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Summary 

Summary 

 Following a stochastic approach, this thesis presents a numerical framework for 

elastostatics of random media. Firstly, after a mathematically rigorous investigation of the 

popular white noise model in an engineering context, the smooth spatial stochastic 

dependence between material properties is identified as a fundamental feature of practical 

random media. Based on the recognition of the probabilistic essence of practical random 

media and driven by engineering simulation requirements, a comprehensive random 

medium model, namely elementary random media (ERM), is consequently defined and its 

macro-scale properties including stationarity, smoothness and principles for material 

measurements are systematically explored. Moreover, an explicit representation scheme, 

namely the Fourier-Karhunen-Loève (F-K-L) representation, is developed for the general 

elastic tensor of ERM by combining the spectral representation theory of wide-sense 

stationary stochastic fields and the standard dimensionality reduction technology of 

principal component analysis. Then, based on the concept of ERM and the F-K-L 

representation for its random elastic tensor, the stochastic partial differential equations 

regarding elastostatics of random media are formulated and further discretized, in a similar 

fashion as for the standard finite element method, to obtain a stochastic system of linear 

algebraic equations. For the solution of the resulting stochastic linear algebraic system, 

two different numerical techniques, i.e. the joint diagonalization solution strategy and the 

directed Monte Carlo simulation strategy, are developed.  

 Original contributions include the theoretical analysis of practical random medium 

modelling, establishment of the ERM model and its F-K-L representation, and 

development of the numerical solvers for the stochastic linear algebraic system. In 

particular, for computational challenges arising from the proposed framework, two novel 

numerical algorithms are developed: (a) a quadrature algorithm for multidimensional 

oscillatory functions, which reduces the computational cost of the F-K-L representation by 

up to several orders of magnitude; and (b) a Jacobi-like joint diagonalization solution 

method for relatively small mesh structures, which can effectively solve the associated 

stochastic linear algebraic system with a large number of random variables.  
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Notation Symbols and Conventions 

Notation Symbols and Conventions 

 The symbols most frequently used in the text are given below. Any other notation 

introduced will be defined when required.  

 General conventions 

I) Scalars are written in regular italic typeface, e.g. , ,a A α . 

II) Vector, matrix and tensor quantities are written in bold italic typeface, e.g. 

.  , ,a A α

III) Equations, figures, examples, algorithms and reference titles are numbered 

relative to chapters and appendices. Cross-referencing to equations is given 

in round brackets, e.g. (5.18), while references to bibliography titles are 

given in rectangular brackets, e.g. [1.8]. Figures, examples and algorithms 

are referenced using their caption names together with their numbers, e.g. 

Figure 5.8, Example 2.6 and Algorithm 3.2. 

IV) References are listed at the end of each chapter. 

 Abbreviations  

ERM     Elementary random media 

FE     Finite element 

FEM     Finite element method 

F-K-L    Fourier-Karhunen-Loève 

K-L     Karhunen-Loève 

ODE     Ordinary differential equations 

PDE     Partial differential equations 

SFEM    Stochastic finite element 
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Notation Symbols and Conventions 

SODE    Stochastic ordinary differential equations  

SPDE    Stochastic partial differential equations 

 Some commonly used notations 

�      Equal to by definition 

     End of proof 

^      Complex number set 

\      Real number set 

_      Rational number set 

]      Integer number set 

`      Natural number set, i.e. { }1, 2,3,` � "  

!k      Factorial of integer , i.e.  0k ≥ 1

1
!

1 0

k

i

i k
k

k
=

⎧
≥⎪

⎨
⎪ =⎩

∏�

( )mC D  The set of all functions defined on  that have up to m-th 
order continuous derivatives  

D

ijδ      The Kronecker delta, i.e.  
0
1ij

i j
i j

δ
≠⎧

⎨ =⎩
�

( )xδ  The Dirac delta function, i.e.  and ( )
0 0

0
x

x
x

δ
≠⎧

= ⎨+∞ =⎩

( ) 1x dxδ
+∞

−∞
=∫   

inf      Infimum, i.e. the greatest lower bound 

sup      Supermum, i.e. the least upper bound 

a bi      Scalar product of vectors a  and  b

:a b      Double contraction of tensors a  and  b
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Chapter 1. Introduction 

Chapter 1 

Introduction 

1.1 Background and Motivation 

 Random media including rocks, soils and concrete etc. are the most common 

materials on this planet, and they play a very important role in the design of engineering 

infrastructures. Phenomena involving random media are, however, not only encountered in 

civil engineering, but also in almost every engineering sector. Although for some materials 

such as perfect metals, uncertainty factors are often invisible at the macro scale, they 

become dominant when various unpredictable damage mechanisms have occurred during 

manufacture, operation and maintenance procedure, or where the micro-scale material 

structure has to be taken into account. As shown in Figure 1.1, typical engineering 

problems with respect to random media include risk assessment of rock structures, 

percolation-flow-field analysis of soils or rocks, life prediction of concrete dams, 

mechanical analysis of composites with random inclusions, solid-state epitaxy and 

recrystallization in semiconductors, biomechanical analysis of bones, etc., all of which 

require complex mathematical predictions. Modern mechanics, especially continuum 

mechanics, provides comprehensive mathematical models for various engineering systems 

in terms of partial differential equations. However, due to the intricate stochastic nature of 

random media, the lack of a proper mathematical model for the associated stochastic fields 

and the inadequacy of supporting analysis tools for the corresponding Stochastic Partial 

Differential Equations (SPDEs), the understanding of engineering systems with variable 

uncertainties is far from being mature.  
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(a)                                  (b)                 

  
(c)                                  (d)                 

  
(e)                                  (f)                 

Figure 1.1  Engineering systems with variable uncertainties  

 To date, the analysis of engineering systems composed of random media still relies 

largely on empiricism and parametrical (or equivalently enumerative) simulations, which 

are essentially based on conventional deterministic mathematical models. Consequently, 

as long as random media exist in a practical engineering problem, conservative safety 

factors are inevitably applied to the approximate mean-value solution, which results in a 

significant increase in design, construction and operational costs. The disadvantages of 

using deterministic mathematical models to study random media are evident: (a) It is often 

extremely difficult, if not impossible, to provide data for an exhaustive deterministic 

description of the random media under consideration; (b) Engineering analysis based on a 

deterministic model can only provide a path-wise solution corresponding to a particular 
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realization of the engineering system with variable uncertainties; (c) In a practical 

engineering problem involving random media, a large number of experiments or 

parametric simulations are required to estimate empirical statistical quantities and as a 

result, the deterministic methodology may even cease to be useful because of insufficient 

resources; (d) In some situations such as problems influenced by size-effects, the 

deterministic mathematical model eliminates the essential stochastic nature of the physical 

system, and may even lead to wrong conclusions. These unsatisfactory situations that arise 

in engineering are essentially due to the lack of a versatile probabilistic model for random 

media and the inadequacy of compatible analysis tools for the corresponding SPDEs. 

Therefore, it is of crucial importance to explore the mathematical foundation and develop 

efficient algorithms for practical engineering systems consisting of random media.  

 In engineering: It is obvious beneficial to know more about how practical 

engineering systems consisting of random media behave and how their behaviors are 

influenced by random material properties and by various uncertainty factors. The 

theoretical model and the computational algorithms developed in this research area will 

significantly improve the understanding of random media related problems, which in turn 

will reduce the risk as well as contribute towards optimizing structural performance.  

 In mechanics: On the one hand, material structures at the micro scale contain 

various uncertainties; on the other hand, macro-scale mechanical behavior of materials is 

governed by continuum mechanics, which is a purely deterministic theory. Therefore, 

continuum mechanics theory can be treated as an average result from a micro-scale 

probabilistic theory. Consequently, it is expected that the results obtained in this research 

area could serve as a bridge in material modelling to connect randomness at the micro 

scale and determinacy at the macro scale. This will obviously be of significant importance 

in theoretical mechanics.  

 In mathematics: Since Einstein gave the correct mathematical description of 

Brownian motion in 1905, extensive results have been obtained in related areas. These 

include contributions from Langevin, Wiener, Kolmogorov and Itô etc. The study of 

Brownian motion significantly promoted the developments of probability theory, 

stochastic fields and stochastic analysis, and the related research eventually became an 

important and sophisticated area both in mathematics and in physics, and has various 
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successful applications, for example, in economics and biology. Brownian motion is the 

movement of a single particle subject to random forces, and Einstein solved this problem 

by combining elementary probability theory and classical Newtonian particle dynamics. 

For a continuum, a new theory based on modern stochastic analysis and continuum 

mechanics can be similarly expected. Hence, the physical problems in this research area 

could also be of interest in pure mathematical research. 

1.2 Review of Available Techniques 

 Over the last few decades, the theoretical/numerical ingredients of random 

medium mechanics have been studied independently by both mathematicians and 

engineers from different points of view, especially in the areas of SPDEs and Stochastic 

Finite Element Methods (SFEMs) respectively. A number of references will be mentioned 

in this section. However, for research subjects related to random medium mechanics, the 

reference list is not complete. It contains the most important items (measured by the times 

cited) and the items most relevant to the subject discussed in this work. In addition, this 

technical review does not always address the first but mostly the summarizing concluding 

references.  

1.2.1 Stochastic Partial Differential Equations 

 The concept of the Itô integral, i.e. the theory of Stochastic Ordinary Differential 

Equations (SODEs) [1.1], became mature in the 1980s and its successful applications have 

been observed in a wide range of scientific/technical areas including economics, biology, 

etc. Promoted by the success of SODEs, the study of SPDEs has developed steadily over 

the past twenty years, in which major efforts have been focused on expanding Itô’s white 

noise model from one dimension into higher dimensions [1.2]. However, unlike the 

topology of one dimensional space there is no natural total-order structure equipped with 

higher dimensional space. Because of this fundamental difference in topology, the white 

noise approach for SPDEs is still very much ongoing. In addition, some mathematical 

results obtained in SPDEs are useful for their own interest, but have little to do with 

specific physical problems. Consequently, engineers feel a need for a justification why 

these SPDE developments are physically relevant at all. In summary, the present 
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mathematics has not been able to provide an effective SPDE theory to account for 

practical engineering systems compounded by the presence of random media. In later parts 

of this thesis (especially Chapters 2 and 3), the connection between SPDE research and 

engineering systems with variable uncertainties will be addressed in a more detailed 

manner after some mathematical preparations.  

1.2.2 Stochastic Finite Element Methods 

 Over the last few decades, Finite Element Methods (FEMs) have become the 

dominant analysis tool in engineering. In the standard FEM, all the parameters take fixed 

values. In order to study engineering systems consisting of random media, engineers have 

replaced some of the parameters in the FEM by random variables and attempted to expand 

the standard FEM into SFEM [1.15-1.123].  

1.2.2.1 Overview of Research Related to Stochastic Finite Element Methods  

 According to the information from ISI Web of Science [1.3], there are in total 

1,805 SCI papers published from 1981 to 2005 which are associated with finite elements 

and uncertainties. Plotted in Figure 1.2(a) is the histogram of these SCI papers together 

with their corresponding database keywords. Although many of these papers are not about 

modelling or algorithms of SFEMs, the histogram 1.2(a) discloses clearly an increasing 

research interest in the linked area of finite element methods and random phenomena. 

Among these 1,805 SCI papers, there are 112 papers published in Computer Methods in 

Applied Mechanics and Engineering (CMAME) and International Journal for Numerical 

Methods in Engineering (IJNME), of which the distribution and database keywords are 

plotted in Figure 1.2(b). Due to the continual exponential increases in computer power and 

data storage, the research of SFEMs has recently received considerable attention from the 

computational mechanics community [1.19-1.20]. In order to identify the impact of these 

1,805 papers, the histogram of those papers with relatively high citation (cumulatively 

over twice per year) is plotted in Figure 1.2(c), in which the taller columns denote all the 

papers regarding finite elements and uncertainties, and the shorter columns denote the 

papers specifically related to SFEM formulations. Compared with the increasing impact of 

the former group of papers, the impact of the latter group of papers is so far insignificant, 

which indicates that the research on SFEM formulations is far from reaching maturity.  
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Figure 1.2  Histograms of SCI papers regarding finite elements and uncertainties 

1.2.2.2 Major Developments in Stochastic Finite Element Methods 

 In order to obtain a detailed understanding of major developments in SFEM 

related research, it was necessary to carefully examine all the important publications in 

this area, which include the abstracts of the aforementioned 1,805 SCI papers (as shown in 
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Figure 1.2(a)), the full text of all the SFEM papers published in CMAME and IJNME 

from 2002 to 2005 (as shown in Figure 1.2(b)) and the full text of all the SFEM papers 

with relatively high citation (as shown in Figure 1.2(c)). The term SFEM has appeared in 

the literature since over fifteen years ago. Nevertheless, unlike the standard FEM that 

holds a clear and uniform Galerkin formulation, there has not been a widely accepted 

versatile SFEM formulation. To date, the SFEM may be best regarded as some FEM-based 

numerical technique that deals with certain additive or multiplicative random factors in 

certain SPDE systems.  

 During the 1970s and the 1980s, Shinozuka [1.4] started systematically applying 

the Monte Carlo method and the standard FEM in the reliability analysis of structures with 

random excitation, random material properties or random geometric configurations 

[1.21-1.27]. The related research area was soon named stochastic computational 

mechanics (sometimes also called computational stochastic mechanics) and has seen 

significant growth since then. There are two central issues in Monte Carlo based SFEM 

formulations: (a) how to initialize material samples according to the specific random input 

information (often given in the form of statistical moments); (b) how to reduce the 

sampling number of Monte Carlo simulations. For the first key issue, the most widely 

used technique is the trigonometric series approximation method which is based on the 

spectral representation theory of wide-sense stationary stochastic fields [1.18, 1.28-1.30] 

(see Chapter 4 for more information). For the second key issue, the most important 

techniques are the so called FORM (First Order Reliability Method) and SORM (Second 

Order Reliability Method) [1.31-1.37]. To date, the FORM and SORM are still the most 

popular approximation techniques for calculating the probability integral encountered in 

reliability analysis of random structures [1.39], and one of the latest research interests 

regarding FORM and SORM is applying them to larger engineering structures [1.38]. 

However, it is also noticed that some engineers [1.40] do not agree with the application of 

FORM or SORM in practical engineering problems as the approximation may generate 

seriously biased results.  

 Other pioneering researchers in stochastic computational mechanics include 

Vanmarcke [1.5], Nakagiri [1.15], Kiureghian [1.6] and Grigoriu [1.7]. Regarding the 

early research of SFEMs, it is worth mentioning the summarizing review [1.25] 

co-authored by Vanmarcke, Shinozuka and Nakagiri et al. In 1983, the international 
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journal Structural Safety (SS) [1.13] was founded by Vanmarcke, and three years later, the 

international journal Probabilistic Engineering Mechanics (PEM) [1.14] was founded by 

Shinozuka. In 2005, there were 18 papers published on SS and its impact factor was 0.953; 

for PEM, there were 32 papers published in 2005 and its impact factor was 0.767. In the 

SCI database 2005, SS and PEM are the only specialized journals for stochastic 

computational mechanics. The relatively weak impact of these two journals infers that the 

contemporary SFEMs have not been able to serve the increasing needs of practical 

engineering systems with variable uncertainties.  

 In the 1980s and the 1990s, more researchers joined in the research of SFEMs. 

Among them, Liu [1.8], Spanos [1.9], Ghanem [1.10, 1.16], Kleiber [1.17], Deodatis 

[1.11] and Schuëller [1.12] are distinguished. Many interesting results, especially a 

number of non-Monte-Carlo SFEM formulations, were developed during this period. As 

shown in Table 1.1, most of the major SFEM techniques were developed from 1985 to 

1995.  

Table 1.1  The most important SFEM developments (1981-2005) 

Year a References Times 
cited b

Outline c

1983 E. Vanmarcke 

M. Grigoriu 

[1.41]

122 This work is probably the first reasonable SFEM formulation 
which is not based on Monte Carlo simulations.  

The key invention in this paper is a local averaging representation 
scheme for random material properties of beam elements.  

The method can only be applied to a simple beam and the results 
are limited to estimates of second-order statistical quantities, i.e. 
the mean and the covariance. 

1986 W.K. Liu 

et al. 

[1.42-1.46]

308 The perturbation method.  

The method commences with a Taylor’s expansion of the 
unknown stochastic field. The Taylor expansion is performed 
with respect to the random variables that represent the given 
stochastic field of random media. The unknown coefficients in 
the expansion are then obtained from grouping like polynomials, 
whereupon the sum of these like polynomials is set to zero. The 
perturbation method is computationally more efficient than the 
direct Monte Carlo method.  

The failing of this method is a dependence on the random 
fluctuations being small. Another disadvantage of the 
perturbation method is that it mainly focuses on the second-order 
estimate of the response and does not permit higher-order 
statistical estimates. 
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Year a References Times 
cited b

Outline c

1987 M.A. Lawrence 

[1.47]

57 A SFEM formulation based on series expansion and the Galerkin 
method.  

This paper considers the equation of the form Ku=f. After 
expanding K, u and f into finite series consisting of random 
coefficients and deterministic base functions, the equation is 
solved by a Galerkin approach. The idea of combining series 
expansion and the Galerkin method in a random context was 
original and very interesting.  

The series expansion formulation in this paper is developed in an 
intuitive manner without paying attention to mathematical rigor, 
so that some parts of the formulation are suspect.  

1988 M. Shinozuka 

F. Yamazaki 

G. Deodatis 

et al. 

[1.26-1.27]

141 The Neumann expansion method.  

The stochastic algebraic equation (K0+Kω)u=f is solved by the 
Neumann expansion of (K0+Kω)-1. The advantage of this method 
is its simple formulation.  

The computational efficiency of the Neumann expansion depends 
on the range of random fluctuations. For large-scale random 
fluctuations, the computational cost of this method could be even 
more expensive than the direct Monte Carlo method. 

1989 R.G. Ghanem 

P.D. Spanos 

et al. 

[1.48-1.60]

336 The polynomial chaos expansion method.  

This method expands the unknown stochastic field with multiple 
Hermite polynomials of random variables, i.e. polynomial chaos, 
and solves the associated unknown coefficients through a 
Galerkin approach. There is no limit to the scale of random 
fluctuations and the polynomial chaos expansion can, at least in 
principle, approximate a functional of Gaussian random variables 
to any accuracy. Another invention in this work is the application 
of the Karhunen-Loève expansion in the representation of 
random material properties.  

The polynomial chaos expansion method can only be rigorously 
applied to problems that merely consist of Gaussian random 
variables. In addition, it does become increasingly difficult to 
derive and code multiple Hermite polynomials (the basic building 
blocks of this method) as the number of random variables 
increases, and the associated computational cost also increases 
significantly. Indeed, the polynomial chaos expansion has hardly 
been applied to cases with more than ten random variables. 

1991 G. Deodatis 

M. Shinozuka 

[1.61-1.62]

76 The weighted integral method.  

This method is developed for frame structures, and it is based on 
second-order statistical analysis and a local averaging technique 
for representing random material properties of beam elements.  

The results of this method are limited to second-order statistical 
quantities.  
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Year a References Times 
cited b

Outline c

1991 P.L. Liu 

A.D. Kiureghian 

[1.37]

47 A Monte Carlo SFEM formulation based on FORM and SORM. 

In order to reduce the number of direct Monte Carlo simulations, 
the FORM and SORM are employed to approximately calculate 
the probability integral with respect to the random solution.  

The accuracy of FORM and SORM may not always satisfy the 
increasingly more serious requirements to the analysis of 
engineering systems with variable uncertainties.  

1993 C.C. Li 

A.D. Kiureghian 

[1.63]

47 This work is not about SFEM formulations, and presents a 
least-squires approximation method for the representation of 
random material properties.  

The criterion of the least-squires approximation within each finite 
element is the variance of the error between the real stochastic 
field and the approximate one. 

In terms of the number of random variables required, the 
least-squires approximation method is not as efficient as the 
Karhunen-Loève expansion method, which was first adopted in 
the polynomial chaos expansion method. Nevertheless, the 
authors claimed that this method might hold an advantage when 
the stochastic-field eigenstructure in Karhunen-Loève expansions 
could not be accurately obtained. 

1993 S. Valliappan 

T.D. Pham 

S.S. Rao 

J.P. Sawyer 

[1.64-1.66]

68 The fuzzy/interval finite element method. 

The method applies the fuzzy set theory in the context of standard 
finite element analysis to cope with engineering systems without 
precise or complete definitions.  

As the input information of this method is insufficient to properly 
define an engineering system, the associated results are often 
vague, imprecise, qualitative and incomplete compared with the 
solution of a well defined engineering system.  

2002 D.B. Xiu 

G.E. Karniadakis 

[1.106-1.114]

70 A generalization for the polynomial chaos expansion method. 

Noting the similarity between the weighted functions in the 
Askey-scheme of hypergeometric orthogonal polynomials and 
some typical probability density functions, the polynomial chaos 
expansion method is generalized simply by replacing the Hermite 
polynomials with other orthogonal polynomials.  

This intuitive generalization meets difficulties when multiple 
random variables are present. In addition, for the single random 
variable cases, there has not been a proof for the well-posedness 
or the convergence of the solution scheme.  

a For those works reported in a series of publications, the year is given for the first influential paper; 
b Data from ISI Web of Science, December 2005; 
c More detailed illustration and comparison of some of these SFEMs can be found in Chapters 4 and 6.  

 In the last decade, a number of interesting results [1.20, 1.67-1.123] were reported 
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that include the application/generalization of those prototype SFEM techniques (as shown 

in Table 1.1) in various engineering situations, such as different material parameters 

(Young’s modules, Poisson’s ratio and yielding stress etc.), different geometric structures 

(beams, plates and shells etc.), different physical systems (elastostatics, elastodynamics 

and thermodynamics etc.) and many more. Among these latest SFEM developments, it is 

worth mentioning the following work:  

 Soize [1.118-1.119] developed a nonparametric SFEM formulation based on the 

mathematical theory of random matrices. 

 In a Galerkin SFEM formulation, Matthies et al. [1.95] applied the 

Karhunen-Loève expansion in the approximation of the unknown random solution. 

 Vandepitte et al. [1.115-1.116] carry on with the developments of the fuzzy/interval 

finite element method.  

 In a Galerkin SFEM formulation, Babuška et al. [1.101] approximated the 

unknown random solution with so called double orthogonal polynomials.  

 Based on the combination of Taylor’s series expansions of certain like functions, 

Xu et al. [1.121] developed a dimension-reduction technique to approximately 

calculate the probability integral involved in SFEM simulations.  

 Li et al. [1.120] proposed an original approach for dynamic response and reliability 

analysis of stochastic structures. A class of general probability density evolution 

equation is derived, constructing the relationship between the incremental rate and 

the realized velocity response.  

 Nevertheless, compared with the rapid developments between 1986 and 1995, 

there has hardly been any breakthrough in SFEM formulations since then. Until recently 

[1.20, 1.67-1.123], three SFEM techniques including the Monte Carlo method, the 

perturbation method (see e.g. [1.19, 1.42]) and the polynomial chaos expansion method 

(see e.g. [1.20, 1.48-1.49]) are distinguished.  

 To date, the Monte Carlo method appears to be the only versatile method to solve 

stochastic problems involving non-linearities, dynamic loading, stability effects etc. 

[1.67-1.82]. However, its computational costs become extremely expensive for 

large scale problems where a large number of samples have to be computed in 

order to obtain a rational estimation satisfying the required accuracy. 

 For small-scale random variations, the perturbation method is still attractive 

[1.83-1.92] due to its relatively simple formulation. However, the perturbation 
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method is limited to the estimation of second-order statistical quantities, and no 

criteria for convergence have been established in the present context. 

 The polynomial chaos expansion method together with its error estimates has 

recently been put into more general/sophisticated numerical frameworks 

[1.93-1.105]. Although the initial form of this method uses Hermite polynomials 

and can only be strictly applied to solve problems consisting of Gaussian random 

variables, for dynamic problems with a single random variable, different 

polynomials (e.g. single-variable Jacobi polynomials) have recently been chosen 

[1.106-1.114], without proof on the suitability, to approximate functions of a 

non-Gaussian random variable. However, the associated computational costs 

increase exponentially as the number of random variables grows, which makes the 

polynomial chaos expansion method impractical for real scale engineering 

problems in its current form.  

In summary, compared with the success of the standard FEM, the SFEM is still in its 

infancy and many fundamental questions are still outstanding.  

1.3 The Aim and Layout of the Thesis 

1.3.1 The Aim of the thesis 

 Following the introduction in Section 1.1, phenomena involved with random 

media are encountered in many engineering sectors, and the research regarding random 

medium mechanics is of crucial importance not only in engineering, but also in mechanics 

and mathematics. However, after the technical review in Section 1.2, it is clear that 

existing knowledge and methods are not adequate to analyse practical engineering systems 

composed of random media. On one hand, mathematicians developed SPDE theory from 

mathematical definitions and assumptions, but before the theory can be applied to 

engineering systems, the reasonableness of those definitions and assumptions must be 

verified by the general mechanics theory and practical engineering requirements. On the 

other hand, engineers modified the traditional FEM to account for engineering systems 

with variable uncertainties, but as the knowledge of stochastic fields and stochastic 

analysis is not embedded within the standard solution tools of engineering, some SFEM 
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techniques have little mathematical foundation and some appear to come with 

self-contradictions (see Chapter 3 for more details).  

 The aim of this thesis is to explore the theoretical foundation of random medium 

mechanics and the possibility of establishing a versatile numerical framework for the 

analysis of engineering systems composed of random media. The main strategy relies on 

the combination of mathematical ingredients in probability theory, stochastic fields and 

stochastic analysis with continuum mechanics and finite element methods. The physical 

models of random media, the mathematical format of the associated stochastic fields, the 

governing SPDEs of physical systems and the solution schemes shall all be developed in a 

synergetic manner. In order to reduce the number of open questions in this challenging 

subject and make the problem more amenable, attention is restricted to elastostatics of 

random media. The resulting principles and framework are, however, expected to hold not 

only for linear static/stationary problems, but also be expandable to certain nonlinear 

problems and dynamic/transient problems.  

1.3.2 Layout of the thesis 

 The thesis is divided into seven chapters.  

 Chapter 1: This chapter discusses the background and the motivation which have 

inspired the research undertaken. A brief but complete technical review on related research 

is also provided.  

 Chapter 2: A brief exposition of probability theory, stochastic fields and stochastic 

analysis is included in this chapter. It provides some conceptual preparations for Chapters 

3-7, and in particular initiates the specific approach developed in Chapter 3.  

 Chapter 3: The possibility of establishing a white noise model (or a generalized 

white noise model) for practical random media is analyzed in a mathematically rigorous 

fashion. Based on the fundamental principles of continuum mechanics and the theory of 

stationary stochastic fields, a comprehensive probabilistic model, namely elementary 

random media, is developed for modelling practical elastic random media, which includes 

the probabilistic properties of random media, the continuity and differentiability of 

random media, and principles for the measurements of random material properties.  
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 Chapter 4: In the definition of elementary random media, the random medium is 

implicitly defined by its statistical moments. However, in the governing SPDE system of 

an engineering system composed of random media, an explicit representation of the 

associated stochastic fields of material properties is usually required. Hence, based on the 

spectral representation theory of wide-sense stationary stochastic fields and the standard 

dimensionality reduction technology of principal component analysis, an accurate and 

efficient stochastic-field representation scheme, namely the Fourier-Karnunen-Loève 

representation, is developed for the general elastic tensor of elementary random media. 

Several original developments are made in this chapter.  

 Chapter 5: Based on the Fourier-Karnunen-Loève representation of elementary 

random media, the governing SPDE system of elastostatics is transformed into a stochastic 

system of linear algebraic equations, which in turn infers a natural generalization of the 

standard FEM formulation for deterministic materials to a SFEM formulation for 

elementary random media.  

 Chapter 6: This chapter presents a novel solution strategy to the stochastic system 

of linear algebraic equations 
1

i i
i

α
=

⎛ ⎞m

=⎜ ⎟
⎝ ⎠
∑ A x b  derived in Chapter 5, in which iα  denote 

random variables, iA  real symmetric deterministic matrices,  a deterministic/random 

vector and 

b

x  the unknown random vector to be solved. Specifically, it is shown that the 

problem can be approximately treated as an average eigenvalue problem, and can be 

solved analytically by a deterministic matrix algorithm using a sequence of orthogonal 

similarity transformations. Once the approximate solution of the random vector  is 

explicitly obtained, the associated statistical moments and joint probability distributions 

can be readily calculated.  

x

 Chapter 7: Based on Monte Carlo simulations, another solver is developed for the 

solution of the stochastic system of linear algebraic equations. The basic idea is to direct 

Monte Carlo samples along straight lines and then utilise their spatial proximity or order 

to provide high quality initial approximations in order to significantly accelerate the 

convergence of iterative solvers at each sample.  

 Chapter 8: Pertinent conclusions are drawn and a broad perspective of the 

14 



Chapter 1. Introduction 

problem at hand is emphasised.  

 Certain aspects of this research work have been presented in [1.124-1.129].  
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Chapter 2 

Basic Mathematical Tools 

 Stochastic mathematics, including probability theory, the theory of stochastic 

fields† and stochastic analysis etc., studies quantitative relations in various random 

phenomena, and has become one of the major branches in mathematics. This chapter 

contains a brief excursion through the foundations of stochastic mathematics, which 

provides some basic but necessary preparations for stochastic modelling and analysis of 

random media, and also initiates the specific approach to be developed in Chapters 3-7. 

Since they have been included mainly for the sake of completeness, and contain quite 

standard results, proofs are not given. The detailed and complete description of these 

mathematical results can be found in the references listed at the end of this chapter. 

Specifically, good basic treatments of probability theory, the theory of stochastic fields and 

stochastic analysis are included respectively in Refs. [2.9-2.14], [2.15-2.20] and 

[2.21-2.30].  

 The history of probability theory goes back as early as the 17th century, when two 

French mathematicians, Pascal [2.1] and Fermat [2.1], worked on some probabilistic 

problems arising from gambling, in which the basic principles of probability theory were 

formulated for the first time. In the 18th century, the major contributors were Bernoulli 

[2.1], who proposed and proved the first limit theorem in probability theory (a weak law 

of large numbers), and De Moivre [2.1]. The most important contributions in the 19th 
                                                        
† Throughout this thesis, a stochastic field can be defined in an n-dimensional (n∈ ) domain and in 

order to avoid possible confusions, the term stochastic process (which is probably more popular in 
mathematics textbooks) is only used for one-dimensional stochastic fields.  
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century were made by Laplace [2.1], who introduced a host of new ideas and 

mathematical techniques, and proved the second limit theorem in probability theory (an 

early form of the central limit theorem which was first proposed by De Moivre). However, 

the modern understanding of probability theory is due to Kolmogorov [2.1], who in 1933 

[2.2] provided a measure-theoretic foundation for probability which is now treated as 

axiomatic. Similar to many other branches of mathematics, the development of probability 

theory has been stimulated by the variety of its applications. Conversely, each advance in 

the theory has enlarged the scope of its influence. Mathematical statistics is one important 

branch of applied probability; other applications occur in such widely different fields as 

genetics, psychology, economics, and engineering.  

 The study of stochastic fields, by definition, is the study of random functions 

defined over some Euclidean space. In 1905 [2.3], Einstein [2.1] discovered the 

quantitative description of Brownian motion, which turned out to be the first milestone in 

the research of stochastic fields. In 1923 [2.4], Wiener [2.1] presented the mathematical 

definition of Brownian motion, i.e. the Wiener process. However, the concept of 

probability was neither precise nor comprehensive at that time, and was insufficient for the 

study of stochastic fields. Research on the general theory of stochastic fields started in the 

1930s. In 1931 [2.5], Kolmogorov laid the foundation of the theory of Markov processes; 

in 1934 [2.6], Khinchin [2.1] established the theoretical basis for stationary stochastic 

fields. In 1953 [2.7], Doob [2.1] systematically and rigorously summarized the theory of 

stochastic processes including much of his own development of martingale theory.  

 Stochastic analysis is one of the youngest branches in stochastic mathematics, and 

it studies the integration and differentiation of functionals of stochastic fields. The 

foundation of stochastic analysis was established in the 1940s by Itô [2.1], who developed 

the theory of stochastic (ordinary) differential equations (SODEs), i.e. Itô integral. The 

theory of SODEs deals with the integration and differentiation of functionals of Wiener 

processes and its applications in such area as economics have been extremely successful 

[2.8]. Stimulated by the success of the Itô integral, continuous efforts have been made in 

the past two decades to extend the SODE theory into SPDEs. Nevertheless, the research of 

SPDEs is still very much on going and many fundamental questions are still outstanding.  

 Remark: Throughout this chapter, a vector is always assumed as a row vector 
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unless otherwise stated. In addition, some basic results in the classic measure theory 

[2.31-2.32] and functional analysis [2.33-2.35] are accepted and used without additional 

explanation.  

2.1 On Probability Theory 

2.1.1 Probability Space and Random Variables 

 Let Ω  be a set with generic element ω ,  be a F -algebraσ  of subsets of Ω , 

 be a measure defined on . In measure theory, P F ( )

( ) ( )

P

,Ω F  is termed a measurable space 

while  is termed a measure space. In probability theory,  is termed a 

probability space if  further satisfies  

, , PΩ F , , PΩ F

{ }0 1P A≤ ≤  ( A∀ ∈F )  and  { } 1P Ω = .                       (2.1) 

The elements of  will generally be referred to as events. In particular,  is called the 

sure event and 

F Ω

ω  the basic event.  

 Let  ( m ) denote the Euclidean m-space, and  the Borel m\ ∈` mB -algebraσ  

on . Then, (  forms a measurable space. Now, let m )m m\ ,\ B X  be a measurable 

mapping from ( ),Ω F  into ( , so that for every Borel set )m m m,\ B B∈B , the set  

( ) ( ){ }1 :B Bω Ω ω− = ∈ ∈X X                                  (2.2) 

is an element of . Then F X  is called an  random variable. For each -valuedm\ ω , 

( )ωX  is a vector of length m , and its coordinates is often written as ( )1X ω , 

( )2X ω , …, ( )mX ω . Since each jX  ( 1, 2, ,j m= " ) is a measurable mapping from 

 to ( , it is also a well-defined random variable. When , ( ,Ω F) ),\ B 1m = X  is said to 

be real valued, and when  2m = X  can be considered as complex valued with obvious 

conventions.  

 For the sake of simplicity, the term random vector is not used in this chapter, and 

instead the term random variable is used in all occasions, including real-valued X  and 
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-valued\m  X . In addition, without special statement, a random variable is always real 

valued or  valued. Nevertheless, it is straightforward to generalize some of the 

mathematical results addressed in this chapter into complex-valued or  

random variables.  

m

m

\

-valued^

 The measurability of X  induces a probability measure FX  (or simply ) on 

, defined by  

F

mB

( ) ( ){ }1F B P B−
X X�                                         (2.3) 

for every mB∈B . To this measure there corresponds a point function, which is also 

denoted by FX  (or simply F ), defined by  

( ) ( ] ( ] ( ]( 1 2, , , mF F x x x−∞ × −∞ × × −∞X Xx � " ) .                    (2.4) 

This function is called the distribution function of the random variable X . Two random 

variables X  and  are said to be identically distributed if they have the same 

distribution functions, i.e. 

Y

F F≡X Y . Using mλ  (or simply λ ) to denote the Lebesgue 

measure on  and assuming that m\ FX  is absolutely continuous, there exists a 

non-negative Borel function  for which  : mf →X \ \

x( ) ( ) ( )
B

F B f dλ= ∫X X x                                      (2.5) 

for any mB∈B . This function is known as the probability density function of the random 

variable X .  

 If X  is an  random variable and  is a Borel function 

(so that  for every 

-valuedm\ : m →g \ \n

( ) m− n1 B ∈g B B∈B ), then ( )( )ω=Y g X  is a measurable mapping 

from  to , and so is an  random variable. Its corresponding 

probability measure  is defined by  

( ,Ω F) )n n n

F

( ,\ B -valued\

Y

( ) ( )( ) ( )( ){ }1 1 1F B F B P B− − −= =Y X g X g                         (2.6) 

for any nB∈B . 

 Since the notation  

( ){ }:P ω ω ∈X B                                            (2.7) 
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is unduly clumsy, the simpler, but less exact, notation  

{ }P ∈X B                                                  (2.8) 

is generally used instead.  

 In probability theory, the interesting properties of random variables are 

probabilistic, so that there is no difference between two variables that are equal with 

probability one. Hence, random variables X  and  are called equivalent and 

considered to be indistinguishable if  

Y

{ } 1P = =X Y .                                              (2.9) 

An important special case is that, a random variable X  is said to be degenerate at dX  

if { } 1dP = =X X  and dX  is a constant. In this light, deterministic variables can be 

regarded as a special class of random variables.  

 Note that any  random variable -valuedm\ X  can in fact be treated as a 

collection of  real-valued variables, by considering the  coordinates of m m X  

separately. When considering X  in this viewpoint the function ( )F x  is called the joint 

distribution function of these variables, and questions of dependence, independence, and 

conditional probability arise. Two  and  valued random variables -\m n -\ X  and Y , 

defined on the same probability space ( ), , PΩ F , are called independent if  

{ } { } { }1 2 1,P B B P B P B∈ ∈ = ∈ ∈X Y X Y 2                       (2.10) 

for all  and . The conditional probability of 1
mB ∈B 2

nB ∈B 1B∈X  given 2B∈Y  is 

defined by  

{ } { }
{ }

1
1 2

2

,P B B
P B B

P B
∈ ∈

∈ ∈
∈

X Y
X Y

Y
� 2                          (2.11) 

for all pairs of Borel sets  and 1
mB ∈B 2

nB ∈B  satisfying { }2 0P B∈ >Y . This leads 

naturally to the concept of conditional distribution function of X  given Y , defined, in 

measure form, by  

( ) ( ) ( )

( )
1 2

2

,

1 2

,
B B

B

dF
F B B

dF

∫ ∫
∫

X Y

X Y

Y

x y

y
�                               (2.12) 

where  is the distribution function for the  random variable ( ,F X Y ) -valuedm n+\ ( ),X Y . 
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If all the distribution functions are absolutely continuous, the conditional probability 

density function of X  given Y  can be defined as 

( ) ( ) ( )
( )

,

f
X Y

Y

,
,

f
fX Y

x y
x y

y
� .                                    (2.13) 

 Finally, two events (elements of ) F A  and B  are called independent events if  

{ } { } { }P A B P A P B=∩ .                                     (2.14) 

The conditional probability of  given A B  is defined by   

{ } { }
{ }

P A B
P A B

P B
∩

�                                         (2.15) 

whenever { } 0P B > . It is left undefined, or given an arbitrary value, when { } 0P B = .  

2.1.2 Statistical Moments and the Characteristic Function 

 If X  is an  random variable and  a Borel function, 

then the expectation of 

-valuedm\ : m →g \ \n

( )g X  is defined as the Lebesgue-Stieltjes integral  

( )( ) ( )( ) ( )E
Ω

dPω ω∫g X g X� ,                              (2.16) 

provided that the integral exists. Because of the measurability of ( )ωX , this is equal to 

the Riemann-Stieltjes integral given by  

( )( ) ( ) ( )m
E = ∫ XdFg X g x

\
x .                                (2.17) 

Since ( ) ( ) ( ) ( )( )1 2, , , ng g g=g X X X " X ) is  valued, so is n\ ( )(E g X . Noting this, 

it is easy to see that ( )(E )g X  exists if ( ) ( )m ig dF < +∞∫ Xx x
\

 for .  1, 2, ,i n= "

 If X  is a real-valued random variable and ( )E X < +∞ , X  is said to be 

integrable. If ( )E X < +∞2 , X  is said to be square integrable. The simple expectation 

( )X E Xµ =                                                (2.18) 

is termed the mean of X , and X  is called centred if 0Xµ = . The quantity  

( )( ) ( )22 VarX XE X Xσ µ= − =                                 (2.19) 
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is termed the variance of X , while 0Xσ ≥  is known as the standard deviation. More 

generally, for any , the expectations j∈` ( )jE X , ( )( )j
XE X µ− , ( jE X )  and 

( j
XE X µ− )  are termed respectively the (j-th order) moment, central moment, absolute 

moment and central absolute moment of X .  

 The concept of statistical moments can also be defined for  random 

variables. For example, the product expectation  

-valuedm\

( )( )( ) ( )2 Cov ,XY X YE X Y Xσ µ µ= − − = Y                        (2.20) 

involving two real-valued random variables X  and Y  is known as covariance (i.e. 

second order central moment), while  
2
XY

XY
X Y

σρ
σ σ

=                                                (2.21) 

is called the correlation coefficient of X  and Y . Note when , ( )Cov , 0X Y = X  and 

 are said to be uncorrelated to each other.  Y

 With respect to the expectation of real-valued random variables, there are the 

following properties:  

 Consider the constant  as a special random variable, then .  c ( )E c c=

 For any constants ,  and random variables a b X , ,  Y

( ) ( ) ( )E aX bY aE X bE Y+ = + .                               (2.22) 

 If , then .  0X ≥ ( ) 0E X ≥

 If random variables X  and Y  are independent to each other, then  

( ) ( ) ( )E XY E X E Y= .                                      (2.23) 

With respect to the variance of real-valued random variables, the following properties hold 

 .  ( ) ( ) ( )( )22Var X E X E X= −

 The variance of a random variable X  equals zero if, and only if, there exists a 

constant  such that  c

{ } 1P X c= = .                                             (2.24) 

 For any constant ,  a
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( ) ( )2Var VaraX a X= .                                      (2.25) 

 For any constant ,  a

( ) ( )( 2Var )X E X a≤ − ,                                     (2.26) 

and the equal sign in the above inequality holds if and only if .  ( )a E X=

 If random variables X  and Y  are uncorrelated to each other, then  

( ) ( ) ( )Var Var VarX Y X± = + Y .                              (2.27) 

 Let X  be a real-valued random variable with distribution function . The 

function  

( )F x

( ) ( ) ( ) ( ) ( )11 tXtX txt E e e dP e dF xω

Ω
ϕ ω

+∞−−

−∞
= = =∫ ∫ 1−               (2.28) 

defined for all real numbers , is called the characteristic function of t X  or ( )F x . If 

 is absolutely continuous such that ( )F x ( )f x , the probability density function of X , 

exists, then  

( ) ( ) ( )1 1tx txt e dF x e f x dxϕ
+∞ +∞− −

−∞ −∞
= =∫ ∫ .                       (2.29) 

That is, differing by a constant scalar ( ) 12π − , ( )tϕ  is the inverse Fourier transform of 

( )f x , and ( )f x  can be expressed in terms of the Fourier transform of , i.e.  ( )tϕ

( ) ( )11
2

txf x e ϕ
π

+∞ − −

−∞
= ∫ t dt .                                  (2.30) 

 With respect to the characteristic function ( )tϕ , there are the following 

properties:  

 (a)  is well defined for all ( )tϕ t∈\  and satisfies , ( )0 1ϕ = ( ) 1tϕ ≤ ; (b) 

 is uniformly continuous in ; (c) ( )tϕ \ ( )tϕ  is non-negative definite (See also 

Section 2.2.3), that is,  

( )
1 1

0
k k

i j i j
i j

t t z zϕ
= =

−∑∑ ≥                                       (2.31) 

 holds for any positive integer , any set of real numbers  and any set 

of complex numbers . Conversely, for any function  satisfying 

k 1 2, , , kt t t"

1 2, , , kz z z" ( )g t
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these three conditions (a, b, c), there exists a random variable whose characteristic 

function is .  ( )g t

 The characteristic function ( )tϕ  and the distribution function ( )F x  are 

uniquely determined by each other. Furthermore, if the probability density function 

( )f x  exists, then ( )F x , ( )f x  and ( )tϕ  are equivalent in defining the 

associated random variable X .  

 If 1 2, , , kX X X"  are independent random variables with characteristic functions 

, then the characteristic function of ( ) ( ) ( )
1 2

, , ,
kX X Xt tϕ ϕ ϕ" t 1 2 kX X X+ + +"  

can be obtained as  

( ) ( ) ( ) ( )
1 2 1 2kX X X X X Xt t tϕ ϕ ϕ+ + + =" "

k
tϕ .                         (2.32) 

 For any constants  and , the characteristic function of  is  a b aX b+

( ) ( )1bt
aX b Xt e atϕ ϕ−

+ = .                                      (2.33) 

 If, for some integer , the moment 0k > ( )kE X  is finite, then ( )tϕ  is 

differentiable  times and  k

( ) ( ) ( ) (0 1
ii iE Xϕ = − )      0 i k≤ ≤ .                         (2.34) 

If moments  for all orders are finite, then the Taylor expansion  ( iE X )

( ) ( ) ( )
0

1

!

i

i

i

t
t E X

i
ϕ

+∞

=

−
=∑                                     (2.35) 

holds for all  for which the right-hand side converges, which is known from 

calculus to be equivalent to 

t

1t ε< , where ( )( )1lim sup !
j

j

i j i
E X jε

→+∞ ≥
= .  

 More generally, the characteristic function ( )ϕ t  of an  random 

variable 

-valuedm\

X  with distribution function ( )F x  is defined by  

( ) ( ) ( )1 1
n

E e e dFϕ − −= ∫t X t xt i i

\
� x     .                  (2.36) m∈t \

Similar to the real-valued case, when the corresponding probability density function 

( )f x  exists,  and ( )ϕ t ( )f x  are related to each other via Fourier transforms, i.e.  

( ) ( )1
n
e f dϕ −= ∫ t xt xi

\
x ,                                     (2.37) 
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( )
( )

( )11
2 nnf e
π

− −= ∫ t xx i

\

2.1.3 Fundamental Inequalities 

play important roles in probability theory, 

and they are outlined below for references.  

ality)   Let 

dϕ t t .                               (2.38) 

 There are a number of inequalities that 

 Theorem 2.1 (Chebyshev’s inequ X  be an integrable random 

variable, then the inequality  

( ){ } ( )
2

Var X
P X E X− ≥ ε

ε
≤                                 (2.39) 

holds for any 0ε > .  

m 2.2 (Kolmogorov’s inequality)   Let  Theore 1X , 2X , , " kX  be k  

independent random variables that satisfy ( ) 0iE X =  and ( )r = <  for all 

1, 2, ,i k= " .  Then, the inequality  

2
i iX σ +∞Va

{ } ( )2 2 2
1 221 21

max i ki k
P X X X 1ε σ σ σ

ε
≥ ≤ + + +"              (2.40) 

holds for any 

≤ ≤
+ + +"

0ε > .  

m 2.3 (Hölder’s inequality)   Let Theore  X  and be two random variables, 

and 1

Y  

p > , 1q >  such that 1 1 1p q+ = . Then  

)) () ((( )( )1 1p q

XY E X Y≤ .                            (p qE E 2.41) 

If ( )( )1 ppE X < +∞  and ( )( )1 qqE Y < +∞ , th

ds if and only if 

en the equal sign in the above inequality 

hol { }0 1P X = =  or { }0 1P Y = =  or there exists a constant 0c >  such 

that { } 1= . When qp qP X c Y=  p 2= = , this

ality.  

em 2.4   Let 

 is known as the Cauchy-Schwartz 

inequ

 Theor 1 2, , , kX X X"  be  random variables. Then k

( ) ( )( )1
1

k k

i

E X
=

≤∏ .                            (2.42) 1 2
k

k iE X X X"
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 Theorem 2.5 (Jensen’s inequality)   Let X  be a random variable and g  a 

[ ]convex function in . That is, for any \ 0,1λ∈  and u v< ∈\ ,  

( )( ) ( ) ( ) ( )( )g u v u g u g v g uλ λ+ − ≤ + −                        (2 3) 

Then,  

. .4

( )( ) ( )( )g E X E g X≤ ,                                      (2.44) 

( )E X  and ( )( )E g Xif both  are finite.  

 Theorem 2.6 (Moment inequality)   Let X  be a random variable and 

t , then 0 s< <  

( )( ) ( )( )1 1s t

When 

s tE X E X≤ .                                   (2.45) 

( )tE X < +∞ , the equal sign in the above inequality holds if, and only if, there 

exists a constant  such that c { } 1P X c= = .  

 Theorem 2.7 (Minkowski inequality)   Let X  and  be two random Y

variables, and 0p . If > (E X )p pY+ < +∞ en  

I) 

, th

1p ≥       ( )( ) ( )( ) ( )( )1 1 1p p pp pE X Y E X E Y+ ≤ + ,             (2.46a) p

in which the equal sign holds if and only if: (a) when 1p > , { }0 1P X = =  or 

{ }0 1 P Y = = or there exists a constant  such that c { } 1cY= = ; or (b) when P X

1p = , { }0 1P XY ≥ = .  

  II) 1  0 p< < ( ) ( ) ( )p p pE X Y E X E Y+ ≤ + ,                      (2.46b) 

ic n ho { }0 1P XY = =in wh h the equal sig lds if and only if .  

2.1.4 Stochastic Convergence 

 In calculus, the concept of convergence is the mathematical basis of continuity, 

ions. Similarly, the concepts of stochastic 

convergence play a fundamental role in stochastic mathematics. There are four basic 

differentiability and integrability of funct

modes of convergence for a sequence { }iX  of -valuedm\  random variables.  
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I) iX  is said to converge to X  with probability one, or almost surely (a.s.), if  

{ }2ii→+∞
− = =lim 0 1P X X ,                                    (2.47) 

or stsequivalently, if there exi  a set N Ω⊂  such that { } 0P N =  and  

( ) ( )
2

lim 0ii
ω ω

→+∞
− =X X                                     (2.48) 

Nω∉holds for every .  

II) iX  is said to converge to X  in -thγ  mean ( 1γ ≥ ) if  

( )2
0iE γ− →X X        a

III) 

s i →+∞ .                         (2.49) 

iX  is said to converge to X  in probability if  

{ }2
0iP ε− > →X X     as                          (2.50) 

holds for every 

 i →+∞

.  0ε >

iX  is said to converge to X  in distribution,IV)  or weakly, if their distribution 

functions satisfy  

FX( )
i

F →X ( )x x         as                          (2.51) 

at e f

 i →+∞

( )FX x .  very continuity point x  o  

 These four modes of convergence are denoted symbolically by  

I)  i ⎯→a.s.X X ,                II)  i
γ⎯→X X ,                     

III) P
i ⎯→X X ,                IV)  d

i ⎯→X X .               (2.52) 

onverC gence in -thγ  mean when 2γ =  is of particular importance, and is known as 

mean square convergence, w

⎯→

hich is often denoted by 
m.s.

i ⎯X X , q.m.
i ⎯⎯→X X  or l.i .m. ii→+∞

=X X                 (2.53) ,     

.  

 In each of the rst three c there is a 

ence 

where l.i .m. is read as limit in mean

fi ases corresponding mode of mutual 

converg of a sequence { }iX  which is often useful. A sequence of { }iX  is said to 

converge mutually almost surely, mutually in -thγ  mean, or mu , if tually in probability

(2.54a), (2.54b) and (2.54c), respectively, holds:  
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a.s.sup 0j i
j i>

− ⎯→X X           a →+∞ ,                   (2.54a) 
2

s i

( )2
sup 0         as i ,                   (2.54b) j i

j i
E

γ

>
− →X X →+∞

{ }2
sup 0→      as , 0j i

j i
P ε

>
− >X X i →+∞ ε∀ > .            (2.54c) 

In each case, the mutual convergence of a sequence of random variables in a particular 

mode implies the existence of a limit random variable to which the sequence converges in 

that mode, and vice versa.  

 Let 1 2 1γ γ≥ ≥ , the relation among various modes of stochastic convergence can 

, in which A B⇒  denotes “A leads to B”.  

 The following theorems summarize a number of results relating the various modes 

of stochastic converg

be represented as the following diagram

 

Figure 2.1 The relation of stochastic convergence 

ence.  

 Theorem 2.8   Let { }iX  be a sequence of random variables:  

I) If P
i ⎯→X X  then there is a subsequence { }ki

X  of { }iX  such that a.s.
ki
⎯→X X  

as .  k →+∞

II) If d
i ⎯→X X  and X  is degenerate, then P

i ⎯→X X . 

i

 

III) ⎯→dX X  if, and only if, ( ) ( )
i

ϕ ϕ→X Xt t  for every .  

Theorem )   Let 

t

  2.9 (Lévy’s monotone convergence theorem { }iX  be a 

1
i

γ⎯→X X a.s.
i ⎯→X X  

2
i

γ⎯→X X P
i ⎯→X X  

d
i ⎯→X X  
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sequence of non-negative random variables for which ( ) ( )1i iX Xω ω+≤  for i  and all 

ω , and suppose there exists a random variable X  such that a.s.
iX X⎯→ . Then  

( ) ( )lim ii
E X E X

→+∞
= .                                       .55) 

Theorem 2.10 (Fatou’s lemma)   Let 

 (2

 { }iX  be a sequence of random variables, 

riabland suppose there exists an integrable random va e X  such that ( ) ( )iX Xω ω≥  for 

all i  and ω . Then  

( ) ( )lim inf
i j i

E
→+∞ ≥

lim infj ji j i
X E X

→+∞ ≥
≥ .                               (2.56) 

 Theorem 2.11 (Lebesgue’s dominated convergence theorem)   Let { }iX  be a 

sequence of random variables and X  a random variable such that a.s.
iX X⎯→ ppose 

that there exists an integrable rand  variable Y  for which (

. Su

om ) ( )iX Yω ω≤  for all i  

and ω . Then  

li
i→

( ) ( )m iE X E X
+∞

= .                                        (2.57) 

 Theorem 2.12 (The Borel-Contelli lemma)   Let { }iA  be a sequence of events. 

 i
i

+∞

=
∑

  

.                                           (2.58) 

 Theorem 2.13 (Kolmogorov’s zero-one law)   Let 

If { } 1P A < , then the probability of an infinite number of the A  occurring is zero, 

i.e.

1
i

1

0j
i j i

P A
+∞ +∞

= =

⎧ ⎫⎪ ⎪ =⎨ ⎬
⎪ ⎪⎩ ⎭
∩∪

{ }iA  be a sequence of 

genc
=

ively.  

2.1.5 Limit Theorems 

 Until about sixty years ago, limit theorems have been the central problems in 

independent events. Corresponding to the convergence or diver e of { }P A
+∞

∑ , the 

probability of an infinite number of the A  occurring is zero or one, respect

1
i

i

i
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probability theory for more than two centuries. There are two basic types of limit theorems: 

(a) Laws of large numbers that determine whether or not the arithmetic average of a 

are weak laws of large numbers, which correspond to 

convergence in probability, and strong laws of large numbers, which corresponds to 

lmost 

m experiment, let 

sequence of random variables degenerate to a constant; (b) Central limit theorems that 

determine whether or not the partial sum of a sequence of random variables asymptotically 

follows a Gaussian distribution.  

 Laws of large numbers are established with respect to different modes of stochastic 

convergence. In particular, there 

a sure convergence.  

 Theorem 2.14 (Bernoulli’s weak law of large numbers)   In k  repeated 

independent trials of a rando p  denote the probability that ent A  

occurs in any given trial, v  the total number of times that 

 the ev

k A  occurs in k  trials. Then,  

lim 0k

k

vP p
k

ε
→+∞

⎧ ⎫
− ≥ 9)=⎨ ⎬

⎩ ⎭
                                     (2.5  

holds for any 0ε > .  

 Theorem 2.15 (due to Chebyshev)   Let { }iX  be a sequence of uncorrelated 

random variables. If there exists a constant c  such that  

( )Var iX c≤                                               (2.60) 

for all X , then  i

( )lim 0kE S
ε ⎪≥ =⎬                                  (2.61) k

k

S
P

k→+∞

⎧ ⎫−⎪
⎨
⎪ ⎪⎩ ⎭

holds for all 0ε > , where 
1

k

k i
i

S X
=

= ∑ .  

 Theorem 2.16 (due to Kolmogorov)   Let { }iX  be a sequence of independent 

and identically distributed random variables. Then,  

1

1lim 1ik i
P X

k
µ

→+∞
=

k⎧ ⎫= =⎨ ⎬
⎩ ⎭

∑                                      (2.62) 

holds if and only if ( )iE X  exists and ( )iE X µ= .  
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 Theorem 2.17 (Kolmogorov’s strong law of large numbers)   Let { }iX  be a 

sequence of independent random variables satisfying  

( )
2

1

Var+∞
i

i

X
i=

< +∞∑ ,                                          (2.63) 

en  th

( )lim 0 1k k

k

S E S−
P

k→+∞

⎧ ⎫
= =⎨ ⎬

⎩
                                   (2.64) 

.  

 In science and engineering, man

of independent random factors. When the effect of each random factor is small, the overall 

s often observed following a Gaussian distribution. It is the central limit theorem 

that demonstrates this intuitive observation in a mathematically rigorous manner.  

⎭

1

k

k i
i

S X
=

= ∑where 

y practical problems are influenced by a number 

effect i

 Theorem 2.18 (due to De Moivre and Laplace)   Assume random variable kv  

to follow the binomial distribution ( ),B k p , i.e.  

k
{ } i k i

kP v i p q
i

−⎛ ⎞
= = ⎜ ⎟                                        (2.65) 

where  and 

⎝ ⎠

i k≤ ∈` , 0 1p< < 1q p= − . Then  
2

21lim
2 aπ⎪⎭

xbk

k

v kpP a b e dx
kpq

−

→+∞

⎧ ⎫−⎪ ⎪< ≤ =⎨ ⎬
⎪⎩

∫                         (2.66) 

holds for any a b< ∈\ .  

 Theorem 2.19 (due to Lindeberg and Lévy)   Let { }iX  be a sequence of 

independent and identically distributed random variables. If ( )Var iX  exists, then  

2

2
2

1lim
2k k πσ −∞→+∞ ⎩ ⎭

where k iS X=∑ , ( )i

yxkS kP x e dyµ −⎧ ⎫
≤ =⎨ ⎬ ∫                           (2.67) 

i=

−

1

k

E Xµ =  and ( )2 Var iXσ = .  

eller)   Let { } Theorem 2.20 (due to Lindeberg and F iX  be a sequence of 
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independent random variables with distribution functions ( ) , ; let iF x i∈` ( ) , 

 and 
k

k i

i ia E X=

( )2 Vari ib X= 2 2

1i
B b=∑ . If the Lindeberg condition holds, i.e.  

=

( ) ( )21

i k

k

2
1

lim 0i ik ik x a B

x a dF x
B ε

→+∞
= − >

− =∑ ∫     0ε∀ > , 2.68

then  

                ( ) 

( )
2

2

1

1 1lim
2

yk x

i ik ik

P X a x e
B π

−

−∞→+∞
=

⎧ ⎫
− ≤ =⎨ ⎬

⎩ ⎭
∑ ∫ dy     x∀ ∈\           (2.69) 

and the Feller condition  

2
2 1

1lim max 0ik i k
kB

σ
→+∞ ≤ ≤

=                                          (2.70) 

hold; and vice versa.  

2.2 On Stochastic Fields 

 Simply speaking, a stochastic field is just a random function defined over some 

elds covers an extremely wide area, since any 

rministic functions can be expected for their 

stochastic counterparts. In the study of stochastic fields, the greatest success is achieved in 

lds. One is 

essentially a measure-theoretic approach and leads ultimately to a probabilistic setting, 

 can be eventually placed in a measure-theoretic 

framework.  

index set. Hence, the research of stochastic fi

question that can be asked about dete

a special class of stochastic fields, namely Markov processes, which play a very important 

role in many random problems (especially those involved with time evolution). However, 

the Markov process has little to do with this research regarding random media, which will 

become clear in the latter parts of this thesis (e.g. Section 2.3 and Chapter 3). 

Consequently, the theory of Markov processes is not included in this section.  

2.2.1 General Foundations 

 There are two virtually different approaches to defining stochastic fie

while the other starts probabilistically and

41 



Chapter 2. Basic Mathematical Tools 

 The measure-theoretic approach is considered first. Let ,n mG  denote the set of all 

finite -valuedm\  functions in n\ , ,m n∈` , and ,n mG  the -algebraσ  containing all 

sets of n m nG B⎧ ⎫
∈ ∈ ∈⎨ ⎬g g t t \∪ ary integer  the form ( ),

1i=⎩ ⎭

and 

: ,
k

i  where 0k >  is an arbitr

iB  are half-open intervals in  Then, 

a stochastic field can be defined as a measurable mapping from 

m similar to the definition of random variables, \ .

( ),Ω F  into , ,n m n m . 

The notation ( )

( ),G G

,ωX t  is used to denote an m n-dimensional stochastic field, 

e 

-valued\  

wher m∈X \ , n∈t \  and ω Ω∈ . As long as there is no danger of confusion, t , ω , 

or both could be suppressed.  

 Let  be k  arbitrary points in ( ) ( ) ( )1 2, , , kt t t" n\ 1 2, , , kX t X t X t"  . Then, 

are a sequence of  variables. Given the existence of the probability 

measure P  on F , the following probab

-valuedm\  random

ility measure  

(( ) ( ) ( ) ( ) )( ){ }
1 2, , , k kF Pt t t t"               (2.71)

very Bore

1 2, , ,B B∈X t X t X� "     

is well defined for e l set kmB∈B ; or equivalently, ( ) ( )
1 2 1 2, , , , , ,

k kF t t t x x x" " , the 

joint distribution function of ( ) ( ) ( ), , ,1 2 kX t X t X t" , is we ility 

measure  on . The collection of these joint d

ll defined by the probab

P F istribution functions 

( ) ( ){ }1 2 1 2 1 2, , , ,
k

n
k k k∈t t t" \ n as the family of 

s for the stochastic fi

, , , : , , ,F ∈x x x t t t" " `  is know

finite-dimensional distribution eld ( ),ωX t . In general, it is the 

finite-dim butions that are dealt with in the study of a stochastic field. Hence, 

 in the -algebra

ensional distri

it is desirable that the measure of all Borel setsP  σ  ,n mG  could also be 

uniquely defined by the finite-dimensional distributions. In order to make this property 

hold, it is necessary to assume some other condition such as separability of ( ),ωX t , 

which shall becomes clear later in this subsection.  

 The second definition of an -valuedm\  n-dimensional stochastic field, which 

might be more natural from a modelling viewpoint, is to consider it as a collection of 

random variables ( ){ }:m n∈ ∈X t t\ \  together with a collection of joint distribution 
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functions ( ) ( ){ }1 2 1 2 1 2, , , , , , : , , , ,n
k kF k∈ ∈t t t x x x t t t" " \ ` . A natural question to ask is 

k"

whether or not one can always find a stochastic field ( ),ωX t , according to the first 

 which possesses these definition, ( ) ( )
1 2 1 2, , , , , ,

k kF t t t x x x" "

 

s Consistency Principle)

 as its finite-dimensional 

distributions. This is answered by the following theorem. 

 Theorem 2.21 (Kolmogorov’    For any k∈`  and 

any points , , , n∈t t t" \ , let 1 2 k ( ) ( ), , ,F x x x" , 
1 2 1 2, , , k kt t t"

m , denote a 

 a

1 2, , , k ∈x x x" \

joint distribution function. Then, there exist a probability space ( ), , PΩ F nd a 

corresponding stochastic field ( ),ωX t  ( m∈X \ ,  and n∈t \ ω Ω ) suc∈ h that the 

finite-dimensional distribution of ( ),ωX t  with respect to 1 2, , ,t t t" es with 

( ) ( ), , , kF t t t

k  coincid

k1 2 1 2, , , x x x" " , if and on

I) For any permutation ( ), ,

l

, k

y if 

1 2λ λ λ" of  ( )1, 2, , k" , the r  elation  

( ) ( ) ( ) ( )1 21 2 1 2
1 2, , , , , ,
, , , , , ,

kk k
kF F

λ λ λ
λ λ λ=x x x" "t t t t t t
x x x" "

              (2.72) 

holds for any .  

II) Writing 

1 2, , , m
k ∈x x x" \

( ) ( )
1 2 1 2, , , , , ,

k kF t t t x x x" "  as a probability measure t t t"( )1 2, , , k
F , the relation  

( ) ( ) ( ) ( )
1 21 2 , , ,, , , kk j

jmF B F B
+

× = t t tt t t ""
B                              (2.73) 

holds for every  and km,j k∈` B∈B .  

 It is clear that not every family of joint distribution functions (or equivalently 

probab , only those families that ility measures) corresponds to a stochastic field. However

do are generally interesting to researchers.  

 In probability theory, two random variables X  and Y  are called equivalent if 

{ } 1P = =X Y . This implies that, for all intents and purposes, these two variables are 

indistinguishable. Similarly, two stochastic fields ( )X t  and ( )Y t  are said to be 

 

( ) ( )
equivalent, if 

{ } 1P = =X t Y t     for every ∈t \                (2.74) 

Two equivalent

n .       

 stochastic fields generate equivalent probability measures on  but ,n mG
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are not necessarily indistingui  sensshable in every e. For example, let 1n m= = , 

[ ]0,1Ω = , and define the probability as 

{ } ( )P B d xλ= ∫ ∩
    for every Borel set 

[ ]0,1B
B∈B           )    (2.75

where λ  is the Lebesgue measure on . Consider the following two stochastic fields,  \

( ), 0X t ω =     for all t  and ω ,                            (2.76a) 

( )
0

,
t

Y t
1 t

ω
ω

≠⎧
= ⎨ ω

.                                    (2.76b) 
=⎩

Then, X  and are clearly equivalent, but  Y  

( ) [ ]{ } is continuous fP X t or 0,1 1t∈ = ,                        (2.77a) 

( ) [ ]{ } is continuous for 0,1P t t 0Y ∈ = .                        (2.77b) 

Thus, certain probabilistic properties of these two sto

 For a given 

chastic fields are quite different.  

0ω Ω∈ , ( )0,ωX t  is simply a deterministic \  function on 

, which is termed a realization (or a sample path) of the stochastic field 

-valuedm

n\ X . Thus the 

ifferen the eq valent std ce between ui ochastic processes X  and ed in (2.73) 

ld be said to be a difference in sample path behaviour. It infers that the behaviour of a 

sample path 

 Y  defin

cou

( )0,ωX t  is not necessary determined by the f te-dim sional distributions 

of the stochastic field ( ),

ini en

ωX t . In order to overcome this uncomfortable situation, Doob 

[2.7] demons t finite-dimensional distributions in fact do determine sample path 

properties by requiring ple paths are essentially determined by their values on an 

everywhere dense, countable set of points in the parameter space n\ . Specifically, a 

stochastic field ( ),

trated tha

 that sam

ωX t , n∈t \ , is said to be separable if there exists a countable set 

nD ⊂ \  and a fixed event N  with { } 0P N = , such that for any close interval md B∈\  

and open interva nl I ⊂ \  o sets  

( ){
the tw

}: , ,B Iω ω ∈ ∈X t t   and  ( ){ }: , ,B I Dω ω ∈ ∈  (2.78)

of e from this definition that the process 

X t t ∩          

differ by a subset  It is easy to seN . ( ),Y t ω  

defined by (2.76b) is not separable. In the reminder of this thesis, it is 

mption

assumed, without 

further statement, that all stochastic fields are separable. This is not a serious assu , 

since it can be proven that to every stochastic field there corresponds an equivalent 
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separable stochastic field.  

 Let ( ) ( ) ( ) ( )( 1X= )2, , , mX XX t t t t"  denote an  n-dimensional 

stochastic field, the vector-valued function  

-valuedm\

( ) (( )E=µ t X t )                                            (2.79) 

is called the expectation function of ( )X t , and the matrix-valued function  

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )( )T
, Cov , E= = −R s t X s X t X s µ s X t µ t−      (2.80) 

is called the covariance function. Another important and widely used concept is the so 

called second-order stochastic field. Specifically, ( )X t  is said to be a second-order 

stochastic field if ( )( )2

1

m

i
i

E X
=

< +∞∑ t  holds for all .  

 The next two subsections, as indicated by th btitl

n∈t \

eir su es, introduce two special 

classes of stochastic fields, namely Gaussian fields and stationary stochastic fields, which 

)

will play an important role in Chapters 3 and 4.  

2.2.2 Gaussian Fields 

 Denoted by (~ ,X N 2 , a real-valued random variable µ σ X  is said to be 

Gaussian (or normally distributed) if its mean ( )E Xµ =  and variance 

( )2 E X 2σ µ= −  are both finite, and its distribution function is given by  

( )
( )2

22
2

1 x
x e dyσ

−

−∞
= ∫ .                         

2

y

XF
µ

πσ

−

       (2.81) 

Hence, the probability density function of X  is  

( )2
22( )

22
Xf x e1 x µ

σ

πσ
= ,         

−
−

                            (2.82) 

and the characteristic function is  

( )
2 211

2
t t

X t e
µ σ

ϕ
− −

= .                                         (2.83) 

The case 0µ = , is rather special, and is termed a standard Gaussian/normal 

distribution. The distribution function of a standard

2 1σ =  

 Gaussian random variable is usually 
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denoted by ( )xΦ  so that 

( )
2

1
2

yx
2x e dyΦ

−∞∫ .                                     (2.84) 

 Denoted )

π

−
�

by (~ ,X N µ Σ , an -valuedm\  random variable X  is said to be 

(multivariate) Gaussian if its probability density function is given by  

( )
( ) ( )

( ) ( )T11
2

2 detm
f e

π

−
=

1 −− −x µ Σ x µ

X x
Σ

                         (2.85) 

where ( )E=µ X  is the m-dimensional mean vector and ( ) ( )( )TE= − −Σ X µ X µ  is 

the  non-negative definite covariance matrix. Then, it is r  

 

m m× elatively straightforward

to check from the definition that the corresponding characteristic function is 

( )
T T11

2eϕ
− −

=
µt tΣt

X t .                                         (2.86) 

 The class of Gaussian ra

In particular, let ( )
ndom variables has a number of advantageous properties. 

( )1 2, , , ~ ,mX X X NX = µ Σ" , we have:  

 I) Probabilistic properties of X  are completely determined by its first- and second- 

order moments.  

II) 1 2, , , mX X X"  are maturely independent if, and only if, Σ  is a diagonal matrix.  

Let III) A  be a m n×  matrix ) with ( m n≥ ∈` ( )rank n=A , then  

( )T~ ,N µA A Σ=Y XA A .                                    (2.87) 

 Due to the above properties, su †

products† (see e.g. [2.20, 2.30]), which are based on Gaussian random variables, are often 

ch notations as Wiener chaos expansions  and Wick 

put into a framework of Hilbert space. Specifically, a Gaussian linear space is a real linear 

space of random variables, defined on some probability space ( ), , PΩ F , such that each 

variable in the space is centred Gaussian. Obviously, a Gaussian linear space is a linear 

                                                        
† The Wiener chaos expansion (or equivalently polynomial chaos expansion) is the theoretical 

foundation of the polynomial chaos expansion method, a very popular SFEM formulation initiated 
by R.G. Ghanem and P.D. Spanos (see Table 1.1). However, the research discussed in this thesis 
follows a completely different approach and has nothing to do with Wiener chaos expansions. Hence, 
the introduction to the Wiener chaos expansion and the associated Wick product is not included in 
this subsection.  
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subspace of ( )2 , ,L PΩ F , therefore it shares the same norm and inner product of the 

2 -spaceL . A Gaussian Hilbert space is a Gaussian linear space which is complete, i.e. a 

closed subspa ), ,ce of (2L PF  consisting of centred Gaussian random variables.  

 We can now define a  (or simply a ) to

stochastic field possess ensional distributions all of which are multiva

Ω

Gaussian stochastic field Gaussian field  be a 

ing finite-dim riate 

Gaussian. It is then clear that, all the finite-dimensional distributions of an -valuedm\  

n-dimensional Gaussian field ( )X t , and hence the probability measures they induce on 

,n mG , are completely determined by the expectation function ( )(E )X t  

covariance function (

 and the

) ( )( )Cov ,X s t .  

2.2.3 Stationar ie

X

y Stochastic F lds 

lies in stochastic fields, it is 

atically m e stationary stochastic field in the more 

rwise state

 Although the major interest of this thesis 

mathem ore convenient to consider th

-valuedm\  

general context of -valuedm^  fields. Hence, unless othe d, it is assumed in this 

subsection that a stochastic field ( ) ( ) ( ) ( )( )1 2, , , mX X X=X t t t t"  always takes values 

in the complex space t  lies in n ( )m^ , while \ . It is also assumed 
2

1

m

i
i

E X
=

⎛ ⎞ < +∞⎜ ⎟
⎝ ⎠
∑ t  

n , i.e. for all ∈t \ ( )X t  is a second-order stochastic field.  

With these assumptions, the  expectation function of ( )X t  is defined as 

( ) (( )E=µ t X t ) ,                                          (2.88) 

. Th function 
m  is define

( )

and it is a deterministic function from n\  to m^ e covariance 

( ) 2, : n m×→R s t \ ^ d by  

( ) ( ) ( )( ) )( )( ( ) ( )( )( )T
, Cov , E= = − −R s t X s X t s µ X t µ t      (2.89) X s

where the bar denotes the complex conjugate. When ( )X t  is  valued, the complex 

conjugate has no effect, so that the above definition is equivale at given

m\

nt to th  in (2.80) for 

-valuedm\  stochastic fields.  
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 From (2.89), it is easy to see that the matrix-valued covariance function satisfies  

( ) ( ), ,=R s t R t s                                            (2.90) 

r all fo , n∈s t \ . Let ( ),ijR s t , { }, 1, 2, ,i j m∈ " , denote the entry located at the i-th row 

and the n of ( ),R s t . Then, from (2.89) and due to the Cauchy-Schwartz j-th colum  matrix 

inequality (see e.g. Theorem 2.3), ( ),ijR s t  is finite for all , m∈s t \ . Specifically,  

( ) ( )( )) ( ( ) ( )( )( )
( ) ( )( ) ( ) ( )( )1 21 2 22

i

i i j j

µ

µ

< +∞

s

t   2.91) 

Furthermore, the diagonal entry 

,ij i j jR E X X

E X E X

µ

µ

= − −

≤ − −

s t s t t

s s t  , m∀ ∈s t \ .  (

( ),iiR s t  is a non-negative definite function 

That is, the Hermitian form 

on \ . 2n

( )1 2 1 2

1 21 1j j

,
k k

ii j j j jR z z∑∑ t t  is always real and non-negative for 

any collection of points  in , and any complex numbers . This 

= =

is because,  

( )

1 2, , , kt t t" n\ 1 2, , , kz z z"

( ) ( )( ) ( ) ( )( )( )
( ) ( )( )

1 2 1 2iiR∑∑ t t
1 2

1 1 2 2 1 2

1 2

1 1

1 1

2

1

,

0

k k

j j j j
j j

k k

i j i j i j i j j j
j j

k

j i j i j
j

z z

E X X z z

E z X

µ µ

µ

= =

= =

=

= − −

⎛ ⎞
⎜ ⎟= − ≥
⎜ ⎟
⎝ ⎠

∑∑

∑

t t t t

t t

    .   (2.92) 

The property of non-negative definiteness actually characterizes covariance functions, so 

that given any function and a non-negative definite  it 

respectively. Wh

k∀ ∈`

( ) : nµ →t \ ^  ( ) 2, : nR →s t \ ^

is always possible to construct a complex-valued n-dimensional stochastic field for which 

( )µ t  and ( ),R s t  are the expectation and covariance functions, en 

( )µ t  and ( ),R s t  are both real valued, this field can even be taken to be Gaussian, since 

ultiva aussian finite-dimensional distributions generated by the m riate G ( )µ t  and 

)  are een to satisfy the Kolmogorov consistency principle (Theorem 2.21).  

 A -valuedm  n-dimensional stochastic field 

( ,R s t easily s

^ ( )X t  is said to b ctly 

ry if its finite-dimensional distributions are invariant under translations in the 

e stri

stationa
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parameter  s, for any set of points 1 2, , ,t t " d τ  in n\ , the joint 

distribution of the random variables 

t . That i t  ank

( ) ( ) ( )1 2, , kX t X t X t"，  should be the same as for 

the variables ( ) ( ) ( ), , , k+ + +X t τ X t τ X t τ" . ediate consequences of this 

property are: a) the expectation funct

1 2 Two imm

ion ( ) is identically

ction ( )

µ t   equal to a constant; b) the 

covariance fun ,R s t  is forced to be a fun

 Very often, when dealing with stochastic fields, it is not necessary to impose the 

ition of strictly stationa nd only those 

ction of the difference −s t  only.  

rather restrictive cond rity, and it is sufficient to dema

two consequences just noted. Hence, the question of weak stationarity arises. A 

-valuedm^  n-dimensional stochastic field ( )X t  is called wide-sense stationary (or 

weakly stationary), if  

( )( )E X t = µ  is a constant,                                  (2.93) 

and 

( ) ( ))( ( )Cov , = −X s X t R s t  is a function of −s t  only.         (2.94) 

A strictly stationary stochastic field is clearly wide-sense stationary, b t in general the 

reverse is not true. However, it is true for n fie

cally, a onal wide-sense 

u

-valuedm\  Gaussia lds.  

 An important special class of wide-sense stationary stochastic fields is the so 

called isotropic stochastic field. Specifi -valuedm  n-dimensi^

stationary stochastic field ( )X t  is called isotropic, if its covariance function ( )−R s t  

is a function of 
2

−s t  only; i.e. for any two point , the covariance of  s n, ∈s t \ ( )X s  

and ( )X t  depends only on the Euclidian distance between s  and t .  

and powerful, of which detailed expositions can be found in .  

 Finally, it is highlighted that the theory of stationary stoc tic field is quite rich 

[2.17-2.19]

2.3 On Stochastic Analysis 

 Stochastic analysis is the generalization of the classic calculus to the random 

context, and it studies differentiation and integration of stochastic fields. Similar to the 

has
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structure of calculus, stochastic analysis may be divided into two parts, namely the SODE 

theory and the SPDE theory, that deal with one-dimensional stochastic processes and 

igher-h dimensional stochastic fields, respectively. Hence, this section is organized as 

follows. Section 2.3.1 introduces two fundamental concepts in stochastic analysis, i.e. 

white noise and Brownian motion. Then, Sections 2.3.2 and 2.3.3 bring up respectively 

SODEs and SPDEs in a way that leads to the specific modelling strategy which will be 

introduced in Chapter 3.  

2.3.1 White Noise and Brownian Motion 

 Let ( )X t  denote an -valuedm\  n-dimensional wide-sense stationary stochastic 

field. Then, ( ) ( )( )E = 0X t , n , and random variables ∀ ∈t \X t  is called white noise if 

( ) ( ) ( )1 2, , , kX t X t X t"  are independent and identically distributed for any set of points 

r, when white no ( )1 2, , , kt t t"  in . In particula ise n\ X t  is a Gaussian field, it is termed 

almost everywhere.  

e otion. The motion was later explained by the random 

collisions with the molecules of the liquid. To describe the motion mathematically it is 

natural to use the con

Gaussian/normal white noise. It can be proven that the white noise field is discontinuous 

 In 1828 the Scottish botanist Brown observed that pollen grains suspended in 

liquid perform d an irregular m

cept of a stochastic process ( ),t ωB , interpreted as the position at 

e tim of the pollen grain t  ω . The solution of ( ),t ωB  is largely due to Einstein (1905) 

and Wiener (1923).  

 In mathematics, the term Brownian moti Wiener process) describes a 

real-valued stochastic field 

on (or 

( ),B t ω , 0 , that s :  

I) For every 

t ≥ atisfies

ω Ω∈ , ( ) [ )0, 0,B t Cω ∈ +∞ ; i.e. ( ),B t ω , as a function of , is 

continuous in .  

t

[ )0,+∞

( )0, 0B ω =II)  and  

({ }) ( )1
1 1

, , , 1, 2,
k

i i i
i i i

t x i
t t

ω ω Φ−
= −

⎛ ⎞
− ≤ = ⎜⎜ −⎝ ⎠

∏", ixP B t B k = ⎟⎟          (2.95) 
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holds for any any k∈` , 0 10 kt t t= < < < < +∞" , and any .  

an be shown Brownian motion defined above represents a coordinate of 

1 2, , , kx x x ∈" \

It c that the 

( ),t ωB , the position of pollen particles in liquid.  

 An equivalent mathematical definition of the Brownian motion ( ),B t ω , 0t ≥ , is:  

I) ( ) [ )0, 0,B t Cω ∈ +∞For every ω Ω∈ , .  

II) For any [ )1 2, , , 0kt t t ,∈ +∞ , random variables "k ∈`  and any ( )1, ,B t ω  

( ) (, kB t )2 , , ,B t ω ω  follow a multivariate Gaussian distribution.  

I) 

"

II For any [ )0,t∈ +∞  

( )( ), 0t ω ,                                            (2.96) 

 s t∈

E B =

and for any [ )0,+∞  

)

,

( ( ) ( ) ( )min ,s tω = .                         , ,E B s B tω        (2.97) 

2.3.2 Stochastic Ordinary Diff

 m 

erential Equations 

A general SODE has the for

( ) ( ) ( ),, , ,dX u t X v t X r t X
dt

ω= + ⋅     t∈\ ,                    (2.98) 

X  is the random unknown and functions u , v  and r  are alwhere l given; specifically, 

 and ( ),u t X ( ),v t X  are formally deterministic, and ( ), ,r t X ω  is a random function. It 

ODE theory capable to deal with a general random 

term 

is very difficult to develop a versatile S

( ), ,r t X ω  in the above equation. A useful and comprehensive theory is, however, 

achieved with respect to a special class of random functions ( ), ,t Xr ω , i.e. white noise. 

pecial c q. (2.98) is usually written as  In this s ase, E

( ) ( ), ,t
t t t

dX b t X t X w
dt

σ= + ⋅     0t ≥ ,                         (2.99) 

where ( ),tX X t ω=  is the random unknown, ( ),  and ( ),  are formally 

deterministic functions, and represents a Gaussian white no  

tb t X tt Xσ

tw  ise process. 

 As a white noise process is discontinuous almost everywhere, it is inconvenient to 

51 



Chapter 2. Basic Mathematical Tools 

directly  (2.99). Hence, its integral form

( ) ( )0 0 0
,

t t

t s s s

 deal with Eq.   

,X X b ds s X dBσ= + +∫ ∫                    s X     (2.100) 

is considered instead, in which ( ),sB B s ω=  denotes the Brownian motion. Note that the 

third term ( ),
t

0 s ss X dBσ∫  in the right-hand side of Eq. (2.100) could not be defined in 

the Riemann-Stieltjes sense becaus tion of

n, namely Itô

e the varia  the Brownian motion is too large. 

Hence, a new integral formulatio  integral, is developed for ( )
0

,
t

s ss X dBσ∫ .  

 In m e theory developed from (2.100) is often termed Itô calculus, 

and it has become a mature and powerful tool in many applications containing large 

random jumps with time evolution. Although the Itô calculus considers only a special case 

athematics, th

of Eq. (2.98), the theory and its applications have been so successful that, the term SODE 

en by white noise rather than the general 

naturally expected that, 

the challenge to develop a comprehensive theory for general SPDEs could be even more 

lopment significantly 

(or simply SDE) actually infers the Itô integral unless otherwise stated. A good 

introduction to Itô calculus is provided in [2.26] and more mathematically-rigorous 

treatments can be found in [2.21-2.25].  

2.3.3 Stochastic Partial Differential Equations 

 Due to mathematical difficulties, the successful SODE theory (i.e. Itô calculus) is 

achieved for the special equation (2.99) driv

equation (2.98) containing an arbitrary random function. It can be 

significant. Hence, instead of targeting general SPDEs, the SPDE research community 

have been mainly engaged in extending Itô’s white noise model to higher-dimensional 

stochastic fields. As the concept of white noise holds in any dimensionality, Eq. (2.99), 

which in the SODE theory is usually regarded as a shorthand version of the formal integral 

equation (2.100), is often taken as the starting point in SPDE research (see e.g. 

[2.29-2.30]). However, this generalization is not straightforward.  

 For one-dimensional stochastic processes, there is a natural “total order” (i.e. the 

sequential order of real numbers) that represents the evolution of the process. The Itô 

integral is based on the concept of Brownian motion, and its deve

benefits from the martingale theory and the theory of Markov processes, which are 
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essentially associated with the topological feature of total order.  

 Unfortunately, there is no such structure of total order in higher-dimensional 

Euclidean space. Consequently, neither the martingale theory nor the theory of Markov 

processes can be easily generalized to high-dimensional stochastic fields. This 

fundamental topological difference also complicates the generalization of Brownian 

[2.1] http://www-history.mcs.st-andrews.ac.uk/BiogIndex.html

motion to higher-dimensional cases, e.g. two-dimensional Brownian sheet. Specifically, 

the two equivalent definitions of Brownian motion addressed in Section 2.3.1 lead to 

completely different concepts of Brownian sheet.  

 In summary, current mathematics has not been able to provide an effective SPDE 

theory for the study of complicated random medium problems.  
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Chapter 3 

Material Modelling – Elementary 

Random Media 

 As in the simulation of deterministic engineering systems, one of the key issues in 

solving an engineering system composed of random media is to develop an appropriate 

material model for the random media under consideration. Furthermore, in order to 

achieve a general SFEM framework, the random material model needs to be: (a) simple 

and robust so that it can be readily adopted in different equation systems; (b) 

comprehensive and versatile so that it can be employed to model a variety of practical 

random media.  

 Following the technical review in Chapter 1 and from a mathematical viewpoint, it 

might be said that there has been at least three classes of approaches in random material 

modelling, which are based on the fuzzy set theory [3.1-3.5], the theory of random 

matrices [3.6-3.7] and the probability theory [3.8-3.35], respectively. Although the first 

two classes of models might be useful in some applications, it appears that the third class 

of models have been more widely accepted in the SFEM community. This is simply 

because the mathematical foundation of probability (see e.g. Chapter 2) is much more 

solid than those of fuzzy sets [3.36-3.37] and random matrices [3.38]. Nevertheless, in 

most SFEM formulations (e.g. [3.8-3.35]), the material models of random media are 

developed in an intuitive manner, which are neither based on theoretical deduction nor 

based on experimental induction. As a result, some of these material models are even 
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ambiguous in concept and contain self-contradiction†.  

 Some basic questions one may ask about a random material model are: (a) How to 

define the random medium in term of mathematical concepts? (b) From the viewpoint of 

physics, why does the practical random medium follow the specific mathematical 

description? (c) What properties does the random medium have? It appears that these 

fundamental questions have not been systematically answered according to the current 

state of SFEM research. Hence, following a probabilistic approach and driven by physical 

requirements of practical random media, this chapter attempts to develop, in a more 

mathematically rigorous fashion, a robust and comprehensive random material model. It 

has not been possible to make any experimental investigation during the course of this 

thesis, and efforts are made to answer the above questions from theoretical deduction.  

3.1 Problem Statements 

 In the classic theory of continuum mechanics, material parameters take fixed 

values and engineering systems are governed by various PDE systems determined by their 

physical nature. In order to perform a successful analysis for an engineering structure, all 

the material properties have to be known in advance, so that the structural responses are 

uniquely determined by specific boundary conditions. For instance, it is well known that 

the governing equations and associated boundary conditions for elastostatics are  

( ) ( )

( ) ( ) ( )( )
( ) ( ) ( )

( ) � ( )
( ) � ( )

0
on 1

2 on 
:

D

D

D

∇⎧
⎪ ⎧ = ∂⎪ ⎪= ∇ +∇⎨ ⎨

= ∂⎪ ⎪⎩
⎪ =⎩
∈

u

σ

σ x + f x =
u x u x

ε x u x u x
σ x σ x

σ x C x ε x

x

i

          (3.1) 

where ( )σ x  and  denote the stress tensors, � ( )σ x ( )ε x  the strain tensor, ( )u x  and 

 the displacement vectors, � ( )u x ( )f x  the load vector, and  the elastic tensor; 

 is the material domain, 

( )C x

nD ⊂ \ D∂ u  the displacement boundary of D , and D∂ σ  the 

stress boundary of D .  

                                                        
† More details can be found in Section 3.3.  
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 Many heterogeneous materials (e.g. concrete, composite materials with random 

inclusions, soil and rocks etc.) encountered in civil engineering, material science, 

geomechanics and hydrogeology etc. have structures with a non-deterministic disorder and 

are often termed as random media in engineering. Although engineering systems 

consisting of random media conform to the same principles of mechanics, it should be 

emphasized that the phenomena involved in random media are far more complex than 

those arising when homogeneous materials are present. This is not only because of the 

intricate stochastic nature of material properties, but also because the material structure of 

random media often contains discontinuities and multiple length scales. The resulting 

formidable mathematical and computational challenges cannot be met merely by 

employing larger computational platforms, but require fundamentally new mathematical 

insights and algorithmic developments. A better understanding and prediction of 

engineering systems consisting of random media requires a modelling approach based on a 

combination of probabilistic concepts with methods of mechanics.  

 In the past few decades [3.1-3.35], different mathematical models have been 

developed to describe the irregular variation of material properties through the random 

medium, and most of these material models are based on stochastic fields. That is, when 

random media are concerned, the elastic tensor  in the simple elastostatic equations 

(3.1) is not only a function over the medium domain , but is also a function over a 

probability space  such that  

C
n⊂

( )
D \

, , PΩ F

( ), ,Dω ω Ω= ∈ ∈C C x x .                                (3.2) 

A simple example of material properties of random media is shown in Figure 3.1, in which 

( ) ( )0,g g ω=x x  denotes a particular realization of the Young’s modulus of a random 

medium plate.  

 In the stochastic-field model, material properties of random media are regarded as 

some random functions defined in Euclidean space instead of as a sequence of individual 

random variables. Due to the well established analysis tools in calculus, this field-based 

strategy makes it easier to deal with various complicated interactions through the random 

medium.  
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( )
(Pa)
g x  

1 (m)x   
2 (m)x

Figure 3.1 Young’s modulus of a random medium plate 

 Consequently, for random medium structures, the governing equations and 

associated boundary conditions of elastostatics become a SPDE system as follows  

( ) ( )

( ) ( ) ( )( )
( ) ( ) ( )

( ) � ( )
( ) � ( )

, , 0
, , on 1, , ,

2 , , on 
, , : ,

,

D

D

D

ω ω
ω ω

ω ω ω
ω ω

ω ω ω

ω Ω

∇ + =⎧
⎪ ⎧ = ∂⎪ ⎪= ∇ +∇⎨ ⎨

= ∂⎪ ⎪⎩
⎪ =⎩
∈ ∈

u

σ

σ x f x
u x u x

ε x u x u x
σ x σ x

σ x C x ε x

x

i

   (3.3) 

in which all the mathematical quantities are stochastic fields and share the same physical 

meanings as their deterministic counterparts in (3.1). Except for the possible random 

boundary conditions � ( , )ωu x  and � ( ),ωσ x , which can be treated separately, the 

randomness in the above SPDEs is introduced by the spatially irregular variation of 

material properties. Therefore, the probability distributions of the stochastic fields 

( , )ωC x  and ( , )ωf x  determine the probabilistic properties of the random solutions 

( ),ωu x , ( , )ωε x  and ( , )ωσ x . This relationship reflects the stochastic mechanism of 

many typical random medium systems regardless of their physical nature. Hence, in 

solving engineering systems with variable uncertainties, e.g. Eq. (3.3), it is of crucial 

importance to identify and analyse the common features of the stochastic fields describing 

random material properties, e.g. ( ),ωC x  and ( ),ωf x .  

 Remark: As stated in Section 2.1.4, there are four basic modes of stochastic 
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convergence, which lead to different modes of stochastic continuity and stochastic 

differentiability. Hence, an essential question arising from the SPDE system (3.3) is that, 

in which sense are the associated stochastic fields including ( ),ωC x , ( ),ωu x , ( ),ωε x  

and ( ),ωσ x  differentiable? Naturally, an appropriate mode of stochastic continuity and 

stochastic differentiability has to satisfy the requirements both in engineering and in 

mathematics. For practical random media, this question will be rigorously answered later 

in this chapter. For the moment, it is assumed that all the stochastic fields involved are 

path-wise differentiable, which corresponds to almost sure convergence, so that Eq. (3.3) 

could at least be valid in mathematics.  

 In the remainder of this chapter, a specific stochastic-field model will be developed 

to define material properties of practical random media. In order to simplify the notation, 

the discussions will mainly focus on scalar fields. However, the resulting concepts and 

principles generally hold for tensor fields without changes. Unless otherwise stated, all the 

random variables take real values.  

3.2 From White Noise to Elementary Random Media 

 In order to develop a mathematically rigorous material model for random media, 

this section starts with the popular white noise model. Although the white noise approach 

does not succeed in the end, it helps to identify the engineering requirements and the 

probabilistic essence of practical random media, which in turn leads to the definition of a 

comprehensive mathematical model, namely elementary random media.  

3.2.1 The Integral Functional of White Noise  

 It is reviewed in Section 2.3 that, one of the most important concepts in stochastic 

analysis [3.39-3.42] is white noise. The white noise model not only plays a fundamental 

role in Itô calculus [3.39], but is also exceedingly popular in the current research of 

SPDEs [3.40]. Due to the available mathematical tools in stochastic analysis as well as the 

extremely irregular variation of material properties through a random medium, an easy 

way, perhaps also the most mathematically attractive approach, to tackle practical random 
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media is by referring to white noise. However, it can be proven that a white noise field is 

discontinuous almost everywhere (see e.g. [3.39] or Section 3.3.2). This hampers the 

direct application of the white noise model in physical systems that usually have a 

continuity nature at the macro scale.  

 From a mathematical point of view, a natural way to bypass the above obstacle of 

discontinuity is to consider, instead, the integral functional of white noise. Indeed, the 

integral strategy has been adopted in the development of the SODE theory [3.39] and in 

the attempt of extending the SODE theory to the SPDE case [3.40]. The integral functional 

approach can be regarded as an average solution, in which the original field at any fixed 

point is approximated by its average value in the neighbourhood of the fixed point. From 

the point of view of physics, this is equivalent to investigating the white noise field in a 

larger length scale. The advantages of this strategy based on integral functionals are 

obvious:  

I) With certain local averaging techniques, a better continuity/differentiability in a 

larger scale may be achieved for the white noise model, which in turn makes the 

existing PDE tools applicable to this study.  

II) The “average” solution could be expected to converge to the “exact” solution when 

the selected view-window tends to a single view-point.  

 Let ( ), ,nw ω ω Ω∈ ∈x x \  denote a real-valued n-dimensional white noise field. 

That is, for any two points , the associated random variables 1 2≠ ∈x x \n ( )1,w ωx  and 

( )2 ,w ωx  are independent and identically distributed. Without loss of generality, the 

expectation function of ( ),w ωx  is  

( )( ), 0 nE w ω = ∀ ∈x \x ,                                (3.4) 

and the covariance function of ( ),w ωx  is  

( ) ( )( ) 1 2
1 2 2

1 2

0
Cov , , ,

n

n
w wω ω

σ

⎧ ≠ ∈⎪= ⎨
= ∈⎪⎩

x x
x x

x x

\
\

                  (3.5) 

where 2σ  (see Section 3.4.4.2 for more information) is the variance of the white noise 

( ),w ωx .  
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 If ( ,w )ωx  is measurable† in n Ω×\ , its locally averaging field can be written, 

in a general form, as the integral functional  

( ) ( )( ) ( ) ( ), , ,
n

W w k w kω ω ω= ∗ = −∫ dx x y x y y
\

                  (3.6) 

where  denotes the convolution operator, and the convolution kernel ∗ ( )k x , , 

serves as a weight function to control the effective averaging domain, i.e. the 

view-window. Let  

n∈x \

( )
0

δ
≠⎧

= ⎨+∞ =⎩

0
0

x
x

x
       ( ) 1

n
dδ =∫ x x

\
                     (3.7) 

denote the Dirac delta function in . It is then evident that, when the view-window in 

(3.6) degenerates into a single view-point, i.e.  

n\

( ) ( )k δ=x x ,                                               (3.8) 

the locally averaging field will become identical with the original white noise field, i.e.  

( ) (,W w ),ω ω=x x .                                          (3.9) 

This verifies the second intuitive expectation of the integral functional of white noise. 

However, to verify the first intuitive expectation of the white noise functional, i.e. the 

smoothness of ( ,W )ωx , it is necessary to introduce the following lemma about the 

convolution in the right-hand side of (3.6).  

 Given a non-negative integer , let m ( )m nC \  denote the set of all functions 

defined on  that have up to the m-th order continuous derivatives. Furthermore, let 

 denote all the functions in 

n

)m n

\

(0C \ ( )C \m n

n

 that have compact support (the support of 

function  is the closed set of ( )f ∈x x \ ( ){ }: f 0n∈ ≠x x\ ). When there is no 

danger of confusion, symbols ( )C \m n  and ( )0C \m n m

m

 can be abbreviated as  and 

, respectively. For example, 

C

0C C∞  denote all the infinitely differentiable functions on 

, and  denote all the functions in n ∞\ 0C C∞  that have compact support.  

                                                        
† In fact, it will be proven in Section 3.4.4.2 that there does not exist a measurable white noise field in 

the normal sense. Nevertheless, the formalistic derivation addressed here is helpful for disclosing the 
probabilistic essence of practical random media, which in turn leads to the definition of the so called 
elementary random media. This logic will eventually become clear at the end of this chapter.  
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 Lemma 3.1   Let 1 p≤ ≤ +∞  denote a real number and  an integer. If 

 and 

0m ≥

( ) (f L∈x \ )p n ( ) ( )0g C∈x \m n , then ( )f g C∗ ∈ \m n  and  

( ) ( ) ( )
1 1

1 1
1 1

n n

n
n n

f g f g
x x x x

α α α α

αα α

+ + + +⎛ ⎞ ⎛∂ ∂
∗ = ∗⎜ ⎟ ⎜∂ ∂ ∂ ∂⎝ ⎠ ⎝ nα

⎞
⎟
⎠

x x
" "

" "
                (3.10) 

where  are non-negative integers that satisfy .  ( 1, 2, ,k kα = " )n
1

n

i
i

mα
=

≤∑

 Proof:  

 First, it is proven that, if the function ( )g x  is continuous in  and with 

compact support, then 

n\

f g∗  is continuous. Consider the absolute difference  

( )( ) ( )( )

( ) ( ) ( ) ( )

( ) ( ) ( ) 0

n n

n

f g f g

f g d f g

f g g d I

∗ + ∆ − ∗

= + ∆ − − −

= − + ∆ − = ∆ ≥⎡ ⎤⎣ ⎦

∫ ∫

∫

x x x

dy x x y y y x y y

x t t x t t

\ \

\

               (3.11) 

in three cases corresponding respectively to 1 p< < +∞ , 1p =  and :  p = +∞

I) If , then there exists 1 p< < +∞ 1 q< < +∞  such that 1 1p q+ =1. According to 

Hölder’s inequality (see e.g. the probabilistic version in Section 2.1.3 or the general 

form in [3.43-3.44]), we have  

( ) ( )( )1n

qq

p
I f g g d∆ ≤ + ∆ −∫ t x t t

\
.                          (3.12) 

As ( )g x  is continuous and with compact support, it is uniformly continuous. 

Therefore,  

( ) ( )( )1 0
n

qq
g g d+ ∆ − →∫ t x t t

\
    as ∆ → 0x .                 (3.13) 

II) If 1p = , according to the dominated convergence theorem (see e.g. the 

probabilistic version in Section 2.1.4 or the general form in [3.43-3.44]), we have 

( ) ( ) ( ) 0
n

I f g g d∆ ≤ − + ∆ − →⎡ ⎤⎣ ⎦∫ x t t x t t
\

    as ∆ → 0x .        (3.14) 

III) If , we have  p = +∞

( ) ( ) 0
n

I f g g d
∞

∆ ≤ + ∆ − →∫ t x t t
\

    as ∆ → 0x .             (3.15) 
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Summarizing the above three cases, it is concluded that 0I∆ →  as . Hence, ∆ → 0x

f g∗  is continuous.  

 Secondly, consider  where . For a fixed integer 0
mg C∈ 1m ≥ j , , let  1 j n≤ ≤

1 1 1

0, ,0, 0, ,0 0j

j j n

x
− +

⎛ ⎞
⎜ ⎟∆ = ∆ ∆ ≠
⎜ ⎟
⎝ ⎠

x
" "

" "�	
 �	
， jx .                         (3.16) 

Then, according to the mean value theorem, we have  

( )( ) ( )( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

n

n

j j

j j

j j

f g f g gf
x x

g g gf d
x

g gf d
x x

⎛ ⎞∗ + ∆ − ∗ ∂
− ∗⎜ ⎟⎜ ⎟∆ ∂⎝ ⎠

⎛ ⎞− + ∆ − −⎡ ⎤ ∂⎣ ⎦= ⎜ ⎟⎜ ⎟∆ ⎝ ⎠
⎡ ⎤∂ ∂

= − + − −⎢ ⎥
∂ ∂⎢ ⎥⎣ ⎦

∫

∫

x x x
x

x t x x t
t t

t x t ξ x t t

\

\

f
x

− ∗
∂

x              (3.17) 

in which  

1 1 1

0, ,0, 0, ,0 0j

j j n

j jxξ
− +

⎛ ⎞
⎜ ⎟ ξ= ≤ ≤ ∆
⎜ ⎟
⎝ ⎠

ξ
" "

" "�	
 �	
， .                      (3.18) 

Since ( )g x  is continuously differentiable and has compact support, following a similar 

analysis process as from (3.11) to (3.15), it can be verified that the right-hand side of (3.17) 

converges to zero as . That is, 0jx∆ → ( )(
j

f g
x

)∂
∗

∂
x  exists and equals ( )

j

gf
x

⎛ ⎞∂
∗⎜ ⎟⎜ ⎟∂⎝ ⎠

x . 

Note from the first part of this proof that f g∗  is continuous, it can be concluded that the 

theorem is true for . When , the theorem can be similarly proven by 

repeatedly applying the above proof procedure.                                  

1m = 2m ≥

 Consequently, according to Lemma 3.1, the path-wise differentiability of 

( ),w ωx  can be improved to any order by the integral functional (3.6), and the 

differentiability of ( ),W ωx  depends on the smoothness of the weight function ( )k x .  

 With the above discussions, it appears that, by choosing an appropriate kernel 

( )k x  to control the view-window in accordance with practical requirements of 
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engineering systems with variable uncertainties, the white noise functional ( ),W ωx  may 

be able to provide an effective material model for random media. It will be very 

interesting if this is true since a large portion of existing mathematical results in stochastic 

analysis will then become available to this study. On the other hand, an ideal 

stochastic-field model of random media should not only be smooth to meet, at the macro 

scale, the continuity/differentiability requirements of a general physical system, but also 

be sufficiently flexible, in the sense of probability, to capture the stochastic nature of 

random media in various situations. This is the other aspect that needs to be checked in 

order to evaluate the potential of the white noise approach in random medium modelling.  

3.2.2 Probabilistic Failings of the White Noise Functional 

 In accordance with Eqs. (3.4) and (3.6), the expectation function of ( ,W )ωx  can 

be readily obtained as  

( )( ) ( )( ) ( ), , 0
n

nE W E w k dω ω= − =∫x y x y y
\

\∀ ∈x

)

.        (3.19) 

Moreover, following Eqs. (3.4 – 3.6), the covariance function of ( ,W ωx  is  

( ) ( )( )
( ) ( )( )( ) ( ) ( )( )( )( )

( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( )

( ) ( )
( ){ }

2

2
1 2 1 2

1 2

1 1 2 2

1 2 1 1 2 2 1 2 1 2

1 2 1 1 2 2 1 2

2
1 1 2 2 1 2, :

Cov , , ,

, , , ,

, , ,

Cov , , ,

n n

n

n

n

W W

E W E W W E W

E w w k k d d

w w k k d d

k k d d

ω ω

ω ω ω ω

ω ω

ω ω

σ
∈ =

= − −

= − −

= − −

= − −

∫ ∫

∫
∫ y y y y

x x

x x x x

y y x y x y y y x x

y y x y x y y y

x y x y y y

\ \

\

\

\∀ ∈ .  (3.20) 

Note that ( ){ }2
1 2 1 2, :n∈ =y y y y\  is a set of measure zero (see Section 3.4.4.2 for more 

information) in , therefore the right-hand side of the above equation equals zero, i.e.  2n\

( ) ( )( )1 2 1 2Cov , , , 0 , nW Wω ω = ∀ ∈x x x x \ .                  (3.21) 

 Thus, the first- and second- order statistical moments of the white noise functional 

( ),W ωx  are both zero. Indeed, much more than this is true. Let 1 2, , , jx x " x

n

 be a set of 

fixed points in . Then, we have  \
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( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )( )

( ) ( ) ( )( )

1 2

1 1 1

1 1 1 1

, , ,

, ,

, ,

jn

jn

j

j j j

j j j j

E W W W

E w w k k d d

M k k d d

ω ω ω

ω ω= −

= − −

∫

∫

x x x

1 j−y y x y x y y y

y y x y x y y y

\

\

"

" "

" " "

" ,   (3.22) 

in which  

( ) ( ) ( )( )1 1, , , ,jM E w w jω ω=y y y y" "                         (3.23) 

is a function defined on . Following the independent assumption of white noise,  jn\

( ) ( )( )1 1 2
1, ,

0 otherwi

j
j

j

E w
M

⎧

se

= = =⎪= ⎨
⎪⎩

y y y y
y y

"
" .              (3.24) 

Thus,  is identically equal to zero on  except for a set of measure zero. 

Hence,  

( 1, , jM y y" ) jn\

( ) ( ) ( )( )1 2 1 2, , , 0 , , , , n
j jE W W W jω ω ω = ∀ ∈ ∀ ∈x x x x x x" ` " \ .   (3.25) 

That is, the j-th order statistical moment of ( ),W ωx  is zero.  

 For a fixed point , let 0
n∈x \ ( )0 ,W ωx  be the corresponding random variable 

taken from the white noise functional ( ),W ωx . It is well known that the probabilistic 

property of the random variable ( )0 ,W ωx  is completely determined by its characteristic 

function , which can be expanded into a Taylor series (see e.g. Section 2.1.2)  ( )0 , tϕ x

( ) ( )( ) ( )
0 0

0

1
, ,

!

i

i

i

t
t E W

i
ϕ ω

+∞

=

−
=∑x x                             (3.26) 

where  

( )( )0
0 ,E W ω 1≡x .                                         (3.27) 

Following immediately from (3.25), we have  

( )( )0 , 0iE W iω = ∀ ∈x ` .                               (3.28) 

Substituting (3.27) and (3.28) into (3.26) yields  

( )0 , 1tϕ ≡ ∀ ∈x \t .                                     (3.29) 
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Note , hence the above characteristic function infers that the random 

variable 

( )( )0 ,E W ω =x 0

)( 0 ,W ωx  degenerates to a constant zero. As  is arbitrary, the stochastic 

field 

0x

( ,W )ωx  degenerates to a constant deterministic field, i.e.  

( ), 0 nW ω ≡ ∀ ∈x \x .                                   (3.30) 

 After all the discussions in Section 3.2.1, the above result is a bit surprising since 

following Eq. (3.30) there are only two possibilities:  

I) The white noise approach is basically unsuitable for random medium modelling.  

II) It is sufficient to model random media, at least some types of random media, with 

the conventional deterministic approach.  

 From a physical/engineering point of view, when a random medium is being 

investigated from different length scales, the stochastic nature of the random medium 

should not change dramatically and the behaviours of the random medium system must 

remain compatible. Hence, if a white noise model in a way reflects the stochastic nature of 

practical random media, the results obtained from investigating the white noise field in a 

larger length scale should be similar to those obtained from the investigation based on a 

smaller length scale, in particular when the two length scales are of little difference. 

However, it is noted that the specific shape (e.g. narrow or wide) of the view-window, 

which is controlled by the weight function ( )k x  in the local average (3.6), has no effect 

in the above analysis from (3.19) to (3.30). That is, no matter how small the observing 

scale (or equivalently the locally averaging domain) is, the corresponding white noise 

functional ( ),W ωx  always completely loses the randomness of the white noise field 

( ),w ωx . This contradicts the common sense engineering requirement. Consequently, 

although “mathematically sound” [3.39-3.42], the starting point of the white noise 

approach is not quite right for representing material properties of random media.  

 Proposition 3.2:   Due to the lack of sufficient capability in capturing the 

stochastic nature of practical random media, the white noise functional ( ),W ωx  is 

inadequate for modelling random media in engineering systems. In particular, from a 

physical point of view, the white noise model is equivalent to a deterministic model in a 

practical engineering system with variable uncertainties.  
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3.2.3 Probabilistic Essence of Random Media 

 The failings of the white noise approach indicate that, at least one of the two basic 

assumptions of white noise, i.e. independent and identical distribution, contradicts the 

stochastic nature of random media in practical engineering systems.  

 In order to locate the defect of the white noise model and disclose the probabilistic 

essence of practical random media, it is suggested to consider a special stochastic field 

( ), ,b i iω ω Ω∈ ∈`  with ( )( ) ( ), 0E b i iω = ∀ ∈` . The stochastic field ,b i ω  is 

essentially a sequence of centred random variables. According to Kolmogorov’s strong 

law of large numbers (see e.g. Section 2.1.5), if random variables ( ),b i ω  are 

independent and satisfy  

( )( )
2

1

Var ,

i

b i
i

ω+∞

=

< +∞∑ ,                                      (3.31) 

then the following limit relation holds 

( )( )lim , 0 1kk
P B i iω

→+∞
= = ∀ ∈` ,                            (3.32) 

in which  

( ) (
1

1,
k

k
j

),B i b i
k

jω ω
=

= +∑                                     (3.33) 

denotes the local average of ( ),b i ω . That is, under the technical condition (3.31), the 

local average of the independent random variables ( ),b i ω  converges almost surely to a 

constant zero as the upper bound  approaches infinity. Comparing the local average k

( ,k )B i ω  with the white noise functional ( ),W ωx , it is observed that the crucial 

common factor that results in the loss of randomness in these two cases is the 

“independent assumption”. Hence, it may be said that the “independent distribution” 

assumption of ( ,w )ωx  contradicts the stochastic nature of practical random media, 

which in turn makes the white noise approach unsuitable for this study. Consequently, the 

following insight is taken as the basis for random medium modelling in this thesis.  

 Proposition 3.3:   The stochastic dependence among different points through the 

medium is an essential characteristic of many practical random media in physical systems.  
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3.2.4 Elementary Random Media 

 It is implied in Proposition 3.3 that an effective random material model has to be 

based on a dependent stochastic field, which, as a mathematical concept, is much too 

general, on its own, and is difficult to be tackled in a quantitative manner. Hence, in order 

to make the problem treatable in mathematics, additional assumptions must be made 

regarding the dependent stochastic field according to specific features of the random 

media under consideration.  

 Naturally, as addressed in Section 3.2.1, a key issue that needs to be taken into 

account in random medium modelling is the continuity and differentiability of the 

stochastic field involved, since it will determine whether or not, and furthermore in which 

sense, the SPDE (3.3) holds. In addition, due to the insufficiency of experimental data, 

only the first- and second- order statistical moments of random material properties are 

available in many practical engineering problems. Hence, it will be beneficial for 

applications if the random material model does not require higher order statistical 

moments for input settings.  

 Driven by the above modelling requirements and based on the existing 

mathematical tools reviewed in Chapter 2, a random material model is defined as follows.  

 Definition 3.4 (Elementary random media)   Let . Random medium 

 is termed a  elementary random medium (ERM), if its material property is 

represented by a second-order stochastic field 

0m ≥ ∈]
n mD ⊂ \ C

( ), ,a Dω ω Ω∈ ∈x x  that satisfies:  

I) The expectation function of ( ),a ωx  has up to the m-th order continuous 

derivatives in D , i.e.  

 ( )( ) ( ), oE a aω =x x                                         (3.34) 

 where .  ( ) ( )m
oa C∈x D

II) The covariance function of ( ),a ωx  can be written as  

 ( ) ( )( ) ( ) ( )1 2 1 2 1 2Cov , , , ,a a R Rω ω D≡ − = ∀ ∈x x x x τ x x        (3.35) 

such that  

( ) ( )n n
R d R d=∫ ∫τ τ τ τ

\ \
< +∞ .                               (3.36) 
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III) The covariance function ( )R τ  is  continuous at , i.e. it has up to the 

2m-th order continuous derivatives at the origin.  

2mC = 0τ

IV) With respect to functions ( )oa x  and ( )R τ , the following relation holds  

( ) ( )oR aκ≤0 x x D∀ ∈                                  (3.37) 

where  is a fixed constant depending on the physical nature of 0κ > ( ),a ωx .  

V) The stochastic field ( ,a )ωx  is a Gaussian field.  

 In particular, the random medium D  defined above is referred to as a generalized 

ERM if the condition V) is not required.  

 Remark: For the sake of simplicity, the material property of ERM is represented 

by the scalar ( ),a ωx  in the above definition. However, the ERM model holds for the 

general case in which the material properties are represented by a general elastic tensor 

( ),ωC x  and conditions I)-V) are accordingly defined with respect to each scalar entry of 

( ),ωC x .  

 With respect to the above mathematical definition, the following engineering 

insights of ERM are highlighted:  

I) The material property of an ERM is defined by its expectation function and 

covariance function. The finite assumption of these two statistical moments is 

purely technical, which is always met in practical engineering problems.  

II) The spatial stochastic dependence of an ERM is described by the associated 

covariance function ( ) ( )1 2R R= −τ x x , which implies that the pair-wise 

dependence is invariant under translations in parameter x . Furthermore, as shown 

in (3.36), the pair-wise dependence has a short-range nature such that ( )R τ  

vanishes as 
2

τ , i.e. the distance between two points, approaches infinity.  

III) As the definition of ERM is based on second order stochastic fields, the mean 

square convergence is taken as the mathematical foundation to define the 

continuity/differentiability in the SPDE system with respect to ERM. It should be 

noted that the mean square continuity (or differentiability) does not imply the 

path-wise continuity (or differentiability). Hence, the material property of a 
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particular ERM sample may not be smooth. However, the corresponding SPDEs 

hold in the context of probability, and specifically in the mean square sense, all the 

standard differential/integral operators in calculus can be similarly performed.  

IV) In order to ensure the mean square continuity/differentiability of the stochastic field 

( ,a )ωx , it is required that its statistical moments ( )oa x  and  satisfy 

certain smoothness conditions. The underline mathematics will be addressed in 

detail in Section 3.3.  

( )R τ

V) In the ERM model, the material property at any individual point 0 D∈x  is 

described by a random variable ( )0 ,a ωx , which is determined by its first two 

statistical moments ( )0oa x  and ( )R 0 . Note in continuum mechanics that the 

value of a specific material parameter is often restricted in a certain range 

determined by its physical nature. Hence, in order to satisfy, in a probabilistic sense, 

the physical requirement on the value range of the material property concerned, the 

factor  is employed in (3.37) to control the variation of κ ( ),a ωx .  

VI) Determined by the central limit theorem (see e.g. Section 2.1.5), a Gaussian 

distribution is often encountered in practical engineering problems when the 

observation regards the total effect of a large number of small random factors. 

Consequently, it is expected that Gaussian fields provide a reasonably good 

approximation of many practical random media. In addition, a Gaussian field is 

completely defined by its first- and second- order statistical moments, and due to 

its linearity, it can be put into the context of Hilbert spaces (see e.g. Section 2.2.2). 

Hence, having “Gaussian field” as a basic assumption of ERM makes it possible to 

achieve explicit solutions in some typical random medium problems. However, in a 

serious engineering problem, whether or not the specific random material property 

can be treated as a Gaussian field must be examined against experimental data. In 

fact, the Gaussian assumption of ERM is not essential, which will become clear 

later in this thesis.  
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3.3 Macro-Scale Properties of Elementary Random 

Media 

 In the last section, the random material model ERM is defined in terms of 

mathematical concepts. This section explores its properties including the stationarity, the 

smoothness and principles for material measurements. These macro-scale properties will 

have strong influences on the theoretical and algorithmic developments of ERM as well as 

the associated applications in engineering practice.  

 Following Definition 3.4, let  

( ) ( ) ( ), o sa a a ,ω ω= +x x x                                    (3.38) 

where the mean ( )oa x  represents the deterministic component of ( ,a )ωx , and the 

fluctuation field ( ,sa )ωx  the random component. It is then straightforward to obtain 

from (3.34) and (3.35) that  

( )( ), 0sE a ω = ∀ ∈x Dx ,                                 (3.39) 

( ) ( )( )
( ) ( )( )

( )

1 2

1 2 1 2

Cov , , ,

Cov , , , ,
s sa a

a a

R

ω ω

ω ω=

=

x x

x x x x

τ

D∀ ∈ .                    (3.40) 

That is, the fluctuation field ( ),sa ωx  has mean zero and the same covariance function as 

the original stochastic field ( ),a ωx . As it is usually simpler to study a centred stochastic 

field, the discussion in this section will mainly focus on the properties of ( ),sa ωx . 

However, all the results obtained for ( ),sa ωx  can be readily translated into the 

conclusions corresponding to ( ),a ωx , which only differs by a smooth deterministic 

function ( )oa x .  

3.3.1 Stationarity 

 It is shown in (3.39, 3.40) that both the expectation function and the covariance 

function of ( ),sa ωx  are invariant under coordinate translations. Thus, the fluctuation 
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field ( ),sa ωx  is wide-sense stationary. As ( ),a ωx  is a Gaussian field for ERM, it can 

be further concluded that ( ),sa ωx  is a strictly stationary stochastic field whose finite 

dimensional distributions are invariant under coordinate translations. The wide-sense 

stationarity plays an important role in many aspects of ERM. It will soon become clear 

that in many ways, the theoretical/algorithmic developments of ERM in this thesis is about 

wide-sense stationary stochastic fields (see e.g. Section 2.2.3).  

3.3.2 Continuity and Differentiability 

 As pointed out in the beginning of this chapter, the smoothness of stochastic fields 

is an essential issue in random medium modelling. However, it appears that this 

fundamental aspect has not received adequate attention in the development of SFEMs, 

since some elementary and fatal inconsistencies have occurred in the literature. For 

example, isotropic stochastic fields with such covariance functions as ( )1 2 2
1c c− τ  and 

22
1c e c− τ  have been employed in many SFEM formulations [3.13, 3.15, 3.19-3.24, 3.26, 

3.28, 3.32] to describe random material properties, some of which are noticed in the recent 

work [3.29]. These stochastic fields often lead to simple theoretical treatments, and 

sequentially provide efficient numerical algorithms. However, it can be proven that these 

stochastic fields are non-differentiable almost everywhere and inevitably result in 

defective, if not meaningless, SPDE systems of random media.  

 In this thesis, the continuity and differentiability regarding ERM are defined based 

on the mean-square convergence. As addressed in Section 3.2.4, the mean-square 

continuity/differentiability does not necessarily imply path-wise smoothness, and 

theoretically speaking, this provides the ERM model some freedom to accommodate the 

discontinuities in practical random medium samples. More importantly, in the mean 

square sense, the SPDE system can be similarly treated with traditional PDE tools.  

3.3.2.1 Mean-Square Smoothness of Stochastic Fields 

 The mathematical research regarding mean-square smoothness of stochastic fields 

can be traced back over half a century ago to Khinchin [3.45], Kolmogorov [3.46] and 

Wiener [3.47]. The continuity/differentiability of one-dimensional wide-sense stationary 
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stochastic processes was first systematically and rigorously addressed by Yaglom [3.48], 

and higher dimensional cases can be similarly treated.  

 Theorem 3.5   A centred second-ord  

( ), ,nb

er stochastic field

ω ω Ω∈ ∈x x \  is continuous in an-square sense at 0=x x , if and only the me

if the covariance function ( ) ( )( ) ( )1 2 1 2, , , ,b Rω ω =Cov b x x x x  is continuous at the point 

( ) ( )1 2 0 0, ,=x x x x .  

I) The “if” part: This follows immediately from the relation  

 Proof:  

( ) ( )( )
( ) ( ) ( ) (

2
0 0

0 0 0 0 0 0 0

, ,

)0, , ,

E b b

R R R R

ω ω+∆ −

+ + ∆ − + ∆ − + ∆ +

x x x

x x x x x x x x x x x x
.  (3.41) 

II) The “only if” part: Let , consider the following absolute difference  

,= ∆

where n∆ ∈x \ .  

1 2, n∆ ∆ ∈x x \

( ) ( )
( ) ( )( ) ( ) (( )( ))
( ) ( )( ) ( )( )
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( ) ( )( ) ( ) (( ))( )
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0 1 0 2 0 0
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0 2 0 0

0 1 0 0 2 0

0 1 0 0

0 2 0 0

, ,

, ,

, , ,

, , ,

, ,

, , ,

, , ,

R R

E b b b b

E b b b

E b b b

E b b b b

E b b b

E b b b

I

ω ω

ω ω ω

ω ω ω

ω ω

ω ω ω

ω ω ω

+∆ + ∆ −

= + ∆ − + ∆ − +

+ ∆ − +

+ ∆ −

≤ + ∆ − + ∆ − +

+ ∆ − +

+ ∆ −

x x x x x x

x x x x x x

x x x x

x x x x

x x x x x x

x x x x

x x x x

.          (3.42) 

According to Hölder’s inequality (see e.g. Section 2.1.3), we have  

= ∆

( ) ( )( )( ) ( ) ( )( )( )
( ) ( )( )( ) ( )( )( )
( ) ( )( )( ) ( )( )( )

1/ 2 1/ 22 2
0 1 0 0 2 0

1/ 2 1/ 22 2
0 1 0 0

1/ 2 1/ 22 2
0 2 0 0

, ,

, , ,

, , ,

I E b b E b b

E b b E b

E b b E b

ω ω

ω ω ω

ω ω ω

∆ ≤ + ∆ − + ∆ − +

+ ∆ − +

+ ∆ −

x x x x x x

x x x x

x x x x

.  (3.43) 

Hence,  

( ) ( )0 1 0 2 0 0, , 0R R+ ∆ + ∆ − →x x x x x x     as 1 2,∆ ∆ → 0x x .       (3.44) 

74 



Chapter 3. Material Modelling – Elementary Random Media 

The theorem is proven.                                                             

( )
 A trivial application of the above theorem is to analyse the continuity of the white 

noise field ,w ωx  in Section 3.2.1. From (3.4, 3.5), it is straightforward to conclude 

at th ( ),w ωx  is discontinuous everywhere.  

 As the point  in Theorem 3.5 is arbitrary, the following theorem about 0x

“everywhere continuity” holds.  

 Theorem 3.6   A centred second-order stochastic field ( ), ,nb ω ω Ω∈ ∈x x \  

riance function is everywhere continuous in mean square, if and only if its cova ( )1 2,R x x  

is continuous at every diagonal point 1 2=x x .  

 Before moving to the differentiability of stochastic fields, it is necessary to 

 Lemma 3.7 (due to Loève)   A sequence of random variables 

convergences to X  in mean square, if and only if  

i ji j

introduce the following convergence criterion of random variables.  

1 2, ,X X "  

( )lim E X X c=
, →+∞

                                          (3.45) 

here ite constant.  

 Proof:  

I) The “if” part is due to  

w c  is a fin

( )
( ) ( ) ( )( )

2

,

2 2

,

lim

lim 2

2c c c= − +
0

i ji j

i i j ji j

E X X

E X E X X E X

→+∞

→+∞

−

= − +

=

.                         (3.46) 

II) The “only if” part follows immediately 

( ) ( )2
i jE X X E X c→ =     as ,i j →+∞ .                      (3.47) 

 With respect to the point-wise mean-square differentiability of stochastic fields, 

The lemma is proven.                                                              
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there is the following theorem.  

 Theorem 3.8   A centred second-order stochastic field ( ), ,nb ω ω Ω∈ ∈x x \  

ntiable in mean square at 0is differe =x x , if and only if its covariance function 

( )1 2,R x x  has finite second-order derivatives ( )2

i i

R
x x

∂
∂ ∂

x x1 2

1 2

,
1, 2, ,i n= "  at the point 

( ) ( )1 2 0 0, ,=x x x x .  

 Proof:  

 For a fixed , , let  

⎛ ⎞

i 1 i n≤ ≤

1 1 1

0, ,0, 0, ,0i i

i i n

x x
− +

⎜ ⎟ 0∆ =

Thus, w pect to the i-th coordinate of point 

∆ ∆ ≠
⎜ ⎟
⎝ ⎠

x
" "

" "�	
 �	
， .                         (3.48) 

ith res x , the mean-square partial derivative of 

( ),b ωx  is  

( ) ( ) ( )
0

l.i .m.
ixx x

, , ,

i i

b b bω ω ω∂ + ∆ −x x x x
                        (3.49) 

where denotes “limit in mean”. Let  

1

2

x

,                      (3.50) 

we have  

∆ →∂ ∆
�

l.i.m. 

1 1
1 1 1

2 2
1 1 1

0, ,0, 0, ,0 0

0, ,0, 0, ,0 0

i i
i i n

i i
i i n

x

x x

− +

− +

⎧ ⎛ ⎞
⎪ ⎜ ⎟∆ = ∆ ∆ ≠

⎜ ⎟⎪⎪ ⎝ ⎠
⎨

⎛ ⎞⎪
⎜ ⎟∆ = ∆ ∆ ≠⎪ ⎜ ⎟⎪ ⎝ ⎠⎩

x

x

" "

" "

" "�	
 �	


" "�	
 �	


，

，

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 1 0 0 2 0

1 2

0 1 0 2 0 1 0 0 0 2 0 0

1 2i ix x
=

∆ ∆

Hence, acc Lem , the stochastic field 

, , , ,

, , , ,
i i

b b b b
E

x x

R R R R

ω ω ω ω+ ∆ − + ∆ −⎛ ⎞
⋅⎜ ⎟∆ ∆⎝ ⎠

+ ∆ + ∆ − + ∆ − + ∆ +

x x x x x x

x x x x x x x x x x x x
.   (3.51) 

ording to ma 3.7 ( ),b ωx  has a  partial 

derivative 

mean-square

( ),

i

b
x
ω∂

∂
x

 at 0=x x , if and only if the sec nd derivative o ( )2
1 2

1 2

,

i i

R
x x

∂
∂ ∂

x x
 exists 

at the point ( ) ( )1 2 0 0, ,=x x x x . Note the integer i  is arbitrary in { }1, 2, , n" , the 
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theorem is proven.                                                                 

 Remark: According to Theorem 3. opic stochastic fields 

functions of the forms  

8, isotr with covariance 

( )( )1 2 1 2 1 2 2
, 1R c c= − −x x x x  and ( ) 1 2 22

1 2 1, cR c e− −= x xx x         (3.52) 

-differentiable everywhere. Hare non ence, these stochastic fields are unsuitable for 

representing material properties in the SPDE system (3.3), in which the elastic tensor 

,( )ωC  needs to be differentiable.  x

 From Theorem 3.8, it is straightforward to obtain the following theorem about 

veryw

 Theorem 3.9   A centred second-order stochastic field b

e here differentiability of stochastic fields.  

n( ), ,ω ω Ω∈ ∈x x \  

is everyw and only if its covarianchere differentiable in mean square, if e function 

( )1 2,R x x  has secfinite ond order derivatives ( )2

 at every 

) of the 

stochastic field are completely determined by the behaviour of its covariance function in 

 Theorem 3.10 (Smoothness of wide-sense stationary stochastic fields)   Let 

1 2

1 2

,
1, 2, ,

i i

R
i n

x x
∂

=
∂ ∂

x x
"

diagonal point 1 2=x x .  

 Theorems 3.5-3.6 and 3.8-3.9 address the criteria of the continuity and the 

first-order differentiability of stochastic fields. In a similar way, sufficient and necessary 

conditions regarding the higher order differentiability of stochastic fields can be 

established. In particular, if the stochastic field in consideration is wide-sense stationary, it 

can be proven that the local properties (e.g. continuity and differentiability

the neighbourhood of the origin. This is summarised by the following theorem.  

m  denote a non-negative integer and ( ) n, ,b ω ω Ω∈ ∈x x \  a centred second-order 

stochastic field with covariance function ( ) ( )( ) ( ) ( )1Cov ,b Rx τ . 

The m-th order mean-square partial derivatives 

2 1 2, ,b Rω ω ≡ − =x x x

( )
1

, m
i

n
x x∂ ∂"

 exist 

everyw , if a

1

,
1 ,

m

m

i

b
i i

ω∂
≤ ≤

x
"

here nd only if the 2m-th order partial derivatives ( )
1

2 2
mi i

R2m

τ τ
∂

∂ ∂
τ

"
 exists at the 
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point = 0τ .  

3.3.2.2 Mean-Square Smoothnes ementa  Rando  Media 

 Consider the stochastic field 

s of El ry m

( ),a ωx  of a mC  ERM D . Following D  

3.4, Eq. (3.38) and Theorem 3.10, it can be concluded that both ( )oa

efinition

x  and ( ),sa ωx  

have up to the m-th order continuous der tiveiva s in m , ean square. Consequently ( ),a ωx  

has the mC  mean-square continuity on D .  

Principles of Ele3.3.3 mentary Random Medium 

Measurements 

 The inputs of the ERM model are the expectation function ( )oa x  and the 

covariance function ( )R τ . In general, experimental measurements of a large number of 

material samples are required to construct these two statistical moments according to their 

definitions (3.34) and (3.35). In order to reduce the associated experimental costs and 

improve the applicability of the ERM model, it is important to be able to accurately 

construct ( )oa x  and  from as few material samples as possible. In many 

engineering problems, ( )oa

( )R τ

x , the deterministic component of ( ),a ωx , can be estimated 

in accordance with existing knowledge and measuring techniques of deterministic material 

models. Consequently, the major challenge in the material measurement is to 

( )R τ , which is essentially determined by 

random 

obtain ( ),sa ωx , the random component of 

( ),a ωx . The solution  this problem is attri

, and detailed 

 of buted to another property of ERM, i.e. 

ergodicity.  

3.3.3.1 Ergodicity 

 The mathematical background of ergodicity is outlined below

explanations and proofs can be found in [3.49-3.52].  

 Recall from Section 2.2.1 that ( ),ωX t  denotes an -valuedm\  n-dimensional 

stochastic field, and ( ), , ,n mG P ty space. Tha  ,n m the corresponding probab t is, ,n mG  ili G
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denotes the set of all finite -valu\ enotes the lgebraedm  functions on n ,  ,n m  d\ G  -aσ  

containing all sets of the form 
1

: ,
i

G B
=

( ),
k

n m n
i

⎧ ⎫
∈ ∈ ∈⎨ ⎬

⎩ ⎭
g g t t \∪ 0k  is an 

arbitrary integer and i

 where >

B  are half-open intervals in m\ , and P  is the probability 

 uniquely defined on all sets of ,n mG  by the finite-dimen onal distributions of 

( ),

measure si

ωX t . With this choice of probability space, the basic events, ω , are now individual 

sam unctions ( )∈g tple f m n n\ shift transformation 

of (

\ , ∈t \ . For a fixed vector ∈τ , the 

)g t  is defined as  

                            (3.53) 

Similarly, each  takes any set 

( )T g g +τ t τ� .               D

Tτ
,n mA G∈  into the set  

( ) ( ){ }:T A g g A+ ∈τ t τ tD �                                   (3.54) 

that consists of all the functions of A  shifted by .  

s

τ

 A et ,n mA G∈  is called an invariant set of ( ),ωX t  if, for every τ , the sets A  

and AD  differ, at most, by a set of P-measure zeroT t is, there exist two sets τ . Tha 1B  

and 2B , both of which have measure zero, for which  

( )1 2A B T A B= τ∪ D ∪ .                                       (3.55) 

n 3.11 ( n-dimen Definitio Ergodicity)   An -valuedm\ sional strictly stationary 

stochastic field ( ),

 

ωX t  is said to be ergodic if the -algebraσ  of invariants sets only 

 

 The importance of the notion of ergodicity lies in the following theorems.  

Theore

contains sets of probability zero or one. 

 m 3.12 (Ergodic theorem)   Let ( ) ( ) ( )( )1, , , , ,mX Xω ω ω=X t t t"

an -valuedm\  n-dim sional, strict tationa d ergodic stocha field; 

 be 

en ly s ry an stic let ( )
n  of radius , and 

S r  

denote the sphere in \ 0r > ( ) the volume of ( )S r . If  V r  

( )( ), 1, 2, ,iE X mω < +t "                            (i∞ = 3.56) 

and with probability one, the -valued\  Riemann integral  m
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( )
( )

, dω∫S r
X t t                                             (3.57) 

exists for every , then  0r >

( ) ( )
( )S rV r

 orem 3.13   Let 

( )( )a.s.1 d E⎯→∫ 0X t t X     as .                (3.58) 

The

 r →+∞

( ),ωX t  be an -valuedm\  n-dimensional stochastic field. 

If ( ),ωX t  is strictly stationary and ergodic, then the stochastic field generated by a shift 

transformation of ( ),ωX t  is also strictly stationary and ergodic.  

 In general, it is not easy to provide a simple condition which ensures ergodicity. 

For Gaussian fields, however, this can be done.  

 Theorem 3.14   Let ( ),X ωt  ensional strictlybe a real-valued n-dim  stationary 

Gaussian field with covariance function ( )τ . Then, ( ),X ωt  is ergodic if  R

( ) 0R →τ     as 
2

τ → +∞ .                                (3.59) 

 With the above mathematical preparations, the ERM measurement problem can 

d.  

e funct tistica timated. 

Following E 39-3.40) and 

3.3.3.2 Measuring Covariance Functions of Elementary Random Media 

now be solve

 Let ( )R τ  denote the ERM covarianc ion to be sta lly es

qs. (3. at a fixed point 0
n∈τ \ , the value of ( )R τ  is  

( ) (( )0R E )α ω=τ                                           (3.60) 

where  

( ) ( ) ( )0 , ,s sa aα ω ω ω= 0τ .                                   (3.61) 

That is, ( )0R τ  is the expectation of the random variable ( )α ω , which is defined on 

 paths of the fluctuation field sample ( ),sa ωx . By the definition (3.60), the estimation of 

( )0R τ  requires arithmetically averaging a number of samples of ( )α ω , each of which 

corresponds to a different material sample of the random medium under consideration. 

However, measuring a large number of material samples is inconvenient, and sometimes 
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even im o obtain 

from a small number of material samples, and ideally from one sample.  

possible, in engineering practice. It is therefore beneficial to be able t

( )0R τ  

 As shown in Section 3.3.1, ( ),sa ωx  is a strictly s ry Ga ld. Note 

in (3.36) that 

tationa ussian fie

( )R τ  has a short range nature such that ( ) 0R →τ  as 
2

τ → +∞ . Hence, 

according to Theorem 3.14, ( ),sa ωx  is ergodic. Furthermore, according to Theorem 

 3.13, the following stochastic field 

( ) ( ) ( )0, , , n
s sa aΑ ω ω ω+ ∈x τ x x x� \                      (3.62) 

is strictly stationary and ergodic. Consequently, following the ergodic theorem 3.12, we 

have  

( )

( )( ) ( ) ( )
( )

( ) ( ) ( )( ) ( ) ( )( )
( )

0

0 0

1lim ,

1lim , ,

S rr

o oS rr

R

E d
V r

a a a a
V r

α ω Α ω

ω ω

→+∞

→+∞

⎛ ⎞
= = ⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞

= + − + −⎜ ⎟⎜ ⎟
⎝ ⎠

∫

∫

τ

x x

τ x τ x x x dx

    (3.63) 

where ( )S r  and ( )V r  denote the n-sphere and its volume, respectively. Since there is 

no probability integral involved in the right-hand side of the above equation, ( )0R τ  can 

accordingly obtained from the measurements of just one material sample. As the point 

0τ  is arbitrary in (3.63), the covaria

be 

nce function ( )R τ  can be obtained from the 

measurements of one material sample.  

3.4 Summary and Suggestions for Future Research 

3.4.1 Summary 

 A comprehensive and robust random material model, namely elementary random 

media, is developed in this chapter. First, in the formalistic analysis of the white noise 

approach, it is observed that the assumption of independent distribution is the main 

deficiency that results in the failure of the white noise model. Therefore, the stochastic 

dependence is recognized as an essential characteristic of practical random media. Next, 
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based on this initiative and driven by the modelling requirements both in engineering 

practice and in mathematics, the ERM model is defined. Finally, a number of macro-scale 

properties of ERM are addressed, in which the stationarity is fundamental. Although there 

are five mathematical assumptions in the definition of ERM, the ERM model is not very 

restrictive for engineering applications. Indeed, most random media in the SFEM literature 

[3.1-3.35] could be described by the (generalized) ERM model.  

m material properties is not new. Instead, the major contributions in this 

 

roach for multi-scale simulations. This will be 

 

sequently more benefits along this 

 

ture of the ERM model, 

which will be explained in detail at the end of Chapter 4.  

 It should be noted that the idea of using wide-sense stationary stochastic fields to 

describe rando

chapter are:  

The contradiction-analysis strategy of random medium modelling, which, as a 

whole, is original. The modelling strategy not only leads to the definition of ERM 

but also indicates a stochastic app

explained in the next subsection.  

The systematic combination of random medium modelling and the theory of 

wide-sense stationary stochastic fields. In this process, a serious error regarding 

smoothness of stochastic fields, which has been occurring in a variety of SFEM 

formulations for two decades, is highlighted, and consequently the correct mode 

and corresponding conditions for the continuity and differentiability of practical 

random media are defined. More effort and con

strategic route will be addressed in Chapter 4.  

The establishment of the ERM model, in which the random material properties are 

represented by a general elastic tensor. As the discussion and analysis in this 

chapter do not involve interactions between different random material parameters, 

they are demonstrated by virtue of scalar stochastic fields to simplify the notation. 

However, it is important in random medium modelling to take into account the 

possible interactions between different material properties, and the complete 

treatment of these random interactions is a fundamental fea
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3.4.2 Suggestions for Future Research 

3.4.2.1 Making the Ergodicity a Basic Assumption of Elementary Random 

Media 

 It is seen in Section 3.3.3 that the ergodicity plays a crucial role in reducing the 

experimental work in random medium measurements. This aspect is of fundamental 

importance in random medium modelling, since the significance of a random material 

model is limited if its input parameters can not be easily obtained from experimental 

measurements of practical random medium samples.  

 However, it is generally difficult to provide a simple condition to ensure the 

ergodicity. In the ERM model, the ergodicity is ensured by the properties of wide-sense 

stationarity and Gaussian distribution. These two conditions are sufficient but not 

necessary, and they do generate unnecessary restrictions for practical applications of the 

ERM model. An alternative choice is to remove the Gaussian assumption and make the 

ergodicity a basic assumption of ERM instead. Specifically, as shown in (3.63), a weak 

ergodicity regarding second-order statistical moments would be sufficient. This alternative 

definition will certainly improve the coverage of the ERM model. Nevertheless, it will be 

shown in Chapter 4 that the Gaussian field assumption makes it easier to obtain an explicit 

representation of ERM. This is the main reason that the Gaussian assumption is kept in 

Definition 3.4.  

 Hence, further investigations are required in order to achieve a more general ERM 

model. A key issue in developing the new ERM model is how to obtain the explicit 

representation of ERM by using the ergodic rather than the Gaussian assumption. This 

viewpoint will become clearer in Chapter 4.  

3.4.2.2 A Stochastic Approach for Multi-Scale Simulations 

 At the macro scale, the classic continuum mechanics, which is purely deterministic, 

provides an effective mathematical description for the behaviours of many solid materials. 

At the micro scale, various uncertain factors inevitably exist in the material structure, 

whose behaviours are therefore better described by a stochastic theory of mechanics. 

Naturally, it can be expected that there exists a general framework of multi-scale 
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simulations, in which the macro-scale continuum mechanics serves as an average theory 

of the micro-scale stochastic mechanics. This intuitive viewpoint is widely accepted in the 

research of multi-scale simulations, and specifically the averaging technique is often 

termed homogenization in the literature.  

 As indicated by the question marks in Figure 3.2, there are two key issues in the 

development of the framework of multi-scale simulations that involve micro-scale 

uncertainties:  

I) Developing a stochastic mechanics theory to describe the behaviours of micro-scale 

materials.  

II) Constructing a bridge to connect the stochastic mechanics at the micro scale and 

the classic continuum mechanics at the macro scale.  

Figure 3.2 also indicates a theoretical structure of multi-scale simulations, in which the 

framework is divided into two parts connected together by one bridge. This simple 

structure has been widely used in the current research of multi-scale simulations.  

 

Micro scale Macro scale Homogenization? 
Random material Deterministic material 

Stochastic mechanics? Continuum mechanics 

Figure 3.2 A simple framework of multi-scale simulations 

 The random-medium modelling discussions in this chapter infer a possibility to 

tackle the above two problems by describing the material properties at the micro scale 

with stochastic fields, as it is done in the ERM model, and describing the material 

properties at the macro scale with deterministic variables, as is done in classic continuum 

mechanics. It is then expected that the average effects of the stochastic-field material 

model could be approximated by the conventional deterministic material model. However, 

in general, the spatial average (or integral functional) of a stochastic field is again a 

stochastic field, and the resulting field does not automatically degenerate to deterministic 

variables. This contradiction makes it difficult to develop a homogenization technique for 

the framework shown in Figure 3.2.  

 Note in Sections 3.2.2 and 3.2.3 that, due to the independent distribution 
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assumption of white noise, the white noise functional degenerates to a constant field so 

that the stochastic-field model based on white noise is equivalent to a deterministic 

material model. This fact indicates that, there may be an independent middle state existing 

between the random material structure at the micro scale and the deterministic material 

structure at the macro scale. Given the existence of such an independent middle state, the 

framework of multi-scale simulations is drawn in Figure 3.3. There are two 

homogenization operations in this new framework; the first homogenization transforms 

the stochastic-field material model (e.g. the ERM model) into a generalized white noise 

model for which only the independent assumption is retained, and the second 

homogenization transforms the generalized white noise model into the deterministic 

material model in classic continuum mechanics.  

 

in Figu

followi

beginn

 

Suppos
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material 
structure 
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random 
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Homogenization Homogenization 
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medium 
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 B C
ch

A

 

Figure 3.3 A stochastic approach for multi-scale simulations 

In order to obtain a more detailed picture of the independent middle state B shown 

re 3.3, it is necessary to carefully investigate the measurability of white noise. The 

ng analysis on measurability will also clarify the footnote highlighted in the 

ing of Section 3.2.1.  

Recall Section 3.2.1 that ( ), ,nw xω ω Ω∈ ∈x \  denotes a white noise field. 

e ( ),w ωx  is measurable on B Ω×  where nB ⊂ \  is a Lebesgue measurable 

B∆  is any Lebesgue measurable subset of B , it is trivial to obtain from Hölder’s 

lity (see e.g. 2.1.3) that  

( ) ( )( )1 2 1 2, ,
B B

E w w d dω ω
∆ ∆

< +∞∫ ∫ x x x x .                       (3.64) 
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Then, following Fubini’s theorem (see e.g. [3.43-3.44]) and the condition (3.5), we have  

( )( )
( ) ( )( )
( ) ( )( )

2

1 2 1

1 2 1

,

, ,

, ,

0

B

B B

B B

E w d

E w w d d

E w w d d

ω

ω ω

ω ω

∆

∆ ∆

∆ ∆

⎛ ⎞
⎜ ⎟
⎝ ⎠

=

=

=

∫

∫ ∫

∫ ∫

x x

x x x

x x x

2

2

x

x

0

.                          (3.65) 

From the above equation,  

( ),
B

w dω
∆

=∫ x x     for BNω ∆∉                             (3.66) 

where  denotes an event of probability zero, i.e.  BN Ω∆ ⊂

( ) 0BP N∆ = .                                               (3.67) 

As the subset B∆  in (3.64-3.67) is arbitrary, the following relation  

( ),w ω =x 0                                                (3.68) 

holds almost surely for all B∈x  except possibly for a set of Lebesgue measure zero. 

Hence,  

( )( )2,
B

E w dω 0=∫ x x .                                      (3.69) 

However, according to Eq. (3.5) and following Fubini’s theorem, we have  

( )( ) ( )( ) ( )2 2, ,
B B

E w d E w d V Bω ω=∫ ∫x x x x = ,                  (3.70) 

where  is the Lebesgue measure of ( )V B B . Consequently, it is concluded from 

(3.69-3.70) that  

( ) 0V B = .                                                (3.71) 

That is, the white noise field ( ),w ωx  is measurable on B Ω×  only if the Lebesgue 

measure of B  is zero.  

 It is important to have a useful mathematical model of a “white noise” field. A 

natural choice of B  is the countable set in , then the stochastic field n

( )
\

, ,w x Bω ω Ω∈ ∈x  becomes a family of discrete, independent and identically 

distributed random variables. This white noise model has been widely used in engineering, 

such as time series analysis [3.53]. Another way to define a white noise field is to describe 

its covariance by the Delta function, i.e.  
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( ) ( )( ) ( )2
1 2 1Cov , , ,w wω ω σ δ= −x x x 2x .                        (3.72) 

Compared with the engineering white noise field defined in (3.5), the above definition is 

preferred in mathematics. Substitution (3.72) into (3.20) yields  

( ) ( )( )
( ) ( )( ) ( ) ( )

( ) ( )

( ) ( )
( )

2

1 2

1 2 1 1 2 2 1

2
1 2

2
1 2

1 2

Cov , , ,

Cov , , ,
n

n

n

W W

w w k k d

k k d

k k d

R

ω ω

ω ω

σ

σ

= −

= − −

= − − −

= −

∫
∫
∫

x x

2d−y y x y x y y y

x y x y y

x x z z z

x x

\

\

\

,         (3.73) 

which again indicates stationarity, one of the basic macro-scale properties of ERM.  

 With the above discussions, the stochastic approach of multi-scale simulations 

shown in Figure 3.3 can now be explained in more detail. Unlike the simple framework 

shown in Figure 3.2, the stochastic approach shown in Figure 3.3 divides the simulations 

into three scales (or stages) A, B and C. Two homogenization procedures are required to 

connect the scales A – B and the scales B – C, respectively. Consequently, at the scales A, 

B and C, the material under multi-scale investigation is described by three different 

mathematical models.  

I) At the micro scale A, material properties are modelled by stochastic fields (or 

random variables). The ERM model, depending on the specific micro-scale 

material structure, might be a choice for this purpose.  

II) At the independent state B, material properties are modelled by a countable set of 

independent random variables. Note, following the discussion in Section 3.2.3, 

these random variables do not necessarily have identical distribution.  

III) At the macro scale C, material properties are modelled by deterministic fields (or 

variables). It is in this scale that the material behaviours are described by classic 

continuum mechanics.  

 The original goal of this PhD research was to develop a general stochastic 

approach for multi-scale simulations, which, from a theoretical viewpoint, was expected to 

be closed, and from a numerical viewpoint, was expected to be versatile. However, it 

turned out that the research was too ambitious to be finished during the course of this 

thesis. Consequently, multi-scale considerations were completely removed from the 
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research schedule, and it was decided to concentrate on random phenomena in one scale, 

which in the end becomes the focus of this thesis. Following the strategic discussion and 

the mathematical analysis in this subsection, much more research work, especially in the 

aspect of physics, need to be done in order to fulfil the framework shown in Figure 3.3.  
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Chapter 4 

The Fourier-Karhunen-Loève 

Representation of Elementary  

Random Media 

 The ERM model introduced in the last chapter is defined by its first- and second- 

order statistical moments. That is, for an ERM , the random elastic tensor n⊂

( )
D \

,ωC x  in Eq. (3.3) is implicitly given by  

( )( ) ( ), oE Dω = ∀C x C x x∈                                (4.1) 

and  

( ) ( )( )
( ) ( )( )

( )
( )

1 2

1 2

1 2

Cov , , ,

Cov , , ,

ω ω

ω ω

= −

=

C x C x

c x c x

R x x

R τ

�
    1 2, D∀ ∈x x ,                     (4.2) 

in which  is a tensor-valued function whose scalar elements are the expectations 

of the corresponding scalar entries in 

( )oC x

( ),ωC x ; ( ),ωc x  is a vector constructed from the 

scalar entries of ( , )ωC x  via a one-to-one mapping; and the covariance function ( )R τ , 

where , is matrix valued.  1= −τ x x2

 However, there is no probability integral directly involved in the SPDE system 
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(3.3), and in order to perform the associated differential operators, an explicit 

representation of ( ),ωC x  is required, instead. An ideal form of the explicit 

representation is  

( ) ( ) (
0

, l.i.m.
k

i ik i
zω ω

→+∞
=

= ∑C x C x ) ,                               (4.3) 

where ( )iz ω  are a sequence of scalar-valued random variables, and  a sequence 

of tensor-valued deterministic functions. The advantage of the series (4.3) is evident since, 

following the separation of the random and deterministic parts of 

( )iC x

( , )ωC x , traditional 

PDE tools become immediately applicable to the SPDE (3.3).  

 Hence, the aim of this chapter is to develop for ERM an effective representation 

scheme in the form (4.3). This representation problem is not a unique issue for the ERM 

model. In fact, the first two statistical moments, due to their simplicity, have been widely 

used in various SFEM formulations [4.1-4.18] to define random material properties, and 

consequently the associated problem of stochastic-field representation has always been a 

key issue in the SFEM research. The differences between the aim of this chapter and the 

related research in the literature are:  

 The emphasis in this chapter is on the general elastic tensor ( , )ωC x , in which 

multiple random scalars are present and consequently various possible interactions 

between these different random material parameters need to be taken into 

consideration. However, to date, existing techniques in the SFEM literature are 

mainly about individual elastic parameters and in many cases [4.1-4.18], just one 

major random material property (e.g. Young’s modulus or Poisson’s ratio) is 

considered.  

 This chapter attempts to develop a general analytical solution for the expansion 

(4.3) so that the resulting stochastic-field representation scheme can be sufficiently 

accurate and efficient both for numerical simulations of ERM and for theoretical 

studies of the associated SPDE system (3.3).  

 The reminder of this chapter is organized as follows.  

I) Section 4.1 briefly reviews existing stochastic-field representation techniques, 

among which the Karnunen-Loève expansion method, due to its special importance, 

is separately addressed in Section 4.2.  
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II) In Section 4.3, based on the spectral representation theory of wide-sense stationary 

stochastic fields and the standard dimensionality reduction technology of principal 

component analysis, the so called Fourier-Karhunen-Loève representation scheme 

is derived for a single elastic parameter of ERM, first in an infinite domain, then in 

a regular domain and finally in an arbitrary domain.  

III) Section 4.4 discusses the computational issues, which also provides a theoretical 

platform to analyze and further reveal respectively the eigenvalue-decay properties 

and the harmonic essence of ERM.  

IV) Two examples are employed in Section 4.5 to investigate the performance of this 

new stochastic-field representation scheme.  

V) Based on the developments in Sections 4.3-4.5, the Fourier-Karhunen-Loève 

representation for the general elastic tensor of ERM is formulated in Section 4.6, in 

which the interactions between different random scalars are fully taken into 

account.  

VI) The chapter finishes in Section 4.7 with a summary of the main features of the 

Fourier-Karhunen-Loève representation and some suggestions for future research 

along this direction.  

4.1 Overview of Existing Techniques 

 In SFEM research, a key issue for the analysis of random medium problems is to 

rationally describe the irregular variation of material properties through the medium, so 

that an appropriate stochastic finite element formulation can be established for the 

problem under consideration. A simple example of a material parameter of random media 

is shown in Figure 3.1.  

 Over the last few decades, a number of stochastic-field representation methods 

have been developed for the description of random material properties. Most of these 

methods are essentially developed for scalar stochastic fields, and they mainly include:  

 The middle point method [4.1, 4.2]. This method discretizes the definition domain 

of the stochastic field with a FE (finite element) mesh, and in each element, the 

stochastic field is simply approximated by the random variable at the element 
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centre. Then, these central random variables are determined through a Cholesky 

decomposition of their covariance matrix, which is constructed by directly 

sampling the given covariance function.  

 The local averaging method [4.3]. After discretizing the definition domain of the 

stochastic field with a FE mesh, the stochastic field in each element is represented 

by a random variable, which is calculated from a spatial average of the local 

stochastic field within the element. Due to the complexity of the specific averaging 

operation, this method is only applicable to simple beam elements.  

 The shape function method [4.4-4.6]. This method also discretizes the definition 

domain of the stochastic field with a FE mesh. However, the stochastic field in 

each element is interpolated by nodal random variables and the associated shape 

functions, and the covariance between each pair of nodal random variables are 

simply enforced to take the exact value from the given covariance function.  

 The least-squares discretization method [4.7]. In this method, the stochastic field is 

approximated in the same discretization format as in the shape function method. 

However, the associated nodal random variables are determined via an optimization 

procedure, in which the approximation accuracy within each element is measured 

by the variance of the error between the exact stochastic field and the interpolated 

stochastic field.  

 The trigonometric series approximation method [4.8-4.11]. No FE mesh is required 

in this method. The stochastic field is approximated by a general trigonometric 

series with random coefficients, which is obtained by directly discretizing the 

spectral representation of the wide-sense stationary stochastic field under 

consideration. More details regarding this method can be found in Appendix 4C.  

 The Karhunen-Loève expansion method [4.12-4.17]. The method, as indicated by 

its name, is based on K-L (Karhunen-Loève) expansions [4.19] of second-order 

stochastic fields, which was first introduced into the SFEM research by Ghanem 

and Spanos [4.12], and since then has been widely used to describe random 

material properties [4.13-4.17]. To date, this method appears to be the most 

significant step forward for this stochastic-field representation problem. The K-L 

expansion is also part of the theoretical foundation of the F-K-L 

(Fourier-Karhunen-Loève) representation scheme to be developed in this chapter, 

and therefore the K-L expansion method will be explained with more details in the 
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next section.  

 It is observed in the above technical review that, FE meshes, as a discretization 

format, have been widely used in the solution of this stochastic-field representation 

problem. That is, for those random media whose material properties are essentially 

described by a scalar stochastic field, the deterministic basis functions in (4.3) have often 

been expressed in terms of piecewise polynomials. The advantage of representing random 

material properties by virtue of piecewise polynomials (or equivalently FE meshes) is 

evident. Specifically, the random material properties can be described with the same mesh 

employed in solving the SPDE system, which in turn makes it easier to deal with random 

media in a similar framework as the standard finite element method.  

4.2 The Karhunen-Loève Expansion Method 

 In the current SFEM research, the K-L expansion method is probably the most 

popular method for describing random material properties. Assume that the material 

property of a random medium nD∈\  is described by a second-order stochastic field 

( ), ,b Dω ω Ω∈ ∈x x , which is given by its first- and second- order statistical moments. 

Then, according to the K-L expansion theorem (see e.g. Appendix 4A), ( ),b ωx  can be 

expressed as  

( ) ( )( ) ( ) ( )
1

, , i i i
i

b E bω ω λ ξ ω ψ
+∞

=

= +∑x x x                        (4.4) 

in which the random variables ( )iξ ω  satisfy  

( )( ) 0iE ξ ω =  and ( ) ( )( )i jE ijξ ω ξ ω δ= ,                        (4.5) 

where ijδ  denotes the Kronecker delta; and the deterministic iλ  and ( )iψ x  are 

eigenvalues and eigenfunctions of the characteristic equation  

( ) ( )( ) ( ) ( )1 2 1 1Cov , , ,
D

b b dω ω ψ λψ=∫ x x x x x2                    (4.6) 

such that 0iλ >  and  

( ) ( )i jD
d ijψ ψ δ=∫ x x x .                                       (4.7) 
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In a numerical treatment, Eq. (4.4) is truncated into a finite series after sorting iλ  in a 

descending order, and the number of terms of the finite series can be determined by the 

required accuracy using the following trace relation  

( ) ( )(
1

Cov , , ,i D
i

b bλ ω
+∞

=

=∑ ∫ x x )dω x

( )

.                            (4.8) 

 It is highlighted that in the K-L expansion (4.4), the probability distribution of 

iξ ω  remains undetermined unless ( ) ( ),b ωx  is a Gaussian field, for which iξ ω  are 

Gaussian random variables [4.19]. The first two statistical moments of ( ),b ωx  are 

insufficient to fully define a general second-order stochastic field, and additional 

information must be provided in order to determine the probability distribution of ( )iξ ω .  

 In the SFEM literature, integral equation (4.6) is usually solved by the standard 

Galerkin finite element method (see e.g. [4.13, 4.17]), and the same FE mesh for the 

solution of the partial differential equations is also adopted. This leads to a generalized 

algebraic eigenvalue problem  

λ=Av Bv ,                                                 (4.9) 

in which A  is a full matrix (real symmetric and non-negative definite),  a sparse 

matrix (real symmetric and positive definite), and 

B

λ  and  denote respectively the 

unknown eigenvalue and eigenvector. The associated computational costs mainly include 

two parts: constructing the full matrix 

v

A  and solving for the corresponding generalized 

eigenproblem. These operations can be very challenging because the dimensionality of the 

full matrix A  equals the total number of FE nodes and a large number of elements are 

required to achieve a reasonable K-L solution for practical random media [4.17]. Another 

deficiency in the above finite element based K-L representation scheme is the relatively 

poor approximation to the eigenfunctions ( )iψ x  [4.13]. This is because there is no direct 

error control for the eigenfunctions although the error of the eigenvalues can be partially 

controlled via (4.8). These computational difficulties make it hard to apply the “K-L 

expansion method†” to describe practical random media, of which the ratio between the 

material dimension and the effective correlation length (see Appendix 4B for the exact 
                                                        
† In this thesis, the term “K-L expansion” is different from the term “K-L expansion method”. 

Specifically, the former denotes the mathematical result in the K-L expansion theorem (see e.g. 
Appendix 4A), while the latter represents the corresponding FE-mesh based stochastic-field 
representation method for random material properties.  
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definition) is often greater than 10.  

4.3 The Fourier-Karhunen-Loève Representation for a 

Single Elastic Parameter of Elementary Random 

Media  

( ) In mathematics, the eigenpair iλ  and iψ x  in the K-L expansion (4.4) are 

essentially the spectrum of the linear integral operator  

( )( ) ( ) ( )( ) ( )2 1 2Cov , , ,
D

Tf b b f dω ω∫x x x� 1 1x x

) th

,                 (4.10) 

where . It is usually difficult to accurately obtain the spectrum of T  wi  

respect to a general second-order stochastic field 

( ) (2 nf L∈x \

( ),b ωx . er, due to the harmonic 

essence of wide-sense stationary stochastic fields 

 Howev

( ) n

[4.24-4.25], it is possible to establish an 

effective representation scheme for ERM with little computational costs.  

 In order to simplify the notation and avoid possible confusions, the F-K-L 

representation of ERM is first established for a special case via three progressive steps in 

this section, where the random material property is described by a scalar stochastic field; 

and the general case, in which the random material properties are described by a tensor 

stochastic field, will be accordingly formulated in Section 4.6.  

4.3.1 The Fourier-Karhunen-Loève Representation in   n\

 Consider an infinite n-dimensional ERM with its random material property 

represented by , ,a ω ω Ω∈ ∈x x \ . Recall from Chapter 3 that ( )oa x , ( ),sa ωx  

and  denote respectively the expectation function, the fluctuation field 

and the covariance function of 

( ) ( )1 2R R= −τ x x

( ),a ωx . Then, in accordance with  

I) The continuity and stationarity of ( ),sa ωx , and the spectral representation theory 

of wide-sense stationary stochastic fields (see Appendix 4C)  

II) The boundedness and integrability of ( )R τ , and the existence criterion of Fourier 
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transforms (see e.g. [4.27-4.28]) 

the following spectral decompositions hold  

( ) ( ) (-1,
noa a e dZ ),ω ω= + ∫ x yx x yi

\
,                          (4.11) 

( ) ( ) ( )1
n n

1R e dF f e d−= =∫ ∫τ y τ yτ −y y yi

\ \

i ,                     (4.12) 

where ( )F y  is a bounded, real-valued function satisfying  

( ) 0
A

dF ≥∫ y                                               (4.13) 

for all measurable ; nA⊂ \ ( ) 0f ≥y  vanishes at infinity, i.e.  

( )
2

lim 0f
→+∞

=
y

y ;                                            (4.14) 

and ( ,Z )ωy , satisfying  

( ) ( )( )
( )( ) ( ) ( )( ) ( ) ( )2 2

, 0 , 0

, ,

Z E Z

E Z F E dZ dF f d

ω ω

ω ω

= =

= =

y

=y y y y y y

−∞
     (4.15) 

is a complex-valued stochastic field with orthogonal increments, i.e.  

( ) ( )( )1 2, ,n nE Z Zω ω 0=F F                                     (4.16) 

for any pair of disjoint n-intervals . In Eqs. (4.11, 4.12), both 1 2,n n ⊂F F \n )( ,a ωx  and 

 are expressed in the frequency space and in the form of the inverse Fourier 

transform. In particular, 

( )R τ

( )F y  is termed the spectral distribution function of ( ),a ωx  

and , and ( )R τ ( )f y  is the associated spectral density function that can be readily 

obtained via the Fourier transform  

( )
( )

( ) 11
2 nnf R e d
π

− −= ∫ τ yy τ i

\
τ .                               (4.17) 

 Eq. (4.11) is termed the F-K-L representation of ERM in . Applying Eq. (4.17) 

to the following integration of 

n\

( ) 1
1 2R e− 1− − x yx x i  yields  

( )

( ) ( )

( ) ( )

1

1 22

2

1
1 2 1

11
1 2

12

n

n

n

R e d

e R e

f eπ

− −

− − −− −

− −

−

= −

=

∫
∫

x y

x x yx y

x y

x x x

x x x

y

i

\

ii

\

i

1d .                         (4.18) 
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The above characteristic equation is satisfied for all . More importantly, by 

comparing (4.18) with (4.6), it is clear that, without solving Eq. (4.6), the expressions 

(4.11, 4.12) provide an explicit solution for the K-L expansion of 

n∈y \

( ),a ωx   in 

terms of Fourier integrals. Specifically, 

n∈x \

( ),dZ ωy  and 1e − ix y  in (4.11) correspond 

respectively to ( )i iλ ξ ω  and ( )iψ x  in (4.4), and the continual spectrum indexed by 

y  corresponds to the discrete spectrum indexed by .  i

4.3.2 The Fourier-Karhunen-Loève Representation in an 

n-Interval  

4.3.2.1 The Fourier Expansion of Elementary Random Media 

 Let  

( ) ( ){ }1, , : , 0 1, ,n n
n k k k kx x t x t t k= ∈ − ≤ ≤ > =T x� " \ " n

t

        (4.19) 

denote an n-interval with volume  

1

2n

n
n

k
k

V
=

= ∏T
,                                              (4.20) 

and restrict the definition domain of ( ),a ωx  in . Note that the Fourier integral and 

series are essentially equivalent except that the former is defined in  but the latter is 

defined in an n-interval (see e.g. 

nT

n\

[4.27-4.28]). The inverse Fourier transform (4.11) of 

( ),a ωx   infers the following complex Fourier expansion of n∈x \ ( ),a ωx    n∈Tx

( ) ( ) ( ) 1

1

1

,

n

k k k
k

n

m x

o
m m

a a Z e
θ

ω =

+∞ +∞ −

=−∞ =−∞

∑
= + ∆∑ ∑x x m" ,ω ,               (4.21) 

where ;  ( )1, , n
nm m= ∈m " ]

1, ,k
k

k
t

nπθ = = " ;                                      (4.22) 

1
1

n

k k k
k

m x

e
θ

=

− ∑
 are the Fourier basis defined in ; and  nT

( ) ( ) ( )( ) 1

11, ,

n

k k k
k

n
n

m x

oZ a a e
V

θ

ω ω =

− − ∑
∆ = −∫T

T

m x x dx                (4.23) 
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are complex-valued random Fourier coefficients. The convergence and well-posedness of 

(4.21) are ensured by the completeness and orthogonality of the Fourier basis (see e.g. 

[4.27-4.29]). It is then obvious that  

( )( ),E Z ω 0∆ =m .                                          (4.24) 

Although the stochastic field ( ),Z ωy  in (4.11) is with orthogonal increments, the 

random sequence ( ,Z )ω∆ m  in (4.21) is not necessarily (and usually is not) composed of 

orthogonal random variables. This is because of the simplification from the Fourier 

integrals to the Fourier series; the frequency of the trigonometric functions in (4.21) is 

preset by  and consequently random coefficients m ( ),Z ω∆ m  must be adapted for the 

convergence of the infinite Fourier series, for which the strictly orthogonal property of 

( ,Z )ωy  is inevitably destroyed. Hence, Eq. (4.21) is not the K-L expansion of ( ),a ωx  

. However, it can be expected that n∈Tx ( ),Z ω∆ m  are nearly orthogonal to each other 

such that 

( ) ( )( )1 2 1, , 0E Z Zω ω ≈ ∀ ≠m m m 2m

)

,                      (4.25) 

therefore ( ,Z ω∆ m  and 1
1

n

k k k
k

m x

e
θ

=

− ∑
 provide a good initial estimate of the K-L 

eigenstructure of ( ),a ωx  . This intuitive insight will be further exploited in 

Section 4.4.1.  

n∈Tx

 In a numerical formulation, the convergent Fourier series (4.21) is truncated such 

that  

( )

( ) ( )

( ) ( )( ) ( )
( )

1
1

1 1

1

T

,

,

,

n

n k k k
k

n n

MM m x

o
m M m M

o

N

a

a Z

a

a

θ

ω

ω

ω

ω

=

−

=− =−

∑
≈ + ∆

= + ∆

=

∑ ∑

x

x m

x Z e x

x

" e

)1

                     (4.26) 

where ;  ( )1, , n
nM M= ∈M " `

(
1

2
n

k
k

N M
=

= +∏ ;                                          (4.27) 

and vectors ( )ω∆Z  and  are respectively constructed from ( )e x ( ,nV Z )ω∆
T

m  and 
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1

1
n

k k k
k

n

m x

e
θ

=

− ∑
T

V . The constant coefficient nV
T

 is chosen to normalise the Fourier basis, 

and the entries in ( )ω∆Z  and ( )e x  are organized in an ascending order of the 

frequency number . In the Fourier approximation (4.26), the truncation error m

( ) (, Na a ),ω ω−x x  depends on the discrete frequency domain 

( ){ }:n n
k k k 1, ,M m M k n∈ − ≤ ≤ =M m� ] "                    (4.28) 

with boundary . It is then desirable to have an explicit error control on  according 

to the required accuracy, and this can be achieved with the assistance of the spectral 

representation of . 

M M

( )R τ

 Specifically, let  

( ){ }| , 0 1,n n
k k k k ,f y f f k n∈ − ≤ ≤ > =F y� \ "                 (4.29) 

denote the smallest domain in the frequency space of ( )R τ  such that 

( )
( )

( )
( )

n n

n

f d f d

Rf d
µ=∫ ∫

∫
F F

0

y y y y

y y
\

≥ 1        0 µ< <                  (4.30) 

where constant µ  is the required accuracy for approximating the spectrum identified by 

( )f y . The boundary  is then determined by  M

k k
k

k

kf f tM
θ π
⎡ ⎤ ⎡= =⎢ ⎥ ⎢⎢ ⎥⎢ ⎥

⎤
⎥ n            1, ,k = "                     (4.31) 

where operator x⎡ ⎤⎢ ⎥  gives the minimum integer that is not less than x . The derivation 

is explained in Appendix 4D.  

 Regarding the above Fourier expansion of ERM, the following two remarks are in 

order.  

I) It is well known that the Fourier transforms of many typical functions can be 

obtained analytically, therefore the spectral density function ( )f y  (4.17) can be 

exactly obtained for many typical ERM encountered in practice. If this is not the 

case, the standard FFT can be applied to numerically calculate ( )f y .  

II) According to the well known Heisenberg inequality [4.27-4.28] in Fourier analysis, 
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a wider , which approximately corresponds to a larger effective correlation 

length, results in a narrower 

( )R τ

( )f y , which approximately corresponds to a smaller 

major frequency domain ; and vice versa. Consequently, from (4.31),  

expands with the growth of the random medium domain, but normally shrinks as 

the effective correlation length increases; and vice versa.  

nF nM

4.3.2.2 Principal Component Analysis of Elementary Random Media  

 In (4.26), in terms of the fixed Fourier vector ( )e x , ( ) ( ),N oa aω −x x  is 

represented by the random vector ( )ω∆Z  whose entries ( ),Z ω∆ m  are not strictly 

orthogonal to each other. However, as discussed in the previous subsection, ( ),Z ω∆ m  

and 1
1 k k k

k
m x

e
θ

=

− ∑
n

 do provide a good initial estimate of the K-L eigenstructure of ( ),a ωx  

. Hence, due to the orthogonality of the Fourier basis, the standard dimensionality 

reduction technique of PCA (principal component analysis) can be performed to 

orthogonalise 

n

( )

∈Tx

,Z ω∆ m  and improve this approximate K-L solution. The PCA operation 

for ( )ω∆Z  is outlined below, and its theoretical background can be found in standard 

textbooks (e.g. [4.26]).  

 Let 

( ) ( )( )( )H
E ω ω= ∆ ∆G Z Z                                    (4.32) 

denote the covariance matrix of ( )ω∆Z , ( )ie x  the i-th term of  and ( )e x ( )iZ ω∆  

the i-th term of ( )ω∆Z . Then the matrix  can be constructed from  G

( ) ( ) ( )( )
( ) ( ) ( )1 2 1 2 1

Cov ,

n n

i jij

i j

Z Z

2R e e d d

ω ω= ∆ ∆

= −∫ ∫T T

G

x x x x x x
.                     (4.33) 

where  is the entry at the i-th row and j-th column of . Due to the symmetric and 

non-negative definite properties of 

( )ij
G G

( )1 2R −x x  (see e.g. [4.19, 4.24-4.25] or Section 

2.2.3),  is a non-negative definite Hermitian matrix (see Section 4.4.1 for more details), 

therefore there exists a unitary matrix  such that  

G
-1 H=Q Q
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(H
1 2diag , , , N )λ λ λ=Q GQ " ,                                  (4.34) 

where 1 2 0Nλ λ λ≥ ≥ ≥" . Let  

( ) ( ) ( )( ) ( )T H
1 , , Nψ ψ=ψ =x x x Q e" x ,                         (4.35) 

( ) ( ) ( )( ) ( )T H
1

1

1 1, , diag , ,N
N

ω ξ ω ξ ω ω
λ λ

⎛ ⎞
= ∆⎜ ⎟⎜ ⎟

⎝ ⎠
ξ =" " Q Z ,       (4.36) 

then it follows from Eq. (4.26) that  

( )

( ) ( ) ( )

( ) ( ) ( )

( )

*

*

1

1

,

,

N

N

o i i
i

N

o i i
i

N

a

a

a

a

ω

λ ξ ω ψ

λ ξ ω ψ

ω

=

=

= +

≈ +

=

∑

∑

x

x x

x x

x

i

i

                                 (4.37) 

in which  is the smallest integer such that  *N
*

*1

1

N

i
i
N

i
i

λ
µ

λ

=

=

≥
∑

∑
        *0 µ 1< ≤ ,                               (4.38) 

where *µ  is the required accuracy for approximating the total variance of ( ),Na ωx .  

 Eq. (4.37) together with (4.33-4.36) is termed the F-K-L representation of ERM in 

n-intervals. Due to the completeness and orthogonality of the Fourier basis and the PCA 

procedure, ( ) ( )* ,
N

a ωx  provides a series solution for the K-L expansion of ,a ωx  

. As n∈ ( )Tx ,a ωx  is a Gaussian field in the ERM model, it is trivial to see that ( )iξ ω  

in (4.37) are stochastically independent standard Gaussian random variables. The 

truncation error ( ) ( ),*,
N

a aω ω−x x  is explicitly controlled by (4.30-4.31) and (4.38), 

and specifically µ  controls the error of the spectrum (i.e. eigenvalues and eigenfunctions) 

of ( ),a ωx  and *µ  controls the error of the total variance of ( ),a ωx .  
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4.3.3 The Fourier-Karhunen-Loève Representation in an 

Arbitrary Domain  

 Consider an ERM  whose random material property is described by nD ⊂ \

( ), ,a Dω ω Ω∈ ∈x x . Letting jnT  be the minimal n-interval such that jnD ⊂ T , there 

exists the F-K-L representation for ( )* ,
N

a ωx  jn∈Tx . Due to the convergence property 

of the K-L expansion (see Appendix 4A), it is clear that for any point j
0

nD∈ ⊂ Tx , 

( )* 0 ,
N

a ωx  converges to ( )0 ,a ωx  in a mean-square sense. Consequently, with this 

simple expansion of  into D jn

( )
T , an explicit representation scheme is achieved for 

,a ωx  , and this is called the F-K-L representation defined in an arbitrary 

domain. However, it should be noted that the F-K-L representation scheme provides a 

series solution for the K-L expansion of an ERM if and only if the ERM is defined in the 

whole space or an n-interval.  

D∈x

4.4 Computational Issues  

4.4.1 Computational Techniques  

 Computational costs of the F-K-L representation scheme include two parts: 

constructing the  covariance matrix  and solving the associated standard 

algebraic eigenvalue problem to obtain 

N N× G

iλ  and .  Q

 Following (4.33),  

( ) ( )
1 2

1 1

1 1

1 2 1
1

n n

ik k k jk k k
k k

n n
n

m x m x

ij 2R e e d
V

θ θ
= =

− − −∑ ∑
= −∫ ∫T T

T

G x x dx x .          (4.39) 

The substitution of (4.12) into (4.39) followed by a trivial calculation yields  

( ) ( )
( )( ) ( )( )

1

cos cos 22
n

n

n n jk ik k k ik jk

ij
k

k ik k jk
k k

m m y t m m
f d

V
y m y m

t t

π π

π π=

− − − +
=

⎛ ⎞⎛ ⎞
− −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

∏∫
T

G y y
\

    (4.40) 
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Substituting (4.17) into (4.40) yields  

( ) ( )
1

1
n

n

n

knij
k

R G d
Vπ =

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∏∫

T

G τ
\

τ ,                            (4.41) 

in which 

( )( ) ( )( ) 1
cos cos 2

k k
jk ik k k ik jk y

k k

k ik k jk
k k

m m y t m m
G e

y m y m
t t

τ
π π

π π
− −

− − − +
=

⎛ ⎞⎛ ⎞
− −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

∫\ dy .    (4.42) 

After explicitly calculating the integral (4.42), which is a standard Fourier transform, the 

expression (4.41) can be simplified as  

( ) i ( ) ( ) ( )12 2

0 0
1

n
nt t

ijk k ijk kij
k

R A Bτ τ
=

⎛ ⎞
= ⎜

⎝ ⎠
∏∫ ∫G τ" d⎟ τ ,                   (4.43) 

where  

i ( ) ( ) ( )( )1

1

2 2

1
1 1

1 1 , , 1
2

n

n

k
nn

k k

R R kτ τ
= =

= − −∑ ∑τ " "                       (4.44) 

denotes the axis-symmetric component of ( )R τ ; and  

( ) ( )
( )

2

1 ik jk

k
ik jk

k

m mijk k

ik jk
ik jk

m m
t

A
m m

m m

τ

τ

π

+

⎧ − =⎪
⎪= ⎨ −⎪ ≠
⎪ −⎩

,                        (4.45) 

( )
cos

sin sin

ik k ik jk
k

ijk k

jk k ik k ik jk
k k

m m
t

B
m m m

t t

π τ

τ
π πτ τ

⎧ ⎛ ⎞
=⎪ ⎜ ⎟

⎪ ⎝ ⎠= ⎨
⎛ ⎞ ⎛ ⎞⎪ − ≠⎜ ⎟ ⎜ ⎟⎪ ⎝ ⎠ ⎝ ⎠⎩

m

m

 

of 
1

n

ijk
k

R A

.           (4.46) 

From (4.43-4.46), it is observed that the matrix  is real and symmetric. Hence, the 

non-negative definite Hermitian matrix G  is specifically real-symmetric and 

non-negative definite. The concise expressions of (4.43-4.46) will not only make efficient 

computational techniques applicable to this problem but also provide a good starting point 

to explore the properties of finite ERM.  

G

 Note in (4.43-4.46) that, all the entries in G  are essentially Fourier coefficients 

)k
i ( ) (τ

=
∏τ ; and up to a constant scalar determined by i and j, there are only  2n
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(  denotes the dimensionality of the stochastic field 1,2 orn = 3 ( ),a ωx ) possible forms 

of i ( ) ( )
1

ijk k
k

R A
n

τ
=
∏τ . Hence, the covariance matrix can be efficiently constructed by using 

the FFT [4.30], and the computational cost is ( )n2 logO N N . It is worth mentioning that 

the right-hand side of (4.43) may be analytically obtained for some typical covariance 

functions encountered in practice.  

 In addition, there are two observations:  

I) The integral kernel ( )ijk kA τ  is much larger in a diagonal entry of  than in an 

off-diagonal entry; with the decreasing rate 

G

1

1
n

ik jk
k

m m
=

−∏ , it becomes 

increasingly smaller when the associated entry moves away from the diagonal.  

II) In practice, the function i ( )R τ  usually exhibits its largest value at = 0τ  and 

decreases as 
2

τ  increases. Therefore, the major non-zero domain of i ( )R τ  is in 

the vicinity of the origin, in which ( )ijk kB τ  is much larger in a diagonal entry than 

in an off-diagonal entry depending on the decay rate of i ( )R τ .  

Consequently, following these two observations, it appears that the covariance matrix  

is diagonally dominant. Furthermore,  can be transformed into a block diagonal matrix 

containing two diagonally-dominant blocks, and the dimensionality of each block matrix 

is approximately half of the dimensionality of G  (see Appendix 4E for details). 

Consequently, the algebraic eigenstructure of G  can be readily obtained by using 

existing eigensolvers with moderate computational costs.  

G

G

4.4.2 The Diagonal Fourier-Karhunen-Loève Approximation 

Scheme  

 The diagonally-dominant property of G  infers that ( )iZ ω∆  are nearly 

orthogonal, which implies that ( )iZ ω∆  and ( )ie x  provide a good initial estimate to the 

K-L eigenstructure of a ( ),ωx  n∈Tx . This insight makes it interesting to investigate the 

following stochastic field constructed only from the diagonal entries of G   
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( ) ( ) i ( ) ( )
1

,d o i i
i

a a Z eω
+∞

=

+ ∆∑x x� ω x ,                           (4.47) 

where  

i ( )( ) 0iE Z ω∆ =                                             (4.48) 

and  

i ( ) j ( )( ) ( ) ( )( )i j ij i jE Z Z E Z Zω ω δ ω ω∆ ∆ = ∆ ∆ .                    (4.49) 

Utilising (4.43-4.46), the covariance function of ( ),da ωx  can be obtained as  

( ) ( )( )

i ( )
( )

( ) ( )

1 21
1

1

1 2

12 2

0 0
1

1 2

Cov , , ,

1 2 cos

n

k k k kn
k

n n

d d

n m x xt t k
k k

m m k k k

d d

a a

R m d e
V t t

R R

θ

ω ω

τ π τ =

+∞ +∞ − −

=−∞ =−∞ =

⎛ ⎞ ∑⎛ ⎞⎛ ⎞ ⎛ ⎞
= −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠
= − =

∑ ∑ ∏∫ ∫
T

x x

τ τ

x x τ

" " . (4.50) 

According to (4.47, 4.50), the stochastic field ( ),da ωx  has the same expectation 

function as ( ,a )ωx , and the stochastic field ( ) ( ),d oa aω −x x  is wide-sense stationary. 

Naturally, it is expected that ( )dR τ  approximates ( )R τ  in a certain sense such that 

( ,da )ωx  can provide a reasonable estimate of ( ),a ωx .  

 According to the Fourier expansion in (4.50), ( )dR τ  is essentially the 

axis-symmetric component of i ( )
1

2 k

k k

R
t

n τ
=

⎛ ⎞
−⎜ ⎟ . In addition )τ  has a period of 

nT , therefore it is only necessary to consider the behaviou ( )d τ  in one half of nT . 

That 

⎝ ⎠
∏τ , dR

r of 

is,  

 (

R

( )

i ( ) ( ) ( ) ( )( ) ( ) ( )1

1

2 2

1 1 1
1 1 1

11 1 , , 1
2

0 1, ,

k

n

n

d

in
i i k k

n n nn
i i k k

k k

R

t t
R t t t t

t
t k n

kττ τ

τ
= = =

− − −
= + − − + − −

≤ ≤ =

∑ ∑ ∏

τ

" "

"

.  (4.51) 

For the sake of simplicity, consider ( )dR τ  in 1D cases, i.e. 1n = , then  

( ) i ( ) i ( )1 2 2 0
2d

tR R R t
t t
τ ττ τ τ τ−⎛ ⎞= + −⎜ ⎟

⎝ ⎠
t≤ ≤ .               (4.52) 

As for 1D wide-sense stationary stochastic field  
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( ) ( ) i ( ) ( )R R R Rτ τ τ≡ − ⇒ ≡ τ ,                               (4.53) 

the following relation holds  

( ) ( ) ( ) ( )( )2
2d 0R R R t R
t

tττ τ τ τ τ− = − − ≤ ≤ .               (4.54) 

Note that ( )R τ  in practice is monotone decreasing from the origin. Hence, for a 

sufficiently large , we have  t

( ) ( )
( ) ( )

0 0

0 0
d

d

,R R t

R R t

τ τ τ

τ τ τ

− = =⎧⎪
⎨

− ≈ < <⎪⎩
.                         (4.55) 

Consequently, for [ ],t tτ ∈ − , the stochastic field ( ),da x ω  provides a good estimate of 

( ,a x )ω  in terms of the first two statistical moments. For ( ,a )ωx  of a higher 

dimensional ERM, it can be proven via a similar procedure that for , n∈Tτ ( ),da ωx  

provides a good estimate of ( ),a ωx  as long as  is sufficiently large and nT ( ),a ωx  is 

isotropic or orthotropic. The above analysis requires ( ),a ωx  to be isotropic or 

orthotropic in higher dimensional cases. This is because, although  holds 

for any real-valued 2D/3D wide-sense stationary stochastic fields, 

( ) ( )R R≡ −τ τ

i ( ) ( )R R=τ τ  holds 

only for isotropic or orthotropic 2D/3D wide-sense stationary stochastic fields.  

 The advantage of the diagonal F-K-L approximation (4.47) is its inexpensive 

computational cost as no equation solving is involved. It should also be noted that (4.47) 

does not provide the K-L solution of ( ),a ωx  . For large random media with 

small effective correlation length, the full F-K-L representation scheme requires the 

solution of a large algebraic eigenvalue problem, which may be beyond available 

computer storage (especially in 3D cases). For those “unsolvable” situations, the diagonal 

F-K-L approximation scheme may provide an acceptable alternative.  

n∈Tx

4.4.3 Estimates on the Eigenvalue Decay  

 In a SFEM formulation, the size of the final algebraic equation system or the 

number of necessary parametric simulations is largely determined by the total number of 

random variables included in the random medium system. Generally, the more random 

variables in the system, the more computing power is required to solve the associated 
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SPDEs. Hence, in the analysis of ERM systems, it is desirable to have an approximate 

prediction on the eigenvalue decay of the F-K-L representation, which in turn determines 

the total number of random variables required by the description of random material 

properties. Let 1iλ λ  denote the eigenvalue decay rate. In the F-K-L representation 

scheme, 1i  can be readily predicted by two different methods.  λ λ

 In the first method, 1iλ λ  is estimated by using the spectral density function 

( )f y . Specifically, through a similar procedure to the derivation of (4.30, 4.31),  

( )

1
1

1

, ,
1

i in
ni

f m m
t t

i
f

π π
λ
λ

⎛ ⎞
⎜ ⎟
⎝ ⎠≈

0

"
≥ .                           (4.56) 

From the above predication, it is clear that the larger the random medium domain  the 

slower the eigenvalues decay; and vice versa. In addition, due to Eq. (4.17) and the 

Heisenberg inequality 

nT

[4.27, 4.28], a smaller effective correlation length normally 

corresponds to a wider spectral density function ( )f y , and therefore results in slower 

eigenvalue decay; and vice versa.  

 In the second predicting method, due to the diagonally-dominant property of , G

1iλ λ  can be estimated by using the diagonal entries. Specifically, according to 

(4.43-4.46),  

i ( )
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1
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0 0
1

2 21
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k
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R m d
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R d

t

τ π τ
λ
λ τ

=

=
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−⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠≈ ≥
⎛ ⎞

−⎜ ⎟
⎝ ⎠

∏∫ ∫

∏∫ ∫

τ τ

τ τ

"

"
.       (4.57) 

In the above prediction, the eigenvalues are estimated by the Fourier coefficients of the 

axis-symmetric component of i ( )
1

2
n

k

k k

R
t
τ

=

⎛ ⎞
−⎜

⎝ ⎠
∏τ ⎟ . Hence, the eigenvalue decay rate 1iλ λ  

is approximately the decay rate of some Fourier coefficients. Let   

be the Fourier coefficients of a function 

( )jc g 0, 1, 2,j = ± ± "

( )g x  defined in an interval. It is well known in 

the classic theory of Fourier series [4.27-4.29] that: 

I) If  has bounded variation, then  g
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( ) ( ) 4jc g V g j≤                                          (4.58) 

where ( )V g  is the total variation of ;  g

II) If the p-th derivative of  is absolutely continuous, then  g

( ) ( 11 p
jc g o j += )      as j →+∞ .                          (4.59) 

Consequently, in 1D cases, 1iλ λ  is at least proportional to 1 i  (for sufficiently large ) 

as long as the corresponding condition of the bounded variation is satisfied; moreover, the 

smoother the covariance function the faster the eigenvalues decay. The generalization of 

these conclusions to higher dimensional cases with separable 

i

i ( )R τ  is immediate. For 

general higher dimensional cases, although the analysis on Fourier coefficients is not 

straightforward, it can be expected that essentially similar estimates hold for 1iλ λ .  

4.4.4 The Fourier-Karhunen-Loève Algorithm for Scalar 

Stochastic Fields  

 For an ERM described by ( ),a ωx  D∈x , given the expectation function ( )oa x , 

variance function ( )R τ  the error-control parameters the co  and µ  and *µ , the 

corresponding F-K-L representation can be obtained with the following algorithm:  

Algorithm 4.1 The F-K-L representation for a single elastic parameter of ERM 

1. Fin

2. Det

3. For

4. Sol

5. Co  

It is wort

constructe

of ( ,a ωx

series exp
d the minimum n-interval jn ⊂T \n  such that jnD ⊂ T .  

ermine the boundary of  according to nM µ  and Eqs. (4.17, 4.30-4.31). 

m the covariance matrix  according to Eqs. (4.43-4.46).  G

ve the standard eigenvalue problem with respect to .  G

nstruct the F-K-L representation according to *µ  and Eqs. (4.35, 4.37-4.38).

 

h mentioning that for an irregular domain , the above F-K-L representation 

d via the n-interval 

D

jnT  is not equivalent to performing an exact K-L expansion 

)  D∈x . Hence, in terms of the number of random variables contained in the 

ression, the F-K-L representation may be less economical than the exact K-L 
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expansion depending on the specific domain D .  

4.5 Numerical Examples  

 In this section, the overall performance of the F-K-L representation scheme for a 

single elastic parameter of ERM is examined through two examples. Without loss of 

generality, it is assumed that ( ) 0oa ≡x  in these examples.  

4.5.1 One-Dimensional Exam  

 Two stochastic fields, which are both widely used in the description of random 

ateria

ples 

m l properties, are considered.  

 Case I: ( ) [ ]1
1 , ,Da x x t tω ∈ −  with covariance function 1ae τ−  1 0a > ;  

 Case II: ( ) [ ]2
1 ,Da x x tω ∈ −  , t  with covariance function

2
2ae τ−  2a

4.5.1.1 Case I  

 Although 

0> . 

( )1
1 ,Da x ω  has been widely used in the SFEM literature (e.g. [4.3, 4.4, 

4.6-4.7, 4.12-4.13, 4.15-4.18]), this thesis does not advocate its use in describing material 

properties of random media due to the discussions regarding continuity and 

differentiability in Chapter 3. The SOLE objective of choosing ( )1
1 ,Da x ω  is to 

investigate the accuracy of the proposed F-K-L representation scheme.  

 Assumi  and ng 65t = 1 1.25a = , the effective correlation length of ( )1
1 ,Da x ω  is 

5.75. The K-L expansion of ( )1 x1 ,Da ω  is respectively obtained with the e ion 

(see Appendix 4F), the finite element method (see e.g. 

xact solut

[4.13, 4.17]) and the proposed 

F-K-L representation scheme. Figure 4.1 plots 
1 1

N

i i
i i
λ λ

+∞

= =
∑ ∑  against N , in which 

+∞

1
130i

i
λ

=

=∑  and iλ  are calculated from the exact solution. It is observed that the K-L 

expansion requires the first 100N =  eigenpairs to approximate 80% of the total variance 
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of ( )1 ,a x1D ω , i.e. 
1 1

0.8
N

λ λ∑ ∑ . Indeed, the number of terms contained in a 

even in 1D problems. This is because the ratio of the random medium size over the 

effective correlation length can be even larger than that in this simple example. Hence, in 

order to achieve a reasonable K-L expansion of the stochastic field concerned, it is 

important to accurately obtain all the required eigenvalues and eigenfunctions instead of 

only the first few eigenpairs.  

i i
i i

+∞

= =

=

reasonable K-L expansion of a practical random medium can easily reach a few hundred, 

0.6

0.8

1.0

1

N

i
i
λ

=
∑
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 The relative errors of K-L eigenvalues are compared in Figure 4.2, in which the 

curves labelled F-K-L are obtained with the F-K-L representation scheme and the curves 

labelled FE-K-L are obtained with the K-L expansion method based on FE meshes. It is 

observed that the eigenvalue accuracy of the F-K-L representation scheme is much higher 

than that of the K-L expansion method. Specifically, in the F-K-L scheme, the 

approximation error is explicitly controlled by µ  and all the eigenvalues are obtained 

with good accuracy; however, in the FE-K-L scheme, only half of the eigenvalues are 

obtained with reasonable accuracy.  

 Figure 4.3 compares some eigenfunctions of ( )1
1 ,Da x ω , and as expected the 

F-K-L scheme shows a significant advantage over the K-L expansion method based on FE 

meshes. Although the accuracy of the K-L expansion method can be improved by 

employing more elements, it provides relatively poor results for higher order 

eigenfunctions. In the F-K-L solution with 0.8µ = , the dimensionality of the covariance 

matrix  is 100; however, for the eigenfunctions shown in Figure 4.3, there is no visible 

difference between the associated F-K-L solution and the exact solution.  

G

4.5.1.2 Case II  

 The aim of this particular example is to investigate the influences of the random 

medium size and the effective correlation length on the F-K-L representation scheme. 

Letting , the effective correlation length of 2 2a = ( )2 ( )2
1 ,Da x ω  is 3.0. Consider 1 ,Da x ω  

defined in [ ]1.5 ,1.5r r− , where { }5,10,15, 20r∈  denotes the ratio of the interval size 

over the effective correlation length.  

 The K-L expansion of ( )2
1 ,Da x ω  is obtained with the F-K-L representation 

scheme with 0.95µ = . The diagonally dominant property of  is verified in Figure 4.4, 

where the matrix elements are linearly mapped into pixels whose greyscales represent the 

values of the corresponding entries. It is observed that the larger the ratio  the more 

diagonally-dominant  is.  

G

r

G

 Figure 4.5 plots the eigenvalue decay rate 1iλ λ , in which scatters ■ □ ▲ ∆ are 

directly calculated from the eigenvalues, and the solid and dashed curves are predicted by 
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using respectively (4.56) and (4.57). As expected, the larger the ratio  the slower the 

eigenvalues decay. Both the spectral density function prediction and the diagonal entry 

prediction provide good estimates of the eigenvalue decay rate.  

r

)( To examine the diagonal F-K-L approximations of 2
1 ,Da x ω , Figure 4.6 

compares their covariance functions with the exact covariance function 
2 2τ−e , and 

reasonable agreements are achieved in [ ]1.5 ,1.5r rτ ∈ − .  

2 4 6 8 10

10

8

6

4

2

r=5

-0.2000

0.3600

0.9200

1.480

2.040

2.600

  

2 4 6 8 10 12 14 16 18 20

20

18

16

14

12

10

8

6

4

2

r=10

-0.2000

0.3600

0.9200

1.480

2.040

2.600

 

(a)                                   (b)                   

5 10 15 20 25 30

30

25

20

15

10

5 r=15

-0.2000

0.3600

0.9200

1.480

2.040

2.600

 

5 10 15 20 25 30 35 40

40

35

30

25

20

15

10

5
r=20

-0.2000

0.3600

0.9200

1.480

2.040

2.600

 

(c)                                   (d)                   

Figure 4.4 The covariance matrix  (Case II)  G
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Figure 4.6 Accuracy of the diagonal F-K-L approximation scheme (Case II) 
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4.5.2 A Two-Dimensional Example  

 This example considers the stochastic field ( )2 ,Da ωx  [ ] [ ]15,15 15,15∈ − × −x  

with covariance function ( )2 32 2

( )

1 23 4e τ τ− +  whose effective correlation length is 6.3.  

 As the covariance function is nonseparable, there is no exact K-L solution 

available for 2 ,Da ωx . Hence, only the F-K-L representation is constructed for this 

general stochastic field. By setting 0.95µ =  in the F-K-L representation scheme, there 

are around 2,800 K-L eigenpairs obtained for ( )2 ,Da ωx . In a PC system with an Intel 

Xeon 2.4 GHz processor and 1.0 GB DDR memory, it takes 23.6 seconds to construct the 

diagonally-dominant covariance matrix , and with the standard MATLAB eigensolver 

it takes 216.2 seconds to solve for the entire algebraic eigenstructure of .  

G

G

 Figures 4.7 and 4.8 plot respectively the eigenvalues and eigenfunctions, and 

Figure 4.9 shows a particular realization of ( )2 ,Da ωx , which is generated from the F-K-L 

representation obtained with .  * 0.8µ =
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Figure 4.7 The eigenvalues of ( )2 ,Da ωx  
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(a)                                   (b)                 

    

(c)                                   (d)                 

Figure 4.8 The eigenfunctions of ( )2 ,Da ωx   

 

Figure 4.9 A particular realization of ( )2 ,Da ωx   
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4.6 The Fourier-Karhunen-Loève Representation for 

the General Elastic Tensor of Elementary Random 

Media  

4.6.1 Background  

 In Sections 4.3-4.5, the F-K-L representation is developed for a single elastic 

parameter of ERM. However, this is rarely the exact situation in reality since a practical 

random medium system usually contains multiple random material parameters. 

Unfortunately, it is not straightforward to apply the previously developed F-K-L 

representation scheme to describe multiple random material properties, unless these 

properties are linearly dependent to each other, for which the multivariate stochastic-field 

representation problem can be transformed into a simple problem with respect to a single 

scalar stochastic field.  

 On the other hand, up to now [4.1-4.18], it appears that there has not been any 

general technique reported to effectively represent multiple random material properties. 

More specifically, as pointed out in [4.18], the random Young’s modulus is mainly dealt 

with in SFEM research, and very few works are dedicated to dealing with a random 

Poisson’s ratio.  

 Hence, the aim of this section is to establish the F-K-L representation scheme for 

the general elastic tensor of ERM, which fully takes into account the interactions between 

different random elastic parameters.  

4.6.2 The Solution  

 Recall from the introduction in the beginning of this chapter that, ( ),ωC x  

,D ω Ω∈ ∈x  denotes the elastic tensor of an ERM , which is defined by its 

expectation function 

n

( )

D ⊂ \

,o ωC x  (4.1) and covariance function ( )R τ  (4.2). The aim is to 

obtain the F-K-L representation of ( ),ωC x  in the form of (4.3).  
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 Let  

( ) ( ) ( ) ( )( T

1 2, , , , , , ,pc c cω ω ω=c x x x x" )ω ,                     (4.60) 

denote the vector constructed from the scalar entries of ( ),ωC x  via the one-to-one 

mapping  

( ) (, ),ω ω↔C x c x .                                        (4.61) 

The expectation function of ( ),ωc x  is  

( ) ( ) ( ) ( )( T

,1 ,2 ,, , ,o o o o pc x c x c x=c x " ) ,                          (4.62) 

which due to the mapping (4.61) is known from ( ),o ωC x . Denoted by the matrix-valued 

function  (4.2), the covariance functions of ( )R τ ( ),ωc x  and ( , )ωC x  are the same.  

 It is simpler in notation to derive the F-K-L representation for the vector ( ),ωc x , 

and due to the one-to-one mapping (4.61), this is equivalent to investigating the tensor 

( ),ωC x .  

 Let  defined as (4.19) denote the minimum n-interval such that . Then, 

following the discussions in Section 4.3.2.1, each entry of  can be 

approximated by a finite Fourier series as  

nT nD ⊂ T

( ) n,ω ∈Tc x x

( )

( ) ( )

( ) ( )( ) ( )

,1 ,

1

1 ,1 ,

1

,

T
,

,

,

n
i i n k k k

k

i n i n

i

M M m x

o i i
m M m M

o i i i

c

c Z

c

θ

ω

ω

ω

=

−

=− =−

∑
≈ + ∆

= + ∆

∑ ∑

x

x m

x Z e x

" e p    ,    (4.63) 1, 2, ,i = "

in which 1

1
n

k k k
k

m x

e
θ

=

− ∑
 are the Fourier basis functions defined on , nT ( ,iZ )ω∆ m  are the 

Fourier coefficients given by  

( ) ( ) ( )( ) 1

1

,
1, ,

n

k k k
k

n
n

m x

i i o iZ c c e
V

θ

ω ω =

− − ∑
∆ = −∫T

T

m x x dx ;              (4.64) 

the discrete spectrum boundaries ( ),1 ,, ,i i iM M=M " n  can be similarly determined as 

(4.30-4.31) according to the given error control parameter µ ; and the vectors  

( ) ( ) ( ) ( )( )T

,1 ,2 ,, , ,
ii i i i NZ Z Zω ω ω∆ = ∆ ∆ ∆Z " ω                     (4.65) 
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and  

                           (4.66) 

are respectively constructed from 

( ) ( ) ( ) ( )( )T

,1 ,2 ,, , ,
ii i i i Ne e e=e x x x x"

1

1
n

k k k
k

m x

e V
θ

=

− ∑
.  ( ),n iV Z ω∆

T
m  and nT

 vectors  

)TT
, , p ω∆Z" ,               (4.67) 

,      

whose dimensionality is  

i
4.69) 

It is clear that 

 Consider the following row

( ) ( )( ) ( )( )( T T
1 2,ω ω ω∆ ∆ ∆Z Z Z� ( )( )

( ) ( )( ) ( )( ) ( )( )( )TTT T
1 2, , , pe x e x e x e x� "                 (4.68) 

1

p

iN N
=

= ∑ .                                                (

( )ω∆Z  is the projection coordinate of ( ) ( ), oω −c x c x  on the Fourier 

axis ( )e x . Natu he dimensionality of rally, t ( )ω∆Z  can be reduced by PCA.  

 cifically, the covariance matrix of ( )Spe  ω∆Z

12

H 21 22 2

1 2

p

p p pp

E ω ω ⎜ ⎟= ∆ ∆ = ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

G
G G G

G Z Z

G G G

"
# # % #

"

,               (4.70) 

where  

    for every

 has the following form  

( ) ( )( )( )
11 1p⎛ ⎞

⎜ ⎟
G G"

( ) ( )( )( )H

ij i jE ω ω= ∆ ∆G Z Z  , 1, 2, ,i j p= "         (4.71)  

is again a covariance matrix, of which ity is N N×the dimensional j . Following Eq.  i

(4.64), each such covariance matrix ijG  is defined as,  

( ) ( ) ( )( ), ,Cov ,ij i k j lkl
Z Z

( ) ( ) ( )1 2 , 1 , 2 1 2n n ij i k j lR e e d d

∆

= −∫ ∫T T
x x x x x x

    ,      (4.72) 

in which is the entry located at the k-th row and the l-th column of 

ω ω= ∆G 1
1

i

j

k N
l N

≤ ≤
≤ ≤

( )ij kl
G  ijG , and  

( ) ( ) ( )( )1 2 1 2Cov , , ,i jc cijR ω ω− =x x x x                          (4.73) 

is the entry located at the i-th row and j-th column of the matrix-valued covariance 
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function ( )R τ .  

 As the covariance matrix of the random vector ( )ω∆Z , G  is a non-negative 

finite trix de  Hermitian matrix†. Hence, there exists a unitary ma -1 H=  such that  

( )H
1 2diag , , , N

Q Q

λ λ λ=Q GQ " ,                                  (4.74) 

where 1 2 0Nλ λ λ≥ ≥ ≥" . Consequently, the random vector ( )ω∆Z  can be written as  

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

1

T
, , , ,Z Z Zω ω ω∆ ∆1,1 1, ,1 ,

T

1 1 2 2

, ,

, , ,

pN p p N

N N

Zω ω

λ ξ ω λ ξ ω λ ξ ω

∆ = ∆ ∆

=

Z

Q

" " "

"
     (4.75) 

in which are stochastically independent standard Gaussian random 

Let be the small

( ) 1, 2, ,i i Nξ ω = "  

variables. est integer such that  *N  
*

*1

1

N

i
i
N

i
i

λ
µ

λ

=

=

≥
∑

∑
        *0 1µ< ≤ ,                               (4.76) 

where *µ  is the required accuracy for approximating the total variance of ( ),ωc x . Then, 

from (4.75), the dimensionality of ( )ω∆Z  can be reduced to *N  such tha ntry in 

( )

t each e

ω∆Z  has the following form  

1,2, ,
1, 2, , i

i p
k N
=
=

"
"( ) ( )

*N

, , ,
1

i k i k q q q
q

Z Qω λ ξ ω
=

∆ ≈∑     ,                 (4.77) 

in which are corresponding constant entries in .  

 Substituting (4.77) into (4.63) yields  

, ,i k qQ  Q

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

*

*

, , ,
1

, , , ,
1 1

, ,
1

,
iN

c c Z eω ω≈ + ∆∑x x

1, 2, ,
i

i o i i k i k
k

N N

o i i k q q q i k
k q

N

o i q q i q
q

c Q e i p

c

λ ξ ω

λ ξ ω ψ

=

= =

=

≈ + =

= +

∑∑

∑

x

x x

x x

" ,     (4.78) 

where  
                                                        
† In fact, following a similar analysis as Section 4.4.1, it can be proven that the covariance matrix G 

defined in (4.70) is real-symmetric and non-negative definite.  
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( ) ( ), , ,
1

iN

i q i k q i k
k

Q e ,ψ
=

=∑x x .                                     (4.79) 

It should be noted that, unlike the scalar case discussed in Sections 4.2-4.5, the basis 

functions ( ),i qψ x  defined above are not necessarily orthogonal to each other. Due to the 

mapping (4.61), Eq. (4.78) indicates that the elastic tensor ( ),ωC x  can be represented as  

( ) ( ) ( ) ( )
*N

1

, o q q q
q

ω λ ξ ω
=

≈ +∑C x C x C x ,                         (4.80) 

in which is a tensor-valued function constructed from ( )qC x  ( ),i qψ x  (4.79).  

 Eq. (4.80) is termed the F-K-L representation for the general elastic tensor of ERM. 

The associated F-K-L algorithm is formally the same as Algorithm 4.1, but the calculation 

at each algorithmic step should follow the corresponding formulation developed in this 

section. For the sake of simplicity, the dependent scalar entries in the fourth-order tensor 

( ),ωC x  are not distinguished in the above developments. However, it is well known in 

 that there are maximum 21 (rather than 81) independent entries in the elastic 

tensor, and for the simplest cases there are only two independent entries. Consequently, to 

be computationally efficient in practical random medium modelling, it is only necessary to 

construct the vector ( ),

elasticity

ωc x  with those independent non-zero scalar entries in ( ),ωC x , 

from which the F- resentation for the whole elastic tensor can b  

constructed.  

K-L rep e readily

4.7 Summary and Suggestions for Future Research  

4.7.1 Summary 

 In this chapter, an explicit stochastic-field representation scheme, namely the 

K-L 

c tensor of 

 

F- representation, is established to describe the random material properties of the 

ERM model. The main features of the proposed scheme are listed as follows:  

 The F-K-L representation scheme is developed for the general elasti

ERM, which makes the ERM model applicable to any elastic constitutive relation.  

In contrast to various FE-mesh based stochastic-field representation schemes, the 
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F-K-L representation scheme is completely meshfree and also independent of the 

detailed shape of the random structure under consideration.  

When there is only one random material parameter involved i n the ERM model, the 

 error control. Specifically, the 

 L representation scheme, the covariance matrix  can be obtained 

n.

 Developed in Section 4.4.1, the specific quadrature method for multi-dimensional 

 Parts of the results in this chapter have already been reported in [4.36-4.38].  

4.7.2 Suggestions for Future Research  

 Regarding the F-K-L representation scheme presented in this chapter, the 

RM described by 

F-K-L representation provides a semi-analytical solution for the K-L expansion of 

the corresponding stochastic field. Comparing with the widely used K-L expansion 

method based on FE meshes, the F-K-L representation scheme is not only more 

accurate but is also computationally more efficient. This is due to the harmonic 

essence of wide-sense stationary stochastic fields.  

The F-K-L representation is achieved with a prior 

approximation error is explicitly controlled by two parameters, which control 

respectively the error of the spectrum of stochastic fields and the error of the total 

variance.  

In the F-K- G

semi-analytically by using Fourier transforms. The associated theoretical 

formulation of G  not only significantly improves the computational efficiency of 

the F-K-L solution, but also results in some interesting conclusions regarding ERM, 

which include the diagonally-dominant property of G , the diagonal F-K-L 

approximation scheme and the eigenvalue decay predictio   

oscillatory functions is the other contribution made in this chapter. With this novel 

quadrature technique, the computational cost of constructing the matrix G  is 

significantly reduced (up to several orders of magnitude). It is clearly possible to apply 

this technique for the quadrature of more general multi-dimensional oscillatory functions, 

and this will be addressed in [4.33].  

following aspects need further investigation.  

 It is worth mentioning that for an E ( ),a ωx  n∈Tx , some 

 do not convergeigenfunctions obtained by the F-K-L representation scheme e to the 
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exact eigenfunctions near n∂T , i.e. the boundary of nT . This is due to the Gibbs 

phenomenon [4.29] where some eigenfunctions of ( ),a ωx  have discontinuities 

on n∂T . This adverse phenomenon can be overco adjusting the Fourier 

summation with the Lanczos sigma factor 

me by 

 essentially due to the harmonic essence 

 ed for the elastic tensor of ERM, 

[4.31] or slightly extending the 

computational domain of nT .  

The success of the F-K-L representation is 

of wide-sense stationary stochastic fields. Hence, within the same framework, it is 

interesting to investigate further applications of the theory of harmonic analysis, 

especially wavelet theory, in the stochastic-field representation scheme. The 

wavelet theory has been firmly established as a very powerful transformation tool, 

alternative to Fourier analysis, for many problems and predominately for 

signal/image processing and data analysis. The most attractive feature of wavelets 

is their dual localisation in both spatial and frequency domains. It is expected that 

at least two benefits can be gained from the wavelet representation: (a) A faster 

convergence than the Fourier representation is expected to be achieved, leading to a 

smaller number of basis (wavelet) functions needed; and (b) A successful wavelet 

representation will provide a natural route to considering multi-scale effects in 

random media. In this phase of work, several different sets of wavelet functions, 

with different local compactness and smoothness, will be investigated to identify 

the most suitable set for the problem considered.  

In Section 4.6, the F-K-L representation is establish

however, for this general case, its numerical performance has not been fully 

examined. A possible failing may arise in the F-K-L representation scheme in that, 

different elastic parameters are equally considered in the covariance matrix G . 

Specifically, the random values of some elastic parameters may differ in order of 

magnitude, and when this difference is very large the matrix G  may become ill 

conditioned, which in turn makes the solution difficult. This potential problem can 

be solved by replacing in the F-K-L algorithm the covariance matrix G  with the 

correlation matrix H . In contrast to Eq. (4.72), each entry in H  is a rmalized 

correlation coefficient of the form 

 no

( ( ) ( )( ) )
( )( ) ( )( )

[ ],

, ,

0,1
Var Var

j l
ij kl

i k j l

Z

Z Z

ω

ω ω

∆
= ∈

∆ ∆
    .    (4.81) ,Cov ,i kZ ω∆ 1

1
i

j

k N
l N

≤ ≤
≤ ≤

H

126 



Chapter 4. The Fourier-Karhunen-Loève Representation 

Other technical defects might also exist in the F-K-L representation of the general 

elastic tensor which may not become apparent until a comprehensive

examination is completed.  

 

ons 4.3-4.6 that the only use of the ERM 

 numerical 

Recall from Section 3.4.2.1 that a more general definition of the ERM model can 

be achieved by replacing the Gaussian assumption with an assumption of 

ergodicity (3.62). It is seen in Secti

Gaussian assumption in the F-K-L representation scheme is to determine the 

probability distribution of the random sequence ( )iξ ω  (4.37, 4.80). Consequently, 

with respect to the F-K-L representation, two key questions arise form the 

alternative ERM definition: (a) Without the Gaussian assumption, whether or not it 

is possible to properly define ( )iξ ω

 

 from the ergodicity assumption; (b) If it is 

possible to do so, then how to approximately determine the joint probability 

distribution of random variables ( )iξ ω .  

The ERM model and its F-K-L representation will be reported in [4.34, 4.35] 

r with some of the above research

 

togethe  which is currently under development.  

rem 

4A.1 Mercer’s Theorem 

 Definition 4A.1   Let  denote a Lebesgue measurable set. A 

Appendix 4A The Karhunen-Loève Expansion Theo

 This appendix explains the mathematical background of K-L expansions.  

nD ⊂ \

complex-valued function ( ) ,1 2 1 2,R x x D∈x x  is said to be symmetric and 

non-negative definite in D  if  

( ) ( ) ( )1 2, 2 1 1 2, ,R R D D= ∀ ×x x x                    (4A.1) 

and  

∈x x x

( )
1 1

, 0
k k

i j i j
i j

R z z
= =

≥∑∑ x x                   

nite sequences of points  in 

                   (4A.2) 

1 2, , , kx x x" D  and all choices of complex numbers for all fi
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1 2, , , kz z z" .  

s theorem)   Theorem 4A.2 (Mercer’   Let D  denote a compact set in n\ , and 

1( ) 2, ,1 2R D∈x x x  denote a complex-va ( )

symmetric and non-negative definite in D , then there exists a set of functions 

( )

x lued function. If 1 2,R x x  is continuous, 

{ }i i
ψ

∈
x

`
 in ( )2L D  satisfying  

( ) ( )i j ijD
dψ ψ δ=∫ x x x                                       (4A.3) 

and the characteristic e

)                               (4A.4) 

where the eigenvalues 

quation  

( ) ( ) (1 2 1 1 2,
D

R dψ λψ=∫ x x x x x

{ }  are non-negative and the eigenfunctions i i
λ

∈` ( ){ }i i
ψ

∈
x

`
 

corresponding to those non-zero eigenvalues are continuous in D . Furthermore, the 

integral kernel has the following representation 

)

( )1 2,R x x   

( ) ( ) (1 2 1 2
1

i i i
i=

whose converge olute and uniform. In particular,  

,R λψ ψ
+∞

=∑x x x x                                (4A.5) 

nce is abs

Tr , ,
D

R R d( )( ) ( )1 2
1

i
i
λ

+∞

=
=
∑∫x x x x x�

 Mercer’s theorem is one of the most impo

integral equations, and its proof can be found in [4.21-4.23].  

4A.2 The Karhunen-Loève Expansion of Second-Order 

technique 

that can tochastic field; more formally it is a transformation that 

chooses ons for the stochastic field such that the greatest variance 

                          (4A.6) 

is termed the trace of ( )1 2,R x x .  

rtant theoretical tools in the theory of 

Stochastic Fields 

 In the Hilbert space theory of stochastic fields, the K-L expansion is a 

 be used to simplify a s

a new set of basis functi

by any projection of the stochastic field lies on the first basis-function axis (called the first 

principal component); the second greatest variance on the second axis, and so on. 

Assuming a zero mean for the complex-valued stochastic field ( ), ,b Dω ω Ω∈ ∈x x , 
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the first principal component ( )1ψ x  of ( ),b ωx  is defined as :  

( )
( )

( ) ( )
2

2

1
1

arg max ,
Dd

E b d
ψ

D

ψ ω ψ
=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠∫
∫

x x
x x x x      ) 

where arg max  stands for gum the maximum. 

              (4A.7

When the first the ar ent of 1k −  

com k-th component can be foundponents are defined, the  by subtracting the first 1k −  

( ),b ωx :  principal components from 

( ) ( ) ( ) ( ) ( )
1

1
1

k

k i iD
i

−

−

=
∫

and then by treating this as the new stochastic field to 

, , ,b b b dω ω ψ ω ψ= −∑x x x x x x� ,               (4A.8) 

find its principal component  

( )
( )

( ) ( )
2

2

1
1

arg max ,
D

kk Dd
E b d

ψ
ψ ω ψ−

=

⎛ ⎞
= ⎜

⎝∫
∫

x x
x x� .⎟

⎠
x x                  (4A.9) 

The stochastic field ( ),b ωx  then has the following representation  

( ) ( ) (
1

, i i
i

b zω ω ψ
+∞

=

=∑x x  )                                   (4A.10) 

where ( )iz ω  are ra ordinates with respect to ndom co ( )iψ x  such that  

( ) ( ) ( ),i D
z bω ω ψ= ∫ x xi d

If the

x .                                 (4A.11) 

  stochastic field ( ),b ωx  is mean-square continuous, it is then trivial to 

verify against Definition 4A.1  covariance function ( ) ( )( )1 2Cov , , ,b bω ωx x  is  that the

continuous, symmetric and non-negative definite , 

mpler f

 (see e.g. Section 2.2.3). Consequently

based on Mercer’s theorem, a si ormulation can be developed to obtain the principal 

components ( )iψ x  defined in (4A.9), the random coordinates ( )iz ω  defined in (4A.11) 

and the expansion (4A.10). This is known as the K-L expansion theorem.  

 Theorem 4A.3 (Karhunen-Loève expansion)   Let D  denote a compact set in 
n , and ( )\ , ,b Dω ω Ω∈ ∈x x  a centred complex-valued second-order stochastic field. 

If ( ),b ωx  is mean-square continuous, then it can be expressed as  

1
, i

i
b zω ω ψ

=

=∑x x

where the convergence is in mean square and is absolute and uniform; 

( ) ( ) ( )i

+∞

                                   (4A.12) 

( )iz ω  are a 
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sequence of mutually uncorrelated complex-valued random variables satisfying  

( ) ( )( )i i ijE z z iω ω δ= λ ;                                     (

and 

4A.13) 

iλ  and ( )iψ x  are the positive eigenvalues and the corresponding orthonormal 

the covariance function of eigen-functions generated by ( ),b ωx  according to Mercer’s 

theorem. In particular, if the stochastic field ( ),b ωx  is Gaussian, then ( )iz ω  are 

stochastically independent Gaussian random variables and the convergence of (4A.12) 

me

essing. The difference between the K-L 

expansion and principal component analysis is that, the former deals with continuous 

beco s almost surely, absolute and uniform.  

 The proof of Theorem 4A.3 can be found in [4.19, 4.20]. From a mathematical 

point of view, the K-L expansion is essentially equivalent to principal component analysis 

[4.26], a well known technique for data compression and signal reconstruction in the 

context of pattern recognition and signal proc

stochastic fields while the latter focuses mainly on discrete random sequences. Due to this 

mathematical similarity, principal component analysis is sometimes referred to as K-L 

transforms.  

 Since series (4A.12) is of absolute convergence, the sequence of ( ) ( )i iz ω ψ x  

appearing in (4A.12) is arbitrary, and for the most efficient approximation, it can be 

chosen as the descending order of the corresponding eigenvalues { }i i
λ . The number of 

∈`

terms needed in the approximate expansion, i.e. the partial sum of infinite ser

mple, if the

ies (4A.12), 

is determined by the trace relation (4A.6) and the required accuracy. For exa  

trace of a given covariance function is  

( ) ( )( )( )1 2Tr Cov , , , 10b bω ω =x x                             (4A.14) 

and the associated eigenvalues are obtained as  

{ } { }1 2 3, , , 4,3,1.5,λ λ λ =" " ,                                 (4A.15) 

then an approximation of 70% accuracy can be readily achieved by truncating series 

(4A.12) from the second term, i.e.  

( ) ( ) ( ) ( ) ( )1 1 2 2,b z zω ω ψ ω ψ≈ +x x x                          (4A.16) 

where ( )1ψ x  and ( )2ψ x  are the first two orthonormal eigenfunctions of the given 
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covariance function, and random variables ( )1z ω  and ( )2z ω  satisfy  

( )( ) ( )( )
( ) ( )( ) ( )

2

( )( )

2
1 1 24 3

0 0

E z E z

E z z E z z

ω λ ω λ

ω ω ω ω

= = = =

= =

for 

2
.               (4A.17) 

1 2 1 2

Eq. (4A.16) is called a 70% approximation ( ),b ωx   the followdue to ing calculation  

( ) ( )( )( )
1 2

1 2

4 3 70%
10Tr Cov , , ,b b

λ λ
ω ω
+ +

= =
x x

.                    (4A.18) 

Appendix 4B The Effective Correlation Length 

 Consider a second-order stochastic field ( ), ,b Dω ω Ω∈ ∈x x  with the 

covariance function ( ) ( )( )1 2Cov , , ,b bω ωx x . In this thesis, the effective correlation 

length of ( ),b ωx  is defined as the minimum value cτ  such that 

( ) ( )( ) ( ) ( )( )1 1
1 2Cov , , ,

100
b bω ω ≤x x    (4B.1) 

holds for all points 1 2x

Cov , , ,b bω ωx x
            

x  satisfying  , D∈

1 2 2 cτ− >x .                               x               (4B.2) 

 The Spectral Representation Theory of 

Wi

 The spectral representation theory of wide-sense stationary stochastic fields is 

 the 

references therein.  

 Theorem 4C.1   A continuous function 

Appendix 4C

de-Sense Stationary Stochastic Fields 

outlined below, and detailed explanations and proofs can be found in [4.24, 4.25] and

( )R τ  from to the complex plane n\  

is non-negative definite† if and only if it can be represented in the form  

                                                        
 for the exact definition.  † See e.g. Section 2.1.2
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( ) ( )1
n

R e dF−= ∫ τ yτ yi ,                                     (4C.1) 

where ( )F

\

y  is a bounded, real-valued function satisfying  

( ) 0
A

dF ≥∫ y                                               (4C.2) 

for all Lebesgue measurable set .  

 The function 

nA⊂ \

( )F y  

( )

in the above theorem is only specified up to an additive 

constant. When F y  is fixed by demanding that  

( ) ( ), , 0F F− = −∞ −∞ ="∞                                   (4C.3) 

(thus implying t ( )hat ( ) ( ), ,F R+ = +∞ +∞ = 0"∞F ), Eq. (4C.1) is called the spectral 

representation of  and the func( )R τ , tion ( )F y  is called the spectral distribution 

function of ( )R τ .  

stochastic f

 Note in Section 2.2.3 that every covariance function of wide-sense stationary 

ields is non-negative definite. Hence, due to Theorem 4C.1, each such 

ide-sense stationary and complex-valued stochastic field 

( n

covariance function has a spectral representation of the form (4C.1), which further 

indicates a possibility to establish an explicit representation for the corresponding 

stochastic field. This leads to the following spectral representation theorem of wide-sense 

stationary stochastic fields.  

 Theorem 4C.2 (The spectral representation theorem)   For every centred, 

mean-square continuous, w

) ,a ,ω ω Ω∈ ∈x \ , there exists a complex-valued stochastic field x ( ),Z ωy  

,n ω Ω∈ ∈y \  with orthogonal increments such that for each n∈x \ , ( ),a ωx  has the 

in the mean-square sense:  

( )

following representation 

( )-1, ,
n
e dZa ω ω= ∫ x yx yi

\
.                                 (4C.4) 

The stochastic field ( ),Z ωy  is defined up to an additive constant. If this is fixed by 

setting  

( ), 0Z ω− = ,  

we have  

∞                                            (4C.5) 
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( )( ), 0E Z ω =y , ( )( ) ( )2
,E Z Fω =y y  and ( )( ) ( )2n nE Z F=F F ,    (4C.6) 

 is any n-interval in  and nF n\ ( )F y  where is determined by Eq. (4C.1), in which 

( ) ( ) ( ) ( )( )1 2 ,2 1=Cov , ,R R a aω ωx 4C.7) = −τ x x x .                    (

It at ctral for 

wide-sense stationary stochastic field on n , while the K

Appendix 4A holds for all second-order stochastic fields.  

 should be noted th the spe  representation (4C.4) is valid only 

-L expansion illustrated in \

 Clearly, by approximating the infinite integrations in (4C.4, 4C.1) with finite 

summations, the stochastic field ( ),a ωx  defined on n\  can be expressed as a finite 

series of general trigonome instance, a real-valued wide-sense stationary tric functions. For 

stochastic field ( ),h x ω  x∈\  with mean zero and spectral distribution function ( )hF y  

can be approximated by 

( ) ( ) ( ) ( ) ( )( )
1

, cos sin
q

h x A y x B y xω σ ω ω
=

≈ +∑ ,                (4C.8) 

where ( )iA

i i i i i
i

ω  and (iB )ω  are uncorrelated random variables with mean zero and 

variance one, and  

( )
22

2
0k

k

y y

i hy y
dF y yσ

+∆

−∆
= ∆∫ > .                              (4C.9) 

Since no equation solving is involved, this trigonometric series approximation scheme and 

ve long been applied in SFEMs (mainly in Monte Carlo simulations 

[4.8-4.11] to generate material samples) in 

its improvements ha

an intuitive manner. However, in order to 

ensure the convergence of such a general trigonometric series, the integration domain in 

(4C.4, 4C.1) has to be truncated at a sufficiently large domain in the frequency space (i.e. 

q →+∞ ) while the summation steps have to be set sufficiently small (i.e. 0y∆ → ), 

which in turn makes this simple scheme inefficient for practical uses.  
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Appendix 4D Boundary of the Discrete Frequency 

Domain  

( ),Na ωx  is   Following (4.26), the covariance function of 

( )

( ) ( )
1 11 2

1 1

1 1 1 1

1 2

1 1

,

, ,

n n

n nk k k k k k
k k

n n n n

N

M MM Mm x m x

m M m M m m m M

R

E Z e Z e
θ θ

ω ω= =

− −

=− =− =− =−

⎛ ⎞⎛ ⎞⎛ ⎞∑ ∑⎜ ⎟⎜ ⎟⎜ ⎟= ∆ ∆⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠
∑ ∑ ∑ ∑

x x

m m" "
,    

(4D.1) 

whose right-hand side term with the highest frequency is  

( ) ( )

( ) ( )( )
( )

1 2
1 1

1 2
1

1 1

1

, ,

, ,

n n

k k k k k k
k k

n

k k k k
k

M x M x

M x x

E Z e Z e

E Z Z e

θ θ

θ

ω ω

ω ω

= =

=

− −

− −

⎛ ⎞∑ ∑⎜ ⎟∆ ∆⎜ ⎟⎜ ⎟
⎝ ⎠

∑
= ∆ ∆

M M

M M

.              (4D.2) 

Hence, the boundary of the discrete frequency domain of  is ( 1 2,NR x x )

)( 1 1, , n nM Mθ θ" . This should be compatible with the boundary of , the continual 

frequency domain of 

nF

( 1 2,R )x x . Consequently,  

( )1k k k k k 1, ,M f M kθ θ− < ≤ = " n

G

,                        (4D.3) 

which leads to the result in (4.31).  

Appendix 4E The Covariance Matrix Based on the Real 

Fourier Basis 

 In (4.33, 4.39, 4.43),  is constructed with respect to the complex Fourier basis 

1

11
n

k k k
k

n

m x

e
V

θ
=

− ∑

T

,                                           (4E.1) 

and equivalently the covariance matrix can be constructed with respect to the real Fourier 

basis  
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1 1

1 1 , cos , sin
2 2n

n n

k k k k k k
k k

m x m x
V

θ
= =

⎧ ⎫
⎨ ⎬
⎩ ⎭

∑ ∑
T

θ .                    (4E.2) 

Noting that 

1

1 1

1

cos )
2

n n

k k k k k k
k k

m x m x
n

k k k
k

e em x
θ θ

θ
= =

− − −

=

∑ ∑
+⎛ ⎞

=⎜ ⎟
⎝ ⎠
∑

1

                      (4E.3) 

and  

1 1

1 1

1

sin
2 1

n n

k k k k k k
k k

m x m x
n

k k k
k

e em x
θ θ

θ
= =

− − −

=

∑ ∑
−⎛ ⎞

=⎜ ⎟ −⎝ ⎠
∑ ,                      (4E.4) 

the covariance matrix based on the real Fourier basis can be obtained from  via an 

orthogonal transformation.  

G

 In the covariance matrix based on the real Fourier basis, consider the entry  

( )1 2 1 2 1
1 1

2 cos sin
n n

n

n n

ik k k jk k k
k k

2R m x m x d d
V

θ θ
= =

⎛ ⎞⎛ ⎞− ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑ ∑∫ ∫T T
T

x x x x .      (4E.5) 

The above expression is obviously real-valued, and also according to (4E.3-4E.4, 4.39, 

4.43), its real part is zero. Hence, all the entries of the form (4E.5) are zero. This 

decoupling between sine terms and cosine terms infers that the covariance matrix based on 

the real Fourier basis can be organized as a block diagonal matrix with two blocks: one 

block is constructed from the sine terms and the other block is constructed from the cosine 

terms together with the constant term. From (4E.3-4E.4, 4.43-4.46), it is trivial to 

conclude that both of these two blocks are diagonally dominant.  

 No matter how the covariance matrix is constructed with respect to the complex 

Fourier basis or the real Fourier basis, the final results of the K-L eigenstructure iλ  and 

( )iψ x  are the same. However, by using the above decoupling transformation on , the 

problem size of the associated algebraic eigenvalue problem can be reduced by half, which 

in turn significantly improves the computational efficiency of solving for 

G

iλ  and  

(especially for large-scale covariance matrices ).  

Q

G

135 



Chapter 4. The Fourier-Karhunen-Loève Representation 

Appendix 4F The Exact K-L Expansion in Case I 

( ) [ ]1 , For the simple stochastic field 1 ,Da x x t tω ∈ −  considered in Case I, the 

eigenpairs iλ  and ( )i xψ  in the K-L expansion can be analytically obtained as follows 

(see e.g. [4.13, 4.32] for detailed derivation):  

1
2 2
1

2 1,2,3,
1i

i

a i
a

λ
ω

= =
+

"                                  (4F.1) 
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( )
( )

cos
1,3,5,

sin 2
2

sin
2, 4,6,

sin 2
2

i

i

i
i

i

i

i

x
i

t
t

x
x

i
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ω
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ω

ω
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⎧
=⎪

⎪ +⎪⎪= ⎨
⎪ =⎪
⎪ −
⎪⎩

"

"
,               (4F.2) 

where 1 2 3ω ω ω≤ ≤ ≤"  are given by the following transcendental equations  

( )11 tana tω ω 0− =  or ( )1 tan 0a tω ω+ = .                       (4F.3) 
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Chapter 5 

Stochastic Finite Element Discretization 

for Elastostatics of Elementary Random 

Media 

 Following the ERM model established in Chapter 3 and its F-K-L representation 

scheme developed in Chapter 4, this chapter first sets up, in a mathematically rigorous 

fashion, a closed form SPDE system for elastostatics of ERM. Then, based on standard 

finite element technology, the SPDE system is discretized to achieve a stochastic system 

of linear algebraic equations.  

5.1 The Stochastic Partial Differential Equation System 

 Recall Section 3.1 that, the governing equation system for elastostatics of random 

media has the following form  

( ) ( )

( ) ( ) ( )( )
( ) ( ) ( )

( ) � ( )
( ) � ( )

, , 0
, , on 1, , ,

2 , , on 
, , : ,

,

D

D

D

ω ρ ω
ω ω

ω ω ω
ω ω

ω ω ω

ω Ω

∇ + =⎧
⎪ ⎧ = ∂⎪ ⎪= ∇ +∇⎨ ⎨

= ∂⎪ ⎪⎩
⎪ =⎩
∈ ∈

u

σ

σ x x g
u x u x

ε x u x u x
σ x σ x

σ x C x ε x

x

i

     (5.1) 

in which  denotes the random medium domain, D D∂ u  the displacement boundary, 
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D∂ σ  the stress boundary, and stochastic fields � ( ),ωu x  and � ( ),ωσ x  the corresponding 

boundary conditions; the unknown stochastic fields ( ),ωσ x , ( , )ωε x  and ( ),ωu x  

denote respectively the stress tensor, the strain tensor and the displacement vector; vector 

 is the gravitational acceleration, and the given stochastic fields g ( , )ρ ωx  and 

( , )ωC x  denote the density and the elastic tensor, respectively.  

 For a  ERM, the random material properties mC ( ),ρ ωx  and ( , )ωC x  are 

defined by their first- and second- order statistical moments. That is, the density ( ),ρ ωx  

is given by  

( )( ) ( ), oE ρ ω ρ= ∀x x x D∈                                (5.2) 

and  

( ) ( )( ) ( )1 2 1 2Cov , , , ,R Dρρ ω ρ ω = ∀ ∈x x τ x x                  (5.3) 

where ; and the elastic tensor 1= −τ x x2 ( ),ωC x  is given by  

( )( ) ( ), oE ω = ∀C x C x x D∈                                (5.4) 

and  

( ) ( )( ) ( )1 2 1 2Cov , , , , Dω ω = ∀ ∈CC x C x R τ x x ,                (5.5) 

in which  is a tensor whose scalar entries are the expectation functions of the 

corresponding scalar entries in 

( )oC x

( ),ωC x , and ( )CR τ  is a matrix whose elements are the 

covariance functions of the corresponding scalar entries in ( ),ωC x .  

 In an equation system regarding  ERM, the differential/integral operators are 

all defined based on the mean square convergence, and the smoothness of the 

corresponding ERM is specified by the integer . As only the first order derivatives are 

involved in Eq. (5.1), it is required that 

mC

m

1m =  such that the density ( ),ρ ωx  and the 

elastic tensor ( ),ωC x  of the associated ERM have at least  continuity. Consequently, 

in the mean square sense, 

1C

( )oρ x  and every scalar entry in ( )
1

oC x  are required to be at 

least  continuous with respect to , and C x ( )Rρ τ  and every scalar entry in ( )
2

CR τ  

are required to be at least  continuous with respect to .  C τ
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 According to the F-K-L representation of ERM and Eqs. (5.2-5.3), the density 

( ),ρ ωx  can be expressed as  

( ) ( ) ( ) ( )
*

1
,

N

o i i
i

ρ
ρ ρρ ω ρ λ ξ ω ρ

=

≈ +∑x x i x                           (5.6) 

where  are constants, 0i
ρλ > ( )i

ρξ ω  are stochastically independent standard Gaussian 

random variables, ( )iρ x  are a sequence of orthonormal deterministic functions, and the 

integer *Nρ  is explicitly determined by the error-control parameters in the F-K-L 

representation scheme. Similarly, from Eqs. (5.4-5.5), the elastic tensor ( , )ωC x  can be 

expressed as  

( ) ( ) ( ) ( )
*

1
,

N

o i i
i

ω λ ξ ω
=

≈ +∑
C

C CC x C x C xi                           (5.7) 

where  are constants, 0iλ >C ( )iξ ωC  are a stochastically independent standard Gaussian 

random sequence,  are a sequence of tensor-valued deterministic functions, and 

the integer  is explicitly determined by the error-control parameters in the F-K-L 

representation scheme.  

( )iC x

*NC

 In Eq. (5.1), the displacement and stress boundary conditions � ( , )ωu x  and 

� ( , )ωσ x  are also allowed to be random. However, the possible randomness from these 

boundary conditions can be treated separately since it has no direct effect on the associated 

differential operators. Hence, the definition method of � ( ),ωu x  and � ( , )ωσ x  are not 

specified in the ERM model, and they can be defined either by their statistical moments or 

by any other appropriate methods.  

 Remark: To simplify the notation, the linear dependent scalar entries in ( ),ωC x  

are not distinguished in Eqs. (5.4-5.5). However, in reality, it is totally unnecessary to 

provide every entry of functions ( ) ( )oC x  and CR τ , which are fully defined by the first 

two statistical moments of those linear independent scalar entries in the elastic tensor. For 

example, it is well known that there are only two linear independent elastic parameters for 

an isotropic material; hence, the first- and second- order statistical moments of these two 

elastic parameters are sufficient to fully define the elastic tensor of an isotropic ERM and 
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( )achieve the corresponding F-K-L representation in the form (5.7). In addition, ,ρ ωx  

and ( ),ωC x  are assumed stochastically independent in Eqs. (5.2-5.5), and this leads to 

different random sequences ( )i i
ρ ρλ ξ ω  and ( )i iλ ξ ωC C  in Eqs. (5.6-5.7). However, if 

the stochastic dependence between the density and the elastic tensor needs to be taken into 

account, they should be defined via the same vector as in Section 4.6.  

5.2 The Stochastic System of Linear Algebraic 

Equations 

 Eqs. (5.1-5.7) form the complete governing equation system for elastostatics of 

ERM. In some situations where the geometric configurations and boundary conditions are 

both relatively simple, it is possible to obtain the analytical solution for this SPDE system. 

Although interesting, the analytical solution approach is not the emphasis of this thesis; 

and instead via a stochastic finite element approach, this work concentrates on obtaining 

the numerical solutions in general situations.  

 It is clear that the SPDE system (5.1-5.7) is a generalization of the conventional 

PDE system (3.1) that describes the elastostatics of deterministic materials. Naturally, the 

stochastic finite element discretization for the SPDE system can be expected to be 

achieved by generalizing the finite element discretization for the PDE system. The 

well-established finite element method has become a standard analysis tool in engineering, 

and its details can be found in various textbooks such as [5.1-5.3]. Hence, the following 

stochastic finite element formulation will be derived without addressing those details that 

are similar to or essentially the same as the standard finite element method.  

 First, the random medium D  is discretized with a finite element mesh. It should 

be emphasised that the size of each element must be sufficiently small to satisfy the 

requirements from both the stress gradient consideration and the stochastic field variability. 

Specifically, (a) a finer mesh is needed in a location where the stress gradient is more 

significant; (b) the element size must also be examined in comparison with the effective 

correlation length of the ERM.  
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 Then, from Eq. (5.1) and following the standard finite element discretization 

procedure, the total potential of the ERM  can be written as  D

( )( ) ( )( ) ( ) ( ) (

( )( ) ( )( ) ( )

( )( ) ( )( ) � ( )

T T

T T

T T

1 ,
2

,

,

e

e

e

e e
p D

e

e

D
e

e

D
e

dV

dV

dS

Π ω ω

ω ρ ω

ω ω
∂

⎛ ⎞= ⎜ ⎟
⎝ ⎠

−

−

∑ ∫

∑ ∫

∑ ∫
σ

u B x D x B x

u N x g x

u N x σ x

)ωu

,          (5.8) 

where  represents the summation over all the elements, 
e
∑ ( )e ωu  denotes the nodal 

displacement vector organized with respect to each element,  the strain matrix, ( )B x

( , )ωD x  the elastic matrix, and ( )N x  the shape function matrix. Due to Eq. (5.7), the 

elastic matrix can be written as  

( ) ( ) ( ) ( )
*

1
,

N

o i i
i

ω λ ξ ω
=

= +∑
C

C C
iD x D x D x ,                         (5.9) 

where ( )oD x  and ( )iD x  are the elastic matrices constructed respectively from the 

elastic tensors  and ( )oC x ( )iC x . Substituting (5.6) and (5.9) into (5.8) yields  

( )( ) ( ) ( )

( )( ) ( ) ( )( ) j ( )

*

*

T

T T

1
2

N
e e e e

p o i i
e i

N
e e e e e

o i i
e i e

ρ
ρ

Π ω ξ ω ω

ω ξ ω ω ω

⎛ ⎞
= +⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞

− + −⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑

∑ ∑ ∑

C
Cu K K u

u P P u P

,       (5.10) 

in which the element stiffness matrices  and , the element volume-force vectors e
oK e

iK

e
oP  and e

iP , and the element external-load vector j ( )e ωP  are given below  

( )( ) ( ) ( )T

e

e
o oD

dV= ∫K B x D x B x ,                             (5.11) 

( )( ) ( ) ( )T

e

e
i i iD

dVλ= ∫CK B x D x B x N

o

   ;           (5.12) *1, 2, ,i = C"

( )( ) ( )T

e

e
o D

dVρ= ∫P N x g x ,                                 (5.13) 

( )( ) ( )T

e

e
i i iD

dVρλ ρ= ∫P N x g x N      *1, 2, ,i ρ= " ;            (5.14) 

j ( ) ( )( ) � ( )T
,

e

e

D
dSω

∂
= ∫

σ

P N x σ x ω .                             (5.15) 
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 The total potential  is minimized by the real displacement solution. Hence, 

taking variation with respect to the displacement on both sides of Eq. (5.10), the following 

stochastic system of linear algebraic equations holds  

pΠ

( ) ( ) ( ) i ( )
**

1 1

NN

o i i o i i
i i

ρ
ρξ ω ω ξ ω

= =

⎛ ⎞⎛ ⎞
+ = +⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
∑ ∑

C
CK K U P P ω+ P ,            (5.16) 

where  and  are the global stiffness matrices assembled respectively from  

and ; 

oK iK e
oK

e
iK oP  and iP  are the global volume-force vectors assembled respectively from 

e
oP  and e

iP ; i ( )ωP  is the global external-load vector assembled from j ( )e ωP ; and 

( )ωU  is the unknown nodal displacement vector. Following a similar analysis as in the 

standard finite element formulation, it can be proven that the matrix  is real, 

symmetric and non-negative definite, the matrices  are all real and symmetric, and the 

random matrix sum  is, in the context of probability, real, symmetric 

and non-negative definite.  

oK

iK

( )
*

1

N

o i
i
ξ ω

=

+∑
C

CK iK

� )

 As in the standard finite element method, the displacement boundary conditions 

( ,ωu x  of the SPDE system (5.1) can be directly introduced into the stochastic linear 

algebraic system (5.16). The details are listed as follows.  

 To set  

( )( ) 0
j

ω ≡U                                               (5.17) 

where ( )( j)ωU  is the j-th entry of ( )ωU , the stiffness matrices and the nodal 

load vectors need to be modified as  

( ) ( )
1
0o ojk kj

j k
j k
=⎧

= = ⎨ ≠⎩
K K ,                               (5.18) 

( ) ( ) *1
1,2, ,

0i ijk kj

j k
i

j k
=⎧

= = =⎨ ≠⎩
CK K " N

N

,                (5.19) 

( ) 0o j
=P ,                                                 (5.20) 

( ) *0 1,2, ,i j
i ρ= =P " ,                                   (5.21) 
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i ( )( ) 0
j

ω ≡P ,                                              (5.22) 

where  and  denote the entry at the j-th row and k-th column of 

 and , respectively; 

( )o jk
K ( )i jk

K

oK iK ( )o j
P , ( )i j

P  and i ( )( )
j

ωP  denote the j-th entry of 

oP , iP  and i ( )ωP , respectively.  

 To set  

( )( ) ( ) 0jj
Uω ω=U ≠ ,                                       (5.23) 

the change to the stiffness matrices and the nodal load vectors should be made as 

follows,  

( )o jj
κ=K ;                                                (5.24) 

( ) ( )o jj
Uκ ω=P ;                                            (5.25) 

where  is a sufficiently large number.  0κ >

Once the proper displacement boundary conditions are applied to Eq. (5.16), the random 

stiffness matrix sum in the left-hand side of the equation becomes almost surely real, 

symmetric and positive definite such that  

( )
*

1
det 0 1

N

o i i
i

P ξ ω
=

⎧ ⎫⎛ ⎞⎪ ⎪+ ≠⎜ ⎟ =⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭
∑

C
CK K .                            (5.26) 

Consequently, the stochastic system of linear algebraic equations (5.16) is always well 

defined and the random displacement solution ( )ωU  exists with probability one.  
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Chapter 6 

The Joint Diagonalization Solution 

Strategy for the Stochastic System of 

Linear Algebraic Equations 

 For the solution of the stochastic system of linear algebraic equations obtained in 

Chapter 5, a novel solution strategy, namely the joint diagonalization method, is developed 

in this chapter. The form of the stochastic linear algebraic system (5.16) is not new in 

SFEM research, and in particular for simple elastostatic problems [6.1-6.2, 6.4-6.7, 

6.9-6.10, 6.12-6.13] where the Young’s modulus is the only random material parameter 

and also for simple steady-state heat conduction problems [6.2-6.3, 6.8] where the only 

random material property is the thermal conductivity, essentially similar equations have 

long been noticed in the literature. Consequently, a number of methods have been 

developed for the solution of these specific stochastic linear algebraic equations.  

 In order to highlight the difference between the new solution method and various 

existing techniques and also in order to make the discussions regarding solution strategies 

stand in a more general context, it is decided not to use the notation in (5.16) and instead 

present all the formulations by virtue of the equation ( )1 1 2 2 m mα α α+ + + =A A A x b , in 

which iα   denote random variables, ( )m1, ,i = iA  ( )m1, ,i =  real symmetric 

deterministic matrices, b a deterministic/random vector and x the unknown random vector 

to be solved.  
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 The remainder of this chapter is organized as follows. First, the general 

background of the stochastic system of linear algebraic equations, including its link with 

the conventional linear algebraic equations arising from the standard finite element 

analysis, is outlined in Section 6.1. Then, existing solution techniques for the stochastic 

linear algebraic system are briefly reviewed in Section 6.2. Next, the joint diagonalization 

method is explained in detail in Section 6.3, including its operation process, algorithm 

properties and performance analysis. In Section 6.4, three numerical examples are 

employed to investigate in detail the performance of the new method. The chapter 

concludes in Section 6.5 with a summary of the main features and limitations of the new 

solution strategy, and some suggestions for future research.  

 Throughout this chapter, a vector (e.g. x ) always indicates a column vector unless 

otherwise stated, and the entry located at the i-th row and j-th column of a matrix A  is 

presented by re ( )ij
A .  

6.1 Problem Background 

 The classical linear finite element equations have the following generic form  

=Ax b                                                     (6.1) 

where the physical meanings of A ,  and b  relate to the system under consideration. 

For example, in a simple problem of elastostatics 

x

A  denotes the elastic stiffness matrix, 

x  the unknown nodal displacement vector and  the nodal load vector; in a steady-state 

heat conduction problem, they denote the heat conduction matrix, the unknown nodal 

temperature vector and the nodal temperature-load vector respectively.  

b

 In reality, due to various uncertainties, the deterministic physical model described 

by Eq. (6.1) is seldom valid. Consequently, an appropriate safety factor is often adopted to 

amend the result for a practical engineering problem. Numerous successful applications 

have shown the power of this deterministic approach. Conversely, there exist a number of 

situations where deterministic models have failed to give satisfactory solutions, and these 

include problems in rocks, soil and ground water where the stochastic uncertainty 

becomes dominant. Consequently, a more generalized solution technique, namely the 
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SFEM, is needed to model these intricate random physical systems. The study of SFEMs 

has been in progress for several decades and many different techniques have been 

presented to formulate uncertainties in various applications [6.1-6.14, 6.17]. However, 

compared to the success of the deterministic FEM, the SFEM is still in its infancy and 

many fundamental questions are still outstanding. Due to the continual exponential 

increase in computer power and data storage, the formulation of the SFEM has recently 

received considerable attention from the computational mechanics community [6.17] and, 

generally, for many engineering applications, the final linear SFEM equations take the 

following form 

( 1 1 2 2 m mα α α+ + + =)A A A x b ,                               (6.2) 

where the deterministic  real symmetric matrices n n× iA  ( )1, ,i = m , unknown real 

random vector  and deterministic real vector  have essentially the same physical 

meanings as their primary counterparts in Eq. (6.1); real scalars 

x b

iα   denote 

a series of dimensionless random factors that capture various intrinsic uncertainties in the 

system. The advantage of Eq. (6.2) is that the physical problem with a stochastic nature is 

decoupled into deterministic and stochastic parts in a simple regular fashion. Typically, 

different SFEM formulations define 

( )1, ,i = m

iα , iA  and b  differently but give rise to the same 

stochastic system of linear algebraic equations as shown above [6.1-6.11]. It should be 

noted that, Eq. (6.2) is not always explicitly addressed in the literature [6.1-6.5], since 

there is no significant advantage of transforming early SFEM techniques into the form of 

(6.2).  

 The aim of this chapter is to introduce a new numerical procedure for the solution 

of the stochastic system of linear algebraic equations. Existing techniques applied to the 

solution of Eq. (6.2) mainly include the Monte Carlo method [6.12-6.13], the perturbation 

method [6.1-6.3], the Neumann expansion method [6.4-6.5] and the polynomial chaos 

expansion method [6.6-6.11]. However, none of these schemes have promoted the SFEM 

to such a mature level as the well established FEM. For the development of a solver for Eq. 

(6.2), these methods will be considered in the next section.  

 Remarks: For simplicity, uncertainties arising from the right-hand side of Eq. (6.2) 

have at this stage been temporarily ignored. However, as will be shown in Section 6.3, it is 

trivial to relax this unnecessary restriction.  
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6.2 Review of Existing Solution Techniques 

 Until recently, there have been four major techniques employed to solve the 

stochastic system of linear algebraic equations (6.2): the Monte Carlo method, the 

perturbation method, the Neumann expansion method and the polynomial chaos expansion 

method. In order to avoid possible confusion in terminology, it should be noted that 

sometimes the same titles are also employed in the literature to indicate the entire schemes 

corresponding to their SFEM formulations. Although the following discussion will only 

explore these methods from the viewpoint of a solver for Eq. (6.2), the principles hold 

respectively for their associated SFEM schemes.  

6.2.1 The Monte Carlo Method  

 First, N  sets of samples of the random variables iα  ( )1, ,i = m

ija

 are generated. 

For each sample path iα =

1, ,j N=

, where the right-hand side sample values are distinguished 

by sample index , Eq. (6.2) becomes a standard deterministic system of linear 

algebraic equations:  

j j =B x b                                                   (6.3) 

with  

1

m

j ij
i

a
=

=∑B iA

)N

.                                               (6.4) 

Solutions of Eq. (6.3), i.e.  

(1 1, ,j j j−= =x B b ,                                  (6.5) 

form a sample set for the random solution x , which can then be employed to calculate 

the associated empirical joint distribution or empirical statistical quantities.  

 The Monte Carlo method is simple and perhaps the most versatile method used to 

date, but typically the computational costs are extremely high, especially for large scale 

problems where a large number of samples have to be computed in order to obtain a 

rational estimation satisfying the required accuracy. Improvements [6.12-6.13] have been 

made to overcome this computational difficulty.  
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6.2.2 The Perturbation Method  

 In a perturbation scheme, all the random variables iα   are first 

decomposed into a deterministic part and a random part, i.e.  

( 1, ,i = )m

( ) ( )1, ,s
i i iE iα α α= + = m ,                               (6.6) 

where ( )iE α  and s
iα  denote respectively the mean value and the centred deviation 

random variable. As a result, Eq. (6.2) is then transformed into 

( 0 1 1 2 2
s s s

m mα α α )+ + + + =A A A A x b

i

,                          (6.7) 

where 

( )0
1

m

i
i

E α
=

=∑A A                                             (6.8) 

is the deterministic mean of sum 
1

m

i i
i

α
=
∑ A . Meanwhile, the random solution x  is 

approximated by Taylor’s series  

( )0 1, ,
1 1

s
i

m m
s s
i o isi m

i ii
α iα α

α= =
= =

∂
≈ + = +

∂∑ xx x x c∑                        (6.9) 

where the origin  and coefficients ox ( )1, ,i i =c m  are both unknown deterministic 

vectors. Next, substituting (6.9) into (6.7) yields  

( )( )0 1 1 1 1
s s s s

m m o m mα α α α+ + + + + + =A A A x c c b

s =

               (6.10a) 

and 

( )0 0
1 1 1

m m m
s s

o i i o i i j i j
i i j

α α α
= = =

+ + +∑ ∑∑A x A c A x A c b .                 (6.10b) 

Inspired by the idea of perturbation in deterministic problems, some researchers [6.1-6.3] 

believe that the following equalities resulting respectively from the zero-order “random 

perturbation” and the first-order “random perturbation” hold, provided that the scale of 

random fluctuations s
iα  is sufficiently small (e.g. less than ten percent [6.1]):  

Zero order  

0 o =A x b ,                                                (6.11a) 

First order  

( )0 1, ,i i o i= − =A c A x m ,                               (6.11b) 
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from which  and  can be solved and then employed in (6.9) to provide an 

approximation to the random solution 

ox ic

x  in terms of the first-order Taylor’s series.  

 In the literature, the aforementioned procedure is called the first-order perturbation 

method and similarly, the second-order perturbation method follows immediately from 

expanding the first-order Taylor series (6.9) to the second order. Applications of 

higher-order perturbations are, however, rare due to the increasingly high complexity of 

analytic derivations as well as computational costs. Although a number of numerical 

experiments with small random fluctuations have been reported to show good agreements 

between the perturbation method and the Monte Carlo method, no criteria for convergence 

have been established in the present context [6.3].  

6.2.3 The Neumann Expansion Method  

 The first step of the Neumann expansion method [6.4-6.5] also consists of 

centralizing the random variables ( )m1, ,i iα =  to obtain Eq. (6.7) whose left-hand 

side coefficients are further treated as a sum of a deterministic matrix and a stochastic 

matrix, i.e.  

( )0 + ∆ =A A x b                                             (6.12) 

with the stochastic matrix ∆A  defined as  

1 1 2 2
s s s

m mα α α∆ = + + +A A A A

1
0
− b

)

.                              (6.13) 

The solution of Eq. (6.12) yields  

( ) 11
0

−−= + ∆x I A A A .                                      (6.14) 

The term ( 11
0

−−+ ∆I A A  can be expressed in a Neumann series expansion giving  

( 2 3 1
0
−= − + − +x I B B B A) b                               (6.15) 

with  
1

0
−= ∆B A A .                                               (6.16) 

The random solution vector can now be represented by the following series  
2 3

0 0 0 0= − + − +x x Bx B x B x                              (6.17) 

with  
1

0 0
−=x A b .                                                 (6.18) 
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 It is well known that the Neumann expansion shown in Eq. (6.15) converges if the 

spectral radius of the stochastic matrix  is always less than 1. This is not a serious 

restriction in engineering problems, as in most cases the random variations are smaller 

than the mean value. The most significant feature of this approach is that the inverse of 

matrix 

B

0A  is required only once for all samples and, at least in principle, the statistical 

moments of the solution x  in (6.17) can be obtained analytically by recognising that 

there is no inverse operation on ∆A  in (6.13). Nevertheless, the computational costs of 

the Neumann expansion method increase with the number of terms required in Eq. (6.17) 

to achieve a given accuracy and therefore for problems with large random fluctuations, the 

method loses its advantage and could become even more expensive than the direct Monte 

Carlo method. Note that improvements [6.12] have been made by combining the 

Neumann expansion method and the preconditioned conjugate gradient method.  

6.2.4 The Polynomial Chaos Expansion Method  

 In the theory of probability and stochastic processes, the polynomial chaos 

expansion [6.16] was originally developed by Wiener [6.18], Cameron, Martin [6.19] and 

Itô [6.20] more than fifty years ago. Concisely, a function ( )1 2, , , qf β β β  of a standard 

Gaussian random vector ( )1 2, , , q

T
β β β=β  has a unique representation, i.e. the so 

called polynomial chaos expansion  

( ) (1 2 1 2
1

, , , , , ,q i i
i

f h H )qβ β β β β β
∞

=

=∑ ,                        (6.19) 

where  are constant coefficients and ih ( )1 2, , ,iH qβ β β  are orthonormal multivariate 

Hermite polynomials [6.23] with the weight function 
T1

2e
− β β

. Hence, if  

in Eq. (6.2) are mutually independent Gaussian random variables the associated solution 

 then has the following polynomial chaos expansion  

( )1, ,i i mα =

x

( 1 2, , ,
M

i i m
i

H α α α≈∑x h )

)M

                                   (6.20) 

with  generated by the weight function ( ) (1 2, , , 1, ,i mH iα α α =
( )2 2 2

1 1
1
2e mα α α− + + +

. 

As shown below, the unknown vector-valued coefficients ( )1, ,i i =h M  can be solved 
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from Eq. (6.2) through a Galerkin approach whose shape functions are provided by these 

multivariate Hermite polynomials. Substituting (6.20) into (6.2) yields  

Hα α α α
=

⎛ ⎞⎛ ⎞ ( )1 2
1 1

, , ,
m M

i i j j m
i j=

− ≈⎜ ⎟⎜ ⎟
⎠⎝ ⎠

∑ ∑ 0A h b .                      (6.21) 

Multiplying by 

⎝

( )1 2, , ,k mH α α α  on both sides, Eq. (6.21) becomes  

1, 2, ,
m M

H H k Mα
⎛ ⎞⎛ ⎞⎛ ⎞

− ≈ =⎜ ⎟⎜ ⎟⎜ ⎟ ( )
1 1

i i j j k
i j= =

⎜ ⎟⎝ ⎠⎝ ⎠
∑ ∑ 0A h b .             (6.22) 

qual zero instead of the Riemann integration of the 

left-hand sides of Eq. (6.22), i.e.  

M ,        (6.23a) 

)1, 2, ,
m M

E H H E H k Mα = =∑∑ A h b .           (6.23b) 

 of the polynom

icien  from the 

above determ  of dimensionality 

⎝ ⎠

As these shape functions are random, the integral weak form of Eq. (6.21) is then obtained 

by enforcing the expectation to e

( )
1 1

1, 2, ,
m M

i i j j k
i j

E H H kα
= =

⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞ − = =⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠
∑ ∑ 0A h b

( ) ( ) (
1 1

i j k i j k
i j= =

Therefore, the solution x  can be readily achieved in terms ial chaos 

expansion (6.20) after solving the n-vector-valued coeff ts ( )1, ,j j M=h

inistic equation system Mn .  

er of multivariate Hermite 

polynomials required in the solution for Eq. (6.2) is given by  

 Due to the early theoretical work by Wiener et al. [6.18-6.20], the polynomial 

chaos expansion method [6.6-6.10] has a rigorous mathematical foundation, including its 

suitability and convergence. However, this method can only be strictly applied to solve 

equations consisting of Gaussian random variables, though for dynamic problems with a 

single random variable, different polynomials (e.g. single-variable Jacobi polynomials) 

[6.11] have recently been chosen, without proof of the suitability, to approximate functions 

of a non-Gaussian random variable. Furthermore, the complexity in terms of both the 

derivation of multivariate Hermite polynomials, i.e. the basic building blocks of this 

method, and the associated computational costs does increase exponentially as the number 

of random variables grows. This is because the total numb

( )!
! !m r

,                                              (6.24) 

where r  denotes the highest order of polynomials employed in the approximate 

m r
M

+
=
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polynomial chaos expansion (6.20). An example is presented in Ref. [6.7] where a small 

stochastic equation system with six Gaussian random variables is considered. It was 

necessary to use up to fourth-order polynomials to satisfy the required accuracy, and 

consequently there are ( )6 4 !
210

6!4!

fourth-order primary function set 

+
=  six-variable Hermite polynomials in the 

( ) ( ){ }2100,1, ,4
1 2 6 1
, , ,j j

H α α α
=

. Therefore, the 

computational cost becomes a serious issue even for a rather small scale problem.  

6.3 The Joint Diagonalization Strategy 

– termed the joint diagonalization - for the stochastic linear 

algebraic system (6.2).  

6.3.1 The Formulation  

ell defined if the left-hand side sum of the matrices is 

non-singular almost surely, i.e.  

 It should be noted that the term “random matrix” has been avoided in this chapter 

since the discussions here have nothing to do with the existing theory of random matrices 

[6.15], which has recently been employed to develop a non-parametric SFEM formulation 

[6.14]. Furthermore, Eq. (6.2) is termed a stochastic system of linear algebraic equations 

compared to a standard deterministic system of linear algebraic equations (6.1). After the 

critical review of the existing methods, this section provides a pure algebraic treatment to 

a new solution strategy 

 The solution of Eq. (6.2) is w

( )1 1 2 2 0 1m mP α α α+ + + ≠ =A A A                             (6.25) 

The objective here is to invert the matrix sum m1 1 2 2 mα α α+ + +A A A  to obtain an 

explicit solution of in terms of random variables x  ( )1, ,i i mα = .  

e that there exi le matrix  Assum sts an invertib P  to simultaneously diagonalize all 

the matrices ( )  such that  1, ,i i m=A

( ) ( )1 2diag , , , 1, ,i i i in i mλ λ λ= =Λ ,              (6.26) 1
i

− =P A P
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where ( )1, ,ij j nλ =  are eigenvalues of the n n×  real symmetric matrix iA . Eq. (6.2) 

can then be transformed into:  

m mα −+ =Λ P x b .                           (6.27) 

The solution is given b

( ) 1
1 1 2 2α α+ +P Λ Λ

x  y  
1 1− −=x PΛ P b                                               (6.28) 

with  

( ) 11
1 1 2 2

1 2
1 1 1

1 1 1diag , , ,

m m

m m m

i i i i i in
i i i

α α α

α λ α λ α λ

−−

= = =

= + + +

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠
∑ ∑ ∑

Λ Λ Λ Λ

.                      (6.29) 

Letting  

), nd ,                                       (6.30) 

expression (6.28) becomes  

m

i i
i

m

i i
i

n
m

i in
i

m

i i
i

m

i i
i

n
m

d
d

d

d
d

d

α λ

α λ

α λ

α λ

α λ

−

=

−

=

−

=

−

=

−

=

−

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎜ ⎟

⎛ ⎞⎜ ⎟
⎛ ⎞ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟= ⎝ ⎠ ⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟
⎝ ⎠⎜ ⎟

⎛ ⎞⎜ ⎟
⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎜ ⎟

⎛ ⎞⎜ ⎟
⎛ ⎞⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟= ⎝ ⎠⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟
⎝ ⎠⎜ ⎟

⎛ ⎞⎜ ⎟

(1
1 2, ,d d− =P b T

1

1
1

11

22
1

1

1

1

1
1

1 1

2 2
1

1

1
i in

i
α λ

=
⎜ ⎟⎜ ⎝ ⎠⎝ ⎠

∑

∑

∑

∑

∑

x P

P

⎟ .          (6.31) 

Hence, in a more concise form, the solution is  

∑

T

1 2
1 1 1

1 1 1, , ,m m m

i i i i i in
i i i

α λ α λ α λ
= = =

⎛
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠
∑ ∑ ∑

x D

⎞

                         (6.32) 
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where  

.                                    (6.33) 

 and 

( )1 2diag , , , nd d d=D P 

 Eq. (6.32), in which the coefficients D ( )1, , ; 1, ,m j n= =ij iλ  are 

constants determined completely by matrices ( )1, ,i i m=A  and vector b , gives an 

explicit solution to Eq. (6.2). As a result, the associated joint probability distribution and 

statistical moments (e.g. expectation and covariance) can be readily computed.  key issue 

of the proposed strategy  transform matrix 

 A

is therefore to obtain the P  and the 

corresponding eigenvalues ( )1, , 1, ,ij i m j nλ = = tia rage 

eigenvalue problem bsection.  

6.3.2 Like Algorithm for the Average Eigenvalue 

Problem  

 n

, which is essen lly an ave

 and will be treated in detail in the next su

A Jacobi-

 The eigenvalue problem of a single matrix is well understood in linear algebra. It 

is well known that a n×  real symmetric matrix A  can always be transformed into a 

real diagonal matrix ough an orthogonΛ  thr al similarity transformation, i.e.  

( )ag n
1

1 2di , , ,λ λ− = =Q AQ Λ λ                                (6.34) 

where ( )1, , n∈ =i iλ

ob

 and 1 T− =Q Q . There are various numerical algorithms to 

tain Λ  and Q , and among them the classical Jacobi method [6.21-6.22] diagonalizes 

A  by vanishing its off-diagonal elements through a sequence of Givens similarity 

transformations. Although Jacobi’s original consideration is for a single matrix, his idea is 

rather general and the classical algorithm can be readily modified to accommodate 

multiple real symmetric matrices, as described below.  

 Denoted , the orthogonal Givens matrix corresponding to a rotation angle by G

θ  is  
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( )

1

1
cos sin

1
, ,

1
sin cos

1

1

p q

p

q

p q

θ θ

θ

θ θ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟

−⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

G G .     (6.35) 

Let  

( ) (
1
22

1 1

1, ,
n n

k k ijF
i j

k
= =

⎛ ⎞
=⎜ ⎟

⎝ ⎠
∑∑A A )m

)m

                       (6.36) 

and  

( ) ( ) (2

1 1

off 1, ,
n n

k k ij
i j

j i

k
= =

≠

=∑∑A A                         (6.37) 

denote the Frobenius norms of n n×  real symmetric matrices  in Eq. 

(6.2) and the quadratic sums of off-diagonal elements in 

( )1, ,k k =A m

kA  respectively. The aim here is 

to gradually reduce (
1

off
m

k
k=
∑ )A  through a sequence of orthogonal similarity 

transformations that have no effect on ( )1, ,k F
k m=A .  

 As only the p-th and q-th rows/columns of a matrix change under a Givens 

similarity transformation, elements of ( ) ( )* 1, , , ,k kp q p qθ θ=A G A G−  are given by:  

( ) ( ) ( )* ,k k ijij
i p q j p q= ≠ ≠A A ,                          (6.38a) 

( ) ( ) ( ) ( ) ( )* * cos sin ,k k k kip iqip pi
i p qθ θ= = + ≠A A A A           6.38b) 

( ) ( ) ( ) ( ) ( )* * sin cos ,k k k kip iqiq qi
i p qθ θ= = − + ≠A A A A          (6.38c) 

( ) ( ) ( ) ( )* 2 2cos sin sin 2k k k kpp qq pqpp
θ θ= + +A A A A θ               (6.38d) 

( ) ( ) ( ) ( )* 2 2sin cos sin 2k k k kpp qq pqqq
θ θ= + −A A A A θ               (6.38e) 
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( ) ( ) ( ) ( )( ) ( )* * 1 sin 2 cos 2
2k k k k kqq pp pqpq qp

θ θ= = − +A A A A A ,         (6.38f) 

from which it is easy to verify that  

( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2* * *2k k k k k kpp qq pqpp qq pq
+ + = + +A A A A A A 22               (6.39) 

The Frobenius norm of a matrix remains invariant under orthogonal similarity 

transformations [6.21-6.22], therefore the following equalities hold  

( ) ( )

( ) ( ) ( )( )
( ) ( ) ( )

22* * *

1

22 2 * *

1
,

22 *

off

off 2 2

n

k k kF ii
i

n

k k kiiF pp qq
i

i p q

k k kpq pq

=

=
≠

= −

= − − +

= − +

∑

∑

A A A

A A A A

A A A

2

k

kA

)

,                   (6.40) 

( ) ( ) ( ) ( )22* *

1 1 1 1
off off 2 2

m m m m

k k k pq pq
k k k k= = = =

= − +∑ ∑ ∑ ∑A A A .               (6.41) 

Hence, the minimization of ( *

1

off
m

k
k=
∑ A  is equivalent to minimizing .  ( )2*

1

2
m

k pq
k=
∑ A

 According to expressions (6.38), we have  

( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( )( )

( )

2
2*

1 1

2

2
1

12 2 sin 2 cos 2
2

2cos 2 cos 2
1sin 2 sin 2
2

cos 2
cos 2 sin 2

sin 2

m m

k k k kqq pp pqpq
k k

T k k k km pq pq qq pp

k
k k k k kpq qq pp qq pp

A

A

θ θ

θ θ
θ θ

θ
θ θ

θ

= =

=

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

⎛ ⎞−
⎜ ⎟⎛ ⎞ ⎛ ⎞

= ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠− −⎜ ⎟

⎝ ⎠
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

∑ ∑

∑

A A A A

A A A

A A A A

J

 

 (6.42) 

where  

( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( )( )

2

2
1

2

1
2

k k km pq pq qq pp

k
k k k k kpq qq pp qq pp

A

A=

⎛ ⎞−
⎜ ⎟

= ⎜ ⎟
− −⎜ ⎟

⎝ ⎠

∑
A A

J
A A A A

kA

)T

         (6.43) 

 The left-hand side of equality (6.42) is a quadratic sum and the right-hand side is a 

real quadratic form. By noticing the fact that (cos 2 sin 2θ θ  is a unit vector due to the 

trigonometric identity 2 2cos 2 sin 2 1θ θ+ ≡  and is able to represent any unit vector in a 
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plane, the  real symmetric matrix  defined in (6.43) is concluded to be 

nonnegative definite since its corresponding quadratic form is always nonnegative. Let 

2 2× J

( )
1

Je  and ( )
2
Je  denote the unit eigenvectors (different up to a sign coefficient -1) of , 

and 

J

( ) ( )
1 2 0λ λ≥ ≥J J  the eigenvalues, the range of (6.42) is known from the theory of 

quadratic form, i.e.  

( ) ( ) ( ) ( )2*
2 1

1

cos 2
2 cos 2 sin 2

sin 2

m

k pq
k

θ
λ θ θ λ

θ=

⎛ ⎞
≤ = ≤⎜ ⎟

⎝ ⎠
∑J JA J

)

              (6.44) 

whose maximum and minimum are reached when ( Tcos 2 sin 2θ θ  is equal to ( )
1

Je  

and ( )
2
Je  respectively. Hence,  is minimized by setting ( )2*

1
2

m

k pq
k=
∑ A ( )Tcos 2 sin 2θ θ  

equal to the unit eigenvector corresponding to the smaller eigenvalue of the  matrix 

. Without loss of generality, 

2 2×

J cos2θ  can be assumed always nonnegative. Therefore, 

the optimal Givens rotation angle optθ  to minimize  is uniquely determined 

by  

( )2*

1
2

m

k pq
k=
∑ A

( ) ( ) ( )T

2cos 2 sin 2 cos 2 0opt opt optθ θ θ= ≥Je ,                   (6.45) 

from which the corresponding Givens matrix follows immediately.  

 Finally, the classical Jacobi algorithm [6.21-6.22] is modified as follows to 

accommodate multiple real symmetric matrices:  

I) Sweep in turn all the entries of matrices ( )1, ,k k =A m  and find an entry 

( ),p q  p q≠  such that  

( )2

1

0
m

k pq
k=

≠∑ A .                                              (6.46) 

II) For every entry ( , )p q  satisfying the above condition, compute the optimal 

Givens rotation angle optθ  according to Eq. (6.45) and form the corresponding 

Givens matrix ( ), , optp q θG .  

III) Apply Givens similarity transformation ( ) (1, , , ,opt k optp q p q )θ θ−G A G  to all the 

matrices  respectively and update these matrices into ( 1, ,k k =A )m
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(* 1, ,k k =A )m . (Note: only the p-th and q-th rows/columns in these matrices 

need to be updated.)  

IV) Repeat the above procedure until the process converges.  

As the Givens matrix corresponding to 0θ =  is an identity matrix, we have  

( ) ( ) ( )2 2 2* *

1 1 10

2 2 2
opt

m m m

k k pqpq pq
k k kθ θ θ= = == =

≤ =∑ ∑ ∑A A kA .                   (6.47) 

Substituting (6.47) into (6.41) yields  

( ) (*

1 1

0 off off
opt

m m

k
k kθ θ= ==

≤ ≤∑ ∑ )kA A ,                              (6.48) 

which indicates that (
1
off

m

k
k=
∑ )A  is monotonously decreasing in this iterative procedure. 

Therefore, the convergence to an average eigenstructure is guaranteed by the proposed 

Jacobi-like joint diagonalization algorithm. Assuming the above procedure has been 

performed  times with Givens matrices K 1 2, , , KG G G  respectively, the transform 

matrix P  in (6.26) is then given by  
1 1 1 T T T

1 2 1 2K K
− − −= =P G G G G G G ,                               (6.49) 

and the corresponding eigenvalues ( )1, , 1, ,ij i m jλ = = n  are those diagonal 

entries in the final matrices ( )* 1, ,k k m=A .  

6.3.3 Discussions  

 For the stochastic linear algebraic system (6.2) with one random variable, i.e.  

1 1α =A x b ,                                                 (6.50) 

the Jacobi-like algorithm for multiple real symmetric matrices reduces to the 

classical Jacobi algorithm for a single real symmetric matrix and the proposed joint 

diagonalization solution strategy gives the exact solution of x  in this simple case, 

i.e.  

1 1
1

1
1

1 11 1 12 1 1 1

1 1 1 1diag , , ,
nα λ α λ α λ α

− −

−

=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

x PΛ P b

1−P P b = A b
.                 (6.51) 

161 



Chapter 6. The Joint Diagonalization Solution Strategy 

However, existing methods, such as the Monte Carlo method, the perturbation 

method, the Neumann expansion method and the polynomial chaos method, lack 

the above feature. In addition, it can be seen from Eq. (6.50) and (6.1), that the 

solution for the deterministic equation system (6.1) can be regarded as a special 

case of the proposed solver for the more general stochastic equation system (6.2).  

 For the stochastic system of linear algebraic system (6.2) with more than one 

random variable, i.e. , the joint diagonalization can only be approximately 

achieved in this manner unless all the real symmetric matrices  

share exactly the same eigenstructure. Consequently, the approximate result is 

essentially an average eigenstructure that minimizes all the off-diagonal entries 

measured by 

2m ≥

( )1, ,i i m=A

(
1
off

m

k
k=
∑ )A . It should be noted that in a practical problem, the 

approximate similarity among matrices ( )1, ,i i =A m  is not only determined by 

the stochastic field of the physical problem under consideration but is also 

influenced by the method employed to construct these matrices, which is directly 

related to the choice of random variables ( )1, ,i iα = m . The effectiveness and 

efficiency of the proposed approach depend on the degree of the eigenstructure 

similarity of the matrices involved. The applicability and limitations of the 

approach will be explored further in the next section.  

 As shown in the explicit solution (6.32), the performance of the proposed solution 

strategy is not influenced by either the range or the type of random variations. In 

the previous sections, the right-hand side vector  of Eq. (6.2) has been assumed 

deterministic, however, this restriction can be readily removed in the present 

approach, since there is essentially no intermediate operation required on  until 

the final solution  is calculated for the given random variables .  

b

b

x ( )1, ,i i mα =

 The major computational cost of the proposed approach is the Jacobi-like joint 

diagonalization procedure which is obviously proportional to , the total number 

of matrices, as illustrated in the last section. This implies that the algorithm can be 

easily parallelized and the total computational cost is proportional to the total 

number of random variables in the system.  

m
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6.4 Numerical Examples 

 Three examples are employed to provide a numerical assessment of the overall 

performance of the proposed joint diagonalization method. All the numerical tests are 

conducted on a PC system with an Intel Xeon 2.4 GHz processor and 1.0 GB DDR 

memory.  

6.4.1 Example 1 

 This example is an artificially designed problem, aiming to demonstrate the 

effectiveness of the proposed procedure for matrices with similar eigenstructures. The 

matrices  are generated by  ( )m1, ,i i =A

( ) ( )T 1, ,i i i i= + =A Q Λ ∆ Q m ,                           (6.52) 

where matrix  is a given orthogonal matrix that remains the same for all the matrices Q

iA ; and matrices  and , representing the diagonal and the off-diagonal entries of 

the average eigenstructure respectively, are randomly generated matrices that differ with 

index . In particular, matrices  are diagonal matrices whose diagonal entries are all 

positive; matrices  are real symmetric matrices whose diagonal entries are all zero and 

the absolute values of off-diagonal entries are relatively small (about 10% in this example) 

compared with the corresponding diagonal entry in matrix .  

iΛ i∆

i iΛ

i∆

iΛ

 A typical matrix iA  and its transformed counterpart 1
i

−P A P  are respectively 

illustrated in Figures 6.1(a) and 6.1(b), where the entries in the matrix are linearly mapped 

into image pixels whose colours represent the values of the corresponding matrix entries. 

It can be seen that the Jacobi-like joint diagonalization algorithm significantly reduces the 

magnitudes of the off-diagonal entries when these matrices share approximately the same 

eigenstructure. As observed in Section 6.3.2, the computational cost of the proposed 

Jacobi-like joint diagonalization algorithm is proportional to the total number of matrices. 

This relationship is verified in Figure 6.2(b), where the number of matrices  ranges 

from 50 to 500 and approximately the same convergence level is achieved as shown in 

Figure 6.2(a).  

m
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(a) An example of matrix iA            (b) An example of matrix 1
i

−P A P     

Figure 6.1 Contour plots of matrices iA  and   1
i

−P A P
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(a) Convergence control level           (b) Time cost of the Jacobi-like   

joint diagonalization          

Figure 6.2 Computational cost of the Jacobi-like joint diagonalization algorithm  

6.4.2 Example 2 

 As shown in Figure 6.3, the second example considers an elastic plane stress 

problem of an isotropic ERM  whose material properties are completely defined by its  

Young’s modulus 

D

( ),E ωx  and Poisson’s ratio ( ),v ωx . Furthermore, for the sake of 

simplicity, it is assumed that the Poisson’s ratio takes a constant value and the only 

random material property of  is the Young’s modulus. Specifically,  D

( ), 0.3 a.s. forv ω D∀ ∈x x ,                             (6.53) =
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( )( ) 10, 3.0 10 PaE E Dω = × ∀ ∈x x ,                        (6.54a) 

( ) ( )( )
( ) ( )2 2

2 1 2 1
2

1 2

19 22.0

Cov , , ,

6.561 10 Pa
x x y y

E E

e

ω ω
− + −

−
= ×

x x
    1 2, D∀ ∈x x ,                (6.54b) 

Following the SFEM formulation described in Chapter 5, a stochastic system of linear 

algebraic equations is obtained, which consists of 26m =  real symmetric matrices 

associated with a constant parameter 1 1α ≡  and mutually independent standard Gaussian 

random variables ( )2, ,26i iα = .  

 

Figure 6.3 Structural illustration of Example 2  

 To demonstrate the effectiveness of the joint diagonalization procedure, the images 

of matrices 1A  and 2A , and their transformed counterparts * 1
1

−
1A = P A P  and 

* 1
2

−
2A = P A P  are respectively depicted in Figures 6.4 and 6.5. It can be seen from the 

figures that the total value of the off-diagonal entries, i.e. (
1

off k
k=
∑ )

m

A , is significantly 

reduced by the Jacobi-like joint diagonalization. From the resulting average eigenstructure, 

the ratio of the off-diagonal entries to the Frobenius norm is , i.e.  4−9.655 10×

( ) 2* *

1 1
off : 9.655 10 :1

m m

k k F
k k

−

= =

= ×∑ ∑A A 4 .                           (6.55) 

The corresponding convergence history is plotted in Figure 6.6.  
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(a) Matrix 1A                          (b) Matrix 2A                

Figure 6.4 Contour plots of matrices 1A  and 2A   

  

(a) Matrix * 1
1

−
1A = P A P                  (b) Matrix * 1

2
−

2A = P A P           

Figure 6.5 Contour plots of matrices * 1
1

−
1A = P A P  and * 1

2
−

2A = P A P          
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Figure 6.6 Convergence history of the Jacobi-like joint diagonalization 
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 Due to the number of random variables used in this example and the fluctuation 

range of these random variables, only the Monte Carlo method and the Neumann 

expansion method (up to the sixth order expansion in Eq. (6.17)) are implemented for 

comparison with the current joint diagonalization method. For one sample path of 

, the comparison of the solutions ( )1, , 26i iα = x  obtained respectively with the 

Monte Carlo method, the Neumann expansion method and the joint diagonalization 

method is illustrated in Figure 6.7. It can be seen that the proposed method obtains a good 

path-wise solution (strong solution) to the stochastic system of linear algebraic equations 

(6.2). Figure 6.8 shows the comparison for eight sample paths and the current method also 

gives a very good statistical solution (weak solution) to the stochastic linear algebraic 

system (6.2). In order to obtain good empirical statistics of the 52 unknown random 

variables (i.e. the nodal displacements) used in this example, 500 path-wise solutions are 

calculated with the three different methods. The corresponding CPU time costs of 500 

solutions are recorded in Table 6.1. It can be seen that the joint diagonalization solution 

strategy exhibits the best performance in terms of efficiency. However, as the joint 

diagonalization algorithm proposed in this work is based on the classical Jacobi algorithm, 

this advantage may disappear for large-scale matrices.  
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Figure 6.7 Solutions obtained with Monte Carlo, Neumann expansion and joint 

 diagonalization methods (one sample path)                        
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Figure 6.8 Solutions obtained with Monte Carlo, Neumann expansion and joint  

diagonalization methods (eight sample paths)                      

Table 6.1 CPU time costs of 500 solutions 

 Monte Carlo 
method 

Neumann expansion 
method 

Joint diagonalization 
method 

CPU time cost (s) 0.427 0.926 0.343 

 Finally, for one sample path of the random medium, the contour plots of principal 

stresses are shown in Figure 6.9. The deterministic counterpart of this simple example, in 

which the Poisson’s ratio remains the same and the Young’s modulus takes a fixed value 

, is also analysed using the standard finite element method with 

the same mesh structure, and the principal stresses are illustrated in Figure 6.10 for 

comparison. As shown in Figure 6.10(a), there is no horizontal stress distribution in this 

simple problem when the material properties are constant. However, due to the spatial 

variation of material properties, a horizontal stress distribution is observed in Figure 6.9(a). 

It can be seen in Figure 6.9(b) and Figure 6.10(b) that, although the principal stress level 

in the stochastic case is very close to the deterministic case, there is a visible random 

variation of the principal stresses resulting from the property variation throughout the 

random medium, as expected.  

( ) 10, 3.0 10 PaE ω ≡ ×x
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(a) Principal stress 1σ                   (b) Principal stress 2σ             

Figure 6.9 Principal stress distribution of the ERM (for one sample path)  

 

(a) Principal stress 1σ                  (b) Principal stress 2σ             

Figure 6.10 Principal stress distribution of the corresponding deterministic medium  

6.4.3 Example 3 

 A simplified tunnel model as shown in Figure 6.11 is considered in this example. 

The associated ERM  is described by  D

Young’s modulus  

( )( ) 10, 3.0 10 PaE E Dω = × ∀ ∈x x ,                       (6.56a) 
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( ) ( )( )
( ) ( )2 2

2 1 2 1
2

1 2

20 22.0

Cov , , ,

3.8025 10 Pa
x x y y

E E

e

ω ω
− + −

−
= ×

x x
    1 2, D∀ ∈x x ;              (6.56b) 

Poisson’s ratio  

( ), 0.3 a.s. forv Dω = ∀x ∈x .                             (6.57) 

The stochastic system of linear algebraic equations is formed through a similar procedure 

as used in the previous example. After joint diagonalization, the ratio of the off-diagonal 

entries to the Frobenius norm is 36.024 10−× , and the corresponding convergence history 

is shown in Figure 6.12.  

 

Figure 6.11 Illustration of Example 3  
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   Figure 6.12 Convergence history of the Jacobi-like joint diagonalization    
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 A corresponding deterministic model, sharing the same geometric configuration 

and the same Poisson’s ratio, but setting Young’s modulus to a fixed value , 

is also analysed using the standard finite element method. Principal stress distributions of 

the stochastic model and the deterministic model are respectively shown in Figures 6.13 

and 6.14, from which it can be observed that the stress distribution of the stochastic model 

is not only influenced by the model structure but also by the random material property 

variation throughout the medium.  

103.0 10 Pa×

  

(a) Principal stress 1σ                   (b) Principal stress 2σ             

Figure 6.13 Principal stress distribution of a simplified tunnel model (for one sample path) 

   

(a) Principal stress 1σ                   (b) Principal stress 2σ             

Figure 6.14 Principal stress distribution of the corresponding deterministic model 
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6.5 Summary and Suggestions for Future Research 

6.5.1 Summary  

 This paper presents a novel strategy for solving the stochastic system of linear 

algebraic equations (6.2) arising from the SFEM formulation in Chapter 5. Firstly, the 

solution strategy simultaneously diagonalizes all the matrices in the system to obtain an 

average eigenstructure. The stochastic linear algebraic system is then decoupled by joint 

diagonalization, and its approximate solution is explicitly obtained by inverting the 

resulting diagonal stochastic matrix and performing the corresponding similarity 

transformation. Once the approximate solution is obtained in an explicit form, it is trivial 

to calculate the associated statistical moments and joint probability distributions. For the 

joint diagonalization, the classical Jacobi method has been modified for use with multiple 

symmetric matrices, while preserving the fundamental properties of the original version 

including the convergence and the explicit solution to the optimal Givens rotation angle. 

The computational cost of this Jacobi-like joint diagonalization algorithm is proportional 

to the total number of matrices in the system. This infers that it can be easily parallelized. 

For the solution of the stochastic system of linear algebraic equations, using the proposed 

approach, there is no restriction regarding either the range or the type of random variations 

in consideration.  

 Even though the presented strategy gives an explicit solution to Eq. (6.2) in a 

closed form, it is not advocated to use the Jacobi-like joint diagonalization algorithm for 

large-scale matrices. Indeed for a single matrix the classical Jacobi algorithm is not the 

most efficient method and does become extremely slow in dealing with a larger matrix. In 

this chapter, the joint diagonalization of multiple matrices is achieved through a similarity 

transformation by using an orthogonal matrix, thus its performance depends on the 

approximate similarity of the matrix family, which is not only determined by the stochastic 

field associated with the physical problem in consideration but is also strongly influenced 

by the method used to construct these matrices. These are the major limitations of the 

proposed Jacobi-like joint diagonalization algorithm.  

 It is well known that for a deterministic system of linear algebraic equations (6.1), 

there exist various numerical algorithms developed for different types of matrices and 
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different solution requirements, which are all explicitly or implicitly based on inverting 

the matrix under consideration. For a more general stochastic system of linear algebraic 

equations (6.2), it can be similarly expected that there will be different numerical 

algorithms based on the joint diagonalization of multiple matrices, which essentially give 

an approximate inverse of the matrix family as shown in the previous sections.  

 Parts of the results in this chapter have already been reported in [6.24-6.25].  

6.5.2 Suggestions for Future Research  

 Regarding the joint diagonalization solution strategy proposed in this chapter, the 

following aspects need further investigation.  

 In Sections 6.4.2 and 6.4.3, it is assumed that the Young’s modulus is the only 

random material property of the ERM under consideration. This is because the full 

numerical investigation for the F-K-L representation scheme of the general elastic 

tensor of ERM has not been completed in Chapter 4 and consequently considering 

ERM with multiple random material properties may introduce unnecessary 

numerical errors to the stochastic linear algebraic system (6.2). In principle, the 

joint diagonalization solution strategy for Eq. (6.2) holds no matter how many 

independent random material parameters are actually contained in the ERM elastic 

tensor. Nevertheless, a thorough numerical investigation is important for the new 

approach and it should be performed with carefully designed examples when the 

examination of the F-K-L representation scheme is completed.  

 As shown in Section 6.3, the performance of the Jacobi-like joint diagonalization 

solution depends on the similarity between those real symmetric matrices in the 

stochastic linear algebraic system. Hence, in order to obtain an error estimate for 

the approximate solution, it is necessary to further analyse the algebraic properties 

of the matrices involved, especially the properties of their average eigenstructure. 

The semi-analytic F-K-L representation addressed in Chapter 4 and the simple 

SFEM discretization described in Chapter 5 provide a good start to tackle this 

algebraic problem.  

 The proposed Jacobi-like joint diagonalization method may provide an alternative 

way to solve the stochastic system of linear algebraic equations in small-scale cases. 

However, it should be noted that neither the similarity transformation nor the 

173 



Chapter 6. The Joint Diagonalization Solution Strategy 

orthogonal matrix is necessary and essential in this new solution strategy. For 

example, it is trivial to prove that for two real symmetric matrices A  and , if at 

least one of these is positive definite, then there exists an invertible matrix , 

which is not necessarily (and usually is not) orthogonal, to simultaneously 

diagonalize both matrices through a congruent transformation such that  

and  are real diagonal matrices. Indeed, it can be shown that the solution of 

Eq. (6.2) is mainly determined by the average eigenstructure corresponding to the 

smallest eigenvalues of matrices 

B

C

TC AC
TC BC

iA , which can be approximately obtained by an 

explicit transform of individual eigenstructures of iA . Hence, for the stochastic 

linear algebraic system with large-scale matrices, an improved algorithm which 

combines the current procedure with dimension-reduction techniques is very 

promising.  

 The joint diagonalization solution strategy together with some of the above 

research that is currently under development will be reported in [6.26-6.27].  
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Chapter 7 

A Directed Monte Carlo Solution for the 

Stochastic System of Linear Algebraic 

Equations 

 The main objective of this chapter is to propose a Monte Carlo based method for 

the solution of the stochastic system of linear algebraic equations (5.16) obtained in 

Chapter 5. To simplify the notation, Eq. (5.16) is rewritten as follows:  

( )( ) ( )o +K K ξ u ξ b=                                         (7.1) 

where  

( ) ( )1 1 2 2 1 2, ,m m mξ ξ ξ ξ ξ= + + + =K ξ K K K ξ" ξ" ,              (7.2) 

in which  and  are oK ( )1, 2, ,i i m=K " N N×  deterministic matrices; iξ  are  

mutually independent standard Gaussian random variables;  is a deterministic

m

b † external 

load vector; and  is the random displacement vector to be sought.  ( )u ξ

 The development of effective solution strategies for Eq. (7.1) to obtain various 

statistical properties of the solution ( )

                                                       

u ξ  and the associated results, such as strain and 

stress, is one of the central issues in SFEM and becomes increasingly more important 

when larger scale problems with many random variables need to be considered. As 

reviewed in Chapter 6, various solution approaches have been proposed over the past two 
 

† For the sake of simplicity, randomness in the external load vector is not considered in this chapter.  
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decades. Among all existing solution methods, Monte Carlo (MC) simulations are 

considered to be the most versatile approach and are in fact almost always used at some 

stage in most stochastic solution procedures. The main disadvantage of Monte Carlo 

simulations, however, is the intensive computational cost involved, particularly for large 

scale problems with many random variables, since a large number of samples are normally 

required to achieve a reasonable solution accuracy and a new system of equations needs to 

be solved at each MC sample.  

 In addition to those schemes traditionally proposed to improve the sampling 

strategies of Monte Carlo methods, including importance sampling, stratified sampling, 

recursive stratified sampling and adaptive Monte Carlo and especially VERGAS [7.2] (see 

[7.3] for a brief review on the topic), some progress has also been made in SFEM where 

the focus is on the solution of Eq. (7.1) by employing iterative approaches, such as 

Preconditioned Conjugate Gradients (PCG), so that large scale problems could be tackled. 

Recent developments in this aspect can be found, e.g. in [7.4-7.7]. One example is the 

recent work of [7.8] which proposes an explicit stochastic Incomplete Cholesky (IC) 

preconditioner for  based on the polynomial chaos expansion concept (see e.g. 

Ref. [7.1] or Section 6.2.4) to achieve a fast solution convergence of PCG at each Monte 

Carlo sampling point. It has to be pointed out however that in contrast to the solution of 

the deterministic system of linear algebraic equations, existing stochastic solution 

procedures are generally far from computationally adequate to handle large scale problems 

with many random variables, and therefore new and more advanced solution techniques 

are urgently needed in order to greatly improve the modelling capability of SFEM for 

practical applications.  

( )

ξ

o +K K ξ

 The key feature of Monte Carlo samples is the randomness and unpredictability in 

the sequence of their spatial positions, in the space formed by the random variables, except 

for their statistical property. Therefore it appears necessary to solve a separate system of 

equations for (7.1) at each Monte Carlo sampling point of . Note that this is always the 

case when Eq. (7.1) is solved by a direct solver. However, after all the Monte Carlo 

samples are generated, many of them may be closely positioned spatially, particularly in 

the high probability regions and when the number of the sampling points is large. This 

spatial proximity of Monte Carlo samples suggests that if an iterative solver is employed, 

the solution obtained at one or more MC sample may be used to provide a good initial 
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approximation for their immediate neighbours which could result in a significant reduction 

in the number of iterations required at these points. It is this observation that will be 

exploited in this chapter in order to improve the computational efficiency of MC 

simulations for the solution of Eq. (7.1).  

 The reminder of this chapter is organized as follows. In Section 7.1, the joint eigen 

properties of the stochastic matrix ( )

ξ
m

( )m

T

K ξ  and the deterministic matrix  will be 

briefly discussed to identify a possible very effective preconditioning scheme to be used 

later in PCG. For the solution of Eq. (7.1), a modified Monte Carlo approach, termed the 

directed Monte Carlo method and based on the utilisation of the spatial proximity of MC 

sampling points, will be developed first for equations with one random variable in Section 

7.2. Two integrated numerical techniques essential for the success of the new method, 

including preconditioning and initial approximation prediction, are discussed in detail. The 

extension of the directed Monte Carlo approach to equations containing multiple random 

variables is undertaken by the adoption of a general hyper-spherical concept in Section 7.3. 

Numerical experiments are conducted in Section 7.4 to assess the performance of the 

proposed solution strategy and associated numerical techniques in terms of computational 

costs and solution accuracy. Finally, some conclusions regarding the proposed method are 

made in Section 7.5.  

oK

7.1 Properties of Stiffness Matrices  

 In addition to the statistical behaviour of the random vector  in Eq. (7.1), the 

relationship between  and  also plays a paramount role in the 

solution of the stochastic linear algebraic system. Particularly, gaining a fundamental 

understanding of their underlying relationship will shed light onto the development of 

effective solution strategies for Eq. (7.1). This important issue is briefly addressed here.  

oK ( )
1

i i
i
ξ

=

=∑K ξ K

 Recall from Chapter 5 that the matrix  is real symmetric and positive definite 

while the matrices  are real symmetric but not necessarily (and 

usually are not) positive definite. Hence,  permits a standard  Cholesky 

oK

1, 2, ,i i =K "

oK LL
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decomposition:  
T

o o o=K L L                                                  (7.3) 

and, together with the symmetry of ( )K ξ , it ensures that the following generalised 

eigenproblem formed by  and oK ( )K ξ  has real eigenvalues ( )1 2diag , , , Nλ λ λ= ξ ξ ξ
ξΛ "  

and corresponding real eigenvectors ( )1 2, , , N= ξ ξ ξ
ξV v v v" :  

( ) o=ξ ξK ξ V K V Λξ

ξ

                                           (7.4) 

with  

( )T =ξ ξV K ξ V Λ ,                  (7.5) T (Identity matrix)o =ξ ξV K V I

and  

1 2 Nλ λ≤ ≤ ≤ξ ξ " λ ξ .                                           (7.6) 

The eigenpairs  and ( )ξΛ ξ ( )ξV ξ  also possess the following properties:  

( ) ( )diag=0 0ξΛ ( ), ( ) 1T
o

−
=0ξV L  and ( ) (− = −ξΛ ξ Λ ξ )ξ

T=

.          (7.7) 

With the aid of the above eigen-decomposition, the original equation (7.1) can be 

decoupled to  

( ) ( )1−+ ξ ξ ξI Λ V u ξ V b                                        (7.8) 

which leads to an explicit solution of ( )u ξ :  

( ) ( )
T

1 T

1 1

N
i

i
i iλ

−

=

= + =
+∑

ξ
ξ

ξ ξ ξ ξ

b vu ξ V I Λ V b v .                          (7.9) 

Clearly, the eigenvalues ( )1, 2, ,i iλ =ξ " N  represent the variation scale caused by the 

random variables at the structural response level. The solution at each sampling point of 

 will depend on the actual spectrum of ξ iλ
ξ .  

 It is shown in Chapter 5 that the stochastic matrix sum  is, in the 

context of probability, real symmetric and positive definite. Thus, following the definition 

of real symmetric and positive definite matrices, it can be concluded that  

( )o +K K ξ

1iλ > −ξ         for all 1 i N≤ ≤                             (7.10) 

which, when taking into consideration of the property ( ) (i iλ λ− = −ξ ξ )ξ ξ , further leads to  

1iλ <ξ           for all 1 i N≤ ≤ .                            (7.11) 
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Combining Eqs. (7.6), (7.10) and (7.11) yields  

1 21 Nλ λ λ− < ≤ ≤ ≤ <ξ ξ ξ" 1

o

1
o=

                                    (7.12) 

Hence, in Eq. (7.9), those extreme eigenvalues at the lower end of the above 

eigenspectrum will have major contributions to the random variation of the solution 

.  ( )u ξ

 Using  as a preconditioner to Eq. (7.1) results in  T
o o=K L L

l ( )( ) ( )T
o

−+I K ξ L u ξ L b                                     (7.13) 

with  

l ( ) ( )( ) 11 T
o o

−−=K ξ L K ξ L .                                      (7.14) 

It is trivial to observe that  is also the eigenvalue matrix of , i.e.  ξΛ l ( )K ξ

l l ( ) l
T

=ξ ξ ξV K ξ V Λ  and l lT
=ξ ξV V I                               (7.15) 

with the eigenvector matrix . Thus, following the eigenspectrum (7.12), the 

spectral condition number of 

l T
o=ξ ξV L V

l ( )+I K ξ  can be estimated as  

l ( )( )2
1 1

1 2cond
1 1

Nλ
λ λ

+
+ = <

+ +

ξ

ξI K ξ ξ .                             (7.16) 

When the minimum eigenvalue 1λ
ξ  is not very close to 1− , which is normally the case 

for practical problems, l ( )( )2cond +I K ξ  will be in order ( )1O . Thus, it is concluded 

that  is in general a good preconditioner for Eq. (7.1). It is also worth highlighting 

that at problem scales SFEM can currently handle effectively, the Cholesky decomposition 

is still very computationally competitive in terms of both memory and CPU time costs. 

Particularly, with the continuing advance of computer hardware, the scale of problems that 

a direct solver can effectively solve is also increasing. Furthermore, in the current problem 

concerned, a large number of repeated uses of the triangular decomposition  of  

will significantly offset the overhead associated with the initial computation of  which 

further increases the effectiveness of the Cholesky decomposition. Thus the lower 

triangular matrix  and the deterministic solution   

oK

oL oK

oL

oL du

( ) 1
d

−= =0u u Ko b                                            (7.17) 
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are assumed available when needed.  

 It is normally difficult to compute  and  as the general (random) functions 

of random vector , but it is computationally feasible to obtain the joint eigen properties 

of each matrix  and , particularly the two extreme eigenvalues, 

ξΛ ξV

ξ
i

iK oK 1λ  and i
Nλ . 

Investigating the eigenstructures of these individual matrices can reveal certain features of 

 and V . This issue however will not be pursued further in this chapter.  ξΛ ξ

7.2 Modified Monte Carlo Simulation: One Random 

Variable 

 Let  

( )
( ) 2

1

2
mp e

π

−
=

ς ς
2

ξ ς
i

                                  (7.18) m∈ς \

denote the joint probability density function of the random vector  in Eq. (7.1), then the 

expectation of an arbitrary function 

ξ

f  of the solution ( )u ξ  can be generally written as  

( )( )( ) ( )( ) ( )m
E f f p d= ∫ ξu ξ u ς ς

\
ς .                           (7.19) 

The standard Monte Carlo simulation estimates the above probability integral by taking 

the arithmetic mean of the integral function ( )( )f u ξ  over M  points { }1 2, , , Mς ς ς"  

sampled according to the probability density function ( )pξ ς :  

( )( )( ) ( )(
1

1 M

i
i

E f f
M =

≈ ∑u ξ u ς ) .                               (7.20) 

The most expensive operation in the Monte Carlo simulation is that involved in the 

solution of (7.1) at each Monte Carlo point. The new DMC (directed Monte Carlo) 

approach, aimed at improving the computational efficiency of solving the equations on the 

basis of the utilisation of the spatial proximity of Monte Carlo sampling points, will be 

developed, first for one random variable cases in this section and then extended to general 

multiple random variable cases in the next section. This modified Monte Carlo approach 

consists of two essential ingredients: (a) an iterative algorithm is employed to solve the 
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linear system of equations at each Monte Carlo sample; and (b) the sampling points are 

first spatially sorted so that a high quality initial solution to the current sample can be 

obtained based on the solutions at its neighbours already solved.  

7.2.1 Preconditioned Conjugate Gradient Method 

 The iterative solution of a linear system of equations is well established, and many 

solution algorithms have been proposed. Among all iterative solvers developed, the PCG 

(preconditioned conjugate gradient) algorithm is the most popular iterative solver for a 

real symmetric positive definite system. It is interesting to note that the PCG algorithm has 

been recently established to be equivalent to a second-order time integration scheme [7.9]. 

The standard PCG algorithm for solving a linear system  

=Kx b                                                    (7.21) 

with given preconditioning matrix  (also assumed real symmetric and positive 

definite), initial guess , required solution accuracy 

pM

0x τ  and maximum iteration number 

maxI , is provided below for reference.  

Algorithm 7.1 Standard PCG algorithm: ( )0 mPCG , , , , , Iτ= px K b x M ax  

 

 

Compute . If 0 0= −r b Kx 0 2
τ<r

2
b  return with 0=x x ; else compute initial 

search direction   1
0 0

−= pp M r

For :  max0,1, 2, ,i I= "

1. Update solution:  

1i i i iα+ = +x x p  

where  
T 1T

T T
i ii i

i
i i i i

α
−

= = pr M rp r
p Kp p Kp

 

2. Update residual:  

1i i i iα+ = −r r Kp                              

3. Check convergence: if 1 2i τ+ <r
2

b , return with 1i+=x x   
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4. 

 As

investigate
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be elaborat
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preconditio

 IC0

 SIC

 K0:

 Th

all the sam

is generate

when large

desirable b

point of 

computatio
Compute new search direction:  
1

1 1i i i iβ−
+ += +pp M r p                            

where  
 

T 1 T 1
1 1

T T
i i i

i
i i i i

β
− −

1
1

i+ + +
−= − =p p

p

p KM r r M r
p Kp r M r

 

 all the computational aspects of the standard PCG have been thoroughly 

d, no new development will be offered in this work. However there are two 

issues that are essential to the success of the DMC method, and therefore 

rther discussions: (a) preconditioning; and (b) initial guess. The latter issue will 

ed upon in the next subsection.  

conditioning is the most important technique for PCG to achieve a fast 

e for practical problems by providing a possible significant reduction in the 

ndition number of the original matrix. IC (incomplete Cholesky) decomposition 

riants are most commonly used preconditioning schemes [7.10]. Let the IC 

tion of a matrix  be denoted as K ( )

( )

M

)

IC K . For the current problem concerned, 

atrix  varies at every sampling point, there exist several options for the 

ning matrix :  

K ξ

p

: , the IC decomposition of ;  (IC o=pM K oK

: ( )(IC o= +pM K K ξ )

o

( )

ξ

, the IC decomposition of ;  ( )o +K K ξ

 , the complete Cholesky decomposition of .  T
o o= =pM K L L oK

e first option, denoted IC0, uses the IC of  as the preconditioning matrix for 

pling points. The apparent attractive feature is its computational efficiency as it 

d only once. It is argued however that its performance may not be sufficient 

 scale random variations are present. The second choice, denoted SIC, seems 

ecause a new IC decomposition is generated for  at each sampling 

. The obvious disadvantage of this option is the relatively expensive 

nal costs involved in the generation of 

oK

o +K K ξ

( )( )IC o +K K ξ  at the sampling points. 
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It is this concern that is addressed in [7.8] which proposes to express ( )( )
ξ

K

u

IC o +K K ξ  as 

a series of  based on the polynomial chaos expansion (see e.g. Ref. [7.1] or Section 

6.2.4) to reduce the computational costs. Note that both IC and SIC decompositions may 

fail when the diagonal terms become negative during the decomposition. Although 

artificial amendments can be made to resume the procedure, the resulting decomposition 

often does not perform well.  

 The third option, denoted K0, uses the complete Cholesky decomposition of  

as the preconditioning matrix. This option is highly recommended in the present work 

supported by the analysis conducted in Section 7.1 for the following reasons: (a) unlike 

the first two schemes, this option always achieves a good convergence regardless of the 

properties of , unless the random variation is very high; and (b) the computational 

procedure involved in the decomposition is very stable while the other IC decompositions 

can fail. Note that the K0 scheme with further improvement has already been adopted in 

[7.5]. In Section 7.4, numerical examples will be provided to compare the performance of 

these three preconditioning schemes.  

oK

o

 Generally a good initial approximation can also reduce the number of PCG 

iterations. However, it may not be easy to provide such an approximation apart from some 

special cases, as will be further discussed later. If no other information is available, the 

deterministic solution  may always be considered as a fairly good candidate.  d

 Note that the above discussion is applied to both one and multiple random variable 

cases.  

7.2.2 Exploitation of Spatial Proximity of Monte Carlo Points 

 When only one random variable ξ  is present, Eq. (7.1) is reduced to  

( ) ( )o ξ ξ+K K u = b .                                        (7.22) 

Suppose that the total number of Monte Carlo samples required is M  and all the 

sampling points, { }1 2, , , Mς ς ς= "M� , for the random variable ξ  are generated before the 

solution of Eq. (7.22) is performed. Normally these points bear no spatial sequence in  

while generated. However, when they are sorted in ascending order, their spatial 

\
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relationship becomes apparent. Therefore these sampling points in the set � can be 

assumed to be in order  

M

1 2 Mς ς ς< < <" .                                           (7.23) 

This reorganisation of the sampling points makes no difference to the standard Monte 

Carlo simulation, but it is crucial for the modified Monte Carlo approach proposed here.  

 Following the reorder, the key to the effective exploitation of the localisation is 

how to provide a better guess for the current sample if the solutions at previous or 

neighbouring samples are known. This can be approached in two slightly different ways.  

 First, suppose that the solution ( )ξu  to (7.22) at ξ ς=  is obtained and the 

solution ( )ξu  at ξ ς= + ∆ς  is sought:  

( )( ) ( )o ς ς ς ς+ + ∆ + ∆ =K K u b .                              (7.24) 

By employing a first order Taylor series approximation, ( )ς ς+ ∆u  has the following 

approximation  

( ) ( ) ( )d
d

ξ ς

ξ
ς ς ς

ξ
=

+ ∆ ≈ + ∆
u

u u ς                               (7.25) 

where the gradient ( )d dξ ξu  can be readily obtained from (7.22) as  

( ) ( ) 1
o

d
d
ξ ( )ξ ξ
ξ

−= − +
u

K K Ku .                                (7.26) 

However, to evaluate the above gradient is equivalent to the solution of a new linear 

system, and therefore using (7.25) to find an approximation to ( )ς ς+ ∆u  is not very 

attractive. Nevertheless, it is straightforward to compute the gradient at 0ξ =  since it is 

assumed that the Cholesky decomposition of  is available:  oK

( ) 1

0
o

d
d

ξ

ξ
ξ

−

=

= −
u

K Kud

( )

.                                       (7.27) 

 A better approach is to utilise additional information to approximate the gradient 

d dξ ξu . Now suppose that the solutions ( )ξu  at the sampling points from 1ς  to iς  

have been found and the aim is to use these results to obtain a high quality initial guess 

( )0 ξu  at 1iξ ς +=  for the corresponding PCG iterations. This is basically an 
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interpolation/extrapolation problem, and many standard numerical schemes are available. 

Here the following two schemes are proposed for use:  

 Linear interpolation/extrapolation scheme. In this scheme, the gradient ( )d dξ ξu  

at iξ ς=  is approximated by a forward Euler difference as  

( ) ( ) ( )( 1
1

1

i

i i
i i

d
d

ξ ς

ξ
ς ς

ξ ς ς −
−=

≈ −
−

u
u u ) ,                          (7.28) 

then it follows that  

( ) ( ) ( ) ( )(1
0 1 1

1

i i
i i i i

i i
)ς ςς ς ς ς

ς ς
+

+
−

−

−
≈ + −

−
u u u u .                      (7.29) 

 Cubic spline interpolation/extrapolation scheme. In this scheme, a cubic spline is 

generated first to interpolate all the existing solutions (componentwise) and then is 

used to compute an initial approximation solution at 1iξ ς += .  

 The first scheme is very simple to implement. Its performance is however 

dependent on the spacings 1i iς ς −−  and 1i iς ς+ − . At the expense of more computational 

costs, the second scheme usually provides better approximation if the spacings between 

the sampling points are all fairly uniform. However, random samples cannot always 

satisfy this requirement and occasionally behave irrationally. Particularly when 1i iς ς −−  

is significantly larger or smaller than the previous spacings, the predicated initial solution 

at 1iς +

( )1

 is normally poor, while on the other hand the linear scheme is not sensitive to the 

spacings. In general, as will be demonstrated numerically in Section 7.4, the spline scheme 

exhibits better performance when a relatively small number of sampling points are present, 

while the linear scheme behaves satisfactory when a large number of samples are present.  

 In both schemes, the first two solutions need to be computed differently. The first 

solution ςu du may be obtained probably with  as the initial guess, which is then 

used as the initial approximation for the next solution ( )2ςu

)i Mς =

. When the sample values 

 are roughly symmetric about the origin, which is true for most cases, 

there exists an alternative sample processing strategy. The sorted sample sequence (7.23) 

can be split into two parts so that the samples in the first part are all smaller than zero and 

larger than zero in the second part:  

( 1, 2, ,i "
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1 10j j Mς ς ς + ς< < < < < <" " .                                (7.30) 

Now treat  as the first solution, and since the gradient ( )0d =u u ( )d dξ ξu  at 0ξ =  is 

available from (7.27), (7.25) can be used to compute the initial guess for jξ ς=  to obtain 

the solution ( )jςu . Then the solution from 1jς −  down to 1ς  can be found following the 

above two interpolation/extrapolation schemes. The second part can be processed, starting 

from 1jς +  until Mς , in a similar manner. This latter strategy is numerically proved to be 

slightly more effective.  

 The main steps involved in the DMC approach proposed above are summarised in 

Algorithm 7.2, where the sampling points are assumed to be processed from 1ς .  

Algorithm 7.2 Directed Monte Carlo simulation – one random variable: 

( )( )DMC1 , , , , , ,o f M pξ ςK K b M  

 

 If  is empty, generate M M  random samples { }1 2, , , Mς ς ς= "M  according 

to the given probability density function ( )pξ ς . Sort the samples in in 

ascendant order.  

M

 Compute  (and 1
d o

−=u K b ( ) 1

0
o

d
d

ξ

ξ
ξ

−

=

= −
u

K Kud  if required).  

 Set initial preconditioning matrix (and update it for the second point if 

required).  

pM

 Compute the first two solutions:  

( )1 1PCG , , , , ,o d Iς τ= + pu K K b u M max  

( )2 2 1PCG , , , , ,o Iς τ= + pu K K b u M max  

 For :  3, 4, ,k M= "

1. Update preconditioning matrix  if required.  pM

2. Compute initial guess ( )0 iςu  based on the linear or spline scheme.  
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3. 

 Cal

7.3 M

Ra

 Th

extended to

an m-dime

In this sect

method wi

7.3.1 H

 Let

hyper-sphe

holds for a

where (Γ

 Wi

( 1 2, ,ξ ξξ =
Obtain solution  

( )( )0 mPCG , , , , ,i o i i Iς ς τ= + pu K K b u M ax  

culate the expectation:  
 

( )( )( ) ( )( )
1

1 M

i
i

E f f
M

ξ ς
=

= ∑u u  

odified Monte Carlo Simulation: Multiple 

ndom Variable 

e DMC solution strategy proposed in the previous section cannot be readily 

 multiple random variables. The main challenge is the fact that spatial points in 

nsional domain do not have an in-built “order” as in the one dimensional case. 

ion, this difficulty is overcome by further modifying the standard Monte Carlo 

th the introduction of a hyper-spherical transformation to the simulation.  

yper-Spherical Transformation 

  denote the surface of a “unit m-sphere”, i.e. an m-dimensional 

re of unit radius. That is, the relation  

mS

� � � � �2 2 2

1 2 1mξ ξ ξ= + + + =ξ ξi "                                     (7.31) 

ny point � � � �( )1 2, , , mξ ξ ξ=ξ " m on S . The total area of  is  mS

22

2

m

mA
m
π

=
⎛ ⎞Γ⎜ ⎟
⎝ ⎠

                                               (7.32) 

 is the gamma function.  )•

th the assistance of the above notation, the Gaussian random vector 

), mξ"  in Eq. (7.1) can be expressed as  

�
rξ=ξ ξ                                                    (7.33) 
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where  is a random vector on  and  �ξ mS

( )
1

2 2 2 2
1 2 0rξ ξ ξ ξm= + + + ≥ξ ξ =i "                             (7.34) 

is a random variable. This is basically a general hyper-spherical transformation where rξ  

and  represent respectively the “magnitude” (or “radius”) and the unit “direction” of , 

as illustrated in Figure 7.1 in a polar coordinate sense.  

�ξ ξ

mS
�ξ

�−ξ

ξ

jξ
dV

rdξ1  dA

rξ  

-1 1
iξ  

-1

 

Figure 7.1 2D illustration of hyper-spherical transformation  

 In Eq. (7.33),  and �ξ rξ  represent respectively the normalized orientation and 

the collective variation scale of the mutually independent standard Gaussian random 

variables , and their probability distributions are uniquely determined 

by the joint probability distribution of . Specifically, 

( )m1, 2, ,i iξ = "

ξ �ξ  and rξ  are independent, and 

their probability density functions can be obtained as  

( )

2
11 2 22 0

2

0 0

r

r

m
m
r r

r

r

me
p

ς

ξ

ς ς
ς

ς

− −−
⎧⎛ ⎞ ⎛ ⎞⎛ ⎞Γ >⎪⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟= ⎝ ⎠⎨ ⎝ ⎠⎝ ⎠
⎪

≤⎩

             (7.35) 

and 

�
�( )

� �1 1
0 ot

mAp
⎧ =⎪= ⎨
⎪⎩

ξ

ς ςς i
her

                             (7.36) 
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respectively. As , where rξ
+∈\ +\  denotes the space formed by zero and all positive 

real numbers, the introduced hyper-spherical transformation (7.33) permits the following 

decomposition of the original “Cartesian” space   m\
m

m
+= ×\ \ S .                                             (7.37) 

Without giving a detailed derivation, the volume element  in the space  has the 

following relationship with an infinitesimal “line” element 

dς m\

rdς  on the “radial” direction 

and an infinitesimal “surface” element  on :  dA mS
1m

r rd dς ς−=ς dA

)
m

.                                           (7.38) 

 With the above preparations, the expectation of the function , which is 

originally calculated in the Cartesian space \  in (7.19), can now be cast in the 

hyper-spherical space as  

( )(f u ξ

( )( )( ) �( )( )
( )

2

12

2

1,
2

r

m

m
r rmE f f e d dA

ς

ς ς
π

+

− −= ∫ ∫u ξ u ς
\S rς .            (7.39) 

Using the probability density functions �
�( )p

ξ
ς  and ( )

r rpξ ς , the above expression can be 

rewritten as  

( )( )( ) �( ) �
�( )r

m

E f f pξ= ∫ ξ
u ξ ς

S
dAς ,                             (7.40) 

in which  

�( ) �( )( ) ( ),
r r rr rf f pξ dξς ς ς

+
= ∫ς u ς

\
.                            (7.41) 

It is noted that, when �
rξξ = ξ  is fixed at � �=ξ ς  on , mS ( )u ξ  is the solution to the 

following linear equations with one random variable rξ :  

�( ) �( ),o r rξ ξ+
ς

K K u ς b=                                      (7.42) 

in which  

�
� � �

1 21 2 m mς ς ς= + + +
ς

K K K K"                                  (7.43) 

is a deterministic matrix. Eqs. (7.40-7.43) readily suggest a new Monte Carlo simulation 

procedure in which the solution strategy developed in the previous section for the system 

with one random variable can now play an important part.  
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7.3.2 Modified Monte Carlo Simulation in Hyper-Spherical 

Space  

 Now the Monte Carlo simulation can be undertaken in two different spaces as 

follows:  

I) Generate a set of the required number ( �M
ξ
) of sampling points on :  mS

�
� � �

�{ }1 2, , , M=
ξξ

ς ς ς"M .                                       (7.44) 

II) At each sample � �i ∈ ξ
ς M , compute  

�( ) �( )( ) ( ),
r i r rr rf f pξ dξς ς ς

+
= ∫ς u ς

\
                            (7.45) 

which can be performed effectively by employing the one-dimensional DMC 

simulation (i.e. Algorithm 7.2) using 
r

Mξ  samples from the set  

{ }1 2, , , r

r

M
r r r

ξ
ξ ς ς ς= "M                                        (7.46) 

for rξ . That is,  

�( ) �((
1

1 ,
r

r

r

M
j

i r
j

f f
M

ξ

ξ
ξ

ς
=

≈ ∑ς u ς ))i .                                (7.47) 

III) Then, the final result can be computed as  

( )( )( )
�

�( )
�

1

1
r

M

i
i

E f f
M ξ

=

≈ ∑
ξ

ξ

u ξ ς

1m

.                                 (7.48) 

The above procedure is referred to as the directed Monte Carlo simulation for multiple 

random variables.  

 Note that in the above discussion no coordinate system is explicitly specified for 

the computation associated with . Such a system may be needed when generating 

sampling points on . In fact, any valid coordinate system can be chosen in principle. 

For instance, the so called hyper-spherical coordinate system, a generalisation of the 3D 

spherical coordinate system, can be used, in which the independent variables are 

mS

mS

−  

“angles” { }1 2 1, , , mθ θ θ −" , and any point  on  can be expressed as  �ξ mS

192 



Chapter 7. A Directed Monte Carlo Solution 
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where [ ]0,iθ π∈  for  and 1,2, , 2i m= −" [ )1 0,mθ π− ∈ 2 . The random vector  will 

be uniformly distributed on  when all the angles 

�ξ

mS ( )1, 2, , 1i i mθ = −"  are uniformly 

distributed in their value ranges.  

 However, the use of a coordinate system on  can be totally avoided. Suppose 

that the required number 

mS

�M
ξ
 of samples on  is larger than the required number mS r

Mξ  

of the samples for rξ . First generate �M
ξ
 sampling points of  from which two sets of  

samples for both 

ξ

rξ  and �ξ , 
rξ

M  and , can be obtained following Eqs. (7.33-7.34). 

Then when computing 

�ξ
M

�( )rξ
ς if  at each sampling point � �ξ

Mi ∈ς , randomly choose any 

r
Mξ  consecutive samples from 

rξ
M  for rξ .  

 Although rξ  in Eqs. (7.33-7.34), due to the spherical symmetry of the 

distribution of , the random variation 

+∈\

ξ rξ  can be extended to the whole real number 

axis  by restricting the directional vector \ �ξ  on half of . The benefits of extending mS

rξ  to  are twofold: (a) to reduce the number of MC sample points required by half, 

thereby reducing the total MC simulation times; and (b) to increase the number of 

sampling points of 

\

rξ  used at each � iς  to compute �( )r ifξ ς , thereby maximising the 

computational gain of the one-dimensional DMC simulation. Another added benefit is that 

the important issue of fully understanding the eigenstructure of the general matrix ( )K ξ  

becomes more tractable, although this is outside the scope of this chapter.  

 Finally, the main steps involved in the directed Monte Carlo simulation for 
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multiple random variables are outlined in Algorithm 7.3.  

Algorithm 7.3 Directed Monte Carlo simulation – multiple random variables: 

{ } �( )DMCm , , , , , ,
ro i f m M Mξξ

K K b  

 

 Generate �M
ξ
 standard Gaussian random vector samples 

�{ }1 2, , , M=
ξ

ς ς ς"M

for , and create two sets of sample points ξ �{ }1 2, , ,
r

M
r r rξ ς ς ς= ξ"M and 

�
� � �

�{ }1 2, , , M=
ξξ

ς ς ς"M  for rξ  and �ξ  respectively.  

 Loop over all sampling points � � � �( ) �1 2, , ,
i i i

i mς ς ς= ∈
ξ

ς " M :  

1. Set �
� � �

1 21 2

i i ii
m mς ς ς= + + +

ξ
K K K K"  

2. Choose randomly 
r

Mξ  consecutive samples from 
rξ

M  to form a subset 

r r

s
ξ ξ⊂M M  

3. Compute: �( ) � ( )( )DMC1 , , , , , ,
r r

i s
i o rf fξ ξ r r

M pξ ξ ς=
ξ

ς K K b M  

 Calculate the expectation: ( )( )( )
�

�( )
�

1

1
r

M

i
i

E f f
M ξ

=

= ∑
ξ

ξ

u ξ ς  

 The DMC method for multiple random variables, however, has implications with 

regard to the solution accuracy in comparison with the standard Monte Carlo simulation, 

since both the Monte Carlo formulation and the sampling strategy are now essentially 

changed. This issue will be discussed further in conjunction with numerical simulations in 

the next section.  

7.4 Numerical Experiments  

 In this section, two examples will be used to provide a full assessment of several 

numerical aspects of the proposed DMC simulation methodology for the solution of Eq. 

(7.1). First the performance of PCG using different preconditioners and prediction 
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schemes for initial approximations are investigated in terms of both PCG iterations and 

CPU costs mainly for one random variable cases. Then the solution accuracy of the DMC 

approach against the standard MC simulation in terms of the number of MC sample points 

is examined.  

7.4.1 Problem Descriptions  

 Both examples are elastic plane stress problems with a constant Poisson’s ratio 

( ) and stochastic Young's modulus. Furthermore, it is assumed that both 

Young’s modulus have unit mean value, i.e. 

( ) .3, 0v ω ≡x

( )( ) .0, 1E E ω =x , while the following two 

covariance functions 1R  and 2R  are given respectively for the two problems:  

( ) ( ) ( )( )
2

1 2 2
22 2.0

1 1 2 1 2, Cov , , , 0.0729 ER E Eω ω σ
−

−
= =

x x

x x x x e×          (7.50) 

( ) ( ) ( )( )
2

1 2 2
22 0.3

2 1 2 1 2, Cov , , , 0.0729 ER E Eω ω σ
−

−
= =

x x

x x x x e×          (7.51) 

in which Eσ  is a free parameter that can be used to vary the scale of the random variation. 

Following the SFEM formulation described in Chapter 5, a stochastic system of linear 

algebraic equations is obtained in the form of (7.1), in which the integer  is arbitrarily 

chosen in these examples without considering the accuracy of the F-K-L representation. In 

order to avoid ill conditioned systems occurring in Monte Carlo simulations, the sample 

value range of each normalised Gaussian random variable is restricted to 

m

[ ]3,3− .  

 The finite element meshes of the two problems, with a total number DOFs of 274 

and 5965 respectively, are shown in Figure 7.2. The maximum dimensions of the two 

problems in metres are  and 616 16× 5×  respectively.  

 The first example has a very small number of DOFs. It is used mainly for 

investigating the convergence features of the numerical techniques developed earlier. The 

small scale also makes it possible to examine the solution accuracy of the new method 

compared with the standard procedure within a reasonable time scale. For this example, 

the first nine terms in the F-K-L representation are considered, resulting in nine Gaussian  
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(a) Example 1 (274 DOFs)               (b) Example 2 (5986 DOFs)       

Figure 7.2 Finite element discretizations of two examples  

Table 7.1 Eigenvalues of the stochastic field and associated stiffness matrices: Example 1 

Index Eigenvalue of stochastic 
field ( )Eλ  

Min eigenvalue of  stiffness 
matrices ( )1λ  

Max eigenvalue of stiffness 
matrices ( )Nλ  

1 0.08889 0.0493 0.1101 

2 0.08483 -0.1108 0.1113 

3 0.08483 -0.1107 0.1110 

4 0.07884 -0.1088 0.1088 

5 0.07884 -0.0988 0.1008 

6 0.07048 -0.1001 0.1008 

7 0.07048 -0.0991 0.0995 

8 0.06206 -0.0942 0.0942 

9 0.06206 -0.0884 0.0855 

random variables iξ  and associated matrices . The eigenvalue iK E
iλ  corresponding to 

each random variable iξ  and the two extreme eigenvalues of the matrix  are listed in 

Table 7.1 at the variance scale of 

iK

1.0Eσ = . It is observed that for the given covariance 

function, the eigenvalues of all the nine random variables have a similar value and that, 

except for  which is symmetric positive definite, the remaining matrices are all 

indefinite, but their minimum and maximum eigenvalues are almost the same in 

magnitude.  

2K
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Table 7.2 Eigenvalues of the stochastic field and associated stiffness matrices: Example 2 

Index Eigenvalue of stochastic 
field ( )Eλ  

Min eigenvalue of  stiffness 
matrices ( )1λ  

Max eigenvalue of stiffness 
matrices ( )Nλ  

1 0.02211 0.0022371 0.0105175 

2 0.02091 -0.0100223 0.0099748 

3 0.02091 -0.0085306 0.0098457 

4 0.02062 -0.0099338 0.0107368 

5 0.02062 -0.0098814 0.0107376 

 The second example has a more complex structural configuration with in total 

5640 elements and 5986 DOFs, much larger than the first example. The main purpose of 

this example is to further confirm the results obtained in the first example and particularly 

to investigate the efficiency of the proposed methodology in terms of CPU time costs. For 

this example, the first five stochastic variables and the corresponding matrices are 

involved in the computation. Their eigenvalues at the variance scale of 1.0Eσ =  are 

listed in Table 7.2, and similar features to the first example can be observed.  

 In both examples, a randomly generated external load vector  is considered.  b

7.4.2 Performance of the Directed Monte Carlo Method and 

the Associated Numerical Techniques  

 The aim of the first investigation is to use the two examples to establish the 

convergence properties of PCG, in the context of the DMC method for one random 

variable, when employing the different associated numerical techniques for solving the 

linear system of equations of (7.42). The equations are created as follows: A number of 

random variables and the corresponding matrices are arbitrarily selected from all the 

matrices available in each example, and the random vector  is given randomly to 

construct . A total of 

�

K

ξ

�ξ r
Mξ  sample values for rξ  are generated following the 

procedure outlined in the previous section.  

7.4.2.1 Convergence of Preconditioning and Initial Approximation Schemes 

 The first batch of tests uses Example 1 to assess the performance of PCG with 
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different preconditioning and initial approximation prediction schemes in terms of PCG 

iterations.  

 The average numbers of iterations required to achieve the prescribed convergence 

of PCG per MC sample are recorded in Tables 7.3 and 7.4 for the following different 

combinations of the integrated numerical techniques and parameters in the DMC method: 

1) the number of random matrices included, ; 2) the variance scale m Eσ ; 3) the three 

preconditioning schemes; 4) the two interpolation/extrapolation schemes for the prediction 

of the initial approximation; 5) the given convergence tolerance τ ; and 6) different 

numbers of Monte Carlo samples 10, 24, 50, and 100
r

Mξ =  used for rξ . Note that the 

same number of negative and positive samples is used and these two sets of samples are 

separately processed starting from the smallest absolute value of the samples as outlined in 

Section 7.2.2.  

 Tables 7.3 and 7.4 list the results for 3m =  and 9m =  respectively with six 

cases included in total. For each case, the performance of the standard MC simulation with 

PCG as the solver using the three different preconditioning schemes is also included for 

comparison as a benchmark.  

 In Table 7.3 ( ), three matrices ,  and  are used. Considering 

Case 1 (

3m = 3K 6K 9K

1.0Eσ = , 51.0 10τ −= × ) as a basic case, Cases 2 and 4 increase Eσ  to 2.5 to 

represent large scale random variation conditions, and Cases 3 and 4 increase the solution 

accuracy to . For both Cases 1 and 3 (6−1.0 10τ = × 1.0Eσ = ), the two minimum and 

maximum eigenvalues of  and  are respectively -0.1104 and 0.1139, while for 

Cases 2 and 4 (

iK K

2.5

o

Eσ = ), the two eigenvalues proportionally increase in magnitude to 

-0.2760 and 0.2847.  

 In Table 7.4, all the nine matrices are used, but only 1.0Eσ =  is considered since 

a further increase of Eσ  will be very likely to result in an indefinite . Two levels of 

solution accuracy are considered in Cases 5 and 6 respectively.  

�ξ
K
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Table 7.3 Average PCG iterations per MC sample - 3m = : { }3 6 9, ,K K K  

Case 1 1.0Eσ = , 51.0 10τ −= × , [ ]0.1104,0.1139λ∈ −  

Preconditioning IC0 SIC K0 

Interpolation Linear Spline Linear Spline Linear Spline 

10
r

Mξ =  16.0 13.7 15.4 12.7 3.00 2.40 

24
r

Mξ =  13.6 8.54 13.5 8.75 1.66 1.33 

50
r

Mξ =  8.44 9.50 8.00 9.58 1.34 1.20 

100
r

Mξ =  7.22 11.5 7.02 10.9 1.06 1.32 

Standard MC 26.5 26.3 4.75 

Case 2 2.5Eσ = , 51.0 10τ −= × , [ ]0.2760,0.2847λ∈ −  

Preconditioning IC0 SIC K0 

Interpolation Linear Spline Linear Spline Linear Spline 

10
r

Mξ =  24.9 22.5 22.6 19.3 6.80 5.70 

24
r

Mξ =  23.0 18.8 20.9 16.4 5.21 7.64 

50
r

Mξ =  18.5 14.4 16.0 12.7 3.80 2.44 

100
r

Mξ =  16.0 14.3 13.8 12.2 3.13 2.50 

Standard MC 30.1 27.2 8.63 

Case 3 1.0Eσ = , 61.0 10τ −= × , [ ]0.1104,0.1139λ∈ −  

Preconditioning IC0 SIC K0 

Interpolation Linear Spline Linear Spline Linear Spline 

24
r

Mξ =  19.7 12.4 19.1 12.4 3.20 1.67 

50
r

Mξ =  16.3 10.1 15.3 9.76 2.24 1.30 

100
r

Mξ =  14.1 11.1 13.7 11.3 1.90 1.43 

Standard MC 28.7 28.6 5.68 

Case 4 2.5Eσ = , 61.0 10τ −= × , [ ]0.2760,0.2847λ∈ −  

Preconditioning IC0 SIC K0 

Interpolation Linear Spline Linear Spline Linear Spline 

24
r

Mξ =  27.3 21.5 24.3 19.0 7.13 4.91 

50
r

Mξ =  23.7 16.7 20.6 14.8 5.34 4.18 

100
r

Mξ =  22.4 15.0 20.0 13.1 4.62 2.79 

Standard MC 32.5 29.3 10.2 
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Table 7.4 Average PCG iterations per MC sample - 9m = : { }1 2 9, , ,K K K"  

Case 5 1.0Eσ = , 51.0 10τ −= × , [ ]0.1104,0.1139λ∈ −  

Preconditioning IC0 SIC K0 

Interpolation Linear Spline Linear Spline Linear Spline 

10
r

Mξ =  20.1 17.9 18.6 16.4 4.60 3.90 

24
r

Mξ =  16.2 12.0 14.3 11.3 3.25 2.46 

50
r

Mξ =  14.7 11.1 12.9 9.98 2.81 2.14 

100
r

Mξ =  11.5 12.0 10.2 11.2 2.31 1.90 

Standard MC 28.6 26.8 7.66 

Case 2 2.5Eσ = , 51.0 10τ −= × , [ ]0.1104,0.1139λ∈ −  

Preconditioning IC0 SIC K0 

Interpolation Linear Spline Linear Spline Linear Spline 

10
r

Mξ =  25.0 21.9 23.2 20.4 6.00 5.00 

24
r

Mξ =  22.5 15.3 21.2 15.2 4.50 2.96 

50
r

Mξ =  21.4 13.8 19.8 12.7 4.28 2.50 

100
r

Mξ =  19.1 12.9 17.4 12.5 3.69 2.14 

Standard MC 30.9 28.9 9.17 

 By examining the results presented in Tables 7.3 and 7.4, the following 

conclusions can be made:  

I) Preconditioning schemes: As expected, the incomplete Cholesky decomposition of 

, IC0, is the least effective scheme. Although the “stochastic” preconditioning 

scheme, SIC, can normally enhance the performance but the improvement is 

marginal and in general no more than 15% of reduction in iterations is achieved in 

all the test cases. On the contrary, the K0 scheme using the complete Cholesky 

decomposition of  exhibits a very good performance, with a reduction of 

iterations ranging from around 3 to 10 times compared to both IC0 and SIC 

schemes, and a typical reduction factor is around 5 or 6. A better performance of 

the K0 scheme is achieved at relatively smaller variation scales (Cases 1 and 3) and 

degrades slightly at larger variations (Cases 2 and 4), while the increase of the level 

of solution accuracy requirement 

oK

oK

τ  makes the comparison more favourable to the 

K0 scheme. These results very positively support the earlier analytical analysis on 
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the eigenvalue properties of the stochastic matrix ( )K ξ  made in Section 7.1. It is 

highlighted that the above conclusion applies not only to one random variable but 

also holds for general cases. It is also noticed that the K0 preconditioning scheme 

can also be further enhanced by, for instance, the use of the Neumann expansion of 

Eq. (7.22) as proposed in [7.5].  

II) Initial approximation schemes. The ability to provide a good initial approximation 

for PCG solvers is the key to the success of the proposed DMC method and this is 

confirmed by all the test cases. In fact, compared with the standard MC method, the 

current PCG with an initial approximation achieves a reduction of iterations by 2 to 

4 times, depending on the number of Monte Carlo samples used. Generally 

speaking, the required PCG iterations decrease with increase of the number of MC 

samples. It is possible that for a sufficiently large 
r

Mξ  the average iterations may 

be reduced to less than 1, thereby achieving an even greater improvement over the 

standard MC method. For the two interpolation/extrapolation approaches proposed, 

the spline scheme outperforms, in most cases, the linear scheme by an amount 

ranging from 10% up to 40% in terms of iterations, but the scheme becomes less 

effective in several cases. This phenomenon is purely dependent on the distribution 

of MC sampling points. When the samples are fairly evenly distributed, which is 

often the case when the number of samples is small, the spline extrapolation will be 

superior to the linear extrapolation. However, when some clusters occur in the 

samples, which is an inherent feature with a large number of random numbers, the 

accuracy of the spline extrapolation at points immediately after the clusters will 

suffer, leading to an increase of PCG iterations. Figure 7.3 illustrates this 

phenomenon by showing the accuracy of the initial approximations provided by the 

two extrapolation schemes for two different numbers of samples 24
r

Mξ =  and 

 in Case 1. Note that only the positive samples are used and the positions 

of these samples are marked along the axis-

50
r

Mξ =

x , from which the irregular spacing 

pattern of the samples is clearly demonstrated. The defect of the spline scheme may 

be eliminated, however, by enhancing the standard spline interpolation algorithm 

for the current situation. 

 In summary, the proposed DMC method can indeed significantly enhance the 
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computational effectiveness of the Monte Carlo simulation for general one random 

variable problems. When equipped with the K0 preconditioning and linear/spline 

extrapolation schemes, it can typically achieve performance around 3 times faster than the 

standard Monte Carlo simulation when the number of samples involved is not too small.  

 
(a) 24

r
Mξ =  

 
(b) 50

r
Mξ =  

Figure 7.3 Accuracy of initial approximations provided by linear and  

spline schemes in Case 1                                  
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7.4.2.2 CPU Time Cost Comparisons 

 The above observations are further examined by the second batch of tests using the 

second example. All the five matrices associated with the five variables are considered, i.e. 

. Table 7.5 lists the average number of PCG iterations per MC sample with the same 

test conditions as in the previous batch of tests except for the scales of variation 

5m =

Eσ  

which are 10 times larger.  

Table 7.5 Average PCG iterations per MC sample – Example 2 ( ) 5m =

Case 7 10.0Eσ = , 51.0 10τ −= × , [ ]0.0830,0.1300λ∈ −  

Preconditioning IC0 SIC K0 

Interpolation Linear Spline Linear Spline Linear Spline 

10
r

Mξ =  41.9 36.4 39.6 34.9 2.50 2.20 

24
r

Mξ =  33.5 29.8 31.5 28.7 1.95 1.18 

50
r

Mξ =  16.7 26.2 15.2 23.8 1.20 1.12 

100
r

Mξ =  9.89 34.6 9.84 32.8 0.77 1.30 

Standard MC 77.74 74.90 4.14 

Case 8 25.0Eσ = , 51.0 10τ −= × , [ ]0.2175,0.3250λ∈ −  

Preconditioning IC0 SIC K0 

Interpolation Linear Spline Linear Spline Linear Spline 

10
r

Mξ =  68.8 63.0 58.2 53.7 6.20 5.30 

24
r

Mξ =  60.1 46.4 50.3 38.3 4.67 3.25 

50
r

Mξ =  41.6 37.9 19.8 33.1 3.30 2.10 

100
r

Mξ =  27.6 38.4 22.0 36.5 2.46 2.39 

Standard MC 91.0 80.0 7.57 

 In essence, the new tests confirm all the observations made in the previous tests for 

the three preconditioning schemes and the two extrapolation schemes. As a matter of fact, 

the K0 preconditioning performs even better as it converges over 10 times faster than the 

other two counterparts at both normal and larger variance scales (Cases 7 and 8). Also the 

average number of iterations of the K0 preconditioning is reduced to less than 1 at 

 in Case 7. These reveal that the features of the proposed methodology are 

universal regardless of the finite element scale of problems to be modelled.  

100Mξ =
r
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 Although it is clear that the K0 preconditioning is superior to the other two 

preconditioning schemes in terms of PCG iterations, it is more costly at each iteration as 

the size of its Cholesky decomposition matrix  is larger then the other two IC 

decompositions, ignoring the extra cost associated with the re-generation of a new 

incomplete decomposition for SIC at each sample. Therefore it is necessary to examine the 

CPU time costs of all the numerical techniques at the same time. The relevant results are 

collected in Table 7.6.  

oL

Table 7.6 Total CPU times (seconds) – Example 2 ( ) 5m =

Case 7 10.0Eσ = , 51.0 10τ −= × , [ ]0.0830,0.1300λ∈ −  

Preconditioning IC0 SIC K0 

Interpolation Linear Spline Linear Spline Linear Spline 

10
r

Mξ =  9.64 8.56 16.9 15.1 1.29 1.26 

24
r

Mξ =  18.6 17.0 32.7 35.1 2.37 1.93 

50
r

Mξ =  19.9 32.3 40.1 64.7 3.75 5.60 

100
r

Mξ =  23.9 91.1 66.2 169.0 5.54 14.1 

Standard MC 178.1 261.3 23.2 

Case 8 25.0Eσ = , 51.0 10τ −= × , [ ]0.2175,0.3250λ∈ −  

Preconditioning IC0 SIC K0 

Interpolation Linear Spline Linear Spline Linear Spline 

10
r

Mξ =  15.73 14.64 24.13 23.26 3.17 3.10 

24
r

Mξ =  33.43 26.51 52.18 47.17 6.03 5.72 

50
r

Mξ =  48.95 45.56 86.64 87.81 10.26 10.65 

100
r

Mξ =  66.78 101.2 147.7 189.2 17.47 26.21 

Standard MC 210.0 283.2 34.73 

 It is evident that although the overall speed-up of the K0 preconditioning in terms 

of CPU costs over the other two schemes is smaller than the speed-up in iterations, it is 

still about 4 to 5 times faster, confirming that K0 is indeed a very effective and robust 

preconditioner, at least for not very large scale matrices. As expected, a small reduction in 

iterations of the SIC scheme over the IC0 scheme cannot compensate for the extra costs 

incurred for the generation of the IC decomposition at each MC sample, making it an 

unattractive option unless further developments are undertaken, such as the work in [7.8].  
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 It is noticeable that the spline extrapolation scheme becomes slower than the linear 

scheme in all cases. This is due to the fact that in the standard B-spline interpolation 

algorithm currently implemented, all the previous solutions are used to predict the initial 

solution for the current MC sample. It is possible however to modify the B-spline 

formulation so that only a few solutions are required for the interpolation and 

extrapolation, thereby making its computational cost comparable to that of the linear 

interpolation/extrapolation.  

7.4.3 Solution Accuracy of the Directed Monte Carlo Method 

 The proposed DMC simulation method for multiple Gaussian random variables 

utilizes the hyper-spherical transformation to convert the original Monte Carlo simulation 

into two parts: a uniform distribution simulation on  and a one-dimensional  

distribution along the 

mS
2 -typeχ

rξ  direction, representing the global variation scale. The previous 

tests have established that the DMC method provides a very effective procedure to deal 

with the solution along the rξ  direction, i.e. the probability distribution of the solution at 

each point on  can be obtained effeciently. However, as the original goal is to solve Eq. 

(7.1) for any number of random variables, it is necessary to examine the solution accuracy 

of the DMC method for general cases in comparison with the standard MC simulation 

where the sampling is performed in real space .  

mS

m

m

\

 The solution accuracy of the DMC method in terms of the total number of Monte 

Carlo points is assessed using Example 1. Following the procedure outlined in Section 7.3, 

for a given , different numbers of Monte Carlo samples, �M
ξ
, are generated on . At 

each point 

mS

�
iς , different numbers of sample points 

r
Mξ  are used for rξ  to determine  

�( )r ifξ ς  (refer to (7.47)). In the simulation, the expectation and standard deviation of the 

total strain energy of the structure ( )T Tb u ξ , normalized by the deterministic energy , 

are considered.  

db u

 The computed expectation (mean value) and standard deviation of the normalized 

strain energy via the total number of Monte Carlo points � r
M M M= × ξξ

 up to 50,000 are 

205 



Chapter 7. A Directed Monte Carlo Solution 

9m =depicted in Figure 7.4 for the cases of  with 20, 40 and 100M
rξ
=  respectively. 

Note that the corresponding numbers for �M
ξ

1M =

 are 2500, 1250, and 500. The results 

computed by the standard Monte Carlo simulation, which corresponds to the special case 

of , are also shown in the figure for comparison.  
rξ

 
(a) The mean value 

 
(b) The standard deviation  

Figure 7.4 Convergence histories of the normalized total strain energy versus 

the number of Monte Carlo samples: Example 1                 
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 The figure illustrates that the best convergence is achieved by the standard MC 

simulation, while the convergence of the DMC solution appears to be slightly less smooth 

and the oscillation at the small sample numbers increases with the increase of 
r

Mξ . This 

is not surprising as for a fixed M , an increase of 
r

Mξ  is equivalent to the concentration 

of Monte Carlo samples along fewer directions, therefore reducing the randomness of 

these samples. This suggests that the current hyper-spherical transformation may lose, to a 

limited degree, the unique advantage of the standard MC simulation when the number of 

MC samples used is not sufficiently large. It can be argued that the improved 

computational efficiency of DMC at each sample on  will permit the use of more 

sample points thereby compensating for the slight loss of solution accuracy.  

mS

 However, it is more important to highlight that the hyper-spherical transformation, 

together with the ability of effectively (and accurately) determining �( )r ifξ ς  at each point 

on , may provide a prospect of developing new simulation approaches within the 

general Monte Carlo solution framework that have potential to greatly improve the 

solution accuracy of the current DMC method. This is the line of research that is currently 

being pursued in order to further enhance the overall computational capability of the DMC 

method for general problems with multiple random variables.  

mS

7.5 Summary 

 This chapter proposes a modified Monte Carlo simulation procedure, DMC, for 

solving a stochastic system of linear algebraic equations. The basic idea of DMC for one 

random variable cases is to order the Monte Carlo samples so that when the samples are 

processed in sequence the previous obtained solutions can be utilised to provide a high 

quality initial approximation for the current point thereby significantly accelerating the 

convergence of iterative solvers. In the DMC method, PCG plays a central role and the 

two essential numerical techniques crucial to the success of the method include 

preconditioning and initial approximation predictions. It is proposed on the basis of 

analytical analysis, and later confirmed numerically, that the deterministic matrix K0 can 

serve as a very effective preconditioning matrix. The numerical experiments conducted 
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demonstrate that the proposed DMC can indeed significantly enhance the computational 

effectiveness of the Monte Carlo simulation for general one random variable problems. 

When employing the K0 preconditioning and linear/spline extrapolation schemes, DMC 

can typically perform around 3 times faster than the standard Monte Carlo simulation 

when the number of samples used is not too small.  

 The extension of the DMC method to multiple random variable cases is realised by 

the adoption of a hyper-spherical transformation whereby any m-dimensional random 

vector in  can be expressed by a random variable m\ rξ  representing the global random 

variation scale, and a unit directional random vector on the unit “m-sphere” . Such a 

transformation permits the Monte Carlo calculation of the solution to be undertaken as a 

one random variable case along the 

mS

rξ  direction at each sample on . Although the 

overall computational costs of the Monte Carlo simulation can be reduced in this way, it is 

at the expense of slightly losing solution accuracy when the total number of samples used 

is not sufficiently large. This observation indicates the aspect to be further pursued in 

order to improve the overall performance of the proposed DMC method for general 

multiple random variable problems.  

mS

 The major results in this chapter have been reported in [7.11].  
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Chapter 8 

Concluding Remarks 

 The aim of this thesis as stated in Section 1.3.1 has been achieved. Namely, a 

numerical framework for elastostatics of random media has been formulated. It was 

pursued through four distinct and consecutive phases as follows  

Random Medium Modelling

Stochastic Partial 
Differential Equations

Stochastic System of  
Linear Algebraic Equations 

 
Computer Implementation

Figure 8.1 Research components of this work 

 As reviewed in Chapter 1, a number of important results on the topic of SFEM 

(especially the pioneering works of Shinozuka, Liu and Ghanem) have been reported in 

the past two decades; however, compared with the well established FEM, the SFEM is still 

in its infancy and many fundamental problems are still outstanding. Hence, in order to 

maintain a maximum flexibility during this work, no existing SFEM technique has been 
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taken for granted without independent investigation. Although the thesis is presented in a 

way emphasising its engineering background, equal attention has been paid both to 

practical engineering requirements and to mathematical rigour throughout this work.  

 In the following, a more detailed list of the achievements and conclusions of this 

work is provided. The thesis closes with suggestions for future research.  

8.1 Achievements and Conclusions 

8.1.1 Random Medium Modelling 

 In order to utilize existing mathematical results in SODE and SPDE, the possibility 

of developing a generalized white noise model for practical random media is first checked 

against common sense engineering requirements. The rejection of the white noise 

approach indicates that the non-singular spatial stochastic dependence of material 

properties is a fundamental characteristic of practical random media. Based on the 

recognition of the probabilistic essence of random media and driven by practical 

engineering requirements, the ERM model is consequently defined and its macro-scale 

properties including stationarity, continuity/differentiability and principles for material 

measurements are systematically explored.  

 It should be noted that wide-sense stationary stochastic fields and their first two 

statistical moments have long been used in various SFEM formulations to describe 

random material properties without addressing their suitability. Hence, the basis of the 

ERM model is not new. However, the contribution here is threefold:  

I) The investigation of the white noise approach makes the ERM model a natural 

choice in random medium modelling, which supports the past intuitive use of 

wide-sense stationary stochastic fields in SFEMs. 

II) The specific and detailed mathematical definition of ERM provides a solid 

foundation to interpret the governing SPDE system for elastostatics of random 

media.  

III) The exploration of macro-scale properties of ERM not only improves the general 

understanding of random media but also reveals some defects in existing SFEM 
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formulations, specifically the misuse of some non-differentiable second-order 

stochastic fields in random medium modelling.  

 In the ERM model, random material properties are implicitly defined by their first- 

and second- order statistical moments, while an explicit representation of the associated 

stochastic fields are required in the governing SPDE system for elastostatics of random 

media. Hence, based on the spectral representation theory of wide-sense stationary 

stochastic fields and the standard dimensionality reduction technology of principal 

component analysis, the F-K-L representation scheme is developed for the general elastic 

tensor of ERM.  

 Compared with the widely used K-L expansion based on the standard finite 

element method, the F-K-L representation scheme has the following advantages:  

I) The K-L expansion method is essentially limited to the representation of a single 

random material parameter, while the F-K-L representation scheme is designed for 

the general random elastic tensor and therefore can deal with any number of 

correlated random material properties.  

II) The K-L expansion method is based on FE meshes, and therefore its approximation 

accuracy can not be explicitly controlled and depends on the mesh density used. 

However, the F-K-L representation scheme is completely mesh free and 

independent of the specific shape of the random structure under consideration. In 

particular, it is achieved with an explicit and a priori error control.  

III) The eigenvalue decay rate in the F-K-L representation can be approximately 

predicted without solving any equation, which provides a useful function for 

evaluating the randomness scale of practical engineering systems with variable 

uncertainties.  

 In addition, during the development of the F-K-L representation scheme, an 

accurate and efficient quadrature algorithm for multidimensional oscillatory functions is 

obtained, which reduces the associated computational cost by up to several orders of 

magnitude. It can be expected that this novel numerical integration algorithm might also 

provide a key to resolving many other physical problems where integrations of similar 

multidimensional oscillatory functions are present.  
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8.1.2 Stochastic Partial Differential Equations  

 Mechanical behaviours of random media conform to the same principles of 

mechanics as homogeneous materials. Hence, elastostatics of random media is formally 

described by the same equations as in the deterministic case. However, the original PDE 

system becomes a SPDE system due to the presence of stochastic fields, and all the 

associated differential/integral operators need to be redefined in the context of probability. 

In this thesis, following the mathematical definition of ERM, mean square convergence is 

taken as the basic mode of convergence to interpret the governing SPDE system for 

elastostatics of random media (or more specifically ERM). From a mathematical 

viewpoint, it is of significant importance to investigate the existence, uniqueness and 

analytical properties of the solution for the resulting SPDE system. However, this 

important aspect is out side the scope of this thesis whose focus of solution is on its 

engineering aspect, i.e. developing effective numerical methods to approximately solve 

the corresponding SPDE system.  

 It should be noted that the mathematical investigation of the SPDE system for 

elastostatics of random media could be very challenging and its study might require 

fundamentally new developments of mathematical theories and methods. Indeed, even for 

the conventional PDE systems of mechanics, many basic questions regarding the existence, 

uniqueness and analytical properties of their solutions are still open. A well known 

example for this is the existence and smoothness of the solution for Navier-Stokes 

equations, which is listed in the CMI Millennium Problems [8.1].  

8.1.3 The Stochastic System of Linear Algebraic Equations 

 Based on the F-K-L representation for the general elastic tensor of ERM and 

following a similar procedure as in the standard finite element method, the SPDE system 

for elastostatics of random media is discretized to obtain a stochastic system of linear 

algebraic equations. Two numerical techniques including the joint diagonalization method 

and the DMC (directed Monte Carlo) method are then proposed to solve the resulting 

stochastic linear algebraic system.  

 The joint diagonalization method provides a novel solution strategy for the 

stochastic system of linear algebraic equations. It simultaneously diagonalizes all the 
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matrices in the equation system via a sequence of similarity transformations, following 

which an explicit solution is obtained by inverting the sum of the diagonalized stochastic 

matrices. Unless all the matrices share exactly the same eigenstructure, the joint 

diagonalization can only be approximately achieved. Hence, the solution is approximate 

and corresponds to a particular average eigenstructure of the matrix family. Specifically, 

the classical Jacobi algorithm for the computation of eigenvalues of a single matrix is 

modified to accommodate multiple matrices and the resulting Jacobi-like joint 

diagonalization algorithm preserves the fundamental properties of the original version 

including its convergence and an explicit solution for the optimal Givens rotation angle.  

 Although the use of the proposed Jacobi-like joint diagonalization solution is 

limited in stochastic linear algebraic systems with small-scale matrices, the joint 

diagonalization method, as a general solution strategy for the stochastic system of linear 

algebraic equations, indicates a promising direction to develop efficient solvers for 

large-scale practical problems consisting of random media. In addition, as a decoupling 

technique, the major principle in the joint diagonalization solution strategy not only holds 

for static/stationary random medium problems in mechanics, but is also applicable to 

dynamic/transient problems involving random media.  

 In order to efficiently solve the stochastic system of linear algebraic equations 

containing large-scale matrices, a modified Monte Carlo method, namely DMC, is 

developed. The DMC method solves the stochastic linear algebraic system at each Monte 

Carlo sample with the PCG (preconditioned conjugate gradient) method. By utilizing the 

spatial proximity of Monte Carlo samples, high quality initial approximations are provided 

for the PCG solver to significantly reduce the total cost of Monte Carlo simulations. 

Furthermore, to achieve the best solution efficiency, different preconditioning matrices are 

compared in the DMC framework.  

8.1.4 Computer Implementation 

 In the course of this work, an independent multipurpose simulation system, termed 

OMEGA, has been implemented on Windows XP System with Microsoft Visual C++. 

Starting from scratch provided the maximum flexibility in algorithm development and also 

allowed a high degree of modularity to be achieved. The OMEGA system is designed to 
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solve both stochastic and deterministic problems in the same framework. Although not 

stated in this thesis, flexible 3D visualization and manipulation facility, which has been 

partially demonstrated in [8.2-8.3], is also provided with the OMEGA platform.  

8.2 Suggestions for Future Research  

 It may be said that the material presented in this thesis constitutes a meaningful 

tool for accelerating the evolution of the field of stochastic finite elements. However, 

compared with the well developed finite element method, the methodology presented in 

this thesis is incomplete, and further development is needed to advance the proposed 

numerical framework to a level where both reasonable mathematical rigour and sufficient 

computational efficiency are achieved so that it can be applied to solve large scale 

practical problems involving random media. Hence, the following suggestions are made 

for future research.  

8.2.1 Material Modelling of Random Media 

 The first key issue in random medium modelling is to extend the ERM model and 

the F-K-L representation from elasticity to plasticity such that creep, fatigue and 

their resulting fracture mechanisms in random media can be appropriately modelled. 

This is of crucial importance for a more accurate understanding and analysis of 

many random medium systems such as composites with metal matrix and random 

inclusions, large-scale metal structures with randomly distributed microcracks, and 

Micro-Electro-Mechanical Systems (MEMS) where micro-scale heterogeneous 

material properties need to be taken into account.  

 In the F-K-L representation scheme of the ERM elastic tensor, Fourier spectral 

analysis is employed to examine the global “energy-frequency” distribution of the 

stochastic field corresponding to each individual random material parameter. 

Because of its prowess and simplicity, Fourier analysis has dominated data analysis 

efforts since soon after its introduction. Although the Fourier transform is valid 

under extremely general conditions, there are some crucial restrictions of the 

Fourier spectral analysis: the system must be linear; and the data must be strictly 

periodic or stationary; otherwise, the resulting spectrum will make little physical 
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sense because spurious harmonic components are inevitably induced by the 

nonlinearity and nonstationarity. Hence, when significant nonlinearity and 

nonstationarity are present in the constitutive relation of plastic random media, the 

performance of the F-K-L representation will diminish. To overcome this potential 

problem, methods for processing non-stationary data, including the spectrogram, 

wavelet analysis, the Wigner-Ville distribution, the evolutionary spectrum, the 

empirical orthogonal function expansion and the empirical mode decomposition, 

are suggested for further investigation.  

8.2.2 Stochastic Partial Differential Equations 

 The principle discussed in Section 8.1.2 also holds for general static/steady-state 

and dynamic/transient problems regarding random media. That, by redefining the 

associated differential/integral operators in the context of probability, the conventional 

governing PDE systems in continuum mechanics can be transformed into SPDE systems 

to describe the behaviour of practical random medium systems. The resulting SPDEs 

should not only be able to describe the irregular spatial variation of material properties of 

random media, but also be able to accommodate discontinuities commonly existing in 

practical random media. Hence, it is suggested to take the mean square convergence, 

instead of the widely used almost sure convergence, as the basic mode of convergence to 

define continuity, differentiability and integrability in the corresponding SPDE system. 

However, for the system of SPDEs to be studied here the main point is the ability to solve 

the system rather than the existence or properties of a solution.  

8.2.3 Numerical Solutions 

 For large-scale practical engineering systems composed of random media, 

computational methods are the only realistic choice to solve their governing SPDEs. The 

F-K-L representation (including its improvements suggested in Section 8.2.1) decomposes 

material properties of random media into a deterministic part and a random part, which in 

turn isolates variable uncertainties from the associated SPDE system. This decoupling 

technique provides a simple and powerful approach to pursue the solution of SPDEs 

arising from random medium mechanics, in that, standard finite element techniques can be 

applied to discretize the decoupled SPDE system. Specifically, for static/steady-state 
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problems, the final stochastic algebraic equation system has the form  

1

k

i i
i

α
=

⎛ ⎞ =⎜ ⎟
⎝ ⎠
∑ A x b ,                                             (8.1) 

where iα  are random variables, iA  deterministic matrices, b  a deterministic/random 

vector, and x  the unknown vector to be sought; for dynamic/transient problems, the final 

stochastic algebraic equation system has the form  

31 2

1 1 1

kk k

i i i i i i
i i i
α β χ

= = =

⎛ ⎞⎛ ⎞ ⎛ ⎞
+ + ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∑ ∑ ∑ =A x B x C x b ,                       (8.2) 

where iα , iβ  and iχ  are random variables, and iA ,  and  are deterministic 

matrices. The major task of this phase is to develop efficient numerical methods for the 

solution of Eqs. (8.1) and (8.2).  

iB iC

 It is highlighted that, in contrast to conventional deterministic algebraic equation 

systems, the solution of stochastic Eqs. (8.1) and (8.2) is a much underdeveloped area in 

numerical analysis and no effective solution strategies are readily available, particularly 

for large scale problems. On the other hand, this situation can offer exciting opportunities 

to explore the problem in many different ways, and contributions made in this respect will 

be of benefit not only to the increasingly important stochastic modelling field but also to a 

wide range of scientific and engineering communities as well.  

 It is well known that for a deterministic system of linear algebraic equations 

=Ax b , there exist various numerical algorithms developed for different types of matrices 

and different solution requirements, which are all explicitly or implicitly based on 

inverting the matrix under consideration. For a more general stochastic system of linear 

algebraic equations (8.1), it can be similarly expected that there will be different numerical 

algorithms based on the joint diagonalization of multiple matrices, which essentially give 

an approximate inverse of the matrix family. For the solution of the stochastic system of 

ordinary differential equations (8.2), it is clear that the joint diagonalization strategy can 

also be employed to approximately decouple the equation so that the complexity in 

obtaining the solution can be significantly reduced.  

8.2.4 Verification and Application 

 Unlike the pure research in SPDEs which is based on highly abstract mathematical 
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definitions and driven by the elegance of mathematics, this work was initiated by practical 

applications. Its objective is not to develop a comprehensive SPDE theory, and instead the 

main motivation is to effectively analyze practical engineering systems composed of 

random media. Hence, the theory and algorithms developed in this work must be verified 

and further applied to practical engineering problems. Specifically, the following three 

classes of engineering systems are suggested for detailed investigation.  

 Large-scale rock, concrete and metal infrastructures in which joints, flaws and 

microcracks commonly exist. A key issue in the construction and management of 

these engineering structures is risk assessment. The discontinuity and irregular 

spatial variation of material properties are the major challenges in the analysis of 

these engineering systems, and they cannot be met by the conventional 

deterministic analysis tools without introducing a conservative safety factor. The 

probabilistic material model provides a rational tool to describe random material 

properties and discontinuities through the medium. Hence, it is expected that a 

more accurate risk assessment can be achieved by the theory and computational 

methods to be developed in the future research, which in turn significantly reduce 

the associated costs in the design, manufacture and maintenance of these 

engineering infrastructures.  

 Micro-electro-mechanical systems that generally range in size from a micrometer 

to a millimetre. Common applications of MEMS include inkjet printers, 

accelerometers in modern cars for airbag deployment in collisions, and disposable 

blood pressure sensors etc. Due to the difficulties in performing accurate 

experiments at the micro scale, the standard finite element analysis has been 

extensively used in the design of MEMS. However, as heterogeneous material 

properties are inevitably present at the scale these devices normally operate, the 

simulation results from FEM are often controversial. Hence, the analysis tools 

developed for general random media in the future work could be highly beneficial 

to the development of MEMS.  

 Human tissues such as bones and teeth that have multi-scale irregular material 

structures. The material properties of human tissues bear significant difference 

between different individuals, and they also vary for the same individual, especially 

when the person is ill. In biomedical engineering, there has been an increasing need 

for providing computational tools to assist medical diagnosis and treatment. The 
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intrinsic randomness existing in human tissues makes stochastic modelling an 

attractive approach. It is therefore expected that the probabilistic material model 

and the associated analysis tools developed in the future work will find its use in 

biomedical engineering, especially in the analysis of bones and teeth.  

 An important phenomenon that requires careful treatment in all applications above 

is size-effects, which are commonly observed in most practical random media. To date, the 

only probabilistic model to account for size effects of random media is Weibull’s statistical 

model [8.4-8.5], in which random media are simplified into a chain connected with a 

sequence of independent rings. Weibull’s model is often used to qualitatively explain size 

effects, but it has been generally discarded in engineering analysis because it relies on 

adjustable artificial parameters [8.6]. Also, Weibull’s model runs into trouble when the 

scale of the random medium tends to infinity. The failure of Weibull’s model actually 

comes from its over simplification and not taking into consideration the interdependence 

of separate points within the medium. The ERM model (including its improvements 

suggested in Section 8.2.1) is based on the probabilistic essence of practical random media, 

and it fully takes into account the spatial stochastic dependence between different material 

properties. Hence, it is expected that the related future research could provide a 

meaningful tool for the analysis and prediction of size-effects in practical random media. 

This important aspect should be thoroughly investigated and verified in the context of all 

the above applications.  
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