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AbstratThis work summarises a omputational framework for dealing with dynamimulti-body fritional ontat problems. It is in fat a detailed aount of an instaneof the Contat Dynamis method by Moreau and Jean. Hene the title. Multi-bodysystems with ontat onstraints are ommon. Some of them, suh as mahines orarrangements of partiulate media, need to be preditable. Preditions orrespondto approximate solutions of mathematial models desribing interations withinsuh systems. The models are implemented as omputational algorithms.The main ontributions of the author are in an improved time integration methodfor rigid rotations, and in a robust Newton sheme for solving the fritional ontatproblem. A simple and e�ient way of integrating rigid rotations is presented. Thealgorithm is stable, seond order aurate, and in its expliit version involves eval-uation of only two exponential maps per time step. The semi-expliit version of theproposed sheme improves upon the long term stability, while it retains the expli-itness in the fore evaluation. The algebrai struture of both shemes makes themsuitable for the analysis of onstrained multi-body systems. The expliit algorithmis spei�ally aimed at the analysis involving small inremental rotations, where itsmodest omputational ost beomes the major advantage. The semi-expliit shemenaturally broadens the sope of possible appliations. The semismooth Newton ap-proah is adopted in the ontext of the fritional ontat between three-dimensionalpseudo-rigid bodies, proposed by Cohen and Munaster. The Signorini-Coulombproblem is formulated aording to the formalism of Contat Dynamis. Hybrid lin-earisation, parameter saling and line searh tehniques are ombined as the globalonvergene enhanements of the Newton algorithm. Quasi-stati simulations ofdry masonry assemblies exemplify performane of the presented framework.
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CHAPTER 1IntrodutionI one wathed an interview with the Duth omputer sientist Edsger WybeDijkstra. In the �ow of the interview, he told a story about a leture he gave ata software ompany somewhere in Brussels. The leture was about writing orretode, and it turned out to be a omplete failure. Aording to Dijkstra's judgement,the programmers were not interested in learning how to ode, beause they �derivedtheir intelletual exitement from the fat that they didn't quite know what theywere doing�. At that time I was working at a software ompany and I ould indeedobserve this type of exitement in my own manner of work. Sometime later I starteddotoral studies in Glasgow. In fat I was not that muh interested in the topiitself, but rather I wanted to �nd a way of turning the �intelletual exitement� intosomething more useful. This thesis gives a snapshot of an ongoing e�ort towardsrealisation of this aim. It would be far fethed to laim, that the state of mindmentioned by Dijkstra did not aompany me oasionally in the ourse of thiswork. Nevertheless, upon re�etion I have to admit that maybe it is rather a kindof balane that should be sought.Style. This is the only hapter written in the �rst person. The remaining onesuse a mixture of the passive voie and the �royal we�, whih I have found mostonvenient and versatile. I did not manage to avoid expressions like: �It is easyto see ...�, or �It is not di�ult ...�, or �Clearly ... � et. This has to be broughtdown to my linguisti limitations, rather than mathematial skills. I did seriouslyonsider removing them all after �nishing writing, but then I gave up, foreseeingtoo muh trouble. I trust the reader will aept my apologies here. I did makean e�ort to deliver some mathematial rigour, more for my own use and as anexerise, rather than beause it was unavoidable. For this reason, I suppose, amathematiian would �nd this text not only overblown but also laking preision,while an engineer ould �nd it at times formidable. I do tend to inlude lengthyderivations whenever neessary, as I would like them to serve me (or someone else)as a referene at a later point. At the end of some hapters I have inluded oniseliterature reviews. This might seem like a strange hoie at �rst. I rekon it isnot so, as it seems more natural to beome urious of related developments, afterhaving some taste of the main body of a hapter. Also for me it was often easierto summarise additional referenes, after the foregoing material had taken its �nalshape.Topi. This work outlines a omputational method aimed at traing motionof bodies oming into ontat with eah other. As suh, the motion of ontatingbodies is among the most ommon physial phenomena. By merely looking around,one an easily register a number of �multi-body systems with ontat onstraints�.Almost every human ativity involves some kind of �ontat dynamis�. For exam-ple, typing this very text. Of ourse, most of every day ations do not require to beabstrated in the language of mathematis in order to be exeuted. But in general,there is a need for suh abstration. It is both pratial (driven by industry) andpurely ognitive. Several years ago, when reviewing literature related to the issues7



1. INTRODUCTION 8of ontat, my attention was drawn to the works of Moreau [156℄ and Jean [102℄,desribing basis of their Contat Dynamis method (CD). I did not understandmuh of those papers at �rst. Over time, I have �lled most (but not all) of the gapsin my understanding. In the following I have desribed a partiular instane of aCD algorithm. I preferred not to repeat dully those aspets of the mathematialformulation, whih are still beyond my grasp (e.g. measure theory). Hene, I tendto resort to disretisation. I do not deliberate muh on the onvergene of thedisrete sheme. Relevant referenes are mentioned in the due time. My intentionis to deliver a self-ontained summary for a programmer interested in getting intogrips with CD.Basis. It will be useful to introdue some basi notions here. It an be bestdone by drawing a �gure. Let us have a look
ui

q
i

Uα

Rα

There are four bodies in the �gure. Plaement of eah point of every body is deter-mined by the on�guration qi. Veloity of eah point of every body is determinedby the veloity ui. If the time history of veloity is known, the on�guration anbe omputed as(1.0.1) q (t) = q (0) +

∫ t

0

F (u (t)) dtwhere F is a general funtion, usually an identity, F (x) = x. The veloity isdetermined by integrating Newton's law(1.0.2) p (t) = p (0) +

∫ t

0

f (q,u, t) dt(1.0.3) u (t) = G (p (t))where p is the momentum, G is another general funtion, and f is the resultantfore. While integrating the motion of bodies, one keeps trak of a number of loaloordinate systems. These will be alled loal frames. There are four of them inthe �gure. Eah loal frame is related to a pair of points, belonging to two distintbodies. An observer embedded in a loal frame alulates the loal relative veloity
U of one of the points, viewed from the perspetive of the other point. If neessary,



1. INTRODUCTION 9the observer applies some fore R1. An ation of eah observer an be impliitlydesribed as(1.0.4) C (U,R) = 0Ations of observers are loal. They only know how to reat to a hange of veloity
U at the point of their residene. At the same time, as many of them at olletively,the e�et of their work in�uenes one another. A global observer an see thishappening and is able to transform the relation(1.0.5) u (t) = G

(

p (0) +

∫ t

0

f (t) dt

)into a formula desribing what will be alled loal dynamis(1.0.6) U = WR + B

W and B determine a linear transformation between the loal fores R and velo-ities U for every instant of time. The global observer an then fore his loal peersto at in harmony by stating(1.0.7) C (WR + B,R) = 0In a sense, there is no more to it. In the above, when using symbols q, u, U and
R without indies, olletions of relevant variables were meant.Map. The remaining hapters deompose the above �gure into more or lessindependent modules. An experiened reader should be able to skip uninterestingbits, and move right to the one of his or her interest. In order to make this easier,I have summarised below all, but the last2, of the forthoming hapters.Chapter 2: ShapeThe lass of shapes onsidered in the implementation is desribed. In short,these are arbitrary unions of onvex polyhedrons. These inlude �nite-elementlike meshes, et. A lass of surfae elements is distinguished. These are adjaentto the surfae of disretised bodies and will be used later for ontat detetion.Chapter 3: KinematisThis hapter deals with formula (1.0.1). It ontains quite a detailed aount ofwhat q and u are in the ase of rigid and so alled pseudo-rigid bodies. Notionsof the on�guration and tangent spaes are introdued, to whih respetively qand u belong. Issues of parametrisation of q by a redued number of variables aredisussed for rigid bodies. Some basis of relevant tensor alulus are given.Chapter 4: DynamisFormulae (1.0.2) and (1.0.3) are a fous of attention here. The lassial Newtonianbalane priniples are worked out for rigid and pseudo-rigid bodies. The matrixnotation given at the end of the hapter will be of use for a reader interested in theimplementation.1Let us is temporarily abandon the traditional notion of a passive observer.2Is there a point in summarising onlusions?



1. INTRODUCTION 10Chapter 5: Time steppingTime integration, that is a numerial equivalent of what happens in (1.0.1) and(1.0.2), is the �work horse� of the omplete sheme. My intention here was to usethe simplest possible methods. For dynamis, expliit seond order shemes areemployed (equivalent to the entral di�erene method). Their auray reduesto the �rst order in the presene of impats. First order impliit Euler sheme isutilised for the quasi-stati ase.Chapter 6: Loal framesIn this hapter the notion of the loal frame is given a preise de�nition. The mainpoint here is in introdution of a linear operator H, a role of whih is to transform
u into U. That is U = Hu. Spei� forms of H for rigid and pseudo-rigid bodiesare given. Chapter 7: Loal dynamisThe notion of the loal frame and theHmapping are employed in order to derive theequations of loal dynamis (1.0.6). Some links with onvexity and onjugay areexplained. As a byprodut, the numerial integration in time is given a wrappingof unonstrained onvex minimisation. Also, some remarks about the struture ofthe W operator are inluded. Chapter 8: JointsA joint is pitured in the top-right part of the �gure given few pages earlier. Theslender body an only rotate around this point. Implementation of this and otherkinds of joints is desribed in this hapter. Spei� ations of the loal observer inform (1.0.4) are given. In other words, this hapter is about the equality onstraints.Chapter 9: Contat pointsThis hapter summarises algorithms, aimed at �nding andidate ontat points.Contrary to joints, these are usually not known in advane. A geometrial searhneeds to be done to identify pairs of points, where loal frames are later plaed.E�ient methods for performing this task are given. One of the harateristifeatures is the derivation of loal frames from the volumetri intersetions betweenpairs of surfae elements. This is of use in the presene of nonsmooth geometry.Chapter 10: The fritional ontat problemOne the loal frames related to ontats have been found, the fritional ontatproblem an be de�ned. This is done in a standard manner, that is in stages.The fritionless non-penetration problem is disussed at greatest length. Then thefrition problem, not oupled with non-penetration is summarised. The fritionalontat problem is given and di�ulties related to its solution pointed out. In themeantime, the equality form (1.0.4) of the ontat onstraints is worked out. Whenappliable, analogies with onstrained minimisation are mentioned, although in theend only the root �nding problem (1.0.7) prevails.



1. INTRODUCTION 11Chapter 11: SolversNumerial methods for solving problem (1.0.7) are disussed. The lassial �xed-point iteration is desribed, together with a semi-smooth Newton method and ahybrid method based on heuristi improvements. The blok Gauss-Seidel sheme,traditionally used in CD, is also summarised.Chapter 12: ImplementationIn this brief hapter, the foregoing developments are summarised in two algorithms.One for dynamis and one for quasi-statis.Chapter 13: ExamplesA number of examples is given here. This inlude integration of rigid rotations,ontat detetion and Newton solvers. Several benhmarks are inluded, omparingthe results with previously doumented �gures.Contributions. The biggest gain from this work is of ourse personal. Itwas undoubtedly a privilege to have several years for disovering and improving amethod of work that suits me best. One the other hand, I should mention somepapers as these seem to be the agreed upon measure of performane.My �rst journal paper [123℄ desribed a Newton method for solving (1.0.7).The main sheme was developed earlier by Hüeber et al. [96℄. My ontribution wasonly in translating that work into the ontext of CD and developing some heuristiimprovements (f. Setion 11.2). The Signorini-Coulomb problem is formulatedaording to the formalism of Contat Dynamis. Hybrid linearisation, parametersaling and line searh tehniques are ombined as the global onvergene enhane-ments of the Newton algorithm. Quasi-stati simulations of dry masonry assembliesexemplify performane of the presented framework.The seond paper [124℄ desribed a new time integration sheme for rigid rota-tions (f. Setion 5.2). It arose as a byprodut of an interation with our industrialpartner. Papers by Krysl et al. [126, 163, 128, 127℄ were of great help and servedas inspiration. The sheme given in Setion 5.2 is simple and e�ient. It is also sta-ble, seond order aurate, and in its expliit version involves evaluation of only twoexponential maps per time step. The semi-expliit version of the proposed shemeimproves upon the long term stability, while it retains the expliitness in the foreevaluation. The algebrai struture of both shemes makes them suitable for theanalysis of onstrained multi-body systems. The expliit algorithm is spei�allyaimed at the analysis involving small inremental rotations, where its modest om-putational ost beomes the major advantage. The semi-expliit sheme naturallybroadens the sope of possible appliations.During the �rst year of studies I was still biased by my programming bak-ground. It was easier to work on ontat detetion, rather than study CD. Thework presented in Chapter 9 is quite laborious, although it does not seem to beadding muh to the saturated �eld of geometrial algorithms. Some of the resultspresented there I have improved only reently, while writing up. More time isneeded to test them thoroughly.



CHAPTER 2ShapeShapes are approximated by volumetri meshes idential with those used in the�nite element analysis1. This serves a double purpose. Within the adopted, simpli-�ed representation of motion, mesh density orresponds to the auray of ontatresolution. At the same time, an extension to the �nite element ase is made easier.Nevertheless, the extension is not pursued within this work. The shape of a bodyis then represented by a onvex deomposition (disretisation) into hexahedrons,wedges, pyramids and tetrahedrons (Figure 2.0.1). Those are omposed of nodes,edges and faes in a manner suitable for identi�ation of topologial adjaeny re-lations. The volumetri onvex ells are alled elements. All of those issues arerather elementary and need no further explanation. The only notion spei� tothe urrent ontext orresponds to the set of surfae elements. The faes of thoseelements have nonempty intersetions with the disretised surfae of a body. Figure2.0.2 illustrates the idea.
Figure 2.0.1. Hexahedron, wedge, pyramid and tetrahedron. Ba-si elements used for the disretisation of a body shape.
Figure 2.0.2. Torus shaped body and a planar slie of its dis-retisation. The surfae elements have been darkened.The surfae elements will play a role in the ontat detetion proess desribedin Chapter 9. As far as the present framework is onerned, the remaining elementsare only used to alulate harateristis of mass distribution. It is relevant to point1This is assumed only to simplify the presentation. In the atual implementation, apart fromthe mesh representation, arbitrary unions of onvex shapes are admitted.12



2. SHAPE 13out that the onvexity of elements is a neessary ondition for the orretness ofsome of the subsequently employed algorithms. Within the lass of motions onsid-ered here, onvexity is naturally preserved (Chapter 3). An eventual generalisationadmitting a greater degree of deformability ought to aount for the possibilityof severe element distortion. This an be for example ahieved, by employing anexlusively tetrahedral mesh within the set of the surfae elements.



CHAPTER 3KinematisPlaement of a three-dimensional body an be identi�ed with a subset of theEulidean point spae E3. The open nonempty set oupied by the body at time t0is denoted by B0. The losure of B0 bears the name of the referene on�guration.Aordingly, at any time t the losure of an open nonempty set B is referred to asthe urrent on�guration. Boundaries of those sets are denoted by ∂B0 and ∂B. Aninvertible mapping χ arrying points of B0 into orresponding points of B is alleda motion. Thus x = χ (X, t), where x ∈ B and X ∈ B0.In order to express the motion in an expliit form, it is neessary to selet oor-dinate systems {xi
} and {X i

}, overing respetively the urrent and the refereneon�guration. This is most naturally done by an introdution of two Cartesianoordinate systems, where both points and vetors are represented by triplets ofreal numbers. Let ei and Ei be two sets of orthonormal vetors (with respet to thestandard inner produt on R3). Keeping in mind the notional di�erene between apoint (loation) and a vetor (equivalene lass of loation di�erenes), the spatialand referential points an be expressed in oordinates as x = xiei and X = X iEi.The real numbers xi, X i are the omponents of x,X with respet to the bases ei,Ei.The zero origins of the two oordinate systems need not oinide in the physialspae.It should be noted, that B0 and B, being open subsets of the Eulidean spae,are by de�nition manifolds. In general a di�erentiable manifold an be de�ned as aset in whih neighbourhoods of all points an be mapped in a smooth and invertiblemanner onto open subsets of Rn. A tangent spae TxB is a vetor spae spannedat a point x ∈ B of the manifold and omposed of all possible veloities of thepoint. The set of all tangent spaes at all points is alled the tangent bundle TB.As all tangent spaes of B0 and B are idential, vetor bases ei,Ei an be usedto parametrise the tangent bundles TB0 and TB. More preise de�nitions an befound in Arnold [12, pp. 76-81℄ or Marsden and Hughes [147, pp. 35-36℄.3.1. Rigid bodyThe motion of a rigid body reads(3.1.1) x (X, t) = Λ (t)
(

X − X̄
)

+ x̄ (t)where Λ (t) is a 3×3 rotation operator, X̄ is a seleted referential point, and x̄ (t) isa spatial point. It is seen that x̄ (t) = x
(

X̄, t
) is the motion of the seleted point X̄.The term Λ (t)

(

X − X̄
) represents the rotation of X about the point X̄. Thus, therigidity ondition follows ‖x − x̄‖ =

∥

∥X − X̄
∥

∥, where the standard Eulidean normis assumed. The linear operatorΛ ats between the tangent bundles Λ : TB0 → TB.In order to represent rotations, Λ must be orthogonal ΛTΛ = I, where I is the 3×3identity on TB0. It is physially meaningful to assume that Λ preserves orientation,so that det (Λ) = 1. The set of all 3×3 matries with the assumed properties formsa group under matrix multipliation, alled the speial orthogonal group SO (3) [12,p. 126℄. The on�guration spae of a rigid body an be then de�ned as14



3.1. RIGID BODY 15(3.1.2) Qrig = R3 × SO (3)The set Qrig has the struture of a six-dimensional manifold. The �rst threeoordinates are simply those of the point x̄. The remaining three oordinatesorrespond to the parametrisation of the rotation spae. As ΛTΛ is a symmetrimatrix, the ondition ΛTΛ = I indues six independent onstraints on nine entriesof the rotation matrix. It an be shown that the Jaobian of the onstraints has fullrank everywhere, and thus the impliit funtion theorem implies existene of loallysmooth and invertible maps from SO (3) into R3. Hene, the speial orthogonalgroup is a manifold and so is the on�guration spae Qrig.In fat it will be useful to extend a bit the disussion related to the onstraintfuntion f (Λ) = ΛTΛ − I. The surfae f (Λ) = 0 is embedded in the nine-dimensional spae of all 3 × 3 matries. On the part where det (Λ) = 1, it isomposed of the points of the manifold SO (3). A seleted point Λ ∈ SO (3)travels on SO (3) along the diretions tangent to the surfae: Λ̇ ∈ TΛSO (3). Thus
Λ̇ must be orthogonal to the gradients of all six salar onstraints in f . In otherwords Df (Λ) · Λ̇ = 0 or equivalently(3.1.3) Λ̇TΛ + ΛT Λ̇ = 0Let us de�ne an anti-symmetri 3 × 3 operator as(3.1.4) Ω̂ = ΛT Λ̇so that (3.1.3) states Ω̂T = −Ω̂. If Λ = I, there follows that Ω̂ = Λ̇, henethe tangent spae TISO (3) is omposed of anti-symmetri 3 × 3 matries. In theremaining ase Λ 6= I, the tangent spae TΛSO (3) is omposed of matrix produts
ΛΩ̂. It should be noted, that the three independent omponents of Ω̂ are exatlythe reason why Df was assumed to have full rank in the previous paragraph (thedimension of the null spae of Df , f. [1℄).The operator Ω̂ deserves further attention. From (3.1.1) and (3.1.4) the veloityof a spatial point an be omputed as follows(3.1.5) ẋ = ΛΩ̂

(

X− X̄
)

+ ˙̄xthus Ω̂ ats between the spaes Ω̂ : TB0 → TB0. Let y = x − x̄ and Y = X − X̄.Noting that Y = ΛT y, equation (3.1.5) an be rewritten as(3.1.6) ẏ = ΛΩ̂ΛTyObviously, transformation ΛΩ̂ΛT preserves anti-symmetry of Ω̂. It is onvenientto de�ne the following operator(3.1.7) ω̂ = ΛΩ̂ΛTating between the spaes ω̂ : TB → TB. Equation (3.1.6) reads now(3.1.8) ẏ = ω̂y



3.1. RIGID BODY 16The above formula gives the veloity of a spatial vetor aused solely by the ro-tational motion. The operator ω̂ bears the name of the spatial angular veloitytensor. By analogy Ω̂ is alled the referential1 angular veloity tensor.Let ω̂ be onstant (whereas Ω̂ need not be), so that (3.1.8) beomes the homo-geneous system of linear ordinary di�erential equations with onstant oe�ients.The solution to (3.1.8) an be expressed the following form [14, pp. 110-111℄(3.1.9) y (t) = exp (tω̂)y (0)where exp (·) is the matrix exponential, yet to be ommented on. Equation (3.1.8)an be also rewritten in the referential form(3.1.10) Ẏ = Ω̂Ywhere Ẏ = ΛT ẏ. Similarly, if one assumes Ω̂ to be onstant (whereas ω̂ need notbe), the solution to (3.1.10) follows(3.1.11) Y (t) = exp
(

tΩ̂
)

Y (0)For both ases, one an ompute y (t) as(3.1.12) y (t) = [exp (tω̂)Λ (0)]Y (0)(3.1.13) y (t) =
[

Λ (0) exp
(

tΩ̂
)]

Y (0)where the terms in brakets [·] are respetively alled the spatial and the referentialompound rotations [146, p. 29℄. In ase neither ω̂ nor Ω̂ are onstant, the aboveformulae still provide a good (�rst order) estimate of the rotation update for t→ 0.This feature is often utilised in the numerial ontext.The matrix exponential exp (·) is de�ned as follows(3.1.14) exp (A) = I + A +
A2

2!
+

A3

3!
+ ...where A : Rn → Rn is a linear operator and I is the identity. It is easy to showthat the above series onverges uniformly (at rate independent of the argument) ifonly A is bounded (it does not streth the unit ball in Rn in�nitely) [14, p. 105℄.One an onsider a one-parameter family of linear operators exp (tA) : Rn → Rn.It an be shown that this is a one-parameter group of linear operators [14, p. 109℄,that is(3.1.15) exp ((t+ s)A) = exp (tA) exp (sA)and(3.1.16) d

dt
exp (tA) = A exp (tA) is de�ned for all tThe above de�ned group is ommutative: exp (tA) exp (sA) = exp (sA) exp (tA).Another useful property follows from the de�nition of the matrix exponential (3.1.14)and the group property (3.1.15): ation of exp (·) on skew-symmetri matries pro-dues orthogonal operators. This ould be antiipated from (3.1.12) and (3.1.13),1material, onveted or body-frame are also used in the literature



3.1. RIGID BODY 17although now it is lear that ΛTΛ = exp
(

Ω̂T
)

exp
(

Ω̂
)

= exp
(

−Ω̂
)

exp
(

Ω̂
)

=

exp (0) = I, where Λ = exp
(

Ω̂
) was assumed. It is easy to realise that rotationsdo not ommute in general (Λ1Λ2 6= Λ2Λ1, rotate a penil about the horizontaland then the vertial axes and then swap the order). The rotation group SO (3) isnot ommutative. Nevertheless, the one-parameter group Λt = exp (tω̂) is ommu-tative. Experiene suggests that this orresponds to the rotation about a �xed axis,where indeed the �nal e�et does not depend on the order in whih the rotationsare being applied. Λt an be interpreted as a urve on the surfae of SO (3), start-ing at the point I. After (3.1.16) the veloity of Λ0 along Λt reads d

dtΛ
t
∣

∣

t=0
= ω̂whih on�rms that ω̂ ∈ TISO (3) (note that ω̂ ≡ Ω̂ at I). Generally, the veloityalong Λt at some point Λs reads d

dtΛ
t
∣

∣

t=s
= ω̂Λs. By de�nition of the tangentspae ω̂Λs ∈ TΛsSO (3). Indeed, as ω̂ = ΛΩ̂ΛT , there holds ω̂Λ = ΛΩ̂ and it wasalready demonstrated, that ΛΩ̂ ∈ TΛSO (3).The matrix exponential (3.1.14) applied in the ontext of the group SO (3)is also alled the exponential map. This term is traditionally used in the theoryof Lie groups (groups L, where the internal operation L × L → L is ontinuousand di�erentiable), where the exponential map ats on the elements of the tangentspae at identity (alled Lie algebra) and produes elements of the Lie group. Thisis exatly the ase with SO (3) [146, pp. 27-32℄. The pratial utility of theexponential map results here from the fat that (3.1.14) enjoys a losed form sum(3.1.17) exp [Ψ] = I +

sin ‖Ψ‖
‖Ψ‖ Ψ̂ +

1 − cos ‖Ψ‖
‖Ψ‖2 Ψ̂2due to Euler and Rodrigues [100℄. The above expression is often addressed as theRodrigues formula. The argument Ψ and the operator [̂·] require some further ex-planation. Anti-symmetri matries in Rn generally have n (n− 1) /2 omponents.It happens that 3 (3 − 1) /2 = 3, so that there is a one-to-one orrespondene be-tween the 3 × 3 anti-symmetri matries and vetors in R3. Namely(3.1.18) Ψ̂ =





0 −Ψ3 Ψ2

Ψ3 0 −Ψ1

−Ψ2 Ψ1 0



where Ψ ∈ TE3 and Ψ̂ ∈ TISO (3). Note, that Ψ ats as an argument to themapping outputting a point on the surfae of SO (3). Thus it is natural to interpret
Ψ as a point in E3 (rotations do not ommute - one does not add points). Onthe other hand, Ψ remains in orrespondene with the skew-symmetri matries
Ψ̂ ∈ TISO (3) and in this ontext it is most onveniently interpreted as a vetor.This notional duality needs to be kept in mind. Vetor Ψ is alled the axial vetorof the skew-symmetri matrix Ψ̂. This onvention allows to interpret ω and Ω asrespetively the spatial and the referential angular veloity vetors. It is easy tonotie, that ation of the skew-symmetri operator (3.1.18) on a vetor parallelsthe usual vetor produt formula(3.1.19) ω̂y = ω × yFormulae (3.1.18) and (3.1.19) establish an isomorphism (invertible, struture pre-serving map) between the spaes TE3 and TISO (3) (denoted as TE3 ∼= TISO (3)).In pratie it is often more e�ient to operate on vetors, rather than skew-symmetri matries. For example, formula (3.1.7) takes the simple form
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=exp[   ]bb’ Ψ

||Ψ||

Ψ

b’

bFigure 3.1.1. The �nite rotation vetor Ψ and the ation of theexponential map exp [Ψ].(3.1.20) ω = ΛΩwhen vetors are used instead of the skew matries.Reall, that the urve Λt = exp (tω̂) was interpreted as the rotation along a�xed axis. Ψ ating as an argument of (3.1.17) an be interpreted as the rotationvetor, ollinear with the �xed axis. Note, that exp [Ψ]Ψ = Ψ (as Ψ̂Ψ = 0) sothat Ψ does not rotate vetors oaxial with itself. Geometrially, the ation of theoperator exp [Ψ] an be interpreted as the rotation of magnitude ‖Ψ‖ about theaxis ollinear with Ψ (Figure 3.1.1). Thus, the rotation vetor based parametri-sation of SO (3) is singular on spheres ‖Ψ‖ = 2πn, n ∈ {1, 2, ...} in the sense thatthese subsets of the Eulidean 3−spae are mapped into the single identity elementof the rotation spae. Nevertheless, the singularity an be avoided either by theadaptation of the inremental formulation (3.1.12), (3.1.14) (the magnitudes of therotation inrements need to be smaller than 2π), or by a suitable re-parametrisation[146, p. 26℄. The singularity of the map exp [Ψ] : E3 → SO (3) is related to theintrinsi inompatibility between the shapes of subsets of E3 and the manifold
SO (3). Although SO (3) is loally Eulidean (looks like E3 in the neighbourhoodof eah point) it annot be spread in E3 without making a hole in it. Or onversely,one annot wrap E3 around SO (3) without having some bits of E3 overlapping(somewhat more rigorous disussion an be found in [146, pp. 25-26℄). Similarly,a sphere in E3 an be loally deformed into a �at area, although there is no wayto spread it over a planar surfae without some damage. The sphere analogy is infat quite adequate, as the quaternion parametrisation allows to interpret SO (3)as the unit sphere embedded in E4 [100℄.One more thing to disuss is the relation between tangent spaes at di�erentpoints of SO (3). Let us onsider Λ = exp [Ψ]. One an pereive Ψ as a point in
E3 for whih a orresponding point in SO (3) an be found through exp [·]. It isnatural to ask, how a perturbation of the point Ψ a�ets the point Λ. Hene, alinearisation of the relation δΛ = exp [Ψ + δΨ] is sought. We already know that
δΛ = δω̂Λ = ΛδΩ̂ ∈ TΛSO (3), whih is simply another way of writing downthe veloity relations. The linear variation of exp [Ψ + δΨ] with respet to theperturbation vetor δΨ is delivered by the di�erential of exp [·]. There holds(3.1.21) dexp [Ψ] =

∂ exp [Ψ]

∂Ψ
δΨ =

d

ds
exp [Ψ + sδΨ]

∣

∣

∣

∣

s=0where δΨ ∈ TE3 ∼= TISO (3) is arbitrary. One an write now



3.1. RIGID BODY 19(3.1.22) δΩ̂ = ΛT ∂ exp [Ψ]

∂Ψ
δΨor equivalently(3.1.23) δΩ̂ = exp [−Ψ]

d

ds
exp [Ψ + sδΨ]

∣

∣

∣

∣

s=0It is seen that ΛT ∂ exp[Ψ]
∂Ψ

is a third-order objet, whih ontrated with δΨ deliversa skew-symmetri operator. One an thus use only three omponents of (3.1.22) inorder to reate a relation between the axial vetors(3.1.24) δΩ = TT δΨA lengthy and somewhat tedious alulation (Ibrahimbegovi¢ [99℄, Cris�eld [144℄,Ritto-Corrêa [145℄) leads to the following simple form of T(3.1.25) T = I +
1 − cos ‖Ψ‖

‖Ψ‖2 Ψ̂ +
‖Ψ‖ − sin ‖Ψ‖

‖Ψ‖3 Ψ̂2One an also establish a relation between the spatial perturbation δω and δΨ byproessing the relation δω̂ = ∂ exp[Ψ]
∂Ψ

δΨΛT . The resultant formula reads [99, 145℄(3.1.26) δω = TδΨDue to (3.1.24), (3.1.26) and the transformation between the spatial and referentialangular veloity vetors (3.1.20), there holds(3.1.27) TT = ΛTTTransposition and right-multipliation by ΛT leads to(3.1.28) TT = TΛTso that Λ and T ommute. One an see from (3.1.17) and (3.1.25) that Λ and Tshare eigenvetors and thus ommute [99℄.The operator T establishes a onnetion between the tangent spaes TISO (3)and TΛSO (3), where Λ is a point at t = 1 on the urve Λt = exp [tΨ]. In order topiture this graphially, it is onvenient to make a notional distintion between thespatial and the material tangent spaes at Λ. In referene to the algebrai form ofthe onstraint ΛTΛ − I, it is natural to speak about veloities Λ̇ ful�lling (3.1.3)as elements of the tangent spae TΛSO (3). It then follows that pre-multiplying
Λ by an anti-symmetri spatial angular veloity ω (or perturbation δω), or post-multiplying it by a referential (material) angular veloity Ω (or perturbation δΩ),reates an element of the tangent spae TΛSO (3). This is in analogy with theaddition of vetors to points in E3, although the lak of ommutativity of therotation group makes it neessary to speak about the left-multipliation and theright-multipliation separately. Thinking about anti-symmetri operators ating ona pointΛ, one an than introdue the notion of a spatial and material tangent spaes
T spa
Λ SO (3) and Tmat

Λ SO (3), omposed respetively of all spatial and referential(material) angular veloities (perturbations) ating on Λ. In this respet, thereholds T : TISO (3) → T spa
Λ SO (3) and TT : TISO (3) → Tmat

Λ SO (3). This isillustrated in Figure 3.1.2.
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Figure 3.1.2. Interpretation of tangent spaes on SO (3) togetherwith the ations of exp [·] and T operators.It is �nally relevant to omment on the pratial utility of the operator T.Elements of tangent vetor spaes TΛSO (3) an be added to one another only ifthey are all of the same kind (spatial or material) and all based at the same point
Λ. That is, for Ω1 ∈ Tmat

Λ1
SO (3) and Ω2 ∈ Tmat

Λ2
SO (3) it is meaningful to onsiderthe sum Ω1 + Ω2 only if Λ1 = Λ2. In ase Λ1 6= Λ2, one of the vetors needs tobe brought into the tangent spae of the other one. T provides a spei� instaneof suh operation, of importane in numerial realisations.Rigid kinematis(1) Motion

x (X, t) = Λ (t)
(

X − X̄
)

+ x̄ (t)

x, x̄ ∈ B, X, X̄ ∈ B0, Λ ∈ SO (3)(2) Veloity
ẋ (X, t) = Λ̇ (t)

(

X − X̄
)

+ ˙̄x (t)

ẋ, ˙̄x ∈ TB, Λ̇ = ΛΩ̂ = ω̂Λ ∈ TΛSO (3)

ω̂ = ΛΩ̂ΛT ⇔ ω = ΛΩ(3) Parametrisation
Λ (Ψ) = exp [Ψ] , Ψ ∈ E3, Λ ∈ SO (3)

δΩ = TT δΨ, δω = TδΨ

ΛδΩ̂, δω̂Λ ∈ TΛSO (3) , δΨ ∈ TE3 ∼= TISO (3)

exp [Ψ] = I +
sin ‖Ψ‖
‖Ψ‖ Ψ̂ +

1 − cos ‖Ψ‖
‖Ψ‖2 Ψ̂2

T = I +
1 − cos ‖Ψ‖

‖Ψ‖2 Ψ̂ +
‖Ψ‖ − sin ‖Ψ‖

‖Ψ‖3 Ψ̂2

Ψ̂ =





0 −Ψ3 Ψ2

Ψ3 0 −Ψ1

−Ψ2 Ψ1 0



 , ‖Ψ‖ =
√

〈Ψ,Ψ〉



3.2. PSEUDO-RIGID BODY 213.2. Pseudo-rigid bodyThe motion of a pseudo-rigid body reads(3.2.1) x (t) = F (t)
(

X − X̄
)

+ x̄ (t)where x is the urrent image of a referential point X, F is a spatially homogeneousdeformation gradient (F = ∂χ/∂X), X̄ is a seleted referential point and x̄ = x̄ (t)is the urrent image of X̄. Deformation gradient F, being an invertible and ori-entation preserving (det (F) > 0) operator, belongs to the subgroup GL+ (3, R) ofthe general linear group GL (3, R) (group of real, invertible, 3 × 3 matries). Theonstraint det (F) > 0 indiates that GL+ (3, R) is an open subset of the twelve-omponent spae of all 3×3 matries, trivially isomorphi with the Eulidean spae
E9. Hene, the on�guration spae of a pseudo-rigid body(3.2.2) Qprb = GL+ (3, R)× E3is a smooth manifold of dimension twelve. The veloity reads(3.2.3) ẋ (t) = Ḟ (t)

(

X − X̄
)

+ ˙̄x (t)where, ontrary to the rigid body ase (3.1.5), no speial treatment of Ḟ is neessary.This results from the fat, than the inequality onstraint det (F) > 0 does notredue the dimension of the on�guration spae. By de�nition, every point Fhas an open neighbourhood ontained in GL+ (3, R). Thus all veloities Ḟ areeligible, as an instantaneous departure from GL+ (3, R) is not possible. This anbe shown on the following example. Assume F (0) = I and Ḟ (0) = A. Then
det (I + tA) = 1 + t

∑

iAii + O
(

t2
) [14, p. 116℄, so that det (I + tA) > 0 forsu�iently small t.Instead of using the a= [a1, a2, ..., a9]

T notation for the oordinates of points in
E9, one an arrange them into the matrix form(3.2.4) A =





a1 a2 a3

a4 a5 a6

a7 a8 a9



and de�ne a binary operation E9 × E9 → E9 equivalent to the matrix produt.This establishes the isomorphism φ : E9 → GL+ (3, R), so that A = φ (a) and
a = φ−1 (A). Similarly as for rotations and the exp [·] mapping, one an ask whatis the linearised relation between the perturbations δA = φ (a + δa). Obviously
δA = d

dtφ (a + tδa)
∣

∣

t=0
= φ (δa). As all tangent spaes of E9 are idential and anbe parametrised by the standard base ei = [0, 0, ..., 1i, 0, 0...]

T , one is free to addvetors within TE9. One an de�ne δA + δB = φ
(

φ−1 (δA) + φ−1 (δB)
), whih isin fat the usual matrix addition. It follows that all tangent spaes of GL+ (3, R)are idential. Thus, one an add veloities Ḟ (t) + Ḟ (s) for all t, s.The struture of the on�guration spae Qprb is then simpler than that of Qrig.The above summary exhausts most of the points previously disussed for the rigidbody. One more analogy an be drawn. As x − x̄ ∈ TB and X − X̄ ∈ TB0, itfollows that F, Ḟ : TB0 → TB are two-point objets. One an de�ne a spatialobjet L : TB → TB, similar to the spatial angular veloity ω̂(3.2.5) L = ḞF−1
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Figure 3.2.1. Two sets of base vetorsDi,D
i and di,d

i spanningtangent and otangent spaes TB0, T
∗B0 and TB, T ∗B.

L is alled the deforming tensor [46, p. 19℄. One an deompose L into the anti-symmetri spin tensor O and the symmetri strething tensor D.(3.2.6) L = O + D(3.2.7) O =
1

2

(

L − LT
)

, D =
1

2

(

L + LT
)By utilising the polar deomposition of F(3.2.8) F = ΛUwhere Λ is orthogonal and U is symmetri positive-de�nite, it is possible to expressthe spin and strething tensors as [46, p. 19℄(3.2.9) O = Λ̇ΛT +

1

2
Λ
(

U̇U−1 − U−1U̇
)

ΛT(3.2.10) D =
1

2
Λ
(

U̇U−1 + U−1U̇
)

ΛTClearly, in the absene of deformation U = I, the streth tensor D is zero. For
U = I, the spin tensor beomes anti-symmetri and equal to the spatial angularveloity O ≡ ω̂|U=I. Pseudo-rigid kinematis(1) Motion

x (X, t) = F (t)
(

X − X̄
)

+ x̄ (t)

x, x̄ ∈ B, X, X̄ ∈ B0, F ∈ GL+ (3, R)(2) Veloity
ẋ (X, t) = Ḟ (t)

(

X − X̄
)

+ ˙̄x (t)

ẋ (X, t) = L (t) (x− x̄) + ˙̄x (t)

ẋ, ˙̄x ∈ TB, Ḟ = LF ∈ TFGL+ (3, R)



3.2. PSEUDO-RIGID BODY 233.2.1. Kinematis of vetors and tensors. It is useful to investigate, howthe assumed motion arries over geometrial objets attahed to a body. Let
T ∗B0, T

∗B be the ovetor (dual) spaes of TB0, TB, where the dual spae isomposed of all linear funtionals (one-forms, ovetors) ating on the elementsof the tangent spae (vetors). The distintion between vetors and ovetorsis made for the sake of larity, while it is aknowledged that Rn is equal to itsdual [125, p. 121℄. Let base vetors Di,di and ovetors Di,di respetivelyspan the tangent spaes TB0, TB and their duals T ∗B0, T
∗B (Figure 3.2.1). Itis assumed that DiD

j = did
j = δj

i , where the Kroneker delta is de�ned as
δj
i = {0 if i 6= j or 1 if i = j}. The deformation gradient an be expressed as(3.2.11) F (t) = di (t) ⊗ Diwhere ⊗ stands for the dyadi produt (a ⊗ b = aibjei ⊗ ej) and the Einsteinsummation onvention for repeated lower and upper indies is adopted (this holdsin the remaining part of this setion) [46, p. 44℄. Note that usually it is onvenientto assume Di = Di = Ei = Ei so that F an be viewed as omposed of olumn ve-tors di. Through (3.2.1) and (3.2.11) the motion an be regarded as superpositionof translation and distortion of a oordinate system attahed to a seleted mate-rial point. One an oneptually assoiate various tensor entities with the frames

di (t) ,di (t). The time dependent distortion of di,d
i gives rise to several forms oftensor rates, depending on the seletion of an observer and the nature of involvedobjets.Let us reall that the ation of a ovetor n = ηid

i on a vetor a = αidi isde�ned as 〈n,a〉 = ηid
iαjdj = ηiα

jδi
j = ηiα

i. This, together with (3.2.11) allowsto dedue the basi transformation laws for vetors and ovetors(3.2.12) a = FA(3.2.13) N = FT nwhere(3.2.14) A = αiDi, a = αidi(3.2.15) n = ηid
i, N = ηiD

iNote, that the atual oordinates with respet to the bases D,d do not hange,therefore a,A and n,N are alled the odeforming vetors and ovetors. From(3.2.12) and (3.2.13) it is seen that while F : TB0 → TB, its transpose FT : T ∗B →
T ∗B0. Let us onsider A and N, �xed in the referene on�guration. The veloityof urrent images of A and N reads(3.2.16) ȧ = ḞA = ḞF−1a = La(3.2.17) ṅ = Ḟ−TN = Ḟ−T FTn = −

(

F−1ḞF−1
)T

FTn = −LTnwhere di�erentiation of FF−1 was exploited in the third step of (3.2.17). Thedeforming tensor L an be expressed as(3.2.18) L = ḞF−1 = ḋi ⊗ DiDj ⊗ dj = ḋj ⊗ dj = Li
jdi ⊗ djwhere Li

j are the omponents of the veloity of dj expressed in (the same) basis
di. The deforming tensor an be used to obtain veloities of vetors (3.2.16) and



3.2. PSEUDO-RIGID BODY 24ovetors (3.2.17) onveted with the body. In a more spei� situation of an antwalking on the surfae of a pseudo-rigid body, the veloity of the ant will follow froma hain rule of di�erentiation. The relative motion of the ant an be parametrisedby a vetor-valued funtion(3.2.19) a (t) = αi (t)diand thus the veloity reads(3.2.20) ȧ = α̇idi + αiḋi =
⋄
a + LaThe symbol ⋄

a stands for the odeforming derivative [46, p. 45℄ of the vetor funtion
a (t). The odeforming derivative desribes the veloity of a point travelling througha moving pseudo-rigid body, viewed from the perspetive of an observer embeddedin the deforming frame di. In other words(3.2.21) ⋄

a = α̇idi = ȧ − LaA similar exerise an be made for a ovetor-valued funtion(3.2.22) n (t) = ηi (t)diNow the odeforming derivative reads(3.2.23) ⋄
n = η̇id

i = ṅ + LT nIt is quite easy to see that the odeforming derivative is in fat the Lie deriv-ative with respet to the �ow de�ned by the motion (3.2.1). For this to holdone needs to oneptually extend the (o)vetor funtion t (t) into a onstant(o)vetor �eld t (x, t) = t (t), de�ned on B. The �ow based on the motion
χ (t) an be in general de�ned as χs,t = χ (t)χ (s)

−1 [147, p. 95℄. Note that
χr,tχs,r = χ (t)χ (r)−1 χ (r)χ (s)−1 = χs,t and χt,t is the identity. Let w = d

dtχt,sbe the spatial veloity �eld on B. The Lie derivative of t with respet to w isde�ned as(3.2.24) Lwt =
d

dt

(

χ∗
t,st (t)

)

∣

∣

∣

∣

t=swhere χ∗
t,s is the pull-bak operator related to t. For �xed t and s the �ow χs,tbeomes a point mapping χs,t : Bs → Bt. For vetors, the push-forward χs,t∗ andthe pull-bak χ∗

s,t operators are respetively the Jaobian and the inverse Jaobianof χs,t. Thus χs,t∗ : TBs → TBt and χ∗
s,t : TBt → TBs for vetors. The relevantoperators for ovetors are obtained in analogy to (3.2.13). For the pseudo-rigidase the �ow related formulae read(3.2.25) χ−1 (s) = F−1 (s) (x − x̄ (s)) + X̄(3.2.26) χ (t) = F (t)
(

X − X̄
)

+ x̄ (t)

χs,t = F (t)F−1 (s) (x − x̄ (s)) + x̄ (t)(3.2.27)Thus for vetors, the push-forward and pull-bak operators take the form



3.2. PSEUDO-RIGID BODY 25(3.2.28) χs,t∗ =
∂χs,t

∂x
= F (t)F−1 (s)(3.2.29) χ∗

s,t =

(

∂χs,t

∂x

)−1

= F (s)F−1 (t)while for ovetors, there holds(3.2.30) χs,t∗ =

(

∂χs,t

∂x

)−T

= F−T (t)FT (s)(3.2.31) χ∗
s,t =

(

∂χs,t

∂x

)T

= F−T (s)FT (t)Formula (3.2.21) an be rewritten as
⋄
a =

d

dt

(

F (s)F−1 (t)a (t)
)

∣

∣

∣

∣

t=s

(3.2.32)
=

[

FsḞ
−1
t at + FsF

−1
t ȧt

]

t=s

= FsF
−1
s ȧs − FsF

−1
s ḞsF

−1
s as

= ȧ − LaSimilarly (3.2.23) reads
⋄
n =

d

dt

(

F−T (s)FT (t)n (t)
)

∣

∣

∣

∣

t=s

(3.2.33)
=

[

F−T
s ḞT

t nt + F−T
s FT

t ṅt

]

t=s

= ṅ + LT nNote that due to (3.2.16) and (3.2.17), ⋄
t = 0 implies that the the (o)vetor tis being onveted with the �ow of the motion. In this sense, the Lie derivativemeasures how muh a time dependent (o)vetor �eld fails to be onveted withthe motion.A bilinear form E : N ×K → R, where n ∈ N , k ∈ K and N ,K ∈ {TBs, T

∗Bs}is a linear form with respet to eah of its arguments, E (αa + βb, ·) = αE (a, ·) +
βE (b, ·), analogously for E (·, αc + βd). One an de�ne it as follows(3.2.34) E (n,k) = n ·EkConventionally [147, p. 65℄, if n,k ∈ T ∗Bs then E is alled a ontravariant tensor,while for n,k ∈ TBs it is alled a ovariant tensor. It is a mixed tensor otherwise.Let us fous on the ontravariant ase, as it will be of use in the next hapter. Let
E be given by (3.2.34) for all n,k ∈ T ∗Bs. For any p,q ∈ T ∗Bt one an obtain
n = χ∗

s,tp and k = χ∗
s,tq and thus

E (p,q)|p,q∈T∗Bt
= E

(

χ∗
s,tp, χ

∗
s,tq
)(3.2.35)

=
(

F−T
s FT

t p
)

· EF−T
s FT

t q

= p ·FtF
−1
s EF−T

s FT
t q

= p · χs,t∗Eq



3.2. PSEUDO-RIGID BODY 26where(3.2.36) χs,t∗E = FtF
−1
s EF−T

s FT
tde�nes the push-forward of E : T ∗Bs × T ∗Bs → R into χs,t∗E : T ∗Bt × T ∗Bt → R.Conversly, one an de�ne the pull-bak of E : T ∗Bt × T ∗Bt → R into χ∗

s,tE :
T ∗Bs × T ∗Bs → R as follows(3.2.37) χ∗

s,tE = FsF
−1
t EF−T

t FT
sIt is possible to alulate now the Lie derivative of E with respet to the �ow de�nedby the pseudo-rigid motion

⋄

E =
d

dt

(

FsF
−1
t EF−T

t FT
s

)

∣

∣

∣

∣

t=s

(3.2.38)
=

[

FsḞ
−1
t EF−T

t FT
s + FsF

−1
t ĖF−T

t FT
s + FsF

−1
t EḞ−T

t FT
s

]

t=s

= Ė− LE − ELTwhere Ḟ−1 = −F−1ḞF−1 was utilised. The same formula an be worked out inomponents
Ė =

d

dt

(

Eijdi ⊗ dj

)(3.2.39)
= Ėijdi ⊗ dj + Eij (Ldi) ⊗ dj + Eijdi ⊗ (Ldj)

= Ėijdi ⊗ dj + EijL (di ⊗ dj) + Eij (di ⊗ dj)L
Twhere a diret analogy to the odeforming derivative for vetors an be observed.That is ⋄

E = Ėijdi ⊗ dj . Codeforming rates an be similarly omputed for othertypes of tensors.The last disussed rate is related to the linear map H : T ∗Bt → TBt. Theation of H an be desribed as(3.2.40) p = Hnwhere p ∈ TBt and n ∈ T ∗Bt. One is then interested in omputing the ation of Hon ovetors k ∈ T ∗Bs. Any k ∈ T ∗Bs an be pushed forward into χs,t∗k ∈ T ∗Btso that
q = Hχs,t∗k(3.2.41)

= HF−T
t FT

s k

= χ∗
s,tHkwhere the pull-bak of H is de�ned as(3.2.42) χ∗

s,tH = HF−T
t FT

sThe odeforming derivative of H follows
⋄

H =
d

dt

(

HF−T
t FT

s

)

∣

∣

∣

∣

t=s

(3.2.43)
= Ḣ− HLT



3.3. MATRIX NOTATION 27Vetor and tensor kinematis(1) Flow gradient
Fs,t = F (t)F−1 (s) ⇒ F0,t = F, Fs,s = I(2) Vetors
a = Fs,tb, b = F−1

s,t a, a ∈ TBt, b ∈ TBs

⋄
a = ȧ − La(3) Covetors

k = F−T
s,t n, n = FT

s,tk, n ∈ T ∗Bs, k ∈ T ∗Bt

〈n, ·〉 : TBs → R
⋄
n = ṅ + LT n(4) Contravariant tensors
G = Fs,tEFT

s,t

E = F−1
s,t GF−T

s,t

E : T ∗Bs × T ∗Bs → R, G : T ∗Bt × T ∗Bt → R
⋄

E = Ė− LE − ELT(5) Contravariant linear maps
G = HFT

s,t

H = GF−T
s,t

H : T ∗Bs → TBs, G : T ∗Bt → TBt
⋄

H = Ḣ− HLT3.2.2. Pseudo-rigid motion and onvexity. The following trivial fat en-sures orretness of some of the subsequently employed algorithms.Fat 3.2.1. Pseudo-rigid motion preserves onvexity.Proof. Let B0 be onvex. Then λX + (1 − λ)Y ∈ B0 for all X,Y ∈ B0,
λ ∈ [0, 1].

λ
(

F
(

X − X̄
)

+ x̄
)

+ (1 − λ)
(

F
(

Y − X̄
)

+ x̄
)

=

= F
(

λX + (1 − λ)Y − X̄
)

+ x̄ ∈ B
�3.3. Matrix notationWhenever it is not neessary to be spei� about the underlying kinematis,it is onvenient to adopt a uni�ed notation. The generalised on�guration of abody will be denoted by q while the veloity will be denoted by u. Thus q ∈ Qand u ∈ TqQ, where Q is a generalised on�guration spae. From several possiblehoies, the following one is made for the rigid body(3.3.1) q =

















Λ11

Λ21

...
x̄1

x̄2

x̄3

















, u =

















Ω1

Ω2

Ω3

˙̄x1

˙̄x2

˙̄x3



















3.4. LITERATURE 28This is due to onsisteny with the algorithmi developments of Chapter 5. Itshould be noted that in (3.3.1) q̇ 6= u, but rather q̇ =
[

Λ I
]

u. One the otherhand, for the pseudo-rigid body, the most natural hoie reads(3.3.2) q =

















F11

F12

...
x̄1

x̄2

x̄3

















, u =

















Ḟ11

Ḟ12

...
˙̄x1

˙̄x2

˙̄x3















where obviously q̇ = u. The row-wise ordering of F in q is related to the om-putational e�ieny of some algebrai operations, to be ommented on at a laterpoint. 3.4. LiteratureStarting with Euler in the third quarter of the eighteenth entury, kinematisof rigid motion has been studied for over two hundred years now. A review paperby Dai [52℄ gives a good summary in that respet. A typial textbook exposition,like in Arnold [12℄, usually ontains a brief statement of kinematis followed byan exhaustive disussion on dynamis. From the numerial point of view though,parametrisation of rigid rotations is rather important. In the literature on the in-tegration of rigid motion, three major methods of updating the rotation operatoran be named. Cayley formula is used for example in an old paper by Bensonand Hallquist [23℄, as well as in one of the algorithms reently investigated byNukala and Shelton [171℄. Rodrigues formula is employed in the expliit shemeby Simo and Wong [100℄, also by Krysl and Endres [163℄, Krysl [126, 128, 127℄,Nukala and Shelton [171℄. Quaternion based update is utilised in the impliitsheme by Simo and Wong [100℄, also by Park and Chiou [110℄, Omelyan [162℄,Shivarama [189℄, Johnson et al. [187℄. On a somewhat more theoretial level, re-ent quaternion based developments inlude Kosenko [120℄ and Rio-Martinez andGallardo-Alvarado [179℄. On the other hand, the inremental rotation angle andthe Rodrigues formula seem to be often exploited within the �eld of geometriallyexat beam theories. Papers by Ibrahimbegovi¢ et al. [99℄, Cris�eld and Jeleni[144℄, Ritto-Corrêa and Camotim [145℄, and the dotoral thesis by Mäkinen [146℄provide a good referene here.The pseudo-rigid body model was derived by Cohen and Munaster [46℄ as asimpli�ed ounterpart of �nite elastodynamis. Kinematially, it does not di�ermuh from the point level desription of the lassial ontinuum. Thus, apartfrom the monograph [46℄, textbooks on ontinuum mehanis might be of use. Forexample, hapters on kinematis in Marsden and Hughes [147℄ and Belytshkoet al. [22℄ seem to be omplementary in terms of the balane between theoryand pratie. As disussed by Nordenholz and O'Reilly [160, 161℄, pseudo-rigidbodies are equivalent to Cosserat points. As shown by Solberg and Papadopoulos[193℄, pseudo-rigid bodies are also equivalent to onstant strain �nite elements. Anextension of the pseudo-rigid body onept, admitting seond order deformatione�ets, has been proposed by Papadopoulos [167℄.



CHAPTER 4DynamisFor a body B, the onservation of mass and the balane of linear and angularmomentum respetively read(4.0.1) d

dt

∫

B

ρdv = 0(4.0.2) d

dt

∫

B

ρẋdv =

∫

∂B

tda+

∫

B

ρbdv(4.0.3) d

dt

∫

B

(x − x̄) × ρẋdv =

∫

∂B

(x − x̄) × tda+

∫

B

(x − x̄) × ρbdvwhere t is time, ρ is the mass density, ẋ is the point veloity, t is the surfae tra-tion, b is the body fore, and x̄ is a seleted point. All of the mentioned quantitiesare spatial and so is the integration domain B, being the urrent on�guration ofthe body. One an work out a spei� form of the above priniples, by onsideringkinemati models presented in the previous hapter. This time it is more onve-nient to start with the pseudo-rigid ase (Setion 4.1), and eventually simplify theobtained equations in order to embrae the rigid body model (Setion 4.2).4.1. Pseudo-Rigid bodyThe salar mass of a body is(4.1.1) m =

∫

B

ρdvand the onservation of mass states(4.1.2) ṁ = 0The useful onsequene of the onservation of mass is that(4.1.3) ρJ = ρ0where J = det (F) is the Jaobian (with respet to the Cartesian oordinates {xi
}and {X i

}), and ρ0 is the referential mass density. This follows from the fat, that
∫

B ρdv =
∫

B0
ρJdV =

∫

B0
ρ0dV . One an now move the time derivative under theintegral in the standard way(4.1.4) d

dt

∫

B

aρdv =
d

dt

∫

B0

aρ0dV =

∫

B0

da

dt
ρ0dVThe motion of the pseudo-rigid body is employed, in order to rewrite the linearmomentum balane as 29



4.1. PSEUDO-RIGID BODY 30(4.1.5) F̈

∫

B0

ρ0

(

X − X̄
)

dV +m¨̄x =

∫

∂B

tda+

∫

B

ρbdvClearly, it is advantageous to selet X̄ so that(4.1.6) ∫

B0

ρ0

(

X − X̄
)

dV = 0From now on X̄ is onsidered to be the referential mass entre of the body. Thelinear momentum balane reads then(4.1.7) m¨̄x = fwhere(4.1.8) f =

∫

∂B

tda+

∫

B

ρbdvis the resultant fore. The angular momentum onservation an be worked out asfollows. First note, that
d

dt

∫

B

(x − x̄) × ρẋdv =

d

dt

∫

B0

[

F
(

X − X̄
)]

×
[

Ḟ
(

X − X̄
)

+ ˙̄x
]

ρ0dV =

∫

B0

[

Ḟ
(

X − X̄
)

]

×
[

Ḟ
(

X − X̄
)

+ ˙̄x
]

ρ0dV +

∫

B0

[

F
(

X − X̄
)]

×
[

F̈
(

X − X̄
)

+ ¨̄x
]

ρ0dV =

∫

B0

[

Ḟ
(

X − X̄
)

]

× ˙̄xρ0dV +

∫

B0

[

F
(

X − X̄
)]

× ¨̄xρ0dV +

∫

B

(x− x̄) ×
[

F̈F−1 (x − x̄)
]

ρdv =

−skew [ ˙̄x] Ḟ ∫
B0

(

X − X̄
)

ρ0dV − skew [¨̄x]F ∫
B0

(

X − X̄
)

ρ0dV +

∫

B

(x− x̄) ×
[

F̈F−1 (x − x̄)
]

ρdv =

∫

B

(x− x̄) ×
[

F̈F−1 (x − x̄)
]

ρdv(4.1.9)where a × a = 0 was used in the transition from line three to �ve, spatial homo-geneity of F and the fat that a×b = −skew [b]a (skew [·] makes a skew symmetrioperator of a vetor) were utilised in the transition from line �ve to seven, and for-mula (4.1.6) was exploited in order to reah the last line. The angular momentumbalane an now be phrased as(4.1.10) ∫
B

(x − x̄)×
[

F̈F−1 (x − x̄)
]

ρdv =

∫

∂B

(x − x̄)×tda+

∫

B

(x − x̄)×ρbdvLet veskew [·] make a 3-vetor out of a 3 × 3 skew symmetri matrix. By notiingthat a × b = veskew [b⊗ a − a ⊗ b], and the fat that A = B implies A − AT =
B− BT , one an rewrite the above as



4.1. PSEUDO-RIGID BODY 31(4.1.11) ∫
B

(x − x̄)⊗
[

F̈F−1 (x − x̄)
]

ρdv =

∫

∂B

(x − x̄)⊗tda+

∫

B

(x − x̄)⊗ρbdvor equivalently(4.1.12) ∫
B

[

F̈F−1 (x − x̄)
]

⊗(x − x̄) ρdv =

∫

∂B

t⊗(x − x̄) da+

∫

B

ρb⊗(x − x̄) dvThis an be further simpli�ed, by making use of the deforming tensor L = ḞF−1(4.1.13) L̇ = F̈F−1 + ḞḞ−1, Ḟ−1 = −F−1ḞF−1, F̈F−1 = L̇ + L2and the following relations for the tensor produt(4.1.14) a ⊗ (La) = (a ⊗ a)LT , (La) ⊗ a = L (a ⊗ a)and
d

dt
(La ⊗ a) = L̇a ⊗ a + Lȧ ⊗ a + La ⊗ ȧ

= L̇a ⊗ a + LLa ⊗ a + La ⊗ La

=
(

L̇ + L2
)

a ⊗ a + La ⊗ aLT(4.1.15)so that
∫

B

[

F̈F−1 (x − x̄)
]

⊗ (x − x̄) ρdv =

(

L̇ + L2
)

∫

B

(x − x̄) ⊗ (x − x̄) ρdv =

(

L̇ + L2
)

E =
d

dt
(LE) − LELT(4.1.16)where(4.1.17) E =

∫

B

(x − x̄) ⊗ (x − x̄) ρdvis the spatial Euler tensor. Finally, the tensor equation(4.1.18) d

dt
(LE) − LELT =

∫

∂B

t⊗ (x − x̄) da+

∫

B

ρb⊗ (x − x̄) dvdesribes the balane of the angular momentum.Formula (4.1.18) impliitly represents a set of nonlinear ordinary di�erentialequations with respet to the omponents of the deformation gradient F and Eulertensor E. It is inomplete though, in the sense that an integration of the aboveequation would allow a body to deform without a bound. Intuitively, suh a boundomes from the internal fores, opposing any deformation. In our ase, this opposi-tion must be rather spei�, so that the homogeneity of deformations is preserved.This issue has risen some ontroversy in the literature, see Steigmann [196℄ andCasey [36, 37℄. Nevertheless, we shall not be onerned with this rather philosoph-ial disourse, as it does not a�et the pratial utility of the pseudo-rigid model.In order to bridge (4.1.18) with the deformation indued fores, we need to reallthat as a onsequene of the Cauhy's theorem (f. Marsden and Hughes [147, pp.



4.1. PSEUDO-RIGID BODY 32127-134℄), there exists a seond order ontravariant Cauhy stress tensor σ, suhthat(4.1.19) t = σnwhere n is the unit outward normal to ∂B. The following evaluation is now possible
∫

∂B

t⊗ (x − x̄) da =

∫

∂B

σn ⊗ (x − x̄) da

=

∫

B

divσ ⊗ (x − x̄) dv +

∫

B

σdv(4.1.20)where the divergene theorem ∫

B divadv =
∫

∂B a · nda has been applied with a =rowi [σ] (xj − x̄j) for all i, j. In the next step, the loal form of the linear momentumbalane (4.0.2)(4.1.21) ρẍ = ρb + divσand the mean Cauhy stress tensor de�ned as(4.1.22) σ̄ =
1

V

∫

B

σdvare plunged bak into (4.1.20), so that(4.1.23) ∫

B

ρẍ⊗ (x − x̄) dv + V σ̄ =

∫

∂B

t ⊗ (x − x̄) da+

∫

B

ρb ⊗ (x − x̄) dvEquivalently, by (4.1.9) and (4.1.16) there holds(4.1.24) d

dt
(LE) − LELT + V σ̄ =

∫

∂B

t ⊗ (x − x̄) da+

∫

B

ρb ⊗ (x − x̄) dvwhere V =
∫

B
dv is the urrent volume. It should be noted, that the balane prini-ple (4.1.24) implies the angular momentum onservation (4.0.3), provided that theCauhy stress tensor σ is symmetri. The stress term V σ̄ prevents an unboundedgrowth of deformation, although for this one needs to delare a physially plausiblerelationship between σ̄ and F. The relation σ̄ = σ̄ (F) bears the name of a on-stitutive equation. Let us not speify this relation yet, but rather summarise theurrent derivations. This is done in the box below.Spatial pseudo-rigid dynamis(1) Mass onservation

ṁ = 0, Ė− LE − ELT = 0(2) Linear momentum balane
m¨̄x =

∫

∂B

tda+

∫

B

ρbdv(3) Angular momentum balane
d
dt (LE) − LELT + V σ̄ =

∫

∂B
t ⊗ (x − x̄) da+

∫

B
ρb ⊗ (x − x̄) dv

L = ḞF−1, σ̄ = σ̄ (F)



4.1. PSEUDO-RIGID BODY 33In the �rst point of the box, Ė− LE− ELT = 0 has been added in an ad-homanner. This orresponds to the onservation of the spatial Euler tensor, in thesense that, as viewed from the point of view of a o-deforming frame, it should nothange with time. Reall from the previous hapter, that ⋄

E = Ė − LE − ELT isa suitable Lie derivative, if only E an be regarded as a ontravariant objet. Itis so, beause n · Ek an be interpreted as measuring the amount of matter awayfrom a pair of planes n,k passing through x̄. Similarly, if one de�nes a generalisedangular momentum H = LE, and realises that this is a ontravariant map assigningto eah plane k (passing through x̄) the net linear momentum Hk orthogonal tothe plane, the term d
dt (LE) − LELT beomes ⋄

H = Ḣ − HLT . This onnets ourderivation with that pursued by Cohen and Munaster [46, pp. 23-31℄, where amore onstrutive approah was undertaken. Regardless of those subtleties, it isquite lear that the nonlinearities of the spatial equations render them quite uselessfor pratial purposes. In fat, the punh line of pseudo-rigid dynamis is in thesimpliity of its referential formulation.4.1.1. Referential formulation. We wish to simplify d
dt (LE)−LELT . Letus �rst de�ne the referential Euler tensor as(4.1.25) E0 =

∫

B0

(

X − X̄
)

⊗
(

X− X̄
)

ρ0dVso that
E =

∫

B

(x − x̄) ⊗ (x− x̄) ρdv

=

∫

B0

F
(

X − X̄
)

⊗ F
(

X − X̄
)

ρ0dV = FE0F
T(4.1.26)We an now write

LELT = ḞF−1EF−T ḞT = ḞE0Ḟ
T(4.1.27)(4.1.28) d

dt
(LE) = L̇E + LĖ(4.1.29) L̇ = F̈F−1 + ḞḞ−1

Ė =
d

dt

∫

B

(x − x̄) ⊗ (x− x̄) ρdv

=
d

dt

∫

B0

F
(

X − X̄
)

⊗ F
(

X − X̄
)

ρ0dV

=

∫

B0

Ḟ
(

X − X̄
)

⊗ F
(

X − X̄
)

ρ0dV

+

∫

B0

F
(

X − X̄
)

⊗ Ḟ
(

X − X̄
)

ρ0dV

= ḞE0F
T + FE0Ḟ

T(4.1.30)so that
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d

dt
(LE) − LELT =

(

F̈F−1 + ḞḞ−1
)

FE0F
T + ḞF−1

(

ḞE0F
T + FE0Ḟ

T
)

− ḞE0Ḟ
T

= F̈E0F
T + ḞḞ−1FE0F

T + ḞF−1ḞE0F
T + ḞE0Ḟ

T − ḞE0Ḟ
T

= F̈E0F
T − ḞF−1ḞF−1FE0F

T + ḞF−1ḞE0F
T

= F̈E0F
T(4.1.31)where Ḟ−1 = −F−1ḞF−1 was utilised. This allows to rewrite the angular momen-tum balane as(4.1.32) F̈E0F

T + V σ̄ =

∫

∂B

t ⊗ (x − x̄) da+

∫

B

ρb⊗ (x − x̄) dvand after right-multiplying by F−T obtain(4.1.33) F̈E0 + V σ̄F−T =

∫

∂B

t⊗ F−1 (x − x̄) da+

∫

B

ρb⊗ F−1 (x − x̄) dvThe term V σ̄F−T an be worked out as follows
V σ̄F−T =

∫

B

σF−T dv =

∫

B0

σF−TJdV =

∫

B0

PdV(4.1.34)where(4.1.35) P = JσF−Tis the �rst Piola-Kirhho� stress tensor [147, p. 135℄. The average referentialstress is de�ned as(4.1.36) P̄ =
1

V

∫

B0

PdVwhih together with the surfae element transformation(4.1.37) t = σn, N = FT n, p = PN = Jσn = Jt ⇒ tda = pdAleads to the �nal form of the referential angular momentum balane(4.1.38) F̈E0 + V P̄ =

∫

∂B0

p⊗
(

X − X̄
)

dA+

∫

B0

ρob⊗
(

X− X̄
)

dVFrom the omputational point of view, the above equations improves muhupon the spatial formulation. Clearly, deformations of the pseudo rigid body anbe onveniently integrated in the referene frame, as soon as a onstitutive relation
P̄ = P̄ (F) is given. This is summarised in the box below.Referential pseudo-rigid dynamis

F̈E0 + V P̄ =

∫

∂B0

p⊗
(

X − X̄
)

dA+

∫

B0

ρob ⊗
(

X− X̄
)

dV

P̄ = P̄ (F)



4.2. RIGID BODY 354.1.2. Constitutive equation. Cohen and Munaster [46, pp. 52-58℄ disussa pseudo-rigid adaptation of the lassial onstitutive theory and examine severalwell established material models. In the urrent work a hyperelasti pseudo-rigidontinuum is onsidered, admitting the strain energy funtion Ψ, suh that(4.1.39) P̄ = ∂FΨ (F)(4.1.40) Ψ =
1

4

[

FT F− I
]

: C :
[

FTF − I
](4.1.41) Cijkl = λδijδkl + µ [δikδjl + δilδjk]where the Saint Venant - Kirhho� material was adopted. In the above λ and µare Lamé onstants, while δij is the Kroneker delta. The Lamé onstants an beexpressed in terms of the Young modulus E and the Poisson ratio ν as(4.1.42) λ =

Eν

(1 + ν) (1 − 2ν)(4.1.43) µ =
E

2 + 2ν4.2. Rigid bodyThe mass onservation and the linear momentum balane do not hange forthe rigid body ase. Some work must be done however, in order to work out thebalane of the angular momentum. It is onvenient to start from equation (4.1.18)for pseudo-rigid bodies(4.2.1) d

dt
(LE) − LELT =

∫

∂B

t ⊗ (x − x̄) da+

∫

B

ρb ⊗ (x − x̄) dvThe deforming tensor L assigns veloities to spatial vetors, L : TB → TB. As itwas shown in Setion 3.1 of the previous hapter, for rigid bodies the same role isplayed by the spatial angular veloity ω̂. In other words, assuming an orthogonaldeformation gradient F = Λ, there follows(4.2.2) L = ω̂|F=Λso that(4.2.3) d

dt
(ω̂E) + ω̂Eω̂ =

∫

∂B

t⊗ (x − x̄) da+

∫

B

ρb⊗ (x − x̄) dvLet us now take the skew part of the above and ome bak to the vetor form ofthe equation. One an see that(4.2.4) skew [ω̂E] = ω̂E + Eω̂(4.2.5) skew [ω̂Eω̂] = ω̂Eω̂ − ω̂Eω̂ = 0(4.2.6) skew [a ⊗ b] = a ⊗ b− b ⊗ a



4.2. RIGID BODY 36where skew [·] was now used with respet to matries, and ω̂T = −ω̂ was utilised.When retrieving a vetor from (4.2.4), it an be notied that(4.2.7) veskew [ω̂E + Eω̂] = [tr (E) I − E]ωBy de�nition(4.2.8) j = tr (E) I − Eis the spatial inertia tensor (I is the 3 × 3 identity). By notiing further(4.2.9) b× a = veskew [a⊗ b − b⊗ a]we an arrive at a vetor form of the spatial angular momentum onservation forrigid bodies(4.2.10) d

dt
(jω) =

∫

∂B

(x − x̄) × tda+

∫

B

(x − x̄) × ρbdvFor the omplete piture, it remains to expand the d
dt (jω) term and ompute thereferential form of the equation. Notie that

Ė =

∫

B

ω̂ (x − x̄) ⊗ (x− x̄) ρdv +

∫

B

(x − x̄) ⊗ ω̂ (x − x̄) ρdv

= ω̂E− Eω̂(4.2.11)Now it is onvenient to start again with(4.2.12) d

dt
(ω̂E) = ˙̂ωE + ω̂Ė = ˙̂ωE + ω̂ω̂E− ω̂Eω̂and take the vetor representation its skew part. First and third omponents havealready been evaluated in (4.2.4) and (4.2.5). The remaining one an be omputedas(4.2.13) skew [ω̂ω̂E] = ω̂ω̂E− Eω̂ω̂whih happens to oinide with the vetor form(4.2.14) veskew [ω̂ω̂E− Eω̂ω̂] = ω × jωThe loal form of the spatial angular momentum balane reads now(4.2.15) jω̇ + ω × jω =

∫

∂B

(x − x̄) × tda+

∫

B

(x − x̄) × ρbdvThe referential form of the above equation follows by notiing that(4.2.16) ω = ΛΩ ⇔ ω̂ = ΛΩ̂ΛTand hene(4.2.17) ω × jω = ω̂jω = ΛΩ̂ΛT jΛΩwhih together with(4.2.18) ω̇ = Λ̇Ω + ΛΩ̇ = ΛΩ̂Ω + ΛΩ̇ = ΛΩ̇



4.3. MATRIX NOTATION 37allows to write(4.2.19) jΛΩ̇ + ΛΩ̂ΛT jΛΩ =

∫

∂B

(x − x̄) × tda+

∫

B

(x − x̄) × ρbdvand after left-multipliation by ΛT beomes the desired referential form of thebalane(4.2.20) JΩ̇ + Ω × JΩ = ΛT

[∫

∂B

(x − x̄) × tda+

∫

B

(x− x̄) × ρbdv

]where by de�nition(4.2.21) J = ΛT jΛis the referential inertia tensor (also alled the body frame inertia tensor). It is notdi�ult to verify that(4.2.22) J = tr (E0) I − E0Box below summarises rigid body dynamis. Note, that onservation of the spatialEuler tensor is now automati ( ⋄E = Ė − ω̂E − Eω̂T = ω̂E − Eω̂ − ω̂E + Eω̂ = 0)and hene it was not stated expliitly. This results from the rigidity, preventingany distortion of the o-deforming frame.Rigid dynamis(1) Mass onservation
ṁ = 0(2) Linear momentum balane

m¨̄x =

∫

∂B

tda+

∫

B

ρbdv(3) Angular momentum balane
d

dt
(jω) = jω̇ + ω × jω = m ⇔ JΩ̇ + Ω× JΩ = ΛTm

m =

∫

∂B

(x − x̄) × tda+

∫

B

(x− x̄) × ρbdv

ω = ΛΩ, j = ΛJΛT , J = tr (E0) I − E04.3. Matrix notationWe adopt the following uniform matrix notation for the dynamis of rigid andpseudo-rigid bodies(4.3.1) Mu̇ = fFor the rigid body ase the inertia operator reads(4.3.2) M =

[

J

mI

]and the generalised out of balane fore is



4.4. LITERATURE 38(4.3.3) f =

[

ΛT
∫

∂B (x − x̄) × tda+ ΛT
∫

B (x − x̄) × ρbdv − Ω× JΩ
∫

∂B
tda+

∫

B
ρbdv

]For the pseudo-rigid body ase the inertia operator reads(4.3.4) M =









E0

E0

E0

mI







and the generalised out of balane fore is(4.3.5) f =

[ ∫

∂B0
p ⊗

(

X − X̄
)

dA+
∫

B0
ρob⊗

(

X − X̄
)

dV − V P̄
∫

∂B
tda+

∫

B
ρbdv

]It should be noted, that it is the row-wise omposition of Ḟ in u (f. Setion 3.3),whih allows us to use the omputationally onvenient blok-diagonal form of Mfor pseudo-rigid bodies. This results from the fat, that F̈ijE0jk an be seen asthree matrix-vetor produts, where the vetors are rows of F̈, and the symmetryof E0 is utilised. 4.4. LiteratureRigid body dynamis is a lassial subjet and has been for example om-prehensively disussed by Arnold [12℄. The monograph by Cohen and Munaster[46℄ provides the essential summary for the pseudo-rigid body ase. Althoughpseudo-rigid bodies seem not to have enjoyed many pratial appliations, the sim-ple nonlinear form of the governing equations made them spei�ally attrativefor a theoretially grounded researh. For example, Lewis and Simo [135℄ stud-ied stability of rotating pseudo-rigid bodies, Cohen and Ma Sithigh formulate apseudo-rigid impat model [47℄, and disuss the slip reversal problem for fritionalimpat [45℄, Nordenholz and O'Reilly [160, 161℄ disuss some aspets of motionand stability of Cosserat points, and point out the ompatibility of their studieswith the pseudo-rigid ontext. Casey [36℄ gives a Lagrangian formulation of thepseudo-rigid dynamis, and disusses imposition of the homogeneity of deforma-tion as a global onstraint. This gives rise to the latter disussion with Steigmann[196, 37℄. Solberg and Papadopoulos [193℄ examine an energy onserving impatof a spherial pseudo-rigid body, and show that multiple impats our before re-bounding. The haoti behaviour of the pseudo-rigid impat hinted in [193℄ wasfurther studied by Kanso and Papadopoulos [113, 112℄.



CHAPTER 5Time steppingBefore deiding upon a preferred time integration sheme, it is useful to realisewhat our needs are. The general intention is to develop a framework dealing withonstrained systems, with an emphasis on multi-body fritional ontat problems.The employed kinemati models are quite simple, hene there is not muh of the dis-repany between the eigenvalues related to the low and the high vibration modes.We intend to deal with non-smoothness suh as shoks, and employ impliit solversin order to deal with the onstraint. Having said that, it seems relevant to look for:
• A low order sheme. Beause of a spei� manner of dealing with the non-smooth onstraints, the auray of any time-stepping will be redued tothe �rst order, if suh are present. Hene, there is not muh point inaiming at high auray. We will be satis�ed with a seond order method,as it will at the same time failitate an adequate treatment of smoothdynamis.
• An expliit sheme. On one hand, the lightness of an expliit shemeis preferred in order to balane out the expenses related to the impliittreatment of the onstraints. On the other hand, the issue of stabilitymight seem restritive. For the dynamis of pseudo-rigid bodies this doesnot represent a signi�ant ompromise. Skipping the few pseudo-rigidvibration modes by employing a large time step and a Newton solverseems vain, as one attempts to extrat the rotational motion by meansof linearisation unaware of rotations. Why not resort to the rigid modelinstead? However, the issue of stability does not generally vanish for rigidbodies. In that respet, a new stable sheme is proposed.Setion 5.1 summarises the time integration method employed for the dynamisof pseudo-rigid bodies. This is followed by the exposition of a sheme suitable forintegration of onstrained rotational motion (Setion 5.2). The quasi-stati ase isbrie�y treated in Setion 5.3. A short literature review follows in Setion 5.4.5.1. Pseudo-rigid dynamisThe time integrator ought to �t well into the struture of the omputationalode. In the expliit analysis of onstrained multi-body dynamis it is onvenientto employ the following time stepping(5.1.1) qt+ h

2 = qt +
h

2
ut(5.1.2) ut+h = ut + M−1hf t+ h

2 + M−1HTR(5.1.3) qt+h = qt+ h
2 +

h

2
ut+h39



5.1. PSEUDO-RIGID DYNAMICS 40where u is the veloity, q is the on�guration, M is the inertia operator, f representsthe generalised out of balane fore, H inorporates gradients of the onstraints,and R stores the onstraints reations. The utility of the above formulae resultsfrom several elementary fats:(1) Combination of the entral di�erene sheme and the trapezoidal rulemaintains good onservation properties (Setion 5.1.3) and is seond orderaurate (Setion 5.1.1). Conditional stability (Setion 5.1.2) is the onlyompromise here.(2) The mid-step on�guration qt+ h
2 an be utilised for both, alulation ofthe onstraints gradients operator H and approximation of f t+ h

2 . In pra-tie, this means that some of the onstraints (e.g. ontats) will be dis-overed at the mid-step on�guration. As will be exempli�ed later, thishoie allows to retain the seond order auray in the presene of smoothonstraints.(3) The momentum balane (5.1.2) an be employed to alulate the on-straints reations R. In partiular, the algebrai struture of equation(5.1.2) allows for a onvenient reformulation, whih will be the subjet ofdisussion in Chapter 7.(4) If a suitable kinemati formulation is used, the inverse of inertia M−1 isomputed only one. Obviously, this is a desirable feature.The above sheme is appliable if the veloity and the on�guration belongto the same vetor spae. For pseudo-rigid bodies this was shown to be the ase(Setion 3.2). In fat, equations (5.1.1-5.1.3) are an expliit reformulation and sim-pli�ation of the impliit sheme given by Simo and Tarnow [190℄. The sheme(5.1.1-5.1.3) was mentioned by Moreau [156℄, when presenting a �primitive exam-ple� of the sweeping proess (f. Chapter 10). In a sense, this thesis is merely avariation on the subjet of this example. The following three setions show, thatthe above sheme is idential with the entral di�erene method.5.1.1. Auray. Assume that q̄ and ū are the solution of the initial valueproblem(5.1.4) Mu̇ = f (q, t)(5.1.5) q̇ = u(5.1.6) q (0) = q0, u (0) = u0For a general polynomial funtion f (x) it is easy to see that f (x+ hẋ) = f (x) +

hḟ (x) + O
(

h2
), where O (·) denotes terms growing no faster αh2, α > 0. Forexamplē

P

(

F +
h

2
Ḟ

)

=
1

2

(

F +
h

2
Ḟ

)

C :

{

(

F +
h

2
Ḟ

)T (

F +
h

2
Ḟ

)

− I

}

= P̄ (F) +
h

2
˙̄P (F) +O

(

h2
)(5.1.7)where P̄ is the �rst Piola-Kirhho� stress omputed for the Saint Venant - Kirhho�material model (F is the deformation gradient). Hene, one an write



5.1. PSEUDO-RIGID DYNAMICS 41(5.1.8) f

(

q̄t +
h

2
ūt, t+

h

2

)

= f
(

q̄t, t
)

+
h

2
ḟ
(

q̄t, t
)

+O
(

h2
)Also(5.1.9) ūt+h = ūt + h ˙̄ut +

h2

2
¨̄u +O

(

h3
)(5.1.10) q̄t+h = q̄t + h ˙̄qt +

h2

2
¨̄q + O

(

h3
)One an now ompute the residuals

τ1 (h) = M
(

ūt+h − ūt
)

− hf

(

q̄t +
h

2
ūt, t+

h

2

)

= h
[

M ˙̄ut − f
(

q̄t, t
)]

+
h2

2

[

M ¨̄u− ḟ
(

q̄t, t
)

]

+O
(

h3
)(5.1.11)

τ2 (h) = q̄t+h − q̄t − h
ūt + ūt+h

2

= h
[

˙̄qt − ūt
]

+
h2

2

[

¨̄q − ˙̄ut+h
]

+O
(

h3
)(5.1.12)and by assuming a su�iently regularity of q̄, ū, f (terms in [·] vanish) onlude,that ‖τ1 (h)‖ = O

(

h3
) and ‖τ2 (h)‖ = O

(

h3
). The method is then of the seondorder.5.1.2. Stability. Only the linearised ase is onsidered, whih aounts forthe neessary but not for the su�ient stability ondition (f. Hughes [98, p.135℄). The aim is to show brie�y that the linearised stability riterion is the sameas for the entral di�erene sheme. Consider the following linearisation of equation(5.1.4)(5.1.13) Mδu̇ + Kδq = Owhere(5.1.14) K = −∂f/∂qis the tangent sti�ness operator, and δs denote linear variations of the respe-tive arguments. Provided, that both M and K are symmetri and positive def-inite (semi- for K), standard spetral deomposition related to the eigenproblem

(K− λM)ψ = 0 an be applied. Assuming normalisation ΨT MΨ = I, where Ψis omposed of olumn-wise eigenvetors ψ, equation (5.1.13) an be diagonalisedinto a number of salar equations of form(5.1.15) δu̇+ λδq = 0Sheme (5.1.1-5.1.3) is now applied to the above equation. After some simplealgebra, there follows(5.1.16) [

δut+h

δqt+h

]

=





(

1 − h2

2 λ
)

−hλ
h
(

1 − h2

4 λ
) (

1 − h
2

2
λ
)





[

δut

δqt

]



5.1. PSEUDO-RIGID DYNAMICS 42whih an be rewritten as(5.1.17) yt+h = AytThe sheme is stable if(5.1.18) ‖A‖ ≤ 1where ‖·‖ is the natural linear operator norm, de�ned as the largest streth of aunit vetor, ‖A‖ = supy ‖Ay‖ / ‖y‖. If γi are the eigenvalues of A, there holds(5.1.19) ρ (A) = max
i

|γi| ≤ ‖A‖and hene the stability riterion an be replaed by ρ (A) ≤ 1, where ρ is alled thespetral radius of A. For a 2 × 2 matrix, the eigenvalues read(5.1.20) γ =
1

2

(tr (A) ±
√tr2 (A) − 4 det (A)

)and sine in our ase tr (A) = 2 − h2λ and det (A) = 1, there follows(5.1.21) γ = 1 − h2λ± h
√
h2λ2 − 4λ

2and onsequently |γ| ≤ 1 reads(5.1.22) −1 ≤ 1 − h2λ± h
√
h2λ2 − 4λ

2
≤ 1While the right inequality is satis�ed for any h, λ ≥ 0, the left one leads to theonstraint on the time step(5.1.23) h ≤ 2√

λwhih is the same as for the entral di�erene sheme [98, p. 94℄.5.1.3. Conservation. The following disussion is largely based upon Simoand Tarnow [190℄. Let us de�ne the generalised momentum p = Mu and rewrite(5.1.4-5.1.6) as(5.1.24) ż = J∇H(5.1.25) z (0) = z0where(5.1.26) z =

[

q

p

]

, J =

[

0 I

−I 0

]and(5.1.27) H = Ek + Epis the Hamiltonian of the dynamial system. By assumption we are dealing withan autonomous and onservative ase, that is the out of balane fore in (5.1.4)



5.1. PSEUDO-RIGID DYNAMICS 43reads f (q) = −∂Ep/∂q, where Ep is the potential energy. The kineti energy is thequadrati form Ek = 1
2p

TM−1p. Hene, ∇H =
[

−f ,M−1p
]T . It is not di�ult tonotie, that the Hamiltonian remains onstant along the integral urves of equation(5.1.24). Namely(5.1.28) 〈∇H, ż〉 = 〈∇H,J∇H〉 =

∂H

∂q

∂H

∂p
− ∂H

∂p

∂H

∂q
= 0In other words, solutions of (5.1.24-5.1.25) are the level urves of the total energyfuntion and thus, the energy is onserved along the �ow de�ned by the vetor�eld J∇H . It an be also notied that (5.1.28) holds, beause w (a,b) = 〈a,Jb〉is an anti-symmetri bilinear form (also alled the sympleti two-form), and thus

w (a,a) = 0. Let M be the on�guration spae of all z. One distinguishes a lassof sympleti transformations Gt : M → M , that preserve w in the sense that(5.1.29) d

dt
w (DGt (z) δz1, DGt (z) δz2) = 0for all δz1, δz2 ∈ TMz, where DGt (z) : TMz → TMGt(z) is the gradient of Gt.Note, that the above ondition means, that Gt moves points of M along someurves in suh a way, that the pull-bak of w de�ned at TMGt(z) is the same as wde�ned at TMz. That is(5.1.30) DGt (z)

T
JDGt (z) = JIn onsequene, under the hange of oordinates indued by Gt the Hamilton-ian system (5.1.24-5.1.25) looks just the same. In the theory of Hamiltonian sys-tems suh hanges of oordinates are alled anonial transformations. The phase�ow de�ned by equation (5.1.24) is omposed of anonial transformations (f.Arnold [12, p. 190℄). When integrating the dynamial problem numerially, oneadvanes the solution from zt to zt+h by �nding roots of some general nonlinear map

G
(

zt+h, zt
)

= 0. If G is sympleti, one hopes to obtain an approximation of theintegral urve, lose to the level urve of the Hamiltonian. Thus, in the numerialsense, sympleti integrators are energy onserving. Tehnially, the sympletiityof G an be veri�ed on the basis of linearisation δzt+h = Aδzt, where the linearisedampli�ation matrix A reads(5.1.31) A = A−1
1 A2and(5.1.32) A1 =

∂G
(

zt+h, zt
)

∂zt+h
, A2 = −∂G

(

zt+h, zt
)

∂ztBy analogy with (5.1.30), there needs to hold AT JA = J for the ampli�ationmatrix to be sympleti (and so for G). Note, that the ondition implies that
det (A) = 1, and thus the spetral radius ρ (A) = 1 (whih was the ase in theprevious setion). At this point it is onvenient to notie, that J = −JT = −J−1.Now, the ondition AT JA = J an be spelt out as AT

2 A−T
1 JA−1

1 A2 = J, furthertransformed into A−T
1 JA−1

1 = A−T
2 JA−1

2 and inverted, resulting in(5.1.33) A1JAT
1 − A2JAT

2 = OWe are �nally in the position to verify sympletiity of the sheme (5.1.1-5.1.3). Inour ase, the operator G reads



5.2. RIGID DYNAMICS 44(5.1.34) G
(

zt+h, zt
)

= zt+h − zt − hJ

[

f
(

qt + h
2M−1pt

)

M−1
(

pt + pt+h
)

/2

]and hene(5.1.35) A1 = I − h

[

0 I

−I 0

] [

0 0

0 1
2M

−1

]

=

[

I −h
2M−1

0 I

](5.1.36) A2 = I + h

[

0 I

−I 0

] [

K h
2KM−1

0 1
2M

−1

]

=

[

I h
2M

−1

−hK I − h2

2 KM−1

]where K = ∂f (q) /∂q. After some algebra there follows, that the two triple prod-uts in (5.1.33) read(5.1.37) A1JAT
1 = A2JAT

2 = Jand thus the time stepping (5.1.1-5.1.3) is sympleti.5.2. Rigid dynamisAs far as the linear motion is onerned, the disussion of the previous se-tion applies. The rotational motion is solely of interest here. In priniple, theobjetive is to devise a time integrator, preserving the struture and the qualitiesof sheme (5.1.1-5.1.3). In the pursuit of this goal it will be neessary to abuseslightly the notion of geometrial onsisteny, although the resulting sheme willhave the qualities of modest omputational ost, seond order auray, and stabil-ity. Two versions of the new sheme are onsidered. The fully expliit one requiresless omputational e�ort, although it does experiene a negative energy drift. Thesemi-expliit version does not drift, and it retains expliitness in the evaluation ofthe external fore. Nonetheless, solution of a loal impliit problem is neessary inorder to update the on�guration.After some preliminary remarks in Setion 5.2.1, the proposed sheme is spe-i�ed in Setion 5.2.2. Some omments about the onservation and stability prop-erties are given in Setion 5.2.3. A single illustrative example is given in Setion5.2.4. This is followed by a brief disussion on e�ieny (Setion 5.2.5).5.2.1. Preliminaries. We reall, that the orthogonal rotation operator Λ (t)belongs to a urved spae, the speial orthogonal group SO (3). It is updated inthe multipliative manner(5.2.1) Λ (t+ h) = Λ (t) exp [Ψ (h)]where Ψ (h) is the inremental rotation vetor, and exp [·] is the exponential mapde�ned by the Rodrigues formula(5.2.2) exp [Ψ] = I +
sin ‖Ψ‖
‖Ψ‖ Ψ̂ +

1 − cos ‖Ψ‖
‖Ψ‖2 Ψ̂2Above, I is the 3 × 3 identity operator, Ψ̂ reates the skew symmetri matrix outof a 3-vetor Ψ, and ‖·‖ stands for the Eulidean norm. As was already disussedin Setion 3.1, the inrement of rotation ‖Ψ‖ should be smaller then 2π in order toavoid the singularity of the exponential map. In pratie, and spei�ally for theonstrained systems, this is a rather realisti assumption.In the view of the update formula (5.2.1), the �nite rotation vetor Ψ an bepereived as belonging to the tangent spae TR(t)SO (3). Operations suh as vetor



5.2. RIGID DYNAMICS 45addition Θ1 + Θ2 make sense only if both vetors belong to the same tangentspae Θ1,Θ2 ∈ TR(t)SO (3) (geometrial onsisteny). When Θ1 ∈ TR(t)SO (3)and Θ2 ∈ TR(t+h)SO (3) the di�erential of the exponential map is employed inorder to shift a seleted vetor from its own tangent spae into the tangent spaeof the other vetor. An example is(5.2.3) (

TTΘ1

)

+ Θ2where(5.2.4) T = I +
1 − cos ‖Ψ‖

‖Ψ‖2 Ψ̂ +
‖Ψ‖ − sin ‖Ψ‖

‖Ψ‖3 Ψ̂2was already de�ned as (3.1.25) in Setion 3.1. As Ψ̂Ψ = Ψ×Ψ = 0, there followsthat TTΨ = Ψ, whih represents a useful fat.The balane of the angular momentum, expressed in the body-frame, reads(5.2.5) JΩ̇ + Ω × JΩ = ΛT twhere J is the onstant referential inertia tensor, Ω is the referential angular velo-ity, and t is the spatial torque. It is noteworthy that Ω (t) ∈ TR(t)SO (3), so thatan extrapolation Ψ (h) = hΩ + h2

2 Ω̇ makes sense.Another form of the balane of the angular momentum follows from the spatialformula(5.2.6) d

dt
(jω) = twhere j is the time-dependent spatial inertia tensor (j =ΛJΛT ), and ω is the spatialangular veloity (ω = ΛΩ). The above expression an be integrated over the timeinterval [t, t+ h]

jω|t+h
t = j (t+ h)ω (t+ h) − j (t)ω (t)

= Λ (t+ h)JΛT (t+ h)ω (t+ h) − Λ (t)JΛT (t)ω (t)

= Λ (t) exp [Ψ (h)]JΩt+h − Λ (t)JΩt

=

∫ t+h

t

tdt(5.2.7)resulting in(5.2.8) Ω (t+ h) = J−1 exp [−Ψ (h)]

[

JΩ (t) + ΛT (t)

∫ t+h

t

tdt

]Disretisations of the above formula give rise to the variety of well-behaved timestepping methods (e.g. Krysl [126℄). Nevertheless, an impliit dependene of theinremental rotation vetor Ψ on the external torque t preludes a diret algorith-mi analogy with (5.1.2).5.2.2. Sheme. The proposed sheme reads(5.2.9) Λt+ h
2 = Λt exp

[

h

2
Ωt

](5.2.10) Tt+ h
2 =

(

Λt+ h
2

)T

tt+ h
2
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2 = J−1

[

exp

[

−h
2
Ωt

]

JΩt +
h

2
Tt+ h

2

](5.2.12) Ωt+h
1 = Ωt + J−1h

[

Tt+ h
2 − Ωt+ h

2 × JΩt+ h
2

]If expliit(5.2.13) Λt+h = Λt+ h
2 exp

[

h

2
Ωt+h

1

](5.2.14) Ωt+h
2 = J−1 exp

[

−h
2
Ωt+h

1

] [

exp

[

−h
2
Ωt

]

JΩt + hTt+ h
2

]otherwise(5.2.15) solve (exp

[

h

2
Ωt+h

3

]

JΩt+h
3 = exp

[

−h
2
Ωt

]

JΩt + hTt+ h
2

)(5.2.16) Λt+h = Λt+ h
2 exp

[

h

2
Ωt+h

3

]In the �rst formula (5.2.9) the mid-step rotation Λt+ h
2 is extrapolated with theforward Euler sheme. It is then used to ompute the referential torque omponentsin (5.2.10). In equation (5.2.11) the idea of LIEMID[E1℄ algorithm by Krysl [126℄is borrowed in order to approximate the mid-step angular veloity Ωt+ h

2 . Formula(5.2.8) is employed, where the spatial torque integral is approximated by(5.2.17) ∫ t+ h
2

t

tdt ≃ h

2
tt+ h

2This allows to ompute the external fore only one and reuse it at a later stage. Theentral di�erene sheme is applied to the referential angular momentum balane informula (5.2.12). This step is somewhat naive, but we need it in order to preservethe algebrai struture of formula (5.1.2). This is also the soure of the geometrialinonsisteny. Due to the ollinearity of the inremental rotation vetor and theinitial angular veloity there holds(5.2.18) TT

[

h

2
Ωt

]

Ωt = Ωtso that the right hand side of (5.2.12) resides in the tangent spae TΛ(t+h/2)SO (3).The left hand side, however, belongs to TΛ(t+h)SO (3). Thus, the equality in(5.2.12) is not formally rigorous. Furthermore, Ωt+h
1 generally implies neither theangular momentum onservation, nor energy onservation (f. Setion 5.2.3).If the fully expliit version of the sheme is to be exeuted, one would nev-ertheless like to make some use of Ωt+h

1 . As the right hand side of (5.2.12) is in
TΛ(t+h/2)SO (3), and it is supposed to approximate Ω (t+ h), one an notionallyinterpret (5.2.12) as an assignment to Ωt+h

1 of its own pull-bak (along the ex-ponential map) to TΛ(t+h/2)SO (3). Now formula (5.2.16) beomes a �onsistent�bakward Euler step, updating the mid-step rotation into Λt+h. There also holds(5.2.19) TT

[

h

2
Ωt+h

1

]

Ωt+h
1 = Ωt+h

1



5.2. RIGID DYNAMICS 47whih happens to alleviate the inonsisteny (again, this is only a notional trik).The sheme (5.2.9-5.2.13) has two drawbaks: onservation of the angular momen-tum is only approximate, and the kineti energy experienes a positive drift. This isremedied in (5.2.14), where the angular momentum onservation is algorithmiallyenfored. As will be illustrated, the sheme (5.2.9-5.2.14) has a negative energydrift and beomes strongly dissipative for large time steps.Although in appliations involving small inremental rotations (e.g. onstrainedsystems) the sheme (5.2.9-5.2.14) will be often su�ient, it is useful to have at handa re�ned method, that does not experiene the energy drift. Formulae (5.2.9-5.2.13)are still of use, although Ωt+h
1 beomes now merely a dummy variable. Equation(5.2.12) needs to be stated only to solve for the onstraint reations (whih on-tribute to Tt+ h

2 ). After that, the �nal impliit Euler half-step is exeuted morerigorously. As the on�guration has already been advaned from Λt to Λt+ h
2 , wedo not wish to undo it. Rather, the following mid-point approximation of (5.2.8) isexerised(5.2.20) exp

[

h

2
Ωt

]

exp

[

h

2
Ωt+h

]

JΩt+h = JΩt + htt+ h
2where the �rst exponential has already been omputed, while the seond one im-pliitly involves Ωt+h. It should be noted, that the rotation update Λ (t+ h) =

Λ (t) exp [Ψ (h)] makes sense, provided Ψ (h) ∈ TΛ(t)SO (3). In that respet, whilethe �rst update Λt+ h
2 = Λt exp

[

h
2Ωt

] is orret, the onseutive one Λt+h =

Λt+ h
2 exp

[

h
2Ωt+h

] might seem inonsistent. More orretly, there should hold(5.2.21) Λt+h = Λt+ h
2 exp

[

TT

[

−h
2
Ωt+h

]

h

2
Ωt+h

]where h
2Ω

t+h ∈ TΛ(t+h)SO (3) was arried over to TΛ(t+h/2)SO (3) by means of thereverse half-rotation Ψ (h) = −h
2Ωt+h, and hene TT

[

−h
2Ω

t+h
]. Again, by theollinearity argument, there follows TT

[

−h
2Ωt+h

]

h
2Ω

t+h = h
2Ωt+h. The impliitsolution (5.2.15) requires few iterations of Newton sheme. The veloity Ωt+h

1 isused as an initial guess. The �nal on�guration update follows in (5.2.16).In the sequel the sheme (5.2.9-5.2.13) will be addressed as NEW1, the sheme(5.2.9-5.2.14) will be addressed as NEW2 and the sheme (5.2.9-5.2.12, 5.2.15-5.2.16) will be addressed as NEW3.5.2.3. Conservation and stability. Conservation and stability propertiesare most onveniently analysed in the spae of referential angular momenta, Π =
JΩ. Assume, that the external torque t ≡ 0. Conservation of the spatial angularmomentum reads then(5.2.22) Λ (t)Π (t) = Λ (0)Π (0)whih together with the onservation of the kineti energy implies(5.2.23) 1

2
ΠT (t)Π (t) =

1

2
ΠT (0)Π (0)(5.2.24) 1

2
ΠT (t)J−1Π (t) =

1

2
ΠT (0)J−1Π (0)where the kineti energy Ek = 1

2Ω
TJΩ. Free rigid rotation an be then viewedas a purely geometrial problem of intersetion between the sphere (5.2.23) andthe ellipsoid (5.2.24) in the Π-spae. In general, the intersetion urve is of higher



5.2. RIGID DYNAMICS 48order and annot be written down in an expliit form. A rotation integrator traesthe urve numerially. In partiular, let us have a look at formula (5.2.12)
Πt+h

1 = Πt + hΠt+ h
2 × Ωt+ h

2(5.2.25)At any time t, Π (t) is normal to the momentum sphere (5.2.23) and Ω (t) is normalto the energy ellipsoid (5.2.24). Hene, the produt Πt+ h
2 ×Ωt+ h

2 an be interpretedas an approximation of the tangent to the intersetion urve at t+h/2, and (5.2.25)beomes a surfae intersetion traing sheme. In our ase, Πt+ h
2 is obtained from

Πt by rolling on the surfae of the momentum sphere aording to the formula(5.2.26) Πt+ h
2 = exp

[

−h
2
Ωt

]

ΠtThis is a �rst order update, as it results from the solution of a linear ordinaryequation of rotation about a �xed axis (f. remarks on the origin of the exponentialmap in Setion 3.1). Hene, Πt+ h
2 × Ωt+ h

2 = Π
(

t+ h
2

)

× Ω
(

t+ h
2

)

+ O
(

h2
),where Π (t) ,Ω (t) is the exat solution. In analogy with Setion 5.1.1, one anshow that (5.2.25) is of seond order. Unfortunately, as a tangent to two onvexsurfaes is used, points generated by (5.2.25) lay outside of both surfaes. Onlywith h → 0 they approah the atual intersetion urve. For large h it is easy tostep far outside of both surfaes and rapidly limb up over the inreasing energylevels. NEW1 onserves neither the momentum nor the energy and is prone to theatastrophi energy blowup.By algorithmi enforement of the momentum onservation (5.2.14), the solu-tion iterates ling to the momentum sphere. There holds(5.2.27) Πt+h

2 = exp

[

−h
2
Ωt+h

1

]

exp

[

−h
2
Ωt

]

Πtand thus, one always stays on the surfae of the onserved momentum. Stayingwithin a ompat set prevents an unbounded growth of the energy. The energyblowup is not possible for NEW2. The dissipative behaviour of the sheme however,is not explained by this fat alone. Generally, a sequene of points on a ompatset will have at least one aumulation point. Qualitatively, only three types ofbehaviour are possible (Figure 5.2.1):
• Swelling of the energy ellipsoid until its smallest radius and the radius ofthe momentum sphere beome equal. The �nal state orresponds to thestable rotation about the axis of the minimum moment of inertia. Thisbehaviour is typial for �rst order updates of kind (5.2.26), but also forexample the expliit sheme by Simo and Wong [100℄.
• Shrinking of the energy ellipsoid until its largest radius and the radius ofthe momentum sphere beome equal. The �nal state orresponds to thestable rotation about the axis of the maximum moment of inertia. Thisis the ase for NEW2.
• Osillation about the intersetion urve of the energy ellipsoid and themomentum sphere. This is the ase for NEW3, as well as for many otherimpliit algorithms [126, 171℄.Swelling is the easiest to analyse. While applying (5.2.26) we would like toknow, how muh the energy grows from t to t + h/2. This an be estimated bethe linearisation of the mid-step kineti energy with respet to the time step. Themid-step energy reads
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shrinking oscillationswellingFigure 5.2.1. Qualitative behaviour of integration methods en-foring onservation of the spatial angular momentum. Setionthrough the momentum sphere and the energy ellipsoid. The el-lipsoid either swells (shemes with positive energy drift), shrinks(shemes with negative energy drift), or osillates (stable shemes).(5.2.28) E

t+ h
2

k =
1

2

〈

Πt, exp

[

h

2
Ωt

]

J−1 exp

[

−h
2
Ωt

]

Πt

〉and its inrement is roughly(5.2.29) △Et+ h
2

k ≃ Ė
t+ h

2

k (0)h+ Ë
t+ h

2

k (0)
h2

2where Ėk (0) = d
dhEk (h)

∣

∣

h=0
. The �rst derivative of the energy reads then

Ė
t+ h

2

k (0) =
1

4

〈

Πt, Ω̂tJ−1Πt
〉

− 1

4

〈

Πt,J−1Ω̂tΠt
〉

=
1

4

〈

Πt, Ω̂tJ−1Πt
〉

− 1

4

〈

J−1Πt, Ω̂tΠt
〉

=
1

4

〈

Πt, Ω̂tΩt
〉

− 1

4

〈

Ωt, Ω̂tΠt
〉

= 0(5.2.30)where Ω̂tΩt = 0 and Ωt ⊥ Ω̂tΠt were used. The seond derivative takes thefollowing form
Ë

t+ h
2

k (0) =
1

8

〈

Πt, Ω̂tΩ̂tJ−1Πt
〉

− 1

4

〈

Πt, Ω̂tJ−1Ω̂tΠt
〉

+
1

8

〈

Πt,J−1Ω̂tΩ̂tΠt
〉

=
1

8

〈

Πt, Ω̂tΩ̂tΩt
〉

+
1

4

〈

Ω̂tΠt,J−1Ω̂tΠt
〉

+
1

8

〈

Ωt, Ω̂tΩ̂tΠt
〉

=
1

4

〈

Π̂tΩt,J−1Π̂tΩt
〉(5.2.31)where terms with 1

8 vanish by similar arguments. Finally(5.2.32) △Et+ h
2

k ≃ h2

8

〈

Π̂tΩt,J−1Π̂tΩt
〉The above energy inrement is always positive due to the same de�niteness of J.Clearly, if update (5.2.26) was to be solely used for advaning the motion, thesolution point would limb up the energy levels on the surfae of the momentumsphere, until Πt and Ωt would beome aligned and no more growth ould happen.At that stage, the energy ellipsoid would ontain the momentum sphere and theirintersetion would omprise only two opposite points.



5.2. RIGID DYNAMICS 50The �nal update of momentum in NEW2 reads(5.2.33) Πt+h
2 = exp

[

−h
2
Ωt+h

1

]

Πt+ h
2Point Πt+ h

2 orresponds to the energy growth by at least (5.2.32). We shall investi-gate, whether the energy an be further inreased by performing the step (5.2.33).Note, that (5.2.33) desribes rotation of Πt+ h
2 about the �xed axis Ωt+h

1 . At time
t+ h/2 we shall onsider the instantaneous linearisation of (5.2.33)

d

dh
Πt+h

2

∣

∣

∣

∣

h=0

=
1

2
Πt+ h

2 × Ωt+h
1(5.2.34)A linearised stability riterion is that d

dhΠt+h
2

∣

∣

h=0
should not have a omponentalong the diretion of the energy growth. Namely(5.2.35) 〈

Πt+ h
2 × Ωt+h

1 ,Ωt+ h
2

〉

≤ 0where Ωt+ h
2 is the energy gradient at t+ h/2, and the fator of 1

2 was dropped o�.The above ondition an be expanded as follows
〈

Πt+ h
2 ×

[

Ωt − J−1h
(

Ωt+ h
2 × JΩt+ h

2

)]

,Ωt+ h
2

〉

=
〈

Πt+ h
2 ×

[

Ωt + J−1h
(

Πt+ h
2 × Ωt+ h

2

)]

,Ωt+ h
2

〉

=
〈

Πt+ h
2 × Ωt,Ωt+ h

2

〉

+
〈

Πt+ h
2 ×

[

J−1h
(

Πt+ h
2 × Ωt+ h

2

)]

,Ωt+ h
2

〉

=
〈

Π̂t+ h
2 Ωt,Ωt+ h

2

〉

+ h
〈

Π̂t+ h
2 J−1Π̂t+ h

2 Ωt+ h
2 ,Ωt+ h

2

〉

=

−
〈

Ωt, Π̂t+ h
2 Ωt+ h

2

〉

− h
〈

Π̂t+ h
2 Ωt+ h

2 ,J−1Π̂t+ h
2 Ωt+ h

2

〉

=(5.2.36)Let us now de�ne three funtions(5.2.37) a (h) = −
〈

Ωt, Π̂t+ h
2 Ωt+ h

2

〉(5.2.38) b (h) = −
〈

Π̂t+ h
2 Ωt+ h

2 ,J−1Π̂t+ h
2 Ωt+ h

2

〉(5.2.39) c (h) =
1

2
(a (h) + hb (h))where for c (h), the previously dropped fator of 1

2 was restored. The stabilityriterion reads now(5.2.40) a (h) + hb (h) ≤ 0Obviously, b (h) ≤ 0 for any h due to the positive de�niteness of J−1. Onthe other hand, a simple geometri arguments shows that, at least for small h,funtion a (h) ≥ 0. In order to see that, one needs to onsider irulation of Π (t)along the intersetion urve. Due to the interpretation of Π̂ (t)Ω (t) as the tangentto the urve, Π̂ (t+ s)Ω (t+ s) points away from Π (t) for some su�iently small
s > 0, beause Π (t+ s) runs away from Π (t) along Π̂ (t+ s)Ω (t+ s). As Ω (t)is normal to the tangent plane of the energy ellipsoid at time t, the ompleteintersetion urve lays behind this plane. For su�iently small s, point Π (t+ s)
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Ω(t+s)Π(t+s)

Ω(t) Ω(t+s)

Π(t+s)

x

Figure 5.2.2. Cirulation of Π (t) along the sphere-ellipsoid in-tersetion urve. Due to the onvexity of the interseting surfaes,for small s there holds 〈Ω (t) ,Π (t+ s) × Ω (t+ s)〉 ≤ 0.runs away from the plane and thus Π̂ (t+ s)Ω (t+ s) does not have a omponentaligned with the normal Ω (t). Hene, a (h) ≥ 0 for small h (Figure 5.2.2). In orderto verify ondition (5.2.40) for h→ 0, the following linearisation is onsidered(5.2.41) a (0) + ȧ (0)h+ 0b (0) + b (0)h+O
(

h2
)

≤ 0where the over-dot orresponds to d
dh . Realling, that Ωt+ h

2 = J−1 exp
[

−h
2Ωt

]

Πt,one obtains
d

dh

(

Ωt+ h
2

)

∣

∣

∣

∣

h=0

= −1

2
J−1Ω̂tΠt =

1

2
J−1Π̂tΩt(5.2.42)and

d

dh

(

Π̂t+ h
2 Ωt+ h

2

)

∣

∣

∣

∣

h=0

=
d

dh

(

Πt+ h
2

)

∣

∣

∣

∣

h=0

× Ωt + Πt × d

dh

(

Ωt+ h
2

)

∣

∣

∣

∣

h=0

=
1

2

{[

Π̂tΩt
]

× Ωt + Πt × J−1Π̂tΩt
}(5.2.43)so that

ȧ (0) = −
〈

Ωt,
1

2

{[

Π̂tΩt
]

× Ωt + Πt × J−1Π̂tΩt
}

〉

= 0 − 1

2

〈

Ωt, Π̂tJ−1Π̂tΩt
〉

=
1

2

〈

Π̂tΩt,J−1Π̂tΩt
〉(5.2.44)As a (0) = −

〈

Ωt, Π̂tΩt
〉

= 0 and b (0) = −
〈

Π̂tΩt,J−1Π̂tΩt
〉, there holds

a (0) + ȧ (0)h+ 0b (0) + b (0)h+O
(

h2
)

=

(ȧ (0) + b (0))h+O
(

h2
)

=

−h
2

〈

Π̂tΩt,J−1Π̂tΩt
〉

+O
(

h2
)

≤ 0(5.2.45)This shows, that for su�iently small h, the kineti energy is always dereased from
t + h/2 to t + h for the sheme NEW2. The amount of the energy drop an beestimated as(5.2.46) △Et+h

k ≃ h

2
c (h) ≃ −h

2

8

〈

Π̂tΩt,J−1Π̂tΩt
〉
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Figure 5.2.3. Free rotation. Magnitude of the inremental rota-tion vetor at a range of time steps.whih together with (5.2.32) shows, that up to the seond order terms the energygrowth and drop anel out eah other. In other words(5.2.47) Et+h
k = Et

k +O
(

h3
)This onlusion is not really signi�ant, as it does not imply that NEW2 is ashrinking sheme. In fat, numerial analysis shows that the long term negativedrift of NEW2 is overlapped by some up and down osillations, related to the loalurvature of the interseting surfaes. This suggests, that the loal analysis ofthe above kind annot be onlusive. We do not attempt further analysis. In thefollowing setion we resort instead to the numerial example.5.2.4. Free rotation. More examples will follow in Chapter 13. The urrentone is referred to after Krysl [126℄ and is meant to provide a brief summary ofthe essential features of the proposed shemes. The initial rotation is identity, theinitial angular veloity reads Ω0 = [0.45549, 0.82623, 0.03476], and the referentialinertia tensor is J = diag [0.9144, 1.098, 1.66]. No external foring is assumed.The proposed shemes are ompared against LIEMID[EA℄ by Krysl [126℄,whih is one of the best performing shemes today (although its omputationalost per time step is rather high). In some of the omparisons the expliit shemeby Simo and Wong [100℄ is also inluded, as it requires relatively little omputa-tional e�ort per time step. It should be noted that neither the expliit sheme bySimo and Wong, nor LIEMID[EA℄ omply with the algebrai struture of (5.1.2),whih from our point of view is a drawbak.Figure 5.2.3 illustrates the magnitudes of the inremental rotation vetor om-puted with NEW3, at a range of time steps. It is seen that small inrements ofrotation, say ‖Ψ‖ ≪ 10 deg1, our for time steps h < 1/8. This range of inre-mental rotations is of the main interest here, although for the sake of illustrationthis and other examples inlude larger inrements.Figure 5.2.4 illustrates the harateristi momentum phase spae behaviour ofthe proposed shemes. The plots have been obtained over 500 steps of size h = 1(about 55 deg of inremental rotation per time step). Clearly, NEW1 divergesgradually towards the energy blowup. NEW2 dissipates the energy and after a fewtens of steps around the original intersetion urve, it swithes to the qualitativelynew state, asymptotially equivalent to the rotation about the axis of the maximum1‖Ψ‖ =
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Figure 5.2.4. Free rotation. Body-frame angular momentumspae plots for 500 steps of size h = 1 (about 55 deg of inremen-tal rotation per time step). The large time step allows to aptureharateristi behaviour of all three shemes. NEW1 gradually di-verges, and it is about to blow up within the next few hundreds ofiterations. NEW2 dissipates energy until a stable rotation aboutthe axis of the maximum moment of inertia is reahed. NEW3stably osillates about the original intersetion urve between themomentum sphere and the energy ellipsoid.moment of inertia. NEW3, on the other hand, osillates stably about the originalintersetion urve between the momentum sphere and the energy ellipsoid.Figure 5.2.5 illustrates the harateristi energy behaviour of the proposed algo-rithms. NEW1 experienes a positive energy drift, while NEW2 experienes nearlysymmetrial negative energy drift. NEW3, similarly to LIEMID[EA℄ displays exel-lent stability although the solution in both ases is osillatory. NEW3 osillates onthe negative side and with larger amplitude then LIEMID[EA℄. The latter methodosillates on the positive side.Figure 5.2.6 illustrates onservation of the spatial angular momentum (π =
ΛΠ). NEW2, NEW3 and LIEMID[EA℄ learly onserve the angular momentum(whih is their algorithmi feature). On the other hand, NEW1 displays an osilla-tory drift for the large time step. For the smaller step, although not visible in the�gure, the drift is still present.
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Figure 5.2.5. Free rotation. Kineti energy for step sizes h = 1(left) and h = 1/8 (right).
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Figure 5.2.6. Free rotation. Spatial angular momentum for stepsizes h = 2 and h = 1/8.
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8 .Figure 5.2.7 illustrates the onvergene in the L2 norm, of the referential an-gular momentum Π = JΩ and the rotation operator Λ. The referene solutions

Π∗ and Λ∗ have been omputed with LIEMID[EA℄ and the time step h = 2−15at time t = 100. The solutions Π (h) and Λ (h) were omputed for time steps
h ∈

{

1, 2−1, ..., 2−10
} at time t = 100. It is seen that all of the ompared algo-rithms are seond order aurate. All versions of the new sheme outperform theexpliit algorithm by Simo and Wong [100℄. Interestingly NEW1 displays exel-lent auray of the body-frame angular momentum and performs on a par withLIEMID[EA℄. For small time steps the auray of the rotation operator obtainedwith NEW1 also ompares well with the one reahed by LIEMID[EA℄.5.2.5. E�ieny. Many of the reently proposed algorithms [126, 163, 171℄posses exellent stability properties and an pursue their tasks with extremely large

O (π) inremental rotations. The prie for those advantages lies in the neessity forsolving loal impliit problems, for whih Newton iterations are usually employed.For large time steps, the loal solutions involve evaluations of the exponential mapat the magnitudes of the rotation angle, for whih the trunated Taylor expansionof exp [·] is not e�etive. Thus, although sparse steps an be performed, the ost ofan individual step is high.In the expliit multi-body analysis with ontats and joints the possibility ofperforming O (π) steps does not seem pratial. The time step has to be smallenough in order to apture the geometrial nonlinearities of the multi-body inter-ations. This is why a lightweight, but well behaved time-stepper is usually a betterhoie. In this respet, NEW2 involves evaluation of only two exponential maps perstep. For small inremental rotations this an be well dealt with by the trunatedTaylor expansion of exp [·].For long term simulations, where the negative drift of NEW2 annot be a-epted, NEW3 seems to be a good alternative, as it retains the expliitness of thefore evaluation and improves muh upon the stability. Nevertheless, the singleimpliit problem needs to be solved. In order to evaluate and ompare the rela-tive e�ieny of the proposed shemes, ten millions time steps of size 1
8 has beenperformed for the free rotation example of the previous setion. Figure 5.2.8 sum-marises the normalised runtimes. The expliit sheme by Simo and Wong [100℄omputes only one exponential map and hene requires least time. NEW2 withits two exponential map evaluations plaes itself right after the sheme by Simoand Wong. NEW3 on the other hand takes roughly half of the time needed byKrysl's LIEMID[EA℄ [126℄. This is beause the latter method involves solution oftwo impliit problems per time step.



5.3. QUASI-STATICS 56
 1e−13

 1e−12

3deg7deg14deg27deg

Exact

 1e−13

 1e−12

3deg7deg14deg27deg

Truncated

Figure 5.2.9. Free rotation. Loss of orthogonality illustrated bythe ∥∥I − ΛTΛ
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∥ norms omputed with NEW3 after one millionsteps with h ∈
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4 ,

1
8 ,

1
16

}. The left graph summarises the re-sults omputed with the numerially exat routines. The rightgraph orresponds to the trunated expansion of exp [·].As the trunated Taylor expansion of exp [·] has been mentioned above, it isrelevant to verify whether the orthogonality of the rotation operator has not beenompromised. Figure 5.2.9 illustrates the norms ∥∥I − ΛTΛ
∥

∥ omputed with NEW3after one million steps of the free rotation test at a range of time steps h = 1
2 , ...,

1
16 .The left graph orresponds to the numerially exat omputations (library routineshas been used). The right graph orresponds to the same omputations employingthe trunated expansion of the salar terms in (5.2.2). It is seen that only for thelargest inremental rotation magnitude (27 deg) some loss of orthogonality an beobserved. Six terms in the expansions were used.5.3. Quasi-statisQuasi-stati multi-body simulations with ontat onstraints represent a subtleissue. During this sort of simulation individual members of a multi-body struturean undergo limited rigid motion a�eting the global deformation mode, while thedynami e�ets related to elasti deformability an remain negligible. In thoseirumstanes purely stati formulation does not provide su�ient information, asthe ontat fores are transmitted mainly due to the freedom of rigid motion. Tan-gent sti�ness operator resulting from the stati formulation of a multi-body systemhas a vast null-spae, making it neessary to introdue some sort of regularisation.While this regularisation is expeted to provide a meaningful representation ofrigid modes, it seems most natural to adopt the dynami formulation for that pur-pose. The lassial dynami relaxation tehnique by Underwood [205℄, onstrutedaround the entral di�erene sheme, was already suessfully applied to statis ofgranular materials (f. Bardet and Proubet [18℄). This was possible in the on-text of smoothed (penalty based) disrete element formulation, where availabilityof ontat sti�ness provides means for identifying globally dominant modes. Suhinformation is not expliitly available in a non-smooth formulation. Neverthelessthe dynami approah is still of use. For assemblies of sti� bodies, whih are mostlyof interest here, optimally one would like to solve the quasi-stati ontat problem�on rigid modes� and only update the stresses on the way. The elasti deformabilityof suh assemblies is limited, although presene of fritional sliding or rigid rokingdoes not neessarily render the struture unstable. In general some amount of slowrigid disloations an happen before the onset of a dynami failure mehanism.Quasi-stati rigid motion was analysed to some extent in the �eld of robotis. Forexample Pang et al. [165℄ developed a linear programing tehnique to solve anunoupled omplementary problem resulting from a planar formulation. This workwas later extended to three dimensions [204℄, where polyhedral disretisation of thefrition one allowed to preserve the original algebrai struture. The unoupled



5.3. QUASI-STATICS 57struture of the omplementary problem resulted from the fat, that equilibriumof ontat reations and external fores was sought. Lak of the inertial term leftthe diagonal zero and the amount of rigid motion aross a time step resulted di-retly from the assumed value of the step size and the veloity of time-dependentonstraints. More generally, in a quasi-stati simulation of a multi-body system,the amount of stepwise rigid motion is merely a rational modelling hoie, adjustedto the veloity of a ontrol mehanism. In the urrent development we deidednot to disard the inertia regularisation. Instead the inertial term will be manip-ulated in order to deliver an expeted behaviour. In the ontext of the ContatDynamis method, Aary and Jean [3℄ disuss adaptation of a dynami frameworkfor the needs of a quasi-stati simulation. A straightforward relaxation tehniqueresults from assuming veloities to be zero at the beginning of eah iteration. Thisapproah is adopted here. The modi�ed bakward Euler step follows(5.3.1) ut+h = A−1hf
(

t+ h,qt
)

+ A−1HTR(5.3.2) qt+h = qt + hut+hwhere(5.3.3) A = M + h2 ∂2Ψ

∂q∂q

∣

∣

∣

∣

qt(5.3.4) H = H
(

qt
)Above, Ψ is the hyperelasti potential of the system and the remaining terms areinterpreted as in (5.1.1-5.1.3). Equations (5.3.1) and (5.3.2) apply diretly to thepseudo-rigid ontinuum ase. One an write down a similar time stepping for rigidrotations, by obtaining an auxiliary extrapolation of the angular veloity Ωt+h withan analogue of (5.2.9), and then plunging it into f (t+ h,qt). This way a onsistentlinearisation with respet to Ωt+h an be avoided, as it seems super�uous in thissimpli�ed setting. It has to be noted, that equation (5.3.1) holds true under thestrong assumption of the onstraints geometry remaining unhanged over the timeinterval [t, t+ h]. Again, this simpli�es implementation, as the linearisation withrespet to H is avoided.For the quasi-stati simulation to make sense, it has to be assumed that a steadystate solution exists at t = 0. After that instant some sort of ontrol mehanismis exeuted at a slow rate. The displaement ontrol seems most appropriate,as it introdues inertia-independent veloity. On the other hand, the existene ofinertial terms allows fore ontrol to be utilised to some extent. In this ase though,despite the fat that the above relaxation sheme rules out aeleration, one someunonstrained rigid motion ours, the kineti energy remains proportional to theout of balane portion of the applied fore. Few additional remarks an be made:(1) The operator A should be positive de�nite. Sine it is equal to M + h2K(where K is the urrent tangent) it follows that the assumed time step

h must be small enough. This will depend on material parameters, bodyvolume and mass properties.(2) Regarding the deformable part of the motion, it is desirable to imposeuniform onvergene of the Euler sheme for all bodies. At the same timeinformation about their shape should not be disarded (so to aount forrotations). Hene, the inertia matries ought to be appropriately saled.A reasonable amount of numerial damping an be obtained for λh ≥ 4,



5.4. LITERATURE 58where λ is a seleted eigenvalue of M−1K [98℄. For the pseudo-rigidmodel, a su�ient heuristi is to impose a uniform (aross all bodies)distribution of λmaxh, where λmax is the maximum eigenvalue.(3) The amount of stepwise rigid motion (say, lmax) should be onstrained.Even if the ontrol mehanism introdues a bounded amount of rigid dis-plaement, the possibility of free sattering of an assembly exists. Onewould expet a rational behaviour of the numerial sheme in suh ase.Appropriate saling is possible for the linear part of the motion, as thedynamis of the mass entre is deoupled. A simple relation for the salarmass follows m = fmaxh2

lmax
, where fmax is the maximum magnitude of theresultant external fore over all bodies. This hoie provides a uniformbound for the stepwise linear displaement.(4) At onstraint points, veloity ontributions of the rigid and deformablemotion should be separated (vdeformable ≪ vrigid). Assuming an equilib-rium on�guration exists, numerial sheme (5.3.1-5.3.2) will onverge nofaster than the onstraints reations. Solution for the onstraints deliv-ers reations adjusted to the dynamis of the overall system. In order toenourage fast identi�ation of rigid modes, the veloity of those shoulddominate the streth veloity at onstraint points. If this ondition is notsatis�ed, streth veloities a�et the onstraint solver, whih onsiderablyslows down the onvergene.5.4. LiteratureSeleted developments, spei� to the integration of rigid rotation are onsid-ered. In this respet, one of the early ontributions is due to Benson and Hallquist[23℄, where the entral di�erene sheme was applied to the spatial angular mo-mentum balane. This simple sheme seems to have survived until reently inLS-DYNA software [2℄. Simo and Vu-Quo [191℄ apply the Newmark method tothe body-frame angular momentum balane and develop an impliit sheme for thedynamis of rods undergoing large rotations. Nevertheless, the mid-point versionof their algorithm onserves neither the energy nor the momentum. In a lassialpaper today, Simo and Wong [100℄ address this shortoming by algorithmiallyenforing onservation of the spatial angular momentum. This leads to an impliitsheme that onserves both the momentum and the energy. As a side-e�et theirmain result, an expliit sheme examined in Setion 5.2.4 is also given. An idea ofdisrete momentum onservation is also exploited by Park and Chiou [110℄, wherethe spatial entral di�erene sheme is ombined with the quaternion parametrisa-tion based rotation update, in order to deliver an expliit sheme with good stabilityharateristis. An inexperiened reader should be warned however, that this paperontains some onfusing notation �aws. In a short and informative paper, Omelyan[162℄ has proposed a lightweight semi-expliit leap-frog integrator, targeted at themoleular dynamis simulations. Krysl and Endres [163℄ developed a semi-expliitNewmark sheme with good stability properties, although not onserving the spa-tial angular momentum. Krysl [126℄ has derived a mid-point approximation ofthe inremental rotation angle, whih gave rise to a well behaved impliit shemeand an expliit sheme LIEMIED[EA℄, examined in Setion 5.2.4. Both onservethe spatial angular momentum (exatly) and the energy (in a stable, but osilla-tory manner). In the following paper [128℄, Kyrsl disusses a family of impliittrapezoidal rule based integrators, whih to some extent resemble the methods pre-sented in Setion 5.2.2. A fourth order Runge-Kutta method in the quaternionspae has been given by Johnson et al. [187℄. Kumar et al. [171℄ present sev-eral semi-impliit integrators, inluding a partitioned Runge-Kutta sheme (good



5.4. LITERATURE 59onservation properties, although relatively poor auray in the rotation spae)and sub-yling based method (very aurate and good onservation). It should benoted, that none of the listed methods diretly omplies with the algebrai stru-ture of equations (5.1.1-5.1.3), whih was the reason behind the developments ofSetion 5.2.2.



CHAPTER 6Loal framesLet B1 and B2 be two bodies. Let us(1) Pik spatial points x1 ∈ B̄1 and x2 ∈ B̄2 at some time t.(2) Pik a oordinate system {αi
}, with base ai attahed to x1, and deformingwith B1 from t onwards.We would like observe the motion of x2 from the perspetive of the deformingloal frame {αi

}. For the relative displaement d{x} = x2 −x1, expressed in {αi
},there holds(6.0.1) {ai}d{α} = d{x}where {ai} is the 3 × 3 matrix of olumn-wise base vetors. Above, both the base

ai and the relative displaement d{x} hange in time. From the point of view of anobserver embedded in the loal frame {αi
} however, d{α} hanges only as far, as

x2 fails to be onveted with the motion of B1. The rate of suh hange is desribedby the Lie derivative of d{α} with respet to the �ow indued by the motion of B1.In order to show that, let us �rst notie that(6.0.2) d{α} = {ai}−1
d{x} =

{

ai
}T

d{x}where ai are elements of the dual base, and the fat that {ai
}T {ai} = I wasexploited. Without loss of generality, taking as an example the pseudo-rigid motion,one obtains

B1

B2

x1

a1

a2

a3
x2

d

Figure 6.0.1. A loal frame.60
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⋄

d{α} =

{

⋄
a

i
}T

d{x} +
{

ai
}T ⋄

d{x}

=
[

{

ȧi
}T

+
{

ai
}T

L
]

d{x} +
{

ai
}T
[

ḋ{x} − Ld{x}

]

=
{

ai
}T

ḋ{x}(6.0.3)where ⋄
a

i
= ȧi + LTai (as ai are ovetors), ⋄

d{x} = ḋ{x} − Ld{x} (as d{x} is avetor), and {ȧi
}T

= 0 by de�nition (ai and hene ai do not expliitly depend on
t). It might be noted that ai are interpreted as dual vetors, also beause theiration on d{x} results in salar omponents of d{α}. We reall, that the notion of Liederivative was brie�y desribed in Setion 3.2.1. It is not di�ult to see that ⋄

d{α} isan objetive rate in the sense that rigid rotations of the oordinate system {

xi
} donot a�et its omponents. Indeed {Λai

}T
Λḋ{x} =

{

ai
}T

ΛTΛḋ{x} =
{

ai
}T

ḋ{x},where Λ is an orthogonal operator.Admittedly, the frame-piking method from points 1-2 is somewhat simplisti.This results from the pragmatism related to omputer implementation. The onsid-ered lass of shapes (Chapter 2) and motions (Chapter 3) allows to disard the aseof urved geometry. Furthermore, we wouldn't like to be onstrained by a spei�manner of seleting points x1,x2 and loal frames {αi
}. For example, lassially inontat problems, points x1 and x2 are related through proximity mapping, whihtogether with some urvilinear struture gives rise to the loal basis ai. The urvi-linear struture needs not to be loally Eulidean and hene ai is not neessarilyorthonormal (in the tangent plane). This an be of use for anisotropi problems.In our appliations it will be usually enough to use an orthonormal base. It mightbe useful to notie that equation (6.0.3) an be rephrased as(6.0.4) {ai}

⋄

d{α} = ḋ{x}and, after left multiplying by {ai}T , again expressed as(6.0.5) ⋄

d{α} = A−1 {ai}T
ḋ{x}where A = {ai}T {ai} is the metri tensor. The last equation parallels formula(4.21) from Wriggers [211, p. 64℄, provided d{x} = 0 at t. This orresponds tothe �zero gap� ase in a ontat problem. In the predominately dynami frameworkpresented in this thesis, and not resorting solely to penalisation, we try to avoid�gaps�. This will be further ommented on in Chapters 9, 10 and 11 dealing withthe formulation and solution of the ontat problem.In this ontext, one should mention the paper by Laursen [130℄ where a spei�treatment of the onveted loal desription is developed. Similarly as in [211℄, theauthor assumes that the material point orresponding to x2 is hosen one and forall, and this in turn allows to selet x1 at any given time. Paths of x1 on the surfae

∂B1 are reognised as integral urves of an abstrat �ow, with respet to whih onean take required derivatives. The author favours the material desription, whihis a minor nuane. The major oneptual di�erene is that, whereas in [130℄ theobserver travels over the body B1 hasing the shadow of x2, in our ase the observerathes x2 red-handed (usually there will hold x1 = x2 at t) and then wathes itsesape, while staying at x1.



6.2. RIGID KINEMATICS 626.1. From generalised to loal veloitiesLet us rewrite the motion in the general form(6.1.1) x (X, t) = χ (X,q (t))where x is the spatial point, X is the referential point, and q is the on�guration.One an ompute the material veloity(6.1.2) ẋ (X, t) =
∂χ (X,q (t))

∂q
u (t)The omponents of x and ẋ are expressed in the spatial oordinate system {

xi
}.After the preliminary disussion, it is not di�ult to express the veloity ẋ in aloal frame {αi

}, with dual base ai. Namely(6.1.3) U =
{

ai
}T ∂χ (X,q (t))

∂q
uwhere U omprises the omponents of the loal veloity of the spatial point x, withrespet to the base ai. This an be rephrased as(6.1.4) U = Huwhere(6.1.5) H =

{

ai
}T ∂χ (X,q (t))

∂qis a linear operator, ating between the spaes of generalised and loal veloities
H : TQ → TE3. The operatorH takes a spei� form, depending on the underlyingkinemati model. 6.2. Rigid kinematisFor rigid bodies, there holds(6.2.1) ẋ = ΛΩ̂

(

X− X̄
)

+ ˙̄x(6.2.2) u =

[

Ω
˙̄x

]and hene(6.2.3) H =
{

ai
}T
[

Λ
(

ˆ̄X− X̂
)

I
]beause(6.2.4) Ω̂

(

X − X̄
)

= Ω×
(

X − X̄
)

=
(

X̄− X
)

× Ω =
(

ˆ̄X − X̂
)

ΩAbove, I is the 3 × 3 identity.



6.4. DYNAMICS AND QUASI-STATICS 636.3. Pseudo-rigid kinematisFor pseudo-rigid bodies, there holds(6.3.1) ẋ = Ḟ
(

X − X̄
)

+ ˙̄x(6.3.2) u =









Ḟ11

Ḟ12

...
˙̄x







and hene(6.3.3) H =
{

ai
}T





XT − X̄T 1
XT − X̄T 1

XT − X̄T 1



beause(6.3.4) Ḟ
(

X− X̄
)

= Ḟij

(

Xj − X̄j

)6.4. Dynamis and quasi-statisFor dynamis, when the time integration is exeuted from a known step t to anunknown t+ h, it is further assumed that evaluation of H involves(6.4.1) {

ai
}T

=
{

ai
}T
(

qt +
h

2
ut

)Similarly, for quasi-statis there holds(6.4.2) {

ai
}T

=
{

ai
}T (

qt
)



CHAPTER 7Loal dynamisLet us onsider the following funtion(7.0.3) L (u) =
1

2
〈Mu,u〉 − 〈b,u〉where(7.0.4) u = ut+h(7.0.5) b = hf t+ h

2 + MutThe veloity update of the dynami time-stepping given in Chapter 5 an now beexpressed as(7.0.6) ∂L

∂u
= 0The unknown veloity u is obtained as a stationary point of L and hene, in a sense,

L an be regarded as a disrete Lagrangian of our mehanial system. From thegeometrial point of view L is a stritly onvex funtion, L (λu1 + (1 − λ)u2) <
λL (u1) + (1 − λ)L (u2) for any u1, u2 and λ ∈ (0, 1), whih follows from thepositive de�niteness of M, preventing the graph of L from having linear slopes. Thestationary point in (7.0.6) is then unique. Suh a wrapping of the time integrationformula might seem somewhat overblown. Nevertheless, it allows us to put theformulation of loal dynamis into a broader ontext of duality. In the �rst plae,it is of use to interpret the ase(7.0.7) ∂L

∂u
= r 6= 0A veloity update formula derived from the above ondition adds r on the righthand side(7.0.8) Mu = b + rAlthough r annot be readily interpreted as a fore at a partiular time t, it isorret to view it as an integral of some fore over the time interval [t, t+ h](7.0.9) r =

∫ t+h

t

drIf Q is the on�guration spae of the mehanial system, it is then easy to see that
u ∈ TQ, while b, r ∈ T ∗Q and M : TQ → T ∗Q. In the previous hapter, themapping H was de�ned 64



7. LOCAL DYNAMICS 65(7.0.10) U = Huating between the spaes of generalised and loal veloities H : TQ → TE3.Rows of H an be interpreted as elements of the generalised fore spae T ∗Q andhene the transpose map HT ats between the spaes of loal and generalised fores
HT : T ∗E3 → T ∗Q. This is also seen from the duality pairing between loal andglobal variables (power onjugay)(7.0.11) 〈U,R〉 = 〈Hu,R〉 =

〈

u,HTR
〉where R ∈ T ∗E3 is by de�nition a loal net fore over [t, t+ h]. Every loal fore

R orresponds then to some generalised fore r(7.0.12) r = HTRNote, that while H is a surjetion, HT happens to be an injetion, overing onlya subset of T ∗Q. Nevertheless, for eah R we an obtain a orresponding u as asolution of(7.0.13) ∂L

∂u
= HTRwhih orresponds to the maximum, with respet to u, of the following saddlefuntion(7.0.14) G (u,R) =
〈

u,HTR
〉

− L (u)The maximum an be omputed as(7.0.15) u (R) = M−1
(

b + HTR
)and plunged bak into G, resulting in

L∗
H (R) = G (u (R) ,R)

=
1

2
〈WR,R〉+ 〈B,R〉 + b(7.0.16)where(7.0.17) W = HM−1HT(7.0.18) B = HM−1b(7.0.19) b =

1

2

〈

M−1b,b
〉

L∗
H is the loal onjugate funtion of L, de�ned by the Legendre-Fenhel transform(7.0.20) L∗

H (R) = sup
u

{〈Hu,R〉 − L (u)}We all it loal and index with H, as it orresponds to the duality between the loalvariables U and R, related to their generalised ounterparts through H. In general,



7.1. MANY BODIES AND LOCAL FRAMES 66a onjugate funtion of a onvex funtion L reads (f. Rokafellar and Wets [183,p. 473-474℄)(7.0.21) L∗ (r) = sup
u

{〈u, r〉 − L (u)}whih in our ase takes the form(7.0.22) L∗ (r) =
1

2

〈

M−1r, r
〉

+
〈

M−1b, r
〉

+ bClearly(7.0.23) L∗
H (R) = L∗

(

HTR
)so that L∗

H orresponds to the restrition of L∗ to a domain generated by the rowspae of H. The gradient of L∗
H reads(7.0.24) ∂L∗

H

∂R
= WR + Band from the algebrai struture of W and B it is seen that it orresponds to someloal veloity(7.0.25) U = WR + BAs it an be dedued from (7.0.7) and (7.0.22), while the gradient of L at u is

r, the gradient of L∗ at r is u, whih is harateristi for onjugate funtions. Itshould be noted, that a onjugate funtion L∗ is always onvex. In our ase, it isstritly onvex as the eigenvalues of M−1 are positive and bounded away from zero.The loal onjugate L∗
H might or might not be stritly onvex, depending on thepartiular shape of the H mapping. This issue beomes lear, when more than oneloal frame is onsidered. It is relevant to mention, that as for R = 0 there follows

U = B, vetor B is sometimes alled the loal free veloity.7.1. Many bodies and loal framesLet {Bi} be a set of bodies and {Cα} be a set of loal frames. To eah loalframe Cα there orresponds a pair of bodies Bi and Bj . Let Bj be the body, towhih the loal frame is attahed. Bj will be alled the master in Cα and denotedby Mα. Consequently, Bi will be alled the slave in Cα and denoted by Sα. Ofourse, the hoie is arbitrary. Considering evolution of a multi-body system overan interval [t, t+ h], an analogue of equation (7.0.25) an be written down for eahof the loal frames(7.1.1) Uα = Bα +
∑

β

WαβRβwhere(7.1.2) Uα = Hiαui − Hjαuj(7.1.3) Bα = HiαM−1
i bi − HjαM−1

j bj(7.1.4) Wαβ |α6=β = sαβHkβαM−1
kβ

HT
kββ



7.1. MANY BODIES AND LOCAL FRAMES 67(7.1.5) Wαα = HiαM−1
i HT

iα + HjαM−1
j HT

jα(7.1.6) kβ =

{

i if Bi ∈ Cβ

j if Bj ∈ Cβ(7.1.7) sαβ =

{

−1 if Bkβ
is (Mα ∧ Sβ) ∨ (Sα ∧Mβ)

1 otherwiseThe above formulae an be onveniently applied in a omputer implementation.They stem from the following algebra of the multi-body dynamis. Let q, u, f , Mgather the suitable vetors and matries as(7.1.8) q =









q1

q2

...
qn









,u =









u1

u2

...
un









, f =









f1
f2
...
fn









,M =









M1

M2

...
Mn







To eah loal frame Cα, there orresponds a blok-row of the global H operator(7.1.9) H =













... −Hj1 ... Hi1 ...

... ... ... ... ... ... ...
... Hiα ... −Hjα ...

... ... ... ... ... ... ...
... Him ... −Hjm ...











where(7.1.10) Hkα = H
({

ai
}

∈ Cα,X ∈ Bk

)is evaluated aording to the formula (6.1.5) of the previous hapter. All of thederivations from the introdutory setion of this hapter apply without hange andlead to the formulae (7.1.1-7.1.7). From now on a distintion between the single-body or the multi-body as well as between the single-frame or the multi-frame aseswill be made only, if it is not lear from the ontext.Operator W maps loal ovariant quantities into the ontravariant ones. Al-gebraially, it is represented by a sparse matrix, omposed of dense 3 × 3 bloks
Wαβ . The sparsity pattern of W orresponds to the vertex onnetivity in thegraph of loal frames. Verties of this graph are the loal frames {Cα}, while theedges omprise a subset of all bodies {Bi}, suh that Bi ∈ Cα and Bi ∈ Cβ for α 6= β.This has been illustrated in Figure 7.1.1. Operator W derives from the formula(7.1.11) W = HM−1HTwhere M is a n × n symmetri and positive de�nite matrix, and H is an m × ntransformation operator (m and n in (7.1.8) and (7.1.9) are respetively equal n/kand m/3 here, where k is the dimension of TQ). Clearly, W is an m×m symmetrimatrix. It is positive de�nite, provided rows of H are linearly independent. Thisis easiest to see from the �ow of the ations in the above formula. A loal fore
R is �rst mapped by HT into a generalised fore r. If rows of H are not linearlyindependent, then there exist R1 6= R2 suh that HTR1 = HTR2 and hene
W fails to be a bijetion. This means, that the null spae of W is larger than
{0}, so that it is not invertible in the usual sense. W beomes singular whenever
m > n, whih is trivially related to the number of onsidered bodies. On the other
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1
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Figure 7.1.1. A graph of loal frames and the orresponding pat-tern of W.hand, one an always introdue singularity of W by using loal frames between thesame pair of bodies, whose H operators are linearly dependent. This an be easilyrelated to the deformability of our kinemati models. For example, the pseudo-rigid body has a linear distribution of the instantaneous veloity over an arbitrary�at surfae. Thus, the relative veloity between two bodies over a �at surfaeis fully parametrised by three points. A larger number of loal frames results inthe singularity of W. So does their ollinearity. One an then generally speakabout the global and loal over-restraining of the system. In pratie, W oftenbeomes numerially singular for some partiular on�gurations of loal frames.Indeterminay of loal fores is then an unavoidable onsequene of the kinematisimpliity, and as so it needs to be aepted in numerial pratise. It might benoted, that semi-positive de�niteness of W implies non-strit onvexity of L∗
H .7.2. ConstraintsAs it was already mentioned, L is stritly onvex and hene, it admits a uniqueminimum at a root of its gradient. Formula 7.0.6 desribes this ase, whih byonstrution orresponds to the numerial integration of an unonstrained motion.It is not hard to guess however, that the loal dynamial equation (7.0.25) wasintrodued here in order to bring into the piture the notion of onstraints. Withinthe urrent formulation, these will be phrased in the form of some loal equalities(7.2.1) C (U,R) = 0whih, ombined with (7.0.25), result in(7.2.2) C (WR + B,R) = 0The above is an impliit, nonlinear and usually nonsmooth equation, numeriallysolved for R. In some partiular ases, it does orrespond to the solution of aonstrained minimisation problem. More often however, it an only be viewed asthe root �nding problem. These subtleties will beome learer, when partiularkinds of onstraints are introdued in Chapters 8 and 10.7.3. Quasi-statisTake(7.3.1) M = A



7.3. QUASI-STATICS 69(7.3.2) b = hf
(

t+ h,qt
)where A was as (5.3.3) in Setion 5.3. The foregoing disussion applies withoutfurther hanges.



CHAPTER 8JointsIt is often neessary to on�ne the motion of a material point X within apresribed manifold(8.0.3) x (X, t) ∈ C (t)This an be written down as an impliit equation(8.0.4) c (x, t) = 0where c is a k-omponent vetor funtion, with 1 ≤ k ≤ 3. The Jaobian [∂c/∂x]is then a k×3 matrix, of full rank for well de�ned onstraints. In our ase, in orderto �t into the 3 × 3 blok struture of the loal dynamis equations, it would beonvenient use a 3-omponent c. This is easily ahieved. Note that for eah t, rowsof [∂c/∂x] an be interpreted as some ovetors ak in the Eulidean 3-spae E3,and(8.0.5) [∂c/∂x] δx = 0for all vetors δx in the tangent spae TxC (t). Note also, that ovetors ak spanthe orthogonal omplement spae T⊥
x C (t) (Figure 8.0.1). For eah x and t, onean always de�ne 3 − k ovetors aj (k < j ≤ 3), spanning TxC (t). This way aomplete dual base {ai

} is de�ned in E3. The onstraint equation (8.0.4) an nowbe suitably extended to(8.0.6) c (x, t) =





c1 (x, t)
〈

a2,x − x (X, t)
〉

〈

a3,x − x (X, t)
〉



 , when C (t) is a surfaeand to
C

x

T
⊥
x
C

TxC

Figure 8.0.1. Geometrial interpretation of a onstraint manifold
C, the tangent spae TxC and the orthogonal omplement T⊥

x C.70



8.1. BACK TO THE DISCRETE CASE 71(8.0.7) c (x, t) =





c1 (x, t)
c2 (x, t)

〈

a3,x− x (X, t)
〉



 , when C (t) is a urve.The veloity form of so extended (8.0.4) reads now(8.0.8) [∂c/∂x] ẋ + ċ = 0where the last j equations are satis�ed by onstrution. This somewhat redundantderivation was made here in order to rewrite (8.0.8) as(8.0.9) {

ai
}T

ẋ = −ċ or U (t) = −ċ (t)where U is a loal veloity with respet to the base {ai}. Hene, a point onstraintof form (8.0.4) naturally de�nes a loal frame.8.1. Bak to the disrete aseResorting bak to the time-stepping sheme and the loal dynamis of theprevious hapter, it is seen that the integration of motion onstrained in the abovemanner an be stated as(8.1.1) minu L (u)
Hu + ċ = 0where by onvention u = ut+h and ċ = ċ (t+ h). The loal fore R an now be in-terpreted as a vetor of Lagrange multipliers orresponding to the a�ne onstraints

Hu + ċ = 0. The Lagrangian of (8.1.1) reads(8.1.2) Lc (u) = L (u) − 〈Hu + ċ,R〉and its optimality onditions lead to the saddle point problem(8.1.3) [

M −HT

H 0

] [

u

R

]

=

[

b

−ċ

]This an be further transformed into(8.1.4) −ċ = HM−1HTR + HM−1bor(8.1.5) −ċ = WR + BBeause of the redundant omponents in the onstraints of type (8.0.6-8.0.7) anddue to (7.0.25) and (8.0.9), some of the rows in the above system might be identities.The motion along the orresponding diretions ai should not be onstrained, andhene these rows are replaed by diagonal terms Ri = 0. This leads to the followinguniform notation for a onstraint equation, spei�ed at some point x(8.1.6) C (U,R) = 0where C is a 3-omponent vetor funtion
Ci (U,R) =

{

U i + ċi for ai ∈ T⊥
x Ct+h

Ri for ai ∈ TxCt+h(8.1.7)



8.2. SINGLE-BODY JOINTS 72Symbolially, (8.1.6) desribes also the system of 3m equations for a multi-bodysystem with m joints. In order to �nd the onstraint reations R, one then solvesthe system(8.1.8) C (WR + B,R) = 0where U i are expressed by the suitable rows of U = WR + B.8.2. Single-body jointsLet a dummy body Bi be de�ned as follows(8.2.1) qi (t) = qi (0)(8.2.2) ui (t) = 0(8.2.3) M−1
i = 0so it does not move and has a zero inverse inertia operator. One an use a dummybody in order to introdue a single-body onstraint Cα within the framework ofloal dynamis. For this, one piks a body of interest Bj and attahes to it a loalframe. Together with the dummy body Bi, this allows to formulate a blok-rowof the U = WR + B relation. Assumption (8.2.2) implies, that in the absene ofother onstraints, the relative loal veloity Uα is solely due to the motion of Bj .The following assumption (8.2.3) allows to reuse the same dummy body in order toimpose other onstraints. The zero inverse inertia operator breaks the o�-diagonalouplings in the blok-row Wαβ , so that the reations of other onstraints using Bido not ontribute to Uα. In other words, a dummy body does not orrespond toan edge in the graph of loal frames.Assume that X is a referential point, to whih the loal frame with base {ai} isattahed at t = 0. In the view of (8.1.7), it is not di�ult to ome up with severaltypial onstraintsFixed point. Motion of X is pre-luded. C (U,R) = UFixed line. Motion of X is al-lowed along a line aligned with a3and passing through X at t = 0. C (U,R) =





U1

U2

R3



Fixed plane. Motion of X is al-lowed within a plane normal to a3and passing through X at t = 0. C (U,R) =





R1

R2

U3



Presribed veloity. The loal ve-loity of X reads V (t). C (U,R) = U − V



8.4. CONFIGURATION SPACE 73One important subtlety needs to be mentioned for the dynami time stepping.As the on�guration update is of the kind(8.2.4) qt+h = qt +
h

2

(

ut + ut+h
)and the above onstraint de�nitions orrespond to the veloity ut+h, an O (h)violation of the onstraint is possible between t = 0 to t = h. If the onstraintsannot be presribed in a way, whih prevents the loal veloities from havingomponents along the orthogonal omplement spae T⊥C, it is possible to enforethis ondition by solving(8.2.5) C (WR + B,R) = 0at t = 0, followed by the update of veloity(8.2.6) u0 = u0 + M−1HTR8.3. Multi-body jointsJoints between pairs of bodies an be de�ned in a natural manner. The dis-ussion of the previous setion applies without hanges, although the dummy bodyneeds to be replaed by a regular one. For example, the �xed point onstraint annow be reinterpreted as a spherial joint, as soon as the referential points X ∈ Biand Y ∈ Bj are assumed to oinide at t = 0. As an example of a more elaborateonstraint, let us onsider a rigid weightless rod, inserted between an arbitrary pairof points X ∈ Bi, Y ∈ Bj at t = 0. The rigid rod onstraint orresponds to thebelow statement(8.3.1) ‖xi (X, t) − xj (Y, t)‖ = ‖X − Y‖Let us de�ne the dual base vetor a1 as(8.3.2) a1 (t) = [xi (X, t) − xj (Y, t)] / ‖xi (X, t) − xj (Y, t)‖and selet the remaining ovetors {a2,a3

}

⊥ a1. With this de�nition of the loalframe, the rod onstraint an be expressed as(8.3.3) C (U,R) =





U1

R2

R3



8.4. Con�guration spaeA multi-body system without onstraints has freedom to move inside of itson�guration spae Q. Enforement of some equality onstraints (joints) reduesthis spae to a subset ofQ. In the following this fat will be impliitly aknowledged.Nevertheless, from the point of view of our implementation it is more onvenientto think about Q as intat. This is beause all of the onstraints will be dealtwith in a uniform manner, and no formal redution of the on�guration spae willbe performed. At times, it will be onvenient though to re-frame our thinkingand treat some of the bodies as �moving boundaries�. This will be emphasised bywriting Q (t).



CHAPTER 9Contat pointsBodies never ome into ontat at a single point. At some level of observation,one an usually speak about a smooth ontat surfae. Yet, from the omputationalpoint of view it is onvenient to onsider instead the set of �oriented points� (Figure9.0.1). Here the ontat orresponds to a point and a normal diretion attahedto it. It is ustomary to refer by the single notion of �ontat� to the totalityof entities attahed to a ontat point. The multi-body framework has to opewith identi�ation and maintenane of a representative set of ontats. Optimally,the ost of those ativities should be omparable with the one pertinent to otheressential omputations (e.g. the time stepping). In order to aomplish this goal, itis neessary to resort to some of the methods studied within the �eld of omputersiene. This requires a temporary departure from mehanis into the realm ofalgorithms and data strutures.Let the set of bodies {Bi} be alled a on�guration. Let {Bi}t
, {Bi}t+h be twoonseutive on�gurations, possibly admitting small interpenetrations (the timeindexing is used at onveniene). The motion a�ets shapes and positions of bodiesin {Bi} . Additional operations ause strutural hanges to {Bi} (e.g. insertion ordeletion of bodies). Let the tuple Cα = (x,n,Bi,Bj)α store the point, the normaldiretion and the pairing of bodies involved in a ontat. The goal is to e�ientlymaintain {Cα}, under possible hanges of {Bi}.What preisely e�iently means, will be the matter of disussion in Setion9.2. Before that, Setion 9.1 introdues a number of auxiliary data strutures,setting the bakground for the forthoming developments. Setion 9.3 disussesthe approximate ontat searh methods. Setion 9.4 deals with the detetion ofontat points and normals. Brief literature review follows in the last setion.9.1. Auxiliary data struturesThe notion of a data struture will not be expliitly introdued. It will emergeas a result of presentation of a number of beings belonging to this ategory. Letus disuss some general properties instead. Data strutures require spae in orderto store their elements. A basi question is how muh spae is required in order tostore n elements? Strutures are aompanied by algorithms operating on them.Another elementary question is then how muh time is neessary for an algorithm

Figure 9.0.1. An admittedly telephone-like example of ontatbetween two bodies. The set of oriented points represents twodisjoint ontat surfaes. 74



9.1. AUXILIARY DATA STRUCTURES 75
x.n y.n z.n

z.py.px.p

nil yx z nilFigure 9.1.1. A doubly-linked list.to aomplish its goal? Both issues an be brie�y addressed as the spae and thetime omplexity, and examined on a ase by ase basis. Without resorting to anypartiular example, it is adequate to reall some notations ommonly employedin the analysis of algorithms. Let g (x) be a known funtion. The growth of anyfuntion f (x) an be related to the growth of g (x) in a number of ways. De�nitionsbelow are quoted after Wilf [209℄Definition 9.1.1. We say that f (x) = O (g (x)) (x→ ∞) if ∃C, x0 suh that
|f (x)| < Cg (x) (∀x > x0).Definition 9.1.2. We say that f (x) = Θ (g (x)) if there are onstants c1 > 0,
c2 > 0, x0 suh that for all x > x0 it is true that c1g (x) < f (x) < c2g (x).Definition 9.1.3. We say that f (x) = Ω (g (x)) if there is an ǫ > 0 and asequene x1, x2, x3, ...→ ∞ suh that ∀j : |f (xj)| > ǫg (xj).Thus, f (x) = O (g (x)) implies that f (x) grows no faster than g (x), f (x) =
Θ (g (x)) states that f (x) and g (x) grow at the same rate, while f (x) = Ω (g (x))means that f (x) grows at least at the rate of g (x).Considering an algorithm operating on n elements of a data struture, it is noweasier to desribe its spae and time demands. In pratie one is mostly interestedin data strutures with O (n) spae omplexity. Fast algorithms will usually haveruntime omplexity similar to O (na logb n

), where a, b ≥ 0 will depend on the stateof the ordering and dimensionality of the input data. The runtime is measuredby the number of disrete steps. In the following, unless spei�ed otherwise, thelogarithm to the base 2 is onsidered.9.1.1. Tuple. Tuple is a grouping of elements. For example (b, c, d) is a tupleomposed of elements (members) b, c, d. Any of the elements an be a tuple itself.Let a = (b, c, d) be a variable storing the tuple. We an refer to the members of aby a.b, a.c, a.d.9.1.2. Pointer. A pointer is a symboli link to a tuple. For example let thetuple (d, n) be omposed of an arbitrary data d, and a pointer n. Then it is fairto reate a variable a = (d, n) and assign the pointer value a.n = a. The member
a.n behaves now as it was a. For example a.n.d is the same as a.d and the in�nitereferene a.n.n.n... makes sense. If the pointer value was not assigned, the defaultvalue nil is assumed. It is also valid to assign the nil value a.n = nil expliitly.Note, that pointers do not stand out in the adopted notation. It is enough tomention them, when a tuple is being �rst de�ned.9.1.3. List. Eah item of a (doubly-linked) list is omposed of three elements
(d, p, n), where d stores an arbitrary data, p is a pointer to the previous list item,and n is a pointer to the next list item (Figure 9.1.1). There are as many list itemsas there are data items, so that the spae demand of the list struture is O (n). Alist is represented by a pointer to the �rst element, say l. A data item d is insertedinto the list l as follows



9.1. AUXILIARY DATA STRUCTURES 76Algorithm 9.1.4. List_Insert (l, d)1 a = (d, p, n)2 if l 6= nil then l.p = a3 a.n = l4 l = aIt is seen that the newly reated list item a replaes the head of the list l. Point-ers are updated aordingly. The omplexity of this operation is O (1). Anotherelementary operation is deletion. Let us delete an item a from lAlgorithm 9.1.5. List_Delete (l, a)1 if a.p 6= nill then a.p.n = a.n2 else l = a.n2 if a.n 6= nil then a.n.p = a.pThe O (1) deletion omprises obvious updates of pointers. The following routine�nds a list item assoiated with a spei� data dAlgorithm 9.1.6. List_Find_Item (l, d)1 a = l2 while a 6= nil do3 if a.d = d then4 return a5 end if6 a = a.n7 end while8 return nilAs there is no other way to identify the list item storing d, the O (n) searhis neessary. Combining the two above algorithms allows to delete the list itemassoiated with dAlgorithm 9.1.7. List_Delete_Data (l, d)1 a = List_Find_Item (l, d)2 if a 6= nil then List_Delete (l, a)Somewhat more interesting ode an be written down, one the order of datais taken into aount. The lassial merge sort algorithm an be implemented asfollowsAlgorithm 9.1.8. List_Merge_Sort (l)1 o = 12 while true do3 h = t = nil, j = l4 while true do5 i = j, m = 06 while m < o ∧ j 6= nil do j = j.n, m = m+ 17 k = j, n = 08 while n < o ∧ k 6= nil do k = k.n, n = n+ 19 if j = nil ∧ i = l then10 for i = l until nil do i.p = j, j = i, i = i.n11 return l12 else if m+ n = 0 break13 if h = nil then if i.d ≤ j.d then h = i else h = j14 while m > 0 ∧ n > 0 do15 if i.d ≤ j.d then16 if t 6= nil then t.n = i



9.1. AUXILIARY DATA STRUCTURES 7717 t = i, i = i.n, m = m− 118 else19 if t 6= nil then t.n = j20 t = j, j = j.n, n = n− 121 end if22 end while23 while m > 0 do t.n = i, t = i, i = i.n, m = m− 124 while n > 0 do t.n = j, t = j, j = j.n, n = n− 125 end while26 t.n = nil, l = h, o = 2o27 end whileAlgorithm 9.1.8 has O (n logn) runtime omplexity. This is easy to see, onethe idea of the merge sort beomes lear. Let us onsider a simple illustration.The sequene 7, 2, 6, 1, 4, 5, 9, 3 is to be sorted. First adjaent pairs of numbers aregrouped (7, 2), (6, 1), (4, 5), (9, 3) and the numbers within the pairs sorted (2, 7),
(1, 6), (4, 5), (3, 9). In the next step the pairs are merged into the groupings offour numbers, while the order is being preserved. (1, 2, 6, 7), (3, 4, 5, 9). The mergeoperation is performed again and the �nal sorted sequene results. Eah mergeoperation an be done in O (n) time and there is at most logn groupings, thusthe runtime omplexity follows. In the above algorithm the outer loop ontrols theurrent length of grouping (o+ 1), while the merge operation is performed in lines14 - 25.One an imagine the situation when a long and initially sorted list is alteredin the way, that eah item is shifted by few plaes to the right or to the left. Thelist remains sorted in the average sense. That is to say, if we ould assign a olourto the magnitude of eah data item, then the altered list observed from a distanewould seem very similar to the sorted one. Under a loser look it appears mostnatural to restore the right order by inspeting eah item and shifting it bak intothe right position. This an be done in a fast manner, provided the alteration issmall ompared to the length of the list. This idea is utilised by the insertion sortalgorithmAlgorithm 9.1.9. List_Insertion_Sort (l)1 p = l2 while p 6= nil3 q = p, p = p.n4 while q.p 6= nil ∧ q.p.d > q.d do5 o = q.p6 if o.p 6= nil then o.p.n = q7 else l = q8 if q.n 6= nil then q.n.p = o9 q.p = o.p, o.n = q.n, q.n = o, o.p = q10 end while11 end whileThe insertion sort has omplexity O (an) where a is the average shift lengthin the originally sorted list. For a ≪ n it beomes O (n), whih is a useful resultat times. The fat that the average shift is enough to asses the omplexity followsfrom the simple observation that (c1 + c2 + ...+ cn) /n = a, where ci is the numberof omparisons neessary to bring an altered item bak into its right plae.9.1.4. Hash table. Let h[·] be a table of pointers to lists (d, p, n), de�ned inthe previous setion. Assume h[·] is of size m. Let f (d) be a surjetive hashingfuntion suh that
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Figure 9.1.2. Hash table with lists.(9.1.1) ∀d : f (d) ∈ {1, 2, ...,m}and the evaluation time of f (d) takes O (1) time. One an de�ne the followingoperationsAlgorithm 9.1.10. Hash_Table_Insert (h, f, d)1 List_Insert (h [f (d)] , d)andAlgorithm 9.1.11. Hash_Table_Delete (h, f, d)1 List_Delete_Data (h [f (d)] , d)as well asAlgorithm 9.1.12. Hash_Table_Find (h, f, d)1 return List_Find_Item (h [f (d)] , d)The insertion into the hash table has O (1) omplexity. The hash table deletionand searh on the other hand, have the omplexity proportional to the length ofthe list stored at the table element h [f (d)]. This length depends on the quality ofthe hashing funtion. By de�nition it is possible that(9.1.2) ∃x, y : f (x) = f (y)whih is alled a ollision. A hash table an be e�ient, provided ollisions happenrarely. This is in general the ase, if the probability of ollision reads(9.1.3) ∀x,y : P |f(x)=f(y) = O

(

1

m

)with a small (≪ m) onstant in O (·). In this ase ollisions are distributed uni-formly over h [·], with the probability proportional to n
m , where n is the number ofstored data items. Thus, for a good hashing funtion the average length of the liststored at any element h [·] is O ( n

m

). If all data items d are known, one an alwaysindex them from 1 to m in suh a way, that no more than ⌊ n
m

⌋

+ 1 share an index,where ⌊·⌋ indiates the nearest smaller or equal integer. If the set of d is not knownin advane, existene of good hashing funtions is not assured. In pratie though,reasonably e�ient funtions an be found. It should be noted, that the presented
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3Figure 9.1.4. A binary searh tree. The thikened path has tobe traversed in order to enumerate all k nodes with x ≥ 8, whihfor a balaned tree an be done in O (logn+ k).variant of hashing is not among the most subtle versions of this tehnique. Onemight like to onsult Knuth [119, pp. 552-601℄ for a more insightful exposition.9.1.5. Priority queue. Let us onsider a set Q of n elements (d, y), where
d represents an arbitrary data and y desribes a priority assigned to this data.The interest is in maintaining Q in suh a way, that the subset of k elements suhthat y ≥ y0 an be aessed in O (k) time. The maintenane operations inludeinsertions and deletions of elements and eventually, updates of their priorities. Adata struture failitating the mentioned operations bears the name of the priorityqueue. A typial e�ient implementation of the priority queue exploits the heapstruture as its skeleton. A through desription of both strutures an be found inCormen et al. [50, pp. 127-144℄. A spei� implementation of the priority queuewill be outlined in Setion 9.1.7. Here instead, let us illustrate that the elements ofa priority queue an be arranged into a tree-like heap struture. Let us expand thetuple (d, y) into (d, y, p, l, r), where p is the pointer to a parent node in the tree, l isthe pointer to the left sub-tree (left hild), and r is the pointer to the right sub-tree(right hild). One an arrange the elements of Q into a tree-like struture satisfyingthe heap property : for eah v ∈ Q, if v.p 6= nil then v.p.y ≥ v.y. Consider elementsof Q with priorities {1, 2, 3, 4, 7, 8, 9, 10, 14, 16}. An example of suh arrangementis given in Figure 9.1.3. The dashed line bounds 5 elements with priorities y ≥ 8.They an be enumerated by desending down the tree in the O (5) time.9.1.6. Binary searh tree. Similarly as in the previous setion, let us on-sider a set Q of n elements (d, x), where d represents an arbitrary data and x standsfor a oordinate assigned to this data. The objetive will be to maintain Q in suha way, that for a given x0 the set of all k elements v ∈ Q suh that v.x ≥ x0 anbe identi�ed in O (logn+ k) time. It is possible to arrange the elements of Q into
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Figure 9.1.5. Priority searh tree based on the red-blak treestruture. Red nodes are light-grey. Numbers outside of the ret-angular leaves and irular nodes represent the priority queue.Dashed lines indiate pointers.a tree-like struture (d, x, p, l, r) satisfying the binary searh tree property : for eah
v ∈ Q, if v.l 6= nil then v.l.x ≤ v.x and if v.r 6= nil then v.x ≤ v.r.x. Of ourse
p, l, r denote respetively, the pointer to a parent node in the tree, the pointer tothe left sub-tree, and the pointer to the right sub-tree. The n elements of Q an bearranged into a binary searh tree in suh a way that the number of nodes alongthe longest path in the tree is O (logn). Suh a tree is alled balaned. A balanedbinary searh tree orresponding to the oordinate set {1, 2, 3, 4, 7, 8, 9, 10, 14, 16}is illustrated in Figure 9.1.4. A spei� instane of the balaned binary searh treewill be detailed in the next setion.9.1.7. Priority searh tree. Priority searh tree has been proposed by M-Creight [148℄ as a ombination of the priority queue and the balaned binary searhtree. The struture operates on tuples (d, x, y), where an arbitrary data d is assoi-ated with two oordinates x and y. Priority searh tree allows to e�iently proessa number of range queries, one of whih is of partiular interest in the urrentontext (Setion 9.3.2):Problem 9.1.13. For a set Q of n tuples (d, x, y), given x0 and y0, report all
v ∈ Q suh that v.x > x0 and v.y > y0.The priority searh tree presented in this setion is based on the red-blak treestruture, invented by Bayer [21℄ (the name used by him was the symmetri binaryB-tree, while Guibas and Sedgewik [80℄ have introdued the red-blak olouringonvention). A omprehensive desription of the data struture an be found inCormen et al. [50, pp. 273-301℄. For the sake of ompleteness, a rather detailedextration from Cormen et al. is inluded here. It is further ompleted by embed-ding the priority queue struture within the red-blak tree.An element of the priority searh tree omprises (u, t, c, p, l, r, q), where u is thetuple (d, x, y), t ∈ {node, leaf} desribes the type of the element, c ∈ {red, black}is the olour of the element, p is the pointer to the parent of the element, l is thepointer to the left sub-tree (left hild), r is the pointer to the right sub-tree (righthild), and q is the pointer to the element of the priority queue (Figure 9.1.5). Tree



9.1. AUXILIARY DATA STRUCTURES 81elements v for whih v.t = node are alled nodes, while those where v.t = leaf arealled leaves. The following properties are quoted after Cormen et al. [50, p. 273℄:(1) Every node is either red or blak.(2) The root is blak.(3) Every leaf is blak.(4) If a node is red, then both its hildren are blak.(5) For eah node, all paths from the node to desendant leaves ontain thesame number of blak nodes.It should be noted, that in general it is not neessary to employ separate treeelements for all leaves in the red-blak tree. In a typial appliation only nodesstore data. Nevertheless, the priority searh tree requires the additional leaf spae.Let us de�ne bh (v), the blak height of a node v, as the number of blak nodes (notinluding v) on the way from v down to a leaf. Similarly, let h (v) bet the height ofthe sub-tree rooted at v, that is the maximal number of nodes (inluding v) on theway down from v to a leaf. Also, let n (v) denote the number of nodes of a sub-treerooted at v. An empty tree ontains no nodes, that is if v is the root, then v = nil.Lemma below states a basi result about the e�ieny of red-blak trees.Lemma 9.1.14. Red-blak tree with n nodes has height at most 2 log (n+ 1).Proof. First one needs to show that n (v) ≥ 2bh(v) − 1. If h (v) = 0 thenbh (v) = 0. Thus n (v) ≥ 20 − 1 = 0, whih is orret. Now assume h (v) =

k and n (v) ≥ 2bh(v) − 1. Take w, suh that h (w) = k + 1. If w.c = readthen (from property 4) bh (w) = bh (w.l) + 1 = bh (w.r) + 1, otherwise bh (w) =bh (w.l) = bh (w.r). Thus, by the indutive hypothesis n (w) ≥
(

2bh(w)−1 − 1
)

+
(

2bh(w)−1 − 1
)

+ 1 = 2bh(w) − 1. Let h be the height of the tree. From property5 there follows that the blak height of the root is at least h/2 (try to insert asmany red nodes as possible). It results that h ≥ 2h/2 − 1, or in other words
h ≤ 2 log (n+ 1). �The height of the proposed priority searh tree is then O (logn). This impliesthat, as long as the properties 1-5 an be maintained, all operations traversing thetree along its height and performing on the way some onstant time ations willhave O (logn) omplexity. Three basi operations will be onsidered: insertion,deletion, and the already mentioned two-sided range query. It will be useful tode�ne the omparison of tuples (d, x, y) �rst(9.1.4) (di, xi, yi) < (dj , xj , yj) i� xi < xj ∨ (xi = xj ∧ di < dj)

(di, xi, yi) = (dj , xj , yj) i�xi = xj ∧ di = dj

(di, xi, yi) > (dj , xj , yj) otherwise.The following two routines will be utilised to maintain the priority searh tree.Algorithm 9.1.15. Pst_Push (v, q)1 while v.q 6= nil2 if v.q.u.y < q.u.y then3 s = v.q, v.q = q, q = s4 end if5 if q.u ≤ v.u then v = v.l6 else v = v.r7 end whileThe above algorithm desends down from the root v omparing the urrentqueue oordinates v.q.u.y against the andidate q.u.y (lines 2-4). If the urrently
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Figure 9.1.6. Left and right rotations. The left to right orderingof data tuples aording to omparison (9.1.4) is preserved in nodes
x, y and sub-trees α, β, γ.stored v.q.u.y is smaller than the andidate oordinate, v.q and q are swapped (line3) and the desend ontinues along the binary searh path of q (lines 5-6). If theomparison (9.1.4) is O (1) then the runtime of Algorithm 9.1.15 is O (logn). The

Pst_Push routine does not a�et the struture of the red-blak tree. A reverseoperation follows.Algorithm 9.1.16. Pst_Pull (v)1 do2 if v.t = leaf then3 v.q = nil4 return5 else s = v.l6 if s.q = nil ∨ (v.r.q 6= nil ∧ v.r.q.y > s.q.y) then s = v.r7 v.q = s.q8 v = s9 while v.q 6= nilAlgorithm 9.1.16 desends down the tree v. For eah tree node v, its priorityqueue link v.q is replaed with either v.l.q or v.r.q (line 7), depending on whetherrespetively v.l.q ≥ v.r.q or the opposite holds (lines 5-6). The searh ontinuesdown the path of the maximal priority hoie (line 8). The loop terminates eitherat a leaf element (lines 2-4), or at the end of the queue (line 9). The runtime is
O (logn). The struture of the red-blak tree remains una�eted.Strutural hanges to the red-blak tree will be aused by insertions and dele-tions. Before these an be analysed, the following two auxiliary routines need to beonsidered.Algorithm 9.1.17. Pst_Rotate_Left (v, x)1 y = x.r2 x.r = y.l3 y.l.p = x4 y.p = x.p5 if x.p = nil then v = y6 else if x = x.p.l then x.p.l = y7 else x.p.r = y8 y.l = x9 x.p = y10 s = y.q, y.q = x.q, x.q = s11 Pst_Pull (x)12 if s 6= nil then Pst_Push (y, s)and



9.1. AUXILIARY DATA STRUCTURES 83Algorithm 9.1.18. Pst_Rotate_Right (v, x)Rewrite Algorithm 9.1.17 with .l and .r swapped.Above v is the root of the tree, and x is the node about whih the rotationis supposed to happen. The left rotation and the right rotation are pitured inFigure 9.1.6. Lines 1-9 in Algorithm 9.1.17 basially update pointers in omplianewith Figure 9.1.6. This is a standard part of left-rotation, exatly as in Cormenet al. [50℄. Lines 10-12 update the priority searh tree struture. It is seen thatas a result of the left rotation y, a former hild of x, beomes the parent of x.Thus ertainly the queue pointers in x and y need to be swapped. This happens inline 10. The pointer y.q maintains the priority queue property with respet to itsboth hildren (y.q ≥ γ.q is preserved, and the swap in line 10 ensures y.q ≥ x.q).Nevertheless, although x.q ≥ β.q (inherited after y), there does not neessarily hold
x.q ≥ α.q. This is remedied by pulling x.q out of the queue in line 11, followed bypushing it bak down the queue in line 12 (s is pushed down the y−rooted tree, asit atually might have been oming from the γ sub-tree). Beause of the priorityqueue update, the runtime of Algorithms 9.1.17 and 9.1.18 is O (logn).Rotations will be utilised as one of the ations aimed at restoring the red-blaktree properties 1-5 after an insertion or a deletion has taken plae. Let us onsiderthe insertion �rst.Algorithm 9.1.19. Pst_Insert (v, x, y, d)1 if v = nil then2 v = ((d, x, y) , leaf, black, nil, nil, nil, nil), v.l = v.r = v.q = v3 return4 end if5 p = q = v6 u = (d, x, y)7 while p.t 6= leaf8 q = p9 if u < p.u then p = p.l10 else if u > p.u then p = p.r11 else return12 end while13 if u = p.u then return14 if p 6= q then p.p = q15 p.t = node, p.c = red16 p.l = (nil, leaf, black, nil, nil, nil, nil), p.l.l = p.l.r = p.l17 p.r = (nil, leaf, black, nil, nil, nil, nil), p.r.l = p.r.r = p.r18 if u < p.u then19 p.r.u = p.u20 p.l.u = p.u = u21 for q = p while q.q 6= p do q = q.p22 q.q = p.r23 Pst_Push (v, p.l)24 else25 p.r.u = u26 p.l.u = p.u27 for q = p while q.q 6= p do q = q.p28 q.q = p.l29 Pst_Push (v, p.r)30 end if31 Pst_Insert_Fixup (v, p)



9.1. AUXILIARY DATA STRUCTURES 84Algorithm 9.1.19 takes as the arguments the tree root v, the two oordinates xand y and a data item d. In ase the tree is empty, a single leaf element is reatedas a root (lines 1-4). Otherwise the tree is traversed down the (d, x, y) omparisonpath, until a leaf is found (lines 5-12). It is assumed, that all data items d aredistint. Thus, the insertions exits in lines 11 and 13, rather than updating the
y priority. The parent pointer is updated in line 14, for all but the initial rootleaf. Then the found leaf is transformed into a node, and its olour hanged fromblak into red in line 15. Two leaf hildren of the new node are reated in lines16-17. Note that the pointers are set harateristially for leaves (for the sake oforretness of rotation routines). In the binary searh ordering of the red-blaktree struture the onvention is used, that all ≤ data is stored to the left of a node.It follows that the former data of node p is now moved to its right hild in line19. Then the new data takes plae of the one in node p and in its left hild (line20). Lines 21-23 deal with the update of priority queue. We wish to preserve thepriniple, that queue pointers point to the data stored at leaves. Thus, the searhis done up the tree in line 21, in order to loate the queue pointer, pointing at p.As ps data has moved to its right hild, the pointer is now reset to p.r (line 22).The newly inserted data is pushed down the priority queue in line 23. The sameproedure is repeated symmetrially in lines 25-29. Finally, as the olour of thenew node was hanged to red in line 15, the red-blak tree struture needs to bemaintained in order to preserve properties 1-5. This is done inside of the �x-uproutine listed below.Algorithm 9.1.20. Pst_Insert_Fixup (v, x)1 while x 6= v ∧ x.p.c = red2 if x.p = x.p.p.l then3 y = x.p.p.r4 if y.c = red then5 x.p.c = black6 y.c = black7 x.p.p.c = red8 x = x.p.p9 else10 if x = x.p.r then11 x = x.p12 Pst_Rotate_Left (v, x)13 end if14 x.p.c = black15 x.p.p.c = red16 Pst_Rotate_Right (v, x.p.p)17 end if18 else... Rewrite lines 3-17 with .l and .r swapped.34 end if35 end while36 v.c = blackA detailed analysis of Algorithm 9.1.20 an be found in Cormen et al. [50, pp.280-287℄. As it is rather lengthy, it would be exessive to repeat it here. It is enoughto note, that the properties of the red-blak tree are restored by Algorithm 9.1.20 in
O (logn) time. The only point where an additional omment is neessary onernsrotations. Due to the priority queue related modi�ations the time omplexity ofrotations is O (logn) rather than O (1). Nevertheless, as ommented in [50, p. 287℄,the insertion �x-up performs at most two rotations. As a result the total runtime



9.1. AUXILIARY DATA STRUCTURES 85of the insertion Algorithm 9.1.19 remains O (logn). Let us resort to the deletionnow.Algorithm 9.1.21. Pst_Delete (v, x, y, d)1 u = (d, x, y)2 r = v, p = q = nil3 while r.t 6= leaf4 if r.q 6= nil ∧ u = r.q.u then p = r5 q = r6 if u ≤ r.u then r = r.l7 else r = r.r8 end while9 if u 6= r.u then return10 if p 6= nil then Pst_Pull (p)11 if q 6= nil then12 if r = q.l then p = q.r13 else p = q.l14 p.p = q.p15 if q.p = nil then v = p16 else if q = q.p.l then q.p.l = p17 else q.p.r = p18 if q.q 6= nil ∧ q.q 6= q then Pst_Push (p, q.q)19 if q.c = black then Pst_Delete_Fixup (v, p)20 free q21 else v = nil22 free rAlgorithm 9.1.21 takes as arguments the tree root v, the oordinates x and y,and the data item d. It desends down the tree until a leaf r holding u = (d, x, y) isfound (lines 3-8). Along the way a pointer p to the tree node holding the priorityqueue element assoiated with u is reorder (line 4). If the right leaf was not found,the algorithm exits in line 9. If a priority queue element assoiated with u was foundin a tree node, it is pulled out of the queue in line 10. For a tree not omposedof a single root leaf (line 11), the usual binary tree deletion is performed on node
q (otherwise the root is set to nil in line 21). First the qs parent branh is set tothe hild of q whih is not being deleted (lines 12-17). As q itself is to be removedan eventual queue element is push down the remaining sub-tree in line 18. If q isblak, then its deletion is likely to alter the balane of blak nodes aross the treeheight (priniple 5). An appropriate �x-up is performed in line 19. It is marked inthe ode, that the storage of q and r an be deleted (lines 20 and 22).Algorithm 9.1.22. Pst_Delete_Fixup (v, x)1 while x 6= v ∧ x.c = black2 if x = x.p.l then3 y = x.p.r4 if y.c = red then5 x.p.c = red6 y.c = black7 Pst_Rotate_Left (v, x.p)8 y = x.p.r9 end if10 if y.l.c = black ∧ y.r.c = black then11 y.c = red12 x = x.p



9.1. AUXILIARY DATA STRUCTURES 8613 else14 if y.r.c = black then15 y.l.c = black16 y.c = red17 Pst_Rotate_Right (v, y)18 y = x.p.r19 end if20 y.c = x.p.c21 x.p.c = black22 y.r.c = black23 Pst_Rotate_Left (v, x.p)24 x = v25 end if26 else... Rewrite lines 3-25 with .l and .r swapped.42 end if43 end while44 x.c = blackSimilarly as in ase of insertion, the purpose of Algorithm 9.1.22 is to maintainproperties and therefore balane of the underlying red-blak tree struture. Theproedure is inluded here for the sake of ompleteness. For a through analysis thereader is referred to the omments in [50, pp. 288-293℄. At most three rotationsan take plae during the deletion �x-up, thus the usual O (logn) deletion time ismaintained, even though rotations take O (logn) in the urrent ase.It remains to disuss an algorithm answering the query de�ned as Problem9.1.13. The following routine takes as the arguments the tree root v, the min-imal oordinates x0 and y0, an arbitrary data pointer δ, and a allbak routine
Report(δ, d).Algorithm 9.1.23. Pst_Query (v, x0, y0, δ, Report)1 p = nil2 while v 6= p ∧ v.q 6= nil2 p = v4 if v.q.u.x > x0 ∧ v.q.u.y > y0 then Report (δ, v.q.u.d)5 if x0 ≤ v.u.x then6 if v 6= v.r then Pst_Report_Down (v.r, y0, δ, Report)7 v = v.l8 else v = v.r9 end whileAlgorithm 9.1.23 desends down the tree along the path indiated solely by the
x oordinate of the stored data (lines 5, 8) and the range limit x0. If the urrent
x oordinate is larger or equal to x0, the right sub-tree an only store data with
x > x0. Thus, a omplete branh of the priority queue is reursively reported aslong as y > y0 (line 6, and Algorithm 9.1.24 below). Similarly, queued data itemsenountered on the way down are eventually reported in line 4.Algorithm 9.1.24. Pst_Report_Down (v, y0, δ, Report)1 if v.q = nil then return2 else if v.q.u.y ≤ y0 then return3 Report (δ, v.q.u.d)4 if v.t = leaf then return5 Pst_Report_Down (v.l, y0, δ, Report)6 Pst_Report_Down (v.r, y0, δ, Report)
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Figure 9.1.7. Binary tree on atomi intervals9.1.8. Segment and interval trees. All of the presented so far data stru-tures had O (n) spae omplexity. The strutures outlined in this setion demandmore spae, whih is also the reason why they are rarely implemented in pratie.A suitable, pratial generalisation will be detailed in Setion 9.3.4.A data struture alled the segment tree [25℄ allows to solve the followingProblem 9.1.25. (Stabbing query) Given a set of intervals S and a query point,report all intervals that ontain the point.On the other hand, the range tree [27℄ an be used to solveProblem 9.1.26. (Range searh) Given a set of points P and a query interval,report all points that belong to the interval.It is easy to notie that Problems 9.1.25 and 9.1.26 are dual in the followingsense: The same set of pairsX ⊂ S×P is reported, when solving either the stabbingproblem on S with points from P , or then range searh problem on P with intervalsfrom S.Let us have a look into the segment tree �rst. Endpoints of intervals from Ssubdivide the real line into the set of so alled atomi intervals (intervals i1, i2, ..., i15in Figure 9.1.7). They an be assumed half-open, say at their right endpoints. Itis not di�ult to reate a balaned binary searh tree, suh that atomi intervalsare leaves and eah node is a union of its o�spring intervals. Consequently, theroot node spans the entire real line. This is a onvenient searh struture for pointqueries, but not yet a segment tree. To obtain the segment tree, one needs to storeinformation about the intervals of S in tree nodes. Assume that tree nodes aresupplied with auxiliary lists, storing some of the intervals from S. Let tree node ube assoiated with an interval Iu. The following rule is applied: An interval s ∈ Sis stored in u if and only if Iu ⊂ s and Iparent(u) 6⊂ s (Figure 9.1.8). This ensures,that an interval is stored at most twie at eah level of the tree. For if this wouldn'tbe the ase and there would exist n nodes u1, u2, ..., un storing an interval s at onelevel of the tree, then Iparent(u2) ⊂ s, Iparent(u3) ⊂ s, ..., Iparent(un−1) ⊂ s (due to thebinary tree struture), whih ontradits the assumed manner of storing intervalsat tree nodes. Hene, eah interval is stored no more than O(log n) times in thetree. It follows, that the O(n logn) spae is neessary for the segment tree.Segment tree an be onstruted in bottom-up or top-down manner. In theformer ase, a good algorithm �nding an approximate median of a set of points isneessary [44, 20℄. The tree is begin built by desending down and splitting pointsets aording to the median. Building the tree this way requires O(n logn) stepson average. In ase of the bottom-up approah one �rst sorts P , and then buildsthe tree limbing up from the leaves level. This results in the well balaned tree,built in at most O(n logn) steps.
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Figure 9.1.8. Storing an interval into a segment tree.
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Figure 9.1.9. A omplete segment tree with a stabbing query example.It remains to disuss is the stabbing query itself (Figure 9.1.9). One needs
O (logn) steps to query the segment tree with a point. For eah node u the intervalsstored in the nodal list Lu are reported. This way eah of the intervals stabbed bythe point is reported one, whih gives O (logn+ k) query omplexity. One thetree has been built, the stabbing query an be answered e�iently. Nevertheless, weare not satis�ed with the spae requirements of the segment tree. In Setion 9.3.4it will be shown, how to avoid storing of the omplete tree in omputer memory,whih onsiderably relaxes the theoretial spae requirements of the struture.The range tree struture is quite similar to the segment tree. The only di�ereneis that in auxiliary nodal lists one stores points, ontained within the nodal intervals.Root of the tree stores then the omplete set P . One queries the range tree withan interval s, and during this proess splits s into O(log n) parts (exatly as it wasdone, while storing s in the segment tree). As the query desends down the tree,all points stored in nodes whose intervals Iu are ontained in partitions of s arereported. The remarks relevant to the spae and time requirements of the segmenttree an be repeated for the range tree without hange.9.2. The optimal data strutureWhen implementing a omputer ode, one naturally realises what are the de-sired features of an algorithm. Simpliity, speed and modest usage of spae areamong the sought qualities. At the same time, one realises that these goals are attimes mutually exlusive. Some need to be traded o� against others. This is not anexeption for the algorithms related to ontat searh. The purpose of this setionis to disuss an imaginary, optimal data struture suitable for ontat searh indynami multi-body simulations. It is relevant to realise what an ideal is, beforeompromising some of its aspets on the way to the pratial implementation.



9.2. THE OPTIMAL DATA STRUCTURE 89It was already assumed in Chapter 2 that bodies are subdivided into elements.It is arbitrarily deided here to use elements as irreduible geometri atoms. Henefor a ontat point, there followsDefinition 9.2.1. A single oriented ontat point results from an overlap oftwo surfae elements.To be somewhat more preise, let B̄i = ∪j ēij be the on�guration of body i,where eij is the jth surfae element of body i, and the upper dash stands for theset losure. Assume that there exist two bodies Bi and Bk, suh that B̄i ∩ B̄k 6=
∅. Then, the set of ontats (xikjl ,nikjl ,Bi,Bk) is de�ned by points and normalsorresponding to all nonempty intersetions of elements ēij ∩ ēkl 6= ∅. Details onalulating (x,n)ikjl for a pair of elements (eij , ekl) are provided in Setion 9.4. Forthe moment, it is enough to say that this operation takes O (1) time (with a ratherlarge onstant fator), whih results from the �nite variety of element shapes.Within the above model of aquiring ontats, it is natural to think about adata struture storing elements, and possessing the following qualities:(1) Insertion of new elements is possible and fast. This is related to thesenario, when new bodies enter an ative simulation. For example agranular �ow simulation with a soure requires insertions.(2) Deletion of elements is possible and fast. For example sattering of bod-ies might require deletions, when some presribed boundaries are rossed.Insertion and deletion together allow for modelling of raking and sepa-ration.(3) Insertions and deletions should take at most O (logn) steps, where n isthe number of stored elements.(4) Overlap reation between pairs of elements should be e�iently reported.This inludes both the overlaps resulting from element insertions and theoverlaps reated after an update of element positions.(5) Overlap release between pairs of elements should be e�iently reported.This inludes both the overlaps released after element deletions and theoverlaps released after an update of element positions.(6) Overlap reation/release reports should take at most O (n+ k) steps,where k is the number of reation/release events.(7) Elements diretly, topologially adjaent in a mesh should be exludedfrom overlap reports. The self-ontat ase is still inluded.(8) Exlusion of seleted pairs of elements should be possible. This mightbe of use in the viinity of joints, where mesh overlaps are sometimestolerated.(9) The spae omplexity of the data struture should be O (n).The insertion and deletion times listed in point 3 is quite stringent. Withouthaving in mind yet any spei� realisation of the data struture, it is aknowledgedthat data should be stored in some order. The fastest purely ombinatorial linearstrutures allowing for dynami insertions and deletions are balaned binary searhtrees. Thus, although our hypothetial struture operates in three dimensions,we wish to retain the O (logn) insertion and deletion times. The overlap reportomplexity listed in point 6 is in fat even more stringent. It is assumed thatthe ordering maintained during insertions, deletions and updates of the strutureis su�ient to trae reation and release of overlaps in O (n+ k) time. If thisould be assured, omplexity of the ontat searh would not exeed that of thetime stepping. Nevertheless, algorithms deteting overlaps between geometrialobjets in three dimensions are slower. This will be demonstrated for shapes as



9.3. FINDING CONTACT CANDIDATES 90simple as retilinear boxes in Setion 9.3.1.1. Still, our hope is in the improvementresulting from proessing nearly ordered data, similarly as it was the ase withsorting (Algorithm 9.1.9). A ontat searh algorithm operates in between of thetime integration steps. Therefore it is quite legitimate to assume that ordering ofdata orresponding to adjaent time frames is similar. This is alled time oherene.Several overlap searh algorithms and related data strutures will be investigatedin Setion 9.3. Few of them will take advantage of the time oherene.It will be useful to sketh the interfae routines for the hypothetial data stru-ture s. Let insertion and deletion of elements e readAlgorithm 9.2.2. Imaginary_Insert (s, e)Insert e into s while preserving an impliit ordering.andAlgorithm 9.2.3. Imaginary_Delete (s, e)Delete e from s while preserving an impliit ordering.Somewhat more an be said about the ations taken inside of the update rou-tine. All of the overlap event reports happen as a onsequene of the update ofthe struture. This means that overlap events related to insertions and deletionsare postponed and exeuted on the oasion of an update. This is related to theantiipated di�ulties with an e�ient reporting of overlaps during the insertionproess. In onsequene it is more elegant to assume that all overlap events arereported during the update. This is just a pragmati hoie, ditated by experiene.The update routine follows below.Algorithm 9.2.4. Imaginary_Update (s, δ, Created,Released)Find overlaps released due to deletions.Find overlaps released due to motion of elements.For eah overlap release all Released (δ, eij, ekl).Find overlaps reated due to insertions.Find overlaps reated due to motion of elements.For eah overlap reation all Created (δ, eij, ekl),if and only if the element pair is not topologiallyadjaent or it was not expliitly exluded.Equipped with the above struture and the knowledge on how to extrat ontatpoints and normals from the pairwise element overlaps, one an easily exeute avariety of ontat detetion tasks. Of ourse, in pratie some aspets of this generalidea (typially e�ieny) will need to be ompromised.9.3. Finding ontat andidatesThe data struture outlined in the previous setion operated on the surfae ele-ments, de�ned in Chapter 2. In fat, this is not the most onvenient approah. It isunderstandable, that overlaps between objets of simple shapes an be found morerapidly, then between those of intriate shapes. Although element shapes are quitesimple, designing a data struture operating diretly on them is still too umber-some. In terms of maintaining an ordering or testing for intersetions, rather thanusing the elements, it is muh easier to deal with their axis-aligned extents. Thethree axis-aligned intervals form a box, alled the axis aligned bounding box (Fig-ure 9.3.1). Obviously, if two bounding boxes do not overlap, their related elementsannot interset. Thus, the rejetion test is simple and onlusive. On the otherhand, the overlap of boxes only indiates a potential intersetion of the underlyingelements. It will be shown in Setion 9.3.1, that under some pratial assumptions,the bounding box overlaps re�et quite well the atual element overlaps.
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Figure 9.3.1. An axis aligned bounding box around a pyramidelement. Projetions on the oordinate axes have been thikened.For taxonomi reasons it is relevant to mention, that the presented frameworkbelongs to the broader ategory of two-phase ollision/ontat/interfae detetionmethods. Setion 9.3 orresponds to the broad phase, usually involving some sort ofspae partitioning and/or bounding volume strategy, aimed at reporting the ontatandidate objet pairs. Setion 9.4 orresponds to the narrow phase, pursuing on-lusive intersetion tests between the reported pairs of objets. Interfae detetionmethods will be brie�y reviewed in Setion 9.5.9.3.1. Axis aligned bounding boxes. Although the axis aligned boundingboxes are a rather simple geometrial devie, they proved to be e�etive in manyappliations (e.g. omputer graphis, geometri modelling, interfae detetion).The reasons behind this e�etiveness have been studied by Suri et al. [201℄ andZhou and Suri [215℄. It will be useful to reall some of their results. For a set P of
n objets in d−dimensional spae, the following ratio was onsidered(9.3.1) ρ (P) =

Kb (P)

n+Ko (P)where Kb (P) denotes the number of interseting bounding boxes, and Ko (P) or-responds to the number of atual intersetions among the objets. Formula (9.3.1)desribes the e�ieny of the bounding box heuristi. The number of objets nadded in the denominator allows to onsider also the ase when Ko = 0. At thesame time O (n+K0) orresponds to the omplexity of an optimal algorithm �nd-ing all intersetions between the n objets. If ρ (P) is a small onstant, then onean onlude that the bounding box heuristi performs well, i.e. the overhead of�titious overlap reports is small. Although it is not hard to piture a situationwhere ρ (P) = O (n) (e.g. Figure 9.3.2), it generally orresponds to some patho-logial shapes arranged in a rather speial way. After all, in the urrent ase, thebounding boxes enlose the onvex surfae elements and thus, it is not possible toend up with a on�guration similar to the one in Figure 9.3.2. In [201, 215℄ theobjet shapes are haraterised by their aspet ratio and sale fator. For an objet
P , its aspet ratio is de�ned as(9.3.2) α (P ) =

vol (b (P ))vol (c (P ))
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Figure 9.3.2. Example of objets shapes where Kb = O

(

n2
) and

K0 = O (1).where b (P ) and c (P ) are respetively the enlosing box and the ore of P. The en-losing box is de�ned as the smallest L∞ ball (or simply, a smallest box) ontaining
P . Core on the other hand, is the largest L∞ ball ontained in P . The aspet ratioof the set P reads(9.3.3) α (P) = max

i
α (Pi)while the average aspet ratio for the set P is de�ned as(9.3.4) αavg (P) =

1

n

n
∑

i=1

α (Pi)It is lear that the aspet ratio measures the elongation of an objet. The aspetratio of the set from Figure 9.3.2 is high. The sale fator measures the disparityof objet sizes. It is de�ned then for the set P as(9.3.5) σ (P) = max
i,j

vol (b (Pi))vol (b (Pj))The di�erene between the smallest and the largest enlosing box in Figure 9.3.2is relatively large. Hene, one an see that the large aspet ratio and so the salefator of the objets in Figure 9.3.2 notably ontribute to the possibility of anarrangement resulting in ρ (P) = O (n).In the hronologially �rst paper [201℄, Suri et al. analyse the ratio (9.3.1) interms of the maximal bounds (9.3.3) and (9.3.5). The following theorem is quotedwithout proofTheorem 9.3.1. Let P be a set of objets in d dimensions, with aspet bound αand sale fator σ, where d is a onstant. Then, ρ = O
(

α
√
σ log2 σ

). Asymptoti-ally, this bound is almost tight, as we an show a family P ahieving ρ = Ω (α
√
σ).Thus, if α and σ are small onstants, there holds Kb = O (Ko) +O (n), whihshows that the number of box overlaps does not grow faster than the number ofatual objet intersetions (plus an extra O (n) fator, related to the work thatanyhow has to be done if n objets are to be examined). In many pratial appli-ations α, σ are small onstants. Eventually, objets an be subdivided in order toredue α and σ, whih should inrease the e�etiveness of the heuristi. Note, thatthe aspet ratio a�ets the result in a greater degree than the sale fator.The lower bound ρ =Ω (α

√
σ), desribed in Theorem 9.3.1, is indeed quite tightfor small σ. The authors onstrut a rather peuliar family of non-onvex objets inorder to exemplify it. The bound will not be reahed in our setting, where onvexelements are enlosed by the boxes. In [215℄, Zhou and Suri manage to improve



9.3. FINDING CONTACT CANDIDATES 93the upper bound, whih together with the already mentioned lower bound allowsto re�ne Theorem 9.3.1 into the followingTheorem 9.3.2. Let P be a set of n objets in d dimensions, where eah objethas aspet ratio at most α and the family has the sale fator σ, where d is aonstant. Then ρ (P) = Θ (α
√
σ).In the same paper [215℄, the value of ρ is estimated with respet to the averageaspet ratio αavg. The following result is proven.Theorem 9.3.3. Let P be a set of n objets in d dimensions , with the aver-age aspet ratio αavg and the sale fator σ, where d is onstant. Then ρ (P) =

Θ
(

α
2/3
avgσ1/3n1/3

).It is seen, that if only the average aspet ratio is bounded (rather than themaximal one), a somewhat less optimisti estimate of the performane is ahieved.Nevertheless, n1/3 grows slowly and still - a relatively good performane is expeted.Proofs of all of the above theorems are too long and tehnial to be inluded.However, it is fair to say that the tehniques applied in [201, 215℄ seem potentiallyappliable in the analysis of other geometrial algorithms.In the ontext of the results brought up in the above, it is relevant to mentionthe paper by de Berg et al. [54℄, where the idea of realisti input models is disussed.The authors notie, that the worst-ase performane of geometri algorithms oftenorresponds to some ill-onditioned and quite unlikely on�gurations of objets(Figure 9.3.2). By formalisation of the shape and arrangement harateristis, amore realisti analysis beomes possible (e.g. introdution of the aspet ratio andthe sale fator led to the pratial bounds on ρ). The following notion de�ned in[54℄ will be of use in our ase.Definition 9.3.4. Let P = {P1, ..., Pn} be a set of d−dimensional objets, andlet λ ≥ 1 be a parameter. We say that P is λ−low-density if for any L∞ ball B, thenumber of objets Pi ∈ P with radius (b (Pi)) ≥ radius (B) that interset B is atmost λ. The density of P is de�ned as the smallest λ for whih P is λ−low-density.9.3.1.1. Remarks on �nding overlaps. The above disussion allows to onludemerely, that the axis aligned boxes are useful. The potential of this observationdepends however on the availability of an e�ient algorithm for the box inter-setion problem. Several results an be found in the literature in this respet.A two-dimensional version of the problem was solved by Six and Wood [192℄ in
O (n logn+ k) time and O (n logn) spae, where n is the number of boxes and k isthe number of intersetions. The fastest d−dimensional result is due to Edelsbrun-ner and Maurer [64℄ and Edelsbrunner [65, 66℄, where O (n logd−1 n+ k

) time and
O
(

n logd−2 n
) spae was used. Nonetheless, the algorithm is too ompliated to bepratial for d > 2. Edelsbrunner and Overmars [67℄ disuss a bathed version ofthe intersetion problem, enjoying an optimal O (n logd−1 n+ k

) time and O (n)spae omplexity. Zomorodian and Edelsbrunner [216℄ give a fast and pratialre�nement of this approah, to be disussed in Setion 9.3.4.The brief review of the state of the art allows to onlude, that the algorithmdisussed in Setion 9.2 is not attainable in general. Hene, when none previoussolution is known, the intersetion searh has to take at least O (n log2 n+ k
) time.For the onseutive runs though, one hopes to redue the runtime by exploiting thetime oherene.9.3.1.2. Bounding box data type. Let the following tuple (d, lo, hi) desribe theaxis aligned bounding box. The members of the tuple are respetively: d pointing



9.3. FINDING CONTACT CANDIDATES 94Figure 9.3.3. Reiproate positions of two interseting intervals.to an arbitrary data, lo [·] being a table of three low orner oordinates, and hi [·]being a table of three high orner oordinates.9.3.2. 1D interval overlap. The following two obvious fats are looselyquoted after [216℄Fat 9.3.5. Two boxes interset if and only if they interset in every dimensionindependently. Hene, it is enough to onsider intersetion of one-dimensionalintervals.Fat 9.3.6. Two intervals interset if and only if one ontains the low endpointof the other. There are four general positions of two interseting intervals (Figure9.3.3).Solving the interval overlap problem is then an essential step on the way towardsthe three-dimensional box intersetion. Three stati methods and one dynami willbe disussed for that purpose. A stati algorithm takes as an input the ompleteset of intervals, and outputs the overlapping pairs. A dynami algorithm bases ona data struture failitating insertions, deletions as well as the overlap queries.9.3.2.1. Sanning (stati). If only we would live in a one-dimensional universe,sanning would have been the single best approah to the box overlap problem. Leta list l store as data the box tuples de�ned in Setion 9.3.1.2. De�ne the followingomparison for a pair u, v of box tuples(9.3.6) u < v i�u.lo [d] < v.lo [d] ∨ (u.lo [d] = v.lo [d] ∧ u.d < v.d)
u = v i�u.lo [d] = v.lo [d] ∧ u.d = v.d

u > v otherwise.where 1 ≤ d ≤ 3 is a onstant. The following algorithm performs sanning andreports the overlapping interval pairs.Algorithm 9.3.7. One_Way_San (l, d, tc, δ, Report)1 if tc > 0 then List_Insertion_Sort (l)2 else List_Merge_Sort (l)3 while l 6= nil4 for u = l.n while u 6= nil ∧ u.d.lo [d] < l.d.hi [d] do Report (δ, l.d, u.d)5 l = l.n6 end whileThe �rst argument l of Algorithm 9.3.7 is the list of boxes. The seond argu-ment d is the dimension along whih the box indued intervals should be sanned.The third argument tc is a �ag indiating whether the time oherent run is to beexeuted (tc > 0). The fourth and �fth arguments are an arbitrary data δ of theoverlap report allbak routine Report, and the routine itself. In the �rst line, ifthe time oherene is on, the insertion sort is performed, using the box tuple om-parison de�ned in (9.3.6). Otherwise, the merge sort is employed (line 2). In thenext stage, a loop over the sorted elements of l is exeuted (lines 3-6). As intervalsare sorted aording to their low endpoints, it is now easy to �nd and report alloverlapping pairs by exploiting Fat 9.3.6 (line 4). Sanning is illustrated in Figure9.3.4.If tc ≤ 0, the runtime of Algorithm 9.3.7 is O (n logn+ k), where n is thenumber of objets and k is the number of interval intersetions. It should be noted
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Figure 9.3.4. An idea of sanning. The dashed line orrespondsto the overlap reports in line 4 of Algorithm 9.3.7.that only the box intersetions along the dth dimension are reported, whih leavesthe remaining two dimensions unveri�ed. Hene k ≥ kbox, where kbox is the numberof atual intersetions between the boxes. In pratie k ≫ kbox for large n, whihrenders the sanning quite ine�etive as the box overlap solver on large data sets.If time oherene an be enabled (the list is almost sorted), the runtime redues to

O (n+ k). Sanning is then ideally ompliant to the speedup indued by the timeoherene.9.3.2.2. Using segment tree (stati). Due to Fat 9.3.6, the interval overlapproblem an be formulated as the stabbing query problem (Problem 9.1.25). Inorder to �nd all interval overlaps it is enough to identify the pairs (interval, lowendpoint), where the low endpoint stabs the interval. Thus, one an build a segmenttree on a given set of intervals, and query it with the set of low endpoints. Buildingthe tree takes O (n logn) time and spae. This, together with its logarithmi querytime, results in the O (n logn+ k) runtime for the interval overlap problem. Theadvantage of the time oherene is limited in this ontext. Although one ouldargue, that the segment tree an be rebuilt in O (n) time if the intervals werealmost sorted, the neessity of performing n queries taking O (logn) time eah isnot removed.9.3.2.3. Spatial hashing (stati). Although it is not the best idea, also hashingan be applied to the interval intersetion problem. A number of elementary fea-tures of the spatial hashing an be illustrated on a one dimensional example - thisis why the tehnique is outlined here. Let f (i) be a hashing funtion from the setof all integer numbers Z onto the set {1, 2, ...,m}. That is(9.3.7) f : Z → {1, 2, ...,m}An example of suh funtion is f (i) = i · c (mod m), where c is typially a largeprime integer [203℄. Let a funtion g : R → Z surjetively map real numbers ontothe integer numbers in the following way(9.3.8) g (x, s) =
⌊x

s

⌋where s the so alled voxel size, and ⌊·⌋ extrats the largest integer, not greaterthan its argument. Let h [·] be a hash table of size m, let 1 ≤ d ≤ 3 and b be thebox tuple, de�ned in Setion 9.3.1.2. One an now de�ne the following insertionroutineAlgorithm 9.3.8. Hash_1D_Insert (h, s, d, b)1 i = g (b.lo [d] , s) , j = g (b.hi [d] , s)2 while i ≤ j3 List_Insert (h [f (i)] , b)4 i = i+ 15 end whileIn the �rst line above the (i, j) limits of the box projetion along the d−axisare found. Then all of the k−indexed ells, i ≤ k ≤ j, are hashed into the table
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h [·] in line 3. Hene, the box pointer b is plaed in the hash lists ranging from h [i]to h [j]. Realling the disussion from Setion 9.1.4, the e�ieny of the hash tabledepends on the average length of those lists. The shorter, the better. Negletingthe in�uene of the hash funtion, it is readily seen that the voxel size s seriouslya�ets the length of lists stored in h [·]. If s → ∞, there will be at most two longlists, one for the negative and one for the positive oordinates. On the other hand,
s → 0 results in j − i → ∞ and due to the �nite size of h [·] eah interval will bestored in eah entry of the hash table. In between of those two extremes, there isan optimal size of the voxel. Let li = bi.hi [d]− bi.lo [d] be the length of the intervalassoiated with box bi. It is always fair to demand that ∑ (j − i) = O (n) in the�rst line of Algorithm 9.3.8, where the sum is taken over all inserted boxes. Thisresults from a simple observation, that the overlap searh algorithm should not takemore then O (n) time to examine all of the inserted items. Hene ∑ li/s = O (n),whih immediately leads to(9.3.9) s = O

(

n
∑

i=1

li
n

)being quite obviously the average interval length. This simple result was on�rmedexperimentally by Teshner et al. [203℄. A more omprehensive analysis has beeninluded in Setion 9.3.3.3. Figure 9.3.5 illustrates an exemplary outome of theone-dimensional hashing.One the intervals have been inserted into the hash table, the overlap detetionan be performed. The following simple algorithm an be employedAlgorithm 9.3.9. Hash_1D_Detet (h,m, d, δ, Report)1 for i = 1 while i ≤ m do2 One_Way_San (h [i] , d, 0, δ, Report)3 end forAlgorithm 9.3.9 employs sanning for eah of the hash lists (line 2). If the voxelsize has been seleted aording to (9.3.9), then the total length of lists∑i |h [i]| =
O (n). Note that tc = 0 and the merge sort for eah list takes O (|h [i]| log |h [i]|).Further, ∑i |h [i]| log |h [i]| ≤ n logn, so that the total ost of sorting the partiallists is O (n logn). The fat that overlapping intervals an be hashed into severaldistint lists (Figure 9.3.5), results in the possibility of multiple intersetion reportsfor the same pair of intervals. The repeated reports ought to be suppressed, whendeteting the overlaps. This requires an additional omputational e�ort, and henethe spatial hashing has no advantage over sanning in one dimension. A onvenientway of avoiding the repeated reports will be detailed in Setion 9.3.5.Due to the ation of the hashing funtion (9.3.7), an interval travelling over ad-jaent voxels an be mapped into arbitrary entries of the hash table. The ohereneof hash lists is thus not preserved and the advantage of it annot be taken.
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Figure 9.3.6. Intervals mapped into two-dimensional points andthe related priority-searh tree struture.9.3.2.4. Using priority searh tree (dynami). There exists a urious mappingbetween the one-dimensional intervals and the two-dimensional points, making itpossible to apply the priority-searh tree as the solver to the dynami intervaloverlap problem [184℄. This is illustrated in Figure 9.3.6. Consider a set of intervals
[loi, hii], i = 1, 2, ..., n. It is easy to notie, that an interval [loj , hij] intersets
[loi, hii] if and only if(9.3.10) hii > loj ∧ loi < hijNote symmetry with respet to i and j. One an rewrite (9.3.10) as(9.3.11) hii > loj ∧ −loi > −hijwhih implies, that the hange of oordinates(9.3.12) {

xi = hii
yi = −loi

{

x0j = loj

y0j = −hijallows to formulate the interval intersetion problem as the two-sided range queryProblem 9.1.13. The priority searh tree, introdued in Setion 9.1.7, solves Prob-lem 9.1.13 and hene the dynami interval intersetion problem in optimal spaeand time. The following three routines make use of (9.3.12) and employ intervalsrelated to d−projetions of bounding boxes.Algorithm 9.3.10. Pst_1D_Insert (t, d, b)1 Pst_Insert (t, b.hi [d] ,−b.lo [d] , b)



9.3. FINDING CONTACT CANDIDATES 98Algorithm 9.3.11. Pst_1D_Delete (t, d, b)1 Pst_Delete (t, b.hi [d] ,−b.lo [d] , b)Algorithm 9.3.12. Pst_1D_Query (t, d, b, δ, Report)1 Pst_Query (t, b.lo [d] ,−b.hi [d] , δ, Report)Having a priority searh tree t, one an then insert and delete intervals in
O (logn) time (Algorithms 9.3.10 and 9.3.11). At any time it possible to �nd alloverlaps between a given interval and all intervals stored in t in O (logn+ k) time(Algorithm 9.3.12).9.3.3. 2D retangle overlap. A stati retangle intersetion algorithm isoutlined �rst. This will not be of diret use in the three-dimensional framework.Nevertheless, it allows to visualise a general omputational tehnique known as linesweeping. A dynami retangle intersetion problem is solved next. Four di�erentvariants of the dynami data struture are investigated for that purpose. Theyare employed later in Setion 9.3.6, where the sweeping algorithm is developed inthree-dimensions.9.3.3.1. Line-sweep algorithm. Sweeping is one of the lassial tehniques inomputational geometry. Some exemplary developments related to general inter-setion problems in the plane inlude [24, 159, 63℄. As already mentioned, Sixand Wood [192℄ give an O (n logn+ k) time and O (n logn) spae algorithm forreporting k overlaps between n planar, axis-aligned retangles. Few years laterMCreight [148℄ de�ned the priority searh tree struture and redued the spaeomplexity of the overlap detetion algorithm to the optimal O (n).Let an auxiliary tuple (b, t, x) store the bounding box pointer b, the type t ∈
{low, high}, and the oordinate x. Let u = (b, t, x) be alled an endpoint. Let u, vbe of type (b, t, x), and the omparison of endpoints read(9.3.13) u < v i�u.x < v.x ∨ (u.x = v.x ∧ u.b.d < v.b.d)

u = v i� u.x = v.x ∧ u.b.d = v.b.d
u > v otherwise.Let l be a list all low and high endpoints of bounding boxes, that is a list made ofthe ompound tuples ((b, t, x) , p, n). Consider the set of related boxes in the i× jplane, where 1 ≤ i 6= j ≤ 3. MCreight's approah an now be summarised in thefollowingAlgorithm 9.3.13. Sweep_2D (l, i, j, tc, δ, Report)1 for u = l while u 6= nil do2 if u.d.t = low then u.d.x = u.d.b.lo [i]3 else u.d.x = u.d.b.hi [i]4 end for5 if tc > 0 then List_Insertion_Sort (l)6 else List_Merge_Sort (l)7 t = nil8 while l 6= nil9 if l.d.t = low then10 δ.b = l.d.b11 Pst_1D_Query (t, j, l.d.b, δ, Report)12 Pst_1D_Insert (t, j, l.d.b)13 else14 Pst_1D_Delete (t, j, l.d.b)15 end if16 l = l.n



9.3. FINDING CONTACT CANDIDATES 99
Figure 9.3.7. An example of the line-sweep approah. Two ret-angles interset the sweep line. The middle, blak retangle will beonsidered next and its overlaps with the green and purple retan-gles will be deteted.17 end whileIn lines 1-4 above, the i−dimension aligned endpoints are updated to the ur-rent values of the relevant box oordinates. Then, in lines 5 and 6, either theinsertion or the merge sorting is performed, where omparison (9.3.13) is in use.An empty priority searh tree is initialised in line 7. Next, a loop over all endpointsis exeuted (lines 8-17). If the low endpoint is enountered, the priority searh treeis queried with the j−dimension aligned extent of a box. All intersetions betweenthe box l.d.b and the boxes stored in t, whose j−dimension extents interset thoseof l.d.b, are reported (line 11). Then the interval is inserted into the tree (line12). In ase of the high endpoint, the interval is deleted from the tree (line 14).Note, that it is assumed that the auxiliary pointer δ has a vaant member pointer

δ.b, whih used in line 10, so that the Report allbak knows about the pairs ofoverlapping objets (being omposed of δ.b and of the seond argument of Report).To bring up into the piture the atual line and the sweeping proess, one shouldimagine a few axis aligned retangles sattered over a plane. Sweeping a vertialline from the far left to the right allows to aount for the retangles urrently beinginterseted by the line. Obviously, all of them must overlap along the horizontaldiretion. If one ould now solve the interval overlap problem in the remaining,vertial diretion - that would eventually reveal all pairs of overlapping retangles.Now, it is enough to move the line from one endpoint to the other, as only at thosepoints status hange happen. In Algorithm 9.3.13, the sweep-line is symboliallyrepresented by the urrent l.d.x oordinate (position of the vertial line), and bythe priority searh tree t (storing retangles urrently interseted by the line). If anew retangle is about to enter the line, one �rst looks for intersetions along thevertial diretion - this happens during the tree query in line 11. The retangle isthen simply inserted into the tree (line 12). As soon as its endpoint is reahed (thevertial plane does not interset it any more), it is removed from the tree t (line14). Figure 9.3.7 gives an additional illustration.The input list l has length 2n and its sorting takes O (n logn) time. Thetime oherene an be exploited and the list sort an eventually take O (n) steps.Nevertheless, the priority searh tree insertions/deletions and queries for all 2nendpoints an still respetively takeO (n logn) and O (n logn+ k) time in the worstase. One an thus only expet redution of the onstant fator in the O (·) notationin ase of oherene. Optimistially however, if boxes are not too densely paked,only a fration of them will be stored in t at a given moment. Then, in ase ofoherene, the expeted runtime would be O (n logm+ k), where m ≤ n.



9.3. FINDING CONTACT CANDIDATES 1009.3.3.2. Dynami retangle intersetion. Like in Setion 9.3.2.4, the objetiveis to �nd a data struture failitating insertions, deletions and queries orrespond-ing to the retangle overlap problem. Optimally, insertions and deletions shouldtake O (logn) time, while the overlap queries should take O (logn+ k) time. Un-fortunately, to the best of our knowledge, suh a struture has not yet been de-sribed. It seems that the losest result is due to Mortensen [157℄, where an
O (n logn/ log logn) spae struture is proposed. However, it an only be appliedindiretly, as it solves the dynami orthogonal segment intersetion problem. Fur-thermore, it is of purely theoretial interest, being too intriate for an implementa-tion. To omplement this example one should mention the paper by Samet [185℄,reviewing various retangle indexing tehniques. None of them is fully dynami inthe sense expeted here. Also the so alled box-trees, analysed by Agarwal et al.[4℄ are not dynami and have a rather pessimisti O (

√
n+ k) query time. Faingthe lak of a suitable struture, it remains to resort to an approximation. Fourvariants will be onsidered.Two-dimensional hashing . The hashing funtion (9.3.7) from Setion 9.3.2.3needs to be rede�ned as(9.3.14) f : Z × Z → {1, 2, ...,m}where a suitable example ould be f (i, j) = (i · c xor j · d) (mod m), where c, d arelarge primes [203℄. Assume also that the data pointed by the box tuple member

b.d, has a spare pointer member b.d.m. Now the insertion/query routine an bephrased asAlgorithm 9.3.14. Hash_2D_Insert (h, s, k0, k1, b, δ, Report)1 i0 = g (b.lo [k0] , s) , i1 = g (b.hi [k0] , s)2 j0 = g (b.lo [k1] , s) , j1 = g (b.hi [k1] , s)3 for i = i0 while i ≤ i1 do4 for j = j0 while j ≤ j0 do5 flag = 06 for l = h [f (i, j)] while l 6= nil do7 if l.d.b = b then flag = 1, l = nil8 else if l.d.m 6= b ∧ overlap (b, l.d, k0, k1) then9 Report (δ, b, l.d)10 l.d.m = b11 end if12 l = l.n13 end for14 if flag = 0 then15 b.m = nil16 List_Insert (h [f (i, j)] , b)17 end if18 j = j + 119 end for20 i = i+ 121 end forIn the �rst two lines of Algorithm 9.3.14 the voxel index ranges (i0, i1) and
(j0, j1) are determined. The k0 × k1-retangle of box b is overed by the voxels
(i, j) ∈ (i0, i1) × (j0, j1). The double loop from lines 3,4 till 19, 21 iterates over allindies from that overing. The hash list orresponding to eah h [f (i, j)] is tra-versed in lines 6-13. If the box was already stored in the list, the loop is terminatedand a flag set up (line 7). Note, that due to the way items are inserted into the list



9.3. FINDING CONTACT CANDIDATES 101(Algorithm 9.1.4), b must have bean stored at the head element of the list. Hene,lines 8-10 ould not be exeuted if l.d.b = b. Otherwise, the retangles stored inthe list are heked for not being marked (l.d.m 6= b), and eventually overlaps with
b are reported (line 8). Before the overlap report between b and l.d, the box storedat l is marked in line 9. Marking allows to avoid repeated reports, when the samepairs of boxes oupy di�erent hash lists. In ase box b was not found in the urrenthash list (line 14), it is inserted into the list (line 16). Just before that, its markerpointer is set to nil (line 15), whih ensures the orretness of marking. A muhsimpler deletion algorithm is given below. No omments seem neessary.Algorithm 9.3.15. Hash_2D_Delete (h, s, k0, k1, b)1 i0 = g (b.lo [k0] , s) , i1 = g (b.hi [k0] , s)2 j0 = g (b.lo [k1] , s) , j1 = g (b.hi [k1] , s)3 for i = i0 while i ≤ i1 do4 for j = j0 while j ≤ j0 do5 List_Delete (h [f (i, j)] , b)6 j = j + 17 end for8 i = i+ 19 end forTwo-dimensional hashing and priority searh tree. This variant is similar tothe previous one in that respet, that it still utilises the two-dimensional hashing.The di�erene is, that instead of the hash lists, the priority searh trees are usedat the h [·] entries of the hash table. This allows for a more intelligent �ltering ofoverlaps (ompared with Algorithm 9.3.14) and should improve e�ieny for densedata sets. More omments will follow in Setion 9.3.3.3. As the priority searh treequery will be exploited, the following auxiliary allbak needs to be de�ned.Algorithm 9.3.16. Aux_Pst_Callbak (α, b)1 if b.d.m = α.b then return2 else if b.hi [α.i] ≤ α.b.lo [α.i] ∨ b.lo [α.i] ≥ α.b.hi [α.i] then return3 α.Report (α.δ, α.b, b)4 b.d.m = α.bIn the above α = (i, b, δ, Report), where 1 ≤ i ≤ 3, b is a box pointer, δ is aallbak data pointer, and Report is the external allbak routine. Note that thepriority searh tree allbak used in Algorithm 9.1.23 naturally used two arguments,while for reporting overlap pairs the allbak in line 3 uses three arguments. Theseare of ourse only tehnial details, of quite minor importane. We an now de�nethe suitable insertion/query routine.Algorithm 9.3.17. Hash_2D_Pst_Insert (h, s, k0, k1, b, δ, Report)1 i0 = g (b.lo [k0] , s) , i1 = g (b.hi [k0] , s)2 j0 = g (b.lo [k1] , s) , j1 = g (b.hi [k1] , s)3 for i = i0 while i ≤ i1 do4 for j = j0 while j ≤ j0 do5 Pst_1D_Query (h [f (i, j)] , k0, b, (k1, b, δ, Report) , Aux_Pst_Callback)6 Pst_1D_Insert (h [f (i, j)] , k0, b)7 j = j + 18 end for9 i = i+ 110 end forFor eah (i, j) voxel overing the k0 × k1 retangle of box b, the prioritysearh tree stored at the hash table element h [f (i, j)] is �rst queried with the
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k0−aligned interval (line 5, the hoie of k0 is arbitrary). Then the interval is in-serted into the tree (line 6). Note that the tuple (k1, b, δ, Report) and the allbak
Aux_Pst_Callback are passed to the tree query routine in line 5. Then, if the
k0−dimension aligned intervals overlap, the auxiliary Algorithm 9.3.16 heks ifthis is not a repeated report (line 1), followed by the overlap test in k1−dimension(line 2). If the k1−dimensional intervals overlap and this is the �rst report, it isfurther reported in line 3, whih is followed by marking the box stored in the tree(line 4), so that the repeated reports are avoided. Again, the deletion routine issimple and requires no omments.Algorithm 9.3.18. Hash_2D_Pst_Delete (h, s, k0, k1, b)1 i0 = g (b.lo [k0] , s) , i1 = g (b.hi [k0] , s)2 j0 = g (b.lo [k1] , s) , j1 = g (b.hi [k1] , s)3 for i = i0 while i ≤ i1 do4 for j = j0 while j ≤ j0 do5 Pst_1D_Delete (h [f (i, j)] , k0, b)6 j = j + 17 end for8 i = i+ 19 end forOne-dimensional hashing and priority searh tree. The approah from the pre-vious paragraph might still appear somewhat exaggerated. After all, the prioritysearh tree works optimally in one dimension and it does not seem to need theadditional granularity of the two-dimensional hashing. Hene, one an hash thespae along one dimension and use the tree along the other diretion. The resul-tant ode is an obvious simpli�ation of Algorithms 9.3.17 and 9.3.18. It is givenbelow without further omments.Algorithm 9.3.19. Hash_1D_Pst_Insert (h, s, j, k, b, δ, Report)1 i0 = g (b.lo [j] , s) , i1 = g (b.hi [j] , s)2 for i = i0 while i ≤ i1 do3 Pst_1D_Query (h [f (i)] , j, b, (k, b, δ, Report) , Aux_Pst_Callback)4 Pst_1D_Insert (h [f (i)] , j, b)5 i = i+ 16 end forAlgorithm 9.3.20. Hash_1D_Pst_Delete (h, s, j, b)1 i0 = g (b.lo [j] , s) , i1 = g (b.hi [j] , s)2 for i = i0 while i ≤ i1 do3 Pst_1D_Delete (h [f (i)] , j, b)4 i = i+ 15 end forPriority searh tree only . It remains to employ the priority searh tree as thesole �ltering strategy. This is obviously an abuse of its original purpose, althoughit will be nevertheless interesting to investigate the e�ieny of this approah alongwith the previous ones. This however has to wait until Chapter 13. The suitableinsertion/query and deletion routines are now the simpli�ations of Algorithms9.3.19 and 9.3.20. They readAlgorithm 9.3.21. Pst_2D_Insert (t, j, k, b, δ, Report)1 Pst_1D_Query (t, j, b, (k, b, δ, Report) , Aux_Pst_Callback)2 Pst_1D_Insert (t, j, b)Algorithm 9.3.22. Pst_2D_Delete (t, j, b)1 Pst_1D_Delete (t, j, b)
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Figure 9.3.8. Four approximations of the dynami retangle in-tersetion struture.Common interfae. Let us de�ne a tuple (h, t), where h is a hash table, and tis a priority searh tree. This will be brie�y alled the dynami retangle struture.Assume that α ∈ {H2D,H2DPST,H1DPST, PST 2D} is a onstant, and let v =
(h, t). It is onvenient to de�ne the following ommon interfae for all four variantsof the dynami retangle struture. The four variants of the struture have beenvisualised in Figure 9.3.8.Algorithm 9.3.23. Dynret_Insert (α, v, s, i, j, b, δ, Report)1 if α = H2D then Hash_2D_Insert (v.h, s, i, j, b, δ, Report)2 else if α = H2DPST then Hash_2D_Pst_Insert (v.h, s, i, j, b, δ, Report)3 else if α = H1DPST then Hash_1D_Pst_Insert (v.h, s, i, j, b, δ, Report)4 else if α = PST 2D then Pst_2D_Insert (v.t, i, j, b, δ, Report)Algorithm 9.3.24. Dynret_Delete (α, v, s, i, j, b)1 if α = H2D then Hash_2D_Delete (v.h, s, i, j, b)2 else if α = H2DPST then Hash_2D_Pst_Delete (v.h, s, i, j, b)3 else if α = H1DPST then Hash_1D_Pst_Delete (v.h, s, i, b)4 else if α = PST 2D then Pst_2D_Delete (v.t, i, b)9.3.3.3. Analysis of the dynami retangle struture. It is not di�ult to givethe quite pessimisti, worst ase performane estimates of the dynami retanglestruture. Assuming that, among others, there is a hash table entry into whih allof the n boxes will be mapped, one an readily obtain the bounds listed in Table 1.Nevertheless, upon a more areful study of relations between the shape of bodies,the density of their paking and the voxel size, signi�antly more realisti boundsan be obtained.It should be noted, that the performane of the dynami retangle strutureought to be invariant with respet to rigid rotations of spae. This is why a uniformvoxel size s is employed along all spatial dimensions.
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H2D H2DPST , H1DPST , PST 2DInsertion/query O
(

n2 + q
)

O (logn+ q)Deletion O (n) O (logn)Spae O (n) O (n)Table 1. Worst ase omplexity of insertion/query and deletionfor the dynami retangle struture. The number of pairs that needto be heked for intersetions is q = Ω (k), whih aounts for theneessity of avoiding repeated reports (k is the atual number ofbox intersetions).Reall the terminology introdued in Setion 9.3.1. Let P = {P1, P2, ..., Pn} bea set of objets, ci be the ore of Pi, and bi be the enlosing box of Pi. Two waysof alulating s will be investigated(9.3.15) s =

(

n
∑

i=1

vol (bi)
n

)1/dand(9.3.16) s =

(

n
∑

i=1

vol (bi)1/d

n

)where d is the dimension of spae. The following fat is useful to start up.Lemma 9.3.25. Assume, that P is λ−low-density. If σ is the sale fator of
P, and eah objet in P has aspet ratio at most α, then the number of objetintersetions is O (σλn), while the number of box intersetions is k = O

(

ασ3/2λn
).Proof. There holds vol (bi) ≤ σvol (bj). Let j = arg mini vol (bi). Eah objetan be overed by at most O (σ) translations of bj . Eah suh box an intersetat most λ objets and hene eah objet intersets at most O (σλ) others. Taking

Ko = O (σλn) in Theorem 9.3.2 gives k = O
(

ασ3/2λn
)

.
�Let α, σ, λ ≪ n be small onstants. Then Lemma 9.3.25 implies that k = O

(

n2
)intersetions annot our. If the hash table has size m = O (n) and the hashingfuntion has property (9.1.3), the worst ase omplexity orresponds to the denseluster senario, depited in Figure 9.3.9.Let us notie, that the axis aligned bounding box of objet Pi is always on-tained within the enlosing box bi. Thus, arguing about the enlosing boxes is moreonservative than arguing about the bounding boxes.

Figure 9.3.9. A dense luster.



9.3. FINDING CONTACT CANDIDATES 105Take any d−dimensional s × s × ... × s ube u (L∞ ball of radius s), suhthat s ≥ mini radius (bi). Then vol (bi) ≤ σsd and radius (bi) ≤ σ1/ds. Hene, allof the boxes that an interset u lay inside of the u−entred L∞ ball v of radius
(

1 + 2σ1/d
)

s. One an rewrite (9.3.15) as(9.3.17) ∑

i∈IN(v)

vol (bi) +
∑

j∈OUT (v)

vol (bj) = sdnwhere(9.3.18) IN (v) = {i : bi ⊂ v}(9.3.19) OUT (u) = {1, 2, ..., n} \ IN (u)The following result will be of use.Lemma 9.3.26. There holds ∑i∈IN(v) vol (bi) = O
(

ασλsd
).Proof. Consider bi : i ∈ IN (v). Let us split v regularly into sub-volumes

vj as long as there is no bi, suh that radius (bi) > radius (vj). Eah vj over-laps λj ≤ λ objets Pi. Sine vol (bi) ≤ αvol (ci) and vol (ci) ≤ vol (Pi), therefollows ∑i∈IN(v) vol (bi) ≤ α
∑

i∈IN(v) vol (Pi) ≤ α
∑

j vol (vj)λj ≤ vol (v)αλ =
(

1 + 2σ1/d
)d
sdαλ = O

(

ασλsd
). �Obviously, the maximal number of elements of the index set IN (v) orrespondsto the worst ase omplexity. For any i ∈ IN (v) and j ∈ OUT (v) there holdsvol (bj) ≤ σvol (bi), and thus(9.3.20) t times

∑any j∈OUT (v)

vol (bj) ≤ σ
t times
∑any i∈IN(v)

vol (bi)or spei�ally(9.3.21) l

n−l
∑

j

vol (bj) ≤ σ (n− l)

l
∑

i

vol (bi)hene(9.3.22) ∑

j∈OUT (v)

vol (bj) ≤ σ
n− l

l

∑

i∈IN(v)

vol (bi)where l = |IN (v)| is the number of elements of IN (v). Due to Lemma 9.3.26, thelast inequality an be summarised asLemma 9.3.27. There holds ∑j∈OUT (v) vol (bj) = O
(

ασ2λsd
)

n−l
l , where l =

|IN (v)|.Equation (9.3.17), together with Lemmas 9.3.26 and 9.3.27 state sdn = O
(

ασλsd
)

+

O
(

ασ2λsd
)

n−l
l . In both Os the hidden onstant is preisely 2d, whih allows toonlude that(9.3.23) l ≤ ασ2λn

2dn− ασλ + ασ2λ
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H2D H2DPST , H1DPST PST 2DInsertion/query O

(

α2σ5λ2 + q
)

O
(

σ log
(

ασ2λ
)

+ q
)

O (logn+ q)Deletion O
(

ασ3λ
)

O
(

σ log
(

ασ2λ
))

O (logn)Table 2. Re�ned omplexity of insertion/query and deletion forthe dynami retangle struture. The number of pairs that needto be heked for intersetions is q = Ω (k), whih aounts for theneessity of avoiding repeated reports (k is the atual number ofbox intersetions).For n→ ∞ the above results in(9.3.24) l = O
(

ασ2λ
)The following overall estimates an be made.Theorem 9.3.28. Let P = {P1, P2, ..., Pn} be a set of objets, ci be the oreof Pi, and bi be the enlosing box of Pi. Take s = (

∑n
i=1 vol (bi) /n)

1/d. Assume,that P is λ−low-density, σ is the sale fator of P, and eah objet in P has aspetratio at most α. Then, the number of axis aligned bounding boxes interseting anarbitrary s× s× ...× s ube is l = O
(

ασ2λ
), while eah box an interset at most

r = O (σ) disjoint s× s× ...× s ubes.Proof. The l−estimate follows from the reasoning that led to (9.3.24), ifonly one an show that (
∑n

i=1 vol (bi) /n)
1/d ≥ mini radius (bi). But this implies

∑n
i=1 vol (bi) /n ≥ mini vol (bi) and of ourse the average is greater or equal to theminimum. The r−estimate follows from the fat that maxivol (bi) /mini vol (bi) = σand sd ≥ mini vol (bi). �In order to derive similar estimates, for the ase when s is omputed aordingto formula (9.3.16), it is onvenient to assume that mini vol (bi) = 1. There is noloss of generality, as it only a hange of gauge is involved. Then(9.3.25) sn =

n
∑

i=1

vol (bi)1/d ≤
n
∑

i=1

vol (bi)and one an go along similar lines as before, in order to show that l = O
(

ασ2λsd−1
).At the same time 1 ≤ vol (bi) ≤ σ implies that 1 ≤ radius (bi) ≤ σ1/d and thus

s ≤ σ1/d. Hene l = O
(

ασ3−1/dλ
). The r−estimate is not a�eted.Table 2 summarises the re�ned omplexity estimates. Charateristially, dueto the assumed density, all of the hashing based variants of the struture haveoperation times independent of the number of retangles. Of ourse, these are stillthe worst ase estimates, but this time expressed in terms of α, σ and λ. Intuitivelythe operations that will take that long, orrespond to the largest and most distortedshapes. Due to its higher order presene, the sale fator σ plays the dominant role.In our ase, of onvex elements enlosed by boxes, the aspet ratio and densitywill usually be small onstants, and the e�ieny will be related to the disparitybetween the smallest and the largest element. In ase of a uniform mesh, therefollows α2σ5λ2 = O (1) and σ log
(

ασ2λ
)

= O (1), whih indiates high e�ieny.9.3.4. The referene approah. An exellent, fast and pratial algorithmfor the box overlap problem was given by Zomorodian and Edelsbrunner [216℄. Infat, it is fast enough to serve as the referene approah, against whih e�ieny



9.3. FINDING CONTACT CANDIDATES 107of the remaining developments is ompared. As already mentioned, the ore ideaof this approah has been given by Edelsbrunner and Overmars [67℄. It is basedon solving the bathed version of the box intersetion problem, that is, queryingsome data struture with all boxes simultaneously. This way, at any time, onlya part of the struture (being urrently visited by the boxes) needs to be kept inmemory. The tehnique is alled streaming, and allows to redue spae demands ofsome otherwise unpratial strutures.Setion 9.3.2.2 disusses an appliation of the segment tree (de�ned in Setion9.1.8) to the interval intersetion problem. Basially a segment tree is build on aset of intervals and the queried with the low endpoints of the intervals. Assuming Ito be the set of intervals and P to be the set of their low endpoints, one an applystreaming in the following wayAlgorithm 9.3.29. Stream_1D (I, P, lo, hi, δ, Report)1 if I = ∅ ∨ P = ∅ then return2 Im = {i ∈ I : [lo, hi) ⊆ i}3 for i ∈ Im, p ∈ P do Report (δ, i, p)4 mi =Approximate_Median (P, h (P ))5 Pl = {p ∈ P : p < mi}6 Il = {i ∈ I \ Im : i ∩ [lo,mi) 6= ∅}7 Stream_1D (Il, Pl, lo,mi, δ, Report)8 Pr = {p ∈ P : p ≥ mi}9 Ir = {i ∈ I \ Im : i ∩ [mi, hi) 6= ∅}10 Stream_1D (Ir, Pr,mi, hi, δ, Report)In order to report all interval overlaps one alls Stream_1D (I, P,−∞,∞, ...).In the seond line, the set Im of intervals stored at the urrent node of the segmenttree is onstruted. Note, that the urrent nodal interval is [lo, hi), and Im isomposed of all members of I that ontain it. A tree node is entered with the set ofpoints P belonging to the nodal interval, hene points from P belong to intervalsfrom Im. That is, intervals from Im and intervals orresponding to the points from
P overlap. This is reported in line 3. The segment tree onstrution proeeds in line4, where an approximate median of the point set is found. In [216℄ the algorithmproposed by Clarkson et al. [44℄ is employed. It readsAlgorithm 9.3.30. Approximate_Median (P, h)1 if h = 0 then return random (p ∈ P )2 return median-of-three (Approximate_Median (P, h− 1),3 Approximate_Median (P, h− 1),4 Approximate_Median (P, h− 1))so that a ternary random tree of height h is build reursively, where h (P ) =
O (log |P |). One the median mi has been omputed, in line 4 of Algorithm 9.3.29,points Pl on the left from it and intervals Il overlapping [lo,mi) are seleted (lines5, 6). The left sub-tree is then build reursively in line 7. One an see, that thereursion ontinues until Il 6= ∅ and Pl 6= ∅ (line 1). One the left sub-tree walkis exhausted, the right sub-tree is analogously visited on the way bak from theleft-reursion (lines 8-9). All this takes O (n logn+ k) time and O (n) spae.Assume now that the sets I of intervals and P of low endpoints orrespondto the d−projetions of boxes from a set A. The one-dimensional streaming ansolve the interval intersetion problem along any of d ∈ {1, 2, 3} dimensions. Thebasi insight allowing to solve the omplete problem, is that the overlap reports inline 3 of Algorithm 9.3.29 an be replaed by streaming segment trees along theremaining diretions. Hene the three-dimensional streaming would look like



9.3. FINDING CONTACT CANDIDATES 108Algorithm 9.3.31. Stream_3D (I, P, lo, hi, d, δ, Report)1 if I = ∅ ∨ P = ∅ then return2 Im = {i ∈ I : [lo, hi) ⊆ i}3 if d = 1 then for i ∈ Im, p ∈ P do Report (δ, i, p)4 else5 Stream_3D (Im, P,−∞,∞, d− 1, δ, Report)6 Stream_3D (P, Im,−∞,∞, d− 1, δ, Report)... Rewrite lines 4-10 of Algorithm 9.3.29... replaing �Stream_1D� with �Stream_3D�14 end ifCalling Stream_3D(A,A,−∞,∞, 3, ...) aounts for all of the box overlaps in
O
(

n log3 n+ k
) time and O (n) spae. It is impliitly assumed that for eah all,sets I, P orrespond to the d−projetions of boxes from A. As boxes related toelements of Im and P overlap along the diretion d, it remains to hek whetherthey overlap along the remaining diretions. Hene, the d−1 dimensional sub-treesare traversed in lines 5, 6 (interval and point roles need to be exhanged in orderto aount for all possible overlaps). Only if all of the sub-trees have been heked(d = 1) the box overlaps are reported (line 3).In [216℄ the authors notie that streaming the omplete segment tree is stilltoo expensive. Although the O (n log3 n+ k

) runtime seems satisfatory, the ostof reursive onstrution of the tree bears prohibitively high onstant fators. Ahybridisation tehnique based on one-dimensional sanning is proposed. Insteadof building the omplete tree, one the amount of objets drops below some uto�value c, sanning is performed. Similarly, the tree onstrution is eased at thelowest d = 1 level. Instead, again sanning is employed. The hybrid approahreadsAlgorithm 9.3.32. Hybrid_3D (I, P, lo, hi, d, δ, Report)1 if I = ∅ ∨ P = ∅ then return2 if d = 1 then OneWaySan (I, P, d, δ, Report)3 if |I| < c ∨ |P | < c then TwoWaySan (I, P, d, δ, Report)4 else5 Im = {i ∈ I : [lo, hi) ⊆ i}6 Hybrid_3D (Im, P,−∞,∞, d− 1, δ, Report)7 Hybrid_3D (P, Im,−∞,∞, d− 1, δ, Report)... Rewrite lines 4-10 of Algorithm 9.3.29... replaing �Stream_1D� with �Hybrid_3D�15 end ifThe proedure OneWaySan sorts intervals from I and points from P , andsans the intervals with the points (along the dimension 1) reporting all enounteredoverlaps (this happens at the lowest level of the tree, so that intersetions of intervalsand points from I and P indiate box overlaps). The proedure TwoWaySan alsosorts intervals from I and points from P along the dimension 1. It then performs asan onurrently interhanging the roles of points and intervals so that all possibleoverlaps of intervals are disovered. For eah suh overlap, the remaining 2, ..., doverlap heks need to be performed before a onlusive box overlap report an bemade.9.3.5. Spatial hashing. Spatial hashing has been already disussed in detailin Setions 9.3.2.3, 9.3.3.2 and 9.3.3.3. Hene, without repeating the basi har-ateristis of this tehnique, it is su�ient to speify a data struture, ompliantwith the interfae suggested in Setion 9.2. Let q = (s, d, frq, n, cur, out) store thesize of voxel s, the dimension of sanning d (let d = 0 for a newly reated q), the



9.3. FINDING CONTACT CANDIDATES 109frequeny frq ≥ 1 of updates of s, d, the number of stored boxes n, the list ofurrently stored boxes cur, and the list of boxes to be removed out. Let e be anelement pointer. The following simple insertion routine an be implemented.Algorithm 9.3.33. Hash_3D_Insert (q, e)1 adj = nil, lo = hi = [0, 0, 0]2 List_Insert (q.cur, ((e, adj) , lo, hi))3 q.n = q.n+ 14 return q.inThe �rst line initialises some auxiliary variables. In the seond line the q.curlist appended by the bounding box of element e. Note, that the data �eld of thebounding box stores the tuple (e, adj) omprising the element and an adjaenylist adj. The adjaeny list stores pointers to bounding boxes overlapping the boxof e. The insertion routine returns the head of the list, whih ontains the newlyinserted data. The pointer to this list item is then baked up by the aller, andreused for fast deletion. The deletion routine follows below.Algorithm 9.3.34. Hash_3D_Delete (q, i)1 List_Delete (q.cur, i)2 List_Insert (q.out, i.d)3 q.n = q.n− 1The pointer i above has been returned by the insertion Algorithm 9.3.33, andhene it an be diretly employed in the list deletion all (line 1). In the next line,the bounding box pointer orresponding to the deleted data (i.d) is being insertedinto the q.out list. This will be further exploited during an update, where all of theadjaent overlaps need to signalised as released. The update routine readsAlgorithm 9.3.35. Hash_3D_Update (q, δ, Created,Released)1 for v ∈ q.out do2 for w ∈ v.d.d.adj do3 Released (δ, v.d.d.e, w.d.d.e)4 List_Delete_Data (w.d.d.adj, v.d)5 end for6 end for7 q.out = nil8 for v ∈ q.cur do9 for w ∈ v.d.d.adj do10 if no-overlap (v.d, w.d) then11 Released (δ, v.d.d.e, w.d.d.e)12 List_Delete_Data (w.d.d.adj, v.d)13 List_Delete_Data (v.d.d.adj, w.d)14 end if15 end for16 update-box (v.d)17 end for18 if q.d = 0 ∨ random(q.frq) = 0 then19 q.s =
(

∑

v∈q.cur vol (b (v.d.d.e)) /q.n
)1/320 q.d = argmind∈{1,2,3}

[

maxv,w∈q.cur
v.d.hi[d]−v.d.lo[d]
w.d.hi[d]−w.d.lo[d]

]21 end if22 i = {1, 2, 3} \ q.d, j = {1, 2, 3} \ {q.d, i}, α = (i, j, δ, Created)23 h =hash-table (q.n)24 for v ∈ q.cur do



9.3. FINDING CONTACT CANDIDATES 11025 loi∈{1,2,3} = g (v.d.lo [i] , q.s) , hii∈{1,2,3} = g (v.d.hi [i] , q.s)26 for (i, j, k) ∈ [lo1, .., hi1] × [lo2, .., hi2] × [lo3, .., hi3] do27 List_Insert (h [f (i, j, k)] , v.d)28 end for29 end for30 for i = 1 while i ≤ q.n do31 One_Way_San (h [i] , q.d, 0, α, Aux_Hash_Callback)32 i = i+ 133 end forThe �rst seventeen lines of Algorithm 9.3.35 orrespond to the released overlapssearh. In the �rst plae (lines 1-6), all of the adjaent boxes pairs involving deletedelements are reported as released. The searh is ontinued through the remainingadjaent pairs (lines 7-17), and if an overlap release is found between previouslyinterseting boxes (line 10), it is reported and the adjaeny lists are updatedaordingly (lines 11-13). By this oasion boxes extents are updated in orderto bound the moving elements (line 16). In line 18, it is heked whether thespatial dimension q.d was initialised (by de�nition q.d = 0 initially), or if a randomnumber between 1 and q.frq has been drawn (the randomisation serves the purposeof minimising onstant fators of the algorithm, as frequent updates of q.s and q.dare not neessary in pratise). In any of those ases, the voxel size q.s is alulatedaording to formula (9.3.15) and the spatial dimension q.d is seleted. The hoie of
q.d is suh, that the q.d-dimensional sale fator of box related intervals is minimal.Aording to the analysis given in Setion 9.3.3.3, along this dimension the numberof voxels spanned by a single interval is minimal. In other words maximal hid− lod,omputed in line 25, is minimised. This in turn is expeted to inrease the e�ienyof sanning (line 31). In the meantime a tuple α = (i, j, δ, Created) is prepared inline 22. Note that i, j are the remaining dimensions (di�erent than q.d). An emptyhash table of size q.n is reated in line 23. In the loop between lines 24 and 29,funtions (9.3.8) and(9.3.26) f : Z × Z × Z → {1, 2, ..., q.n}are used in order to map the boxes into the hash table in the usual manner (Zis the set of integers). The hashing funtion employed here reads f (i, j, k) =
(i · a xor j · b xor k · c) (mod q.n), where a, b, c are large primes [203℄. Sanningalong the dth dimension is performed next (line 31) for all hash lists. The tempo-ral oherene is swithed o� (note, that the hash lists are reated anew for eahupdate).Pairs of boxes overlapping along the dimension q.d are reported to the aux-iliary Algorithm 9.3.36. There, the �rst two lines exeute simple rejetion testsorresponding to the intersetion along the remaining two dimensions. In line 3, itis heked whether the two boxes have not been already adjaent (the update rou-tine reports only newly reated overlaps). If this is not the ase, the newly reatedbox intersetion is reported (line 4). If the report allbak returns a positive ode,the overlap is reorder in the adjaeny lists (lines 5, 6). This leaves some �exibilityto the user, who supplies the report allbaks (if the return value is semi-negative,the box overlap will be redisovered the next time). For example, one might like towait until a pair of elements whose boxes overlap beomes lose enough, and leavethe job of suggesting this pair to the overlap update algorithm.Algorithm 9.3.36. Aux_Hash_Callbak (α, a, b)1 if a.hi [α.i] ≤ b.lo [α.i] ∨ a.lo [α.i] ≥ b.hi [α.i] then return2 else if a.hi [α.j] ≤ b.lo [α.j] ∨ a.lo [α.j] ≥ b.hi [α.j] then return



9.3. FINDING CONTACT CANDIDATES 111Hash_3DInsertion O (1)Deletion O (1)Update O (n logn+ q)Spae O (n)Table 3. Complexity of insertion, deletion and update for thethree-dimensional hashing. The number of attempted overlap re-ports is q = Ω (k), where k is the atual number of box interse-tions.3 else if List_Find_Data (a.d.adj, b) 6= nil then return4 if α.Created (α.δ, a.d.e, b.d.e) > 0 then5 List_Insert (a.d.adj, b)6 List_Insert (b.d.adj, a)7 end ifThe analysis of the above approah is quite straightforward. Spae omplexityis O (n), as the assumed voxel size (Algorithm 9.3.35, line 19) guarantees that allof the elements an be overed by O (n) voxels. Insertions and deletions obviouslytake O (1) time. As to the update, the �rst seventeen lines of Algorithm 9.3.35 take
O (n+ k) time, where k is the urrent number of box overlaps (there is O (k) itemsin the adjaeny lists). The lines 18-29 take O (n) time. Sorting hash lists inside ofthe san routine (line 31) takes(9.3.27) n

∑

i

mi log (mi) ≤
n
∑

i

mi log (n) = O (n logn)time, where mi is the length of ith hash list. The q overlap reports orrespond tothe q alls of the auxiliary Algorithm 9.3.36, whih takes onstant time, providedthe density of the element set is bounded (line 3, adjaeny searh). Repeated allsto the auxiliary routine are possible, so that q = Ω (k). In total the update takes
O (n logn+ q) time, where q = Ω (k). All this is summarised in Table 3.9.3.6. Plane-sweep approah. Three-dimensional sweeping is simply an ex-tension of the two-dimensional approah outlined in Setion 9.3.3.1. In the urrent

x

y

z

structure

dynamic rectangle

Figure 9.3.10. General idea of the three-dimensional plane sweeping.



9.3. FINDING CONTACT CANDIDATES 112ase, instead of using the sweep-line and the dynami interval intersetion struture,a sweep-plane and a dynami retangle intersetion struture are employed (Fig-ure 9.3.10). This is why the dynami retangle struture was developed in Setion9.3.3.2. As the general idea should be already lear, it remains to speify a datastruture, ompliant with the interfae suggested in Setion 9.2. Let an auxiliarytuple (b, t, x) store the bounding box pointer b, the type t ∈ {low, high}, and theoordinate x. Let u = (b, t, x) be alled an endpoint. Let u, v by of type (b, t, x),and the omparison of endpoints read(9.3.28) u < v i�u.x < v.x ∨ (u.x = v.x ∧ u.b.d < v.b.d)
u = v i� u.x = v.x ∧ u.b.d = v.b.d

u > v otherwise.Let q = (pts, alg, s, d, frq, n, cur, in, out) store respetively the list of endpoints pts,the dynami retangle algorithm type alg ∈ {H2D,H2DPST,H1DPST, PST 2D},the size s of the two-dimensional voxel, the dimension d of the axis orthogonal tothe sweep-plane (let d = 0 for a newly reated q), the integer frequeny frq ≥ 1of internal updates of s and d, the number of all stored boxes n, the list cur ofurrently stored boxes, the list of newly inserted boxes in, and the list of reentlydeleted boxes out. The element insertion routine readsAlgorithm 9.3.37. Sweep_3D_Insert (q, e)1 b =(nil, [0, 0, 0] , [0, 0, 0]), adj = nil2 l = (b, low, 0), h = (b, high, 0)3 b.d = (e, adj, l, h)4 List_Insert (q.in, b)5 q.n = q.n+ 16 return q.inA bounding box plaeholder and an empty adjaeny list are prepared in the�rst line above. Two new endpoints are the reated and linked with the box (line2). Finally box data is pointed at the tuple (e, adj, l, h), omposed of the elementpointer e, the list of boxes overlapping the bounding box of e, the low endpointpointer l, and the high endpoint pointer h. The box is inserted into the list in,and the newly reated list item is returned to the aller (in order to failitate fastdeletion). The deletion routine follows below.Algorithm 9.3.38. Sweep_3D_Delete (q, i)1 List_Delete (q.cur, i)2 List_Delete (q.pts, i.d.d.l)3 List_Delete (q.pts, i.d.d.h)4 List_Insert (q.out, i.d)5 q.n = q.n− 1The input pointer i orresponds to an element of the list q.cur (returned byAlgorithm 9.3.37). It is deleted from the list in the �rst line above. Next, in lines2 and 3, the endpoint pointers stored at the data tuple of the bounding box i.dare used to remove the endpoints from the list q.pts. The list item is sheduled for�nal deletion by plaing in the q.out list (line 4). This will be further used in theupdate routine, where the overlaps released due to the deletion will be reported.The update routine an be summarised as followsAlgorithm 9.3.39. Sweep_3D_Update (q, δ, Created,Released)... Repeat lines 1-17 of Algorithm 9.3.3518 t = nil19 for v ∈ q.in do



9.3. FINDING CONTACT CANDIDATES 11320 update-box (v.d)21 List_Insert (t, v.d.d.l)22 List_Insert (t, v.d.d.h)23 List_Insert (q.cur, v.d)24 end for25 q.in = nil26 d = q.d27 if d = 0 ∨ random(q.frq) = 0 then28 d =Aux_Sweep_Diretion (q.cur, q.n)29 q.s =
(

∑

v∈q.cur vol (b⊥d−dim (v.d.d.e)) /q.n
)1/230 end if31 for v ∈ q.cur do32 v.d.d.l.x = v.d.lo [q.d], v.d.d.h.x = v.d.hi [q.d]33 end for34 List_Merge_Sort (t)35 if q.d = d then List_Insertion_Sort (q.pts)36 else q.d = d, List_Merge_Sort (q.pts)37 u = q.pts, w = nil38 while t 6= nil do39 while u 6= nil ∧ u.d < t.d do40 if w 6= u.p then w.n = u, u.p = w41 w = u, u = u.n42 end while43 if w = nil then q.pts = t, t.p = nil44 else if w 6= t.p then w.n = t, t.p = w45 w = t, t = t.n46 end while44 i = {1, 2, 3} \ d, j = {1, 2, 3} \ {d, i}, α = (δ, Created)45 h =hash-table (q.n), dr = (h, nil)46 for u = q.pts while u 6= nil do47 if u.d.t = low then48 Dynret_Insert (q.alg, dr, q.s, i, j, u.d.b, α,Aux_Sweep_Callback)49 else50 Dynret_Delete (q.alg, dr, q.s, i, j, u.d.b)51 end if52 u = u.n53 end forThe �rst seventeen lines of Algorithm 9.3.39 are the same as in the ase of three-dimensional hashing. They orrespond to the released overlap detetion and hasbeen already ommented on. In lines 18-24 the newly inserted boxes are updatedand the list t of orresponding endpoints is reated. The new boxes are transferredto the list of urrent boxes (line 23), and their original list is emptied (line 25). Thesweep diretion q.d and the size of a two-dimensional voxel q.s are updated in lines26-30. This happens with a user spei�ed probability of 1/q.frq as frequent updatesare not pratial (on�guration of boxes does not hange muh from one update toanother). It should be noted that b⊥d−dim (·) denotes the two-dimensional enlosingbox in the plane orthogonal to the dth dimension (line 29). The oordinates in theendpoints list q.pts are updated in lines 31-33. Next, the list of newly reatedendpoints is sorted (without oherene, line 34). The list of old endpoints q.ptsis sorted using oherene, if only the sweep dimension q.d has not just hanged(line 35). Otherwise, the merge sort is employed (line 36). Comparison (9.3.28)



9.3. FINDING CONTACT CANDIDATES 114Sweep_3DInsertion O (1)Deletion O (1)Worst ase update O (n (logn+ β) +m logm+ q)Typial update O (βn+ q)Spae O (n)Table 4. Complexity of insertion, deletion and update for thethree-dimensional sweeping. The number of attempted overlap re-ports is q = Ω (k), where k is the atual number of box interse-tions. The oe�ient β ∈
{

α2σ5λ2, σ log
(

ασ2λ
)

, logn
} dependson the variant of the employed dynami retangle struture. Inte-ger m orresponds to the number of new element insertions, pre-eding the update.is employed in sorting routines from lines 34-36. In lines 37-46 the two lists t and

q.pts are merged in linear time (the ordering is preserved). In lines 44-53 the �nalplane-sweep is performed. The dynami retangle struture is used in order to solvethe two-dimensional sub-problem (lines 48, 50). The user spei�ed variant of thealgorithm is employed (q.alg). The auxiliary sweep allbak is neessary in orderto �lter out already adjaent box pairs. In the �rst line of Algorithm 9.3.40 theadjaeny based rejetion test is performed. The allbak routine follows exatlythe already disussed Algorithm 9.3.36.Algorithm 9.3.40. Aux_Sweep_Callbak (α, a, b)1 if List_Find_Data (a.d.adj, b) 6= nil then return2 if α.Created (α.δ, a.d.e, b.d.e) > 0 then3 List_Insert (a.d.adj, b)4 List_Insert (b.d.adj, a)5 end ifSome omments about the seletion of the sweep dimension are in plae here.One ould argue that the sweep should take plae along the diretion of the maximalone-dimensional sale fator. This would minimise the sale fator in the remainingtwo dimensions and hene improve the e�ieny of the dynami retangle struture.Nevertheless, it is easy to see that for a ase as simple as a set of uniform ubes thisriterion is not onlusive. The one-dimensional sale fators are equal, althoughone would preferably sweep along the most elongated dimension of the box set.In result, a smaller number of objets would be stored in the dynami retanglestruture at any time. Hene, the number of unneessary overlap heks wouldderease (the onstant in the q = Ω (k) notation would be smaller). Algorithm9.3.41 selets a dimension along whih, on average, the largest number of boxesan be paked. If the density of paking is bounded, this dimension is likely to beorthogonal to the planes utting through relatively small amount of boxes. Thus,storing as few boxes as possible in the dynami retangle struture is enouraged.Algorithm 9.3.41. Aux_Sweep_Dimension (cur, n)1 γi∈{1,2,3} = maxv,w∈cur [v.d.hi [i] − w.d.lo [i]]2 αi∈{1,2,3} =
∑

v∈cur [v.d.hi [i] − v.d.lo [i]] /n3 d = argmaxi∈{1,2,3} [γi/αi]4 return dComplexity of three-dimensional sweeping is summarised in Table 4. The worstase update senario happens when the dimension of sweeping is hanged (e.g.



9.4. FINDING POINTS AND NORMALS 115after the �rst run). This eventually happens with a user spei�ed frequeny, anddoes not orrespond to a typial run. Even though the m newly inserted boxesalways enfore the O (m logm) sort of the endpoints, typially m ≪ n and thisterm an be negleted. Hene a typial update time is O (βn+ q), where β ∈
{

α2σ5λ2, σ log
(

ασ2λ
)

, logn
} and q = Ω (k). For a set of elements with α, σ, λbeing small onstants this runtime quite tightly approximates the optimal O (n+ k)one. 9.4. Finding points and normalsOne a pair of elements likely to interset has been identi�ed, it remains toextrat the ontat point and the normal diretion. It has been quite arbitrarilydeided here, that a single oriented ontat point results from an overlap of twosurfae elements (De�nition 9.2.1). This is motivated by two fators:(1) The point and the normal diretion derived from an overlap of two ele-ments are well de�ned for nonsmooth geometry.(2) We wish to use as few ontat points as possible, but still be able to ontrolthe auray of ontat resolution by mesh re�nement.Two elements are in ontat if their intersetion is not empty. The interse-tion is d-dimensional, where d ∈ {0, 1, 2, 3}. Only the 3-dimensional, volumetriintersetion is onsidered. The remaining ases are ast into the volumetri onethrough a simple regularisation. Assume, that two elements e1 and e2 overlap likein Figure 9.4.1. Their intersetion o = e1 ∩ e2 is a onvex polyhedron, with thesurfae ontaining two parts ∂o1 ∪∂o2 ⊂ ∂o, where ∂ok ⊂ ∂ek and ∂ok = ∂o∩∂Bk.For eah part, one an ompute the resultant normal(9.4.1) n̄k =

∫

∂ok

ndaand the variation of normal(9.4.2) ñk =

∫

∂ok

(n − n̄k)
2
daThe �nal outward normal is the one with a smaller variation

B2

B1

e

e

1

2

n

x

Figure 9.4.1. A ontat point x and a normal n extrated fromthe intersetion of two onvex elements.
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n̄k

‖n̄k‖
, k = argmin

i
(‖ñi‖)The ontat point an be omputed as the mass entre of the surfae part with thelarger variation of normal (hene, it is a deeper submerged point of the two possiblyomputed this way)(9.4.4) x (e1 ∩ e2) =

∫

∂ok
xda

∫

∂ok
da

, k = arg max
i

(‖ñi‖)If elements e1 and e2 touh without an overlap, they are extended by a small margin:
ek = ek + B (0, ǫ), where B (0, ǫ) is the zero entred ball of radius ǫ. The epsilonshould be several orders of magnitude smaller than the shortest edge in ek. Note,that ∂ok are pieewise �at, and hene the above evaluations are trivial.It remains to disuss the omputation of e1 ∩ e2. A simple, brute-fore methodould be desribed as followsAlgorithm 9.4.1. Simple_Element_Intersetion (e1, e2)1 i = 1, j = 22 opy surfae faes of ek into sk for k ∈ {1, 2}3 for eah fae f ∈ si do4 for eah half-plane h bounding ej do5 trim f with h so that f = f ∩ h6 end do7 end do8 if i = 1 then i = 2, j = 1, goto 39 return s1 ∪ s2Sraps of the faes in s1 ∪ s2 form the boundary of the intersetion (note, thatit might be empty). The method takes O (nm) time where n is the number of faesin e1 and m is the number of faes in e2. For shapes as simple as the elementsthis might seem aeptable. However, this an only be veri�ed by omparison witha more elaborate method. In this respet, the method by Müller and Preparata[158℄ has been implemented. The basi idea relies on the polarity of onvex sets(f. Rokafellar and Wets [183, p. 490℄). For a onvex set C suh that 0 ∈ C, thepolar of C is the set(9.4.5) Co = {v : 〈v,x〉 ≤ 1 for all x ∈ C}whih is a onvex and loset set. The bipolar of C is the set(9.4.6) Coo = (Co)o = {x : 〈v,x〉 ≤ 1 for all v ∈ Co}and Coo = C, when C is losed (whih is assumed here). For two sets C and D,their intersetion and sum respetively read(9.4.7) C ∩D = {x : x ∈ C and x ∈ D}(9.4.8) C ∪D = {x : x ∈ C or x ∈ D}If both C and D are onvex, so is their intersetion. Assume now, that 0 ∈ C ∩Dand let



9.4. FINDING POINTS AND NORMALS 117(9.4.9) E = o (Co ∪Do)where(9.4.10) o A =

{

p
∑

i=0

λixi : xi ∈ A, λi ≥ 0,

p
∑

i=0

λi = 1, p ≥ 0

}is the onvex hull of a set. In partiular, for any λ ∈ [0, 1] there holds(9.4.11) λvC + (1 − λ)vD ∈ E for all vC ∈ Co and vD ∈ DoThe polar set of E an now be de�ned as(9.4.12)
Eo = {x : 〈λvC + (1 − λ)vD,x〉 ≤ 1 for all vC ∈ Co,vD ∈ Do, λ ∈ [0, 1]}Summarising

λ 〈vC ,x〉 + (1 − λ) 〈vD,x〉 ≤ 1 for all vC ∈ Co and vD ∈ Do

〈vC ,x〉 ≤ 1 for all x ∈ C

〈vD,x〉 ≤ 1 for all x ∈ D(9.4.13)The �rst inequality in (9.4.13) an hold only, if the two remaining ones do as well.Otherwise, one an always pik x ∈ C, x /∈ D and for λ = 0 obtain 〈vD,x〉 > 1.Hene, Eo is omposed of points x ∈ C ∩D, or in other words(9.4.14) C ∩D = (o (Co ∪Do))oThe last formula is the departure point for the algorithm given by Müller andPreparata [158℄. There are however, two stumbling bloks on the way towards itsrealisation. First of all, we have assumed that 0 ∈ C ∩D. In pratise, this meansthat one has to �nd a point belonging to the intersetion (then it is easy to hangeoordinates, so that it is 0). A tehnique for that had been disussed in [158℄,although ten years later Gilbert et al. [73, 1988℄ proposed a more elegant andsimpler method (Setion 9.4.1). The seond obstale is related to the omputationof the onvex hull in (9.4.14). Müller and Preparata referene an algorithm givenin [173℄. Again, in our implementation a newer and simpler method by Barber etal. [17℄ is employed (Setion 9.4.2).It might seem, like the atual polarisation of a set C → Co is also omputa-tionally nontrivial. Fortunately, for polyhedral onvex sets this is not so. For anypartiular representation of a onvex polyhedron C with n faes (an element in ourase), it is easy to ompute a set of planes suh that(9.4.15) x ∈ C ⇔ 〈ni,x〉 ≤ 1 for all i ∈ {1, 2, ..., n}where ni are the fae normals (not neessarily unit). From the analogy between(9.4.5) and (9.4.15) it is lear, that normals ni orrespond to the verties of Co (atmost, onvex ombinations of normals ful�l 〈∑i λini,x〉 ≤ 1), so that(9.4.16) Co = o {n1,n1, ...,nn}We an now to bring up a data struture, onvenient for both storing andpolarising onvex polyhedrons. It was given in [158℄ under the name of the doubly
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Figure 9.4.2. A planar graph of some onvex polyhedron C andan edge in the DCEL struture. On the right, the orrespondingedge in Co is given.onneted edge list (DCEL). A tuple desribing the list element an be expressedas (o, t, ln, rn, le, re), where o is a pointer to the origin vertex of the edge, t is apointer to the terminus vertex of the edge, ln points to the normal of the fae onthe left from the edge, rn points to the similar normal on the right, le points to thenext ounter-lokwise edge around the origin, and re points to the next ounter-lokwise edge around the terminus. It is impliitly assumed, that the normalsstored in the data struture are suh, that the ondition (9.4.15) holds true. Thedata struture is illustrated in Figure 9.4.2. Apart from its onise format, theutility of the struture stems from the fat, that the polarisation proedure takesthe following simple formAlgorithm 9.4.2. DCEL_Polarise (d, k)1 for i = 1 while i ≤ k do2 o = d[i].o, t = d[i].t3 d[i].o = d[i].ln, d[i].t = d[i].rn4 d[i].ln = t, d[i].rn = o5 i = i+ 16 end for7 return dwhere d [·] is a table of k edges of a polyhedron. In the above proedure theedge pointers le and re in DCEL need not to be altered, although one needs tokeep in mind that le and re pointers orrespond now to the next lokwise edgesaround respetively the origin and the terminus (Figure 9.4.2). The algorithm foromputing an intersetion between two elements an now be given asAlgorithm 9.4.3. Fast_Element_Intersetion (e1, e2)1 (p,q) =GJK (e1, e2)2 if ‖p− q‖ > 0 then return ∅3 assuming 0 ≡ p, ompute ni, i ∈ {1, 2, ..., n+m}, representing
e1 for i ≤ n and e2 for n < i ≤ n+m by 〈ni,x〉 ≤ (1 + ǫ)4 (d, k) =Quikhull ({ni})5 return DCEL_Polarise (d, k)In the �rst line of Algorithm 9.4.3 the Gilbert-Johnson-Keerthi proedure isused in order to ompute a pair of losest points p ∈ e1, q ∈ e2 (Setion 9.4.1).If the distane between the elements is nonzero, an empty set is returned in thenext line. Otherwise, p = q and the oordinates are suitably hanged, so thatthe zero point 0 ≡ p (line 3). The representation (9.4.15) is omputed for bothelements, where (1 + ǫ) is used on the right hand side, in order to aount for the



9.4. FINDING POINTS AND NORMALS 119regularisation mentioned at the beginning of this setion (GJK usually returns apoint on the boundary of the element intersetion). The Quickhull routine takesas an argument a set of verties and returns the table of DCEL edges of theironvex hull (Setion 9.4.2). All of the normals are passed as the argument, whihaounts for the union of the polar sets Co ∪Do in (9.4.14). Finally, the returnedhull is polarised in line 5, whih orresponds to the outer-most operation of (9.4.14).In pratie, the runtime of Algorithm 9.4.3 is lose to O (n logn), where n is themaximum of the sums of node and fae ounts in e1 and e2. The exat theoretialbound however needs yet to be done, as the omplexity of the GJK algorithm hasnot been thoroughly investigated in the literature (to our knowledge).It ought to be stressed, that the fragments ∂ok of the surfae of o = e1 ∩ e2used in the evaluation of (9.4.1-9.4.4) should orrespond only to the surfae faesof the elements. More preisely ∂ok = ∂o ∩ ∂Bk, where Bk is the body whosedisretisation omprises ek. This way the inner faes of elements, that is those thatseparate elements within a mesh, are not aounted for in the omputations. The�ltering is easily implemented, although the details have been omitted so to avoidan unneessary lutter.9.4.1. Finding a ommon point. Gilbert, Johnson and Keerthi [73℄ gavea very elegant and e�ient method for �nding a pair of points p ∈ C and q ∈ D,suh that ‖p − q‖ is minimal, where C and D are onvex. The algorithm is onlyoutlined here, and it is noted that in the implementation the papers by Cameron[35℄ and Van den Bergen [207℄ were also helpful. The basi insight here is, thatinstead of looking for p ∈ C and q ∈ D minimising ‖p − q‖, it might be moreonvenient to look for v ∈ C −D minimising ‖v‖. The set C −D is not expliitlyomputed, but rather it is approximated by a series of simplies ontained in it,and loated suessively loser to the origin. The GJK algorithm an be spei�edalong the lines of [207℄ as followsAlgorithm 9.4.4. GJK (e1, e2)1 C = verties-of (e1), D = verties-of (e2)2 W = ∅, µ = 0, v = any-point-from (C −D)3 toofar = true4 while toofar ∧ ‖v‖ 6= 05 w = argmax {〈−v,x〉 : x ∈ C −D}6 δ = 〈v,w〉 / ‖v‖7 µ = max (µ, δ)8 toofar = ‖v‖ − µ > ǫ9 if toofar then10 v = arg min {‖x‖ : x ∈ o (W ∪ {w})}11 W = smallest X ⊆W ∪ {w} suh that v ∈ o (X)12 end if13 end whileIn the �rst line the sets of verties C and D are initialised. The set W is ini-tialised as empty in the seond line. It will store the simplex giving the onservative(inner) approximation of C−D. The parameter µ = 0 will be used as a lower boundfor ‖v‖ in the termination ondition. Vetor v is initially hosen as arbitrary x−y,where x ∈ C and y ∈ D. The loop in lines 4-13 iterates over the suessive approx-imations of the set W , whih omprises at most four verties (orresponding to apoint, a line, a triangle and a tetrahedron). Note that, C −D ould be omputedas a onvex hull of all possible point di�erenes x − y, where x ∈ C and y ∈ D.This however, would be rather ine�ient. W stores few points of C −D and heneits onvex hull is always an inner approximation of the set di�erene. At eah stage
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Figure 9.4.3. Three iterations of the GJK algorithm. The dashedline passes through a vertex x maximising 〈−v,x〉 for a urrentstep.of the algorithm, we an �nd a point v ∈ on (W ) suh that ‖v‖ is minimal. If thelength ‖v‖ = 0 then 0 ∈ C −D and the two onvex objets overlap. Otherwise, wean ask how muh our approximation of C −D an be extended in the diretion of
−v, taking us loser to the origin. The point w, extending the urrent set W along
−v, is omputed in line 5. The next three lines deal with the termination ondition.It is lear, that the sequene of produed lengths ‖vk‖ is monotonially dereasing.After omputing the new point w ∈ C −D, we an hek whether it atually im-proves upon v in terms of its proximity to the origin. The length of the projetionof w along v an only be smaller or equal to ‖v‖, hene ‖v‖ − 〈v,w〉 / ‖v‖ > 0.The parameter µ = max (µ, 〈v,w〉 / ‖v‖) provides then a monotonially inreasinglower bound for ‖v‖. As soon as the di�erene ‖v‖ − µ beomes small enough, thealgorithm is terminated (line 8). It should be noted, that appliation of µ in thetermination ondition is not really neessary for the polytope geometry. It was usedin [207℄ in order to failitate termination for smooth onvex sets. It is retained herefor the sake of generality. If the termination ondition is not satis�ed (line 9), itremains to ompute new v ∈ W ∪{w} minimising ‖v‖ (line 10). The set W is thenredued to the smallest simplex (point, line, triangle, or tetrahedron) ontaining v(line 11). Three iterations of the algorithm has been summarised in Figure 9.4.3.GJK wouldn't probably be that suessful, if not the reursive formula given in[73℄, allowing to exeute the last two steps in an e�ient manner. Assuming that
W = {w0,w1, ...,wn}, there of ourse holds(9.4.17) v =

n
∑

i=0

λiwi and λi ≥ 0,
n
∑

i=0

λi = 1Beause ‖v‖ is minimised, v is orthogonal to the a�ne hull of the smallest subset
X ⊆ W , suh that v ∈ on (X) (the a�ne hull of X is the set generated by some
∑

j∈IX
λjwj , where ∑j∈IX

λj = 1 and IX ⊆ {0, 1, ..., n}, hene it is the naturalextension of on (X) to the whole spae). Let thenX = {wi : i ∈ IX} with |IX | ≤ n,and let equivalently X = {x0,x1, ...,xm} with m = |IX |. At most, there are elevena�ne hulls of X (the omplete spae for X being the tetrahedron, four planes forthe triangular faes, and six lines for the edges). One needs to selet the largestsubset X , for whih the solution of 〈v,x0 − xj〉 = 0 for j ∈ {1, ...,m}, results inpositive λs. The reursive formula for omputing λs reads(9.4.18) λi = △i (X) /△ (X)where
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∑

i∈IX

△i (X)(9.4.20) △i ({wi}) = 1

△j (X ∪ {wj}) =
∑

i∈IX

△i (X) (〈wi,wk〉 − 〈wi,wj〉)and j /∈ IX , while k is a �xed index in IX . The set X in line 11 of Algorithm 9.4.4is seleted in suh a way, that △i (X) > 0 for all i ∈ IX and △i (X ∪ {wj}) ≤ 0 forall j /∈ IX . At the same time, v is omputed as v =
∑

i∈IX
λiwi.Upon termination, it remains to obtain the pair of losest points p ∈ e1 and

q ∈ e2. When omputing ws in the �fth line of Algorithm 9.4.4, one in fat storesas well the points pi ∈ e1 and qi ∈ e2, suh that wi = pi −qi. One the algorithmhas terminated, the resulting pair of losest points is omputed as(9.4.21) p =
∑

i∈IX

λipi, q =
∑

i∈IX

λiqi9.4.2. Computing the onvex hull. Barber, Dobkin and Huhdanpaa [17℄desribed a fast multi-dimensional onvex hull algorithm, extending the lassialQuikhull method [62, 34℄. The algorithm starts with a single d−dimensionalsimplex, onstruted from the d+1 arbitrary points. The urrent onvex polytope,desribing the onvex hull, is omposed of faes, edges and verties. A vertexis above a fae, if it belongs to the positive half-spae de�ned by the fae planeequation. Otherwise it is below the fae. Reiproal statement an be made abouta fae being above or below a vertex. Eah fae f = (v, e) is omposed of a list vof unproessed verties plaed above of the fae, and a list e of edges bounding thefae. Eah edge e = (o, t, f) omprises a pointer o to its origin vertex, a pointer tto its terminus vertex, and a pointer f to the fae, being the neighbour of a fae gstoring e in its g.e list. The inident faes of an edge e are the fae g and f , suhthat e ∈ g.e and f = e.f . Let a set of edges onneted through ommon endpointsbe alled a ridge. The following theorem by Grünbaum [79℄ hints a basi priniplebehind inremental onstrution of onvex hulls [17℄Theorem 9.4.5. (Simpli�ed beneath-beyond) Let H be a onvex hull in Rd andlet p be a point in Rd \H. Then f is a fae of on (H ∩ p) if and only if1. f is a fae of H and p is below f , or2. f is not a fae of H and its verties are p and the verties of an edge in Hwith one inident fae below p and the other inident fae above p.It is easy to see, that a onvex hull an be onstruted inrementally by takingthe initial simplex to be H , followed by inserting one point at a time and applyingthe rules of the above theorem. Essentially, at eah step, one detets the ridge ofedges satisfying property 2 of the theorem. If the ridge is an empty set, point p isdisarded. Otherwise, a one of new faes is reated, onneting the edges of theridge with p. All of the old faes loated below p are then deleted from H . This issummarised below.Algorithm 9.4.6. Quikhull ({pi})1 H = arbitrary-tetrahedron ({pi})2 {pi} = {pi} \verties-of (H)3 for eah p ∈ {pi} do4 for eah fae f ∈ H



9.4. FINDING POINTS AND NORMALS 1225 if p is above f then List_Insert (f.v,p)6 end for also if p is above f7 end for8 for eah fae f ∈ H ∧ f.v 6= nil do9 p = furthest-point-from-fae (f, f.v)10 R = ridge-of-edges-with-property-2 (H,p)11 V = faes-below-point (p)12 G = ∅13 for eah edge e ∈ R do14 g = new-fae (e,p)15 G = G ∪ g16 end for17 for eah t ∈ V do18 for eah q ∈ t.v do19 for eah g ∈ G do20 if p is above g then List_Insert (g.v,p)21 end for also if p is above g22 end for23 end for24 H = H \ V , H = H ∪G25 end forThe novelty in the above algorithm, introdued by the authors of [17℄, is instoring in eah fae f the list of verties f.v loated above it. The initial assignmentof the input points into the fae lists f.v is done in lines 3-7. The loop betweenlines 8-24 ontinues, until there are faes with nonempty vertex lists f.v 6= nil. Foreah suh fae, an extreme vertex is hosen (line 9), maximising among all p ∈ f.vthe distane from the fae plane. Then the ridge R of edges having the property 2of Theorem 9.4.5 is reated (line 10). The so alled visible set V , of faes loatedbelow the point p is reated next. For eah edge e of the ridge R, a new triangularfae is reated between p and e (lines 12-16). It should be noted, that one needsto properly maintain the adjaeny information at this stage, so that faes in Gand H \ V are orretly onneted. In lines 17-23 the verties stored in the faelists t.v of t ∈ V are reassigned to the fae lists g.v of g ∈ G. The visible V setis deleted from H and the newly reated one of faes G is added to H in line 24.The authors of [17℄ show, that under some balane onditions, the runtime of theabove algorithm is O (n logn) in three dimensions, where n is the number of inputpoints.9.4.3. No gaps? Traditionally, in omputational ontat analysis one oftenresorts to the notion of a gap between two objets. The gap an be de�ned as asigned salar funtion, positive when two objets are apart, and semi-negative whenthey are in ontat. The ontat point and the normal diretion omputed froman intersetion of two elements prelude an appliation of the gap funtion. Thisis motivated by two major fators:(1) No diret use of gaps would be made of in the urrent dynami veloity-based framework.(2) Robust implementation of gaps is troublesome for assemblies of geomet-rially rough bodies.Nevertheless, the notion of gap will be neessary in order to derive unilateral on-straints in the next hapter. Also, the quasi-stati ontat algorithm presentedtherein will inorporate gaps. For these purposes, the gap funtion is de�ned asfollows



9.5. LITERATURE 123(9.4.22) g (t) =

{

minx,y ‖x − y‖ : x ∈ ē1,y ∈ ē2 when ē1 ∩ ē2 = ∅
miny 〈n,x − y〉 : y ∈ ∂ek,x ∈ ē1 ∩ ē2 otherwisewhere in the seond line, the normal n and the point x are given by (9.4.3) and(9.4.4), while the k-index orresponds to the one de�ned in (9.4.3). The �rst linedesribes the proximity of the two elements. The seond one de�nes a negativedistane along n, from x towards the surfae of the intersetion ē1∩ ē2. This simplestrategy is su�ient for our purposes.9.5. LiteratureContat detetion1 is among the basi problems of omputational geometry. Aomprehensive introdution an be found in the survey work [104℄. Some seletedpapers will be disussed here in order to put the urrent development in ontext.Setion 9.5.1 enumerates papers desribing general interfae detetion methods andrelated tehniques. Setion 9.5.2 summarises several papers dealing with omputingdistanes and intersetions between polytopes.9.5.1. Collision detetion. In an artile on interfae detetion, Boyse [31℄only brie�y mentions the objet irumsribed spheres and boxes utilised to a-elerate the ontat searh. The fous is plaed on pairwise intersetion betweenpolyhedra, with an emphasis on interfae detetion between a moving objet andstati obstale. Deteting ontat between a large number of objets is not ru-ial, thus no speial attention is payed to the bounding volumes. Nevertheless,this is one of the earliest papers where the two-phase approah is suggested as anobvious heuristi. Culley and Kempf [51℄ propose a ollision detetion algorithmbased on the veloity and distane bounds. Hayward [84℄ an algorithm for robotisbased on the reursive otree deomposition of manipulator workspae. In the sim-ilar ontext of motion planning, Herman [89℄ desribes another three-dimensionalotree based tehnique. Moore and Wilhelms [152℄ build an otree struture onsurfae points and query it with bounding boxes of swept surfae triangles. Pairsof moving points and triangles, resulting from point in box ontainment test, arefurther heked for ollisions. Wu and Lee [212℄ use two-dimensional projetionsof three-dimensional objets in order to solve ollision detetion between movingrobot arms. Bara� [16℄ hints bounding volumes as an enhanement of an initialsearh for ontat andidates. He omments however in greater detail on the roleof oherene in dynami simulations. Typially geometri on�guration of bodiesdoes not hange onsiderably between onseutive time steps. The advantage ofthat an be taken to aelerate both phases of interfae detetion. As disussedby Bara�, surfae entities involved in a ontat an be ahed and reused. In thetehnial report [88℄ Heinstein et al. disuss a ontat detetion algorithm forstrutural dynamis, based on the node to fae projetion method. Garia-Alonsoet al. [72℄ disuss a voxel based method utilising additionally bounding boxes andan O (n2

) spae �ollision interest matrix� used for body-pairwise events, where nis the number of bodies. A lassial ombination of broad and narrow phase algo-rithms was proposed by Cohen et al. [48℄. For the pairwise ollision test betweenonvex polytopes the Lin-Canny [139℄ algorithm is employed. Closest feature oftwo polytopes is ahed and reused as an initial guess at the next time step (thisresult in an expeted onstant runtime). Axis aligned bounding boxes are exploitedto enlose onvex objets. The broad phase is based on sanning along the threeoordinate axes. The algorithm maintains three sorted lists of projeted intervalendpoints. Assuming oherene, appliation of insertion sort for almost ordered1ontat/ollision/interfae detetion



9.5. LITERATURE 124lists results in an expeted linear runtime. Swaps of endpoints ourring duringthe sort proess are related to hanges in overlap states. The amount of overlapstatus hanges is of quadrati order with respet to the number of boxes n. Orig-inal implementation of the approah presented in [48℄ utilised an auxiliary O (n2
)storage for status hange ahing. Attaway et al. [15℄ present a parallel ollisiondetetion framework for strutural dynamis, based on the Reursive CoordinateBisetion method by Berger and Bokhari [28℄. Gottshalk et al. [75℄ desribe theobjet oriented binary tree struture, failitating pairwise ollision tests betweenarbitrary bodies. Hubbard [95℄ desribes a tehnique for approximating polyhe-dra with spheres, and the related sphere-tree struture. Li and Chen [138℄ shownhow to use hierarhial data strutures in an inremental way (exploiting time o-herene). Kim et al. [117℄ give an event-driven algorithm for ollisions betweenmoving spheres. Kitamura et al. [118℄ and Joukhadar [108℄ disuss ollision dete-tion between deformable polyhedra. Diekmann et al. [58℄ used spae �lling urvestehnique to detet ontats in planar large deformation �nite element simulations.Perkins and Williams [169℄ disuss a sorting based interfae detetion sheme forplanar objets. Feng and Owen [68℄ presented a spatial tree struture for ontatdetetion, based on the kd−tree by Bentley [26℄. Li et al. [137℄ presented a mesh-free method based ontat detetion algorithm. Bruneel and De Ryke [33℄ giveanother spatial tree based tehnique for a tool-obstale ontat problem. Zomoro-dian and Edelsbrunner [216℄ present their fast algorithm for box intersetion basedon streaming the segment trees, uto�s and sanning. Luque et al. [143℄ use binaryspae partition trees and sanning, ombined with automated tree orretions im-proving the work balane. Teshner et al. [203℄ disusses the spatial hashing basedapproah for deformable animations. Again in the �eld of animation, Govindarajuet al. [76℄ employ graphis hardware to speed up ollision detetion. James andPai [101℄ present an output-sensitive sphere tree for deformable objets. Wu et al.[213℄ disuss a simple vertex to fae ontat resolution method. Chakraborty etal. [38℄ present an interior point method based tehnique for omputing distanebetween onvex impliit surfaes. Coming and Staadt [49℄ present an event-drivensweep and prune approah for box overlap, improving upon the previous result byCohen et al. [48℄. Han et al. [81℄ present a method for a planar ollision detetionbetween superquadris. Li et al. [136℄ present a box intersetion sheme based onoherent spatial sorting, similar to the sanning used by Cohen et al. [48℄, althoughdemanding only O (n) spae due to the employed spae subdivision. Fünfzig et al.[71℄ presented a hierarhial spherial distane �eld tehnique for pairwise ollisiondetetion.9.5.2. Polyhedra. Muller and Preparata [158℄ presented an algorithm for apairwise intersetion of onvex polyhedra, and adopted it further [174℄ to omputeintersetion of half-spaes. A plane-sweep approah was employed by Hertel et al.[90℄ to solve the onvex intersetion problem and other set-theoreti operations.Meyer [149℄ disusses a tehnique for alulating distane between arbitrarily ro-tated boxes. Gilbert et al. [73℄ speify the GJK algorithm for alulating distanebetween onvex polytopes. Sanheti and Keerthi [186℄ disuss some aspets of om-plexity of onvex proximity algorithms. An algorithm for omputing an intersetionbetween an arbitrary and a onvex polyhedron was given by Dobrindt et al. [59℄.Quinlan [176℄ employs a sphere three struture and the GJK algorithm in order toompute the distane between nononvex polyhedrons. Barber et al. [17℄ speifya fast algorithm for omputing multi-dimensional onvex hulls. Bhattaharya andSen [29℄ give a randomised planar onvex hull algorithm. Cameron [35℄ desribesan enhaned version of the GJK algorithm with hill-limbing tehnique for speed-ing up restarts. Mirtih [151℄ has presented a fast Voronoi region lipping based



9.5. LITERATURE 125algorithm for �nding distanes between onvex polyhedra. Levey et al. [134℄ om-pared some onvex distane omputing algorithms and designed improved metrisfor an evaluation of their relative e�ieny. Van den Bergen [207℄ presented an-other optimised implementation of the GJK algorithm, and applied it to distaneomputation between smooth onvex sets. Kawahi and Suzuki [116℄ presenteda voxel-based distane omputation sheme for nononvex polyhedra. Vlak andTahi [208℄ presented a spatio-temporal implementation of the GJK sheme. Llanaset al. [141℄ give a onvex distane algorithm based on fae representation. Dyllongand Luther [61℄ implemented the interval arithmeti based version of GJK. Kavanet al. [115℄ disuss fast approximation of planar onvex hulls.



CHAPTER 10The fritional ontat problemIt is standard to disuss at similar oasions, �rstly and separately, the ontatproblem and the frition problem. The ontat problem formulates motion of bodiestouhing without penetrations, but also without resistane to their relative slip. Thefrition problem introdues a simple slip resistane law. Both an be formulated inthe language of onvex optimisation, whih is why their exposition is often pursuedin the �rst plae. As soon as the fritional ontat problem is introdued, aninteration between the slip and the interpenetration preludes diret analogy withoptimisation. This happens, beause onvexity in the problem struture is lost.Nevertheless, the foregoing methods and voabulary are still of use in the analysisof this more realisti senario. In the following setions, the three problems areformulated within the adopted framework of loal dynamis.10.1. The ontat problemThe gap funtion between a pair of elements e1 and e2 was de�ned in thefollowing way(10.1.1) g (t) =

{

minx,y ‖x − y‖ : x ∈ ē1,y ∈ ē2 when ē1 ∩ ē2 = ∅
miny 〈n,x − y〉 : y ∈ ∂ek,x ∈ ē1 ∩ ē2 otherwisewhere in the seond line, x and n are given by (9.4.4) and (9.4.3). The latterformula de�nes also the k-index. The �rst line desribes the proximity of the twoelements. The seond one de�nes a negative distane along n, from x towards thesurfae of the intersetion ē1 ∩ ē2 (Figure 10.1.1).By using the methods spei�ed in the previous hapter, for all bodies we anidentify pairs of potentially overlapping elements. Hene, at all times it is possibleto maintain a vetor of gaps(10.1.2) g (t) =





...
gα (t)
...



between all of the identi�ed pairs. Bodies do not penetrate eah other, if only
g

x

y

n

x
y gFigure 10.1.1. Gap aording to de�nition (10.1.1).126



10.1. THE CONTACT PROBLEM 127(10.1.3) g (t) ≥ 0 for all twhere the inequality is understood in a omponent-wise manner. The time depen-dene of the gap funtion resolves more diretly as(10.1.4) g (t) = g (q (t))where q is the on�guration of the multi-body system. In the urrent ontext wedo not onsider �time dependent boundaries�, as these an always be realised bypresribing some time dependent joints to seleted bodies. From the gaps point ofview, only moving bodies are seen. This is why g = g (q), rather than g = g (q, t).10.1.1. From gaps to veloity onstraints. Gradient of the gap funtionreads(10.1.5) ∇g =

{

(x − y) / ‖x− y‖ when ē1 ∩ ē2 = ∅
n otherwisewhere x, y and n were de�ned in (10.1.1). One an de�ne a loal base(10.1.6) {ai} = {aT1 ⊥ ∇g,aT2 ⊥ ∇g,aN = ∇g}where {T 1, T 2, N} indexing replaed {1, 2, 3}, and aT1 × aT2 6= 0 was assumed.The gap veloity reads

ġ = 〈∇g, ẋ− ẏ〉(10.1.7)and the loal veloity with respet to the base (10.1.6) follows as(10.1.8) U =
{

ai
}T

(ẋ − ẏ)More generally, for a multi-body system, the vetor of loal veloities U for allontat related loal frames an be expressed in a familiar form(10.1.9) U = Huwhere H is evaluated aording to (7.1.9), and u is the generalised veloity of thesystem. In the evaluation of H, one employs the referential images of x and ytogether with {ai
}T

= {ai}−1. For the moment, relation (10.1.9) is understood inthe time ontinuous, rather than disrete sense. From (10.1.9) one an extrat thegap veloity funtion in its vetor form(10.1.10) ġ = HN∗uwhere HN∗ denotes seletion of the normal omponent rows of H. Hene, ġ is thevetor of the loal normal veloities(10.1.11) ġ =





...
UαN

...



Let us now de�ne a set(10.1.12) Γ (q, t) =

{

u ∈ TqQ : UαN ≥ 0 for gα (t) ≤ 0
TqQ otherwise



10.1. THE CONTACT PROBLEM 128In his integration lemma, Moreau [153℄ shows thatLemma 10.1.1. If the inlusion(10.1.13) u ∈ Γ (q, t)holds for almost every1 t ∈ [0, T ) and the inequality (10.1.3) is veri�ed for t = 0,then the same inequality is veri�ed for t ∈ [0, T ).The proof relies on an assumption, that the on�guration q is obtained fromthe veloity u as a result of integration(10.1.14) q (t) = q (0) +

∫ t

0

u (s) dswhih for rigid rotations needs to be understood in a suitably generalised manner.The rest of the proof an be summarised as follows. One assumes g (τ) < 0, τ < Tand then looks for a ontradition. As g (0) ≥ 0 and g (t) is ontinuous, it has topass by 0, say at time σ, on its way towards g (τ) < 0. As ġ ≥ 0 holds almosteverywhere in [0, T ), there follows g (τ) =
∫ τ

σ ġdt ≥ 0 whih gives the desiredontradition. We have omitted tehnial assumptions related to the regularity ofthe involved funtions.Taking the loal veloity U point of view on the above lemma, the non-penetration onstraint an be summarised as follows
U ∈ TE3 if g > 0

[UT , UN ] ∈ TE2 ×R+ if g ≤ 0(10.1.15)where R+ = [0,∞) is the semi-positive real half-line and the seond line holdsalmost everywhere in [0, T ). The loal veloity is allowed to take arbitrary values,when the gap between an element pair is positive. Otherwise, while the tangentomponent UT remains arbitrary, the normal omponent UN needs to be semi-positive.10.1.2. Moreau's sweeping. A spei� instane of a solution to the problemposed by the di�erential inlusion (10.1.13) is the Moreau's sweeping proess. Onean de�ne a set of all interpenetration free body positions as(10.1.16) Φ (t) = {q ∈ Q (t) : g (q) ≥ 0}where Q (t) is used to emphasise a possible presene of time dependent joints.Imagine for example someone slowly sweeping a pool table top with a hand brush.A pak of igarettes left on the table is being pushed around slowly enough, so thatit freezes right after losing ontat with the brush. For eah position of the brush,the pak of igarettes ould be plaed anywhere within the table borders and awayfrom the brush. The set of those plaements is the interior of Φ, the position ofthe pak is q and its veloity is u. The sort of behaviour just desribed, an beahieved by seleting for eah time t an element u ∈ Γ (q, t), suh that the norm
‖u‖ is minimised. To desribe it more onsistently, it is temporarily onvenientto assume g = g (q, t) (i.e. aount for the motion of the brush as a movingboundary), rather than g = g (q) (i.e. onsider the two-body system, where thenon-penetration and the imposed motion onstraints are handled simultaneously).If all g > 0 then u = 0 (the brush is away from the pak and hene the pak is leftat rest). If some of the gaps gα ≤ 0, then the point q ∈ ∂Φ touhes the boundary1by whih one means t ∈ [0, T ) \ Z for sets Z suh that R

[0,T )\Z
u =

R

[0,T )
u, where Z anbe understood as an arbitrary sequene {tn} ⊂ [0, T )
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N (q)

Φ

g>0
α

g>0
β

q

Φ

Figure 10.1.2. Normal one NΦ at q ∈ ∂Φ. Note that q + NΦwas plotted rather than NΦ (whih should be rooted at 0).of Φ (e.g. the brush is pushing the pak). Aording to (10.1.15), the ondition isnow UαN = ∇qgα · u + ∂gα/∂t ≥ 0, where ∇qgα = HT
αN∗. For gα ≤ 0 there holdsthen(10.1.17) HαN∗u + ∂gα/∂t ≥ 0We have ∂gα/∂t = 0 if this is the gap between the pak and a table border, andpossibly ∂gα/∂t 6= 0 if this is the gap between the pak and the brush. Aording tothe assumed seletion rule, one now wishes to �nd the smallest veloity satisfyingthe above system of inequalities(10.1.18) u = argmin ‖u‖ : HαN∗u + ∂gα/∂t ≥ 0If all of the ∂gα/∂t ≥ 0 then the brush, although touhing the pak, is about tomove away. Hene, the minimal u = 0, as the origin belongs to the set boundedby (10.1.17). If there are some ∂gα/∂t < 0, then the brush is atively pushingthe pak. From the geometrial point of view, the system of inequalities (10.1.17)desribes a onvex polyhedral set P , not ontaining the origin. A point u ∈ P ,losest to the origin, an then be expressed as a linear ombination of normals tothe hyperplanes not ontaining the origin. This is preisely(10.1.19) u =

∑

α

λαHT
αN∗where(10.1.20) λα = −min (0, ∂gα/∂t) /
∥

∥HT
αN∗

∥

∥

2 ≥ 0From the above it follows, that for gα = 0 the ondition ∇qgα ·u+∂gα/∂t = 0 holdsas equality, so that the point q �athes up� with the boundary of Φ. For q ∈ ∂Φformula (10.1.19) desribes u as a semi-positive linear ombination of vetors∇qgα.Any suh ombination forms a one. It is onvenient to generalise this notion forall q. The normal one of the set Φ is de�ned as follows (Figure 10.1.2)(10.1.21) NΦ =







−∑λα∇qgα, λα ≥ 0, gα = 0 when q ∈ ∂Φ
{0} when q ∈ interior (Φ)
∅ otherwise



10.1. THE CONTACT PROBLEM 130In [153℄ Moreau shows, that the veloity seletion rule in the sweeping proess anbe equivalently desribed as(10.1.22) −u ∈ NΦ(t) (q (t)) almost everywhere in [0, T )This results from the fat, that u /∈ ∅ for almost every t, whih implies that ∇qgα ·
u + ∂gα/∂t < 0 is not allowed to happen (i.e. λα are appropriately hosen in(10.1.21), otherwise one ould always pik u = 0 and soon end up with q /∈ Φand hene u ∈ ∅). We have then q ∈ Φ, whih also follows from Lemma 10.1.1 as
−NΦ(t) (q) ⊆ Γ (q, t). For q ∈ interior (Φ) there follows u = 0 and the point staysat rest. In the remaining ase, q ∈ ∂Φ an hold for a sequene {tn} ∈ [0, T ), butwhenever q ∈ ∂Φ over [a, b] ⊆ [0, T ), there must almost everywhere in [a, b] hold
∇qgα ·u+∂gα/∂t = 0, whih leads to (10.1.19). There annot be q ∈ ∂Φ over [a, b]together with ∇qgα ·u+∂gα/∂t > 0, beause gα (q, b) = gα (q, a)+

∫ b

a
ġα (q, s) ds >

0 and q departs from the boundary.Let us reapitulate. Assume that q ∈ Φ at t = 0. We an sweep q withset Φ as soon as u = 0 if g > 0, or (10.1.19) is used when gα ≤ 0. Formula(10.1.14) is utilised to advane q. The sweeping proess an be understood asquasi-stati pushing of q by the boundary of Φ. In [155℄ Moreau detailed this ideain the in�nite-dimensional ontext. An introdution to Moreau's sweeping withappliations to unilateral mehanis an be found in Kunze and Monteiro Marques[129℄.10.1.3. Veloity jumps. In order to preserve non-penetration, it is neessaryto admit jumps in the graph of the gap veloity ġ (t). This allows bodies to rebound,while the graph of the gap an have sharp minima touhing the horizontal axis. Fora given loal frame, at eah time t one an de�ne the left and the right veloity(10.1.23) U−
N (t) = lim

s↓0
UN (t− s) , U+

N (t) = lim
s↓0

UN (t+ s)An impat orresponds to g (t) = 0 and U−
N < 0. To seure non-penetration, forthe right veloity there needs to hold U+

N ≥ 0. The hange of sign in the relativeveloity annot output more energy than it onsumes, and hene(10.1.24) U+
N = −ηU−

Nwhere η ∈ [0, 1] is alled Newton's oe�ient of restitution. The extrema of theabove relation(10.1.25) U+
N = 0 and UN = −U−

Norrespond respetively to the ideally plasti and ideally elasti impats. In theformer ase, after an impat the material points move within the tangent planespanned by aT1 and aT2. In the latter one, they rebound without loss of thekineti energy Ek = 1
2 ‖U‖2.It is onvenient to rephrase ondition (10.1.15) as

U+ ∈ TE3 if g > 0
[

U+
T , U

+
N

]

∈ TE2 × R+ if g ≤ 0(10.1.26)whih must hold everywhere in [0, T ). While the above assures non-penetration, nopartiular value is assigned to U+
N . For omputational purposes it is onvenient tode�ne the following auxiliary veloity



10.1. THE CONTACT PROBLEM 131(10.1.27) ŪN = U+
N + ηmin

(

0, U−
N

)The unilateral ontat onstraint an be spelt out again as
U+ ∈ TE3 if g > 0

[

U+
T , ŪN

]

∈ TE2 ×R+ if g ≤ 0(10.1.28)where for ŪN = 0 the Newton's restitution law (10.1.24) is reovered if U−
N < 0.10.1.4. Bak to the disrete ase. In the time disretised ontext, for eah

t we shall identify(10.1.29) U+ = Ut+h and U− = UtBeause(10.1.30) Ut+h = WR + Bonditions put on Ut+h an be realised by an appropriate hoie of R. We assumelak of resistane with respet to the tangential motion(10.1.31) RT = 0In the absene of the free veloity B = 0, one an see that the above onditionand semi-positive de�niteness of W imply that a positive normal reation RN > 0auses a semi-positive normal veloity U t+h
N . In other words, a positive normalreation implies separation, while the negative one an pull a pair of material pointstogether. We do not onsider adhesion and hene(10.1.32) RN ≥ 0Consequently, a semi-positive reation is needed in order to assure ŪN ≥ 0. Thisallows to state onditions for the ontat reation R, analogous to (10.1.28)

R = 0 if g > 0

[RT , RN ] ∈ 0×R+ if g ≤ 0(10.1.33)If an impat happens between t and t + h, or an established ontat persists over
[t, t+ h], the normal reation is used so to assure that ŪN = 0. Note that when
U−

N < 0 this results in Newton's restitution, while when U−
N = 0 then U+

N = 0 followsand the ontat persists. De�ning ŪN = U+
N +ηmin

(

0, U−
N

) is meant to be adjustedto our way of detetion and resolution of ontat. An element overlap an persistover a sequene of adjaent time moments t, t + h, ..., t + nh, although an impatorresponds only to the reversal of the veloity sign. It would be inappropriate touse ŪN = U+
N + ηU−

N when U−
N > 0, as then the ondition ŪN = 0 ould imply

U+
N < 0. In the next step that would lead to U−

N < 0 and the veloity sign wouldontinue reversing as long as the overlap between the elements would hold. Using(10.1.27) naturally prevents this senario.Conditions (10.1.28), (10.1.33) and the above disussion lead to the followingomplementarity between the auxiliary normal veloity and the normal reation(10.1.34) ŪN ≥ 0, RN ≥ 0, ŪNRN = 0The above is sometimes referred to as the veloity Signorini ondition (f. Jean[102℄). Conditions (10.1.34) an be ombined with the normal part of relation



10.1. THE CONTACT PROBLEM 132(10.1.30) and together form a linear omplementary problem (in short an LCP) asfollows(10.1.35) {

Ut+h
N = WNNRN + BN

ŪαN ≥ 0, RαN ≥ 0, ŪαNRαN = 0where Ut+h
N and other vetors with index N omprise only normal omponents,and WNN is obtained from W by removing all tangential terms. Any pair Ut+h

N ,
RN verifying the above system together with RT = 0, solve the disrete dynamiontat problem. Whether the ontinuous ontat problem is solved when h → 0is a separate question. Signorini onditions (10.1.34) imply that the right veloity
U t+h

N ≥ 0 for all t + h. As U+
N = limh→0 U

t+h
N , in the limit ondition (10.1.26) isveri�ed. If the left veloity U−

N is negative only on a sequene of points {tn} ⊂
[0, T ), then ondition (10.1.13) in the integration Lemma 10.1.1 does hold almosteverywhere. If U+

N > 0, then the ontat is released and due to the ontinuityof the gap funtion, some time is needed before U−
N < 0 an happen again. Thisseparates two impat events. If U+

N = 0, then the gap funtion an remain zero orgrows as U+
N ≥ 0 for g = 0. Again, this separates two onseutive U−

N < 0 events.The above disussion is rather rough, and does not mention regularity assumptions.Intuitively, �it should work� provided that (10.1.35) an be always solved and thefree veloity BN (t) is not everywhere disontinuous. Fore a rigorous treatment werefer the reader to the already mentioned referenes [155, 129℄.10.1.5. From inequalities to equalities. We would like to use the uniformnotation C (U,R) = 0 for all onstraints. This is not quite the ase for the om-plementary onditions (10.1.34), but it is not di�ult to ast them into the form ofequality. The following variational inequality is equivalent to the omplementarityonditions (10.1.34)(10.1.36) RN ∈ R+ ∀S ∈ R+ ŪN (S −RN ) ≥ 0where R+ stands for the semi-positive real half-spae. This an be heked byinspetion. Take any RN > 0, then ŪN (S −RN ) ≥ 0 implies that ŪN = 0. Take
ŪN > 0, then there must hold RN = 0. Finally, for RN = 0 we have ŪN ≥ 0. Theinequality ŪN (S −RN ) ≥ 0 an be rewritten as(10.1.37) (

RN −
(

RN − ρŪN

))

(S −RN ) ≥ 0for any ρ > 0. As RN , S ∈ R+ the above an be viewed as a de�nition of projetion(10.1.38) RN = projR+

(

RN − ρŪN

)of the vetor RN − ρŪN onto the onvex set R+ (Figure 10.1.3). The at of sub-tration RN − ρŪN requires a omment. Note, that omponents of the reation Rare expressed with respet to the dual base ai, while the omponents of the velo-ity U are expressed with respet to the base ai. Thus operation R ± U does notmake sense, unless one of the objets is brought to the base of the other one. Forexample, the metri tensor A = {ai}T {ai} an be employed in order to ompute
Ui = AijU

j. This follows from {

ai
}

U{i} = {ai}U{i} and {ai}T {
ai
}

= I. Theorretion reads R ±AU. Nevertheless, due to the de�nition of the base (10.1.6),the metri tensor looks like
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0

A

B

C

SFigure 10.1.3. Interpretation of formula (10.1.37) as projetion.Let C be a onvex set. For all S ∈ C we have 〈A − B,S− A〉 ≥ 0.This implies that A = projC (B).(10.1.39) A =





A11 A12 0
A21 A22 0
0 0 1



and hene the normal omponent UN = UN . The projetion formula (10.1.38) isthen onsistent. We an now state the ontat law as(10.1.40) C (U,R) = 0where(10.1.41) C (U,R) =







R if g > 0
[

RT

RN − projR+

(

RN − ρŪN

)

] if g ≤ 0Additional omments about the above derivation an be found for example in Wosleand Pfei�er [210℄.10.1.6. Non-smoothness. Projetion in (10.1.41) is a nonsmooth funtion.To piture that, let us onsider a one dimensional simpli�ation of the ontatproblem(10.1.42) {

u = wr + b
r = projR+

(r − u)where ρ = 1 and η = 0 was assumed. The above system an be rewritten as(10.1.43) c (r) = r − max (0, r (1 − w) − b) = 0whih is a nonlinear equation the root of whih is sought. One an see that for
r < b/ (1 − w) the root is r = 0 while in the remaining ase r = −b/w. In theformer ase u = b ≥ 0, as b < 0 suppresses the root r = 0. In the latter ase u = 0and r ≥ 0, whih reovers the Signorini ondition. The multi-dimensional versionof (10.1.43) reads(10.1.44) cα (r) = rα − max



0, rα (1 − wαα) − bα −
∑

β 6=α

wαβrβ



 = 0A series of plots of c (r) for various values of b orresponds to a series of setionsof cα (r) for some �xed rβ 6=α. This an be observed for the two-dimensional ase inFigure 10.1.4. What is also visible is the non-smoothness of the onstraint graphs.



10.1. THE CONTACT PROBLEM 134Eah surfae plot splits into the part where cα (r) = rα, and into another one where
cα (r) is an arbitrarily inlined half-plane. Both parts are onneted in a ontinuousmanner along the line rα − ρuα = 0. This is where the non-smoothness ours. Insituations when derivatives of C (U,R) need to be omputed, one has to sort outdi�erentiation along rα − ρuα = 0. This will be further ommented on in the nexthapter.

c1(r1, r2) = r1 - max (0, r1(1 - w11) - b1 - w12r2)

c1(r1, r2) = 0
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c(r) = r - max (0, r(1 - w) - b)

b =  1.0
b =  0.5
b =  0.0
b = -0.5
b = -1.0Figure 10.1.4. Plots of the Signorini onstraints (10.1.43) and(10.1.44) for w = w11 = 0.5, w12 = 0.3, b1 = 0.10.1.7. Existene of solutions. It is relevant to ask whether the solution for(10.1.44) atually exists. As suggested by the ontour line c1 (r1, r2) = 0 in Figure10.1.4, eah onstraint ontributes a urve omposed of two straight half-lines. Ifall suh urves have a nonempty intersetion, the solution exists. If the intersetionhappens to be a point, the solution is unique. The half-line omponents are either

rα = 0 or bα + wαβrβ = 0, where the summation over β is assumed.Let W be positive-de�nite. The matrix w is the prinipal sub-matrix of W,obtained by removing all rows and olumns involved in the tangential response
w = WNN . Construted this way, w remains symmetri and positive de�nite[200, p. 339℄. Suh W and w are sometimes alled P-matries or said to haveP-property. It is readily seen that this property assures the existene of a solution.For the two extreme ases one has either all rα = 0 (no ontat) or the systemof equations bα + wαβrβ = 0 is uniquely solved (all points in ontat). In theremaining ases some rα∈I = 0 and some emerge as a solution of bα + wαβrβ = 0,where α, β /∈ I. The latter system an always be solved due to the P-property of
w. In order to show uniqueness, let us selet the index set I of minimal size |I|,suh that bα + wαβrβ = 0 results in rβ > 0 for all α, β /∈ I. Suh I is unique andan be empty. Then by de�nition, for eah α ∈ I and β /∈ I(10.1.45) rα = −bα + wαβrβ

wαα
≤ 0and sine wαα > 0 (positive-de�niteness), there follows uα = bα + wαβrβ ≥ 0. If alarger I with property bα + wαβrβ = 0 ⇒ rβ > 0 for α, β /∈ I would be onsidered,then by similar argument uα ≤ 0 and omplementarity wouldn't hold. Hene theuniqueness. This is in fat a lassial result related to onvex optimisation, orsolution of linear omplementary problems (f. Hintermüller et al. [93℄).When W is only semi-positive de�nite, existene of a solution annot be assuredfor arbitrary bα. Lukily, as bα = BαN and B = HM−1b (f. Chapter 7), a lineardependeny in H a�ets b in the same way as it does a�et w. In other words the



10.1. THE CONTACT PROBLEM 135range of H is the same as the range of W and hene bα +wαβrβ = 0 is likely to besolvable, beause there annot be any bα from outside of the range of w. This willbe also visible from the struture of the minimisation problem in Setion 10.1.9.Of ourse, a solution may fail to exist for a spei� instane of time dependentonstraints. One an imagine a rigid blok squeezed from two opposite diretions,so that the two onstraints annot be simultaneously ful�lled. This is a situationwhen ontraditory pair exists, b+w1βrβ = 0 and w2βrβ−b = 0, where w1β = λw2βand λ > 0. However, this ase an be pereived as a �modelling error�.10.1.8. Contat problem as root �nding. Let us denote(10.1.46) dN (UN , RN ) = RN − ρŪNand all dN a normal preditor. We an rewrite the non-penetration onstraint(10.1.38) as(10.1.47) CN (UN , RN ) = RN − max (0, dN )Gathering all the onstraints into a vetor operator and using loal dynamis, wean then state the following root �nding problem(10.1.48) CN (UN ,RN ) = 0|UN =WNNRN+BNor in short(10.1.49) CN (RN) = 0An important feature of the operator CN is its monotoniity. This means that forall pairs A, B there holds(10.1.50) 〈CN (A) − CN (B) ,A − B〉 ≥ 0The above an be shown to hold as follows. Let Newton's oe�ient of restitution be
η = 0. This does not obsure generality, while the preditor an now be expressedas(10.1.51) dN (RN ) = RN − ρUN (RN )Operator CN an be rewritten as(10.1.52) CN (RN ) = RN − projX (dN (RN ))where X is the positive orthant R+ × R+ × ... × R+. It will be helpful to notie,that(10.1.53) ‖WNNA‖ ≤ λmax ‖A‖(10.1.54) 〈

W−1
NNA,A

〉

≥ 1

λmax
‖A‖2where λmax is the maximal eigenvalue of WNN . Estimate (10.1.53) holds, beausethe l2 norm of a symmetri matrix is equal to its spetral radius. Estimate (10.1.54)an also be derived from the spetral piture of the salar produt, and the fat that

λmin

(

W−1
NN

)

= 1/λmax (WNN). In the following derivation it will be onvenientto use δRN = R1N − R2N and δUN = U1N − U2N . It will be also useful to note



10.1. THE CONTACT PROBLEM 136(10.1.55) δUN = WNNδRNand to introdue the ratio β = ‖δUN‖ / ‖δRN‖. From the semi-positive de�nitenessof WNN , the Shwarz inequality |〈x,y〉| ≤ ‖x‖ ‖y‖ and (10.1.55), one an obtain
‖δUN‖ ‖δRN‖ ≥ 〈δUN , δRN 〉 ≥ λmin ‖δRN‖2, and by using (10.1.53) onlude,
λmin ≤ β ≤ λmax. The two extreme eigenvalues are both of WNN . The projetiononto a onvex set is a ontration (f. [183, p. 545℄) and hene

‖projX (dN (R1N )) − projX (dN (R2N ))‖2 ≤
‖dN (R1N) − dN (R2N )‖2 ≤

‖δRN − ρδUN‖2 ≤
‖δRN‖2 − 2ρ

〈

W−1
NNδUN , δUN

〉

+ ρ2 ‖δUN‖2 ≤
(

1 − 2

λmax
ρβ2 + ρ2β2

)

‖δRN‖2 ≤

‖δRN‖2 for ρ <
2

λmax
(10.1.56)and(10.1.57) min

ρ

(

1 − 2

λmax
ρβ2 + ρ2β2

)

= 1 − β2

λ2
max

≤ 1 − λ2
min

λ2
maxA more general derivation of (10.1.56) an be found in the paper by Laborde andRenard [168℄. Finally we an write

〈CN (A) − CN (B) ,A− B〉 =

〈A − projX (dN (A)) − B + projX (dN (B)) ,A− B〉 =

‖A − B‖2 − 〈projX (dN (A)) − projX (dN (B)) ,A− B〉 ≥ 0(10.1.58)This proves monotoniity of CN for ρ < 2
λmax

. Beause of property (10.1.50),a simple reursive sheme Rn+1
N = projX (dN (Rn

N )) onverges to a �xed point,being the root of CN . Also, semi-positive de�niteness of the Jaobian ∂CN/∂RNrepresents a useful fat, when Newton sheme is applied to the root �nding problem(10.1.49). In a more general sense, monotone mappings an sometime be identi�edwith generalised gradients of onvex funtions (f. [183, p. 547℄ or [180℄). Inthis ontext, the root of (10.1.49) orresponds to a minimum of suh funtion.This argument an be sometimes used to argue about existene and uniqueness ofsolutions.10.1.9. Contat problem as minimisation. The disrete ontat probleman also be stated as the following onvex program(10.1.59) minu L (u)
ŪαN (u) ≥ 0where L was de�ned as (7.0.3), and ŪN is given in (10.1.27). The onvexity of

U =
{

u : ŪαN (u) ≥ 0
} results from the a�ne struture of the onstraints. L isstritly onvex and it attains a unique minimum at the veloity of an unonstrainedmotion (f. Chapter 7). Hene, the existene of a solution for the onstrainedproblem relies solely on the onstraints. An obvious neessary ondition is that

U 6= ∅. For U to beome empty, it is enough to have a pair of ontraditory



10.1. THE CONTACT PROBLEM 137onstraints, similarly as in the example given in the last paragraph of Setion10.1.7. Assume, that this is not the ase. A vetor RN = [..., RαN , ...], where
RαN ≥ 0 will be alled a Kuhn-Tuker vetor, if the in�mum of the funtion(10.1.60) f (u) = L (u) −

∑

α

RαN ŪαN (u)is equal to the optimal value of the onvex program (10.1.59). If suh vetor existsand is known, one an easily ompute the solution. Sine f (u) is stritly onvex(as a sum of L and some linear funtions), its unonstrained minimisation will leadto a unique point, being the solution of (10.1.59).The Kuhn-Tuker vetor, if it exists, naturally leads to the omplementarityonditions (10.1.34). This follows from the fat that by de�nition RαN ≥ 0, Ūα ≥ 0and the minimum of f is equal to L (ū) for some ū ∈ U . As generally there holds
f ≤ L, the only situation for whih f = L is possible requires RαN ŪαN = 0. Thelinear omplementary problem (10.1.35) an then be viewed as a summary of theoptimality onditions of the onvex program (10.1.59). This is readily seen, as
UN = WNNRN + BN is merely an algebrai transformation of ∇f = 0.By the de�nition of the normal one (10.1.21) and beause of the omplemen-tarity (10.1.34) shown in the previous paragraph, the optimality ondition ∇f = 0an be expressed as(10.1.61) −∇L (ū) ∈ NU (ū)where the normal one reads(10.1.62) NU =







−∑RαN∇ŪαN when u ∈ ∂U
{0} when u ∈ interior (U)
∅ otherwiseExistene of the Kuhn-Tuker vetor orresponds then to U having a boundary,whih seems to be trivially true for all kinds of U . However, not all kinds of theboundaries are equally �good�. De�nition of NU is not preise in this respet. Adegeneray orresponds to U being a single point, and hene ∂U = U . Of oursethen U = {ū}, omprises only the solution. At the same time, there is no restritionon the diretion of the gradient ∇L (ū). If we admit for an instant ŪαN (u) to bea general smooth funtions, then the singleton {ū} an be obtained in a variety ofways. For example two urves an touh just at this single point. For suh a asethe orresponding gradients ∇ŪαN span only a single line and hene ∇L (ū) annotbe, in general, expressed as their linear ombination. The Kuhn-Tuker vetor isnot guaranteed to exist, if the onstraints are nonlinear and ∂U = U . In our asehowever, the onstraints are linear. An intersetion of half-planes an be a point.But then, their normals need to span the omplete spae. The Kuhn-Tuker vetoris then guaranteed to exist, if only U 6= ∅.Let us summarise. The strit onvexity of L, the fat that it admits a �nite un-onstrained minimum, and the linearity of onstraints ensure existene of a uniquesolution to (10.1.59) whenever U 6= ∅. Presene of redundant onstraints does notalter this onlusion, as the �shape� of U is not hanged. The only onsequeneof redundany is the non-uniqueness of the orresponding Kuhn-Tuker vetor. Athrough exposition of the related issues an be found in Rokafellar [182, pp. 273-290℄. The result orresponding to the linear onstraints is given there in Corollary28.2.2.



10.2. THE FRICTION PROBLEM 13810.1.10. Quasi-statis. In ase of quasi-statis, we would like to exploit tosome extent omplementarity between the gap funtion and the ontat reation.That is(10.1.63) g (t) ≥ 0, RN (t) ≥ 0, g (t)RN (t) = 0where the above is assumed to hold almost everywhere in a onsidered time interval(so we do not need to worry, what RN (t) means during impats). In the view ofthe impliit Euler sheme adopted in Setion 5.3, the gap funtion disretisationreads(10.1.64) gt+h = gt + hU t+h
NThe disretised gap-fore omplementarity an be rewritten as(10.1.65) gt+h ≥ 0, RN ≥ 0, gt+hRN = 0The above relation an be divided by h resulting in(10.1.66) gt

h
+ U t+h

N ≥ 0, RN ≥ 0,

(

gt

h
+ U t+h

N

)

RN = 0The following substitution(10.1.67) ŪN =
max (0, gt)

h
+ U t+h

Nallows for (10.1.66) to be rewritten in a modi�ed form(10.1.68) ŪN ≥ 0, RN ≥ 0, ŪNRN = 0whih bears the name of the quasi-inelasti shok law [102℄. It is seen that (10.1.68)orresponds to the gap omplementarity (10.1.65), if the ontat at t is not estab-lished. It is related to the veloity omplementarity (10.1.34) with zero restitution
η = 0, in ase of an established ontat. The ontat law (10.1.68) is adopted hereas it is numerially better behaved ompared with (10.1.65). This is related to thelow deformability of the utilised kinemati models, for whih anellation of nega-tive gaps might result in exessively high ontat reations. The disussion of theprevious setions applies without hanges, one ŪN de�ned aording to (10.1.67)is employed instead of the one de�ned in (10.1.27).10.2. The frition problemWhile the ontat problem was derived from a purely kinemati idea of non-penetration, the frition problem deals with the resistane with respet to thetangential motion. As suh, it needs to be stated in terms of fores, and eventuallylinked with a kinemati e�et of their ation. A simple visualisation ould omprisea oin resting on a table top. A su�iently small horizontal fore applied to theoin is not able to alter its position. Only after some threshold value is reahed,the oin will start moving. The motion will be opposed by the frition fore. Thisan be summarised as follows(10.2.1) 





‖RT ‖ ≤ F
‖RT ‖ < F ⇒ UT = 0

‖RT ‖ = F ⇒ ∃λ≥0UT = −λRT



10.2. THE FRICTION PROBLEM 139where F the threshold value. The above relation is sometimes alled Tresa'sfrition law. A distintive feature and the ore of simpli�ation is in the lak ofoupling with the ontat problem, as F is assumed �xed and arbitrary. The aboverelation is assumed to hold almost everywhere in a onsidered time interval. Fromnow on the time disretised ase is onsidered only.10.2.1. Retrieving the projetion formula. As in Setion 10.1.5, we shallderive an equality form of relation (10.2.1). The Tresa frition law an be expressedin form of the maximal dissipation priniple(10.2.2) RT (t) ∈ D (F ) , ∀S ∈ D (F ) , 〈UT ,S − RT 〉 ≥ 0where D (F ) is a two-dimensional 0-entred dis of radius F , RT is the tangentialreation and UT is the tangential relative veloity. In the above 〈·, ·〉 stands for thesalar produt with respet to the loal tangent oordinates. The norm in (10.2.1)is related to the inner produt through(10.2.3) ‖RT ‖2
=
〈

A−1
TT RT ,RT

〉where ontravariant omponents of RT were obtained by inverting Ri = AijR
jand using the struture of (10.1.39). The disk D (F ) an then be deformed into askewed ellipse, whih allows to aount for an anisotropy. The frition fore smallerthan F implies stiking, while sliding ours for the tangential fore of value F , andwith the diretion opposite to the slip veloity. Equivalene of (10.2.2) and (10.2.1)an be again veri�ed by inspetion. If ‖RT ‖ < F , then S − RT is allowed to haveall possible diretion in E2. Hene, UT = 0. On the other hand if ‖RT ‖ = F ,then for 〈UT ,S − RT 〉 ≥ 0 to hold, UT must be normal to the disk D (F ) at point

−RT . Hene, UT = −λRT and λ ≥ 0. The inequality in (10.2.2) an be rewrittenas(10.2.4) 〈

A−1
TT RT −

(

A−1
TT RT − ρUT

)

,S− RT

〉

≥ 0where ρ > 0. In analogy with (10.1.37-10.1.38) and Figure 10.1.3 one an write(10.2.5) RT = ATTprojD(F )

(

A−1
TT RT − ρUT

)Having aknowledged the above possibility, we shall assume in the following, thatthe loal frame ai is always orthonormal, and heneA ≡ I. The following, simpli�edform of the projetion formula will be further employed(10.2.6) RT = projD(F ) (RT − ρUT )In dynami appliations it might be of use sometimes to aount for a �tangentialshok�, resulting in the veloity restitution rather then stiking. For suh aseMoreau [154℄ proposed to replae UT in (10.2.1-10.2.6) with a onvex ombination(10.2.7) ŪT =
1

1 + τ
U+

T +
τ

1 + τ
U−

TThe stiking ondition ŪT = 0 implies then U+
T = −τU−

T , where τ ∈ [0, 1] is thetangential oe�ient of restitution.



10.2. THE FRICTION PROBLEM 14010.2.2. Frition problem as root �nding. Let us denote(10.2.8) dT (UT ,RT ) = RT − ρUTand all dT a tangential preditor. Like in the work of Hüeber et al. [96℄ we anrewrite the single point Tresa onstraint (10.2.1) as(10.2.9) CT (UT ,RT ) = max (F, ‖dT ‖)RT − FdT = 0Gathering all the onstraints into a vetor operator and using loal dynamis, wean then state the following root �nding problem(10.2.10) CT (UT ,RT ) = 0|UT =WT T RT +BTor in short(10.2.11) CT (RT ) = 0Operator CT an be rewritten as(10.2.12) CT (RT ) = RT − projY (dT (RT ))where Y = D (F1)×D (F2)× ...×D (Fn) is onvex. By exatly the same argumentas for CN in Setion 10.1.8, CT is monotone for ρ < 2
λmax

. Similarly as before, thishints, that the root �nding problem (10.2.11) is well behaved.10.2.3. Frition problem as minimisation. The disrete frition probleman also be stated as the following onvex program(10.2.13) minR L∗
H (R)

‖RαT ‖ ≤ Fα, RαN = 0where L∗
H was de�ned in (7.0.16) and the normal reation RN = 0 was anelled,in order to preserve the deoupled harater of frition and ontat problems. Asthe onstraints are put on the fores, it is most onvenient to utilise the dualformulation with the loal onjugate of L as the merit funtion. L∗

H is onvex,although not stritly so, when H is not of full rank. Hene the minima, if theyexist, do not need to be unique. If we quite reasonably assume that all Fα > 0,then there is RT ∈ interior (Y ), where Y = D (F1) × D (F2) × ... × D (Fn). Thereasoning given in Setion 10.1.59, and more rigorously Theorem 28.2 in [182, p.277℄, ensure then the existene of the Kuhn-Tuker vetor for the problem (10.2.13).Note, that the elements of the Kuhn-Tuker vetors λα have been used in thede�nition of the Tresa ondition, when ‖RαT ‖ = Fα then ∃λα≥0UαT = −λαRαT .Beause U = ∇L∗
H (R), Tresa law (10.2.1) orresponds in fat to the optimalityonditions of the onvex program (10.2.13). Assume that RT is a solution. When

‖RαT ‖ < Fα then UT = 0, beause the minimum is unonstrained. Otherwise
UαT = −λαRαT / ‖RαT ‖ belongs to the normal one NY (RT ).In summary, the solution is guaranteed to exist if all Fα > 0. It is not unique,when H is not of full rank. Of ourse here, as well as in Setion 10.1.59, onvexityof the optimisation problems remains in diret relation with the monotoniity ofthe orresponding root �nding problems.



10.3. THE FRICTIONAL CONTACT PROBLEM 14110.3. The fritional ontat problemThis is the ase where the analogies related to onvexity break down. Unfor-tunately, this is also the most realisti ase. Constraints on the frition fores arenow desribed by the Coulomb law(10.3.1) 





‖RT ‖ ≤ µRN

‖RT ‖ < µRN ⇒ UT = 0

‖RT ‖ = µRN ⇒ ∃λ≥0UT = −λRTwhere µ ≥ 0 is the Coulomb's oe�ient of frition. As the normal reation isemployed, the above onditions need to be stated together with the Signorini law(10.3.2) ŪN ≥ 0, RN ≥ 0, ŪNRN = 0The fritional ontat problem will be also alled the Signorini-Coulomb problem.As it was shown, the ontat problem alone an be most naturally stated as on-strained minimisation with respet to veloities. On the other hand, the fritionproblem an be most naturally phrased as onstrained minimisation with respetto fores. In an attempt of merging these two, one fails to identify a single �eld,be it primal or dual, optimisation problem for the Signorini-Coulomb law. Thisis quite a shortoming, both in theory and pratie. This feature of the fritionalontat law is often referred to as lak of normality or as being non-assoiated.10.3.1. Projetion formulae. In the view of (10.1.38) and (10.2.6) the pro-jetion formulae for the fritional ontat problem read(10.3.3) {

RN = projR+

(

RN − ρŪN

)

RT = projD(µRN ) (RT − ρUT )A single projetion formulation is also possible. This might be bene�ial in numer-ial appliations. The formula is due to De Saxé and Feng [55℄ and is given herefor the sake of ompleteness. There follows(10.3.4) R = projC(µ)

(

R − ρ

[

UT

ŪN + µ ‖UT ‖

])where C (µ) is the frition one(10.3.5) C (µ) = {R : ‖RT ‖ ≤ µRN , RN ≥ 0}More will be said about (10.3.4) in Setion 10.3.4.10.3.2. Potentials, normality, monotoniity and assoiation. It is om-mon in mehanis to presribe a relation between primal and dual variables, whihaounts for an observable physial phenomenon. Suh relation is ustomarily alleda onstitutive equation. An example was given in Setion 4.1.2, where the SaintVenant - Kirhho� material was spei�ed. There, a funtion Ψ was assumed toexist suh that(10.3.6) P̄ = ∂Ψ (F) /∂Fwhere P̄ was a stress, and F was a deformation gradient. Whenever Ψ is a onvexfuntion, its sum over a domain an be minimised (also in the presene of onstraintson F), whih orresponds to the solvability of a stati boundary value problem.Convexity of Ψ allows also to derive a onjugate relation
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Figure 10.3.1. Monotoniity of onvex funtions. Closed on-tours orrespond to the level urves of a onvex funtion.(10.3.7) F = ∂Ψ∗
(

P̄
)

/∂P̄where Ψ∗ is the Legendre-Fenhel transform of Ψ (f. Chapter 7). Any of the aboverelations an be at �rst disovered in a form of equality P̄=ψ (F) or F=ψ−1
(

P̄
).At a later point one an realise, that there exists a suitable potential Ψ (or Ψ∗),with whih ψ (or ψ−1) is assoiated by being its gradient. This usually orrespondsto some symmetries in the struture of ψ. Whenever however suh an identi�-ation annot be pursued, the onstitutive relation ψ needs to be registered asnon-assoiated. In other words, there does not exist a potential, whose gradient

ψ might be. Looking at the same thing from the geometrial point of view, onean see that ∇f |x=x0
orresponds to a normal to the level urve f (x) = f (x0)taken at the point x0. This is why, the above relations are said to omply withnormality. Hene in general, one does not need for Ψ to be onvex in order to speakabout normality. In fat, onvexity is also not neessary in order to speak aboutassoiation. However then, Ψ and Ψ∗ are not any more onjugate in the sense ofbeing the Legendre-Fenhel transforms of eah other. When onvexity is present,eah level urve f (x) = a bounds a onvex set Sa = {x : f (x) ≤ a}. For any twoarguments x and y, there holds either Sf(x) ⊆ Sf(y) or Sf(y) ⊆ Sf(x). Convexityassures, that 〈∇fx −∇fy, x− y〉 ≥ 0 beause(10.3.8) 〈∇fy, x− y〉 ≤ f (x) − f (y) ≤ 〈∇fx, x− y〉This is equivalent to the monotoniity of the gradient mapping ∇f . A graphialinterpretation is given in Figure 10.3.1. Whenever the onstitutive funtion ψ anbe identi�ed with a gradient of a onvex funtion, the monotoniity holds. Thisondition is not neessary though, as ψ an be monotone without orresponding toa gradient (e.g. a non-symmetri positive semi-de�nite matrix).In the absene of smoothness the above disussion remains valid, although sometehnial amendments are neessary. For onvex f , the notion of gradient ∇f at xneeds to be replaed by the subgradient x∗, de�ned at x by(10.3.9) f (y) ≥ f (x) + 〈x∗, y − x〉 for all yThe subgradient x∗ orresponds then to the normal of a supporting plane of thegraph of f at x. The set of all subgradients bears the name of subdi�erential. It isde�ned at x as(10.3.10) ∂f = {x∗ : f (y) ≥ f (x) + 〈x∗, y − x〉 for all y}It is an example of a set valued mapping. When y ∈ Sf(x), then f (y) ≤ f (x)and hene 〈x∗, y − x〉 ≤ 0. This shows that the subdi�erential is equivalent to the



10.3. THE FRICTIONAL CONTACT PROBLEM 143normal one at x to the set Sf(x), quite like it was said in the viinity of formulae(10.1.21) or (10.1.62). One more tool is neessary, in order to de�ne potentialsenompassing the ontat and frition laws. The indiator funtion of a set S isde�ned as follows(10.3.11) δ (x|S) =

{

0 if x ∈ S
∞ if x /∈ SSignorini law an now be then expressed as(10.3.12) −RN ∈ ∂δ
(

ŪN |R+

)(10.3.13) ŪN ∈ ∂δ∗ (−RN |R+)and similar relations an be obtained for the Tresa law(10.3.14) −RT ∈ ∂δ∗ (UT , D (F ))(10.3.15) UT ∈ ∂δ (−RT , D (F ))Funtion δ∗ (·, S) is the Legendre-Fenhel transform of δ (·, S) and it is also alledthe support funtion of the onvex set S. We have(10.3.16) δ∗ (x∗, S) = sup
x

{〈x, x∗〉 − δ (x, S)} = sup
x∈S

〈x, x∗〉One might like to note, that the support funtion was already employed in the�fth line of Algorithm 9.4.4. Existene of nonsmooth, yet onvex potentials for theontat and frition problems additionally on�rms their well-behavedness.10.3.3. Lak of potential, normality, monotoniity and assoiation.One an show the lak of monotoniity of the fritional ontat law. This implies,that there does not exist a onvex potential related to it. Let us �rst note, thatmonotoniity of the pure frition law is related to the inequality(10.3.17) 〈

R1
T − R2

T ,U
1
T − U2

T

〉

≤ 0whih holds true for all pairs of UT and RT verifying Tresa's relation. In the in�n-itesimal sense, this implies dissipation of energy for all inrements of the variables.In order to obtain the ≥ inequality, one should use −RT instead, similarly like in(10.3.14) and (10.3.15). This is merely a matter of onvention. The important bitis in preserving the partiular kind of inequality for all pairs of variables verifyingan interfae law. It is then enough to show, that one kind of inequality annot hold,in order to prove nonmonotoniity. This is simply done for the fritional ontatlaw. Let us take(10.3.18) R1
T = αR2

T ,
∥

∥Ri
T

∥

∥ = µRi
N , α > 0(10.3.19) U1

T = βU2
T , β > 0Then, there holds(10.3.20) 〈

R2
T − R1

T ,U
2
T − U1

T

〉

= (1 − α) (1 − β)
〈

R2
T ,U

2
T

〉
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. α
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a

bc

C*Figure 10.3.2. Constrution of a vetor c = [a, b]
T , suh that

−c ∈ NC(µ) from a horizontala and b = tan (α) ‖a‖.Sine α and β are not related, any sign in the above salar produt is possible.Hene, the fritional ontat law is not monotone. In onnetion with optimisation,analogous observation an be made with respet to the normality. Assume, thatwe would like to extend problem (10.2.13) to the following one(10.3.21) minR L∗
H (R)

‖RαT ‖ ≤ µRαN , RαN ≥ 0The onstraints state, that the ontat reations belong to the frition one (10.3.5).When onsidering optimality onditions for the above problem, one an notie thatthe veloity(10.3.22) −
[

UT

ŪN

]

/∈ NC(µ) (R)does not belong to the normal one of the frition one C (µ). This is beause, thenormal veloity restitution law �knows nothing� about the µ-slope of the fritionone. Fore example when Newton's restitution oe�ient is η = 0, then U isparallel to the plane spanned by a1T and a2T . In onsequene, the gradient of −L∗
Hannot be expressed as a linear ombination of gradients of the ative onstraints.The Kuhn-Tuker vetor does not exist and one annot establish the �rst orderoptimality onditions. Hene, the fritional ontat problem annot be pereivedas minimisation.10.3.4. The Bipotential Method. A formal workaround for the lak of nor-mality of the fritional ontat law was proposed by De Saxé and Feng [55℄. Al-though (10.3.22) annot be helped, one an modify the left hand side, so that avetor belonging to the normal one (of the frition one) is obtained. That is(10.3.23) −

[

UT

ŪN + µ ‖UT ‖

]

∈ NC(µ) (R)for whih a simple geometrial explanation is given in Figure 10.3.2. It turns out,that the above inlusion implies the fritional ontat law. For RN > 0 there musthold ŪN = 0 and then −UT ∈ ND(µRN ) (RT ). For RN = 0 the normal one
NC(µ) (R) is the polar one C∗ of the frition one C (µ), marked in Figure 10.3.2.In this ase the geometrial onstrution allows any ŪN ≥ 0 whih retrieves theSignorini ondition. For RN = 0 no restrition is put on the magnitude of theslip veloity ‖UT ‖. Of ourse, by onstrution, the fritional ontat law impliesinlusion (10.3.23), whih establishes their equivalene.



10.3. THE FRICTIONAL CONTACT PROBLEM 145Inlusion (10.3.23), although useful on its own, an be further shown to �t intothe framework of Impliit Standard Materials, proposed by the authors in [55℄. Asdisussed in the previous setion, there does not exist a single-�eld onvex potential,whose gradient expresses the fritional ontat law. The authors onsider insteadbipotentials, that is funtions impliitly handling a relation between dual variables.By de�nition, a bipotential is(10.3.24) X ×X∗ → [−∞,+∞] : (x, x∗) → b (x, x∗)where b (·, x∗) and b (x, ·) are separately onvex, lower semi-ontinuous2, and suhthat for all x and x∗ there holds(10.3.25) b (x, x∗) ≥ 〈x, x∗〉The above inequality allows to write(10.3.26) x ∈ ∂x∗b (x, x∗)(10.3.27) x∗ ∈ ∂xb (x, x∗)whih follows from (10.3.25) as(10.3.28) b (x, y∗) ≥ b (x, x∗) + 〈x, y∗ − x∗〉 for all y∗(10.3.29) b (y, x∗) ≥ b (x, x∗) + 〈y − x, x∗〉 for all yCondition (10.3.25) is a generalisation of Fenhel's inequality(10.3.30) f (x) + f∗ (x) ≥ 〈x, x∗〉whih in turn is a onsequene of f∗ (x∗) = supx {〈x, x∗〉 − f (x)}. Let Ū =
[

UT , ŪN

]T . In [55℄ a bipotential for the fritional ontat law is de�ned as(10.3.31) b
(

Ū,R
)

= δ
(

−ŪN |R−

)

+ δ (R, C (µ)) + µRN ‖−UT ‖and inlusion (10.3.23) is shown to be equivalent to(10.3.32) −Ū ∈ ∂Rb
(

Ū,R
)This partially brings bak the idea of normality. Nevertheless, it does not removedi�ulties related to the solution of the fritional ontat problem.10.3.5. Fritional ontat as root �nding. Similarly to the work of Hüeberet al. [96℄ we an state the single point fritional ontat operator as(10.3.33) C (U,R) =

[

max (µdN , ‖dT ‖)RT − µmax (0, dN )dT

RN − max (0, dN )

]where the omponents of the preditor(10.3.34) d (U,R) =

[

dT (UT ,RT )
dN (UN , RN )

]2A funtion f is lower semi-ontinuous if for all α sets {x : f (x) ≤ α} are losed.
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Figure 10.3.3. Plots of the Signorini-Coulomb onstraints for ρ =
1, η = 0, Wii = 0.8, Wi6=j = 0.4, BT1 = BT2 = 0, BN = −2. Theoe�ient of frition was µ = 0.1 in the left piture, and µ = 0.9in the right one.were de�ned in (10.1.46) and (10.2.8). As usual, the root �nding problemC (R) = 0an be stated by eliminating U = WR + B. This time however, not muh an besaid about its struture. Some visualisation is possible, at most, for a single pointproblem. The three salar equations in C (R) = 0 desribe some impliit surfaesin the R-spae. This is depited in Figure 10.3.3. The inlined surfae desribes thenormal onstraint CN (R) = 0. The two nearly vertial (aligned with the RN axis)surfaes orrespond to the omponents of the tangential onstraint CT (R) = 0.The solution rests at the intersetion point of all three surfaes. Small fritionoe�ient in the left piture results in fritional slipping. Larger oe�ient in theright piture allows to pronoune the transition from the slip to the stik state.The onstraint surfaes are visibly urved, as the non-smooth transition bendsthem along vertial lines. The solution point in the right piture is in the state ofstiking. Essentially, for problems with many ontat points, one is interested in�nding intersetion points like those in Figure 10.3.3.Surely, operator C (R) is not monotone. This implies that there exist R1, R2suh that(10.3.35) 〈C (R1) − C (R2) ,R1 − R2〉 < 0Thus3, a linear expansion of C (R) an experiene a negative de�nite Jaobian.This is not a desirable feature from the point of view of a Newton sheme appliedto the solution of the root �nding problem C (R) = 0. When C (R) is pereivedas a gradient of a general nononvex funtion, �nding C (R) = 0 an be regardedas looking for a loal extremum. A loal minimum is preferred as a stable solution,but the negative de�niteness of the Jaobian an spoil the onvergene. In suhase the sheme requires globalisation (line searh) in order to avoid divergene oronvergene to a loal maximum. A tehnique of this sort will be examined in thenext hapter.3ERRATA: In our paper [123℄, Setion 4.1.3, there is an erroneous statement: �A simplenumerial experiment shows that for data from Figure 10.3.3, and fore pairs generated randomlyon a unit ball the above inequality holds true in 30% of ases (µ = 0.4).� This was wronglyonluded due to a �awed ode. In fat, for randomly generated fore pairs and the values of ρlargely exeeding 2/λmax, a small perentage (up to 3%) of negative results (10.3.35) is obtained.



10.3. THE FRICTIONAL CONTACT PROBLEM 14710.3.6. The well-behaved juxtaposed simpli�ation. What happens ifwe juxtapose the ontat problem and the frition problem operators? We have(10.3.36) CF (R) =

[

CT (R)
CN (R)

]

=

[

RT − projY (dT (R))
RN − projX (dN (R))

]where X is the positive orthant R+×R+× ...×R+ and Y = D (F1)×D (F2)× ...×
D (Fn). The F index stands for the vetor of all frition thresholds [..., Fα, ...]. Byexatly the same argument as in (10.1.56), one an show that the above operatoris monotone for ρ < 2/λmax, where this time λmax is the maximal eigenvalue ofthe omplete operator W. Of ourse, �nding R suh that CF (R) = 0, althoughit might be easy, does not solve the fritional ontat problem. Nevertheless, onemight try to do it repeatedly, while updating F to the most reent value of µRN .Convergene of suh proedure will depend on the fat, whether from the globalpoint of view it an be pereived as a ontration. If so, it shall onverge to a �xedpoint F = RN . The issue of onvergene was studied by Stadler [195℄, where theuniqueness of solution was shown for su�iently small oe�ient of frition (seealso [168℄). All of the root �nding shemes disussed in the next hapter an beregarded as exploiting a ontration property of some operators. Nevertheless, itwill be ustomary to refer to the spei�ed here proedure as the �xed point method.10.3.7. Can the fritional ontat operator be monotone? Let us rewrite(10.3.33) as(10.3.37) C (R) =

[

CT (R)
CN (R)

]

=

[

RT − projZ (dT (R))
RN − projX (dN (R))

]where X is the positive orthant R+ × R+ × ... × R+ and Z = D
(

µ1 (d1N )+
)

×
D
(

µ2 (d2N )+
)

× ...×D
(

µn (dnN )+
). By (x)+ we mean max (0, x). In analogy with(10.1.58), C beomes monotone, if only the projetion(10.3.38) R = projZ×X (d (R))is a ontration. By Lemma 2 from [168℄, there holds(10.3.39) ∥

∥

∥projZ(A) (dT (R1)) − projZ(B) (dT (R2))
∥

∥

∥

2

≤

≤ ‖dT (R1) − dT (R2)‖2
+ µ2

max ‖dN (R1) − dN (R2)‖2where µmax = maxα µα. One an now write(10.3.40) ∥

∥projZ×X (d (R1)) − projZ×X (d (R2))
∥

∥

2 ≤

≤ ‖d (R1) − d (R2)‖2 + µ2
max ‖d (R1) − d (R2)‖2and further, by the same argument as in (10.1.56), obtain(10.3.41) ∥

∥projZ×X (d (R1)) − projZ×X (d (R2))
∥

∥

2 ≤

≤
(

1 + µ2
max

)

(

1 − 2
λmax

ρβ2 + ρ2β2
)

‖R1 − R2‖2Aording to (10.1.57), the minimum over ρ of the seond braket above is boundedby 1−λ2
min/λ

2
max and hene the ondition (1 + µ2

max

) (

1 − λ2
min/λ

2
max

)

≤ 1 resolvesas
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√

λ2
min

λ2
max − λ2

minThe projetion projZ×X (·) is a ontration and C (R) beomes monotone, only fora su�iently small oe�ient of frition, where λmin and λmax are the minimaland the maximal eigenvalues of W. The above disussion shows, that the fritionalontat problem enjoys a unique solution, when ondition (10.3.42) is satis�ed.10.4. CohesionIn our framework ohesion an bond points of distint bodies, similarly to aglue. It an be used with respet to seleted ontat points, provided that theywere present at t = 0. The situation is rather simple. For all ontat points we anwrite(10.4.1) ŪαN ≥ 0, RαN + hcα ≥ 0, ŪαN (RαN + hcα) = 0where hcα ≥ 0 is an integral of the ohesion threshold over [t, t+ h]. This meansthat the average normal ontat fore RαN/h an be negative up to the absolutelevel of cα. Only when this value is surpassed, the normal veloity is allowed tobeome positive, resulting in deohesion. This needs to be followed by setting
cα = 0 to indiate a brittle failure. Hene, the ohesion law should be ompletedby a ondition, exeuted after the solution for ontat reations is preformed. Itreads(10.4.2) if cα > 0 ∧ (RαN + hcα) = 0 then cα = 0whih brings bak the adhesion-less form of the Signorini formula. When cα > 0the remaining formulae in the formulation of the root �nding problem need to beupdated aordingly. Let us �rst denote(10.4.3) R̄αN = RαN + hcαso that(10.4.4) ŪαN ≥ 0, R̄αN ≥ 0, ŪαN R̄αN = 0holds. If in all neessary formulae we ould replae RN s with R̄N s, then globalpiture would not be altered. This an be done by onsequently applying thehange of oordinates (10.4.3). As RαN = R̄αN − hcα, there holds(10.4.5) U = W∗TRT + W∗N

(

R̄N − hc
)

+ Bwhih an be rewritten as(10.4.6) U = WR̄ + B̄(10.4.7) R̄ =
[

...,RαT , R̄αN , ...
]T(10.4.8) B̄ = B− W∗Nhc



10.5. ENERGETIC CONSISTENCY 149where the start ∗ stands for all relevant indies, so that W∗N omprises the 1 ×
3 normal olumn bloks Wαβ∗N = [WαβTN ,WαβNN ]

T . Owing to (10.4.4) and(10.4.6), one an now solve the usual root �nding problem, involving the projetionformulae having RN replaed by R̄N .In order to avoid lutter in the notation, it is from now on assumed, thatthe following sequene of steps is exeuted whenever solution for the onstraints isdisussed(10.4.9) RN = RN + hc(10.4.10) B = B− W∗Nhc(10.4.11) C (WR + B,R) = 0(10.4.12) RN = RN − hc(10.4.13) for all α, if cα > 0 ∧ (RαN + hcα) = 0 then cα = 0This will be realled, when the omplete time stepping shemes are assembled inChapter 12. For the moment, let us forget about that. A omprehensive disussionabout inorporation of more sophistiated interfae laws an be found in Jean etal. [103℄. 10.5. Energeti onsistenyTotal energy of a multi-body system should not grow due to the inorporationof ontat and frition onstraints. In partiular, onsidering a dynamial systemwithout unbalaned fores (a rigid multi-body system with some initial veloity),this statement needs to hold with respet to the kineti energy. Similarly as in [42℄one an then write(10.5.1) 2
(

E+
k − E−

k

)

=
(

u+ + u−
)T

M
(

u+ − u−
)and use the momentum balane over an impat episode(10.5.2) M

(

u+ − u−
)

= HTRin order to arrive at
2
(

E+
k − E−

k

)

=
(

u+ + u−
)T

HTR

=
〈

H
(

u+ + u−
)

,R
〉

=
〈

U+ + U−,R
〉(10.5.3)The last formula suggests, that if only ŪT = a

(

U+
T + U−

T

) and ŪN = b
(

U+
N + U−

N

)were employed in the ontat and frition onstraints (10.1.34) and (10.3.1), dis-sipativity ould be assured (a, b > 0). This would orrespond to the fully elastitangential shok for stiking ontats, and to the fully elasti normal impat for
U−

N ≤ 0. Suh hoie, with a = b = 1
2 , is in fat quite natural in the view of theon�guration update formula qt+h = qt+ 1

2

(

ut + ut+h
). This seems to be the basisof the energetially onsistent developments by Laursen and Chawla [202, 206℄.Nevertheless, in the ontext of kinemati models with limited deformability, the



10.5. ENERGETIC CONSISTENCY 150fully elasti restitution is rather onstraining. Here, one would like to use a varietyof restitution oe�ients at di�erent ontat points, distint for the normal andtangential omponents. Unfortunately, for the simple Newton's restitution modelenergeti onsisteny an only be assured in few speial situations. This, om-bined with the inonsistenies related to the fritional e�ets, renders the adoptedontat-impat-frition framework only an illustrative tool. Having said that, letus disuss some partiular soures of the (in)onsisteny.10.5.1. Contats, ideally plasti impats, and frition. By a ontat wemean a situation, where the gap funtion g ≤ 0 and U−
N ≥ 0. In this ase, theontat point should not be exluded from the formulation of the onstraints. It iswell possible, that due to the kinemati interations with other ontat points, theright veloity beomes negative U+

N < 0. This should not be allowed. The ontatpoint is then preserved, and ŪN = U+
N + ηmin

(

0, U−
N

)

= U+
N . On the other hand,by an impat we mean, that g ≤ 0 and U−

N < 0, and hene ŪN = U+
N + ηU−

N . Onlyideally plasti impats are onsidered here, where η = 0. Thus again, ŪN = U+
N .In this situation it is easy to show, that dissipativity always holds. We have(10.5.4) U+ = WR + U−and hene(10.5.5) 〈U+ + U−,R〉 = 〈2U+ − WR,R〉 =

2
〈

U+
T ,RT

〉

− 〈WR,R〉+ 2
〈

U+
N ,RN

〉The �rst salar produt 〈U+
T ,RT

〉

≤ 0, due to the frition law (10.3.1). The qua-drati form 〈WR,R〉 ≥ 0, beauseW is semi-positive de�nite. Finally 〈U+
N ,RN

〉

=

0, due to the Signorini ondition (10.1.34). Thus, E+
k − E−

k ≤ 0.10.5.2. Fritionless impats and ontats. We are assuming now RT = 0.Let S be the index set of α, where U−
αN < 0 and thus U+

αN = −ηαU
−
αN (impats).Let P be the index set of α, where U−

αN ≥ 0 and thus U+
αN ≥ 0 (ontats). Thequestion is about the sign of 〈U+

N + U−
N ,RN

〉. For α ∈ P and U+
αN > 0 therefollows RαN = 0, and hene the orresponding term in the salar produt is zero.It is fair to assume U+

αN = 0 for all α ∈ P . Then(10.5.6) {

U+
αN = −ηαU

−
αN for α ∈ S

U+
βN = 0 for β ∈ PFor better illustration let ηα = η for all α. One an now write(10.5.7) U+

N + U−
N =

[

(1 − η)U−
SN

U−
PN

](10.5.8) RN = −W−1
NN

[

(1 + η)U−
SN

U−
PN

]Hene(10.5.9) −
〈

U+
N + U−

N ,RN

〉

=

=
〈

W−1
NNU−

N ,U
−
N

〉

− η2

〈

W−1
NN

[

U−
SN

0

]

,

[

U−
SN

0

]〉



10.5. ENERGETIC CONSISTENCY 151In the above, the right hand side di�erene an beome negative. This is seen eitherfrom the spetral piture of the salar produts4, or simply by notiing that subtra-tion from a quadrati form of some of its diagonal squares turns it into a saddle sur-fae. Hene, the energy growth is possible. On the other hand, for P = ∅, dissipativ-ity is restored. This follows also from 〈

U+
N + U−

N ,RN

〉

=
〈

(1 − η)U−
N ,RN

〉

≤ 0,as it was shown by Gloker [42℄. One ould then onsider only impats, de�ned by
U−

N ≤ 0. This however is not always suitable. For example, for �at surfaes in astatially overdetermined ontat, suh assumption would lead to a noisy, spuriousroking after the deay of bouning, for some η < 1. This would result from sues-sive swithing o� and on of some ontat points, for whih the value of U−
N wouldosillate around zero, on the level of numerial toleranes. Proessing a nonemptyset P stabilises this sort of behaviour. In the example from Setion 13.4.3, theenergy growth does not happen, beause there indeed P = ∅. An additional fatoreasing o� a possible energy growth is the square η2 in (10.5.9), where η ≤ 1.10.5.3. Impats, ontats and frition. Considering now also the fritionale�ets RT 6= 0, let us additionally assume that some unbalaned fores do exist.In the ontext of the dynami time stepping, we an write(10.5.10) 1

2

(

u+ + u−
)

M
(

u+ − u−
)

=
h

2

(

u+ + u−
)

f +
1

2

〈

U+ + U−,R
〉whih orresponds to(10.5.11) △Ek + △Ep =

1

2

〈

U+ + U−,R
〉where the onservative fore f = −∂Ep/∂q, and the fat that △q = h

2 (u+ + u−)were used. Taking the total energy E = Ek + Ep, one obtains △Ek + △Ep =
E+ − E−, and hene similarly as in the previous ase(10.5.12) 2

(

E+ − E−
)

=
〈

U+ + U−,R
〉Now(10.5.13) U+ = WR + Brather than (10.5.4). Thus, derivation of kind (10.5.5) is no longer possible. Onean merely write(10.5.14) 〈U+ + U−,R〉 =

=
〈

U+
T ,RT

〉

+
〈

U+
PN ,RPN

〉

+
〈

U−
T ,RT

〉

+
〈

−QU−
SN ,RSN

〉where Q = diag (ηα), and index sets S and P were already de�ned in the previoussetion. On the right hand side above, the sum of �rst two salar produts is semi-negative, due to the frition and ontat onditions. The last salar produt ispositive. The one but the last an be positive, when 〈U+
T ,U

−
T

〉

≤ 0 (asU+
T = −λRTwith λ ≥ 0). This orresponds to slip reversal. The amount of positive and negativevalues in (10.5.14) is the matter of a partiular setup. Nothing general an be saidabout it, maybe with the exeption of stating, that the inonsisteny results fromour model and it should be orreted by developing a better one. It is relevant tomention, that the quasi-stati sheme from Setion 5.3 remains onsistent, as there

U− = 0 by de�nition.4An unpratial riterion for stability would be η2 ≤ mini ai/ maxj bj , where a is the pro-jetion of U
−
N

on the eigenbasis of W
−1
NN

, and b is a similar projetion of h

U
−1
ST

,0
iT .



10.6. LITERATURE 15210.6. LiteratureA review paper on dynamis of rigid bodies with frition and impats was givenby Stewart [198℄. Another general review, oriented more towards the event drivenstrategies is due to Brogliato et al. [32℄. A review paper on the formulation ofelastostati fritional ontat problems was also given by Mijar and Arora [150℄.Monograph by Wriggers [211℄ gives a omprehensive summary of omputationaltehniques related to deformable ontat problems.The Contat Dynamis method developed by Moreau [156℄ and Jean [102℄ ispartiularly onvenient for kinematially modest �nite deformation formulations,where the dual form of the ontat problem an be inexpensively utilised (e.g. as-sembly of rigid bodies, for whih an expliit inversion of the inertia operator isomputationally feasible). The main features of the method omprise the use of aveloity level time stepping, the non-regularised treatment of fritional ontat law,and the blok Gauss-Seidel relaxation utilised stepwise in order to resolve unilat-eral onstraints. The method was developed within the ontext of rigid and �niteelement disretised ontinua. Appliations range from granular �ow [178℄, throughstatis of masonry [40℄, to deep drawing simulations [109℄. Contat Dynamisbelongs to a broader ategory of shemes dealing with the non-smooth dynami-al systems. For example, developments by Wösle and Pfei�er [210℄ and Pfei�eret al. [170℄ utilise the same theoretial apparatus, although they di�er in details(aelerations are involved, Newton sheme is used rather than the Gauss-Seidel).In the ontext of rigid multi-body simulations, Stewart and Trinkle [199℄ devel-oped a time-stepping method based on an inelasti impat law and polyhedral lin-earisation of the Coulomb frition one. Their formulation does not allow violationof interpenetration onstraints, and the resulting linear omplementary problem(LCP) is guaranteed to posses solutions at all times. Pang et al. [165℄ developeda linear programing tehnique to solve an unoupled omplementary problem re-sulting from the planar formulation of a quasi-stati evolution of rigid multi-bodysystems. This work was later extended to three dimensions by Trinkle et al. [204℄,where polyhedral disretisation of the frition one (like in [199℄) allowed to pre-serve the original algebrai struture. Anitesu et al. [10℄ review several aspetsof time-stepping methods for rigid bodies. Anitesu and Potra [9℄ design a time-stepping method for rigid multi-body systems with sti� fores. A linearly impliittime integrator is used in ombination with the LCP formulation of onstraints.The method is shown to be stable in the sti� limit, where a sti� fore joining twopoints ats as a joint onstraint. Potra et al. [70℄ desribe a seond order, sti�ystable linearly impliit time-stepping for rigid multi-body fritional ontat prob-lems. They employ an event predition method, a Poisson restitution model andan LCP formulation of the onstraints. The seond order onvergene rate of themethod is exempli�ed on few examples (f. Setions 13.4.4 and 13.4.5). Song et al.[194℄ desribe a linear omplementarity based framework for ompliant ontats,and prove solvability of the so posed problem. Leine and Gloker [132℄ developa Coulomb-Contensou fritional law for rigid bodies, where the ontat surfae isapproximated by a disk, allowing to extrat a torque-spin relation. The onstitutivelaw is applied in the ontat of time-stepping methods, for an example of the tipple-top toy. This work an be related to the one by Goyal et al. [77℄, where a similarholisti approah to the motion of rigid, sliding bodies was undertaken. Gloker[42℄ disusses di�erenes between Newton's and Poisson's impat models. Leine etal. [131℄ design a simple mehanial system named the Fritional Impat Osil-lator, and examine the ourene of Painlevé paradox for their setup. A numberof interesting onlusions is drawn, regarding the onditions under whih fritionalhopping an happen. Stewart [197℄ gives a proof of onvergene of a time-stepping



10.6. LITERATURE 153algorithm similar to the one given in [199℄. He also resolves a partiular instaneof the Painlevé paradox.In the ontext of deformable ontinua, an augmented Lagrangian formulationof the fritional ontat problem was developed by Alart and Curnier [7℄. Theauthors derive a linearisation of their formulation and apply Newton method as asolution strategy. This formulations serves as a basis for many subsequent devel-opments. For example, Heegaard and Curnier [85℄ disuss a suitable extension tolarge slip problems, and Heege and Alart [86℄ develop a �nite element for metalforming appliations. Jones and Papadopoulos [106℄ develop a heuristi method ofimposing stik and slip onditions based on a relaxed in�ation of frition one and aontrol of slip reversal. Newton method is used as a solution strategy for some two-dimensional examples. An anisotropi frition model is developed in the followingwork by Jones and Papadopoulos [107℄. Kane et al. [111℄ develop a formulationof the fritionless ontat problem by applying tools of nonsmooth analysis [43℄.Their non-penetration ondition based on volumetri overlap of �nite elements issimilar to the one undertaken in the urrent work. The ontat problem is formu-lated as a generalised, non-smooth minimisation (indiator funtions are used) andthe sequential quadrati programming sheme is employed as a solution strategy.Pandol� et al. [164℄ extend this framework into the fritional ase and, in thealgorithmi sense, they maintain the variational (minimisation based) struture ofthe formulation. The Bipotential formulation summarised in Setion 10.3.4 wasinitially introdued by De Saxe and Feng in [56℄.



CHAPTER 11SolversThe objetive is to solve(11.0.1) C (WR + B,R) = 0where all kinds of onstraints are inluded. In the following, it will be at timesonvenient to write C (R) = 0 instead of the above. Calulation of the onstraintreations allows to advane the time step and step up a onseutive system ofonstraint equations. Properties of C and several numerial tehniques for solving(11.0.1) will be disussed in the following setions.11.1. Properties of COperatorC inherits its properties after both, the individual onstraints and W.In the presene of the fritional ontat onstraints it is unavoidably nonmonotone.This suggests the possibility of non-uniqueness of roots of C (R) = 0. A proess oflooking for those an be further undermined by the lak of invertibility of C. Thisremains in a diret relation with the invertibility of W. Finally, non-smoothnessof C plays a role whenever derivatives are to be omputed. The nonmonotoniityhas already been disussed at some length. The invertibility and non-smoothnessrequire few additional omments.11.1.1. Invertibility. In general, C (R) needs not to be invertible (more pre-isely loally invertible, that is, invertible for a su�iently small neighbourhood ofeah R). This is more of an issue for poorly deformable kinematis (like here),although for FEM disretised models the problem pratially disappears. The dis-ussion on the invertibility of W (Setion 7.1) remains valid, nevertheless one needsto realise that C (R) ≃ WR + B only for some spei� situations (e.g. when allontats are stiky), so that invertibility of W does not diretly translate into thatof C. In the further exposition we shall make a pragmati assumption:Assumption. In the ontext of Newton methods presented in Setion 11.2, itwill be impliitly assumed that C (R) is loally invertible.Hene, the Jaobian ∂C (R) /∂R (or its generalisation) will be by the assump-tion non-singular. The linearisation based methods will be tested in ombinationwith pseudo-rigid kinematis. This renders our simpli�ation easier to ahieve. Ex-tension of the methods from Setion 11.2 to the ase of non-invertible C (R) needsto be registered as a matter of future researh.11.1.2. Semi-smoothness. It an be shown that C (R) is Lipshitz ontin-uous, that is for all R1 and R2(11.1.1) ‖C (R1) − C (R2)‖ ≤ K ‖R1 − R2‖where K is a onstant. One an use (10.3.41) and the triangle inequality in orderto show that. K depends on the maximal frition oe�ient µ, on the saling154



11.1. PROPERTIES OF C 155parameter ρ, and on the maximal eigenvalue of W. As it was for example shownin Setion 10.1.6, C (R) is not smooth. The soure of non-smoothness is due to the
max funtion employed in the projetion formulae desribing ontat onstraints.Beause of this feature, C (R) is not di�erentiable in the usual sense for all R. Thismeans that the Fréhet derivative DC, de�ned as(11.1.2) lim

‖h‖→0

‖C (R + h) − C (R) −DC (R) · h‖
‖h‖ = 0does not exist for all R. In our setting, max (x, y) is not di�erentiable when x = y.This orresponds to a surfae S inR-spae, impliitly de�ned by µdαN = ‖dαT ‖ and

dαN = 0, f. (10.3.33). Intuitively, aross S the ontat and frition states hange(e.g. from stik to slip). Hene, one annot desribe DC by a single linear operator,when R ∈ S. Several generalisations of di�erentiability have been proposed in orderto work around similar di�ulties [43, 39℄. For onvex funtions, the subdi�erentialde�ned in (10.3.10) is an example. C (R) however does not pertain to onvexity,as it was shown to be nonmonotone. For Lipshitz funtions, Clarke [43, p. 70℄de�nes a generalised Jaobian(11.1.3) ∂C (R) = o








lim
Ri → R

Ri ∈ DC

DC (Ri)

















as the onvex hull of all limits of Fréhet derivatives, where DC denotes the set ofpoints where C is di�erentiable (see also [39℄). Qi and Sun [175℄ use the notion ofsemi-smoothness in referene to (loally) Lipshitzian funtions, for whih the limit(11.1.4) lim
V ∈ ∂C (R + tg)

g → h, t ↓ 0

{V g}exists for any h. The authors show, that for semismooth funtions there holds(11.1.5) V h− C
′

(R;h) = o (‖h‖) , V ∈ ∂C (R) , h → 0(11.1.6) C (R + h) − C (R) − C
′

(R;h) = o (‖h‖) , h → 0where C
′

(R,h) is the diretional derivative(11.1.7) C
′

(R;h) = lim
t↓0

C (R + th) − C (R)

tand f (x) = o (g (x)), when lim f (x) /g (x) = 0 for x → 0. Assuming invertibilityof V ∈ ∂C (R) and uniform boundedness1 of V −1 in the neighbourhood of R,formulae (11.1.5) and (11.1.6) allow to show loal super-linear onvergene of thefollowing semi-smooth Newton sheme(11.1.8) Rk+1 = Rk − V −1
k C

(

Rk
)

, Vk ∈ ∂C
(

Rk
)1there exist a neighbourhood N (R) and a onstant C, suh that ‚

‚V −1
‚

‚ < C for all V ∈

∂C (S), where S ∈ N (R)



11.2. NEWTON METHOD 156One might like to note, that in the above sheme some freedom is left as to thehoie of Vk. In partiular for Rk ∈ S, one an hoose the semi-smooth tangentoperator to be a limit of just one sequene (11.1.3), ranging through points of asmooth path adjaent to S in the neighbourhood of Rk. This freedom will be usedin Setion 11.2, when de�ning ative sets. Now, taking R∗ to be the solution of
C (R) = 0, we an write

∥

∥Rk+1 − R∗
∥

∥ =
∥

∥Rk − R∗ − V −1
k C

(

Rk
)∥

∥ =
∥

∥

∥−V −1
k

[

C
(

Rk
)

− C (R∗) − C
′
(

R∗;Rk − R∗
)

+ C
′
(

R∗;Rk − R∗
)

− Vk

(

Rk − R∗
)

]∥

∥

∥

≤
∥

∥V −1
k

∥

∥

∥

∥

∥

[

C
(

Rk
)

− C (R∗) − C
′
(

R∗;Rk − R∗
)

]∥

∥

∥+

+
∥

∥V −1
k

∥

∥

∥

∥

∥

[

Vk

(

Rk − R∗
)

− C
′
(

R∗;Rk − R∗
)

]∥

∥

∥ =

= o
(∥

∥Rk − R∗
∥

∥

)Hene, by piking a starting point R0 for su�iently lose to R∗, a super-linearonvergene an be ahieved, as ∥∥Rk+1 − R∗
∥

∥ /
∥

∥Rk − R∗
∥

∥ beomes arbitrarilysmall. In pratise, it is the major di�ulty to �nd an appropriate starting point.The Newton method presented Setion 11.2, an be regarded as an instane of thesemi-smooth tehnique skethed above. A formal proof would have to show, that
C (R) is semi-smooth for R ∈ S. It is smooth for the remaining part of the domain.It seems lear, that similarly as for the augmented Lagrangian orresponding to aonvex program, shown to be semismooth in [175℄, one an pursue suh exerise inour ase. On the other hand, the issue of a partiular hoie of the loal onvergenetheory, remains in a sense the matter of taste. For example, for similar lass ofproblems, Pang [166℄ applied the idea of B-di�erentiability. Although in thatdevelopment, existene of Fréhet derivative was assumed at R∗, it did not preventa suessful appliation of the method to fritional ontat problems [41℄. Also, ageneralisation of the loal onvergene theory was proposed by Chen et al. [39℄,where the notion of slant di�erentiability was introdued. Among the useful featuresof this approah, there is appliability in the in�nite dimensional ontext, as well asno need for the uniform boundedness of a linear operator generalising the Jaobianin the viinity of a solution point.11.2. Newton methodWe present a linearisation of the fritional ontat problem, as it is the mostinvolving part of (11.0.1). Inlusion of other kinds of onstraints orresponds merelyto a simple extension of the linear systems presented in the following. This will bedisussed at a later point. Operator (11.0.1) for the fritional ontat problem anbe rewritten as(11.2.1) {

U = B + WR

C (U,R) = 0where(11.2.2) C (U,R) =









...
CαT (Uα,Rα)
CαN (Uα,Rα)

...







(11.2.3) CαT (Uα,Rα) = max (µdαN , ‖dαT ‖)RαT − µmax (0, dαN )dαT



11.2. NEWTON METHOD 157(11.2.4) CαN (Uα,Rα) = RαN − max (0, dαN)(11.2.5) dαT (Uα,Rα) = RαT − ρUαT(11.2.6) dαN (Uα,Rα) = RαN − ρŪαNSimilar formulation is a starting point of the development by Hüeber et al. [96℄.There however, the �nite element mortar disretisation provides the �rst relationin (11.2.1). Contrary to the above, the formulation in [96℄ is stated in the standardprimal form, with displaements ating on the global tangent operator. The urrentformulation is usually more suitable for kinemati models with a moderate amountof freedom, as W and B an be inexpensively omputed.In order to approximately solve (11.2.1), the ative set strategy and the fri-tional Newton step proposed in [96℄ will be adopted. For the lass of problems likethe unilateral ontat alone, the primal-dual ative set tehnique was shown to beequivalent to the semismooth Newton method by Hintermüller et al. [93℄, so thatthe overall development an be regarded as a variant of the Newton algorithm.11.2.1. Unilateral ontat. The fritionless ase is brie�y examined. Find-ing normal reations redues to a well behaved problem, the struture of whih wasalready disussed in Setion 10.1.7. Aording to the reasoning presented therein,one the index sets of zero and nonzero reations are identi�ed, the solution an beobtained in one step. The two possible index sets will be denoted as ative AN andinative IN . Although their immediate identi�ation is usually not possible, thepreditive formula (11.2.6) and the normal onstraint (11.2.4) suggest the followingapproximation(11.2.7) AN = {α : dαN ≥ 0} IN = {α} \ ANThe primal-dual ative set algorithm solves a series of redued linear systems forsuessive approximations of the above sets. This an be summarised as followsAlgorithm 11.2.1. UNIL1 k = 02 Tk = WRk + B − Uk3 Ak
N =

{

α : dk
αN ≥ 0

}

Ik
N = {α} \ Ak

N4 if k > 0 ∧ Ak
N = Ak−1

N then stop5 X = Ak
NN Y =

{

Ak
NT
}

∪ Ik
N6 [

WXX WXY

0 IY

] [

δRX

δRY

]k

=

[

−ŪX − TX

−RY

]k7 Rk+1 = Rk + δRk8 Uk+1 = Uk + WδRk + Tk9 k = k + 110 goto 2For the sake of onsisteny with the forthoming fritional linearisation, theinremental formulation is utilised above. An update of the residual Tk in line 2 isfollowed by the predition of the ative and inative sets in line 3. From the omple-mentarity onsiderations, it is seen that one the orret sets were predited, theyare not hanged in line 3. Thus, the termination riterion takes quite spei� form(line 4). In line 5 two index sets are reated: X enumerating normal omponents in



11.2. NEWTON METHOD 158the ative set, and Y enumerating all of the tangential omponents together withthe inative normal ones. The linear system in line 6 follows from(11.2.8) Uk + δUk = W
(

Rk + δRk
)

+ Bwhen onsidered with Ūk
αN +δUk

αN = 0 for α ∈ AN and Rk
αN +δRk

N = 0 for α ∈ IN ,as well as Rk
αT + δRk

αT = 0 for all α. The last four lines onlude the algorithm inan obvious way. The above reipe an be optimised by eliminating all tangentialomponents.11.2.2. Fritional tangents. As explained by Hüeber et al. [96℄, a numeri-ally robust linearisation of the fritional onstraint (11.2.3) requires some heuristimodi�ations. The authors examine a number of suh modi�ations, one of whihproves to be the most e�etive. Here, a brief derivation of the relevant formulae isprovided.The basi tehnial step relies on the di�erentiation of the max funtion, asthe non-smoothness of the Eulidean norm in (11.2.3) will not play any role (theterm vanishes for stiking points and is nonzero otherwise). The generalised partialderivative of the funtion f (x, y) = max (x, y) an be written as Gfx = 1 if x ≥ yand Gfx = 0 if x < y. Gfy is alulated analogously. As adopted in [175℄, atany point the generalised derivative belongs to the set-valued gradient de�ned byClarke [43℄. As a onsequene, the partial derivatives at x = y an be equal toany number in the range [0, 1]. Thus when omparing x and y, the equality anbe adopted on either side. From the algorithmi point of view this orresponds toa nuane in the de�nition of the ative and inative sets, utility of whih will beommented on at a later point (Setion 11.2.3). The ative and inative tangentialsets are de�ned as follows(11.2.9) AT = {α ∈ AN : ‖dαT ‖ − µdαN ≥ 0} IT = AN \ ATLet us fous on a ontat point with index α, and temporarily neglet the α-indexing. The harateristi funtion χS = 1 if α ∈ S and χS = 0 otherwise.Aording to the above de�nitions the di�erential of the tangential onstraint reads(11.2.10) GCT
(δR, δU) = χAT

dT (δRT −ρδUT )
‖dT ‖ RT

+χIT
µ (δRN − ρδUN )RT + max (µdN , ‖dT ‖) δRT

−χAN
µ (δRN − ρδUN )dT − µmax (0, dN ) (δRT − ρδUT )and the tangential Newton step takes the form(11.2.11) GCT

(

δRk, δUk
)

= −CT

(

Rk,Uk
)(11.2.12) (

Rk+1,Uk+1
)

=
(

Rk,Uk
)

+
(

δRk, δUk
)In ase of fritional stiking (‖dT ‖ < µdN ), equation (11.2.11) simpli�es to(11.2.13) δUk

T = −Uk
T

dk
N

δRN − Uk
T

dk
N

ρŪk
N − Uk

TCondition Ūk
N + δUk

N = 0 was utilised to derive the above (fritional linearisationis onsidered on the ative normal set). Using (11.2.12), formula (11.2.13) an berewritten as Uk+1
T =

(

1 −Rk+1
N /dk

N

)

Uk
T , where it is seen that for a onvergent



11.2. NEWTON METHOD 159sequene of iterates Uk+1
T → 0, as ∣∣Rk+1

N − dk
N

∣

∣ → 0. In the remaining ase offritional slipping (‖dT ‖ ≥ µdN ), equation (11.2.11) takes the following form(11.2.14) Rk
T +

(

I − Mk
)

δRk
T + ρMkδUk

T = vk
Tµ
(

Rk
N + δRN

)where I stands for the two-dimensional identity matrix, and(11.2.15) Mk = ek
(

I− Fk
)(11.2.16) Fk =

Rk
T ⊗ dk

T

µdk
N

∥

∥dk
T

∥

∥(11.2.17) ek =
µdk

N
∥

∥dk
T

∥

∥(11.2.18) vk
T =

dk
T

∥

∥dk
T

∥

∥Equation (11.2.14) expresses a ray-wise Coulomb onstraint along the preditordiretion vk
T . Evidently, variations of the tangential reation and veloity togetherontribute to the ful�lment of the linearised onstraint. Thus, the iterates of thereation Rk+1
T do not neessarily belong to the frition one before the onvergenetightens. The following modi�ation(11.2.19) F̃k =

Rk
T ⊗ dk

T

max
(

µdk
N ,
∥

∥Rk
T

∥

∥

) ∥

∥dk
T

∥

∥results in an approximate projetion of Rk+1 onto the tangent to the urrent setionof the frition one [96℄. This results from the fat, that whenever Rk
T and dk

T arenearly aligned, together with ∥∥Rk
T

∥

∥ ≥ µdk
N , the matrix I − F̃k ats roughly asa projetion on the diretion perpendiular to vk

T . Therefore, the modi�ed Mk�lters out omponents parallel to vk
T . One an see, that when (11.2.19) is in power,

Rk
T + δRk

T will approximately lay on the line perpendiular to vk
T and tangentto the µRk+1

N setion of the frition one. This an be best observed in Figure11.2.1. In pratie then, the oe�ients in relation (11.2.14) are omputed with(11.2.16) replaed by (11.2.19). The modi�ation results in faster and more robustonvergene behaviour. This is beause the iterates of Rk+1
T remain loser to thefrition one, thus less signi�antly interat through the kinemati oupling in W.This seems partiularly helpful in the formulation admitting large rotations andtherefore stronger normal-tangential oupling.It is appropriate to mention another modi�ation investigated in [96℄. Theauthors regularise the operator I − Mk in (11.2.14), so that it is always invertibleand positive de�nite. This is not pursued here, as it proved not to be onsistentlybene�ial in the numerial realisation. This might be due to the di�erent way ofeliminating variables in the urrent development.11.2.3. Complete algorithm. The normal ative set strategy from Setion11.2.1 an now be ombined with the tangential linearisation, in order to deliver aomplete Newton sheme for the fritional ontat problem. As it was mentionedin Setion 10.3.5, the nonmonotone harater of the adopted ontat law resultsin the need to globalise the Newton sheme. This is provided by means of thenonmonotone line searh tehnique by Grippo et al. [78℄. The hoie seems to bemore relevant to the nature of problem at hand. Nevertheless, the simple Armijo's
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Figure 11.2.1. The E�et of the modi�ation (11.2.19). Theirle radii are µRk
N (solid), and µRk+1

N (dashed). On the left,the unmodi�ed iteration of the Newton step (11.2.11), (11.2.12)is presented. The ellipsoid orresponds to the points of Rk
T +

(

I − Mk
)

δRk
T + ρMkS, where ‖S‖ =

∥

∥δUk
T

∥

∥. On the right, thesame iteration with (11.2.19) enabled results in the narrowed ellip-soid, with one of its eigenvetors nearly orthogonal to dk
T . Thus,

Ri+1
T is approximately plaed on the tangent to the urrent setionof the frition one.[11℄ line searh will also be investigated. This type of monotone globalisation wasapplied by Christensen et al. [41℄ in the ontext of two dimensional linearly elastiproblems.The sequene of iterates of ontat reations is generated aording to(11.2.20) Rk+1 = Rk + αkδRkwhere δRk is the searh diretion, and αk ∈ (0, 1] is the step size. The searhdiretion results from the semismooth Newton step applied to the system (11.2.1).Three ways of alulating δRk will be disussed. The �rst one results from the on-sistent linearisation of (11.2.1). The normal ative set strategy and the tangentiallinearisation are ombined as followsAlgorithm 11.2.2. NEWT1 Tk = WRk + B − Uk2 Ak

N =
{

α : dk
αN ≥ 0

}

Ik
N = {α} \ Ak

N3 Ak
T =

{

α :
∥

∥dk
αT

∥

∥− µdk
αN ≥ 0 ∧ α ∈ Ak

N

}

Ik
T = Ak

N \ Ak
T4 solve ΩkδRk = Πk where5 for α ∈ Ik

N
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[
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αT = −Rk
αT9 for α ∈ Ak
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Ωk
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α
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+ ρMk
αWααTT ρMk

αWααNT − µvk
αT

]
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αβT∗ = ρMk

αWαβT∗ Πk
αT = µvk

αTR
k
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αT − ρMk
αTk

αT



11.2. NEWTON METHOD 161The residual update in the �rst line above is followed by the seletion of ativeand inative sets (lines 2, 3). The tangential sets are subsets of the normal ativeone, Ak
N = Ak

T ∩Ik
T . The inrement δRk results from the solution of a linear systemin line 4. The system matrix Ω is omposed of dense 3× 3 bloks Ωαβ, and has thesame blok-sparsity pattern as W. This is of use in the numerial realisation, asthe symboli fatorisation of Ω an be omputed only one. The struture of rowsin line 5 results from the fat that Rk+1

α = 0 is assumed on Ik
N for the full Newtonsheme (αk = 1). Thus δRk

α = −Rk
α on the inative normal set. The normal rowstruture in line 62 results from the reasoning already presented in Setion 11.2.1.In short, it orresponds to the rows of(11.2.21) Uk + δUk = W

(

Rk + δRk
)

+ Bwritten with the aount of Ūk
αN + δUαN = 0 for α ∈ AN . In line 7, the oupling(11.2.13) is utilised in order to eliminate the veloity inrement δUk

αT from thetangential rows of (11.2.21), with α ∈ Ik
T . As the ative sets were de�ned withthe equality inlusion ≥, one needs to deal with the ative tangential ase, orre-sponding to the zero frition bound (line 8). This is a pragmati hoie motivatedby a faster ommuniation during the solution proess. In partiular, onsidering astruture omposed of ontating bodies with a fore applied to only one of them,the above algorithm will assume the fritionless ontat for all bodies not diretlyadjaent to the one with the nonzero fore. The next iteration will then start fromsome nonzero reations guess for all bodies onneted in the ontat graph (thenonzero blok pattern graph of W). If the sharp inequality > was utilised to de�nethe ative sets, the nonzero ontat foring would have to gradually propagate a-ording to the immediate adjaeny in the ontat graph. Coming bak to the line8, it is seen that the zero tangential response is enfored for α ∈ Ak

T and dαN = 0.The remaining non-degenerate tangential ase (dαN > 0) is onsidered in line 9.Here, the tangential rows of Ω are obtained by substituting δUk
T , alulated from(11.2.21) into the tangent relation (11.2.14). This way of eliminating variables ismotivated by the intention of preserving the impat of modi�ation (11.2.19).In fat, the desent diretions provided by the algorithm NEWT are not amongthe most e�etive, when alulated far from the solution. As a result of numer-ial experiments aimed at improvement of the global onvergene properties, thefollowing hybrid sheme has arisenAlgorithm 11.2.3. HYB1 Tk = WRk + B − Uk2 Ak

N =
{

α : dk
αN ≥ 0

}

Ik
N = {α} \ Ak

N3 Ak
T =

{

α :
∥

∥dk
αT

∥

∥− µRk
αN ≥ 0

}

Ik
T = {α} \ Ak

T4 solve ΩkδRk = Πk where5 for α ∈ Ik
N

Ωk
αα = I Ωk

αβ = 0 Πk = −Rk6 for α ∈ Ak
N

Ωk
αβN∗ = WαβN∗ Πk

αN = −Ūk
αN − T k

αN7 for α ∈ Ik
T

Ωk
αβT∗ = WαβT∗ Πk

αT = −Uk
αT − Tk

αT8 for α ∈ Ak
T ∧ dαN = 0

Ωk
ααT∗ =

[

I 0
]

Ωk
αβT∗ = 0 Πk

αT = −Rk
αT9 for α ∈ Ak

T ∧ dαN > 02In the algorithms presented in this setion the asterisk subsript �∗� replaes �all relevantindies�, e.g. ΩN∗ =
ˆ

ΩNT ΩNN

˜.
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Ωk

ααT∗ =
[ (

I− Mk
α

)

+ ρMk
αWααTT ρMk

αWααNT − µvk
αT

]

Ωk
αβT∗ = ρMk

αWαβT∗ Πk
αT = µvk

αTR
k
αN − Rk

αT − ρMk
αTk

αTContrary to the previous ase, the normal and tangential sets are independentlyset in lines 2 and 3. Also, the bound employed in line 3 is not any more based onthe preditor dk
αN , but owes to the urrently omputed normal reation Rk

αN . Thelast di�erene with regard to the algorithm NEWT is the assumption of Uk+1
αT = 0 for

α ∈ Ik
T , expressed in line 7. This means, that the strit linearisation of the inativetangential ase is not pursued. The above sheme an be linked to the �xed pointtehnique, presented in the referene work [96℄. The major inonsisteny is inusing the full Newton linearisation for the slip ontat, in line 9. In the �xed pointapproah, the tangential slip relations are linearised aording to the Tresa fritionmodel. The linearisation an be obtained from (11.2.14), by disarding the terminvolving δRk

N and employing a �xed normal bound bN instead of dk
N(11.2.22) Rk

T +
(

I− Mk
)

δRk
T + ρMkδUk

T = vk
TµbNwhere in the intermediate formulae (11.2.16), (11.2.17), and (11.2.19) the normalpreditor dk

N is replaed by the �xed bound bN . The �xed point approah is sum-marised belowAlgorithm 11.2.4. FIX1 Tk = WRk + B − Uk2 Ak
N =
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α : dk
αN ≥ 0

}

Ik
N = {α} \ Ak

N3 Ak
T =
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∥

∥dk
αT

∥

∥− µbαN ≥ 0
}

Ik
T = {α} \ Ak

T4 solve ΩkδRk = Πk where5 for α ∈ Ik
N

Ωk
αα = I Ωk

αβ = 0 Πk = −Rk6 for α ∈ Ak
N

Ωk
αβN∗ = WαβN∗ Πk

αN = −Ūk
αN − T k

αN7 for α ∈ Ik
T

Ωk
αβT∗ = WαβT∗ Πk

αT = −Uk
αT − Tk

αT8 for α ∈ Ak
T ∧ dαN = 0

Ωk
ααT∗ =

[

I 0
]

Ωk
αβT∗ = 0 Πk

αT = −Rk
αT9 for α ∈ Ak

T ∧ dαN > 0
Ωk

ααT∗ =
[ (

I− Mk
α

)

+ ρMk
αWααTT ρMk

αWααNT

]

Ωk
αβT∗ = ρMk

αWαβT∗ Πk
αT = µvk

αT bαN − Rk
αT − ρMk

αTk
αTIt is seen that the third line of the algorithm HYB is a speial ase of theorresponding line of FIX, with bαN = Rk

αN . This orresponds to an update of thefrition bound in every iteration of the �xed point sheme. In pratie, at leastin ase of the urrent kinemati formulation, that frequent update of the fritionbound prevents onvergene of the �xed point approah. This happens beausethe tangential-normal oupling in line 9 results only from the problem kinematis.Nevertheless, the Tresa regularisation usually results in a good global onvergenebehaviour, provided the updates of bαN are sparse enough. The hybrid approahprovides then an intermediate ase between the full Newton and the �xed pointmethods. The poor onvergene of the �xed point approah with the most frequentupdate of normal bounds is remedied by the full linearisation of the tangential slip.This heuristi attempt of synergy between the Newton and �xed point approahesis to be numerially investigated in the next setion.One thing to be noted about all three algorithms is that they result in anunsymmetri systems to be solved for δRk. This an be to some extent remedied



11.2. NEWTON METHOD 163by multiplying the two tangential rows given in lines 9 by the operator [ρMk
α

]−1.This introdues more symmetry into Ω and seems to be partiularly advantageousfor the �xed point sheme, where the system matrix beomes gradually symmetriwith progressing onvergene. On the other hand, the modi�ation (11.2.19) doesnot at any more on the entire row of Ω. The experiene shows that (at least withinthe urrent formulation) this way of eliminating variables is not e�etive. Thus, itwill not be further investigated.The above three shemes need to be embraed by some global riteria of advan-ing the iterations. In ase of NEWT and HYB this will be provided by the mentionedline searh tehnique. The �xed point sheme, being generally better behaved interms of the global onvergene, will only be wrapped into a suitable external loopupdating the normal bounds bαN . All together, this an be stated as followsAlgorithm 11.2.5. SCSOL (ALG, σ, γ, β, J, ǫ,K, φ, L)1 k = 02 do3 δRk = ALG ()4 αk = 15 while M
(

Rk + αkδRk
)

> max
0≤j≤min(k,J)

Mk−j − 2γαkMk

∧ k > 0 ∧ αk > β ∧ ALG 6=FIX do αk = σαk6 Rk+1 = Rk + αkδRk7 Uk+1 = Uk + αkWδRk + Tk8 err =
∥

∥δRk
∥

∥ /
∥

∥Rk+1
∥

∥9 k = k + 110 if ALG =FIX ∧ err ≤ ǫ then11 err =
∥

∥Rk
N − bN

∥

∥ /
∥

∥Rk
N

∥

∥12 bN = Rk
N13 end if14 if ALG 6=FIX ∧ k > L then SCALE ({ρα} , φ, L)15 while err > ǫ ∧ k ≤ KThe argument ALG an be NEWT, HYB or FIX. The next three arguments σ, γ, β ∈

(0, 1) orrespond to the line searh step. The ǫ desribes numerial auray, Kbounds the maximal number of iterations, and J is the length of memory bu�er usedby the line searh. The remaining arguments φ, L ≥ 1 are used for the purpose ofthe penalty saling and will be ommented on later in this setion. In the third lineabove, the urrent inrement of reations is omputed by ALG. The initial salingparameter αk is set equal to 1 in the following line. The loop in line 5 orrespondsto the nonmonotone line searh [78℄. Note, that for J = 0 it is equivalent to the linesearh of Armijo's type [11℄. Both approahes were originally designed for smoothproblems. The analysis suitable for the nonsmooth setting was provided by Ferrisand Luidi [69℄. The auxiliary merit funtion is de�ned as(11.2.23) M (R) =
1

2
CT (R,U)C (R,U)

∣

∣

∣

∣

U=WR+Bwhere (11.2.1) was utilised. The symbol Mk refers to M
(

Rk
). If the minimisationin line 5 is suessful (iterations end before αk ≤ β), it is seen that a monotoniderease of the merit funtion is enfored for J = 0, while this is not neessarilythe ase for J > 0. The aeptability riterion(11.2.24) M

(

Rk + αkδRk
)

≤ max
0≤j≤min(k,J)

Mk−j − 2γαkMk



11.2. NEWTON METHOD 164allows for the temporary growth of the merit funtion if only J > 0. At the sametime the solution point remains inside of the nested level sets Rk ∈ Λk ⊆ Λk−1(11.2.25) Λk =

{

R : M (R) ≤ max
0≤j≤min(k,J)

M
(

Rk−j
)

}The parameter J is then proportional to the allowed extent of the temporary growthof the merit funtion. Grippo et al. [78℄ prove that this relaxation does nothinder the global onvergene, if only some onditions hold (roughly, the meritfuntion must be bounded below, and δR must be a desend diretion). At thesame time, for the nonmonotone problems this may lead to a faster onvergene, asa onvergent sequene of iterates does not have to orrespond to a monotoniallydereasing sequene of funtion values. The threshold value β is used due to the�nite preision of numerial omputations (the line searh loop exits after a �nitenumber of steps). For this reason the line searh annot be fully robust in pratie.In the above algorithm, the line searh tehnique is applied for k > 0, whih resultsin α0 = 1. This is a heuristi ditated by an observation, that usually it is moree�etive to start globalisation from the iterate obtained by the pure Newton steporresponding to an initial residual. In other words, it often happens that thesubsequent alphas are �large�, while if the line searh was performed for k = 0,initial alphas often happen to be �small�. Finally, it is seen that the line searh isomitted for the �xed point sheme. The update of reations and veloities followsin lines 6, 7. Line 7 orresponds to the Newton step(11.2.26) δUk = WδRk + Tk(11.2.27) Tk = WRk + B− Ukthus the residual Tk+1 is always zero(11.2.28) Uk+1 = Uk + αkWδRk + WRk + B− Uk = WRk+1 + BIt is possible to modify UNIL, NEWT, HYB and FIX by replaing the omputation of
Tk by the update of veloity Uk = WRk + B. This, ombined with the removalof line 7 from SCSOL still provides a feasible framework. Nevertheless, experieneshows that proessing the residual is advantageous and results in smaller numbersof iterations. From the lines 8-13 it is seen that in ase of the �xed point method,after eah onvergent run with a �xed normal bound, the bound is updated andthe relative error of this update replaes the error ontrolling the termination ofthe algorithm. Note also, that saling is not applied in ase of the �xed pointsheme (line 14), as we are interested in testing the plainest possible version of thisapproah.Algorithms like the one above, where the tangent operator results from a non-smooth, and to some extent ombinatorial struture, are prone to yling. By thisit is meant that for some parameter sets, the algorithm may get aught into ayle (here orresponding to a sequene of ontat states) preventing further on-vergene. In the ontext of fritional ontat problems, this was mentioned by Alartand Curnier [7℄, or DeSaxé and Feng [55℄. In general, yling is more frequentfor sti� problems and its ourrene is related to the regularisation parameter ρ,used in preditive formulae (11.2.5) and (11.2.6). This issue is more thoroughlyommented in [7℄. In this work, initial values of ρα are independently set for eahontat ρα = 1/λmax (Wαα), where λmax is the maximal eigenvalue of the diagonalblok matrix Wαα. This orresponds to the monotoniity riteria of the diagonalsub-problems of the simpli�ed problem (10.3.36). In the ourse of solution, eah



11.2. NEWTON METHOD 165hange of the tangential ontat state (from stik to slip or vie versa) is furtherpenalised by inreasing ρα. As the maximal value of ρα ought to be bounded by
2/λmax (W) [7℄, only a �nite number (bounded by L) of suh inreases is per-formed, although an expliit estimate of λmax (W) is not aounted for. In orderto avoid exessive number of heuristi parameters, L provides also the lower itera-tions bound after whih the saling is applied. This strategy seems to be su�ientin pratie. The SCALE routine is summarised below (initial lα are assumed equalzero)Algorithm 11.2.6. SCALE ({ρα} , φ, L)1 for eah α do2 if lα < L ∧ (stick → slip ∨ slip→ stick)α then3 ρα = φρα4 lα = lα + 15 end if6 end forIt is relevant to ask why does not the line searh proedure su�e to avoidyling. In Setion 10.3.5 it was shown that the single ontat point problembehaves in a nonmonotone way. Using the unonstrained minimisation analogy,one ould say that the merit funtion orresponding to this simplest ase possessesa region of onavity. For problems with many ontat points the orrespondingmerit funtions possess regions of onavity not only juxtaposed from the singlepoint problems, but also reated through their kinemati interations. In otherwords the problem beomes highly nonlinear. Theoretially, enforing a monotonederease of the merit funtion (J = 0) should guarantee a desent towards theloal minimum. In pratise though, the line searh loop is fored to end after arelatively small number of steps (one is not interested in updating the solution with
αk lose to the numerial zero). After an �un�nished� searh the solution point mayjump to a neighbouring hill. This proess may ontinue in a yli manner. Thenonmonotone line searh (J > 0) only inreases the probability of suh senario(nevertheless, it is potentially bene�ial otherwise).11.2.4. Inlusion of joints. When joints are present, they orrespond to ad-ditional rows in the system ΩkδRk = Πk. Joints are expressed as linear onstraintson seleted omponents of loal veloity. For example a onstraint(11.2.29) aUαN + b = 0through linearisation(11.2.30) a (UαN + δUαN ) + b = 0and(11.2.31) (UαN + δUαN ) = WαN∗ (R + δR) + BαNresults in a row(11.2.32) WαN∗δR

k+ = − b

a
− BαN − Wα∗R

kso that(11.2.33) Ωα∗ = WαN∗



11.4. LITERATURE 166(11.2.34) Πα = − b

a
− BαN − WαN∗R

kIf there is no restrition on the motion in the tangent plane, two additional rows
IδRk

αT = −Rk
αT an be added to the system, assuring Rk+1

αT = 0. Alternatively,one an use Ωαα = [0,WααNN ] and this way avoid proessing of RαT .11.3. Gauss-Seidel methodOne of the harateristi features of the Contat Dynamis Method is a blokGauss-Seidel relaxation employed to solve (11.0.1). The method is rather robustin pratise, although its loal onvergene an be extremely slow. The advantageis, that it onverges regardless of the invertibility of W. An inomplete proof ofthe onvergene for the three-dimensional fritional ontat problem was given byJourdan et al. [109℄ (where also a omplete, two-dimensional proof an be found).Let {Cα} be the set of all individual onstraints, presribed as Cα (Uα,Rα) = 0.The Gauss-Seidel method an be summarised as followsAlgorithm 11.3.1. Gauss_Seidel (ǫ,K)1 k = 12 do3 for all α do4 B̄α =
∑

β 6=α WαβRβ + Bα5 solve C
(

WααRk+1
α + B̄α,R

k+1
α

)

= 06 end for7 err =
∥

∥Rk+1 − Rk
∥

∥ /
∥

∥Rk+1
∥

∥8 k = k + 19 while err > ǫ ∧ k ≤ KThe paradigm of a Gauss-Seidel relaxation is learly pronouned in the above.A series of diagonal problems is solved in the internal loop from lines 3-6. As asolution method in line 5, any of the shemes desribed in the previous setion anbe used. The single diagonal problem is usually quite well behaved, and a semi-smooth Newton method requires just few iterations (without line searh) in orderto �nd a solution. A very simple onvergene riterion is used in lines 7, 9. In theliterature spei� to the Contat Dynamis Method, some more elaborate riteriaare mentioned [102, 177℄. 11.4. LiteratureThe Newton method under onsideration in Setion 11.2 stems from a broaderrange of shemes for non-di�erentiable systems. General developments of this kindwere disussed by Pang [166℄ and Qi and Sun [175℄. Global onvergene of suhshemes was disussed by Han et al. [82℄, Ferris and Luidi [69℄, or Dai [53℄. Inthe ontext of the mixed fritional ontat formulation Alart and Curnier [7℄ dis-uss the generalised Newton method (GNM), whih belongs to the same ategory.An observation made in [7℄, about the pratial robustness of GNM applied tofritionless problems, was later on�rmed under the umbrella of the primal-dualative set method [94℄. The latter was shown to be equivalent to the semismoothNewton method by Hintermüller et al. [93℄. In ase of fritional problems, Chris-tensen et al. [41℄ developed a linearisation along the lines of [166℄, and presentedtwo-dimensional linearly elasti examples. In three dimensions, the non-smoothNewton sheme was reently applied by Jones and Papadopoulos [107℄ to solveanisotropi fritional problems. The referene development for Setion 11.2, Hüe-ber et al. [96℄, disusses a multi-grid implementation of the �xed point Tresa



11.4. LITERATURE 167approah and ompares it with the semi-smooth Newton step employing a diretsolver. Barral et al. [19℄ desribe a generalised Newton method applied to a planarfritionless ontat problem with Maxwell-Norton material. Zavarise and Wriggers[214℄ obtain a super-linear method for the augmented Lagrangian formulation ofthe fritionless ontat problem. The �rst order update of Lagrange multipliers isenhaned by a heuristi method of retrieving higher order information. The teh-nique retains simpliity of the Uzawa-like algorithm, although its extensibility tothe Coulomb frition problem is not lear. Large multi-body ontat problems werenot extensively studied within the ontext of Newton methods. Two-dimensionalfritionless developments involving the primal-dual ative set approah an be foundin Ainsworth and Mihai [6℄, as well as in Hüeber and Wohlmuth [97℄.Multi-body formulations, inluding frition and �nite kinematis usually resortto methods avoiding formation of global tangents. The Gauss-Seidel tehnique ofthe Contat Dynamis method [156, 102℄ is a good example here. Jourdan etal. [109℄ prove the onvergene of the Gauss-Seidel sheme for two-dimensionalproblems. The sheme is similar to other splitting-type tehniques, relaying onthe �xed point ideas. In an elegant paper, Laborde and Renard [168℄ disuss anumber of �xed point strategies to the fritional ontat problem. Their formula-tion failitates fast translation of results between �nite dimensional and funtionspae settings. Bisegna et al. [30℄ disuss relaxation tehniques for two dimensionalSignorini-Coulomb problems based on the dual formulation, and hene similar tothe Gauss-Seidel approah. This is a typial splitting tehnique, where the fritionand the ontat problems are solved alternately. Another splitting based algorithmis disussed by Haslinger et al. [83℄ and Dostál et al. [60℄. As shown in [83℄, for thistype of approahes a �xed point exists for a su�iently small frition oe�ient.A splitting type method was also used by Ainsworth and Mihai [5℄ in the ontextof large, dynami simulations of masonry. The primal-dual ative set method wasapplied in order to alternatively solve the frition and the ontat problems. Inthe ontext of the Gauss-Seidel method [109℄, Joli and Feng [105℄ developed lin-earisation of the projetion formula pertinent to the Bipotential Method [55℄, andutilised it in a Newton method, solving the loal diagonal sub-problems.In [188℄ Sha et al. developed a linear omplementary formulation of a de-formable expliit fritional ontat problem and applied a onjugate gradient methodas a solution strategy. A onjugate gradient method is also developed by Heinsteinand Laursen [87℄ and applied in the ontext of an inremental matrix-free formu-lation. In the ontext of two-dimensional granular media simulations, Renouf andAlart [177℄ develop a preonditioned onjugate-gradient solver, whih is shown tooutperform the Gauss-Seidel method used in Contat Dynamis [102℄.For rigid bodies, Stewart and Trinkle [199℄ use polyhedral approximation ofthe frition one and develop a linear omplementary (LCP) formulation solvableby Lemke's method [133℄. A number of following developments in rigid multi-bodydynamis involves similar LCP approah [10, 194, 70℄. An interesting and e�ientsimpli�ation of the rigid multi-body fritional ontat problem was developed byKaufman et al. [114℄ and applied in the �eld of omputer animation.



CHAPTER 12ImplementationThe framework desribed in the foregoing hapters has been implemented as aomputer program named Solfe. The dynami and the quasi-stati time-steppingsunderlying this implementation have been summarised below.Algorithm 12.0.1. Solfe_Dynami (h, T )1 for t = 0 while t < T do2 qt+ h
2 = half-step (qt,ut)3 {Cα}c

= update-ontats (qt+ h
2

)4 {Cα}j = update-joints (qt+ h
2

)5 (H,W,B) = ompute-operators ({Cα}c ∪ {Cα}j
)6 solve C (WR + B,R)7 ut+h = ut + M−1hf t+ h

2 + M−1HTR8 qt+h = half-step (qt+ h
2 ,ut+h

)9 t = t+ h10 end forThe time step is h and the duration of simulation is T are the arguments ofAlgorithm 12.0.1. In the seond line, the mid-step on�guration qt+ h
2 is obtainedby performing a half-step, aording to (5.1.1) for the linear and deformable motion,and aording to (5.2.9) for rigid rotations. Based on the mid-step on�guration, aontat detetion algorithm is exeuted in the third line. This ould be any of themethods presented in Setions 9.3.4, 9.3.5 or 9.3.6, ombined with an extrationof loal frames as desribed in Setion 9.4. The ontat update involves deletionsof loal frames for element pairs whose overlap has eased. It involves as well anupdate of all loal frames related to the new and to the old ontat points. In thefourth line, the loal frames orresponding to joints are updated. The operatorsdesribing loal dynamis are omputed in line 5, as desribed in Setion 7.1. Theonstraint equations are solved next (line 6), where one of the methods desribedin Chapter 11 is employed. It is realled, that steps (10.4.9-10.4.13) need to beexeuted in order to aount for ohesion. The veloity update follows next, andit is aompanied by the �nal update of on�guration in line 8. For linear anddeformable motion qt+h is obtained aording to (5.1.3). For rigid rotations the�nal on�guration is omputed with (5.2.13) or (5.2.16).Algorithm 12.0.2. Solfe_Stati (h, T,K, r)1 for t = 0 while t < T do2 {Cα}c = update-ontats (qt)3 M = sale-inertia (h, 4.0, {Bi})4 qt+h

0 =qt, k = 1, V = ∞5 do6 {Cα}c
= update-gaps (qt+h

)7 {Cα}j
= update-joints (qt+h

)168



12. IMPLEMENTATION 1698 (H,W,B) = ompute-operators ({Cα}c ∪ {Cα}j
)9 solve C (WR + B,R)10 ut+h = A−1hf (t+ h,qt) + A−1HTR11 qt+h

k = step (qt+h
k−1,u

t+h
)12 Ek = kineti-energy-of-mass-entres ({Bi})13 if k = 2 then V = max (log (E1/E2

)

, 0
)14 k = k + 115 while k < K ∧ log (Ek−1/Ek

)

≥ rV16 t = t+ h17 end forThe quasi-stati Algorithm 12.0.2 takes as its arguments the time step h, theduration T , a dynami relaxation iterations bound K, and a kineti energy droprate fator r. There are two loops in the algorithm, between lines 1-17 and betweenlines 5-15. The external loop advanes the arti�ial time, while the internal oneattempts to �nd a steady state solution for eah instant of time. Contats aredeteted and update in the external loop, in line 2. This task is relatively ostlyand hene we do not wish to run it too frequently. Instead, in the inner loop (line 6),only ontat gaps are updated, aording to formula (10.1.1). Another motivationbehind the sparser updates of ontats, is to avoid �noise� in the dynami relaxationloop 5-15. This would be introdued due to the small hanges of ontat framesourring after the on�guration updates in line 11. In line 3, the inertia operatorsof individual bodies are saled in order to assure a uniform damping of the impliitEuler sheme. Suh saling has been desribed in Setion 5.3. In our routine themaximal eigenvalue of M−1K is saled in order to assure λmaxh = 4 for eahpseudo-rigid body. One the gaps have been updated (line 6), the update of loalframes related to the equality onstraints follows in line 7. The loal dynamisoperators are omputed in line 8 and the solution of the onstraint equations followsin the next line (note, that (10.4.9-10.4.13) is exeuted in the presene of ohesion).The veloity update is performed next (line 10). It should stressed, that the timeis �xed here to t + h, so that the time-dependent loadings (or onstraints) donot hange in the internal loop. The on�guration update follows in line 11. Forpseudo-rigid bodies the formula qt+h
k = qt+h

k−1 + hut+h is exeuted, while a generalstep update in line 11 hints the possibility of an analogous update for rigid bodies
Λt+h

k = Λt+h
k−1 exp

[

hΩt+h
]. The kineti energy of mass entres is omputed next.The rate of deay of the energy is used as a termination riterion for the innerloop (together with the bound on the maximal number of iterations K). If theenergy is dereasing, the initial slope of its drop is used as a referene value V . Onthe other hand, if the energy grows, then V = 0 and the inner loop terminates.The logarithmi sale is employed in order to onveniently aount for the dropspanning several orders of magnitude. The rate of the energy drop is used, beausethe graph of the kineti energy usually resembles Figure 12.0.1. Naturally, the loalonvergene of our simpli�ed relaxation method annot be fast, as the neessarylinearisations have been skipped.

E

kFigure 12.0.1. A typial deay of kineti energy for the dynamirelaxation loop.



CHAPTER 13Examples13.1. Rigid rotationsShemes (5.2.9-5.2.16) from Chapter 5 are further ompared with LIEMID[EA℄by Krysl [126℄ and the expliit method by Simo and Wong [100℄.13.1.1. Unstable rotation. This example is referred to after Simo and Wong[100℄. The example is based on the fat that rigid rotation is stable only about theaxes of minimum and maximum moment of inertia (Arnold [13℄, Chapter 29.2).Small perturbation of rotation around the axis of intermediate moment of inertialeads to unstable osillation. The initial rotation is identity, the initial angularveloity is zero, and the referential inertia tensor is J = diag [5, 10, 1]. The spatialtorque reads
t (t) =







[20, 0, 0] for 0 ≤ t < 2
[0, 1/ (5h) , 0] for 2 ≤ t ≤ 2 + h
[0, 0, 0] for 2 + h < tso that an impulse inverse proportional to the time step is delivered at t = 2. Dueto the dependene of torque on the time step, the onvergene rate an be only
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Figure 13.1.1. Unstable rotation. Magnitude of the inrementalrotation vetor for a range of time steps.170
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{

2−5, 2−6, ..., 2−15
}.orret result has been obtained at h ≃ 0.0019. NEW3 still gives a qualitativelyaeptable result at h = 0.05.Figure 13.1.4 illustrates the onvergene behaviour. It is noteworthy that thespatial torque formula had to be modi�ed so that the interval 2 ≤ t ≤ 2+ 0.9h wasonsidered for the disturbane impulse. Without this modi�ation LIEMID[EA℄onsistently delivered very poor results, whih is related to the fat that this shemealulates the torque at the ends of the time interval. Again it an be seen thatNEW1, NEW3 and LIEMID[EA℄ perform similarly in terms of the absolute errorin the referential angular momentum Π, although NEW1 and NEW3 seem muhmore aurate with respet to the omputation of the rotation operator R. Thereferene solution was omputed in this ase with the expliit sheme by Simo andWong with h = 2−22 at time t = 10.13.1.2. Heavy top. This is the seond example referred to after Simo andWong [100℄. The heavy symmetrial top is spinning around the �xed base point.In this example the applied torque depends on the on�guration, introduing addi-tional soure of nonlinearity. The top of mass M and axis of symmetry E3 rotatesin the uniform gravitational �eld −ge3. The spatial torque reads

t = −Mgr× e3 r = lRE3 = Ri3, i ∈ {1, 2, 3}where the assumed values areM = 20, g = 1, l = 1. As Krysl points out [126℄, theheavy top model onserves the Hamiltonian
H =

1

2
π · j−1π +Mge3 · rwhere π = jw is the spatial angular momentum, j = RJRT is the spatial tensorof inertia, and w = RW is the spatial angular veloity. In this example the initialrotation is R (0) = exp [0.3, 0, 0], the initial angular veloity is W (0) = [0, 0, 50]and the spatial torque reads t (t) = 20 [−R23 (t) , R13 (t) , 0].Figure 13.1.5 illustrates the Hamiltonian history omputed with the large timestep h = 2−5 (nearly π/2 of rotation inrement per step) and the history omputedwith the smaller step h = 2−8 (10 deg rotation inrement). The harateristi driftbehaviour is visible for the large step, while after the derease of the time step
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Figure 13.1.5. Heavy top. Plots of Hamiltonian for h = 2−5(left) and for h = 2−8 (right).
 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 10

 1e-05  1e-04  0.001  0.01  0.1

E
rr

or
 |Π

(h
) 

- 
Π

*|

Time step h

Simo-Wong
LIEMID[EA]

NEW1
NEW2
NEW3

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 10

 1e-05  1e-04  0.001  0.01  0.1

E
rr

or
 |R

(h
) 

- 
R

*|

Time step h

Simo-Wong
LIEMID[EA]

NEW1
NEW2
NEW3Figure 13.1.6. Heavy top. Convergene of the body-frame an-gular momentum Π = JW (left), and the rotation operator R(right). The referene solutions Π∗ and R∗ have been omputedwith LIEMID[EA℄ and h = 2−20 at time t = 10. The solutions

Π(h) and R (h) were omputed for time steps h ∈
{

2−5, 2−6, ..., 2−15
}.by the fator of eight, the drift beomes negligible for NEW1 and NEW2. NEW3behaves stably, although the negative osillations are learly pronouned.Figure 13.1.6 illustrates the onvergene behaviour. The referene solution wasomputed with LIEMID[EA℄ and h = 2−20 at time t = 10. LIEMID[EA℄ alsolearly outperforms other shemes. All of the proposed algorithms are positionedin between of the expliit approah by Simo and Wong and LIEMID[EA℄. NEW2and NEW3 behave alike and are more aurate in omparison with NEW1.13.1.3. Rotating plate. In the last example the pendulum omprising a lightretangular plate and a weightless rigid rod is onsidered (Figure 13.1.7). The platehas dimensions 0.2× 0.2× 0.01 and the length of the rod is l =

√
0.1. In the initialon�guration, the rod is �xed to the mass entre of the side wall of the plate at oneend. The other end rests at a spatial point plaed at distane h = 0.3 above themass entre of the plate. The on�guration of the plate is q = [R, x̄], where x̄ is thespatial plaement of the mass entre. The initial on�guration reads q (0) = [I,0],and the initial angular veloity is W (0) = [0, 0, 50]. The initial linear veloity iszero. The mass density is ρ = 1 and the the uniform gravitational �eld is −ge3,where g = 9.81.Figure 13.1.8 illustrates the history of the kineti energy omputed over thetime interval [0, 10] with the time step h = 2−10 (‖Ψ‖ < 10 deg). It is seen that
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W(0)

Figure 13.1.7. Rotating plate. Retangular plate with the initialangular veloity W (0) is onstrained by the rigid rod �xed to theentre of the side wall. The other end of the rod rests at a spatialpoint passing trough the axis ollinear with W (0) and oinidentwith the mass entre of the plate.
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Figure 13.1.10. Rotating plate. Absolute error of the on�gura-tion q = [R, x̄] (left), and the onvergene rate (right). The ref-erene solution q∗ has been omputed with NEW3 and h = 2−22at time t = 1. The solution q (h) was omputed for time steps
h ∈

{

2−8, 2−9, ..., 2−18
}.Figure 13.1.10 illustrates the onvergene. The referene solution q∗ was om-puted with NEW3 and h = 2−22 at time t = 1. The solution q (h) was omputedfor time steps h ∈

{

2−8, 2−9, ..., 2−18
}. The momentum drift of NEW1 redues itsauray to the �rst order for the onsidered instane of the onstrained motion.NEW2 and NEW3 maintain the seond order auray. Clearly, NEW3 is the mostaurate sheme. 13.2. Contat searhWe illustrate performane of the broad phase algorithms for the pairwise overlapdetetion between the axis aligned bounding boxes. Three kinds of box test setsare used in the evaluation. A 2 × 2 × 2 ube is �lled with: a randomly generatedbox set, a set of adjaently paked boxes, and a set of spherially distributed boxes.These are illustrated in Figure 13.2.1. All boxes are of a ubial shape. Their sizeis hosen, so that eah box has on average 10 overlaps with other boxes in all ofthe test sets.Figures 13.2.2, 13.2.3 and 13.2.4 illustrate the runtimes1 for sizes of test setsranging from 104 to 106. Clearly, the plane-sweep algorithm using only the pri-ority searh tree as a dynami retangle struture performs very poorly (SWEEP-PST2D). This is beause the priority tree is essentially one dimensional. The hybridapproah by Zomorodian and Edelsbrunner [216℄ performs extremely well in mostof the ases. It onsistently outperforms the algorithms proposed in Chapter 9 for11.7GHz CPU with 1GB of RAM

Figure 13.2.1. Examples of three lasses of testing sets: random,adjaent, and spherial distributions of bounding boxes.
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Figure 13.2.2. Random distribution. Without (left) and with(right) time-oherene.
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

1000K500K100K

R
un

tim
e 

[s
]

Number of boxes

Adjacent

HYBRID
HASH3D

SWEEP-H2D
SWEEP-H2DPST

SWEEP-PST2D
SWEEP-H1DPST

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

1000K500K100K

R
un

tim
e 

[s
]

Number of boxes

Adjacent

HYBRID
HASH3D

SWEEP-H2D
SWEEP-H2DPST

SWEEP-PST2D
SWEEP-H1DPST
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Figure 13.2.5. Random distribution (≤ 104). Without (left) andwith (right) time-oherene.
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Figure 13.3.1. The ube, wall and dome assemblies, all resting ona rigid foundation. Cube units have dimensions 0.1 × 0.1 × 0.1m,and are subjeted to gravity of (2, 2,−10)m/s2. Wall units areof dimensions 0.2 × 0.2 × 0.1m, and are subjeted to gravity of
(0, 0,−10)m/s2, along with the upper bar load of (0, 0,−30)kN .The inner radius of dome is 10m, and the thikness is 0.6m. Itdeforms under the gravity of (0, 0,−10)m/s2. The lower left or-ner of the wall is restrained by a rigid ubi obstale. Materialproperties are 15.5GPa for Young modulus, 0.2 for Poisson ratio,and 2200 kg/m3 for the density.is inluded. Further investigation is neessary before a de�nite onlusion an bereahed. 13.3. Newton solversThree examples are studied for three sizes of assemblies and a range of fritionoe�ients. The two-dimensional wall example orresponds to the experimentalsetup by Loureno et al. [142℄. The three-dimensional ube, and the dome exampleshave been seleted to piture onvergene for various geometrial plaements ofontat points. The fous is on the numerial properties of SCSOL, rather then on themehanial response of test examples. Assembly geometries, loading onditions andmaterial properties are given in Figure 13.3.1. Pseudo-rigid uboids are employedas the individual bodies, and hene a single ontat point is established betweeneah pair of adjaent briks.The time stepping from Setion 5.3 is employed. As a quasi-stati responseis onsidered, inertia properties were saled in order to impose uniform numerialdamping. For the impliit Euler sheme, a reasonable amount of damping an beobtained for λh ≥ 4, where λ is a seleted eigenvalue of M−1K, h is the time step,and K is the urrent sti�ness tangent [98℄. Here h = 1 was assumed, and inertiatensors E0 were saled, so that λmax

(

M−1K
)

= 4 for all bodies.Table 1 summarises numbers of bodies, ontat points, and ondition num-bers of respetive W operators. Assemblies of variable size preserve geometrialfeatures desribed in Figure 13.3.1. The ondition numbers were obtained withdgson routine of the sparse fatorisation pakage SuperLU [57℄, whih was alsoemployed as the linear solver. The ondition numbers are high, yet far from singu-lar. Nevertheless, for the wall example the ill-onditioning of W signi�antly growswith the struture size. This orresponds to the disussion presented in Setion7.1. Conditioning of W does not diretly orrelate to that of Ω. In fat Ω = Wonly if all ontat points are in the fritional stik state. In most ases Ω 6= W and
Ω ought to be assembled with some are. As W orresponds to the inverse of a



13.3. NEWTON SOLVERS 179Table 1. Numbers of bodies, ontat points, and ondition num-bers of W.Example Bodies Contats W onditioningCUBE1 27 63 2E+7CUBE2 125 325 5E+7CUBE3 343 931 9E+7WALL1 56 147 3E+6WALL2 162 451 4E+7WALL3 338 963 2E+8DOME1 60 120 7E+5DOME2 220 440 2E+6DOME3 480 960 8E+6Table 2. Parameters of SCSOL used in the performane study.
σ γ β J ǫ K φ L

0.9 0.1 0.034 0 or 10 1E-10 1000 10 6sti�ness matrix, its entries are likely to be quite small (O (10−8
) for example). Thelinearised onstraints though, are usually of the order O (1). For this reason, to pre-vent ill-onditioning, system rows orresponding to those onstraints are saled bythe relevant diagonal entries of W. For example a row ... 0 1 0...R = Πi is replaedby ... 0Wii 0...R = WiiΠi. Generally, saling is applied to system rows de�ned inlines 5, 8, and 9 of NEWT, HYB, and FIX. As a result, the ondition numbers of Ω areomparable to those of W, provided the saling of the regularisation parameter ραis not exessive (routine SCALE).The input parameters of SCSOL are summarised in Table 2. Both the monotone(J = 0) and nonmonotone (J = 10) variants were investigated. The set of testedfrition oe�ients was µ ∈

{

0, 1
3 ,

2
3 , 1
}. For eah disretisation (Table 1), onehundred inremental runs of the time stepping were performed. In all test ases thezero initial guess was used for R and U for the �rst run of SCSOL. The onseutiveruns started from the previous solution. To report averages of entities spanningseveral orders of magnitude, the following proedure was applied(13.3.1) average = exp

(

n
∑

i=1

log (valuei) /n

)where n is either the total number of system solutions (when reporting the ondi-tioning of Ω) or the total number of onvergent runs (when reporting the average�nal value of the merit funtion M). In the following, instead of referring to SCSOLwith a partiular argument ALG, a diret referene to NEWT, HYB or FIX is sometimesmade. The monotone (Armijo's type, J = 0) line searh based algorithms are de-noted by NEWT(A) and HYB(A), while the nonmonotone (Grippo's type, J = 10)line searh based ones are denoted by NEWT(G), HYB(G).For the fritionless problems SCSOL redues to UNIL, regardless of the argumentALG. Results for this ase are presented in Table 3. For all examples numbers ofiterations are smaller than �ve. It is also seen that the system matries are ratherwell behaved. This ase an be takled very e�iently.
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Figure 13.3.2. Aggregate statistis forNEWT, FIX andHYB(nine examples, three frition levels µ ∈
{

1
3 ,

2
3 , 1
}, hundred in-rements). Note that statistis on line searhes and saling arenot appliable to FIX and therefore omitted. NEWT(A) andHYB(A) orrespond to the monotone (Armijo's) line searh, whileNEWT(G) and HYB(G) to the nonmonotone (Grippo's) linesearh.



13.3. NEWTON SOLVERS 181Table 3. Results for the fritionless ase, µ = 0.Maximal number of iterations 5Average onditioning of Ω 2E+3Average �nal value of M 1E-23Aggregate statistis for all fritional omputations with µ ∈
{

1
3 ,

2
3 , 1
} have beensummarised in Figure 13.3.2. The reported average values orrespond to the 2700runs of SCSOL (nine examples, three frition levels, hundred inrements), while thereported average maximal values orrespond to the averages of the 27 maxima (nineexamples, three frition levels) taken over the hundred inrements. As the maximalvalues usually orrespond to the �rst run of SCSOL (starting from the zero initialguess), the average maxima give an estimate of the worst ase performane.In Figure 13.3.2 (j) it is seen, that while NEWT and FIX often failed to onvergewithin the presribed 1000 iterations, HYB is the only sheme whih sueeded inall ases. It must be stated though, that while the failures of the full Newtonapproah orrespond to the divergene (unbounded growth of the auxiliary meritfuntion), those of the �xed point method orrespond to the insu�ient numberof onverging iterations. At the same time the full Newton method is more proneto divergene, when ombined with the nonmonotone line searh. This is beausethe minimisation along a given diretion is not always suessful (β > 0), and anunbounded growth of the auxiliary merit funtion (11.2.23) is thus possible. In thenonmonotone searh ase, a number of suh failed minimisations an be stored andthe maximal of them used as the referene value in the line searh loop, resultingin a greater probability of divergene.Comparison of the average iteration numbers in Figure 13.3.2 (a) shows thatthe hybrid approah inherits good loal onvergene properties of the full Newtonsheme - the numbers of iterations are similar for both approahes (less then 5).At the same time the �xed point method needs onsiderably more iterations toonverge (25 on average). In Figure 13.3.2 (b) it is seen that the average worst aseperformane of HYB ompares favourably with the ompetitors. The nonmonotoneversion of the line searh results in slightly smaller numbers of iterations for thehybrid approah, while it is quite on the ontrary for the full Newton sheme (f.omments in the previous paragraph). It should be noted, that the number ofiterations for the �xed point sheme was found to be learly related to the problemsize (although it annot be dedued from the presented �gures).In Figures 13.3.2 (), (d) it an be seen that the nonmonotone line searhonsistently results in a smaller average numbers of line searhes, when omparedto the Armijo's type line searh.In terms of the system onditioning, it is seen in Figure 13.3.2 (e) that thehybrid linearisation inherits good properties of the �xed point sheme. The highworst ase averages in Figure 13.3.2 (f) orrespond to the nearly singular systemsourring towards the end of the �rst solver run. This issue does not representa signi�ant numerial di�ulty, as SuperLU is apable of takling ill-onditionedproblems. The ill onditioning of systems produed by HYB is milder, ompared tothose resulting from NEWT.Figure 13.3.2 (g) shows that the hybrid sheme on average results in the small-est �nal values of the auxiliary merit funtion. This is in relation with the amountof penalty saling, presented in Figure 13.3.2 (h), whih is smaller for the hybridmethod (the penalty saling perentage equals, for one solver run, to the perent-age of regularisation parameters ρα a�eted by the routine SCALE). Similarly, the



13.4. SOME BENCHMARKS 182penalty saling is related to the average worst ase system onditioning presentedin Figure 13.3.2 (f).It is seen in Figure 13.3.2 (i), that the full Newton sheme generated roughlyten times more negative de�nite systems, ompared with the hybrid method (whihprodued less then 0.5% of them). Using the unonstrained minimisation analogy,one ould say that the full Newton method visits the tops of the hills more frequentlythen the hybrid sheme. This might to some extent explain its poor robustness.In onlusion, the full Newton sheme (NEWT) appears to be unreliable in oursetting, although it performs pretty well, whenever onvergent. The �xed pointmethod (FIX) performs robustly, and usually deals with well onditioned systems.Nevertheless it does fail to onverge within a thousand iterations for relatively ele-mentary test examples. The hybrid linearisation (HYB) nearly onsistently deliversthe best performane, espeially when ombined with the nonmonotone line searh.13.4. Some benhmarksSeveral benhmarks are presented. The purpose is to validate the implementa-tion on few simple, doumented examples.13.4.1. Pendulum.Referene: W. Rubinowiz, W. Królikowski, Mehanika teoretyzna (Theoretialmehanis), Pa«stwowe Wydawnitwo Naukowe, Warszawa, 1998, pp. 91-99.Summary: A mathematial pendulum omposed of a mass point and a weight-less rod swings with a large amplitude. Pendulum period, energy onservation,onstraint satisfation and onvergene are examined.Kinematis/Analysis/Solver: Rigid/Dynami/Gauss-SeidelThe period of an osillatory mathematial pendulum reads(13.4.1) T = 2π

√

l

g3

(

1 +

(

1

2

)2

k2 +

(

1 · 3
2 · 4

)

k2 +

(

1 · 3 · 5
2 · 4 · 6

)

k2 + ...

)where(13.4.2) k = sin

(

θmax

2

)and l is the length of the pendulum, g3 is the vertial omponent of the gravityaeleration and θmax is the maximal tilt angle of the pendulum. Let us assumethe initial veloity of the pendulum to be zero. Thus θmax = θ (0). Taking the reston�guration position of the mass point x̄ = [0, 0, 0] and onsidering the swing inthe x− z plane, the initial position of the pendulum reads(13.4.3) x̄ (0) =





l sin (θmax)
0

l (1 − cos (θmax))



Without the initial kineti energy (Ek (0) = 0), the energy onservation requiresthat(13.4.4) Ek (t) + Ep (t) = Ep (0)
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Figure 13.4.1. Energy balane over one period of the pendulum(red line orresponds to the total energy).where(13.4.5) Ep (0) = mg3x̄3 (0)and m is the salar mass. Input parametersLength (m) l = 1Mass (kg) m = 1Initial angle θ (0) = θmax (rad) θmax = π/2Gravity aeleration (m/s2) g =
[

0, 0,−π2
]The gravity aeleration g3 has been hosen so that for θmax = 0 deg there holds

T = 2s. ResultsThe table below summarises the results for the time step h = 0.001. It is seenthat the solution is aurate and stable, regardless of the duration of the numerialsimulation. Target Solfe RatioPendulum period - 1 swing (s) 2.36068 2.63000 0.9997Pendulum length - 1 swing (m) 1.0 1.0 1.0Total energy - 1 swing (J) π2 9.86960 1.0Pendulum period - 1000 swings (s) 2360.68 2360.68 1.0Pendulum length - 1000 swings (m) 1.0 1.0 1.0Total energy - 1000 swings (J) π2 9.86960 1.0Figure 13.4.1 illustrates the energy balane over one period of the pendulum.The potential and kineti energies sum up to π2. Figure 13.4.2 shows osillatorybut stable behaviour of the equality onstraint (the length of the rigid rod). Figure13.4.3 on�rms the seond order onvergene in the presene of equality onstraints(the referene solution q∗ has been omputed at time t = 1.0 with h = 2−20).
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Figure 13.4.2. Length of the pendulum over the time of fourperiods, omputed for several time steps h ∈ {0.001, 0.005, 0.025}.
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Time step hFigure 13.4.3. The onvergene rate ≃ 4 on�rms the seondorder auray in the presene of equality onstraints.13.4.2. Sphere impating a plate.Referene: The solution is self-evident.Summary: A sphere impats a plate. Newton impat law is validated for severalvalues of the restitution parameter η and a single-point ontat.Kinematis/Analysis/Solver: Rigid/Dynami/Gauss-SeidelSphere of radius r and with the initial veloity vz impats the horizontal fri-tionless surfae (Figure 13.4.4). Single ontat point is established. The pre- andpost-impat veloities are related through the Newton's law(13.4.6) v+
z = −ηv−z

r v

m

zFigure 13.4.4. Sphere in the initial on�guration.



13.4. SOME BENCHMARKS 185thus for η = 1 the total energy is onserved while for η < 1 the energy is dissipated.In the initial on�guration the sphere is about to hit the plate, so that vz (0) = v−zfor the �rst impat. Input parametersSphere radius (m) r = 0.1Sphere mass (kg) m = 1Initial veloity v (0) = [0, 0,−4]Gravity aeleration (m/s2) g = [0, 0,−10]Veloity restitution η ∈ {0, 0.25, 0.5, 0.75, 1}Coulomb frition oe�ient µ = 0ResultsFigure 13.4.5 illustrates the energy balane over the time interval [0, 2.4] forthe ideally elasti impat, η = 1. It is seen that the total energy is onserved, whilethree onseutive impats take plae. In Figure 13.4.6 the veloity omponent vzis depited for �ve restitution oe�ients ranging from the ideally elasti to theideally plasti one. The plots start from v+
z following the initial impat and thusthe values 4, 3, 2, 1, 0 orrespond to the restitution oe�ients 1, 0.75, 0.5, 0.25, 0.For the onseutive impats the post-impat veloities are appropriately dereasedand eventually vanish, when the time between the two onseutive impats beomesof the order of the time step.
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Figure 13.4.5. Energy balane for the ideally elasti impat η =
1, omputed with the time step h = 0.001.
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13.4. SOME BENCHMARKS 18613.4.3. Cube impating a plate.Referene: The solution is self-evident.Summary: A ube impats a plate. Newton impat law is validated for severalvalues of the restitution parameter η and a multi-point ontat.Kinematis/Analysis/Solver: Rigid/Dynami/Gauss-SeidelThis example mimis the previous one (Example 13.4.2), with the ube ofdimensions a× b×h replaing the sphere (Figure 13.4.7). Again, in the initial on-�guration the ube is about to hit the plate, so that vz (0) = v−z for the �rst impat.Due to the disretisation of the geometry four ontat points are established.Input parametersCube dimensions (m) a× b× h = 0.1 × 0.1 × 0.1Cube density (kg/m3
)

ρ = 125Initial veloity v (0) = [0, 0,−4]Gravity aeleration (m/s2) g = [0, 0,−10]Veloity restitution η ∈ {0, 0.25, 0.5, 0.75, 1}Coulomb frition oe�ient µ = 0ResultsThe mass density has been seleted suh that the ube example should behaveexatly as Example 13.4.2. It is seen that Figures 13.4.5 and 13.4.8 are idential.The same an be said about Figures 13.4.6 and 13.4.9. All the omments fromExample 13.4.2 apply here.
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Figure 13.4.7. Cube in the initial on�guration.
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Figure 13.4.8. Energy balane for the ideally elasti impat η =
1, omputed with the time step h = 0.001.
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Figure 13.4.9. The veloity omponent vz plots for restitutionoe�ients η ∈ {0, 0.25, 0.5, 0.75, 1}, omputed with the time step
h = 0.001.13.4.4. Double pendulum impating a rigid wall.Referene: Florian A. Potra, Mihai Anitesu, Bogdan Gavrea, Je� Trinkle. Alinearly impliit trapezoidal method for integrating sti� multibody dynamis withontat, joints, and frition. International Journal for Numerial Methods in Engi-neering, vol. 66, pp. 1079-1124, 2006.Summary: A double pendulum omposed of two mass points onneted by weight-less rods impats a rigid wall. Position and energy plots are ompared against thoseavailable in the soure paper.Kinematis/Analysis/Solver: Rigid/Dynami/Gauss-SeidelThe referene [70℄ uses the Poisson impat model, while Solfe uses the Newtonmodel. Both models are equivalent in ase of fritionless impat if all restitutionoe�ients are idential [42℄. This is the ase in the example, thus the omparisonis feasible. As Solfe does not handle ontats between objets with zero volume,mass points were approximated by spheres and the distane between the wall andthe rest on�guration of the pendulum was shifted by the sphere radius.

Figure 13.4.10. Double pendulum in the initial on�guration.
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Figure 13.4.11. Comparison the total energy plots versus time.
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Figure 13.4.12. Comparison of the x-oordinate plots (xi (t)stands for the i-th mass point x-oordinate).Input parametersMass (kg) m1 = m2 = 1Length (m) l1 = l2 = 1Point x0 (m) x0 = [0, 0, 2]Point x1 (m) x1 =
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)]Initial veloities (m/s) all zeroGravity aeleration (m/s2) g = [0, 0,−9.81]Veloity restitution ǫ = 0.1Coulomb frition oe�ient µ = 0ResultsSimulation over the time interval [0, 2.5] was performed with the time step
h = 0.001. As the referene [70℄ does not speify numerial values of the results,only a visual omparison of the total energy and the x-oordinate histories of themass points is available. The �gures are juxtaposed for larity, although theyexatly overlap when proessed in a graphial software.



13.4. SOME BENCHMARKS 18913.4.5. Blok sliding on a fritional table.Referene: Florian A. Potra, Mihai Anitesu, Bogdan Gavrea, Je� Trinkle. Alinearly impliit trapezoidal method for integrating sti� multibody dynamis withontat, joints, and frition. International Journal for Numerial Methods in Engi-neering, vol. 66, pp. 1079-1124, 2006.Summary: A blok subjeted to a sinusoidal fore slips over a fritional surfae.Position and veloity plots are ompared against those available in the soure paper.Kinematis/Analysis/Solver: Rigid/Dynami/Gauss-SeidelThe blok has been disretised into four hexahedral elements, thus four ontatpoints result from the element to element ontat model implemented in Solfe. Anequivalent three-dimensional model is used in Solfe as the referene [70℄ uses atwo-dimensional set-up. The external fore ating on the mass entre of the ubereads(13.4.7) f (t) = [8 cos (t) , 0, 0]Input parametersBlok density (kg/m3
)

ρ = 111.1(1)Blok dimensions (m) a× b× h = 0.3 × 0.3 × 0.1Initial veloities (m/s) all zeroGravity aeleration (m/s2) g = [0, 0,−9.81]Veloity restitution ǫ = 0Coulomb frition oe�ient µ = 0.8ResultsSimulation over the time interval [0, 10] was performed with the time step
h = 0.001. As the referene [70℄ does not speify numerial values of the results,only a visual omparison of the vx veloity omponent and the x-oordinate historiesof the mass entre is available. The �gures are juxtaposed for larity, although theyexatly overlap when proessed in a graphial software.

Figure 13.4.13. Blok sliding on top of a fritional surfae - ini-tial on�guration with four ontat points.
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Figure 13.4.14. Comparison of the vx veloity omponent plotsof the blok mass entre.
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Figure 13.4.15. Comparison of the x-oordinate plots of theblok mass entre.13.4.6. Newton's radle.Referene: F. Herrmann, P. Shmälzle. A simple explanation of a well-knownollision experiment, Am. J. Phys. 49, 761 (1981).Summary: Newton's radle is modelled by �ve interating pendulums. Ideallyelasti impat (η = 1) is assumed.Kinematis/Analysis/Solver: Rigid/Dynami/Gauss-SeidelAs shown in the referene, it is not possible to explain the behaviour of New-ton's radle solely by the priniples of energy and momentum onservation. If thenumber of balls is larger then two, it is the dispersion-free propagation of an elastiwave whih results in the harateristi behaviour of the radle. Thus, in general,Newton's radle is not ompatible with rigid kinematis. This implies that on-sidering all impats at the same time results in a multipliity of solutions. It isnot guaranteed that a physially plausible solution will be seleted by the numer-ial sheme. A simple workaround is to separate the balls by a small distane,and therefore algorithmially enfore the wave propagation e�et. This approahis undertaken here. Input parameters
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Figure 13.4.16. Newton's radle in the initial on�guration.Mass density (kg/m3
)

ρ = 1000Ball radius (m) r = 0.05Pendulum length (m) l = 0.5Pendulum separation (m) u = 10−10Initial angle (rad) θmax = π/8Initial veloities (m/s) all zeroGravity aeleration (m/s2) g = [0, 0,−9.81]Veloity restitution ǫ = 1Coulomb frition oe�ient µ = 0ResultsConservation of energy requires that
Etot (t) = Epot (0) = ρ · 4

3
πr3 · |g3| · l (1 − cos (θmax)) = 0.195497Upon full energy restitution the radle behaves essentially as a single pendulum.Thus formula (13.4.1) an be used in order to alulate the period of the radle.Table below summarises (among others) numerially omputed periods for sues-sively smaller time steps. It is evident that the onvergene rate is linear. Thisis an algorithmi feature of the sheme implemented in Solfe in the presene ofunilateral onstraints (impats, stik-slip transitions). It is also seen that the to-tal energy is onserved exatly - regardless of the time step (note that only linearmotion is present). Target Solfe RatioCradle period T , h = 0.01 (s) 1.432297 1.500000 1.05Cradle period T , h = 0.001 (s) 1.432297 1.438000 1.004Cradle period T , h = 0.0001 (s) 1.432297 1.433000 1.0005Total energy at t = 10T , h = 0.01 (J) 0.195497 0.195497 1.0Total energy at t = 10T , h = 0.001 (J) 0.195497 0.195497 1.0Total energy at t = 10T , h = 0.0001 (J) 0.195497 0.195497 1.0
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Figure 13.4.17. Energy balane over two periods of the radle.

Figure 13.4.18. Sixteen frames of the simulation over the om-plete period. The sequene proeeds from left to right, top tobottom.13.4.7. Masonry arh.Referene: Gilbert, M. and Casapulla, C. and Ahmed, H. M., Limit analysisof masonry blok strutures with non-assoiative fritional joints using linear pro-gramming, Computers and Strutures, vol. 84, pp. 873-887, 2006.Summary: A semiirular arh is subjeted to the uniform gravitational �eld.The dynami stability of the arh is investigated for varying ratios of the thiknessto entreline radius h/r. The results are ompared against the available �ndingsbased on the limit-state analysis.Kinematis/Analysis/Solver: Rigid/Dynami/Gauss-SeidelGilbert et al. [74℄ present a numerial solution to the lassial problem of thestability of a semiirular arh under gravity load. The analysis provided in [74℄spans frition oe�ients from the interval [0.2, 0.8] and identi�es three geometrialfailure modes (Figure 13.4.22). The lassial analysis provided by Heyman [92℄ as-sumes no fritional slip, and therefore overs only one ase of mehanism formation(mode I - typial for large frition). Several fators need to be taken into aountwhen onsidering reprodution of the results presented in Figure 13.4.22:
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Figure 13.4.19. The three-dimensional arh model in Solfe.Eah of the 27 bloks is omposed of 6 elements: two along thewidth w, and three along the thikness h. Thus six ontat pointsare established initially between a pair of bloks.(1) A linear programming based limit-state formulation is employed in [74℄,whereas the dynami ontat algorithm is used in Solfe.(2) The analysis provided in [74℄ is two-dimensional, whereas Solfe dealswith a three-dimensional model.(3) A node to fae ontat model is employed in [74℄, whereas the fae tofae (or more generally element to element) ontat model is employed inSolfe.Due to the modelling di�erenes (inertial e�ets, ontat resolution) it is reasonableto aept a margin of disrepany between the results obtained by both methods.The dynami stability analysis will be based on the observation of the kineti energyhistories, alulated for arhes with thiknesses varying around the doumented in[74℄ stability limits. Figure 13.4.19 summarises the geometry and disretisationadopted in the Solfe model. In order to geometrially apture the hinging e�etfrom the �rst moments of simulation, the subdivision along the blok thiknessomprises two narrow elements at the extrados and intrados of the arh.Input parametersUnder the assumptions disussed by Heyman [92℄, formation of a failure meh-anism is of purely geometrial nature. Therefore the material parameters an behosen arbitrary (none have been reported in [74℄). The table below summarisesthe assumed parameters.Mass density (kg/m3
)

ρ = 1Centreline radius (m) r = 10Arh width (m) w = 5Number of bloks {27, 15}Initial veloities (m/s) all zeroGravity aeleration (m/s2) g = [0, 0,−9.81]Veloity restitution η = 0Time step 0.001Results



13.4. SOME BENCHMARKS 194The ritial thikness to radius ratios h/r, omputed for the expeted mode-Iand mode-II failures have been summarised in the table below. The number ofbloks was 27, similarly like in [74℄. Taking the mentioned modelling di�erenes, itan be onluded that the results obtained with Solfe remain within an aeptablemargin of auray. Target Solfe RatioCritial ratio h/r, µ = 0.4 0.1070 0.1082 1.011Critial ratio h/r, µ = 0.311 0.1955 0.1965 1.005Figures 13.4.20 and 13.4.21 illustrate the kineti energy histories orrespondingto the values reported in the table. The initial growth of the energy results fromthe fat, the ontat fores are all zero at t = 0. Hene, the struture undergoes adynami proess, purposely started in the viinity of a steady state solution. Theslight overestimation of the ritial thikness results in part from the inertial e�etsrelated to the dynami proess. Also, as the element to element ontat model isused, the loations of ontat fores are shifted away by a small distane from theexternal surfaes of the arh. This dereases the e�etive thikness, and has anadditional in�uene on the overestimation of the ritial ratio.
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13.4. SOME BENCHMARKS 195Figure 13.4.22 illustrates the results omputed for an arh omprising 15 bloks.A frition-ohesion map of ritial thikness values h (µ, c) was obtained on a 10×10grid of µ× c, that is frition×ohesion. It is in the �rst plae lear, that the threefailure modes reported in Gilbert et al. [74℄ have been well reprodued for the zeroohesion ase. The in�uene of ohesion results in a derease of the ritial arhthikness.
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Figure 13.4.22. Frition-ohesion map of the ritial arh thik-ness h and the three harateristi failure modes for the zero o-hesion ase.13.4.8. Box-kite push until lokup.Referene: Reports C6508/TR/0006 and 5014549/06/34/0 provided by Atkins.Summary: Two layers of �at, nononvex, aryli briks are �tted into a 3 × 3pattern. The middle briks are raked and oriented at various angles. Shearand separation loads are applied to the top brik halves. The relative shear andseparation displaements at lokup are reported.Kinematis/Analysis/Solver: Rigid/Dynami/Gauss-SeidelAryli briks were assembled into a 3 × 3 two-layer pattern embraed by awooden frame (Figure 13.4.23). The middle two briks were raked independentlyat various angles (Figure 13.4.24). A hand load was applied to the two top brikhalves and the maximal lokup displaements were reported. A model of the box-kite prepared in Solfe was used to ross-examine an FEM model used by Atkins.The mehanial model omprised:
• ideally plasti impats (in order to approximate quasi-stati onditions ofthe experiment)
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Figure 13.4.23. The box-kite assembly of briks as modelled in Solfe.
• boundary onditions indued solely by ontat (no expliit restritions ondisplaements and rotations)
• shear and separation loads applied diretly to the mass entres of the twotop brik halves (no load-indued rotation)The di�ulty in reproduing the experimental results was twofold:(1) The fore was manually applied during the experiment, an exat mannerof whih was unknown.(2) The way in whih the shear and separation displaements were measuredwas also unknown.The �rst di�ulty was resolved by applying the fore to the mass entres of thetwo top brik halves. This is equivalent to any fore system whose resultant torqueis zero and hene induing only a linear motion. Any rotations happen solelydue to the ontat interations. The seond di�ulty has been approahed bymeasuring the relative displaement for a variety of ontrol points. As illustratedin Figure 13.4.25, the strategy is to pik two arbitrary points A and B and allowthem be onveted by the motion of the respetive top brik halves. The relativedisplaement is measured along the �xed diretions of the ation of the appliedfores. Only one set of results, orresponding to the seletion of mass entres asthe ontrol points is summarised further.
Figure 13.4.24. Example of raked middle briks from the topand bottom layers.
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B

A
0

Figure 13.4.25. The two top brik halves and an exemplary sheardisplaement measurement.
Input parametersMass density (kg/m3

)

ρ ∈ {10, 1150}Initial veloities (m/s) all zeroGravity aeleration (m/s2) g = [0, 0,−10]Veloity restitution η = 0Time step h = 0.001Frition µ ∈ {0, 0.3, 0.5, 0.8}The smaller mass density ρ = 10 is used in fritionless alulations (this irrel-evant from the results standpoint, but it speeds up solution for ontat reations).When the e�et of frition is investigated, the density ρ = 1150 typial for thearyli glass is assumed (we wish those results to be easier to imagine).ResultsFigure 13.4.26 summarises the initial set of ontats. There are no horizontalnormals in the �gure, beause all of the briks are separated by a small learane. Inthe experiment, two learane sizes were onsidered. Without getting into details,these will be further alled the large and the small learane. Various orienta-tions of rak angles orrespond to di�erent test ases, spei�ally numbered in thereferened reports. As there would be not muh gain from speifying the angles,without giving other detailed information, we do not attempt to do that. It isenough to say that the numbering onvention is of the kind 31N or 31T , where the
N and T letters orrespond to the separation and shear tests. The urrent exampleshould then be regarded only as a qualitative demonstration of the omputationalframework.Figures 13.4.27 and 13.4.28 ompare the experimental, FEM (Atkins) and Solferesults. Both, in Solfe and FEM omputations zero frition was assumed. Twolargest disrepanies happen for ases 31 and 44. Case 31 undergoes a ompleteseparation. Case 44 opens too wide in shear. Similarly, for the small learane,ase 48 opens too wide in separation, while ase 61 opens too wide in shear. In theremaining ases we are somewhat loser to the experiment, when ompared withFEM (small learane, Figure 13.4.28).
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Figure 13.4.26. Contats deteted after the �rst step of the time stepping.
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Figure 13.4.27. Large learane. Experiment, FEM and Solfe.
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Figure 13.4.28. Small learane. Experiment, FEM and Solfe.



13.4. SOME BENCHMARKS 199In order to verify the role of frition, the ase 31N has been given a loserlook. The assumed material parameters were ρ = 1150 for the mass density and
µ ∈ {0.0, 0.3, 0.5, 0.8} for frition. Case 31 separates fully in the fritionless ase,and the purpose here is to investigate whether fritional e�ets an a�et this result(whih might have happened during the experiment). The load of value 150N isramped over the time interval [0, 1, 2] (Figure 13.4.29). Separation is large, althoughthe e�et of frition is lear. The inreased load of 250N was again applied thetime interval [0, 1, 2]. This orresponds to lifting up 50kg, although here the leftand the right hand apply the load in opposite diretions. Figure 13.4.30 shows thatthe separation is now muh loser to the fritionless ase. Nevertheless, the e�etof frition is still visible.
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Figure 13.4.29. Case 31N omputed with variable frition oef-�ient and ramped load of 150N ramped over [0, 1, 2] seonds.
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13.4. SOME BENCHMARKS 20013.4.9. Loureno's wall.Referene: Loureno, P. B. and Oliveira, D. V. and Roa, P. and Orduna, A.,Dry joint stone masonry walls subjeted to in-plane ombined loading, Journal ofStrutural Engineering, vol. 131, pp. 1665-1673, 2005.Summary: A dry masonry wall undergoes a ombined loading. After an initialphase of vertial loading, a horizontal loading is applied and the load-displaementpath is reorded.Kinematis/Analysis/Solver: Pseudo-Rigid/Quasi-Stati/Hybrid-NewtonThe quasi-stati time stepping is veri�ed against the experimental data byLoureno et al. [142℄. A series of dry joint stone planar masonry wall tests wereperformed under ombined loading. The sheme of the experimental setup is pre-sented in Figure 13.4.31. The wall is �rst loaded with the vertial fore, followed bya displaement ontrolled horizontal loading. Plots of the horizontal displaementversus the horizontal fore were obtained under onstant vertial loading of 30kN.In experiments, a high strength mortar was used on the upper and lower layers ofstones in order to orret roughness of ontat surfaes. Due to the existene of therigid obstale in the lower left orner, no ohesion at the lower layer was assumed inthe numerial model. At the upper layer, a small value of ohesion of c = 0.3MPawas assumed.Two ases of the load ontrol (5N/s and 1N/s) and two ases of the displaementontrol were omputed (0.1mm/s and 0.02mm/s). In ase of the load ontrol thereported horizontal fore is the sum of fritional ontat fores ating on the lowersurfae of the onrete slab, while the displaement is measured at the entre pointof the surfae. The displaement ontrol was obtained by plaing a dummy ontatpoint where the horizontal fore should be applied. At this point a presribedveloity was applied and the resulting ontat fore and displaement were reported.The following saling of the ontrol point veloity was used s(t) = 1e−5t/(1+1e−5t)in order to obtain smooth transition from the initial state. Thus as a result, theontrol veloity was growing with time aording to the formula vhorizontal (t) =
vis (t), where vi ∈ {0.1mm/s, 0.02mm/s}. This transition proved to be neessaryin order to avoid abrupt hanges of solution at the initial stage of displaementloading. Input parameters

Figure 13.4.31. Wall geometry and loading (Loureno et al. [142℄).



13.4. SOME BENCHMARKS 201Young's modulus (GPa) E = 15.5Poisson's ratio ν = 0.2Coulomb frition µ = 0.62Cohesion (MPa) c = 0.3Time step (s) h = 1Mass saling λmaxh = 4Dynami relaxation termination ratio r = 0.1Dynami relaxation iterations bound K = 100Load ontrol veloities (N/s) {5, 1}Displaement ontrol veloities (mm/s) {0.1, 0.02}Vertial load (kN) 30Maximum stepwise displaement (mm) δlmax = 1ResultsFirgure 13.4.32 shows the maxium ompressive omponents of Cauhy stress forthe horizontal displaement of 15mm. At this stage a damage mehanism was fullyformed in the experimental setup. It an be seen that numerial simulations areapable of reproduing the harateristi shear and roking failure, for whih thelower triangular part of the wall is unloading (subjeted only to the gravitationalloading). Sensitivity of the results with respet to the ontrol mehanism is visi-ble, as the range of ompressive stresses di�ers for the fore and the displaementontrolled ases.Poor performane of the pseudo-rigid bodies in the elasti part of the displa-ement-fore graphs (Figures 13.4.33, 13.4.34) is no surprise. Assumption of uni-form deformations results in a very sti� behaviour, and this annot be helpedwithout a higher order kinematis. The nonlinear part of graphs displays learly arate-dependene of the numerial model. While this is in some aordane with thephysial reality and numerially orresponds to the inertial terms being involvedin the transfer of ontat fores, no rate-dependent omponents exist in the under-lying formulation. For the displaement ontrol ase this an be explained by the
t = 17272.000000 s -8.31e-01 -1.13e-02 COMP [MPa]

y x
z

s t = 8226 s -8.20e-01 -9.01e-03 COMP [MPa]

y x
zFigure 13.4.32. Maximum ompressive Cauhy stress for hori-zontal displaement equal 15mm. On the left the fore ontrol wasapplied at a rate 1N/s. On the right displaement ontrol wasapplied at a rate 0.02mm/s. Briks below the threshold of 1% ofthe maximum ompressive stress value are not oloured.
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Figure 13.4.33. Fore ontrolled horizontal displaement versushorizontal fore load paths.
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Figure 13.4.34. Displaement ontrolled horizontal displaementversus horizontal fore load paths.fat, that assuming a spei� veloity at a ontrol point enfores a spei� distanewhih the point travels aross the time step. With a �xed time step, a large enforeddisplaement results in a large value of the ontrol reation, whih instantaneouslypropagates through the struture, rendering its answer sti�er. In the ase of theload ontrol a larger stepwise inrement of the horizontal fore results in higherveloity, whih propagates instantaneously with the same e�et. It is the questionfor a further researh, whether and how this kind of e�et an be exluded in theontext of a non-regularised quasi-stati multi-body formulation.



CHAPTER 14ConlusionsThere is a number of issues whih need to be addressed, in order to ompletethe presented framework:(1) Energeti inonsisteny, pointed out in Setion 10.5, needs to be resolved.Only the ideally plasti impat model an be applied with some on�dene,whenever suh simpli�ation is aeptable. This was the ase in Setion13.4.8. Most onveniently, for deformable kinematis, one an use theaverage veloity Ū = 1
2 (U+ + U−) in the formulation of fritional ontatonstraints. For rigid bodies however, a more versatile solution is needed.Perhaps, it will be neessary to use a two-phase approah, ombined withPoisson's impat model, as it was done in [8, 70℄.(2) In the ontext of rigid kinematis, a rigorous treatment of multiple impatshas to be worked out. The lak of a rational inorporation of the shokpropagation e�ets represents a serious drawbak. This is still an ativeresearh topi. Reent development by Liu et al. [140℄ deals with thefritionless ase and seems to be a good starting point in this respet.(3) The hybrid Newton tehnique from Setion 11.2 needs to be extended inorder to ope with singular problems. Only then it an beome usefulin the ontext of rigid kinematis. Apart from the rigid ase, of equalimportane is an inlusion of the �nite element disretised kinematis. Itremains a matter of future researh to investigate whether the proposedhybrid linearisation performs for these lassial approahes as well as itdoes in the pseudo-rigid setting.(4) Convergene of the omplete time-stepping remains to be shown. Quitelikely, on the way towards suh a proof, some hanges to the overall designwill be neessary. However, this should not hinder the pratial utility ofthe numerial tool already at hand.(5) Theoretial estimates of omplexity of the dynami retangle struturefrom Setion 9.3.3.3 need to be experimentally veri�ed. Also in the on-text of ontat detetion, implementation of the fast intersetion Algo-rithm 9.4.3 needs to be ompleted and ompared against the simpler ap-proah from Algorithm 9.4.1. For the moment, only Algorithm 9.4.1 wasemployed in all of the presented examples involving ontat.(6) On the presentation side, it would be useful to draw a link between theequality form of ontat and frition onstraints and the augmented La-grangian method by Hestenes, Powell and Rokafellar [91, 172, 181℄.This would shed additional light on the origins of the preditor d =R−ρŪ.The pseudo-rigid ontinuum model by Cohen and Munaster [46℄ was exempli-�ed only in the ontext of quasi-statis. Integration of an unonstrained dynamimotion merely on�rms onservation properties of the time stepping sheme (5.1.1-5.1.3). While the single impat behaviour was already studied in [193, 113, 112℄,it might be interesting to investigate appliation of the pseudo-rigid model as asimple workaround to the lak of a pratial multiple-impat resolution for rigid203



14. CONCLUSIONS 204kinematis. Some early dynami examples were given in [121℄. The pratial limi-tation is in the neessity of using an extremely small time step, for realisti valuesof the material parameters. This, ombined with the need for the solution of animpliit nonlinear problem at every time step, renders this approah rather unfea-sible for large and dense multi-body problems. On the other hand, only for suhproblems the simpli�ed deformability an be eventually aepted. An interestingimprovement here would be to time-homogenise ontat variables, and hene solvethe fritional ontat problem only every n steps. In the quasi-stati ontext, thepseudo-rigid model proved useful and allowed to test ontat solvers on the pro-totype of a �nite-kinematis, multi-body framework (f. Setion 13.3). From thispoint of view, the model an be regarded as a good stress post-proessor, althoughits elasti response is too sti� (f. Setion 13.4.9). In pratise, it might be more on-venient to use few �nite elements instead of a single pseudo-rigid body - espeiallyin the situations, where large rotations are not essential.The hybrid Newton solver from Setion 11.2 shows promise in dealing with thefritional ontat problem. Apart from the already mentioned re�nement, faili-tating appliation to over-determined systems, one an also think about a parallelimplementation of this approah. A diret linear solver ould be replaed by an iter-ative one, preonditioned with positive-de�nite tangents resulting from the Tresaformulation. An implementation of the framework presented here has already beenpartly parallelised [122℄. Nevertheless, this e�ort stumbled on the di�ulty withan e�etive, distributed memory implementation of the Gauss-Seidel solver. Thismotivated developments of Setion 11.2.As a more aomplished fat, one should mention the time stepping shemesfrom Setion 5.2.2. NEW2 and NEW3 do have some good properties. For severalreasons NEW2 appears to be well suited for the short to moderate term analysis ofonstrained systems. As it was shown, the exat onservation of the angular mo-mentum may our neessary in order to maintain auray (Example 13.1.3). Atthe same time, the amount of the energy loss is often aeptable for the inremen-tal rotations of magnitudes ditated by an aurate integration of the onstrainedmotion. Additionally, the dissipative behaviour of NEW2 seems advantageous inthe ontext of an expliit multi-body ontat analysis, where the episodes of exes-sively high ontat reations should not render the analysis unstable. For longerterm analysis or for the ases where a higher auray is required, NEW3 omesquite handy, with only a moderate inrease of the omputational ost and stillo�ering all of the advantages of NEW2.
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