ 1. Assuming that

ξ and η are constant on each grid cell, this formulation could be interpreted as a bilinear

variation of the saturation over the cell [54]. The wave tracing and interpolant points are

illustrated in Figure 6.1. The approximation gives rise to a family of generalized upwind

ξ

ξ ηη

Figure 6.1: Characteristics.

difference approximations of the form.

Sn+1
i,j = (1 − νx(1 − η) − νy(1 − ξ))Sn

i,j (6.2.9)

+ (νx(1 − η) − νyξ)Sn
i−1,j

+ (νy(1 − ξ) − νxη)Sn
i,j−1

+ (νxη + νyξ)Sn
i−1,j−1.

Positivity Monotonicity and Stability

First note that the coefficients of the explicit values of Sn
i,j in Equation (6.2.9) sum

to unity. The scheme is positive and stable if the updated value Si,j is a convex average

of the previous data, preventing the occurrence of any spurious oscillations. Note that

in this case the contribution of the corner node Sn
i−1,j−1 is always positive by definition.

Thus the positivity conditions reduce to:

(νx + νy) ≤ 1 + (ηνx + νyξ) (6.2.10)

νxη + νyξ ≤ min(νy, νx).

The first inequality is clearly positive for larger CFL numbers than the upstream weighting

scheme, provided non zero values of (ξ, η) are used. This implies that the use of the corner
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data points will enhance the stability of the standard method.

Multidimensional Schemes on Cartesian Grids

The class of schemes discussed above turns out to be identical to the one presented by

Roe and Sidilkover in [138] for linear advection on regular grids. The authors focused on

a class of schemes described by a single parameter family. Extension to three dimensional

regular grids was also presented.

On a regular Cartesian grid where ∆x = ∆y, the single parameter κ family of consistent

schemes can be written in the form:

Sn+1
i,j = Sn

i,j +
∆t

2∆x
[ (−a − b − κ)Sn

i,j (6.2.11)

+ (a − b + κ)Sn
i−1,j

+ (−a + b + κ)Sn
i,j−1

+ (a + b − κ)Sn
i−1,j−1],

where the κ is a function of a and b and can be understood as defining an interpolation

scheme of the four upwind nodes at the location (xi,j −∆t · a, yi,j −∆t · b). It can also be

shown that κ = (a + b) − 2(ξb + ηa).

Positivity requires that

|a − b| ≤ κ ≤ a + b, (6.2.12)

∆t ≤ 2∆x

a + b + κ
. (6.2.13)

Table 6.1 shows the expression for κ for three common multidimensional numerical dis-

cretisations in the literature namely the N-scheme of Roe and Sidilkover [138], Koren’s

scheme [99] and the CTU scheme of Collela [36] compared with the single point upstream

weighting scheme. The N-scheme (Narrow Scheme) [142, 150] uses a linear interpolation

Scheme κ Time step
Single Point Upwind a + b ∆t ≤ ∆x

a+b

Koren’s scheme a2+b2

a+b
∆t ≤ ∆x a+b

a2+ab+b2

CTU a + b − 2 ∆t
∆x

ab ∆t ≤ ∆x
max(a,b)

N scheme |a − b| ∆t ≤ ∆x
max(a,b)

Table 6.1: Comparison of different values of κ for classical Multidimensional schemes
[100].
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in the upwind triangle and depends on a ”narrow” three node stencil whereas the CTU

scheme introduced by Collela [36] uses a bilinear interpolation on the quadrilateral cell.

For this scheme, κ depends on the time step unlike the other presented methods. Note

that both the N scheme and the CTU scheme allow the largest time step according to

Equation (6.2.12) and single point upwinding scheme the most restrictive.

Diffusion Errors and Optimal Linear Schemes

The quest for an optimal linear scheme requires a better definition of the optimality

condition with regards to the numerical diffusion errors introduced by the the family of

discretisation on a Cartesian grid.

In a rigourous discussion, Shubin and Bell [149] derived, for miscible displacement, the

form of the truncation error terms up to second order, for a general discretisation stencil.

They used a modified equation analysis to examine the dependence of truncation error

on the angle between the flow direction and the grid lines.

Here, we adopt a slightly different approach to discuss the directional dependence of the

numerical diffusion for immiscible incompressible linear two phase flow in porous media

assuming a constant uniform total velocity field neglecting gravity and capillary effects.

In order to interpret the numerical diffusion, it is convenient to write the truncation error

of the scheme Equation (6.2.11) in the streamline coordinates (x′, y′) [149, 150, 82, 99, 54],

where x′ is aligned with the flow direction.

Let

θ = arctan(
b

a
)

define the angle of the flow velocity to the grid x−coordinate. Then the velocity vector

V can be expressed as

V = |V|
[

cos(θ)

sin(θ)

]

where |V| =
√

a2 + b2 denotes the velocity modulus. The transformed coordinates (x′, y′)

are obtained via :
[

x′

y′

]

=

[

cos(θ) sin(θ)

− sin(θ) cos(θ)

] [

x

y

]

. (6.2.14)
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First note that expanding the Taylor series approximation of Equation (6.2.11) in the

original Cartesian grid coordinates (x, y) yields:

St + aSx + bSy =
∆x

2
(a − γ cos2(θ))Sxx (6.2.15)

+
∆x

2
(b − γ sin2(θ))Syy

+
∆x

2
(a + b − κ − 2γ sin(θ) cos(θ))Sxy + O(∆x2),

where γ = ∆t|V|
∆x

is the CFL number.

Thus, using Equation (6.2.14), the Taylor expansion of Equation (6.2.3) in the streamline

coordinates (x′, y′) takes the form [138, 82]:

St + |V|Sx′ = Dx′x′ Sx′x′ (6.2.16)

+ Dy′y′ Sy′y′

+ Dx′y′ Sx′y′ + HO terms,

where

Dx′x′ = |V|∆x

2
[sin(θ) + cos(θ) − κ

|V| sin(θ) cos(θ) − ∆t

∆x
|V|], (6.2.17)

Dy′y′ =
∆x

2
[κ sin(θ) cos(θ)],

Dx′y′ = |V|∆x

2
[cos(θ) − sin(θ) +

κ

|V|(sin
2(θ) − cos2(θ))]

and κ is defined in table 6.1.

Note that the first order truncation error shows three different diffusion terms: longi-

tudinal (corresponding to Dx′x′), cross-wind (corresponding to Dy′y′) and cross-term or

rotational (Dx′y′ coefficient) diffusions.

Equation (6.2.16) implies that when κ is independent of the ∆t, only the longitudinal dif-

fusion is affected by the time stepping. Zero-cross wind diffusion (dissipation) is obtained

for the case κ = 0, which results in a non-positive scheme. The optimal positive linear

scheme which minimizes cross-wind diffusion corresponds with the N scheme (Narrow

Scheme) [142, 138]. As shown by Roe and Sidilkover who gave its name, it is identical

to the upwind scheme of Rice and Schnipke [134] on regular quadrilateral grids, provided

that the latter are triangulated using the optimal choice for diagonals.

Figure 6.3 illustrates the magnitude of the directional diffusion coefficients versus the an-

gle of the constant flow vector to the grid for the SPU, N-scheme and Koren’s scheme.
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a<b

b<a

i,j
i-1, j

i-1, j-1 i, j-1

(a)

Figure 6.2: Stencil of the optimal linear positive scheme on Cartesian grids [138].

Since κ depends on ∆t for the CTU scheme, the behaviour of other schemes can be re-

produced for different time step sizes and therefore will be omitted in this analysis. In

particular, setting ∆t = ∆x
max(a,b)

, the CTU scheme is identical to the N-scheme and corre-

sponds to the SPU scheme for ∆t = 0.

Figure 6.3(b) shows that the N-scheme has minimal cross-wind diffusion for the family of

positive schemes, and standard single point upwind has maximal transverse diffusion.

The plots clearly show that all schemes have zero cross-term diffusion for flow that is

aligned with the grid and the N-scheme has zero cross-wind diffusion at θ = π/4 where

Equation (6.2.11) reduces to:

Sn+1
i,j = Sn

i,j −
a∆t

∆x
[Sn

i,j − Sn
i−1,j−1], (6.2.18)

involving only corner nodes and the scheme behaves as a 1-D first order approximation

on the diagonal nodes.

Also, the diffusion tensor of Koren’s scheme is flow aligned since the cross-term diffusion

is zero for all θ and the standard upstream weighting scheme has the largest cross-term

diffusion in modulus (Figure 6.3(c)).

Figure 6.3(a) shows the part of the longitudinal diffusion error that is independent of the

time step size ∆t. It is clear that for a fixed time step, SPU provides the smallest amount

of longitudinal smearing of the solution whereas N-scheme proves to be the most diffuse

in the direction of the flow.
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(b) Cross-wind Diffusion
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(c) Cross-term Diffusion

Figure 6.3: Cross-wind and cross-term diffusion as a function of the angle of the flow to
the grid [138] for |V| = 1 and ∆x = 1. The SPU scheme is illustrated in dotted line, the
solid line represents the N-scheme and the dashed line corresponds to the Koren’s scheme.

Optimal Linear Schemes on Non Uniform Quadrilateral Grids

In the case of regular non-uniform quadrilateral grids, the optimality condition for

Equation (6.2.10) is equivalent to the following equality

(νxη + νyξ) = min(νy, νx). (6.2.19)

Note that this choice will make the coefficient of either Sn
i−1,j or Sn

i,j−1 equal to zero,

so that the stencil is always one of the two triangles shown in Figure 6.2 which makes the

stencil the smallest possible for the optimal positive scheme. Substituting the Equation

(6.2.19) in the first inequality of Equation (6.2.10) yields the CFL condition

max(νx, νy) ≤ 1. (6.2.20)

By choosing ξ = 0 and η = 0, the standard upwind scheme is recovered. The scheme

reduces to the first order CTU scheme introduced by Collela in [36] for ξ = νx and η = νy

[54].

A symmetric choice of the parameters ξ and η that satisfies the optimality condition

Equation (6.2.19) corresponds with:

ξ =
1

2
min(1,

νx

νy
) (6.2.21)

η =
1

2
min(1,

νy

νx
).

Note that in this condition, the parameters ξ and η are chosen to be independent of

the time stepping. Also, the geometric aspect ratio of the grid is incorporated into these
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parameters. This choice gives zero cross diffusion schemes for the cases a = b, a = 0, b = 1

and a = 1, b = 0 on a Cartesian grid. Other choices of the weighting parameters within

the positivity limits are:

ξ =
1

2
min(1,

νx

νx + νy
) (6.2.22)

η =
1

2
min(1,

νy

νx + νy
).

This choice corresponds with Koren’s scheme on Cartesian grids [99].

6.2.2 Study of a Variable Coefficient Case

Data Based Scheme Formulation

We now account for the variability of the velocity field and the impact on the formu-

lation of the scheme. This step is key to generalisation to unstructured quadrilaterals.

St + (a(x, y)S)x + (b(x, y)S)y = 0. (6.2.23)

The locally conservative form of the finite volume discretization is then written as:

Sn+1
i,j − Sn

i,j = −(νx
i+1/2,jS

n
i+1/2,j − νx

i−1/2,jS
n
i−1/2,j) − (νy

i,j+1/2S
n
i,j+1/2 − νy

i,j−1/2S
n
i,j−1/2),

(6.2.24)

where νx
i+1/2,j = ai+1/2,j∆t/∆x and νy

i,j+1/2 = bi,j+1/2∆t/∆y are the resolved velocities at

the center of the cell edges.

Upwind data in first order upstream weighting is computed using the directional wave

speed and written as:

Sn
i+1/2,j = Sn

i,j if ai+1/2,j ≥ 0, (6.2.25)

Sn
i+1/2,j = Sn

i+1,j if ai+1/2,j < 0;

and

Sn
i,j+1/2 = Sn

i,j if bi+1/2,j ≥ 0, (6.2.26)

Sn
i,j+1/2 = Sn

i,j+1 if bi+1/2,j < 0.

Family of Conservative Characteristic Tracing Schemes

Accounting for the multidimensional nature of the wave speed, the left and right states

at the center of the edge connecting the nodes (i, j) and (i+1, j) are calculated in a locally
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conservative form via [54]:

SLi+1/2,j
= (1 − ξi+1/2,j)S

n
i,j + ξi+1/2,j[χi+1/2,jSi,j−1 + (1 − χi+1/2,j)Si,j+1]; (6.2.27)

SRi+1/2,j
= (1 − ηi+1/2,j)S

n
i+1,j + ηi+1/2,j [χi+1/2,jSi+1,j+1 + (1 − χi+1/2,j)Si+1,j−1],

and equivalent reconstructions on the edge connecting the nodes (i, j) and (i, j + 1) take

the form:

SLi,j+1/2
= (1 − ξi,j+1/2)S

n
i,j + ξi,j+1/2[χi,j+1/2Si−1,j + (1 − χi,j+1/2)Si+1,j ]; (6.2.28)

SRi,j+1/2
= (1 − ηi,j+1/2)S

n
i,j+1 + ηi,j+1/2[χi,j+1/2Si+1,j+1 + (1 − χi,j+1/2)Si−1,j+1],

where 0 ≤ ξi+1/2,j ≤ 1, 0 ≤ ηi+1/2,j ≤ 1, 0 ≤ ξi,j+1/2 ≤ 1 and 0 ≤ ηi,j+1/2 ≤ 1 denote

the weighting factors used to interpolate the left state as a linear combination of the grid

nodes depending on the direction of the wave speed. Note here that the weighting factors

can vary spatially according to local wave speed. Here χi+1/2,j (respectively χi,j+1/2) is

a boolean parameter which accounts for the normal direction of the wave velocity with

respect to the cell edge and takes 0 or 1 depending on the direction of the flow.

Positivity Analysis

First, we introduce the following notation which will be used for the remainder of this

work. Let x+ = (x + |x|)/2 and x− = (x− |x|)/2 denote the positive and negative part of

a real x. The convention of a positive (respectively negative) flux contribution entering

(respectively leaving) the control volume (i, j) is adopted here.

The contribution to the scheme from node (i, j) to the control volume (i + 1, j) can be

explicitly written as:

(1 − ξi+1/2,j)(ν
x
i+1/2,j)

+ + ηi+1,j+1/2(ν
y
i+1,j+1/2)

− + ηi+1,j−1/2(ν
y
i+1,j−1/2)

−Si,j. (6.2.29)

Hence, the positivity condition takes the form:

ξi+1/2,j(ν
x
i+1/2,j)

+ − ηi+1,j+1/2(ν
y
i+1,j+1/2)

− − ηi+1,j−1/2(ν
y
i+1,j−1/2)

− ≤ (νx
i+1/2,j)

+. (6.2.30)

In order to satisfy this condition, the weights are chosen to correspond with:

ξi+1/2,j =
1

3
min(1,

max((νy
i,j+1/2)

+, (νy
i,j−1/2)

+)

(νx
i+1/2,j)

+
), for (νx

i+1/2,j)
+ > 0; (6.2.31)

ηi+1/2,j =
1

3
min(1,

max((νy
i+1,j+1/2)

+, (νy
i+1,j−1/2)

+)

| (νx
i+1/2,j)

− | ), for (νx
i+1/2,j)

− < 0.
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Note here that the factor of a half 1/2 introduced in Equation (6.2.21) reduces to a 1/3, in

order to preserve positive contributions to the saturation update for all flow conditions.

Also, the weights are chosen to maximise the CFL number. The choice of weighting

factors will be discussed in the next section 6.3.2.

6.2.3 Nonlinear Flux Formulation

For the general case, where the flux is nonlinear in saturation, we compare two for-

mulations following [54].

Nonlinear Flux of Multi-dimensional Data

The first formulation involves the multi-dimensional upwind data reconstruction where

we define the generalized flux by:

f(SLi+1/2,j
) = f

(

(1 − ξi+1/2,j)S
n
i,j + ξi+1/2,j[χi+1/2,jS

n
i,j−1 + (1 − χi+1/2,j)S

n
i,j+1]

)

, (6.2.32)

f(SRi+1/2,j
) = f

(

(1 − ηi+1/2,j)S
n
i+1,j + ηi+1/2,j [χi+1/2,jS

n
i+1,j+1 + (1 − χi+1/2,j)S

n
i+1,j−1]

)

.

An analogous definition is adopted for SLi,j+1/2
and SRi,j+1/2

.

Nonlinear Multi-dimensional Flux

The second formulation, the multi-dimensional upwind flux reconstruction is written

as:

f(SLi+1/2,j
) = (1 − ξi+1/2,j)f(S

n
i,j) + ξi+1/2,j[χi+1/2,jf(S

n
i,j−1) + (1 − χi+1/2,j)f(S

n
i,j+1)],(6.2.33)

f(SRi+1/2,j
) = (1 − ηi+1/2,j)f(S

n
i+1,j) + ηi+1/2,j [χi+1/2,jf(S

n
i+1,j+1) + (1 − χi+1/2,j)f(S

n
i+1,j−1)].

Definition of SLi,j+1/2
and SRi,j+1/2

are defined analogously.

The weighting factors ξ and η used in Equations (6.2.32) and (6.2.33) are defined by

Equation (6.2.31) for stability where a consistent definition of the local wave velocity

components νx and νy is used. More specifically, in the case where the flux is of the form:

F (S) = f(S)V x
T , (6.2.34)

G(S) = f(S)V y
T ;
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which models multi-phase flow in the absence of gravity (see chapter 2, section 2.2.2), we

choose:

νx =
∆t

∆x
V x

T , (6.2.35)

νy =
∆t

∆y
V y

T .

Another alternative for the definition of the tracing wave speed for the same nonlinear

flux is to choose the Rankine-Hugoniot wave speed [49], where for example,

νx
i+1/2,j =

∆t

∆x
V x

Ti+1/2,j

Fi+1,j − Fi,j

Si+1,j − Si,j
,

which includes spatial variation due to velocity field as well as non-linear flux variations.

Finally, note that for constant wave speed, the schemes resulting from Equations (6.2.32)

and (6.2.33) reduce to Equation (6.2.8).

6.3 Wave Oriented Upwind Schemes on Unstructured

Quadrilateral Grids

In this section, two key issues are addressed when dealing with unstructured grids,

namely:

1. the definition of the upwind direction based on the local wave velocity defined over

the subcells and

2. the choice of the weighting coefficients to minimize the cross-wind diffusion while

preserving positivity.

6.3.1 A Family of Wave Oriented Conservative Upwind Schemes

Edge based and cell based formulations are presented in this thesis. In this chapter,

the focus is on the edge based approximation. The cell-based reconstructions are treated

in chapter 9. First, recall the edge based finite volume approximation as in Equation

(4.2.16):

τj

Sn+1
j − Sn

j

∆t
+

NedV
∑

e=1

f(SLe , SRe)

Nq
∑

iq=1

FTq = 0, (6.3.1)
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where iq sums over the flux quadrature points (one per sub-face). Here we evaluate the

subcell flux FTq on the control volume sub-face (dashed in Figure 6.4(a)) at the point of

attachment to the cell edge e. The sub-face fluxes are represented by the arrows in Figure

6.5(a) and the quadrature points are chosen to coincide with the center of the cell edges.

The upwind tracing procedure is comprised of two steps.
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Figure 6.4: (a) Control volume (dashed line) (b) compact stencil (b) subcells.

Step I

The first step is to establish the global flux direction relative to the adjoining subcells.

An edge-based upwind formulation is then written as:

τj

Sn+1
j − Sn

j

∆t
=

NedV
∑

e=1

{f(SLe)F
+
Te

+ f(SRe)F
−
Te
}, (6.3.2)

where FTe is the resultant total Darcy flux at the center of the edge e. The arrows in

Figure 6.5(b) illustrate the resultant fluxes at the centre of the edges a, b, c, d and e. Here,

we adopt the convention of fluxes entering (respectively leaving) the jth control volume

bear a positive (respectively negative) superfix.

Step II

We consider how to use the subcell velocity to improve the accuracy of the tracing

vector. In the case of Cartesian grids with wave velocities having a uniform direction, the

determination of the wind direction parameter (defined in the next section as χ) which
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Figure 6.5: Total fluxes at the centre of edges.

dictates the upstream subcell is straightforward. However, the question of specifying a

unique wave direction at the centre of the edge in the edge-based formulation arises when

the flow involves variable velocity fields and/or it is resolved on unstructured grids. Two

views are considered. The first approach involves using a suitable mean of the velocities
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Figure 6.6: (a) Wave velocities on the subcell (black arrows) uniquely defined by the
local subcell fluxes (grey arrows); (b) upstream and downstream velocity averages (black
arrows) and (c) upwind velocity average.

defined on the subcells I, II, III and IV, shown in Figure 6.6(a) and define the upstream

information relative to the resolving local edge subcell mean velocity as shown in Figure

6.6(c).

The second approach involves defining both the upstream velocity direction (by averaging

subcell velocities I and II) and the downstream velocity direction (by averaging subcell

velocities III and IV) in order to decide upon the upwind direction that provides a unique
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upwind value as depicted in Figure 6.6(b).

Although practical, both approaches have been tested and shown numerically to produce

spurious oscillations for cases involving strong variations in the velocity field on highly

distorted grids. A stability and positivity analysis for a linear flux with variable velocity

field presented below, leads to a more robust upwind formulation.

6.3.2 Formulation using Data

First, we present a family of genuinely multidimensional edge-based finite-volume

schemes on unstructured quadrilateral grids using a Data based formulation. We gen-

eralize Equation (6.2.27) with respect to the key edge e and the adjacent cells sharing the

edge as shown in Figure 6.4(b). The left and right multidimensional data reconstructions

at the integration point on the edge e(i, j) oriented from i to j are calculated as:

Sn
Le

= (1 − ξe)S
n
i + ξe[χeS

n
1 + (1 − χe)S

n
2 ] (6.3.3)

Sn
Re

= (1 − ηe)S
n
j + ηe[χeS

n
4 + (1 − χe)S

n
3 ]

where

χe = {
1 if the wave velocity is pointing from subcell I to subcell IV,

0 if the wave velocity is pointing from subcell II to subcell III.
(6.3.4)

and ξ and η denote the weighting factors where ξ (respectively η) is used to interpolate

the left (respectively right) state as a linear combination of Si (respectively Sj) and S1

(respectively S3) or S2 (respectively S4) depending on the direction of the wave speed.

Positive Linear Schemes

We will analyze the stability and consistency of the family of schemes 6.3.3 on an

arbitrary unstructured quadrilateral grid for linear advection. Let NV denote the net

number of supporting vertices. Expanding Equation (6.3.2) with respect to the data

yields:

Sn+1
j = αjS

n
j +

NV
∑

k=1,i(k)6=j

αi(k)S
n
i(k). (6.3.5)

where αj are the vertex support coefficients of Sj . In particular, the contributions from

cell1 and cell2 to the control volume j essentially involve the connecting edges e(i, j),
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a(3, j) and b(4, j) (thick lines in Figure 6.7). The arrows in Figure 6.7(a) shows an

illustration of the case χ = 1 for the three edges. Then Equation (6.3.2) is written as:

τj

∆t
(Sn+1

j − Sn
j ) = F+

Te
[(1 − ξe)S

n
i + ξe(χeS

n
1 + (1 − χe)S

n
2 )] (6.3.6)

+ F−
Te

[(1 − ηe)S
n
j + ηe(χeS

n
4 + (1 − χe)S

n
3 )]

+ F+
Ta

[(1 − ξa)S
n
3 + ξa(1 − χa)S

n
1 ]

+ F−
Ta

[(1 − ηa)S
n
j + ηaχaS

n
i ]

+ F+
Tb

[(1 − ξb)S
n
4 + ξbχbS

n
2 ]

+ F−
Tb

[(1 − ηb)S
n
j + ηb(1 − χb)S

n
i ] + ET,

where ET (extra terms) signifies any contributions coming from cells other than cell1 and

cell2. Thus, the associated weights to the nodes i and j can be explicitly expressed as:

αi =
∆t

τj
((1 − ξe)F

+
Te

+ ηaχaF
−
Ta

+ ηb(1 − χb)F
−
Tb

), (6.3.7)

and

αj = 1 +
∆t

τj

NedV
∑

e=1

(1 − ηe)F
−
Te

. (6.3.8)

Consistency

The scheme is consistent by construction, where

NV
∑

k=1

αk = 1. (6.3.9)

Stability

The stability condition is derived from Equation (6.3.8) which shows that the scheme

permits a larger CFL number than the standard upwind method if ηe are not all equal to

zero.

∆t < − τj

(
∑NedV

e=1 (1 − ηe)F
−
Te

)
. (6.3.10)

This means that using directional information will enhance the stability of the method.
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Figure 6.7: (a) Wave direction orientation with respect to the key edges e, a and b (in
bold) is illustrated by the arrows that correspond to χe = 1, χa = 1 and χb = 1. (b)
The arrows indicate possible contributions from the node i to the update of the solution
control volume j.

Positivity

Recall the definition of the positivity criteria introduced in Definition 4.3.3 tailored

here for the scheme Equation (6.3.5).

Definition 6.3.1 If the scheme of Equation (6.3.5) is consistent such that Equation

(6.3.9) is satisfied, stable such that the CFL condition of Equation (6.3.10) is satisfied,

then the scheme of Equations (6.3.2), (6.3.3) is said to be positive if αk ≥ 0 for all k.

The consistency condition of Equation (6.3.9) together with positivity and the CFL con-

dition of Equation (6.3.10) ensures that Sn+1
j is equal to a convex average of Sn

i for all i

belonging to support of j, which leads to a positive scheme. Considering the contribution

from node i in Equation (6.3.7), a necessary and sufficient condition for αi to be positive

is:

ξeF
+
Te

− χaηaF
−
Ta

− (1 − χb)ηbF
−
Tb

≤ F+
Te

. (6.3.11)

Stagnation point

This condition implies that in the case where F+
Te

= 0 i.e. the flux is oriented from j

to i, the upwind information with respect to the edge a (respectively b) does not originate

from cell1 (respectively cell2).
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Theorem 6.3.1 if FTe = F+
Te

≥ 0 with respect to j, and with respect to i FTc = F−
Tc

≤ 0

and FTd
= F−

Td
≤ 0 i.e. FTe is oriented from i to j, FTc is oriented from node i to the

node 1 and FTd
is oriented from node i to the node 2 as illustrated in Figure 6.8(a) then

ξe = 0.

It follows from theorem 6.3.1 that at a stagnation point the standard single-point upstream

weighting scheme is recovered locally with respect to the edge e(i, j).
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Figure 6.8: Different cases for the flow.

Proof Consider the key edge b and denote w the edge connecting j to the node u as shown

in Figure 6.9 belonging to the cell adjacent to cell2 and assume that the upwind informa-

tion with respect to the edge b originates from this cell. Then, writing the contribution

of the node u in the situation depicted in Figure 6.9 implies

χbηbF
−
Tb

= 0. (6.3.12)

On the other hand recall that from the expression Equation (6.3.11) related to the node

i, the following condition holds:

(1 − χb)ηbF
−
Tb

= 0. (6.3.13)

Equations (6.3.13) and (6.3.12) imply ηb = 0. In other words, at a stagnation point

the standard single-point upstream weighting scheme is recovered locally with respect

to the edge b(u, j). Applying the same reasoning by symmetry, while considering the

control volume i instead of j, this observation leads to the first constraint presented in

the theorem 6.3.1, which completes the proof.
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Weighting Factors

Case I In the case where FTe > 0, FTa < 0 and FTb
< 0 i.e. FTe is oriented from i to

j, FTa is oriented from node j to the node 3 and FTb
is oriented from node j to the node

4 as shown in Figure 6.10(a), a sufficient condition for the inequality of Equation (6.3.11)

to be satisfied is that

ξe|FTe | + ηa|FTa| + ηb|FTb
| ≤ |FTe|. (6.3.14)

Setting the weights to be proportional to the ratio of the inward and outward fluxes, i.e.

ηa = β min(
FTe

|FTa |
, 1), ηb = β min(

FTe

|FTb
| , 1), (6.3.15)

yields

β ≤ 1

3
and ξe ≤

1

3
. (6.3.16)

Note here that the actual bound (of unity) on the flux ratio
FTe

FTa
(

FTe

FTa
respectively) is de-

duced from the tracing analysis limiting strategy below relative to edge a (b respectively).

Case II The condition of Equation (6.3.16) is relaxed when at least one of the fluxes

FTa and FTb
is non strictly negative as illustrate in Figure 6.10(b). Assume for instance

that FTa ≥ 0 i.e. FTa is pointing from node 3 to node j, thus the positivity condition of
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Figure 6.10: Weighting factor.

Equation (6.3.11) is satisfied for ξe and ηb satisfying the following inequality:

ξe + ηb
|FTb

|
FTe

≤ 1. (6.3.17)

A symmetric choice corresponds to

ξe ≤
1

2
and ηb ≤

1

2
min(

|FTe |
|FTb

| , 1). (6.3.18)

Case III In the case where the fluxes FTa ≥ 0 and FTb
≥ 0, the positivity constraint

Equation (6.3.11) is relaxed further and reduces to

ξe ≤ 1. (6.3.19)

Limiting Strategy Define the flux ratios R1e and R2e as:

R1e =
FTc

FTe

, R2e =
FTd

FTe

. (6.3.20)

and let R = max(R1e, R2e, 0), then, the weighting factor takes the form:

ξe ≤ β min(1, R) with β =

{

1
3

if FTa < 0 and FTb
< 0,

1
2

otherwise
(6.3.21)

Considering a positive uniform velocity field V = (a, b) on Cartesian quadrilateral grid,

a unit CFL condition (Equation (6.3.10)) is retrieved as the condition β = 1
2

is always

satisfied with ξe = 1
2
min(1, b

a
).
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We also note that in case Figure 6.8(c), where both cross fluxes are entering the control

volume i, the upwind subcell is selected with the edge that corresponds to a larger flux

ratio in order to maximize the CFL condition of Equation (6.3.10), which may lead to

a gain in accuracy. Other alternatives could be chosen such as an average between both

fluxes. However, the main result of this subsection is the general limiter of Equation

(6.3.21) on the angle of the characteristic/streamline to ensure positivity.

L∞ Stability

An immediate corollary of positivity is that the scheme is stable in L∞. Convergence

follows from consistency and stability (Lax equivalence theorem for the linear case).

6.3.3 Nonlinear Formulation

For the general case, where the flux is nonlinear in saturation, we compare two for-

mulations.

Nonlinear Flux of Multi-dimensional Data

The first formulation involves multi-dimensional upwind data correction where we

define the generalized flux by:

f(Sn
L) = f

(

(1 − ξe)S
n
i + ξe[χeS

n
1 + (1 − χe)S

n
2 ]

)

, (6.3.22)

f(Sn
R) = f

(

(1 − ηe)S
n
j + ηe[χeS

n
4 + (1 − χe)S

n
3 ]

)

.

Nonlinear Multi-dimensional Flux

The second formulation involves the multi-dimensional upwind flux correction where

we define the generalized flux by:

f(Sn
L) = (1 − ξe)f(S

n
i ) + ξe[χef(S

n
1 ) + (1 − χe)f(S

n
2 )], (6.3.23)

f(Sn
R) = (1 − ηe)f(S

n
j ) + ηe[χef(S

n
4 ) + (1 − χe)f(S

n
3 )].

Here, we have used conditions Equations (6.3.4), (6.3.10) and (6.3.21) for stability in our

calculations.
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6.4 Numerical Test Cases

The test cases involve two phase flow (oil-water). Initial oil saturation is prescribed

and water is injected. Water saturation contours are shown in each case. Solid wall (zero

normal flow) boundary conditions are applied on all solid boundaries of each reservoir do-

main. In all cases, flow rate is specified at the (inflow) injector and pressure is prescribed

at the (outflow) producer and a consistent Darcy flux approximation is used. Both dis-

torted structured and unstructured quadrilateral grids are tested.

Results involve full tensor coefficient velocity fields, with strong cross terms that induce

significant cross-flow across the cells which also adds to the full tensor effect due to the

unstructured nature of the grid.

Two cases are presented. The first case is a study of a quarter five spot problem involving

a linear flux whereas the second case is a study of a piston problem for nonlinear flux.

The flow mobility ratio is set to M = 1. Both cases involve a linear or quadratic Buckley

Leverett flux and a full homogeneous permeability tensor with principal axes oriented at

45 degrees to the reservoir domain with 10 to 1 anisotropy ratio. The normalized ten-

sors have components Kxx = 1.0, Kyy = 1.0, Kxy = 0.82. The primary unknown is the

(normalized) water saturation S.

6.4.1 Case 1: Linear Full Tensor Quarter Five Spot

The first case involves a linear flux, corresponding with linear relative permeabilities

i.e. krw = S for the water phase (w) and kro = (1− S) for the oil phase (o). Quarter five

spot boundary conditions are imposed together with an anisotropic full tensor permeabil-

ity field with principal axes oriented 45 degrees to the reservoir domain. The main feature

of this case is the advection of the stable discontinuity across the grid. Water saturation

contours are shown at 0.3 pore volumes injected (PVI) for the same CFL number equal

to 0.4. The standard single-point upstream weighting results on distorted structured and

unstructured quadrilateral grids are shown in Figures 6.11(b), 6.12(b) and 6.13(b). The

multidimensional upwind results are shown in Figures 6.11(c), 6.12(c) and 6.13(c).

The standard scheme results show that the front is largely diffused. In contrast, the multi-

dimensional scheme provides sharper resolution with improved symmetry of the problem,

while predicting earlier breakthrough (as expected) with minimal cross-flow spread. We

also note that the full-tensor effect due to the grid is noticeably attenuated in the multi-
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dimensional wave oriented results.

6.4.2 Case 2: Nonlinear Full Tensor Piston Flow

The second case involves a nonlinear Buckley Leverett flow subject to fluid injection

on the left hand boundary and specified pressure on the right hand boundary. The water

and oil relative permeabilities are respectively krw = S2 and kro = (1 − S)2. The results

obtained using standard single-point upstream weighting are shown in Figures 6.15(b)

and 6.16(b) and those obtained using the data based multidimensional wave-oriented

higher dimensional upwind scheme are shown in Figures 6.15(c) and 6.16(c). The multi-

dimensional flux results are shown in Figures 6.15(d) and 6.16(d) on the coarse and finer

unstructured grids.

The standard first order results indicate a strong grid orientation bias, whereas the re-

sults obtained with the multidimensional schemes show reduced grid dependence on the

distorted unstructured meshes and provide improvement of front resolution with a clearer

indication of the flow pattern, which is consistent with the problem, where the full tensor

forces the flow across the domain. In addition, the multidimensional data based results

show some signs of spurious oscillations on the unstructured grids in this nonlinear case,

whereas the multidimensional flux results are essentially free of spurious oscillations.

6.5 Conclusions

A family of multidimensional upwind schemes is presented for hyperbolic conserva-

tion laws on structured and unstructured quadrilateral grids. The methods are locally

conservative and are coupled with consistent and efficient continuous Darcy flux approx-

imations and applied to two-phase flow problems. Positivity conditions are derived for

linear convection including the CFL limits. The schemes permit higher CFL numbers

than the standard upwind scheme.

Two-phase flow results are presented. Comparisons with single point upstream weighting

scheme are made on a both distorted and unstructured quadrilateral grids for cases involv-

ing full tensor coefficient velocity fields. The comparisons demonstrate the benefits of the

higher dimensional schemes both in terms of improved front resolution and significantly

reduced cross-wind diffusion.
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Figure 6.11: Case 1 - (a) Distorted coarse grid 14x15; saturation profile using (b) single-
point upstream-weighting and (c) multidimensional scheme.
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Figure 6.12: Case 1 - (a) Distorted finer grid 26x27; saturation profile using (b) single-
point upstream-weighting and (c) multidimensional scheme.
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Figure 6.13: Case 1 - (a) Unstructured finer grid; saturation profile using (b) single-point
upstream-weighting and (c) multidimensional scheme.
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Figure 6.14: Case 1 - Reference solution on a 64x64 Cartesian grid using (a) single-point
upstream-weighting; (b) higher-order and (c) multidimensional schemes.
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Figure 6.15: Case 2 - (a) Unstructured coarse grid; saturation profile using (b) single-point
upstream-weighting, (c) multidimensional data based scheme and (d) multidimensional
flux based scheme.
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Figure 6.16: Case 2 - (a) Unstructured finer grid; saturation profile using (b) single-point
upstream-weighting, (c) multidimensional data based scheme and (d) multidimensional
flux based scheme.
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Figure 6.17: Case 2 - Reference solution on a 64x64 Cartesian grid using (a) single-point
upstream-weighting; (b) higher-order and (c) multidimensional schemes.



89

Chapter 7

Multidimensional Schemes on

Triangular and Hybrid Grids

In this chapter, formulation of the edge-based family of multi-dimensional schemes on

unstructured triangular grids and hybrid grids consisting of triangles and quadrilaterals

is presented. Two-phase flow results are presented in section 7.3 that demonstrate the

advantages of the new higher dimensional flux-continuous formulations.

7.1 A Family of Edge-based Higher Dimensional Schemes

on Triangular Grids

The focus here is on reducing cross-wind diffusion on triangular grids. The main idea

of the multidimensional triangular scheme is to trace back along the two-dimensional

characteristic to the point of intersection with the upwind co-ordinate lines whenever

possible as with the quadrilateral multidimensional scheme. The formulation begins with

the same two issues as for quadrilateral meshes (chapter 6, section 6.3) as the upwind

direction is based on the local wave velocity which is defined over the subcells.

Discretisation of Equation (4.2.16) is expressed again as:

τj

Sn+1
j − Sn

j

∆t
= −

NedV
∑

e=1

f(SLe , SRe)

Nq
∑

iq=1

FTq , (7.1.1)

as in the quadrilateral formulation c.f. section 6.3.1.
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Figure 7.1: (a) Control volume (dashed line) (b) compact stencil (b) subcells.
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Figure 7.2: Total fluxes at the centre of edges.

7.1.1 Formulation using Data

A family of genuinely multidimensional triangular edge-based finite-volume schemes

using a data based formulation is first presented. As for the quadrilateral meshes, the key

edge e and the adjacent cells sharing the edge as shown in Figure 7.1(b), then the left and

right states at the integration point on the edge e(i, j) oriented from i to j are computed

as:

Sn
Le

= (1 − ξe)S
n
i + ξe[χeS

n
1 + (1 − χe)S

n
2 ] (7.1.2)

Sn
Re

= (1 − ηe)S
n
j + ηe[χeS

n
2 + (1 − χe)S

n
1 ]
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where

χe = { 1 if the wave velocity is pointing from subcell I to subcell IV,

0 if the wave velocity is pointing from subcell II to subcell III.
(7.1.3)

and 0 ≤ ξ ≤ 1 and 0 ≤ η ≤ 1 denote the weighting factors where ξ (η respectively) is

used to interpolate the left (right respectively) state as a linear combination of Si (Sj

respectively) and S1 (S2 respectively) or S2 (S1 respectively) depending on the direction

of the wave speed.

Two Dimensional Analysis

We will first analyze the stability and consistency of the scheme on a uniform triangular

grid as shown in Figure 7.3 for linear advection with constant wave velocity V. In this

example case i = 2, j = 0 and Sn
2 is replaced by Sn

3 in Equation (7.1.2). Define SL0i for

0
2

3 4

5

1 6

V
r

(a)

0
2

3 4

5

1 6

(b)

Figure 7.3: Positivity analysis for a uniform velocity case (a) stencil and streamlines (b)
Flux directions.

i = 1, 2, 3 and SL0i for i = 4, 5, 6 as the left and right states at the edge (i, 0) oriented

from i to 0 and Si is the saturation value at the node i. Therefore, the left and right
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states are written as:

SL01 = (1 − ξ01)S1 + ξ01S2, (7.1.4)

SL02 = (1 − ξ02)S2 + ξ02S1,

SL03 = (1 − ξ03)S3 + ξ03S2,

SR04 = (1 − η04)S0 + η04S3,

SR05 = (1 − η05)S0 + η05S6,

SR06 = (1 − η06)S0 + η06S1.

Let n0i denote the normal to the control volume face corresponding with the edge e(0, i)

for i = 1..6. Also let F0i = V ·n0i. Then, assembling the fluxes with regards to the control

volume 0 yields:

Sn+1
0 = [1 − ∆t

τ0
((1 − η04)|F04| + (1 − η05)|F05| + (1 − η06)|F06|)]Sn

0 (7.1.5)

+
∆t

τ0
[(1 − ξ01)|F01| + ξ02|F02| − η06|F06|]Sn

1

+
∆t

τ0
[(1 − ξ02)|F02| + ξ01|F01| + ξ03|F03|]Sn

2

+
∆t

τ0
[(1 − ξ03)|F03| − η04|F04|]Sn

3

− ∆t

τ0
η05|F05|Sn

6 .

From Equation (7.1.5), note that coefficients sum to unity. A necessary condition for the

scheme to be positive is that all the coefficients are positive namely:

1 − ∆t

τ0
((1 − η04)|F04| + (1 − η05)|F05| + (1 − η06)|F06|) ≥ 0, (7.1.6)

(1 − ξ01)|F01| + ξ02|F02| − η06|F06| ≥ 0,

(1 − ξ02)|F02| + ξ01|F01| + ξ03|F03| ≥ 0,

(1 − ξ03)|F03| − η04|F04| ≥ 0,

−∆t

τ0
η05|F05| ≥ 0.

Note that the third inequality in Equations (7.1.6), is satisfied provided that ξ0i and η0i

are such that the interpolation is convex between each pair of nodes 0 and i for i = 1..6.

The last inequality implies

η05 = 0. (7.1.7)
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This motivated the analysis of stagnation points when unstructured grids are considered.

As a consequence the multidimensional scheme locally reduces to a standard first order

reconstruction at the edge joining the nodes 0 and 5.

Taking this condition into account, the first inequality is written as

1 +
∆t

τ0
(η04|F04| + η06|F06|) −

∆t

τ0
(|F04| + |F05| + |F06|) ≥ 0. (7.1.8)

and is clearly positive for higher CFL numbers than the standard upstream weighting

scheme. The second and fourth inequalities are equivalent to

ξ01|F01| + η06|F06| ≤ |F01| + ξ02|F02|, (7.1.9)

ξ03|F03| + η04|F04| ≤ |F03|,

and define a family of multidimensional schemes.

Theorem 7.1.1 There exist non negative coefficients ξ01, ξ03, ξ02 and η04, η06 that satisfy

the inequalities in Equations (7.1.9) and the choice of these parameters is non unique.

Also, equations (7.1.5) and (7.1.4) define a family of linear positive and consistent gen-

uinely multidimensional schemes for this section under the conditions Equations (7.1.9),

(7.1.7) and (7.1.8).

Proof The node contributions in Equation (7.1.5) sum to one by construction and are

positive for a choice that uses locally the upwind and downwind flux information corre-

sponding to

η06 =
1

2

F01

F06
, ξ01 ≤

1

2
, ξ02 ≤ 1

and

η04 =
1

2

F03

F04
, ξ03 ≤

1

2
.

Note here that this choice is non symmetric and uses a local stencil.

Unlike the analysis performed on Cartesian grids (chapter 6, section 6.2.3) that deals

with the node contribution, the discussion presented here makes use of the full stencil and

motivates the following analysis on unstructured triangular meshes.
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Positive Linear Schemes on Unstructured Triangular Schemes

The stability analysis of the family of schemes Equations (7.1.2) on an arbitrary un-

structured triangular grid for linear advection is closely related to the positivity analysis

on quadrilateral meshes presented in chapter 6, section 6.3.1. Again, we start by expand-

ing Equation (7.1.1) with respect to the data yielding:

Sn+1
j = αjS

n
j +

NV
∑

k=1,i(k)6=j

αi(k)S
n
i(k). (7.1.10)

where αi are the vertex support coefficients of Si and NV is net number of supporting

vertices. The arrows in Figure 7.4(a) shows an illustration of the case χ = 1 for the three
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Figure 7.4: (a) Wave direction orientation with respect to the key edges e, a and b (in
bold) is given by the arrows that correspond to χ equals one. (b) Contributions from the
node i.

edges. Then Equation (7.1.1) is written as:

τj

∆t
(Sn+1

j − Sn
j ) = F+

Te
[(1 − ξe)S

n
i + ξe(χeS

n
1 + (1 − χe)S

n
2 )] (7.1.11)

+ F−
Te

[(1 − ηe)S
n
j + ηe(χeS

n
2 + (1 − χe)S

n
1 )]

+ F+
Ta

[(1 − ξa)S
n
1 + ξa(1 − χa)S

n
i ]

+ F−
Ta

[(1 − ηa)S
n
j + ηaχaS

n
i ]

+ F+
Tb

[(1 − ξb)S
n
2 + ξbχbS

n
i ]

+ F−
Tb

[(1 − ηb)S
n
j + ηb(1 − χb)S

n
i ] + ET
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where ET (extra terms) signifies any contributions coming from cells other than cell1 and

cell2 and the associated weights to the node i is written as:

αi =
∆t

τj

((1 − ξe)F
+
Te

+ ξa(1 − χa)F
+
Ta

+ ξbχbF
+
Tb

+ ηaχaF
−
Ta

+ ηb(1 − χb)F
−
Tb

), (7.1.12)

which is different than the quadrilateral case Equation (6.3.7) as it involves two extra

positive terms that account for the contributions of the nodes 1 and 2. The associated

weight to the central node j is expressed as

αj = 1 +
∆t

τj

NedV
∑

e=1

(1 − ηe)F
−
Te

(7.1.13)

and implies a larger allowable time step than the standard first order single point upstream

weighting scheme for non-vanishing η.

Also, the multidimensional triangular approximation is consistent by construction in the

sense that the coefficients αk sum to unity.

Considering the contribution from node i in Equation (7.1.12), a necessary and suffi-

cient condition for αi to be positive is:

ξeF
+
Te

− χaηaF
−
Ta

− (1 − χb)ηbF
−
Tb

≤ F+
Te

+ ξa(1 − χa)F
+
Ta

+ ξbχbF
+
Tb

. (7.1.14)

It is clear that this condition is less restrictive than than the key constraint 6.3.11 derived

for quadrilateral grids. The stability of the multidimensional scheme is enhanced by the

positive contributions of the fluxes F+
Ta

and F+
Tb

on the right hand side of the inequality.

A sufficient condition which is applicable in the general case is used in the rest of this

analysis and is written as:

ξeF
+
Te

− χaηaF
−
Ta

− (1 − χb)ηbF
−
Tb

≤ F+
Te

. (7.1.15)

This implies that in the case where F+
Te

= 0 i.e. the flux is oriented from j to i, the upwind

information with respect to the edge a (b respectively) does not originate from cell1 (cell2

respectively). Equation (7.1.14) reduces then to:

−ηaF
−
Ta

− ηbF
−
Tb

≤ 0. (7.1.16)

assuming that χa = 1 and χb = 0. Positivity condition requires ηa = 0 and ηb = 0 in the

case where FTa < 0 and FTb
< 0.

Applying the same reasoning while considering the control volume i instead of control

volume j, this observation leads to the first constraint at a stagnation point as for quadri-

lateral grids namely:
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Theorem 7.1.2

if FTe ≥ 0 with respect to j, and with respect to i FTc ≤ 0 and FTd
≤ 0 i.e. FTe is oriented

from i to j, FTc is oriented from node i to the node 1 and FTd
is oriented from node i to

the node 2 as illustrated in Figure 7.5(a) then ξe = 0. This means that at a stagnation

point the standard single-point upstream weighting scheme is recovered locally with respect

to the edge e(i, j).
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Figure 7.5: Different cases for the flow

On the other hand, in the case where FTe > 0, FTa < 0 and FTb
< 0 i.e. FTe is oriented

from i to j, FTa is oriented from node j to the node 1 FTb
is oriented from node j to the

node 2 as shown in Figure 7.6(a), a sufficient condition for the inequality 7.1.15 to be

satisfied is that

ξe|FTe | + ηa|FTa| + ηb|FTb
| ≤ |FTe|. (7.1.17)

Setting the weights to be proportional to the ratio of the inward and outward fluxes, i.e.

ηa = β min(
FTe

|FTa |
, 1), ηb = β min(

FTe

|FTb
| , 1), (7.1.18)

yields

β ≤ 1

3
and ξe ≤

1

3
. (7.1.19)

Again, the actual bound (of unity) on the flux ratio
FTe

FTa
(

FTe

FTa
respectively) is deduced

from the tracing analysis relative to edge a (b respectively). Note here that the condition

Equation (7.1.19) is relaxed when at least one of the fluxes FTa and FTb
is non strictly
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Figure 7.6: Weighting factor

negative (Figure 7.6(b)) and the inequality 7.1.19 becomes β ≤ 1
2
. Furthermore, define

the flux ratios R1e and R2e as:

R1e =
FTc

FTe

, R2e =
FTd

FTe

. (7.1.20)

and let R = max(R1e, R2e, 0), then, the weighting factor takes the form:

ξe ≤ β min(1, R) with β =

{

1
3

if FTa < 0 and FTb
< 0,

1
2

otherwise
(7.1.21)

Other alternatives could be chosen such as an average between both fluxes e.g.

R1e =
F+

Tc

F+
Te

+ F+
Tc

, R2e =
F+

Td

F+
Te

+ F+
Td

. (7.1.22)

which leads to ξe ≤ βR with β and R defined as above in Equation (7.1.21).

Also we note that in case Figure 7.6(c), where both cross fluxes are entering the control

volume i, the upwind subcell is selected with the edge that corresponds to a larger flux

ratio in order to maximize the CFL condition, which may lead to a gain in accuracy.

However, the main result of this subsection is the general limiter of Equation (7.1.21) on

the angle of the characteristic/streamline to ensure positivity.

7.1.2 Nonlinear Formulation

As for the quadrilateral counterpart, we compare two formulations taking into account

the general case where the flux is nonlinear in saturation.
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Nonlinear Flux of Multi-dimensional Data

The first formulation involves multi-dimensional upwind data correction where we

define the generalized flux by:

f(Sn
L) = f

(

(1 − ξe)S
n
i + ξe[χeS

n
1 + (1 − χe)S

n
2 ]

)

,

f(Sn
R) = f

(

(1 − ηe)S
n
j + ηe[χeS

n
2 + (1 − χe)S

n
1 ]

)

.

Nonlinear Multi-dimensional Flux

The second formulation involves the multi-dimensional upwind flux correction where

we define the generalized flux by:

f(Sn
L) = (1 − ξe)f(S

n
i ) + ξe[χef(S

n
1 ) + (1 − χe)f(S

n
2 )],

f(Sn
R) = (1 − ηe)f(S

n
j ) + ηe[χef(S

n
2 ) + (1 − χe)f(S

n
1 )].

Here, we have used conditions of Equations (7.1.3), (6.3.10) and (7.1.21) for stability in

our calculations.

7.2 Edge-based Multidimensional Schemes On Hy-

brid Meshes In 2-D

For completeness, the multidimensional edge based formulation is presented in this

section for unstructured hybrid meshes. The notation used here is adopted in the next

chapters.

7.2.1 Formulation using Data

Consider the key edge e and the adjacent cells sharing the edge as shown in Figure

7.7(b), then the left and right states at the integration point on the edge e(i, j) oriented

from i to j are calculated as:

Sn
Le

= (1 − ξe)S
n
i + ξe[χeS

n
1 + (1 − χe)S

n
2 ] (7.2.1)

Sn
Re

= (1 − ηe)S
n
j + ηe[χeS

n
4 + (1 − χe)S

n
3 ]

where

χe = { 1 if the wave velocity is pointing from subcell I to subcell IV,

0 if the wave velocity is pointing from subcell II to subcell III.
(7.2.2)
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and 0 ≤ ξ ≤ 1 and 0 ≤ η ≤ 1 denote the weighting factors where ξ (respectively η) is used

to interpolate the left (respectively right) state as a linear combination of Si (respectively

Sj) and S1 (respectively S3) or S2 (respectively S4) depending on the direction of the

wave speed. Note here that node 1 and 3 coincide.
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Figure 7.7: (a) Control volume (dashed line) (b) compact stencil (b) subcells.

7.2.2 Positive Linear Schemes

In this section, we will analyze the stability and consistency of the family of schemes

defined by Equations (7.1.1), (7.2.2) and (7.2.1) for linear advection on an arbitrary

unstructured grid comprised of triangles and quadrilaterals. The discretisation using the

multidimensional edge based scheme of Equation (7.1.1) on the unstructured grid Figure

7.7 with respect to the control volume j is similar to 9.1.16 and 9.1.5 and now takes the

form:

τj

∆t
(Sn+1

j − Sn
j ) = F+

Te
[(1 − ξe)S

n
i + ξe(χeS

n
1 + (1 − χe)S

n
2 )] (7.2.3)

+ F−
Te

[(1 − ηe)S
n
j + ηe(χeS

n
4 + (1 − χe)S

n
1 )]

+ F+
Ta

[(1 − ξa)S
n
1 + ξa(1 − χa)S

n
i ]

+ F−
Ta

[(1 − ηa)S
n
j + ηaχaS

n
i ]

+ F+
Tb

[(1 − ξb)S
n
4 + ξbχbS

n
2 ]

+ F−
Tb

[(1 − ηb)S
n
j + ηb(1 − χb)S

n
i ] + ET
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where the same notation as in 7.1 is adopted and ET (extra terms) denote the contribu-

tions coming from cells other than cell1 and cell2. The coefficient of node i, αi then takes

the form:

αi =
∆t

τj

((1 − ξe)F
+
Te

+ ξa(1 − χa)F
+
Ta

+ ηaχaF
−
Ta

+ ηb(1 − χb)F
−
Tb

). (7.2.4)

As for triangular and quadrilateral grids, the scheme is consistent by construction and

the positivity limit is

ξeF
+
Te

− ηaχaF
−
Ta

− ηb(1 − χb)F
−
Tb

≤ F+
Te

+ ξa(1 − χa)F
+
Ta

, (7.2.5)

that reduces to

ξeF
+
Te

− ηaχaF
−
Ta

− ηb(1 − χb)F
−
Tb

≤ F+
Te

. (7.2.6)

7.2.3 Stagnation Point

The most restrictive case corresponds to F+
Te

= 0, F−
Ta

< 0 and F−
Tb

< 0 where the

postivity condition Equation (7.2.5) reduces to

−ηaF
−
Ta

− ηbF
−
Tb

= 0 (7.2.7)

for χa = 0 and χb = 1 and yields ηa = 0 and ηb = 0.

Theorem 7.2.1

if FTe ≥ 0 with respect to node j, and with respect to node i FTc < 0 and FTd
< 0 i.e. FTe

is oriented from i to j, FTc is oriented from node i to the node 1 and FTd
is oriented from

node i to the node 2 as illustrated in Figure 7.8(a) then ξe = 0. This means that at a

stagnation point the standard single-point upstream weighting scheme is recovered locally

with respect to the edge e(i, j).

Proof c.f. Proof 6.3.2 based on Equation (7.2.6).

7.2.4 Weighting Factors

The derivation of the weighting factors follows the same reasoning as for the triangular

grids section 7.1. In the case where FTe = F+
Te

> 0, FTa = F−
Ta

< 0 and FTb
= FTb

− < 0 i.e.

FTe is oriented from i to j, FTa is oriented from node j to the node 3 FTb
is oriented from
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Figure 7.8: Different cases for the flow

node j to the node 4 as shown in Figure 7.9(a), a sufficient condition for the inequality

in Equation (7.2.5) to be satisfied is that

ξe|FTe | + ηa|FTa| + ηb|FTb
| ≤ |FTe|. (7.2.8)

Setting the weights to be proportional to the ratio of the inward and outward fluxes, i.e.

ηa = β min(
FTe

FTa

, 1), ηb = β min(
FTe

FTb

, 1), (7.2.9)

yields

β ≤ 1

3
. (7.2.10)

Again, the condition of Equation (7.2.10) is relaxed when at least one of the fluxes FTa

and FTb
is positive Figure 7.9(b) and the inequality in Equation (7.2.10) becomes

β ≤ 1

2
. (7.2.11)

Furthermore, define flux ratios R1e and R2e as:

R1e =
FTc

FTe

, R2e =
FTd

FTe

. (7.2.12)

and let R = max(R1e, R2e, 0), then, the weighting factor takes the form:

ξe ≤ β min(1, R) with β =

{

1
3

if FTa < 0 and FTb
< 0,

1
2

otherwise
(7.2.13)

For non-linear fluxes, the edge based multidimensional schemes are defined as in section

6.3.3.
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Figure 7.9: Weighting factor

7.3 Numerical Results

The test cases involve two phase flow (oil-water). Initial oil saturation is prescribed

and water is injected. Water saturation contours are shown in each case. Solid wall (zero

normal flow) boundary conditions are applied on all solid boundaries of each reservoir do-

main. In all cases, flow rate is specified at the (inflow) injector and pressure is prescribed

at the (outflow) producer and a consistent Darcy flux approximation is used. Both regular

and distorted unstructured triangular grids are tested. Results involve full-tensor coeffi-

cient velocity fields due to the grid or permeability field (or both), with strong cross-terms

that induce significant cross-flow across grid cells which adds to the full-tensor effect due

to the unstructured nature of the grid.

7.3.1 Case 1: Linear Piston Buckley Leverett Flow

The first case is a study of a linear flow problem using a triangular grid shown in

Figure 7.10(a) as in case 1 presented in chapter 5 section 5.4.1. Here, water saturation

contours are shown at 0.5 pore volumes injected (PVI). The first result, Figure 7.10(b),

shows the effect of employing the standard first order upwind scheme for the convective

flux approximation. The multidimensional scheme result is shown in Figure 7.10(c). The

first order scheme result shows a strong dependency on the grid structure. The multidi-
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mensional scheme provides considerable improvement in the resolution of the saturation

front compared to the standard scheme and is independent of the grid structure for this

case.

(a)
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Figure 7.10: Case 1 - (a) ZigZag mesh; saturation profiles using (a) single-point upstream-
weighting and (b) multidimensional approximations.

7.3.2 Case 2: Linear Full Tensor Quarter Five Spot

The second case involves a linear Buckley Leverett flux, corresponding with linear

relative permeabilities and has the same set up as case 1 presented in chapter 6 section

6.4.1. Here water saturation contours are shown at 0.25 pore volumes injected (PVI) for

the same CFL number equal to 0.4. The main feature of this case is the advection of the

stable discontinuity across the grid. The standard single-point upstream results on dis-

torted structured and unstructured triangular grids are shown in Figures 7.11(b), 7.12(b)

and 7.13(b). The multidimensional upwind results are shown in Figures 7.11(c), 7.12(c)

and 7.13(c). The standard scheme results show a largely diffused front. In contrast, the

multidimensional scheme provides improved symmetry of the problem, while predicting

earlier breakthrough with minimal cross-flow spreading.

7.3.3 Case 3: High Mobility Ratio Piston Flow

The third case involves a nonlinear Buckley Leverett flow subject to fluid injection

on the left hand boundary and specified pressure on the right hand boundary and a

full homogeneous permeability tensor with principal axes oriented at 45 degrees to the

reservoir domain with 20 to 1 anisotropy ratio. The water and oil relative permeabilities

are respectively krw = S2 and kro = (1 − S)2. The normalized tensors have components



104

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c)

Figure 7.11: Case 2 - (a) Triangular mesh oriented in the direction of the flow (21x21);
saturation profile using (b) single-point upstream-weighting and (c) multidimensional
scheme.
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Figure 7.12: Case 1 - (a) Cross Mesh (21x21); saturation profile using (b) single-point
upstream-weighting and (c) multidimensional scheme.

(a)

 

 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b)

 

 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c)

Figure 7.13: Case 2 - (a) Delaunay mesh (290 nodes); saturation profile using (b) single-
point upstream-weighting and (c) multidimensional scheme.
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Kxx = 1.0, Kyy = 1.0, Kxy = 0.9. The flow mobility ratio is set to M = 40. The

results are computed on the triangular grid with an aspect ratio 4:1 shown in Figure

7.14(a). The result obtained using standard single-point upstream weighting is shown in

Figure 7.14(b) and that obtained using the data based multidimensional wave-oriented

higher dimensional upwind scheme is shown in Figure 7.14(c). The multidimensional flux

result is shown in Figure 7.14(d). Figure 7.15 shows a reference solution on a 64x64

cartesian grid. The standard first order results indicate a strong grid orientation bias

with a spread front that first collides with the top wall before breakthrough occurs at the

right hand boundary. In contrast the results obtained with the multidimensional schemes

show reduced grid dependence and provide improvement in front resolution, although the

multidimensional flux result is slightly sharper than the multidimensional data result.

The flow pattern is now consistent with the problem, where the full tensor forces the flow

across the domain, with breakthrough at the right hand boundary now consistent with

the reference solution.

7.3.4 Case 4: Nonlinear piston Full Tensor Flow

The last case has the same domain, boundary conditions and non-linear relative per-

meabilities as Case 3, now with a unity mobility ratio i.e. M = 1 and involves a full

permeability tensor with a 10 to 1 anisotropy ratio. The normalized tensors have compo-

nents Kxx = 1.0, Kyy = 1.0, Kxy = 0.82. Results are computed on a triangular grid. The

reference solution is shown on a 64x64 regular grid in Figure 7.17. The results obtained

using standard single-point upstream weighting are shown in Figure 7.16(b) and those

obtained using the data based multidimensional wave-oriented upwind scheme are shown

in Figure 7.16(c). The multidimensional flux results are shown in Figure 7.16(d).

The standard first order results indicate a more diffused front, whereas the results ob-

tained with the multidimensional schemes show reduced grid dependence on the distorted

unstructured meshes and provide improvement of front resolution with a clearer indica-

tion of the flow pattern, which is consistent with the problem, where the full tensor forces

the flow across the domain.
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Figure 7.14: Case 3 - (a) Grid (40x10); saturation profile using (b) single-point upstream-
weighting,(c) multidimensional data based scheme and (d) multidimensional flux based
scheme.
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Figure 7.15: Case 3 - Reference solution on a 64x64 cartesian mesh

7.4 Conclusions

A family of multidimensional upwind schemes is presented for hyperbolic conservation

laws on triangular grids. The methods are locally conservative and are coupled with
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Figure 7.16: Case 4 - (a) Unstructured triangular grid (159 nodes); saturation profile
using (b) single-point upstream-weighting, (c) multidimensional data based scheme and
(d) multidimensional flux based scheme.

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 7.17: Case 4 - Reference solution on a 64x64 cartesian mesh

consistent and efficient continuous Darcy flux approximations and applied to two-phase

flow problems. Positivity conditions are derived for linear convection including the CFL

limits. The schemes permit higher CFL numbers than the standard upwind scheme.
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Two-phase flow results are presented. Comparisons with the standard first order single

point upstream weighting scheme are made on a both regular and distorted unstructured

triangular grids for cases involving full-tensor coefficient velocity fields. The comparisons

demonstrate the benefits of the higher dimensional schemes both in terms of improved

front resolution and significantly reduced cross-wind diffusion.
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Chapter 8

Gravity and Systems

This chapter describes the application of the numerical methods presented in chapters

5-7 to gravity driven flow problems as well as to multi-component multi-phase flow systems

through the study of a three component two phase flow polymer flood system in two

dimensional space.

The main objectives are first to provide an extension of the multidimensional schemes in

order to handle general flow situations involving counter current gravity flows. The second

aim is to develop a multidimensional formulation for systems of hyperbolic equations.

Finally, we investigate different tracing formulations.

A two phase flow water and oil system is considered for the gravity case. A polymer

flood systemis considered here which is comprised of a miscible aqueous phase (water and

polymer) and an immiscible oleic phase.

The chapter is organised as follows. The first section 8.1 deals with gravity driven flows,

where two upwind approximations are presented and two different multidimensional data

based reconstructions are proposed. The different formulations are compared for a gravity

segregation on quadrilateral and triangular unstructured meshes. Section 8.2 is devoted

to the two dimensional three component two phase flow system, where the first order and

higher order upwind formulations based on componentwise reconstructions following the

ideas in [51, 21] are presented. Three different limiting strategies involving conservative,

primitive and characteristic variables are adopted for the higher order method. Also,

three innovative tracing approaches are also introduced in the same section that lead to

a novel family of multidimensional data based first order schemes for hyperbolic systems

for flow in porous media. Finally, numerical results are presented and comparisons of the

different formulations illustrate the benefits of the new formulations with respect to the
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standard methods.

8.1 Gravity Driven Flows

8.1.1 Formulation

Recall the continuity equations for a gravity driven two phase flow:

∫

Ωcv

∂Sp

∂t
dΩ +

∮

∂Ωcv

Vp · n̂ds = mp (8.1.1)

where the integral is taken over Ωcv and where Sp, Vp and mp are the pth phase saturation,

Darcy velocity and specified phase flow rate respectively. Here we consider two upwind

formulations: the first one corresponds with the upstream mobility weighting [13, 128].

This approach is the reservoir simulation standard and is physically motivated. The idea

is to solve for both phase saturations independently using the phase velocities (modeled

by Darcy’s law) in order to decide upon the flow direction for each phase. This enables

the scheme to account for the counter current flow when the phases migrate in opposite

directions, which is typical of gravity segregation problems. The second approach uses

a fractional flow formulation and involves expressing the flux in terms of a single phase

saturation, water saturation being the usual choice and is favoured here. Two phase

incompressible flow is governed by a single scalar hyperbolic equation coupled with an

equation for the pressure equation in general case; the saturation for the oil is deducted

from the volume balance equation, where the saturations sum to one. Upwinding is per-

formed according to the characteristic wave speed defined from the hyperbolic equation.

This scheme is well established [73] and provides physically consistent solutions.

The phase continuity equations (8.1.1) are coupled through the discrete pressure equa-

tion (4.2.8). Control volume distributed Darcy flux approximations presented in [52] (see

section 4.2.1) are used for the elliptic component. Note here that, in order to account for

gravity, Equation (4.2.9) is adjusted and takes the form:

FTi
= −

∫

∂Ωcv

Λ

2
∑

j=1

Tij(φξj
+ ρghξj

)dΓi, (8.1.2)

where ξi are local curvilinear parametric coordinates, Γi is the parametric coordinate sur-

face increment and φξj
(respectively hξj

) is the derivative of φ (respectively h) with respect

to ξj and T = JJ−1KJ−T is the general tensor defined via the Piola transformation which
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is a function of the Cartesian permeability tensor and geometry, where Jij = ∂xi/∂ξj is

the Jacobian of the local curvilinear coordinate transformation, and J = xξyη − yξxη is

the Jacobian determinant and ρ̄ is defined by Equation (2.2.7).

An IMPES algorithm, section 4.2.5, is adopted here using the consistent locally conser-

vative control volume distributed Darcy flux approximation. Explicit first order forward

Euler method is used for the temporal discretisation. In this chapter, we consider a finite

volume edge based cell vertex approximation with focus on the spatial discretisation.

Scheme A: Velocity Upwind

In the absence of capillary forces, the Darcy velocities of the aqueous and oleic phases

including gravity are written as:

Vw = −λwK(∇φ + ρwg∇h), (8.1.3)

Vo = −λoK(∇φ + ρog∇h).

We recall the upstream mobility weighting finite volume approximation written as:

(Sn+1
pi

− Sn
pi

)τi + ∆t

NedV
∑

j=1

λp(S
n
L,Sn

R)wpe(i,j)(φ
n+1) = ∆tMpi

, (8.1.4)

as before where the approximate upwind mobility is defined according to the sign of the

local wave velocities wpe with respect to the local frame of reference aligned with the

direction i to j along the edge e(i, j), as defined in section 4.2.2. Here, Sn
L,Sn

R are the left

and right hand values of the phase saturation vectors with respect to edge e(i, j) and n

denotes the time level of the scheme. The upwind scheme is then written as:

λp(S
n
L,Sn

R) = {
λp(S

n
L) wpe ≥ 0

λp(S
n
R) wpe < 0

(8.1.5)

The local pth phase wave velocity corresponds with the net edge based single phase Darcy

flux (for the phase p) at the edge e(i, j), referred to herein as wpe and consists of the sum

of the sub-face discrete fluxes expressed on each cell sharing the edge e as:

Fpi
(φ) = −

∫

∂Ωcv

λp

2
∑

j=1

Tij(φξj
+ ρ̄ghξj

)dΓi. (8.1.6)

The first order upwind scheme is defined with Sn
L = Sn

i and Sn
R = Sn

j . Note here that we

solve for both the water and oil saturations.
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Scheme B: Characteristic Upwind

Using the fractional approach the integral continuity equations (8.1.1) reduce to a

hyperbolic equation for the water saturation S, written as:

∫

Ωcv

∂S

∂t
+

∮

∂Ωcv

V · n̂ds = 0 (8.1.7)

in the absence of source terms where V is the water velocity and takes the form:

V(S) = f(S)VT + γ(S)VG. (8.1.8)

Here,

VT = Vw + Vo

is the total velocity and

VG = g(ρo − ρw)K∇h.

The fractional flow is defined by:

f(S) =
λw(S)

Λ(S)
=

MSζ

MSζ + (1 − S)ζ
(8.1.9)

and the function γ corresponds to:

γ(S) = λof(S) =
λo(S)λw(S)

Λ(S)
=

M(1 − S)ζSζ

MSζ + (1 − S)ζ
(8.1.10)

where ζ defines to the order of mobility. The edge-based vertex centered finite volume

discretization of Equation (8.1.7) on unstructured grids takes the form:

(Sn+1
i − Sn

i )τi + ∆t

NedV
∑

j=1

[f(Sn
L,Sn

R)FTe(i,j)
(φn+1) + γ(Sn

L, Sn
R)FGe(i,j)

] = 0, (8.1.11)

where FTe(i,j)
is the net edge based flux defined by Equation (8.1.2) and accounts for the

total velocity contribution. The net component of flux due to gravity FGe(i,j)
includes the

gravity potential discretisation written as

FG = −
∫

∂Ωcv

(ρw − ρo)g

2
∑

j=1

Tijhξj
dΓi. (8.1.12)

The net Darcy flux is then defined by Ve where

Ve(S) = f(S)FTe(i,j)
(φn+1) + γ(S)FGe(i,j)

, (8.1.13)
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and the characteristic wave velocity is written as

wce(S) =
∂f

∂S
FTe(i,j)

(φn+1) +
∂γ

∂S
FGe(i,j)

. (8.1.14)

The characteristic upwind flux approximation used here is defined by:

Ve(S
n
L, Sn

R) =















Ve(S
n
L) if wce(S) ≥ 0, for S ∈ [SL, SR],

Ve(S
n
R) if wce(S) ≤ 0, for S ∈ [SL, SR],

VLLF
e otherwise

(8.1.15)

where at sonic points, a Local Lax Friedrichs (LLF) flux approximation VLLF
e is used as

an entropy fix in order to disperse expansion shocks, [148, 73]. Again, here the sonic loci

are determined using a test for the change of sign in wce evaluated at the left and right

states of the local Riemann problem. Practically, the LLF approximation is adopted when

wce(SL) < 0 and wce(SR) > 0 as inspired from [73]. The Local Lax Friedrichs numerical

flux is written as:

VLLF
e =

1

2
[(V(Sn

L) + V(Sn
R)) − max

[SL,SR]
| wce | (Sn

R − Sn
L)]. (8.1.16)

8.1.2 Multidimensional Schemes and Tracing Velocities

In the case of two phase immiscible flow, the tracing velocities are well defined and

correspond to the total Darcy flux FTe on the grid edges as detailed in chapters 5-7. The

tracing parameters are independent of saturation data.

In this section, the family of genuinely multidimensional edge-based finite volume schemes

on unstructured grids using a data formulation is adopted. The details of approximation

are discussed in section 7.2. In the following, we adopt the same notations as in chapter

7, section 7.2. The multidimensional data reconstructions with respect to the key edge

e(i, j) (Figure7.7(b)) are defined by:

Sn
Le

= (1 − ξe)S
n
i + ξe[χeS

n
1 + (1 − χe)S

n
2 ] (8.1.17)

Sn
Re

= (1 − ηe)S
n
j + ηe[χeS

n
4 + (1 − χe)S

n
3 ]

where

χe = {
1 if the wave velocity is pointing from subcell I to subcell IV,

0 if the wave velocity is pointing from subcell II to subcell III.
(8.1.18)

and 0 ≤ ξ ≤ 1 and 0 ≤ η ≤ 1 denote the weighting factors where ξ (respectively η) is

used to interpolate the left (respectively right) state as a convex linear combination of
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Si (respectively Sj) and S1 (respectively S3) or S2 (respectively S4) depending on the

direction of the wave speed. Note that here node 1 and 3 coincide (respectively 2 and 4)

when cell1 (respectively cell2) degenerates to a triangle.

The focus here is on the definition of the tracing parameters ξ and η for gravity driven

two phase flow. Instead of using the total Darcy fluxes for the tracing, we propose to use

two different tracing velocities. The first formulation corresponds with tracing according

to the physical velocities defined in Equation (8.1.3). The second formulation uses the

characteristic water phase velocity defined below. Another alternative could also be to

use the total Darcy flux for upwinding. Nevertherless, in the case of high gravity numbers

where the total Darcy flux term FT is negligible, the flow is mainly driven by the gravity

term FG. Due to this limitation, this method will not be considered in this work.

Formulation I: Tracing with Phase Velocities

Formulation I follows section 7.2 where the resultant total Darcy flux FTe used for the

tracing is now replaced by the resultant phase Darcy flux at the centre of the edge wpe

defined by Equation (8.1.6) for the tracing step. Also, note that wpe reduces indeed to

FTe in the absence of gravity. Hence, the flux ratios R1e and R2e are expressed as:

R1e =
wpc

wpe

, R2e =
wpd

wpe

; (8.1.19)

and R = max(R1e, R2e, 0). Then, the weighting factor takes the form:

ξe ≤ β min(1, R) with β =

{

1
3

if wpa < 0 and wpb
< 0,

1
2

otherwise
(8.1.20)

Formulation II: Tracing with Characteristic Velocity

First, define the characteristic flux at the edge e(i, j) for the aqueous phase as:

Wce =

{

Ve(SR)−Ve(SL)
SR−SL

, | SR − SL |≥ ǫ;

wce(S), | SR − SL |≤ ǫ.
(8.1.21)

where the characteristic wave speed wce is defined in Equation (8.1.14) and the Darcy flux

Ve is defined by Equation (8.1.13).

Note here that formulation II involves the resultant characteristic wave velocity for the

water phase at the centre of the edge Wce defined by Equation (8.1.21) in the tracing step
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instead of using the resultant total Darcy flux FTe .

Then, the flux ratios R1e and R2e become:

R1e =
Wcc

Wce

, R2e =
Wcd

Wce

, (8.1.22)

and the weighting factor is written as:

ξe ≤ β min(1, R) with β =

{

1
3

if Wca < 0 and Wcb
< 0,

1
2

otherwise
(8.1.23)

with R = max(R1e, R2e, 0).

8.1.3 Case Study of Gravity Segregation: Oil Shale Barrier

Gravity driven two-phase flow is used to investigate the different multidimensional

formulations in two dimensions. Quadratic relative permeabilities are assumed with ζ = 2.

The mobility ratio is set to unity. The permeability tensor is assumed to be diagonal

isotropic.

The initial condition consists of an oil lens sitting on top of a shale barrier, in an otherwise

gas filled reservoir, with solid walls at the sides and top boundaries.

Pressure is specified on the lower boundary. The boundaries and initial interface are

shown in Figure 8.1. All oil saturations are shown at the same output time 0.25 PVI

Figure 8.1: Characteristics

where the shock due to the downward moving heavier water phase has formed followed

by the Buckley Leverett expansion. A CFL of 0.45 is used for low order. The time step

is reduced by a factor 2 for higher order results.
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Upstream Upwinding Characteristic upwinding
Scheme A Scheme B

Standard first order  
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Figure 8.2: Reference Standard First order and higher order Solutions on a 65x65 Carte-
sian mesh.

Scheme Upwind
A Velocity
B Characteristic

Table 8.1: Notation - Upwind schemes.

Reference Solutions

Reference solutions on a uniform 65x65 Cartesian grid using standard first order and

standard higher order (detailed in chapter 6) are shown in Figure 8.2 for both upwind

formulations A and B. Results are computed on unstructured triangular and quadrilateral

grids shown in Figure 8.3.

The first-order schemes smears the discontinuity (Figure 8.2(a) and (b)). Higher order

results (figures 8.2(c) and (d)) for both schemes A and B show a noticeable improvement

of the saturation front resolution compared with the low order method (figures 8.2 (a)

and (b)).

The results using scheme B show better solution quality overall than those computed
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Combination Correspondance
A-I Velocity upwind Phase velocity tracing
A-II Velocity upwind Characteristic tracing
B -I Characteristic upwind Phase velocity tracing
B -II Characteristic upwind Characteristic tracing

Table 8.2: Notation - Multidimensional formulations.

using the upstream mobility upwind scheme A in terms of saturation front detection.
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Figure 8.3: Meshes.

Multidimensional Solutions

Standard first order results on the unstructured grids show a smeared front for both

upwind formulations with scheme B providing better resolution of the rarefaction and a

more accurate position of water front than the scheme A.

The multidimensional velocity upwind characteristic trace formulation (A-II) shows a sign

of instability and provides oscillatory results on both triangular and quadrilateral grids

as indicated in Figures 8.4(e) and 8.5(e).

Also, the characteristic upwind using velocity tracing formulation (B-I) yields overshoots

in the saturation profile on the quadrilateral grid (Figure 8.5(d)). This is most likely due

to the characteristic velocity and phase fluxes having opposite signs, which results in an

inconsistency between the upwind strategy and tracing fluxes used in the multidimen-

sional tracing step.

Note here that the multidimensional characteristic upwind velocity trace (B-I) result on

the triangular mesh in Figure 8.4(d) is essentially oscillation free. This observation infers
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that the structure of the triangular mesh has contributed in restricting the weighting

coefficients in regions where the same scheme failed on the quadrilateral mesh adding a

stabilizing effect to the formulation.

Multidimensional results using consistent tracing options (A-I) (Figures 8.4(c)) and 8.5(c))

and (B-II) (Figures 8.4(f) and 8.5(f)) provide oscillation free results with noticeably

sharper resolution of the saturation front, particularly in regions where a cross flow is

important, when compared with standard first order.



119

Velocity Upwinding Characteristic upwinding
Scheme A Scheme B

Standard first order  
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Tracing on the Wave Velocity

Formulation I  
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Tracing on the Characteristic velocity

Formulation II  
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Standard Higher order  
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Figure 8.4: Case1: Saturation profiles on the triangular mesh.
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Velocity Upwinding Characteristic upwinding
Scheme A Scheme B

Standard First Order  
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Tracing with phase velocity

Formulation I  
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Tracing with characteristic velocity

Formulation II  
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Standard higher Order  
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Figure 8.5: Case1: Saturation profiles on the unstructured quadrilateral grid.
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8.2 Polymer flood three component two phase flow

systems

8.2.1 Flow Equations

The integral conservation equations for a polymer flood three component two phase

flow system over Ω in the absence of source and sink terms are written as:
∫

Ω

∂S

∂t
+

∮

∂Ωcv

F(S) · n̂ds = 0, (8.2.1)

where F = (V, CV)T and S is the vector of conservative variables defined by Equation

(2.3.12) (see section 2.3.2). In this section, S denotes the miscible phase saturation and

C the component concentration in the miscible phase, here the aqueous phase, V refers

to the Darcy velocity of the aqueous phase defined by:

V(S) = f(S)VT + γ(S)VG. (8.2.2)

The fractional flow takes the same form as in Equation (8.1.9) where the water viscosity

is now a function of concentration and is set to µw = 0.5+C. For convenience, the gravity

term is omitted in the following and the Darcy velocity reduces to

V(S) = f(S)VT . (8.2.3)

8.2.2 Characteristic Upwind approximation

We use a characteristic decomposition upwind scheme. The edge based vertex centered

finite volume discretisation of Equation (8.2.1) with respect to control volume j takes the

form

τj

Sn+1
j − Sn

j

∆t
+

NedV
∑

e=1

f(Sn
Le

,Sn
Re

)FTe = 0, (8.2.4)

where FTe is the discrete total Darcy flux evaluated at the centre of the edge e. The

system is first decomposed into characteristic form. Decomposition is performed via the

local transformation with respect to the edge e

∆S = Re∆W, (8.2.5)

where Re is the matrix of right eigenvalues of the system Jacobian matrix A = ∂F

∂S
and

the matrix of eigenvalues Γe is defined via

Γe = R−1
e AeRe (8.2.6)
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and ∆S, ∆W represent the respective conservative and characteristic variable increments.

The matrix of discrete eignevalues Γe is written as

Γe =









∂f
∂S

0

0 f
S









. (8.2.7)

and the transformation matrix Re is defined by:

Re =









1 ∂f
∂C

C C ∂f
∂C

+ S( f
S
− ∂f

∂S
)









. (8.2.8)

The upwind scheme is in effect applied to each characteristic wave component and the

discrete system is recomposed into a conservative form. The numerical flux corresponding

to the edge e is defined by:

f(SLe
,SRe

) =
1

2
[(f(SLe

)) + f(SRe
) −R | Γe | R−1(SRe

− SLe
)], (8.2.9)

Remark 8.2.1 In the presence of stagnation points or if equal eigenvalues are detected

(in which case, Re becomes singular), a Rusanov flux approximation is locally applied

[55]. The approximate flux thus takes the form:

f(SLe ,SRe) =
1

2
[(f(SLe)) + f(SRe)− | ΓRU

e | (SRe − SLe)], (8.2.10)

where

| ΓRU |= max
[SL,SR]

max
k

| Γk
e(S) | I (8.2.11)

The matrix R is singular when the eigenvalues are equal. Also at sonic points, a Rusanov

local Lax Friedrichs flux is applied locally i.e.

f(SLe,SRe) =
1

2
[(f(SL) + f(SR))− | ΓRU | (SR − SL)] (8.2.12)

First order reconstructions correspond with SL = Si and SR = Sj. The CFL condition

applies with respect to the maximum eigenvalue of the system.

8.2.3 Higher Order Approximations

Higher order approximation is introduced wave by wave and applied to the charac-

teristic variables W , followed by recomposition to the conservative variables [55, 51].
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Here, higher order expansions are introduced componentwise for the left and right states

respectively where the higher order reconstruction are applied to the characteristic W,

conservative S or the primitive variables C repectively. We refer to chapter 5, section 5.2

for details of the higher order formulation on unstructured meshes, the same notation is

adopted in this subsection.

Conservative Variables

The componentwise higher order left and right states are defined with respect to the

key edge e (joining vertices i and j) are expressed as:

SL = Si +
1

2
Φ(r+

ji)∆Sji, (8.2.13)

SR = Sj −
1

2
Φ(r−ji)∆Sji.

where Φ(r±) are the slope limiters which are functions of adjacent discrete gradients

r+
ji = (∆Siu/∆Sji), (8.2.14)

r−ji = (∆Sdj/∆Sji).

Primitive Variables

Writing the scheme using the primitive variables gives [55]

SL = Si +
1

2
PeΦ(r+

ji)∆Sji, (8.2.15)

SR = Sj −
1

2
PeΦ(r−ji)∆Sji.

where Pe denotes the transformation matrix between conservative and primitive variables

and the slope limiter Φ is fucntion of

r+
ji = (∆Ciu/∆Cji), (8.2.16)

r−ji = (∆Cdj/∆Cji).

Characteristic Variables

Writing the scheme using the characteristic variables gives

SL = Si +
1

2
ReΦ(r+

ji)R
−1
e ∆Sji, (8.2.17)

SR = Sj −
1

2
ReΦ(r−ji)R

−1
e ∆Sji.
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where Re denotes the transformation matrix between characteristic and conservative de-

fined in Equation (8.2.5) and the slope limiter Φ is fucntion of

r+
ji = (∆Wiu/∆Wji), (8.2.18)

r−ji = (∆Wdj/∆Wji).

8.2.4 Multidimensional First Order Approximation

In this section, a family of genuinely multidimensional edge-based finite volume schemes

on unstructured grids using a data formulation (chapter 7, section 7.2) is applied to the

system.

Componentwise multidimensional data reconstructions with respect to the key edge e(i, j)

(Fig.7.7(b)) are proposed where three different tracing strategies are considered.

Scheme C: Conservative Tracing

The componentwise multidimensional right an left states reconstruction is written as:

Sn
Le

= (1 − ξe)S
n
i + ξe[χeS

n
1 + (1 − χe)S

n
2 ], (8.2.19)

Sn
Re

= (1 − ηe)S
n
j + ηe[χeS

n
4 + (1 − χe)S

n
3 ],

where in this formulation, the same scalar weighting factor ξe (ηe) is used and where

both saturation and concentraion components are traced using the characteristic Rankine-

Hugoniot wave speed Wce defined by Equation (8.1.21).

Scheme D: Characteristic Tracing

In the second formulation, the multidimensional approximation is introduced wave

by wave and applied to the characteristic variables followed by recomposition to the

conservative variables. The left and right multidimensional characteristic reconstruction

with respect to the edge e are defined by:

SLe = Si + RcξeχeR
−1
c ∆Si1 + Rdξe(I − χe)R

−1
d ∆Si2, (8.2.20)

SRe = Sj + RaηeχeR
−1
a ∆Sj3 + Rbηe(I − χe)R

−1
b ∆Sj4,

where the weighting factors are defined in a tensorial form, e.g.
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ξe =









ξ1 0

0 ξ2









. (8.2.21)

The definition of the weights ξ1 and ξ2 follows Equation (7.2.4) and is based on the first

and second characteristic wave velocities, Wce defined in Equation (8.1.21) and f
S
Ve(S)

respectively.

Scheme E: Primitive Tracing

The third tracing option involves tracing on the characteristic Rankine-Hugoniot wave

speed Wce for the saturation variable and tracing on f
S
Ve(S) multidimensional recon-

struction of the concentration variable. The left and right edge-based multidimensional

saturation and concentration reconstructions with respect to the key edge e, are written

as:

SLe = Si + Pcξeχe∆Ci1 + Pdξe(I − χe)∆Ci2, (8.2.22)

SRe = Sj + Paηeχe∆Cj3 + Pbηe(I − χe)∆Cj4,

where the tensors of weighing factors correspond to those used for the multidimensional

characteristic reconstructions Equation (8.2.4).

8.2.5 Case Study of a Non Linear High Mobility Full Tensor

Polymer Flood

The three component two-phase flow test cases consists of a polymer flood into an

oil filled reservoir, where the injected aqueous phase is comprised of polymer miscible

with water. Quadratic relative permeabilities are assumed with ζ = 2 and the normalised

aqueous viscosity is a function of polymer concentration with µ = 0.5 + C. Injection of

polymer miscible with water causes a contact discontinuity to form in aqueous saturation,

which terminates the rarefaction before the shock. The reference solution on a 256x256

Cartesian grid is shown in Figure 8.8.

The numerical case involves a full homogeneous permeability tensor with principal axes

oriented at 45 degrees to the reservoir domain with 40 to 1 anisotropy ratio. Water and

polymer are injected on the left hand boundary and specified pressure on the right hand

boundary. The mobility ratio is set to be equal to 10.
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The computed saturation are shown in figures 8.6-8.7 at the same output time using a

64x64 regular grid, with the prescribed initial data

{

S, C = 0.05, 0.1, x ≤ 0.0;

S, C = 1.0, 0.7, otherwise.
(8.2.23)

Higher Order solutions As in the one dimensional case, first order results (Figure

8.6(a),(b)) show smeared front resolution whereas the higher order method dramatically

improves the resolution of the saturation profile.

The higher order upwind formulation with limiting applied to the conservative variables

(Figures 8.6(c), 8.6(d)) fails to preserve the positivity of the solutions. Spurious oscil-

lations are clearly visible in the concentration profile (Figure 8.6(d)). In contrast, the

higher order results using both the primitive (Figures 8.6(e), 8.6(f)) and characteristic

(Figures 8.6(g), 8.6(h)) variables are oscillation free. Note that the characteristic based

higher order results provide the best results with sharp shock front and superior resolu-

tion of the rarefaction in the saturation profile when compared with the primitive and

conservative formulations which both introduce extra diffusion in the solution particularly

for the rarefaction.

Multidimensional Solutions All multidimensional results (Figure 8.7) are essen-

tially oscillation free and show a clear improvement of the front resolution in comparison

with the first order results where the saturation and concentration fronts are captured

more accurately across the grid with significantly reduced cross-wind diffusion.

The characteristic based multidimensional results are shown in (Figure 8.7 (e), 8.7(f))

and provide the best results with improved resolution in the saturation front and clearly

sharper concentration profile.

8.3 Conclusions

Multidimensional first order edge based upwind schemes have been applied to Gravity

driven flow where different tracing velocity formulations are tested. Two phase flow nu-

merical results are presented. Comparisons with single point upstream weighing scheme

are made on triangular and quadrilateral unstructured grids. The multidimensional

schemes provide better resolution of the saturation front than the standard first order
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Figure 8.6: Saturation and concentration solutions using standard first order and higher
order schemes.
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Figure 8.7: Multidimensional saturation and concentration profiles.
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Figure 8.8: Reference solution on 256x256 Cartesian grid. (a) Saturation profile; (b)
concentration profile.

methods where the best results are given when characteristic tracing is used in combina-

tion with charateristic upwinding.

Also, both higher order and multidimensional upwind schemes are also introduced for

hyperbolic systems where different limiting strategies involving primitive, conservative

and characteristic variables are adopted. Numerical test cases involving two phase three

component flow demonstrate the benefits of the schemes when compared to standard first

order approximations and illustrate the advantage of using the characteristic variables

instead of the primitive and conservative variables.



130

Chapter 9

Cell-Based Multidimensional

Schemes on Unstructured Meshes

In this chapter, a cell-based multidimensional flux-consistent upwind formulation is

introduced for reservoir simulation on general unstructured grids in two dimensions. The

cell-based formulation is presented in 9.1. The motivation for the cell-based formulation

is the use of sub-cell fluxes for determining tracing trajectories. Sub-cell fluxes are defined

at a finer scale than edge-assembled fluxes which are used in the edge-based formulation.

Analogous sub-cell streamline tracing is used in [131] for the streamline method. The

cell-based and edge-based methods are contrasted in terms of properties and results in

the work below.

9.1 Cell Based Local Multidimensional Approxima-

tions

The notation adopted in this section is defined in chapter 7, section 7.2. The same

conventions for the flux definitions are used here.

Consider the key edge e and the adjacent cells sharing the edge as shown in Figure 9.1.

Let e1 and e2 denote the control volume sub-faces connected to edge e(i, j) oriented from

i to j belonging to the adjacent cells cell1 and cell2.
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9.1.1 Formulation using data

First, we present a family of genuinely multidimensional cell-based finite-volume schemes

on unstructured grids using a data based formulation.

The left and right states at the integration point of the control volume sub-faces connected

to the edge e(i, j) are now defined on triangular cells by:

Sn
Le1

= (1 − ξe1)S
n
i + ξe1S

n
1 , (9.1.1)

Sn
Re1

= (1 − ηe1)S
n
j + ηe1S

n
1 ;

and on quadrilateral cells by:

Sn
Le2

= (1 − ξe2)S
n
i + ξe2S

n
2 , (9.1.2)

Sn
Re2

= (1 − ηe2)S
n
j + ηe2S

n
4 .

The weights are locally defined using the subcell sub-face fluxes as shown in Figure 9.1

with 0 ≤ ξeq ≤ 1 and 0 ≤ ηeq ≤ 1 for q = 1, Nq.

i j

1

c

a

e

(a) Triangular cell (cell1)

bd

ei j

2 4

(b) Quadrilateral cell

(cell2)

Figure 9.1: Local tracing: local interpolant points are indicated by a star and tracing
streamlines are shown in dotted arrows. Grey arrows illustrate sub-cell fluxes calculated
at the centre of cell edges.

Linear local positivity analysis

First we shall consider the linear case. Stability of the scheme requires a positive

coefficient contribution (convex average) corresponding to each contributing node of the
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control volume update. Expanding equation (4.2.17) with respect to the data yields:

Sn+1
j = αjS

n
j +

NedV
∑

e=1

Nq
∑

ic=1

∑

k∈cellic,k 6=j

α
(ic)
k Sn

k , (9.1.3)

where NedV is the total number of constitutive edges connected to vertex j. The scheme

of Equation (9.1.3) is called locally positive if αic
k ≥ 0, ∀ ic and ∀ k belonging to cell ic

such that k 6= j and αj ≥ 0 subject to the consistency condition

αj +

NedV
∑

e=1

Nq
∑

ic=1

∑

k∈cellic,k 6=j

α
(ic)
k = 1. (9.1.4)

Triangular cell: cell1

The contributions from cell1 to the control volume j update are written as:

τj

∆t
(Sn+1

j − Sn
j ) = [(1 − ξe1)S

n
i + ξe1S

n
1 )]F+

Te1
(9.1.5)

+ [(1 − ηe1)S
n
j + ηe1S

n
1 ]F−

Te1

+ [(1 − ξa1)S
n
1 + ξa1S

n
i ]F+

Ta1

+ [(1 − ηa1)S
n
j + ηa1S

n
i ]F−

Ta1
+ ET1,

where ET1 (extra terms) signifies any contributions coming from cells other than cell1.

The associated weights corresponding to node i are expressed as:

α
(1)
i =

∆t

τj

((1 − ξe1)F
+
Te1

+ ξa1F
+
Ta1

+ ηa1F
−
Ta1

). (9.1.6)

i j

1

(a) Stagnation point

i j

1

(b) β1 = 1

2

i j

1

(c) β1 = 1

Figure 9.2: Weighting factor for triangular cells.

The purpose of this subsection is to derive conditions governing interpolation weights

over each cell sharing the key edge e, so that the scheme satisfies the local positivity
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condition.

For the scheme of Equations (9.1.1) to satisfy the local positivity condition on, a necessary

condition is:

ξe1F
+
Te1

− ηa1F
−
Ta1

≤ F+
Te1

+ ξa1F
+
Ta1

. (9.1.7)

Equation (9.1.7) implies that in the case where F+
Te1

= 0 i.e. the sub-face flux is oriented

from j to i, the upwind information with respect to the edge c does not originate from

cell1 and inequality in Equation (9.1.7) reduces to

−ηa1F
−
Ta1

≤ ξa1F
+
Ta1

, (9.1.8)

which yields ηa1 = 0 when the sub-face flux FTa1 < 0 and is oriented from node j to node

1.

Applying the same reasoning while considering the control volume i instead of j, this

observation leads to the first constraint at a stagnation point namely:

Theorem 9.1.1

if FTe1 is oriented from i to j, and FTc1 is pointing from i to 1 as illustrated in Figure 9.2

then ξe1 = 0. This means that at a stagnation point the standard single-point upstream

weighting scheme is recovered locally on the control volume sub-face belonging to cell1.

Proof The coefficient of node 1 in the contributions from cell1 to the control volume i

update in the case where both subcell fluxes FTe1 and FTc1 are leaving the control volume

i reduces to:

−ξe1F
+
Te1

. (9.1.9)

Local positivity condition requires ξe1 = 0.

In the case where FTe1 = F+
Te1

> 0, FTa1 = F−
Ta1

< 0 i.e. FTe1 is oriented from i to j, FTa1

is oriented from node j to the node 1 as shown in Figure 9.2(a), a sufficient condition for

the inequality of Equation (9.1.7) to be satisfied is that:

ξe1|FTe1 | + ηa1|FTa1 | ≤ |FTe1 |. (9.1.10)

Setting the weights to be proportional to the ratio of the inward and outward fluxes, i.e.

ηa1 = β1
FTe1

|FTa1 |
and ηa1 ≤ 1 (9.1.11)
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yields

β1 ≤
1

2
and ξe1 ≤

1

2
. (9.1.12)

Notice here that the condition of Equation (9.1.12) is relaxed when the sub-cell flux FTa1

is positive i.e. F−
Ta1

= 0 (Figure 9.2(b)) and the inequality 9.1.12 becomes

β1 ≤ 1 and ξe1 ≤ 1. (9.1.13)

Furthermore, define the flux ratio Re1 as

Re1 =
FTc1

FTe1
, (9.1.14)

then, the weighting factor takes the form:

ξe1 ≤ β1 min(1, max(Re1, 0)) with β1 = { 1/2 if FTc1 < 0,

1 otherwise.
(9.1.15)

Quadrilateral cell: cell2

The contributions from cell2 to the control volume j update are written as:

τj

∆t
(Sn+1

j − Sn
j ) = [(1 − ξe2)S

n
i + ξe2S

n
2 )]F+

Te2
(9.1.16)

+ [(1 − ηe2)S
n
j + ηe2S

n
4 ]F−

Te2

+ [(1 − ξb2)S
n
4 + ξb2S

n
2 ]F+

Tb2

+ [(1 − ηb2)S
n
j + ηb2S

n
i ]F−

Tb2
+ ET2,

where ET2 (extra terms) signifies any contributions coming from cells other than cell2.

The associated weights corresponding to node i are expressed as:

α
(2)
i =

∆t

τj
((1 − ξe2)F

+
Te2

+ ηb2F
−
Tb2

). (9.1.17)

For the scheme of Equations (9.1.2) to satisfy the local positivity condition, a necessary

condition is:

ξe2F
+
Te2

− ηb2F
−
Tb2

≤ F+
Te2

. (9.1.18)

Following a similar argument as for a triangular cell, a local positivity constraint at a

stagnation point is established.

Theorem 9.1.2



135
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(a) Stagnation point

i j

2 4

(b) β2 = 1

2

i j

2 4

(c) β2 = 1

Figure 9.3: Weighting factor for quadrilateral cells.

if FTe2 is oriented from i to j, and FTd2
is pointing from i to 2 as illustrated in Figure

9.3(a) then ξe2 = 0. This means that at a stagnation point the standard single-point

upstream weighting scheme is recovered locally on the control volume sub-face belonging

to cell2.

Proof The coefficient of node 2 in the contributions from cell2 to the control volume i

update in the case where both subcell fluxes FTe2 and FTd2
are leaving the control volume

i reduces to:

−ξe2F
+
Te2

. (9.1.19)

Local positivity condition requires ξe2 = 0.

In the case where FTe2 = F+
Te2

> 0, FTb2
= F−

Tb2
< 0 i.e. FTe2 is oriented from i to j, FTb2

is oriented from node j to the node 4 as shown in Figure 9.3(b), a sufficient condition for

the inequality Equation (9.1.18) to be satisfied is that:

ξe2|FTe2 | + ηb2|FTb2
| ≤ |FTe2 |. (9.1.20)

Setting the weights to be proportional to the ratio of the inward and outward fluxes, i.e.

ηb2 = β
FTe2

FTb2

with ηb2 ≤ 1, (9.1.21)

yields

β2 ≤
1

2
and ξe2 ≤

1

2
. (9.1.22)

Note here that the condition Equation (9.1.22) is relaxed when the sub-cell flux FTb2
is

positive i.e. F−
Tb2

= 0 (Figure 9.3(c)) and the inequality Equation (9.1.22) becomes

β2 ≤ 1 and ξe2 ≤ 1. (9.1.23)
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Furthermore, define the flux ratio Re2 as

Re2 =
FTd2

FTe2
, (9.1.24)

then, the weighting factor takes the form:

ξe2 ≤ β2 min(1, max(Re2, 0)) with β2 = { 1/2 if FTb2
< 0,

1 otherwise.
(9.1.25)

Stability

The associated weights of node j can be expressed in the form:

αj = 1 +
∆t

τj

NedV
∑

e=1

∑

ic=1,Nq

(1 − ηeic
)F−

Teic
, (9.1.26)

for both triangular and quadrilateral grids. The stability condition is derived from Equa-

tion (9.1.26) which shows that the scheme permits a larger CFL number than the standard

upwind method if ηeic
are not all equal to zero.

∆t < − τj
∑NedV

e=1

∑Nq
ic=1(1 − ηeic

)F−
Teic

. (9.1.27)

Again the use of directional information will enhance stability of the method.

9.1.2 Relation between Edge and Cell based tracing formula-

tions

Consider a Cartesian grid with FTe1 = FTe2 =
FTe

2
≥ 0, the local weighting factors in

the cell based formulation are written as:

ξe1 ≤ β1 min(1, max(
FTd

FTe

, 0)), (9.1.28)

ξe2 ≤ β2 min(1, max(
FTc

FTe

, 0)).

Summing the contribution of node i in the update of the jth control volume over the cells

cell1 and cell2 sharing the edge e, the cell based formulation could be interpreted as an

edge based formulation with a corresponding global weighting factor:

ξCellbased
e =

1

2
(ξe1 + ξe2)

=
1

2
(β1 + β2) min(1,

β1

β1 + β2
max(

FTd

FTe

, 0) +
β2

β1 + β2
max(

FTc

FTe

, 0),(9.1.29)
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where βk, k = 1, 2 takes the values, 0, 1/2 or 1 depending on the subcell flux directions as

discussed in the previous section. Note here that the weighting factor in the edge based

formulation takes the form:

ξEdgebased
e = β min(1,

max(FTc , FTd
, 0)

FTe

), (9.1.30)

where the range of values for β is included in {0, 1/3, 1/2}. From Equations (9.1.29)

and (9.1.30), equivalence between edge-based and cell-based formulations is established

on Cartesian grids.

9.1.3 Nonlinear Flux formulation

As for the edge based multidimensional higher-order reconstructions, we present two

cell based formulations analogous to the schemes introduced in chapter 7, section 7.2.

However for unstructured grids, the cell-based scheme proves to be overall the most robust

and relies on sub-cell flux tracing therefore uses finer scale information.

Nonlinear Flux of Multi-dimensional Data

The first formulation involves multi-dimensional upwind data where we define the

generalized flux for e.g. triangle cell 1 by:

f(Sn
L) = f

(

(1 − ξe1)S
n
i + ξe1S

n
1

)

,

f(Sn
R) = f

(

(1 − ηe1)S
n
j + ηe1S

n
1

)

.

Nonlinear Multi-dimensional Flux

The second formulation involves the multi-dimensional upwind flux where we define

the generalized flux for e.g. triangle cell 1 by:

f(Sn
L) = (1 − ξe1)f(S

n
i ) + ξe1f(S

n
1 ),

f(Sn
R) = (1 − ηe1)f(S

n
j ) + ηe1f(S

n
1 ).

Here, we have used conditions of Equations (9.1.4) and (9.1.15) for stability in our calcu-

lations.
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9.2 Numerical Results

The test cases involve two phase flow (oil-water). Initial oil saturation is prescribed

and water is injected. Water saturation contours are shown in each case. Solid wall (zero

normal flow) boundary conditions are applied on all solid boundaries of each reservoir do-

main. In all cases, flow rate is specified at the (inflow) injector and pressure is prescribed

at the (outflow) producer and a consistent Darcy flux approximation is used.

Results involve full tensor coefficient velocity fields, with strong cross terms that induce

significant cross-flow across grid cells which also adds to the full tensor effect due to the

unstructured nature of the grid.

Three different cases are presented involving full and diagonal permeability tensors in

homogeneous and heterogeneous media. Linear and nonlinear fluxes are considered and

results are computed using a range of structured and unstructured triangular and quadri-

lateral grids.

9.2.1 Case 1: Linear Full Tensor Quarter Five Spot

The first case involves a linear Buckley Leverett flux, corresponding with linear relative

permeabilities. Injection and production wells are located along opposite sides of the

rectangular domain. Total mobility is constant and the permeability tensor is assumed to

be diagonal isotropic so that the pressure is solved exactly (in this particular case) using

the consistent Darcy flux. Thus any error in the saturation field is entirely due to the

convective flux approximation. Water saturation contours are shown at 0.5 pore volumes

injected (PVI).

The results are computed on an unstructured triangular Delaunay mesh shown in Figure

9.4(a). The standard single-point upstream weighting result (Figure 9.4(b)) shows that

the front is largely diffused. In contrast, the multidimensional schemes (Figures 9.4(c)

and 9.4(d)) provide sharper resolution and improve the symmetry of the problem about

the diagonal while reducing cross-flow spread of the saturation front.
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(d) Multi-D Cell-based

Figure 9.4: Case 1 - Saturation profiles for the linear quarter five spot problem with full
tensor at 45 degrees.

9.2.2 Case 2: Nonlinear Full Tensor Piston Flow

The second case involves a quadratic Buckley Leverett flow subject to fluid injection

on the left hand boundary and specified pressure on the right hand boundary and a full

homogeneous permeability tensor with principal axes oriented at 45 degrees to the reser-

voir domain with 10 to 1 anisotropy ratio. The water and oil relative permeabilities are

respectively krw = S2 and kro = (1−S)2 and the flow mobility ratio is set to unity M = 1.

The results are first computed on the unstructured triangular grid shown in Figure 9.5(a).

The nonlinear case highlights the difference between the flux of Multi-D data and Multi-D

flux. The reference solution on a 64x64 Cartesian grid is shown in Figure 9.6(a).

The results obtained using standard single-point upstream weighting are shown in Figures

9.5(b) and 9.5(c) and those obtained using the data based multidimensional wave-oriented

higher dimensional upwind scheme are shown in Figures 9.6(b) edge based and 9.6(d) cell

based. The multidimensional flux results are shown in Figures 9.6(c) (edge-based) and

9.6(e)(cell-based) on the unstructured triangular grid.

The standard first order results are quite smooth whereas the results obtained with the
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multidimensional schemes show reduced grid dependence and provide considerable im-

provement of front resolution with a clearer indication of the flow pattern, particularly

for the Multi-D cell-based schemes with results that are most consistent with the problem.
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(c) SPU Cell-based

Figure 9.5: Case 2 - Standard first order saturation profiles.
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Figure 9.6: Case 2 - Multi-Dimensional first order saturation profiles on triangular mesh.

The equivalent unstructured quadrilateral grid (Figure 9.7(a)) which has the same vertices

as the triangular grid of Figure 9.5(a) provides the second part of this test case. First, we
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show a comparison between standard first order edge-based and cell-based schemes which

highlights a difference between the two types of formalism that can become apparent even

with standard first order upwind (Figures 9.7(b),(c)). The first order results show strong

local grid orientation effect. The multidimensional comparison clearly demonstrates that

cell-based Multi-D (Figure 9.8) consistently provides the best results.
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(c) SPU Cell-Based

Figure 9.7: Case 2 - Standard first order saturation profiles on quad-mesh.
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based

Figure 9.8: Case 2 - Multi-Dimensional first order saturation profiles on quad-mesh.
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9.2.3 Case 3: Piston Flow in a Heterogeneous Medium

The third case involves linear injection into a heterogeneous medium where injection

and production wells are located along opposite sides of the rectangular domain. Results

are obtained using a 60x220 uniform grid. The permeability distribution is from Layer

3 of Model 2 of the 10th SPE Comparative Solution Project [28]. Figure 9.9 shows the

logarithm of the permeability field. Water saturation contours are shown at 0.005 pore

Figure 9.9: Logarithm of the permeability field.

volumes (PV) injected. Figure 9.10 shows saturation profiles computed with the standard

single-point upwind method (Figure 9.10(a)). The first order Multi-D edge based (Fig-

ure 9.10(b)) and cell based (Figure 9.10(c)) schemes provide similar and much improved

solution resolution compared to the standard method. The Multi-D schemes provide the

best overall resolution of the finger like features of the solution Figures 9.10(e),(f).
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Figure 9.10: Case 3 - Saturation profiles for the heterogeneous Case.

9.3 Conclusions

Families of cell-based multidimensional upwind formulations are presented for hyper-

bolic conservation laws on structured and unstructured quadrilateral and triangular grids.

The methods are coupled with consistent and efficient continuous Darcy flux approxima-

tions. The schemes are locally conservative, conditions for positivity are derived for linear

convection. The Multi-D methods permit higher CFL numbers than the standard upwind

scheme.

The new methods are compared with single point upstream weighting for two-phase flow

problems. The tests are conducted on both structured and unstructured grids and in-

volve full-tensor coefficient velocity fields. The comparisons demonstrate the benefits of

multidimensional schemes in terms of improved front resolution together with significant

reduction in cross-wind diffusion. While unstructured edge based formulation reduces

local crossflow grid orientation and distortion effects compared to single point upwind,
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the unstructured cell based multidimensional schemes yield the best results for the test

cases presented.
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Chapter 10

Higher Order Multidimensional

Schemes on Unstructured Meshes

In this chapter, two new higher order families of multidimensional upwind schemes

are presented for reservoir simulation on general unstructured grids in two dimensions.

The higher-order multi-dimensional convection schemes are coupled with existing continu-

ous Darcy-flux approximations, (chapter 4, section 4.2.1). Although the multidimensional

schemes presented in chapters 6, 7 and 9 effectively reduce the cross-wind numerical dif-

fusion in 2-D on general unstructured grids, they do not cure the longitudinal numerical

diffusion along the coordinate lines (see section 6, 6.3). These schemes are further en-

hanced by the development of a higher order multidimensional formulation and the net

result is a family of higher order multidimensional schemes that minimizes both crosswind

diffusion and coordinate line diffusion.

Standard higher order approximations are summarized in section 10.1 where an extension

to general unstructured quadrilateral meshes is presented. Section 10.2 is dedicated to the

formulation of cell-wise and edge-wise families of higher order multidimensional schemes.

Two-phase flow results are presented in section 10.3 that demonstrate the advantages of

the new higher-order higher-dimensional flux-continuous formulation.
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10.1 Higher-Order Multi-Phase Flow Approximations

on Unstructured Meshes

In this chapter, we recall the higher order reconstructions presented in chapter 5 for

distorted triangular meshes and present an extension of theses schemes to quadrilateral

meshes.

As detailed in chapter 5, section 5.2, the higher order reconstructions left and right hand

side states relative to the mid-point of each edge e (along which flux is to be defined) is

defined by expansions about the edge vertices at i and k, Figure 10.1. A local maximum

principle is enforced via the use of limiters that account for the non-uniformity of the

mesh (chapter 5, section 5.3) in order to prevent the introduction of spurious extrema in

the solution.

Referring to Figure 5.1 the left and right states SL and SR at the midpoint of the key

edge e (joining vertices i and k) are expressed as

SL = Si +
1

2
Φ+∆Ski, (10.1.1)

where Φ+ = φ(r+
ki) is a function of

r+
ki =

∆Siu/∆riu

∆Ski/∆rki

. (10.1.2)

and

SR = Sk −
1

2
Φ−∆Ski, (10.1.3)

where Φ− = φ(r−ki) is a function of

r−ki =
∆Sdk/∆rdk

∆Ski/∆rki

. (10.1.4)

Directional differences are constructed by extrapolating along the key edge defined by

vector ∆rki in the respective upstream and downstream directions, see arrows in Figure

5.1. Extrapolation of the respective upstream and downstream data is constrained such

that a local maximum principle is imposed. The upstream triangle is defined using nodes

i, 1, 2 and is labelled TU . Similarly the down stream triangle k, 3, 4 is labelled TD. The

space vector corresponding to edge e (∆rki) is extrapolated into the respective triangles

TU , TD, see arrows in Figure 10.1. This is illustrated further with respect to vertex i.

The edge vector is extrapolated to the point of intersection u and d respectively, on the

opposite edge of the triangle TU and TD respectively as shown in Figure10.1.

In the following, we refer to this formulation as the standard higher-order scheme.
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Figure 10.1: Higher order support for unstructured grids.

10.2 Higher Order Multi-Dimensional Schemes

The higher order multidimensional upwind schemes are comprised of two steps:

1. higher-order reconstruction of the data that corrects the directional diffusion of the

approximation, followed by

2. truly multi-dimensional upwind approximation on the higher order data.

Let S̃Le (S̃Re respectively ) define the left (right respectively) state higher order recon-

struction with respect to the edge e given above, in the following, S̄Le (S̄Re respectively)

denotes the left (the right respectively) higher order multidimensional saturation inter-

polant with respect to the edge e(i, j).

10.2.1 Edge Based Higher-Order Multi-Dimensional Approxi-

mation

Formulation using Data

Referring to Figure 10.2, the edge-based Higher order Multidimensional data based

formulation is written as

S̄Le = (1 − ξe)S̃Le + ξe[(1 − χe)S̃Lc + χeS̃Ld], (10.2.1)

S̄Re = (1 − ηe)S̃Re + ηe[(1 − χe)S̃Lb + χeS̃Ra].

The weighting coefficients ξ and η are defined using Equation (7.2.13).
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Figure 10.2: Higher order reconstructed data at the edges, dots illustrate the higher order
data at the control volume faces.

Nonlinear Flux Formulation

Similar to the first order multidimensional low-order schemes presented in chapters 6

and 7, nonlinear flux is treated using two formulations, where now the multidimensional

reconstructions involve the higher order states instead of the first order data.

Nonlinear Flux of Multi-dimensional Higher-order Data The second formu-

lation involves the multi-dimensional upwind flux correction of higher-order data recon-

struction where the generalized flux is written as:

F (S̄Le) = F ((1 − ξe)S̃Le + ξe[(1 − χe)S̃Lc + χeS̃Ld]), (10.2.2)

F (S̄Re) = F ((1 − ηe)S̃Re + ηe[(1 − χe)S̃Rb + χeS̃Ra]).

Nonlinear Multi-dimensional Flux of Higher-order Data The first formula-

tion involves multi-dimensional higher-order upwind data reconstruction where we define

the generalized flux by:

F (S̄Le) = (1 − ξe)F (S̃Le) + ξe[(1 − χe)F (S̃Lc) + χeF (S̃Ld)], (10.2.3)

F (S̄Re) = (1 − ηe)F (S̃Re) + ηe[(1 − χe)F (S̃Rb) + χeF (S̃Ra)].

Here, we have used conditions of Equations (7.2.2), (6.3.10) and (7.2.13) for stability in

our calculations.
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10.2.2 Cell-Based Higher-Order Multi-Dimensional Approxima-

tion

Formulation using data

Cell-based Higher order Multidimensional data based reconstruction takes the form:

S̄Le1 = (1 − ξe1)S̃Le1 + ξe1S̃Lc1, (10.2.4)

S̄Re1 = (1 − ηe1)S̃Re1 + ηe1S̃Ra1, (10.2.5)

with respect to cell1 and

S̄Le2 = (1 − ξe2)S̃Le2 + ξe2S̃Ld2, (10.2.6)

S̄Re2 = (1 − ηe2)S̃Re2 + ηe2S̃Rb2, (10.2.7)

with respect to cell2. The weighting coefficients ξe1 and ηe1 are defined using Equation

(9.1.7) whereas ξe2 and ηe1 are defined using Equation (9.1.18).

Nonlinear Flux formulation

As for the edge-based multidimensional higher-order reconstructions, we present two

cell based analogous formulations to the schemes introduced in section 10.1.

Nonlinear Flux of Multi-dimensional Higher-order Data The second formu-

lation involves the multi-dimensional upwind flux correction of higher-order data recon-

struction where we define the generalized flux by:

F (S̄Le1) = F ((1 − ξe1)S̃Le1 + ξe1S̃Lc1), (10.2.8)

F (S̄Re1) = F ((1 − ηe1)S̃Re1 + ηe1S̃Ra1),

with respect to the cell1 and

F (S̄Le2) = F ((1 − ξe2)S̃Le2 + ξe2S̃Ld2), (10.2.9)

F (S̄Re2) = F ((1 − ηe2)S̃Re2 + ηe2S̃Rb2),

with respect to cell2.

Equations (9.1.4), (9.1.15) and (9.1.25) have been used for stability.
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Nonlinear Multi-dimensional Flux of Higher-order Data The first formula-

tion involves multi-dimensional higher-order upwind data reconstruction where the gen-

eralized flux is defined by:

F (S̄Le1) = (1 − ξe1)F (S̃Le1) + ξe1F (S̃Lc1), (10.2.10)

F (S̄Re1) = (1 − ηe1)F (S̃Re1) + ηe1F (S̃Ra1),

with respect to the cell1 and

F (S̄Le2) = (1 − ξe2)F (S̃Le2) + ξe2F (S̃Ld2), (10.2.11)

F (S̄Re2) = (1 − ηe2)F (S̃Re2) + ηe2F (S̃Rb2),

with respect to cell2. Again, here, we have used Equations (9.1.4), (9.1.15) and (9.1.25)

for stability in our calculations.

10.3 Numerical Results

The test cases involve two phase flow (oil-water). Initial oil saturation is prescribed

and water is injected. Water saturation contours are shown in each case. Solid wall (zero

normal flow) boundary conditions are applied on all solid boundaries of each reservoir do-

main. In all cases, flow rate is specified at the (inflow) injector and pressure is prescribed

at the (outflow) producer and a consistent Darcy flux approximation is used.

Results involve full tensor coefficient velocity fields, with strong cross terms that induce

significant cross-flow across grid cells which also adds to the full tensor effect due to the

unstructured nature of the grid.

Four different cases are presented involving full and diagonal permeability tensors in homo-

geneous and heterogeneous media. Linear and nonlinear fluxes are considered and results

are computed using a range of structured and unstructured triangular and quadrilateral

grids. The flow mobility ratio is set to unity M = 1 for all cases presented here.

10.3.1 Case 1: Linear Full Tensor Quarter Five Spot

The first case is a study of a quarter five spot problem involving a linear Buckley Lev-

erett flux.Quarter five spot boundary conditions are imposed together with an anisotropic

full tensor permeability field with principal axes oriented at 45 degrees to the reservoir

domain with 10 to 1 anisotropy ratio.
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Water saturation contours are shown at 0.25 pore volumes injected (PVI) for the same

CFL number equal to 0.4.

The results are computed on an unstructured triangular Delaunay mesh shown in Figure

10.3(a). The standard single-point upstream weighting result (Figure 10.3(b)) shows that

the front is largely diffused. In contrast, the multidimensional schemes (Figures 10.3(c)

and 10.3(d)) provide sharper resolution and improve the symmetry of the solution about

the diagonal while predicting an earlier breakthrough with minimal cross-flow spread. We

note that the full tensor effect due to the grid is noticeably attenuated in the multidimen-

sional wave oriented results.

Higher-order results are shown in Figures 10.3(e), (g) and (h). The higher order Multi-D

edge-based (Figure 10.3(f)) and cell-based (Figure 10.3(g)) both show improved resolu-

tion of the front compared to the standard higher order results (10.3(e)), though the

cell-based method shows the best overall improvement in resolution, particularly near the

boundaries.
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Figure 10.3: Case 1 - Saturation profiles for the linear quarter five spot problem with full
tensor at 45 degrees.

10.3.2 Case 2: Full Tensor Point Source to Point Sink

The second case is a study of local grid orientation effect for a source sink problem

involving a linear Buckley Leverett flux and a diagonal isotropic permeability tensor.

Results are computed on a distorted triangular grid as shown in Figure 10.4(a). Reference

solution on a 81x81 Cartesian grid is depicted in Figure 10.4(b).

The permeability tensor is assumed to be diagonal isotropic so that the pressure field is

essentially Laplacian in this case. Injection and production wells are located half way



153

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Perturbed triangular

mesh

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Reference Solution on

a 81x81 Cartesian Grid

Scheme 1

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) Single point upwind

Order

Scheme 0

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) Multi-D Edge-based

Scheme 8

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(e) Multi-D Cell-based

Scheme 2

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(f) Standard Higher-order

Scheme 9

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(g) Higher-order Multi-D

Edge-based

Scheme 4

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(h) Higher-order Multi-D

Cell-based

Figure 10.4: Case 2 - Saturation profiles for the Source and Sink Linear problem.

along opposite sides of the rectangular domain, water saturation contours are shown at

0.2 PVI. First order results in Figure 10.4(c) show that the direction of triangulation

effectively introduces a full tensor effect due to the strong local grid orientation.

The edge-based and cell-based Multi-D schemes both improve front resolution reducing

the effect of grid orientation. The Standard higher order scheme improves front resolution,

however visible signs of grid orientation remain in the solution. In contrast, the higher-

order Multi-D schemes (Figures 10.4(g),(h)) provide higher resolution of the front while
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reducing grid orientation.

10.3.3 Case 3: Nonlinear Full Tensor Piston Flow

The third case is a study of a nonlinear Buckley Leverett piston flow as in chapter 9

section 9.2.2. For completeness we include earlier results at the first order multidimen-

sional schemes for easy comparison with higher order multidimensional results.

The results are computed on unstructured triangular and quadrilateral grids. The un-

structured triangular grid is shown in Figure 10.5(a).

The nonlinear case also highlights the difference between the flux of Multi-D data and

Multi-D flux. The results obtained using standard single-point upstream weighting are

shown in Figure 10.5(b) and those obtained using the data based multidimensional wave-

oriented higher dimensional upwind scheme are shown in Figures 10.6(a) edge based and

10.6(c) cell based. The multidimensional flux results are shown in Figures 10.6(b) and

10.6(d) on the unstructured triangular grid.

The standard first order results indicate a grid orientation bias whereas the results ob-

tained with the multidimensional schemes show reduced grid dependence and provide a

definite improvement in front resolution with a clearer indication of the flow pattern,

particularly for the Multi-D cell-based schemes with results that are the most consistent

with the problem. Reference solution on a 64x64 Cartesian grid is shown in 10.7(d).

The comparison between higher order schemes is illustrated in Figure 10.7. While solution

resolution is consistently improved by use of the higher-order schemes, compared with the

first order results, the cell-based higher order Multi-D scheme provides the best results.
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(b) SPU Cell-based

Figure 10.5: Case 3 - Standard first order saturation profile.

The equivalent unstructured quadrilateral grid (Figure 10.8(a)) which has the same
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(d) Multi-D Flux Cell-

based

Figure 10.6: Case 3 - Multi-Dimensional first order saturation profiles on triangular mesh.

vertices as the triangular grid of Figure 10.5(a) provides the second part of this test case.

Standard first order upwind (Figures 10.8(b)). Both the first order and higher-order

Multi-D comparisons clearly demonstrate that the cell-based Multi-D (Figure 10.9) and

higher-order Multi-D schemes (Figure 10.10) consistently provide the best results.
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(f) Higher-order Multi-D

Flux Cell-Based

Figure 10.7: Case 3 - Higher order saturation profiles for the non-linear piston problem
with full tensor on triangular mesh.
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(b) SPU Cell-Based

Figure 10.8: Standard first order saturation profile on quadrilateral mesh.

10.3.4 Case 4: Tracer Flow in a Heterogenous Medium

We return to the heterogeneous case of chapter 9, section 9.2.3. This case involves a

tracer flow in a heterogeneous medium where injection and production wells are located
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(d) Multi-D Flux Cell-

based

Figure 10.9: Case 3 - Multi-Dimensional first order saturation profiles on quad-mesh.

along opposite sides of the idealised reservoir domain. Results are obtained using a 30x110

uniform grid. Figure 10.11 shows the logarithm of the upscaled permeability field. Water

saturation contours are shown at 0.005 pore volumes (PV) injected. Figure 10.12 shows

saturation profiles computed with the standard single-point upwind method (Figure 10.12

(a)) and the higher order method (Figure 10.12 (d)).

The higher order method increases resolution significantly compared to the first order

single-point upwind method, the standard first order method shows excessive numerical

diffusion producing non-physical features in the numerical solution. The first order Multi-

D edge based (Figure 10.12(b)) and cell based (Figure 10.12(c)) schemes provide similar

and much improved solution resolution compared to the standard method, the first order

Multi-D results are comparable to that of the standard higher-order scheme. The higher-

order Multi-D schemes provide the best overall resolution of the finger like features of the

solution Figures 10.12(e),(f).
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Figure 10.10: Case 3 - Higher order saturation profiles for the non-linear piston problem
with full tensor on quad-mesh.
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Figure 10.11: Logarithm of the upscaled permeability field.

10.4 Conclusions

Families of higher order edge-based and cell-based multidimensional upwind formula-

tions are presented for hyperbolic conservation laws on general grids. The methods are

coupled with consistent and efficient continuous Darcy flux approximations. The schemes

are locally conservative, conditions for positivity of the schemes are defined for linear

fluxes. The new methods permit higher CFL numbers than the standard upwind scheme.
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Figure 10.12: Case 4 - Saturation profiles for the heterogeneous Case.

The new methods are compared with single point upstream weighting for two-phase flow

problems. The tests are conducted on both structured and unstructured grids and in-

volve full-tensor coefficient velocity fields. The comparisons demonstrate the benefits of

multidimensional and higher order multidimensional schemes in terms of improved front

resolution together with significant reduction in cross-wind diffusion. For cases involving

severe grid distortion the cell based multidimensional schemes prove to be more robust

than the edge based schemes though both formulations provide notable improvement

compared to single point upwind.
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Chapter 11

Conclusions and Recommendations

11.1 Conclusions

In this thesis, families of novel edge-based and cell-based multidimensional upwind

formulations have been presented for hyperbolic conservation laws on structured and

unstructured triangular and quadrilateral grids in two dimensions. Higher resolution as

well as higher order multidimensional formulations have also been developed for general

structured and unstructured grids.

The schemes are coupled with previously developed consistent and efficient continuous

CVD (MPFA) Darcy flux approximations. They are formulated using an IMPES (Implicit

in Pressure Explicit in Saturation) strategy for solving the coupled elliptic (pressure) and

hyperbolic (saturation) system of equations governing the multi-phase multi-component

flow in porous media. The focus in this work is on the spatial discretisation of the mul-

tidimensional hyperbolic operator for time dependent problems where first order forward

Euler time stepping is employed to advance the saturation front.

The multidimensional formulations are locally conservative, positivity conditions are de-

rived for linear fluxes on unstructured meshes and permit higher CFL numbers than the

standard upwind scheme.

The new methods have been compared with single point upstream weighting for two-

phase and three-component two-phase flow problems. The tests are conducted on both

structured and unstructured grids and involve full-tensor coefficient velocity fields in ho-

mogeneous and heterogeneous domains. The comparisons demonstrate the benefits of

multidimensional and higher order multidimensional schemes in terms of improved front

resolution together with significant reduction in cross-wind diffusion.
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In this work, data based and flux based non linear flux approximations are presented.

Two-phase flow numerical results show that the edge-based multidimensional flux formal-

ism is more robust than the data based counterpart.

Numerical tests have also shown that while the edge-based formulation provides improved

resolution compared to single point upwind, improved performance is obtained with the

cell-based multidimensional formulation. This is attributed to the use of fine scale velocity

field for characteristic tracing.

In addition, an extension of a class of higher order methods [57] to highly distorted un-

structured triangular and quadrilateral grids for flow in porous media has been developed.

A sequence of higher resolution non-uniform limiters are introduced and tested for clas-

sical two phase flow problems on triangular grids. The schemes are based on MUSCL

reconstructions using extended stencils and provide significant improvement compared to

standard first order methods.

The multidimensional first order edge-based upwind schemes have been applied to Grav-

ity driven flow where different tracing velocity formulations are tested. Both higher order

and multidimensional upwind schemes are also introduced for hyperbolic systems where

different limiting strategies involving primitive, conservative and characteristic variables

are adopted. Numerical test cases involving two phase three component flow show the

benefits of the schemes when compared to standard first order approximations and il-

lustrate the advantage of using the characteristic variables instead of the primitive and

conservative variables.

11.2 Recommendations for Future Work

The work presented in this thesis is only the beginning for research and development

of the family of higher order multidimensional schemes for hyperbolic conservation laws.

This work has laid the foundation for further investigation, which will hopefully give even

greater insight into this novel and interesting approach with application to subsurface

reservoir simulation. Further possible research routes are suggested here:

i The schemes presented here are coupled with consistent CVD Darcy flux approx-

imations. The quadrature point where the Darcy fluxes are evaluated at the grid

edge mid-points where control volume sub-faces join. It has been shown [124] that

improved pressure profile resolution is achieved using quadrature points along the
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control volume sub-faces. Further investigations need to be carried out in this di-

rection with combination to both cell-base and edge based first order and higher

order multidimensional formulations.

ii The innovative higher resolution schemes have been implemented in one dimensional

and two dimensional space. The extension of these schemes to 3D constitutes the

next step in the development of truly higher dimensional unstructured schemes in

reservoir engineering.

iii In this work, the positivity analysis has been performed for the multidimensional

schemes on unstructured grids in the case of linear fluxes. A maximum principle

analysis should be investigated for the general nonlinear fluxes in order to derive

stability weighting factors.

iv The multidimensional schemes presented here use an IMPES strategy for the up-

date of the saturation and concentration. A fully implicit formulation could be

also used. Also, first order forward Euler time discretisation has been used to ad-

vance the reconstructed saturation data in time using the higher resolution spatial

discretizations presented here. Higher order time accuracy is another aspect for

further investigation.

v The higher order reconstruction considered here uses the MUSCL strategy which

are second order accurate in space. Very high order accuracy could be achieved

using alternative higher order interpolation methods such as discontinous galerkin

schemes. The DG methods provide an attractive alternative as they use a compact

stencil despite the increase in the number of degrees of freedom it might incur.

vi Here, edge-based multidimensional schemes have been applied to gravity driven flow

and both phase velocity and characteristic speeds have been investigated for the

tracing step via the use of a challenging water-oil gravity segregation case study on

unstructured grids. We conclude that the characteristic multidimensional schemes

produced the best results. Application of cell based multidimensional formalism

and higher order multidimensional methods is the subject of ongoing research and

will be the subject of future study.
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