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Summary

A SPECTS of constitutive modelling and numerical prediction of failure in
finitely straining ductile metals are investigated in this thesis. Attention

is focused on the construction of a framework for prediction of failure. The
development of a model for finite strain elasto-(visco)plastic damage; a low
order finite element for the numerical treatment of incompressibility and an
adaptive mesh refinement strategy for this class of problems, constitute the
building blocks of the overall approach. Emphasis is given to the efficient
numerical simulation of the proposed theories in large scale problems.

The characterisation of material response has to account for the interaction
between the different phenomena that precede fracture initiation. The deriva-
tion of constitutive models is addressed within Continuum Damage Mechanics
theory. Particularly, the effect of micro-crack closure which may dramatically
decrease the rate of damage growth under compression is emphasised.

With regard to the computational treatment of incompressibility, a new
technique which allows the use of simplex finite elements in the large strain
analysis of nearly incompressible solids is proposed. It is based on relaxation of
the excessive volumetric constraint by the enforcement of near-incompressibility
over a patch of elements. The new elements are implemented within an implicit
quasi-static and an explicit transient dynamic finite element environment.

With the aim of achieving an effective and robust adaptive strategy for
this class of problems, a new damage-based error indicator which represents
the essential features of the phenomena under consideration is addressed. The
idea is to correlate the adaptive procedure with the failure mechanism.

The algorithms for numerical integration of the corresponding path depen-
dent constitutive equations are discussed in detail. The strategy for numerical
simulation of the associated incremental boundary value problems relies on
fully implicit and explicit displacement based finite element procedures.

The robustness and efficiency of the proposed framework is illustrated by
means of numerical examples. These are compared with experiments and
numerical results obtained by other authors.
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Chapter 1

Introduction

OVER the last years, there has been an increasing industrial awareness
of the potential benefits that accrue from employing scientifically-based

approaches in the conception of new products. This is particularly true in the
design of complex geometries with tight mechanical and safety specifications.
The conception of such products requires careful planning of every stage. It is
necessary to ensure that the designed products and processes are optimised,
specially in competitive sectors of manufacturing industry, and comply with
both functionality and low production cost. To overcome the challenging prob-
lems encountered during the design stage and maintain a competitive edge, it is
of the utmost importance to be constantly up-to-date with the latest scientific
and technological progress.

The need for reliable and robust tools in engineering design allied to the
advent of digital computers, has triggered the gradual evolution of numerical
techniques. The remarkable improvements in numerical models and associ-
ated algorithms and, more importantly, dramatic increases in computational
power/cost ratios have made a great impact on the acceptance of numerical
techniques within both research and industrial environments. Computational
procedures, mostly based on the finite element method, have been continually
developed and improved, for both linear and nonlinear applications. Particu-
larly, in the context of nonlinear solid mechanics problems, considered in this
work, there has been considerable advancement in several topics of finite elem-
ent research. In many areas, such techniques have reached a high degree of
predictive capability and, today, are of considerable assistance to the designer
and essential instruments to address realistic engineering problems.

During the initial development of computer codes for stress analysis, the
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constitutive description of the material response has been mostly dominated by
the classical and mathematically established theories of elasticity and elasto-
(visco)plasticity. Over the years, the finite element procedures originally based
in such material models have been continuously modified and adapted to cope
with more complex deformation processes involving, large deflections, finite
strains and viscous effects, etc. One of the most outstanding examples of
developments in the field of nonlinear solid mechanics, which have had a ma-
jor impact on simulation of forming processes, are the strides that have been
made in the numerical solution of large deformation problems at finite inelas-
tic strains, and, in particular, finite strain plasticity problems (Perić & Owen,
2004). The formulation of rigorous solution procedures has been the subject
of intense debate over the last two decades or so and only recently has some
consensus been reached on an appropriate constitutive theory based on ten-
sorial state variables to provide a theoretical framework for the macroscopic
description of a general elasto-(visco)plastic material at finite strains.

Despite such advances, several issues still remain open, such as the mod-
elling of material failure that may result from the gradual internal microstruc-
tural deterioration associated with high straining. In such cases, the develop-
ment of new and more refined constitutive models deserves careful considera-
tion, and the topic remains a fruitful area of research.

A general feature encountered in the FE simulation of finite strain (visco)
plasticity problems is that the optimal mesh configuration changes continually
throughout the deformation process requiring mesh coarsening as well as mesh
refinement during use of any adaptive remeshing process. Considerable benefits
may accrue by implementation of such strategies in terms of robustness and
efficiency, realizing that the requirements of computational efficiency are ever
increasing. At the same time, error estimation procedures will play a crucial
role in quality assurance by providing reliable finite element solutions.

In many cases, the computational treatment of the problem, is far sim-
pler when lower order elements are adopted. This is particularly true in large
scale problems, which may require the incorporation of adaptive mesh refine-
ment techniques, and where a number of complex interacting phenomena, such
as frictional contact, high strains, progressive material degradation, may be
present. In addition, the adopted finite elements should be able to produce
accurate solutions under constitutive constraints such as the nearly incompre-
ssibility that characterises ductile metals.

Obviously, the final objective is to provide cost effective computer programs
which can accurately predict the behaviour of materials under a broader range
of circumstances. Therefore, the development of robust and efficient numerical
methods, suitable to the numerical simulation of large scale problems, must
accompany the derivation of such new theories.
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1.1 The scope of the thesis

The purpose of this thesis is to construct an efficient framework, which in-
corporates several numerical techniques, to model the gradual internal dete-
rioration of ductile metals and predict material failure in relevant practical
problems. Due to the diversity and complexity of the physical phenomena
involved, several different computational aspects of the problem have been ad-
dressed, leading to the enhancement of existing algorithms and development
of new techniques. Attention is focused in the derivation of:

- Constitutive models for elastoplastic and elasto-viscoplastic damage at
finite strains. The main objective is to include the effect of micro-crack
closure in the conventional Lemaitre isotropic ductile damage model
(Lemaitre, 1985a,b);

- A technique which allows the use of simplex finite elements (three noded
triangle in 2-D and four noded tetrahedron in 3-D), in the large strain
analysis of nearly incompressible solids;

- An efficient adaptive remeshing strategy that includes the use of a poste-
riori error estimates, using Zienkiewicz & Zhu (1987) projection/recovery
technique, here based on the rate of damage work together with appro-
priate transfer operators. The aim is to correlate the adaptive procedure
with the underlying failure mechanism;

Emphasis is given to the issues related to continuum modelling as well
as to the computational aspects relevant to the application of the proposed
models in large scale numerical simulations in both implicit and explicit time
integration schemes.

1.1.1 Continuum constitutive modelling

Crucial to the characterisation of material response close to rupture is the
appropriate formulation of constitutive equations which account for the in-
teraction between the different phenomena that precede fracture initiation.
Damage and plasticity are undoubtedly coupled, as the presence of internal
deterioration introduces local stress concentrations which may in turn drive
plastic deformation. One possible alternative to describe the coupling between
damaging and material behaviour is the adoption of the so-called Contin-
uum Damage Mechanics (CDM) theory (Kachanov, 1958; Chaboche, 1981;
Lemaitre, 1984; Krajčinović, 1985). According with this approach, the devel-
opment of constitutive models is based on the assumption that the progressive
internal deterioration observed prior to the onset of a macro-crack can be ef-
fectively represented by one or more internal variables of scalar, vectorial or
tensorial nature. Such variable(s) - named the damage variable(s) - can be seen
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as phenomenological, averaged counterparts of microscopic measures of defects
within a representative volume element. Their evolution must be defined by
thermodynamically consistent constitutive relations, usually represented by a
set of differential equations in time. Based on a solid mathematical and ther-
modynamical foundation, Continuum Damage Mechanics is today recognised
as an effective tool of mathematical modelling, which can help bridge the gap
between the microscopic analysis of the internal deterioration of the materials
and engineering models suitable for design. In this context, a purely phe-
nomenological approach to the description of internal degradation is adopted.
The need for consideration of micro-crack closure effects will be particularly
emphasised in the development of models for damage in ductile materials.

1.1.2 Element technology for near incompressibility

One aspect of paramount importance is the fact that the adopted finite ele-
ments must be able to cope with the wide range of techniques employed in
the simulation of complex problems. This is particularly true in the context
of industrial forming processes, where complex geometry and contact condi-
tions are typically present and many problems are characterised by extremely
high strains. Even when the initial geometry is simple, the presence of very
large strains may lead to poorly shaped elements unless some form of adaptive
remeshing is used. In addition, the adopted finite elements should be able to
produce accurate solutions under constitutive constraints such as the nearly
incompressibility that characterises ductile metals. As the incompressibility
limit is approached, conventional displacement-based finite elements with low
order shape functions are known to perform poorly, showing the typical volu-
metric locking behaviour which may completely invalidate the finite element
solution.

This topic constitutes one of the most challenging tasks in finite elem-
ent research. Due to their inherent simplicity, standard isoparametric sim-
plex elements (linear triangles in 2-D and linear tetrahedra in 3-D) are known
to provide an excellent framework in which contact conditions coupled with
the necessary remeshing procedure can be dealt with in an effective and ef-
ficient manner. Therefore, the numerical treatment of incompressibility, was
addressed here with the development of a methodology which extends the
so-called F-bar procedure proposed by de Souza Neto et al. (1996) so as to
accommodate simplex elements in the large strain analysis of nearly incom-
pressible solids.

1.1.3 Adaptive remeshing for history dependent problems

For a finite element solution to have practical industrial use, predicted fields
such as stresses, inelastic strains and, particularly in the present context, dam-
age fields (including the possible prediction of material failure location), must
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be contained within acceptable bounds of error. Error bound solutions can
only be attained if appropriate mesh quality is maintained throughout the en-
tire simulation. In addition to acceptable element aspect ratio, mesh quality
implies sufficient refinement in areas where the relevant fields present steeper
gradients. These areas are the portions of the workpiece where most of the ac-
tion localises, i.e., where the relevant dissipative mechanisms are most active.
In order to effectively model material failure the essential idea is to correlate
the adaptive procedure to the underlying failure mechanism. In this thesis,
the damage model that includes micro-crack closure is employed to derive an
error measure based on rate of damage work. Therefore, the adaptive proce-
dure should not only capture the progression of the plastic deformation but
also provide refined meshes at regions of possible material failure.

1.1.4 Numerical aspects

The use of path dependent constitutive equations, as is the case for damage
models, leads invariably to the necessity of formulating algorithms for numer-
ical integration of the associated rate constitutive equations. To integrate
the constitutive equations for finite strain elasto-(visco)plastic damage, algo-
rithms based on the operator split method, which generalizes the standard
return mappings of the infinitesimal theory, are used.

The basic strategy for the numerical simulation of the models derived in
this thesis relies on displacement based incremental finite element procedures,
in conjunction with the strain driven numerical integration procedures men-
tioned above. Since the equations associated with such constitutive models are
in general highly non-linear, the use of appropriate methods for solution of non-
linear problems is of crucial importance in determining the overall efficiency
of the proposed constitutive-numerical framework. The exact linearisation of
the field equations provides the basis of the standard Newton-Raphson itera-
tive scheme for solution of the associated nonlinear boundary value problem
(Hughes & Pister, 1978). We remark that, within the present framework,
consistent linearisation is regarded as a crucial aspect of the formulations pre-
sented. The asymptotically quadratic rates of convergence resulting from the
exact linearisation of the field equations more than justify the importance of
this issue.

1.2 Layout

The thesis is divided into eight chapters. After this introductory one, Chapter
2 reviews some physical aspects related to mechanisms of deformation and
damage that lead to fracture onset of ductile metals.
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Chapter 3 This chapter sets out the basic concepts of continuum mechanics
and thermodynamics which form the basis for the constitutive models devel-
opments in the subsequent chapters.

Chapter 4 In many applications the infinitesimal deformation hypothesis
cannot be introduced without significant loss of accuracy. Therefore, this chap-
ter is devoted to the theory and finite element implementation of finite strain
elasto-plasticity and visco-plasticity. The theory and numerical algorithms
discussed here are an extension of the infinitesimal ones.

Chapter 5 In this chapter, models for finite strain ductile damage for rate
independent and rate dependent materials are developed. These isotropic dam-
age models include the important effect of micro-crack closure and preserve the
classical return mapping algorithms employed in the integration of the consti-
tutive equations of infinitesimal elastoplasticity. The prediction of failure in
ductile metals is based on fracture indicators and the scalar damage variable.

Chapter 6 The numerical treatment of incompressibility for low order dis-
placement based finite elements is addressed in this chapter. Firstly, an as-
sessment of the average nodal volume formulation for the analysis of nearly
incompressible solids under finite strains, is undertaken. Secondly, a methodol-
ogy which allows the use of simplex finite elements is proposed. The derivation
of the exact tangent moduli, employed in the solution of the implicit iterative
scheme, is described in detail. Finally, the same concept is adapted for use
within an explicit transient dynamic finite element environment.

Chapter 7 For a finite element solution to have practical industrial use,
predicted fields must be contained within acceptable bounds of error. Error
bound solutions can only be attained if appropriate mesh quality is maintained
throughout the entire simulation. An overview of the existing error estimates
and transfer operators for inelastic problems is included and an a posteriori
error indicator using the Zienkiewicz & Zhu (1987) projection/recovery tech-
nique and based on ductile fracture concepts is suggested, i.e., rate of damage
work, for ductile metals.

Chapter 8 In this chapter the main issues addressed in the thesis are sum-
marized and the conclusions of this work are presented along with suggestions
for future research.

In addition to the above, two appendices are included. Appendix A is con-
cerned with isotropic tensor-valued functions of a symmetric tensor which are
exploited throughout the thesis. It presents some important basic properties
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as well as formulae that can be used in practice for the computation of func-
tion values and function derivatives. In Appendix B we present the derivation
of the linearised version of the virtual work equation. In particular, we show
the basic steps in the linearisation of the virtual work equation leading to the
F-bar-Patch element tangent stiffness expressions proposed in chapter 6.

It is worth noting that part of the research work provided in this thesis
has been presented in references (Owen et al. , 2002; Andrade Pires et al. ,
2003a,b; Owen et al. , 2003; de Souza Neto et al. , 2003; Owen et al. , 2004c,b,a;
Andrade Pires et al. , 2004a,b,c; de Souza Neto et al. , 2005b).



Chapter 2

Physical aspects of deforming

metals

S INCE the identification of dislocations and relative motion, or slip, on
specific crystallographic planes in the 1930’s, enormous advances have been

made in understanding the underlying physics of plastic deformation. This
has lead to the development of theories of plasticity, including the description
and evolution of polycrystalline texture, dislocation interactions and hardening
laws. Bolstered by the advances in high-resolution electron microscopy, the
examination of the atomic-level structure brought new insights to the physical
phenomena. Much has been revealed about the physics of strain hardening,
dislocation interactions, effects of second phases and high angle boundaries.

Several theories (or analytical models) were devoted to the formulation of
constitutive models to describe the actual behaviour of materials. Despite
some great strides in enriching the arsenal of methods for handling a variety
of practically important problems, continuum mechanics models, that are a
true representation of the physics of real material systems, for a wide range of
circumstances remains still an elusive goal.

The objective of this chapter is to give a general idea of the structure, mech-
anisms of deformation and gradual internal deterioration of metals, commonly
used in engineering practice. The understanding of the underlying physical
phenomena is necessary in order to formulate the hypothesis upon which the
macroscopic phenomenological theories, presented in Chapters 3 – 5, can be
based. The continuum models, must indeed integrate the phenomena associ-
ated with discrete entities such as atoms, crystals, molecules, cells, etc., to the
level of homogeneous continuum models.
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2.1 Structure of metals

A summary of the physical concepts that underly the structure of metals and
mechanisms of deformation is presented in this section. The material reviewed
here is quite basic and is meant to refresh some important concepts that will
be used in forthcoming chapters. A more comprehensive account of the subject
can be found, for instance, in Dieter (1986).

2.1.1 Crystal structure

The great majority of metals and alloys which are used in engineering practice
consist of polycrystaline aggregates, that is, they are composed of large numbers
of grains, each of which has the structure of a simple crystal - monocrystal.
These grains can be seen by examining a suitably prepared, polished section
using a light microscope. The grain diameters can vary from some microns
to several millimeters and the borders between adjacent grains are known as
grain boundaries (see Figure 2.1).

diameter = 10 [mm]

metallographic section of a rivet. In each square
millimeter there are several hundred grains

vacancy

screw
dislocation

unit cell

continuous
grain boundary
precipitates

grain diameter

grain boundary
precipitates

slip lines

high melting-point
inclusion

coherent
precipitates

incoherent
precipitates

edge dislocation

interstitial
foreign atom

substitutional
foreign atom

Figure 2.1: Structure of a polycrystalline metal based on the example of an iron
rivet (reproduced from Engel & Klingele (1981)).

Inside each grain the atoms are arranged in a three-dimensional geometric
fashion and are held together by electromagnetic forces between the electrons of
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neighbouring atoms. The order of magnitude of the ”radius” of an atom varies
from 10−7 to 10−6 [mm] and the bond between atoms results from the sharing
of electrons in the outer shells. The stable three-dimensional arrangement
of atomic packing is determined by the minimum energy required to fit the
atoms together in a regular pattern. It should be noted, that in Figure 2.1,
the lattice spacing is largely exaggerated, for illustrative purposes, in relation
to the grain size. The most common metallic lattices belong to one of the
following systems: cubic centered (CC) crystals, face centered cubic (FCC)
crystals and close packed hexagonal (CPH) crystals (see Figure 2.2). These

(a) (b) (c)

Figure 2.2: Cell structures. Schematic illustration: (a) CC crystals; (b) FCC crystals
and (c) CHC crystals.

lattices possess axes and planes of symmetry, the latter being in general the
planes in which the atoms are most densely packed and which possess a lower
resistance to shear. Those planes are called slip or glide planes. Within each
slip plane there are in turn preferred slip directions, which once more are those
of the atomic rows with the greatest density, for the same reason. A slip plane
and a slip direction are said to form a slip system.

The structure of the perfect crystal, as described above, would yield higher
cohesive forces binding atoms together, for a small displacement of the atoms
from their original position, than an actual crystal is observed to sustain.
In a real crystal, experimental evidence shows that the elastic deformation
ceases after a macroscopic shear strain of order 10−4, whereas a perfect crystal
should attain an elastic shear strain of order 10−1. This discrepancy can only
be explained by the presence of defects that disturb the crystal lattice, formed
during growth or introduced by subsequent handling. These imperfections are
generally classified as point and surface defects and dislocations (line defects).

Point and surface defects When a foreign atom occupies the place of
an atom of the host lattice, this is referred to as a substitutional impurity
atom. If the foreign atom is located between the atoms of the host lattice,
this is referred as an interstitial impurity atom. An unoccupied lattice site
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in known as a vacancy. These imperfections result in a local distortion of
the lattice (see Figure 2.1). Another type of deficiency, which is characterized
by the surfaces of separation between crystals or parts of a crystal where
the orientations are different, is known as surface defects. Their thickness
is of the order of 8-10 atomic radii. Typical examples are grain boundaries
in polycrystals, dislocation loops and cells, twin crystal boundaries, interface
between two phases (some of these defects are schematically illustrated in
Figure 2.1).

Dislocations (line defects) The most important lattice defects in grains
are known as dislocations and they are the main source of plastic flow in
metals. A line of dislocation is a defect in the arrangement of atoms which
is repeated periodically and which represents the equilibrium state of atoms
with slightly different magnetic fields. Dislocations are created during the
growth of the crystals and their density is very high in most of metals. An
edge dislocation in a crystal can be visualized as one line on one side of which
an extra half-plane of atoms has been introduced, as depicted in Figure 2.1, for
a simple cubic lattice. At a sufficient number of atomic distances away from
the dislocation line, the lattice is virtually undisturbed. A screw dislocation
is exemplified by a local rotation of the upper part of the crystal (see Figure
2.1).

2.1.2 Phases and precipitates

Most metals and alloys are generally produced in a liquid state, and their
structure is formed as they solidify when cooled. The term phase signifies
crystallites having the same crystal structure and similar chemical composi-
tion. Although alloys can have a single phase, the majority consists in more
than one phase. The different phases are formed either during cooling from
the molten state or during the subsequent heat treatment as a consequence of
the temperature dependence of the solubilities of the component elements. If
a metal lattice contains more foreign atoms than it can dissolve at any given
temperature, then the super-saturation results in the formation of finely dis-
persed particles of a second phase known as precipitates. Coherent precipitates
show a close relationship with the parent lattice. Incoherent precipitates are
those with their own phase boundaries (Figure 2.1).

A favored region for precipitation is the grain boundary. Grain boundary
precipitates may completely surround the grains as a continuous layer. High
melting point inclusions which have been present as a suspension in the metallic
melt can be found irregularly distributed through the subsequent formed grain
structure (see Figure 2.1).

Remark 2.1 Considering the random orientation of individual grains and de-
fects in a typical metal, the overall behaviour of the aggregate in many cases, is
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largely isotropic. However, in practice, when subjected to finite inelastic strain-
ing, polycrystalline metals rarely remain truly isotropic but, under a wide range
of circumstances, the isotropic hypothesis provides a very good approximation.
Typical phenomena as the Bauschinger effect and preferred orientation, which
occur as a result of different plastic deformation of grains with different orien-
tations, demonstrate the important effect of crystalline structure on the plastic
behaviour. In such cases the assumption of isotropy can not be introduced
without substantial loss of accuracy of the constitutive model.

2.1.3 Physical mechanisms of deformation

Elastic deformation

Elasticity is directly related to the relative movement of atoms. The physi-
cal study of the properties of a lattice leads to the theory of elasticity. The
observed macroscopic effect is the result of the variations in the interatomic
spacing necessary to balance the external loads, and also reversible movement
of dislocations. These geometrical adjustments are essentially reversible. In a
purely elastic deformation, the initial configuration of atoms is restored upon
the removal of the load.

Permanent deformation

Plastic or viscoplastic permanent deformations occur at the grain level, and
correspond to a relative displacement of individual blocks or layers of metal
along definite lattice planes within each grain, which remain when the load is
removed. Depending on the case, the deformations are purely intragranular
(inside the grains) or involve intergranular displacements. The ratio of joint
deformation to grain deformation remains small, but it generally increases with
increasing temperature and also decreasing strain rate.

Deformation by slip and twinning The symmetry planes in the crystal
lattice, which are also the reticular planes of the most densely packed atoms,
form the parallel planes with the greatest distance between them. It is therefore
on these planes that slip due to shear can occur in the direction of maximum
shear stress. They occur in the form of parallel slip bands which result in
steps on the exterior of the surface samples [see Figure 2.3(a)] or in the form
of twins which consist of slips symmetric with respect to a plane [see Figure
2.3(b)]. Twinning is probably the most characteristic deformation that occurs
at average room temperature. It occurs in CC and CPH crystals in conjunction
with slips, but also in FCC crystals where the energy of stacking defects is low.
These defects, slips and twinnings, are, in fact, heterogeneous deformations at
the crystal level, but may be considered homogeneous at the macroscopic level.
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(a) (b)

Figure 2.3: Microscopic aspect. (a) Slip bands in nickel based Waspaloy; (b) Twin-
ning deformation in zinc (reproduced from Lemaitre & Chaboche (1990)).

Deformation by dislocation movements The presence of dislocations
considerably reduces the stability of the crystal lattice. Their mobility is the
essential cause of permanent deformations, homogeneous at the macroscale.
Large dislocations movements increase the density of dislocations which, in
turn, increases the number of blockings and leads to further hardening. When,
under an external load, an edge or screw dislocation moves across a crystal,
irreversible displacement occurs - slip displacement (see Figure 2.4). This

Slip plane
ττττ

ττττ

Figure 2.4: Movement of an edge dislocation under a shear stress.

displacement mechanism requires the breaking of bonds only in the vicinity
of the dislocation line, and successively from one atom to the next. In the
more complex case of a dislocation loop, the plane of the loop can digress into
another plane (a perpendicular one for example) arising from its ”pure screw”
point to avoid an obstacle such as an impurity - deviated slip.

An edge dislocation can move perpendicularly to its slip plane with the
transport of material. If a void is close to a dislocation line, then a distortion
of the lattice results in the rearrangement of the whole row of atoms. Thus,
in this mechanism called climb displacement, the dislocation climbs up by
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one interatomic space. This displacement mechanism, linked to the diffusion
of vacancies or foreign atoms, is favored by thermal activation. The rate of
dislocation displacement (slip or climb) can either be very low or very high
depending on the applied stress, nevertheless, it cannot be higher than the
speed of sound of the material under consideration.

2.2 Damage mechanisms and their appearance

Several internal metallurgical defects are an outcome of the material produc-
tion method. Typically, metals and alloys are produced in a liquid state and
as the temperature of the liquid decreases, the interatomic distances become
smaller. The critical distance, at which bonding occurs, is reached at several,
randomly distributed sites and these constitute the first germs or nuclei of
crystal growth. The lattices are formed in the same crystalline system but
in random directions. Each nucleus develops into a crystal whose growth is
limited by the neighbouring crystals. Generally, voids and crevices are formed
due to:

- shrinkage during solidification. This leads to the formation of cavities or
to interfacial separation in the pasty state,

- trapped gas bubbles,

- the accumulation of non-metallic impurities on the melt,

- defective or insufficient bonding of the grains,

- presence of hydrogen.

Of course, many of these defects may be present alone or combined together.
The internal deterioration (or simply damage) evolution includes nucleation of
new, and propagation and clustering of existing microcracks. Driven by the
stress concentration (hot spots) microcracks grow along the internal surfaces
of poor cohesive strength (weak links such as grain boundaries, interfaces sep-
arating phases of different properties) and heterogeneities (inclusions) which
are also typical microcrack nucleation sites. In general, both hot spots and
weak links are randomly distributed within the material microstructure.

Damage can manifest itself in various ways depending upon the nature
of the material, type of loading and temperature. In metals, the mechanical
degradation may be roughly divided into: ductile and brittle damage.

2.2.1 Ductile damage at room temperature

When subjected to an increasing external force, metals and alloys are able to
deform and relieve the stresses by means of slip processes. Depending on the
type of metal lattice, the crystallites have a variable number of slip systems.
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The relative motion, or slip, is not the simultaneous displacement of many
atoms in the same direction for the same distance. Instead, the atoms are
displaced individually and consecutively.

The result of the movement of dislocations, which can also cut and pene-
trate each other, is the externally observed change in the shape of the material.
This results in slip lines becoming visible on external surfaces. The process
just described results in the plastic deformation of a specimen. With increasing
deformation, the number of lattice defects increases. The dislocations mutu-
ally interact with each other and their movement is also hindered by second
phases, i.e. precipitates. The possibilities of slip are therefore continuously
reduced and finally exhausted, so that no further deformation can occur. The
noticeable increase in hardness and strength which occur during this process
is known as work-hardening. The further application of force brings about the
fracture of the material. This process applies only to materials of high pu-
rity and this type of deformation and fracture can best be observed in single
crystals – monocrystals.

The metals which are used for practical applications are not pure. They
consist of a multitude of densely packed crystallites with diameters in the
micron range and they contain impurities, in the widest sense (see Figure
2.1). Some of these impurities, which may be intentionally added or acciden-
tally present as contaminants, are incorporated in the crystal lattice. However,
there are always impurity particles which are physically distinct from the metal
phase. This is equivalent to an array of holes, distributed through the metal
matrix, with the second phase particles being located within them (see Figure
2.5). Plastic extension of and elemental volume of metal causes the holes to be

nucleation coalescencegrowth

Figure 2.5: Schematic representation of the nucleation, growth and coalescence of
voids. Voids can initiate by dislocation pile-ups at grain boundaries, secondary phase
particles or inclusions.

enlarged. The material between the holes necks down, resulting in the adjacent
material being subjected to intensive shearing. Eventually, with continued ex-
tension, all that remains are the thin ridges marking the lines of separation
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between holes. Finally, the last connecting points are split, leaving two frac-
ture surfaces. The size and shape of the fracture surface depends mostly on
the type of inclusions present. Elongated inclusions lead to the formation of
channel-shaped micro-craters. Thus, the micro-craters in heavily rolled prod-
ucts are always oriented in the rolling direction. The depth of the micro-craters
is a measure of the formability and fracture toughness of the matrix. Ductile
materials form deep micro-craters. Less easily deformable materials, or mate-
rials whose formability has been largely exhausted due to cold working, form
very flat micro-craters.

The stresses during plastic deformation, and the relative displacements
within the material before fracture, determine the alignment of the micro-
craters. Hydrostatic tension produces normal micro-craters whilst tear micro-
craters result if the stress state consists of unequal, mutually perpendicular
stresses. The latter are always formed during the rupture of the surface layers,
since the state of plane stress in this region favours this kind of deformation
and fracture. Shear stresses cause the formation of shear micro-craters, which,
in extreme cases, can be markedly elongated. Shear micro-craters are always
found in the shear lips of catastrophic ruptures. Shear lips consist of surfaces
inclined at approximately 45◦ to the main fracture surface.

As a result of the intensive deformation leading to fracture, the inner sur-
faces of the micro-craters are not smooth, but instead criss-crossed with in-
tersecting slip bands. Polycrystalline metals, in particular, depict multiple
slip to allow each individual grain to deform in conformity with neighbour-
ing grains and the resulting wavy slip pattern is known as serpentine glide.
Although micro-crater formation occurs more frequently in cases of transcrys-
talline fracture [see Figure 2.6(a)], there are nevertheless many cases in which
micro-craters form on grain boundary surfaces. In such cases, the grain bound-

(a) (b)

Figure 2.6: Ductile damage in metals. Microscopic aspect. (a) Transcrystalline
ductile fracture; (b) Intercrystalline ductile fracture (reproduced from Lemaitre &
Chaboche (1990)).
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ary regions are more deformable than the grain centers [see Figure 2.6(b)].

2.2.2 Ductile damage at elevated temperatures

Rupture in the solid state

The rupture of metallic materials at elevated temperatures produces failure of
the ductile micro-crater type. A remarkable feature of this type of fracture
is the considerable extension undergone by the voids before separation and
the appearance of broad shear walls with shear micro-craters. The type of
plastic deformation occurring here might almost be described as resembling
that of a chewing gum. These observations apply both to rapid tensile loading
and loading under conditions of creep. Creep processes cause the formation of
multiple micro-cracks on various planes inside the material and as a result, a
rough, terraced surface is often observed.

Above a certain temperature known as the equicohesive temperature, which
depends on the material in question, intercrystalline fracture occurs. For high
stresses and short time to rupture, the favoured mode consists of grain bound-
ary slip. The traces of this slip can be seen on the grain boundaries surface
after separation. Simultaneously with this process, micro-craters form on those
grain boundaries which are oriented at right angles to the direction of slip. At
high temperatures and with low stresses, the formation of so-called creep voids
is favoured. Grain boundary separation at elevated temperatures has been at-
tributed to the presence of films of low melting-point phases and heavy metals.

Rupture in the pasty state

If parting occurs at solid-liquid phase boundaries, e.g. during the cooling
of castings, then the resulting fracture surface will resemble the surface of
shrinkage cavities with filament-like peaks of metal drawn out from it. It can
often be found in the neighbourhood of shrinkage cavities.

2.2.3 Brittle damage

Transcrystalline brittle damage

One form of damage that results in unstable normal separation is quasi-
cleavage fracture. Although this, admittedly shows clear features of ductile
flow on a microscopic scale, on a macroscopic scale it shows very small defor-
mation. The most distinctive form of transcrystalline normal fracture is repre-
sented by cleavage. In contrast to quasi-cleavage fracture, which is composed of
curved or bowed facets and rosette surfaces having no orientation relationship
with the underlying crystallographic planes, cleavage fracture proceeds along
definite crystal planes. Figure 2.7(a) depicts the typical microscopic aspect of
brittle fracture by cleavage.
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(a) (b)

Figure 2.7: Brittle damage in metals. Microscopic aspect. (a) Brittle fracture by
cleavage; (b) Intercrystalline brittle fracture (Lemaitre & Chaboche (1990)).

Intercrystalline brittle damage

Unstable normal fracture will propagate in an intercrystalline manner if the
grain boundaries are embrittled by precipitates or impurity phases. Grain
boundary carbides are often the cause of intercrystalline fracture in steels. If
the carbides are large, their chemical composition can be indicated by x-ray
microanalysis. In extreme cases of excessive carbon contents, the carbides can
occupy so much of the micro-structure that their own brittleness determines
the course of fracture. Figure 2.7(b) shows the typical microscopic aspect of
intercrystalline brittle fracture.

Quenching cracks in steels are intercrystalline in that they follow the prior
austenite grain boundaries. Here too, grain boundary impurities are respon-
sible for the failure of grain boundaries. Intercrystalline failure can also be
promoted by the presence of hydrogen and stress corrosion.

Remark 2.2 In this chapter, some basic microscopic mechanisms associated
with internal damage evolution in solids have been reviewed. It is clear that it
involves a rheological process quite different from deformation. While damage
manifests itself in the form of irreversible rupture of atomic bonds, deformation
can be associated with reversible variations of interatomic spacing (in purely
elastic processes) and movement and accumulation of dislocations (in perma-
nent deformations of metals). Therefore, it should be expected that in order to
describe the internal degradation of solids within the framework of the contin-
uum mechanics theory, new variables intrinsically connected with the internal
damage process will have to be introduced in addition to the standard variables
(such as the strain tensor, plastic strain, etc.) employed in the description of
deformation.



Chapter 3

Continuum mechanics and

thermodynamics

THE description of the physical structure, phenomena of deformation and
damage that lead to fracture onset of metals, undertaken briefly in Chap-

ter 2, can be macroscopically modelled by general principles. A well estab-
lished approach, based on the response of the representative volume element
1, is known as the mechanics and thermodynamics of continuous media. This
theory, provides powerful and effective tools to explain various phenomena suc-
cessfully without detailed knowledge of the complexity of their microstructures.
The macroscopic continuum scale both filter (average) and modulate (set the
boundary conditions or driving forces for) the atomic-scale phenomena.

The phenomenological approach has been particularly successful in the field
of solid mechanics. Numerous well established models of solids, such as classi-
cal elastoplasticity (Hill, 1950), have been developed on a purely phenomeno-
logical basis. This is the avenue that has been pursued in this thesis since the
major concern is the description of essentially macroscopic behaviour.

Therefore, this chapter summarizes some basic concepts of mechanics and
thermodynamics of continuous media. The definitions and notation intro-
duced will be systematically employed throughout the subsequent chapters of
this thesis. The general principles introduced are broadly widespread in the
continuum mechanics literature and an effort has been made to follow the no-
tation and nomenclature in use in standard textbooks (Truesdell & Noll, 1965;
Spencer, 1980; Gurtin, 1981; Marsden & Hughes, 1983; Ogden, 1984).

1 the element of matter large enough to be regarded as a homogeneous continuum.
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3.1 Kinematics of deformation

This section is concerned with the description of kinematics. The study of
motion and deformation is undertaken without reference to the cause.

3.1.1 Configurations and motions of continuum bodies

Let B be a body embedded in the three-dimensional euclidean space R3, with
regular boundary represented by ∂B, in its reference configuration. Here, for
convenience, the reference configuration is assumed to coincide with the initial
configuration. Therefore, each material particle is labelled by the coordinates
p, with respect to an orthogonal basis Ei, at their original positions. In its
deformed configuration, B occupies the region ϕ(B) with boundary ϕ(∂B)
defined through the deformation map ϕ (see Figure 3.1). The corresponding
current position of a particle p of B in the deformed configuration is defined

x = ϕ(p) (3.1)

The vector field u(p), defined by:

u(p) = ϕ(p) − p , (3.2)

which is the displacement of p. Thus, one may write

x = p + u(p). (3.3)

p

B

ϕ (B)

x= ϕ (p)
u(p)

E 1

E 2

E 3

e 1

e 2

e 3

ϕ

Figure 3.1: Configurations of a deformable body.

The above equations represent a mapping between the undeformed (initial)
and deformed (current) body. As the body B moves in space from one instant
to another, it occupies a continuous sequence of geometrical regions.
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A time-dependent deformation of B is called a motion of B. The motion is
defined by a function ϕ so that for each time t, the map ϕ(·, t) is a deformation
of B. During the motion ϕ, the position x of a material particle p at time t is
given by:

x = ϕ(p, t) . (3.4)

Similarly,
ϕ(B, t)

will denote the region of R3 occupied by the body B at time t. Generally
the current positions of these particles are located, by the coordinates x with
respect to an alternative Cartesian basis ei (see Figure 3.1). In terms of the
displacement field the motion is expressed as:

ϕ(p, t) = p + u(p, t) . (3.5)

Since at each time t the map ϕ(·, t) is one-to-one (and hence invertible) by
assumption, material points can be expressed in terms of the place they occupy
at a time t as:

p = ϕ−1(x, t) = x − u(ϕ−1(x, t), t). (3.6)

The map ϕ−1 is called the reference map. In finite deformation analysis
no assumption is made regarding the magnitude of the displacement u(p, t),
indeed it may even exceed the initial dimensions of the body as in the case,
for instance, of metal forming. In infinitesimal deformation analysis the dis-
placement u(p, t) is assumed to be small in comparison with the dimensions
of the body, and geometrical changes are ignored.

Time dependence

The dependency of the deformation ϕ(p, t) on the time must be considered in
many non-linear problems. During a motion ϕ, the velocity and acceleration
of a material particle p are defined by the first and second derivatives of the
motion with respect to time (holding p fixed). We obtain

ẋ(p, t) =
∂ϕ(p, t)

∂t
and ẍ(p, t) =

∂ 2ϕ(p, t)

∂ 2t
. (3.7)

Using the reference map (3.6), one may define the functions:

v(x, t) ≡ ẋ(ϕ−1(x, t), t) and a(x, t) ≡ ẍ(ϕ−1(x, t), t) , (3.8)

where v and a denote the spatial description of the velocity field and accelera-
tion field, respectively. They give the velocity and acceleration of the material
particle positioned at x at time t.
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3.1.2 Material and spatial descriptions

For finite deformations a judicious distinction has to be made between the
coordinate systems that can be chosen to describe the behaviour of the body
B. Let us consider, for the sake of simplicity, a scalar time dependent quantity,
α, defined over the body, B.

(a) Material description: if the value of α is expressed as a function of
material particles p (and time) with respect to the domain B ×R3, then
α is said to be a material field , defined by

αm(p, t) (3.9)

(b) Spatial description: On the other hand, if the value of α is expressed as
a function of a spatial position x (and time) with respect to the domain
ϕt(B) × R3, then α is said to be a spatial field , defined by

αs(x, t) (3.10)

Of course, the previous descriptions also apply for both vector and tensor
fields. The material and spatial descriptions are alternatively referred to as
Lagrangian and Eulerian descriptions, respectively.

Material and spatial gradients, divergences and time derivatives

The material and spatial gradients of a scalar field α, denoted respectively ∇pα
and ∇xα, are defined as:

∇pα =
∂

∂p
αm(p, t), ∇xα =

∂

∂x
αs(x, t) , (3.11)

i.e, they are, respectively, the derivatives of α with respect to p and x holding
t fixed. In addition, the material and spatial divergence of a vector field r, are
respectively, given by

divpr = tr(∇pr), divxr = tr(∇xr), (3.12)

Furthermore, for a tensor field T, the spatial and material divergence are given,
in Cartesian components, by

(divpT )i =
∂Tij

∂pj
, (divxT )i =

∂Tij

∂xj
, (3.13)

Similarly, the material and spatial time derivatives of α, denoted respec-
tively α̇m and α̇s, are defined by:

α̇m =
∂

∂t
αm(p, t), α̇s =

∂

∂t
αs(x, t) . (3.14)

The material time derivative α̇m measures the rate of change of α at a fixed ma-
terial particle p. The spatial time derivative α̇s, on the other hand, measures
the rate of change of α observed at a fixed spatial position x.
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3.1.3 The deformation gradient

A key quantity in finite deformation analysis is the deformation gradient of the
motion ϕ. It relates quantities before deformation to corresponding quantities
after (or during) deformation. This quantity is defined by a second order
tensor, denoted by F :

F (p, t) = ∇pϕ(p, t) =
∂xt

∂p
. (3.15)

In view of (3.5) it can be written as

F = I + ∇pu . (3.16)

The cartesian components of F are given by:

Fij =
∂xi

∂pj

= δij +
∂ui

∂pj

, (3.17)

where xi denote the components of xt. In terms of the reference map, the
deformation gradient may be equivalently expressed as:

F (x, t) =
[

∇xϕ
−1(x, t)

]−1
= [I −∇xu]−1 . (3.18)

Consider now the infinitesimal volume dV defined by the infinitesimal vec-
tors da, db and dc emanating from the material particle p in the reference
configuration (Figure 3.2). Trivially, one has:

p
da

reference
configuration

db

dc F daxF db

F dc

dV 

dv  = det[F] dV 

t

t

B

ϕ (B)

ϕ

Figure 3.2: The determinant of the deformation gradient.

dV = (da × db) · dc .

The deformation ϕt maps the infinitesimal vectors, respectively, into F da,
F db and F dc, so that the deformed infinitesimal volume is given by:

dv = (F da × F db) · F dc .
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By making use of tensor algebra, it follows that

det F =
(F da × F db) · F dc

(da × db) · dc
=

dv

dV
, (3.19)

i.e., the determinant of the deformation gradient represents, locally, the vol-
ume after deformation per unit reference volume. In what follows, J will be
frequently employed to denote the determinant of F :

J ≡ det F . (3.20)

From (3.19) it follows that if J =0 then the infinitesimal volume has collapsed
into a material particle, which represents a physically unacceptable situation.
At the reference configuration, F = I and, consequently, J = 1. Thus, a
configuration with J < 0 cannot be reached from the reference configuration
without having, at some stage, J =0. Therefore, in any deformed configuration
of a body, J satisfies:

J > 0 . (3.21)

Isochoric/volumetric split of the deformation gradient

Any deformation can be locally decomposed as a purely volumetric deformation
followed by an isochoric deformation or as an isochoric deformation followed by
a pure volumetric deformation. To see this, note that the deformation gradient
can always be multiplicatively split as:

F = F iso F v = F v F iso , (3.22)

where
F v ≡ (det F )

1
3 I (3.23)

is the volumetric component of F and

F iso ≡ (det F )−
1
3 F (3.24)

is the isochoric (volume preserving or unimodular) component. Note that, by
construction, F v corresponds indeed to a purely volumetric deformation and,
since

det F v =
[

(det F )
1
3

]3

det F = det F , (3.25)

F v produces the same volume change as F . The isochoric component in turn
represents a volume preserving deformation, that is,

det F iso =
[

(det F )−
1
3

]3

det F = 1 . (3.26)
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3.1.4 Polar decomposition. Stretches and rotation

The crucial role of F is further revealed in terms of its decomposition into
stretch and rotation components. By applying the polar decomposition to the
deformation gradient, one obtains:

F = R U = VR , (3.27)

where U is the right stretch tensor with a basis in the reference configuration,
and V is the left stretch tensor which is an object in the current configuration.
The proper orthogonal tensor R is the local rotation tensor which connects
both configurations. The right and left stretch tensors are related by the
rotation:

V = R URT . (3.28)

As functions of F , U and V are expressed by:

U =
√

C, V =
√

b , (3.29)

where C and b are named, respectively, the right and left Cauchy-Green tensors
defined as:

C = U2 = F
T

F , b = V 2 = F F
T
. (3.30)

Since U and V are symmetric, it follows from the spectral theorem (see
Section A.2.1, page 248) that they admit the spectral decomposition:

U =
3
∑

i=1

λi Ni ⊗ Ni, V =
3
∑

i=1

λi ni ⊗ ni , (3.31)

where {λ1, λ2, λ3} are the eigenvalues of U (and V ) named the principal
stretches. The vectors Ni and ni are unit eigenvectors of U and V respectively.
The triads {N1,N2,N3} and {n1,n2,n3} form orthonormal bases for the
space U of vectors in R3. They are called, respectively, the Lagrangian and
Eulerian triads and define the Lagrangian and Eulerian principal directions.

Substitution of (3.28) into (3.31) gives the following relationship between
the eigenvectors of V and U:

Ni = R ni , (3.32)

that is, each vector ni differs from the corresponding Ni by a rotation R.

The spectral decomposition of the right and left stretch tensors implies that
in any deformation, the local stretching from a material particle can always
be expressed as a superposition of stretches along three mutually orthogonal
directions.
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3.1.5 Strain Measures

In the previous section, within an infinitesimal neighbourhood of a generic
material particle p, pure rotations can be distinguished from pure stretching
by means of the polar decomposition of the deformation gradient. Under the
action of pure rotations, the distances between particles within this neigh-
bourhood remain fixed. In this case, the difference between the deformed
neighbourhood of p and its reference configuration is a rigid deformation.

Pure stretching, on the other hand, characterised by U or V , changes the
distance between material particles. To quantify straining, i.e., to evaluate
how much U (or V ) departs from I (a rigid deformation), some kind of strain
measure needs to be defined. In fact, the definition of a strain measure is
somewhat arbitrary and a specific choice is usually dictated by mathematical
and physical convenience. An important family of Lagrangian strain tensors,
i.e., strain measures based on the Lagrangian triad, is defined by:

E (m) =

{ 1
m

(Um − I) m 6= 0

ln[U ] m = 0
(3.33)

where m is a real number and ln[ · ] denotes the tensor logarithm of [ · ]. Equiv-
alently, in terms of its spectral decomposition, (3.33) may be rephrased as:

E (m) =

3
∑

i=1

f(λ(i)) N(i) ⊗ N(i) , (3.34)

where

f(λ(i)) =

{ 1
m

(λm
(i) − 1) m 6= 0

lnλ(i) m = 0 .
(3.35)

The Green-Lagrange strain tensor, E (2), is a particular member of this family
(with m=2). Other commonly used members of this family are the the Biot
(m = 1), Hencky (m = 0) and Almansi (m = −2) strain tensors. Note that
for any m, the associated strain tensor vanishes if and only if the deformation
gradient represents, locally, a rigid deformation:

E (m) = 0 ⇐⇒ U = I ⇐⇒ F = R .

Analogously to the strain measures discussed above, it is also possible to
define tensors that measure strain along the principal Eulerian directions or,
simply, Eulerian strain tensors. Based on the left stretch tensor, the Eulerian
counterpart of the Lagrangian family of strain measures above is defined by:

ε(m) =

{ 1
m

(V m− I ) m 6= 0

ln[V ] m = 0 ,
(3.36)
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or, using the Eulerian triad,

ε(m) =

3
∑

i=1

f(λ(i)) n(i) ⊗ n(i) . (3.37)

Lagrangian and Eulerian strain tensors are related by:

ε(m) = R E (m)RT , (3.38)

that is, they differ by the local rotation R.

3.1.6 The velocity gradient. Rate of deformation and spin

The velocity has been expressed in Equation (3.8)1 as a function of the spatial
coordinates as v(x, t). The derivative of this expression with respect to spatial
coordinates defines the velocity gradient tensor l as,

l = ∇xv ,

Equivalently, with application of the chain rule one has:

l =
∂

∂t

(

∂ϕ

∂p

)

∂p

∂x
= Ḟ F

−1
. (3.39)

Two important tensors are obtained by splitting l into its symmetric and skew
parts. Namely, the rate of deformation tensor (sometimes referred to as the
stretching tensor), d, and the spin tensor, w, are defined by

d = sym(l) , w = skew(l) . (3.40)

where the following notation has been used

sym(·) = 1
2

[

(·) + (·)T
]

skew(·) = 1
2

[

(·) − (·)T
]

. (3.41)

3.1.7 Superimposed rigid body motions and objectivity

An important concept in non-linear continuum mechanics is the notion of
objectivity. This concept can be understood by studying the effect of a rigid
body motion superimposed on the deformed configuration. From the point
of view of an observer attached to and rotating with a solid, many quantities
describing the behaviour of the solid remain unchanged. Such quantities, like
the distance between two particles or the state of stress in the body, amongst
others are said to be objective (Holzapfel, 2000).

Although the intrinsic nature of these quantities remains unchanged, their
spatial description may change. Let us consider an elemental vector dp in the
initial configuration that deforms to dx and is subsequently rotated to dx̆ as
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Figure 3.3: Superimposed rigid body motion.

shown in Figure 3.3. The relationship between these elemental vectors is given
by

dx̆ = Qdx = QF dp (3.42)

where Q is an orthogonal tensor describing the superimposed rigid body ro-
tation. Even though the vector dx̆ is different from dx, their magnitudes are
obviously equal. In this sense it can be said that dx is objective under rigid
body motions. This definition is extended to any vector a that transforms
according to a −→ Qa.

From Equation (3.42) it is possible to note that the deformation gradients
with respect to the current and rotated configurations are related as,

F −→ QF (3.43)

The next step consists in extending the definition of objectivity to second-order
tensors. Objective second order tensors, G, transform as

G −→ Q G QT (3.44)

Obviously, material tensors (defined in the reference configuration), such as C

and E, are unchanged under superimposed rigid body motions.

3.2 Stress and Equilibrium

This section will introduce the stresses and equilibrium concepts for a de-
formable body undergoing a finite motion. It should be noted that, so far, no
reference has been made to forces and how they are transferred within contin-
uum bodies. To describe surface forces mathematically, the concept of stress
as well as the different ways of quantifying it are discussed in this section.

Crucial to the description of surface forces is Cauchy’s axiom stated in
what follows. Consider a body B in an arbitrarily deformed configuration
(Figure 3.4). Let S be an oriented surface of B with unit normal vector n
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t = σ n

B

x

S

n

Figure 3.4: Surface forces. The Cauchy stress.

at a point x. Cauchy’s axiom states that: At x, the surface force, i.e., the
force per unit area, exerted across S by the material on the side of S into
which n is pointing upon the material on the other side of S depends on S
only through its normal n. This means that identical forces are transmitted
across any surfaces with normal n at x. This force (per unit area) is called
the Cauchy stress vector and will be denoted

t(n) ,

with dependence on x and time omitted for notational convenience. If S
belongs to the boundary of B then the Cauchy stress vector represents the
contact force exerted by the surrounding environment on B.

3.2.1 The Cauchy stress tensor

The dependency of the surface force t on the normal n is linear . This implies
that there exists a tensor field σ(x) such that the Cauchy stress vector is given
by (Figure 3.4):

t(x,n) = σ(x) n. (3.45)

The tensor σ is symmetric:
σ = σT , (3.46)

and is called the Cauchy stress tensor . It is often referred to as the true stress
tensor or, simply, stress tensor.

Deviatoric and hydrostatic stresses

It is often convenient, particularly for the purpose of constitutive modelling, to
split the stress tensor σ into the sum of a spherical and a traceless component:

σ = s + p I , (3.47)

where
p ≡ 1

3
tr σ (3.48)
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is the hydrostatic pressure (also referred to as hydrostatic stress or mean normal
pressure), and the remainder:

s ≡ σ − p I =
[

I − 1
3
I ⊗ I

]

: σ , (3.49)

is a traceless tensor named the deviatoric stress or stress deviator . The tensor:

p I = 1
3
(I ⊗ I ) : σ (3.50)

is called the spherical stress tensor . Obviously, the hydrostatic pressure p is
an invariant of the stress tensor.

Stress objectivity

Since the Cauchy stress tensor is of key importance to establish any equilibrium
or constitutive equation, it is decisive to inquire whether σ is objective as
defined in Section 3.1.7. Let us consider the transformations of the normal
and traction vectors implied by the superimposed rigid body motion Q as:

t̆(n̆) = Qt(n)

n̆ = Qn
(3.51)

with dependence on x and time omitted for notational convenience. Using
the relationship between the traction vector and stress tensor, t(n) = σ n, in
conjunction with the above quantities gives,

σ −→ Qσ QT (3.52)

The rotation of σ given by the above equation conforms with the definition of
objectivity for a second order tensor (see Equation 3.44).

3.2.2 Alternative stress tensors

Numerous definitions of stress tensors have been proposed in the literature.
In the following we discuss stress tensors used for practical nonlinear analysis.
Most of their components do not have a direct physical interpretation.

The Kirchhoff stress tensor Often it is convenient to work with the so-
called Kirchhoff stress tensor , τ, which differs from the Cauchy by the volume
ratio J , and is defined by:

τ = J σ . (3.53)

Due to the symmetry of σ, the Kirchhoff stress is also symmetric.
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The first Piola-Kirchhoff stress tensor The traction vector t of expres-
sion (3.45) measures the force exerted across a material surface per unit de-
formed area. Since in many situations the deformed configuration of B is not
known in advance, it is convenient to define the first Piola-Kirchhoff stress
tensor,

P = J σ F
−T
. (3.54)

This definition derives from the counterpart vector t̄ of t that measures, at the
point of interest, the current force per unit reference area. The tensor P is
often referred to as the nominal or engineering stress. Note that in contrast
to the Cauchy stress, P is generally unsymmetric.

The second Piola-Kirchhoff stress tensor It is possible to contrive a
totally material symmetric stress tensor, known as the second Piola-Kirchhoff
stress tensor S , defined by:

S = J F
−1

σ F
−T
. (3.55)

It often represents a very useful stress measure in computational mechanics and
in the formulation of constitutive equations, in particular, for solids. In spite
of the mathematical convenience, it does not admit a physical interpretation
in terms of surface tractions.

3.3 Fundamental laws of thermodynamics

In order to state the fundamental laws of thermodynamics, it is necessary
to introduce the scalar fields θ, e, s and r defined over B which represent,
respectively, the temperature, specific internal energy , specific entropy and the
density of heat production. In addition, f and q will denote the vector fields
corresponding, respectively, to the body force (force per unit volume in the
deformed configuration) and heat flux .

3.3.1 Conservation of mass

The postulate of conservation of mass requires that

ρ̇+ ρ divx u̇ = 0 , (3.56)

where divx[·] (with subscript x) denotes the spatial divergence of [·].

3.3.2 Momentum balance

In its local form, the momentum balance can be expressed by the equations:

divx σ + f = ρ ü in ϕ(B)

t = σ n in ϕ(∂B) ,
(3.57)
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where n is the outward unit vector normal to the deformed boundary ϕ(∂B)
of B , t is the boundary traction vector field on ϕ(∂B).

The above momentum balance equations are formulated in the spatial (de-
formed) configuration. Equivalently, they may be expressed in the reference
(or material) configuration of B in terms of the first Piola-Kirchhoff stress
tensor as:

divp P + f̄ = ρ̄ ü in B

t̄ = P m in ∂B ,
(3.58)

where divp (with subscript p) denotes the material divergence, f̄ is the body
force measured per unit reference volume, ρ̄ is the density in the reference
configuration:

ρ̄ = J ρ , (3.59)

t̄ is the boundary traction force per unit reference area and m is the outward
normal to the boundary of B in its reference configuration.

3.3.3 The first principle

The first principle of thermodynamics postulates the conservation of energy.
Before stating this principle, it is convenient to introduce the product:

σ : d , (3.60)

which represents the stress power per unit volume in the deformed configu-
ration of a body. The first principle of thermodynamics is mathematically
expressed by the equation:

ρ ė = σ : d + ρ r − divx q . (3.61)

In words, the rate of internal energy per unit deformed volume must equal the
sum of the stress power and heat production per unit deformed volume minus
the spatial divergence of the heat flux.

3.3.4 The second principle

The second principle of thermodynamics postulates the irreversibility of en-
tropy production. It is expressed by means of the inequality:

ρ ṡ + divx

[q

θ

]

− ρ r

θ
≥ 0 . (3.62)

3.3.5 The Clausius-Duhem inequality

By combination of the first and second principles stated above, one easily
obtains the fundamental inequality:

ρ ṡ + divx

[q

θ

]

− 1

θ
(ρ ė− σ : d + divx q) ≥ 0 .
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The introduction of the specific free energy ψ (also known as the Helmholtz
free energy per unit mass), defined by

ψ = e− θ s , (3.63)

along with the identity:

divx

[q

θ

]

=
1

θ
divx q − 1

θ2
q · ∇xθ ,

into the above fundamental inequality results in the Clausius-Duhem inequal-
ity :

σ : d − ρ
(

ψ̇ + s θ̇
)

− 1

θ
q · g ≥ 0 , (3.64)

where we have defined g = ∇xθ.

3.4 Constitutive theory

The balance principles presented so far are valid for any continuum body,
regardless of the material of which the body is made. In order to distinguish
between different types of material, a constitutive model must be introduced.
In this section, the use of internal variables to formulate constitutive models
of dissipative materials is addressed.

3.4.1 Thermodynamics with internal variables

An effective alternative to describe the dissipative constitutive behaviour is
the adoption of the so-called thermodynamics with internal variables. The
starting point of the thermodynamics with internal variables is the hypothesis
that at any instant of a thermodynamical process the thermodynamic state
(defined by σ, ψ, s and q) at a given point p can be completely determined by
the knowledge of a finite number of state variables. The thermodynamic state
depends only on the instantaneous value of the state variables and not on their
past history. This hypothesis is intimately connected with the assumption of
the existence of a (fictitious) state of thermodynamic equilibrium known as the
local accompanying state (Kestin & Bataille, 1977) described by the current
value of the state variables. In other words, every process is considered to be a
succession of equilibrium states. Therefore, despite the success of the internal
variable approach in numerous fields of continuum physics, phenomena induced
by very fast external actions (at time scales comparable to atomic vibrations)
which involve states far from thermodynamic equilibrium are excluded from
representation by internal variable theories.
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The state variables

For the applications with which we are mostly concerned, it will be convenient
to assume that at any time t, the thermodynamic state at a point is determined
by the following set of state variables:

{F , θ, g, α} ,

where F , θ and g are the instantaneous values of the deformation gradient,
temperature and the temperature gradient and

α = {αk}

is a set of internal variables containing, in general, entities of scalar, vectorial
and tensorial nature associated with dissipative mechanisms.

Thermodynamic potential. Stress constitutive equation

Following the above hypothesis, the specific free energy is assumed to have the
form:

ψ = ψ(F , θ, α) , (3.65)

so that its rate of change is given by:

ψ̇ =
∂ψ

∂F
: Ḟ +

∂ψ

∂θ
θ̇ +

∂ψ

∂αk

α̇k , (3.66)

where summation over k is implied. In that case, using the connection:

σ : d = σ F
−T

: Ḟ , (3.67)

for the stress power, one obtains for the Clausius-Duhem inequality:
(

σ F
−T − ρ

∂ψ

∂F

)

: Ḟ − ρ

(

s+
∂ψ

∂θ

)

θ̇ − ρ
∂ψ

∂αk
α̇k −

1

θ
q · g ≥ 0 . (3.68)

Equivalently, in terms of power per unit reference volume, we have:
(

P − ρ̄
∂ψ

∂F

)

: Ḟ − ρ̄

(

s+
∂ψ

∂θ

)

θ̇ − ρ̄
∂ψ

∂αk
α̇k −

J

θ
q · g ≥ 0 . (3.69)

Equation (3.69) must remain valid for any pair of functions {Ḟ (t), θ̇(t)}.
This implies the well known constitutive equations:

P = ρ̄
∂ψ

∂F
, s = −∂ψ

∂θ
, (3.70)

for the first Piola-Kirchhoff stress and entropy. Equation (3.70)1 is equiva-
lent to the following constitutive relations for the Cauchy and Kirchoff stress
tensors:

σ =
1

J
ρ̄
∂ψ

∂F
F

T
, τ = ρ̄

∂ψ

∂F
F

T
. (3.71)
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Thermodynamical forces

For each internal variable αk of the set α, we define the conjugate thermody-
namical force:

Ak ≡ ρ̄
∂ψ

∂αk
. (3.72)

With this definition and the identities (3.70), the Clausius-Duhem inequality
can be rewritten as:

− Ak α̇k − J

θ
q · g ≥ 0 . (3.73)

In what follows, we will adopt for convenience the notation:

A≡{Ak} (3.74)

for the set of thermodynamical forces.

Dissipation. Evolution of the internal variables

In order to completely characterise a constitutive model, complementary laws
associated with the dissipative mechanisms are required. Namely, constitutive
equations for the flux variables 1

θ
q and α̇ must be postulated. In the general

case, we assume that the flux variables are given functions of the state variables.
The following constitutive equations are then postulated:

α̇ = f(F , θ, g,α)

1
θ
q = h(F , θ, g,α) .

(3.75)

The Clausius-Duhem inequality, now expressed by (3.73), must hold for any
process. This requirement places restrictions on the possible forms of the gen-
eral constitutive functions f and h in (3.75) [see Coleman & Gurtin (1967) and
Truesdell (1969) for further details on this issue]. It is also important to men-
tion that when internal variables of vectorial or tensorial nature are present, it
is frequently convenient to re-formulate (3.75)1 in terms of so-called objective
rates rather than the standard material time derivative of α. Objective rates
are insensitive to rigid body motions and may be essential in the definition of
frame invariant evolution laws for variables representing physical states asso-
ciated with material directions. Objective rates are discussed in Section 4.2 in
the context of the hypoelastic-based formulation of plasticity models.

Dissipation potential. Normal dissipativity An effective way of ensur-
ing that (3.73) is satisfied consists in postulating the existence of a scalar-
valued dissipation potential of the form:

Ξ = Ξ(A, g; F , θ,α) , (3.76)
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where the state variables F , θ and α appear as parameters. The potential
Ξ is assumed convex with respect to each Ak and g, non-negative and zero
valued at the origin, {A, g} = {0, 0}. In addition, the hypothesis of normal
dissipativity is introduced, i.e, the flux variables are assumed to be determined
by the laws:

α̇k = − ∂Ξ

∂Ak
,

1

θ
q = −∂Ξ

∂g
. (3.77)

A constitutive model defined by (3.65), (3.70) and (3.77) satisfies “a priori”
the dissipation inequality. It should be noted, however, that the constitutive
description by means of convex potentials as described above is not a con-
sequence of thermodynamics but, rather, a tool for formulating constitutive
equations without violating thermodynamics. Examples of constitutive mod-
els supported by experimental evidence which do not admit representation by
means of dissipation potentials are discussed by Onat & Leckie (1988).

3.4.2 Phenomenological and micromechanical approaches

The success of a constitutive model intended to describe the behaviour of a
particular material depends crucially on the choice of an appropriate set of
internal variables. Since no plausible model will be general enough to describe
the response of a material under all processes, we should have in mind that the
choice of internal variables must be guided not only by the specific material in
question but also the material process. In general, due to the difficulty involved
in the identification of the underlying dissipative mechanisms, the choice of the
appropriate set of internal variables is somewhat subtle and tends to be biased
by the preferences and background of the investigator.

In simple terms, we can say that constitutive modelling by means of in-
ternal variables relies either on a micromechanical or on a phenomenological
approach. The micromechanical approach involves the determination of mech-
anisms and related variables at the atomic, molecular or crystalline levels. In
general, these variables are discrete quantities and their continuum (macro-
scopic) counterparts can be defined by means of homogenisation techniques.
The phenomenological approach, on the other hand, is based on the study of
the response of the representative volume element , i.e., the element of mat-
ter large enough to be regarded as a homogeneous continuum. The internal
variables in this case will be directly associated with the dissipative behav-
iour observed at the macroscopic level in terms of continuum quantities (such
as strain, stress, temperature, etc.). Despite the macroscopic nature of theo-
ries derived on the basis of the phenomenological methodology, it should be
expected that “good” phenomenological internal variables will be somehow re-
lated to the underlying microscopic dissipation mechanisms [de Souza Neto et
al. (2005a)].
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3.4.3 The purely mechanical theory

Thermal effects are ignored in the constitutive theories addressed in this the-
sis. It is, therefore, convenient at this point to summarise the general internal
variable-based constitutive equations in the purely mechanical case. By re-
moving the thermally-related terms of the above theory, we end up with the
following set of mechanical constitutive equations:



























ψ = ψ(F ,α)

P = ρ̄
∂ψ

∂F

α̇ = f(F ,α)

(3.78)

3.4.4 The constitutive initial value problem

Our basic constitutive problem is defined as follows: “Given the history of
the deformation gradient (and the history of temperature and temperature gra-
dient, if thermal effects are considered), find the free-energy and stress (plus
entropy and heat flux, in the thermomechanical case) according to the consti-
tutive law”. If the internal variable approach is adopted in the formulation
of the constitutive equations, the generic constitutive problem reduces to the
following fundamental mechanical initial value problem.

Problem 3.4.1 (The mechanical constitutive initial value problem)
Given the initial values of the internal variables α(t0) and the history of the
deformation gradient

F (t) t ∈ [t0, t̄],

find the functions P (t) and α(t), for the first Piola-Kirchhoff stress and the
set of internal variables, such that the constitutive equations:











P (t) = ρ̄
∂ψ

∂F

∣

∣

∣

∣

t

α̇(t) = f(F (t),α(t))

(3.79)

are satisfied for t ∈ [t0, t̄].

3.5 Weak equilibrium. The principle of virtual work

The strong (point-wise, local or differential) forms of the momentum balance
have been stated in Section 3.3 by expressions (3.57) and (3.58). In this section,
we state the momentum balance equations in their corresponding weak (global
or integral) forms. The weak equilibrium statement – the Principle of Virtual
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Work – is fundamental to the definition of the basic initial boundary value
problem and, is the starting point of finite element procedures.

Again, let us consider the body B which occupies the region B ⊂ R3 with
boundary ∂B in its reference configuration be subjected to body forces in its
interior and surface tractions on its boundary. In its deformed configuration,
B occupies the region ϕ(B) with boundary ϕ(∂B) defined through the defor-
mation map ϕ.

3.5.1 The spatial version

The spatial version of the principle of virtual work states that “the body B is
in equilibrium if and only if its Cauchy stress field, σ, satisfies the equation:

∫

ϕ(B)

[σ : ∇xη − (f − ρ ü) · η] dv −
∫

ϕ(∂B)

t · η da = 0 ∀ η ∈ V , (3.80)

where f and t are the body force per unit deformed volume and boundary
traction per unit deformed area and V is the space of virtual displacements of
B , i.e., the space of sufficiently regular arbitrary displacements

η : ϕ(B) → U .”

3.5.2 The material version

The virtual work equation can be equivalently expressed in the reference con-
figuration of B. The corresponding material (or reference) version of the Prin-
ciple of Virtual Work states that B is in equilibrium if and only if its first
Piola-Kirchhoff stress field, P , satisfies:

∫

B

[P : ∇pη − (f̄ − ρ̄ü) · η] dv −
∫

∂B

t̄ · η da = 0 ∀ η ∈ V , (3.81)

where f̄ = J f is the reference body force and t̄ is the boundary traction
per unit reference area. The space of virtual displacements, V , is accordingly
defined as the space of sufficiently regular arbitrary displacement fields:

η : B → U .
The material version of the virtual work equation is obtained by introducing,
in its spatial counterpart, the identities:

σ =
1

J
P F

T ∇xa = ∇pa F
−1
,

where the second expression holds for a generic vector field a, and making use
of the standard relation (Gurtin, 1981):

∫

ϕ(B)

a(x) dv =

∫

B

J(p) a(ϕ(p)) dv ,

valid for any scalar field a.



Chapter 4

Finite element modelling of

finite strain plasticity

THE great majority of metals and alloys, when subjected to high levels of
stress fail to return to the initial undeformed configuration and instead

permanent inelastic deformations are observed. Several constitutive theories
and models such as plasticity, viscoplasticity and others are broadly used to
describe such permanent effects. The mathematics of these material models
is well understood in the small strain case and due to the underlying additive
structure of infinitesimal plasticity, computational algorithms based on the
operator split concept are especially suitable for the integration of small strain
constitutive equations (Owen & Hinton, 1980; Simo & Hughes, 1987).

Despite the merit of these approaches, several applications of nonlinear con-
tinuous mechanics often include large permanent inelastic deformations and
the infinitesimal deformation hypothesis cannot be introduced without signif-
icant loss of accuracy. Typical examples include the analysis of metal forming
operations and crashworthiness problems where the underlying deformation
processes are dominated by very large strains and rotations.

The present chapter is devoted to the theory and finite element imple-
mentation of finite strain elasto/visco-plasticity. In the theory and numerical
algorithms discussed here, the effects of finite strains appear only at the kine-
matic level and are separated from the operations at the constitutive level. In
both implicit and explicit time integrations schemes, the stress update proce-
dure is specifically designed to enable small strain constitutive models to be
directly employed. More details on the subject are provided in the book by de
Souza Neto et al. (2005a), on which most of the following sections are based.



Ch. 4 Finite strain plasticity 40

4.1 Finite strain elasto-plasticity. A brief review

The first papers devoted to the finite element implementation of finite strain
elasto-plasticity were published in the 1970’s. Initially, extension to the fi-
nite strain range (Hibbitt et al. , 1970; McMeeking & Rice, 1975; Argyris &
Kleiber, 1977; Argyris et al. , 1978; Nagtegaal & de Jong, 1981) was obtained
by an ad doc extension of the infinitesimal theory which relied on a hypoelastic
characterization of the elastic response. During early stages of development,
hypoelastic-based descriptions have been the subject of intense debate within
the finite element community. Many controversial issues have arisen, ranging
from the use of different objective stress rates in the formulation of the constitu-
tive equations (Atluri, 1984; Nemat-Nasser, 1982; Perić, 1992) to fundamental
drawbacks such as the possible lack of objectivity of (algorithmic) incremental
constitutive laws (Hughes & Winget, 1980; Rubinstein & Atluri, 1983; Hughes,
1984) as well as observed oscillatory stress response under monotonic loading
(Nagtegaal & de Jong, 1982) and dissipative behaviour within the ‘elastic’
range (Simo & Pister, 1984; Kojić & Bathe, 1987).

Therefore, hyperelastic-based formulations of finite plasticity have emerged
(Simo, 1985; Simo & Ortiz, 1985). Based on the hyperelastic description of the
reversible behaviour in conjunction with the multiplicative elasto-plastic split
of the deformation gradient (Lee & Liu, 1967), such theories naturally by-pass
the inherent drawbacks of hypoelastic-based approaches. Moreover, when the
Hencky strain energy function is adopted to model the elastic behaviour, a
small strain format return mapping-based stress updating procedure can be
elegantly recovered with the use of a suitable exponential map-based integra-
tor for the plastic flow equation (Eterovic & Bathe, 1990; Weber & Anand,
1990; Perić & Owen, 1991; Perić et al. , 1992; Simo & Miehe, 1992; Simo, 1992;
Cuitiño & Ortiz, 1992). Throughout the last decade, the hyperelastic-based
multiplicative approach has gained widespread acceptance and is currently
adopted for large strain elasto-plastic analysis, soil plasticity, damage mechan-
ics and anisotropic single crystal plasticity.

4.2 Hypoelastic-based plasticity models. Rate forms

The inelastic response of finitely deforming solids can be modelled by means
of the so-called hypoelastic-based constitutive theories. The starting point of
hypoelastic-based models is the formulation of the constitutive equations for
stress in terms of objective (frame invariant) stress rates. Early formulations of
finite strain plasticity have relied exclusively on the hypoelastic-based approach
to provide ad-hoc finite strain extensions to existing infinitesimal models.

In spite of the conceptual simplicity of their formulations, hypoelastic-based
plasticity models do not usually account for truly reversible behaviour, even
in the absence of plastic flow. In other words, dissipative behaviour may be
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predicted even within what is meant to be an ‘elastic’ (reversible) domain. In
addition, the formulation of incremental constitutive equations which preserve
the objectivity (frame-invariance) of the rate (time-continuum) forms is not
trivial and may, in some circumstances, result in rather cumbersome numer-
ical procedures. In spite of the aforementioned objections, hypoelastic-based
models remain widely used in many circles of the computational and applied
mechanics community. This strategy is used, in this work, in conjunction with
an explicit time integration scheme; therefore, this section is devoted to this
class of constitutive models of plastic materials.

4.2.1 Objective stress rates

Crucial to the formulation of hypoelastic-based models of plasticity is the def-
inition of objective stress rates. In section 3.1.7 objective tensors were defined
by imposing that under rigid body motions they transform according to Equa-
tion (3.44) and in Section 3.2.1 it was shown that the Cauchy stress tensor
satisfies this requirement.

A given stress rate, which we will be here denoted generically
•
σ (note the

bold dot), is said to be objective if, under a change of observer, it transforms

according to the same rule. That is, a stress rate
•
σ is objective only if it

transforms as
•
σ −→ Q

•
σ QT (4.1)

for any change in observer. Note, for instance, that the material time deriv-
ative σ̇ of the Cauchy stress is not an objective stress rate. In this case, the
transformation reads

σ̇ −→ Qσ̇ QT + Q̇σ QT + Qσ Q̇
T
, (4.2)

and satisfies (4.1) only for changes in observer with time-independent rotation
(Q̇ = 0 ). In order to ensure material objectivity in the formulation of finite
strain constitutive laws directly in terms of stress rates, it is essential that
the constitutive equation for the stress tensor be defined in terms of objective
stress rates. Objective stress rates are usually defined by suitably modifying
the material time derivative of the stress tensor to ensure that (4.1) is satisfied.
Some of the most commonly used objective rates are reviewed in the following.

The Jaumann rate

The Jaumann rate of Cauchy stress, denoted
∇
σ , is defined as:

∇
σ ≡ σ̇ − wσ + σ w , (4.3)

where w is the spin tensor:

w ≡ skew[l] , l ≡ ∇xv = Ḟ F
−1
. (4.4)

This rate is also frequently referred to as the Jaumann-Zaremba rate.
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The Truesdell rate

The Truesdell rate of σ is defined as:

◦
σ ≡ σ̇ − l σ − σ lT + (tr l) σ . (4.5)

The Green-Naghdi rate

The Green-Naghdi rate of σ , here denoted
⋄
σ , is obtained by rotating σ

back to the reference configuration, taking the time material derivative of
the rotated quantity and then rotating the resulting derivative forward to the
deformed configuration. That is:

⋄
σ ≡ R

[

d

dt
(RT σ R)

]

RT = σ̇ − Ωσ + σ Ω , (4.6)

where the skew-symmetric tensor:

Ω ≡ ṘRT , (4.7)

is the spin of the Eulerian triad relative to the Lagrangian triad.

4.2.2 Hypoelastic-based plasticity models

The starting point in the formulation of hypoelastic-based plasticity models,
is the decomposition of the strain measure into elastic and plastic parts. Mo-
tivated by the infinitesimal theory, the additive decomposition of the spatial
rate of deformation into an elastic and plastic part is introduced:

d = d e + d p , (4.8)

where d is the usual stretching tensor, d e and d p are measures of rate of elastic
and plastic deformation, respectively. Furthermore, it is postulated that the
elastic response is governed by a hypoelastic rate constitutive law of the form:

•
Σ = De : (d − d p) , (4.9)

where
•
Σ denotes some objective rate of some stress measure Σ and De is

some suitably defined tangential elasticity operator related to the choice of
the stress rate. Concerning the particular form of the hypoelastic constitutive
Equation (4.9), the tangential operator De is typically assumed constant and
isotropic with the same form as the standard infinitesimal isotropic elasticity
tensor. The above rate equation is complemented by a constitutive law for d p

(a plastic flow rule) usually stated as:

d p = γ̇
∂Ψ

∂Σ
,
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where Ψ(Σ,α) is a flow potential, with α denoting a set of internal variables
whose evolution is governed by:

α̇ = γ̇H(Σ,α) ,

where H is a given evolution function and the plastic multiplier, γ̇, defines the
load/unloading criterion through the usual complementarity condition:

Φ ≤ 0 γ̇ ≥ 0 γ̇Φ = 0 , (4.10)

with Φ(Σ,α) denoting a yield function. The extension of a given infinitesimal
model to the finite strain range is obtained by adopting in the above equations
Ψ, Φ and H with the same functional format as those of the corresponding
infinitesimal model. The overall model is summarized in Box 4.1.

Box 4.1: Ad Hoc phenomenological isotropic finite strain model

(i) Additive decomposition of the rate of deformation tensor

d = d e + d p

(ii) Hypoelastic stress-strain relationship

•
Σ = De : (d − d p) ,

(iii) Evolution equations for d p and internal variable set α

d p = γ̇
∂Ψ

∂Σ

α̇ = γ̇H(Σ,α)

(iv) Loading/unloading criterion

Φ ≤ 0 γ̇ ≥ 0 γ̇Φ = 0

Criticism of hypoelastic-based models

Models of the type outlined above have been extensively used in the computa-
tional mechanical literature, particularly with reference to metal plasticity, in
conjunction with the classical von Mises yield criterion (Pinsky et al. , 1983;
Nagtegaal & de Jong, 1981; Nagtegaal, 1982). However, no matter what objec-
tive rate is chosen, fundamental drawbacks will be present in models defined
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on a purely ad hoc basis by simply choosing one particular objective stress rate
and postulating an evolution law of the type (4.9) with constant and isotropic
elasticity tensor De. It has been shown by Simo & Pister (1984) that models
postulated as such fail to define an elastic material (even in the absence of plas-
tic flow). That is, dissipation of energy will occur within closed (supposedly
elastic) cycles. It should be emphasised, however, that such inconsistencies
remain negligible in metal plasticity (where elastic strains are small).

4.2.3 Integration algorithms and incremental objectivity

From the numerical point of view, the central issue is the numerical integra-
tion of the constitutive model. In fact, it is by no means easy to formulate
integration algorithms for rate-based finite plasticity models that preserve the
property of material objectivity. The objectivity of incremental constitutive
laws is usually referred to as incremental objectivity . If incremental objec-
tivity is not satisfied, then spurious stress changes may be produced within
increments with rigid incremental displacement fields.

Incrementally objective algorithms for rate-based models

The issue of incremental objectivity of integration algorithms for hypoelastic-
based constitutive models has been investigated by many researchers (Hughes
& Winget, 1980; Pinsky et al. , 1983; Rubinstein & Atluri, 1983; Flanagan &
Taylor, 1987; Simo & Hughes, 1998). There are many possible alternatives in
the formulation of incrementally objective algorithms. The underlying idea,
however, is the same and comprises the following steps:

(i) Firstly, the original rate constitutive equation is mapped into a rigid
motion-insensitive (or rotation-neutralised) local configuration.

(ii) Time discretisation is then performed over the resulting equation which
involves only rigid motion-insensitive quantities.

(iii) Finally, the discretised equation is mapped back to the spatial configu-
ration.

The reader is referred to Chapter 8 of Simo & Hughes (1998) for a detailed
description of the general methodology. Here, we shall limit our discussion
to the Green-Naghdi rate of the Kirchhoff stress combined with a midpoint
rule-based algorithm, employed in this work.

4.2.4 Integration of Green-Naghdi rate-based model

According with the above strategy, the idea is to use a rotation neutralised
description of the spatial evolution equations. To formalize this approach, let
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W be any spatial, skew-symmetric, second order tensor. Consider the general
initial value problem







Λ̇ = W Λ

Λ|t=0 = I ,
(4.11)

where Λ is a proper orthogonal tensor. Let Σ be the rotated Kirchhoff stress
tensor and D the rotated stretching tensor :

Σ ≡ ΛT τΛ D ≡ ΛT dΛ . (4.12)

The material time derivative of the rotated Kirchhoff stress is given by:

Σ̇ = ΛT [τ̇ + τ W − W τ ] Λ. (4.13)

In particular, if W = Ω is defined as

Ω ≡ ṘRT ,

with R being the rotation tensor resulting from the polar decomposition of
the deformation gradient, F =RU=VR, we obtain the Green-Naghdi stress
rate. Trivially, the exact solution to problem (4.11) is

Λ = R . (4.14)

Considering the ‘elastic’ regime, the first step [item (i) above] in the for-
mulation of the present algorithm is to rotate both sides of the Green-Naghdi
stress rate evolution law

⋄
τ = De : d (4.15)

with the rotation RT . This results in the following equivalent rate form defined
in the local rotated configuration:

Σ̇ = De : D . (4.16)

In rotating the right hand side of (4.15) we have made use of the fact that De

is isotropic. The above rate form of the constitutive equation for the stress is
rigid motion-insensitive, in the sense that it involves only quantities which are
not affected by superimposed rigid body motions.

Incrementally objective stress integration

The discretisation of the rotation-insensitive rate equation (4.16), corresponds
to item (ii) listed in page 44. Let us consider the standard interval [tn, tn+1]
and start by approximating the midpoint velocity gradient as:

ln+ 1
2

= ∇n+ 1
2
vn+ 1

2
, (4.17)
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where, the gradient ∇n+ 1
2

is taken with respect to the midpoint configuration,
defined by the displacement field:

un+ 1
2

= un + 1
2
∆u . (4.18)

The midpoint velocity field, vn+ 1
2

is computed according to

vn+ 1
2

=
∆u

∆t
. (4.19)

With ln+ 1
2

computed as above, the midpoint stretching tensor is computed by:

dn+ 1
2

= sym[ln+ 1
2
] .

By applying the midpoint rule to (4.16) the following update formula for
the rotated stress Σ is obtained:

Σn+1 − Σn = ∆t Σ̇n+ 1
2

= De : ∆tDn+ 1
2

(4.20)

where Σn is given by
Σn = RT

n τn Rn. (4.21)

The midpoint rotated stretching tensor, Dn+ 1
2
, is computed as:

Dn+ 1
2

= RT
n+ 1

2
dn+ 1

2
Rn+ 1

2
. (4.22)

The midpoint rotation tensor, Rn+ 1
2
, is obtained through the polar decompo-

sition of the deformation gradient at the midpoint configuration:

F n+ 1
2

= I + 1
2
∇n+ 1

2
(∆u) (4.23)

According with the previous relations, it is possible to express the mid point
approximation of the strain increment by

∆ε = RT
n+ 1

2

(

∆tdn+ 1
2

)

Rn+ 1
2

(4.24)

Once all the above quantities have been evaluated, the next step consists in
performing the standard small strain integration algorithm, denoted here by

Σn+1 = Σ̂ (Σn,∆ε,αn) (4.25)

where αn denotes the transported set of internal variables, which may require
to be rotated accordingly if tensorial variables are included.

Finally, with the updated rotated Kirchhoff stress computed by (4.20), the
Kirchhoff stress tensor at tn+1 is then obtained by simply rotating Σn+1 back
to the spatial configuration [item (iii) listed in page 44]:

τn+1 = Rn+1 Σn+1 RT
n+1 , (4.26)

where the rotation Rn+1 is obtained by the standard polar decomposition.
The overall incrementally objective algorithm for the Green-Naghdi rate-based
finite plasticity model is summarised in Box 4.2.
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Box 4.2: Incrementally objective integration algorithm for a general
Green-Naghdi rate-based finite plasticity model

(i) Given the incremental displacement, ∆u, compute the
deformation gradients

F n+1 = I + ∇n(∆u) and F n+ 1
2

= I + 1
2
∇n+ 1

2
(∆u)

(ii) Perform polar decompositions to obtain the rotations

F n+1 = Rn+1Un+1 and F n+ 1
2

= Rn+ 1
2
Un+ 1

2

(iii) Mid point velocity gradient and stretching tensor

ln+ 1
2

= ∇n+ 1
2
vn+ 1

2
and dn+ 1

2
= sym[ln+ 1

2
]

(iv) Mid point approximation of the strain increment

∆ε = RT
n+ 1

2

(

∆tdn+ 1
2

)

Rn+ 1
2

(v) Map the Kirchhoff stress tensor

Σn = RT
n τ Rn

(vi) Use the small strain format return mapping algorithm to
compute Σn+1 and αn+1

Σn+1 = Σ̂ (Σn,∆ε,αn)

(vii) Rotate Σn+1 back to the spatial configuration

τn+1 = Rn+1 Σn+1 RT
n+1

4.3 Explicit dynamic finite element solution strategy

Over recent years, application of dynamic explicit time integration schemes
to metal forming problems has increased, specially to those involving high
nonlinearity, complex contact conditions and material failure. Explicit schemes
are conditionally stable with the permissible time step governed by the Courant
stability limit (Belytschko, 1983; Hughes, 1987; Bathe, 1996; Belytschko et al. ,
2000), which may lead to longer computing times as compared with analogous
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implicit schemes. However, explicit transient dynamic procedures adopted
in the simulation of forming operations rely on a simpler and more robust
treatment of frictional contact. This usually allows explicit solutions to be
attained in situations where the implicit method fails to converge. In addition,
it is important to note that for problems characterised by very large numbers
of degrees of freedom (typical of realistic industrial problems), the size of the
underlying linear equation systems to be solved within the implicit iterative
scheme often exceeds the current capacity of available hardware. These are
the main reasons behind the frequent application of explicit procedures in the
simulation of inherently quasi-static forming processes.

In the explicit solution procedure the bulk of the computation cost lies
in the stress update algorithm at the integration points and in the contact
search. This, coupled with stringent restrictions on increment size, has lead
to a widespread use of relatively inexpensive and simple stress integration
schemes. These schemes normally rely on the use of some variant of the rate
form of the constitutive equation, as described previously in this section. Here,
we provide the essential features of the explicit approach to finite element
analysis employed in this work and refer to recent texts by Simo & Hughes
(1998) and Belytschko et al. (2000) for further details.

4.3.1 The discretised dynamic equations

The point of departure for the explicit dynamic analysis is the weak form of
the momentum balance, stated in its spatial version in Section 3.5.1 (page 38),
as follows

∫

ϕ(B)

[σ : ∇xη − (f − ρ ü) · η] dv −
∫

ϕ(∂B)

t · η da = 0 ∀ η ∈ V . (4.27)

In addition, let the motion be prescribed on a portion of the boundary so that
at time t the set of kinematically admissible deformations of B is defined as

K = {u : B → U |u = ū on ∂Bu} (4.28)

where ū is the prescribed boundary displacement.

Discretization in space: Several methods have been applied in different
situations for the discretization in space of the above problem: finite differ-
ences, finite elements, finite volumes, boundary solutions and Galerkin meth-
ods (Hilber & Hughes, 1978). However, finite elements are by far the most
commonly used. Standard textbooks that provide a detailed account of the
finite element method are Oden (1972), Hughes (1987), Crisfield (1991, 1997),
Bathe (1996), Belytschko et al. (2000), Zienkiewicz & Taylor (2000). In this
section the main steps of the solution procedure based on the Galerkin finite
element discretization, will be briefly reviewed.
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In a conventional approach, approximations to the boundary value prob-
lem, can be obtained by replacing the functional sets K and V with their
discrete counterparts K h and V h. Let NA : B → R, A = 1, .., nnode denote the
prescribed nnode global finite element shape (interpolation) functions which,
together with the associated nodal points xA ∈ ϕ(B), discretize the deformed
configuration ϕ(B) of the body B. The shape functions are subjected to the
standard completeness condition NA(xB) = δAB, where δAB is the Kronecker
symbol. In the Galerkin finite element formulation the finite dimensional sub-
spaces K h and V h are defined, respectively, as:

uh =

nnode
∑

A=1

NA(x)uA, and ηh =

nnode
∑

A=1

NA(x)ηA, ∀x ∈ ϕ(B), (4.29)

where uA is the nodal displacement. Inserting (4.29) into the weak form (4.27)
leads to a set of semi-discrete equations:

Mü + f int (u) = f ext (4.30)

where u are the nodal displacements, M denotes the mass matrix and f int (u)
represents the internal force contribution from the element stress field which
satisfies the (non-linear) constitutive relations. The term f ext represents the
external forces arising from applied tractions and contact conditions.

Discretization in time: A wide range of techniques are available to solve
the problem defined by equations (4.30). Modal analysis is traditionally used
for systems dominated by low frequencies, whilst direct integration techniques
are better suited for the transient response of systems with a wide spectrum
of frequencies. In this work, the standard form of the explicit integration of

tn-1 tn-1/2
tn tn+1/2

tn+1

∆tn ∆tn+1

v n+1/2

u n+1u nu n-1

v n-1/2

..u n

t

Figure 4.1: Central difference approximation.

equations (4.30) relies on the central difference approximation for the velocity
and acceleration, as illustrated in Figure 4.1. After some simple manipulations
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and assuming, for simplicity, a constant time step increment ∆t = tn+1 − tn =
tn − tn−1, the following recursive expressions for velocity and displacements
may be obtained

vn+ 1
2

= vn− 1
2

+ ∆tM−1
(

f ext
n − f int

n

)

un+1 = un + ∆tvn+ 1
2

(4.31)

The use of a diagonal lumped mass matrix M is highly desirable in order to
de-couple the finite element equations and avoid the solution of the system of
algebraic equations (4.31). The evaluation of displacement can then proceed on
an individual nodal basis with inter nodal coupling occurring only throughout
the calculation of the internal forces f int. This, makes explicit dynamic analysis
an attractive solution approach for many industrially relevant problems.

Explicit time integration schemes are simple in logic and structure, but
are conditionally stable, which constitutes a notable disadvantage. Numerical
stability is governed by the time step increment, ∆tcr, which in turn, can be
defined as a function of the maximum eigenvalue of the system, ωmax, as

∆t ≤ ∆tcr =
2

ωmax
. (4.32)

The present algorithm approximates the maximum eigenvalue of the system by
the maximum element eigenvalue (Owen & Hinton, 1980). A practical measure
of ∆tcr can be defined based on the wave propagation problem, which, for
plane-strain problems and constant strain elements, is given by

∆tcr =
he

Q+
√

Q2 + c2
, (4.33)

where he is the characteristic length of the element, Q is a reduction factor
related to the artificial viscosity,

Q = Ql c+Qq he tr[ε̇ ] (4.34)

and c is the dilational wave speed associated with the element,

c =

√

E(1 − ν)

ρ(1 + ν)(1 − 2ν)
, (4.35)

where tr[ε̇ ] is the volumetric strain rate, Ql andQq are the linear and quadratic
bulk viscosity coefficients respectively, ν is the Poisson’s ratio and E is the
Young’s modulus. Belytschko (1983) reports that, for central difference schemes,
the critical time step should be further reduced to ∆tcr,c = ∆tcr(

√

1 + ξ2 − ξ),
where ξ is a fraction of the critical damping in the maximum frequency.
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In general, fine meshes require smaller time steps which increases the total
computational time substantially. On the other hand, the majority of forming
operations are sufficiently slow to be classified as quasi-static, with the mater-
ial response being rate independent. Therefore in order to provide acceptable
CPU times, the material density is artificially increased to achieve larger crit-
ical time steps. In addition, the punch velocity is usually raised to reduce the
total number of time steps required to model forming process. Since increasing
both the material density and punch velocity results in increased inertia forces,
a sensible loading history must be designed to minimise the inertia effects.

Remark 4.1 Considerable efforts have been made to improve the performance
of explicit schemes (Zienkiewicz et al. , 1984; Thomas & Gladwell, 1988; Hoff
& Taylor, 1990), and the developed versions have in general accuracy of order
greater than or equal to two. However, this has resulted in either a reduced
critical time step or a need for residual forces to be calculated more than once
during each time step.

4.4 Hyperelastic-based multiplicative finite plasticity

A rather general class of isotropic hyperelastic-based multiplicative plasticity
models, formulated in the spatial configuration, is described in this section.
The theory introduced forms the basis of the isotropic large strain plasticity
framework whose finite element implementation is addressed in Section 4.5.

4.4.1 Multiplicative elasto-plasticity kinematics

The main hypothesis underlying the present approach to finite strain elasto-
plasticity is the multiplicative split of the deformation gradient, F , into elastic
and plastic contributions:

F = F
e
F

p
, (4.36)

where F
e

and F
p

are named, respectively, the elastic and plastic deformation
gradients. The multiplicative split of F , introduced by Lee & Liu (1967) and
Lee (1969), embodies the assumption of the existence of a local unstressed
intermediate configuration defined by the plastic deformation gradient, F

p
.

The concept is schematically illustrated in Figure 4.2. It must be emphasised
that the unstressed intermediate configuration concept is valid only in the local
(pointwise) sense.

Following the above multiplicative split of F , the stretches and rotations
associated with the elastic and plastic parts of the deformation gradient are
obtained by performing the polar decompositions

F
e
= Re U e = V e Re (4.37)
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initial
configuration configuration

current

intermediate
configuration

local

p
x= ϕ (p)

F= F e F p

F p
F e

Figure 4.2: Multiplicative decomposition of the deformation gradient.

and
F

p
= Rp U p = V p Rp (4.38)

The resulting tensors U e(U p), V e(V p) and Re(Rp), are named, respectively,
the elastic (plastic) right stretch tensor, the elastic (plastic) left stretch tensor
and the elastic (plastic) rotation tensor.

Additive split of the velocity gradient, stretching and spin

As a consequence of the assumed multiplicative split of F , the velocity gradient
(refer to Section 3.1.6, page 27) defined by

l ≡ ∇xv = Ḟ F
−1
, (4.39)

can be decomposed additively as:

l = le + lp , (4.40)

where le and lp are, respectively, the elastic and plastic contributions defined
by

le ≡ Ḟ
e
(F

e
)−1 , lp ≡ F

e
Ḟ

p
(F

p
)−1(F

e
)−1 . (4.41)

Similarly, the stretching (or rate of deformation) tensor, d≡sym[l], can be
decomposed as:

d = d e + d p ,

with the elastic and plastic stretchings given by

d e ≡ sym[le] d p ≡ sym[lp] . (4.42)
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The same additive decomposition applies to the spin tensor , w≡skew[l]:

w = w e + w p ,

where the elastic and plastic spin tensors are defined by:

w e ≡ skew[le] w p ≡ skew[lp] .

Spatially rotated plastic stretching

In the following, the spatial configuration will be used to formulate the gen-
eral finite isotropic plasticity model. In this context, all kinematic quantities
involved in the constitutive formulation will be expressed as spatial quanti-
ties (i.e., in the deformed configuration). It is thus convenient to define the
following rotation of d p:

d̃ p ≡ Re d p (Re)T = Re sym
[

˙F
p
(F

p
)−1
]

(Re)T . (4.43)

The above tensor represents the rate of plastic stretching rotated (by the elastic
rotation) to the spatial (or deformed) configuration and will be called the
spatial plastic stretching (or rate of plastic deformation).

4.4.2 The logarithmic elastic strain measure

In Section 3.1.5 [page 26] Eulerian (or spatial) strain measures have been de-
fined as functions of the left stretch tensor V. Similarly, spatial elastic strain
measures can be defined as functions of the elastic left stretch tensor, V e.
As we shall notice, the use of the logarithmic (or natural) strain measure to
describe the elastic behaviour is particularly convenient. The Eulerian loga-
rithmic elastic strain is defined by:

εe ≡ ln V e = 1
2

ln be , (4.44)

where ln(·) above denotes the tensor logarithm of (·) and

be = F
e
(F

e
)T = (V e)2

is the left elastic Cauchy-Green strain tensor.

Deviatoric and volumetric logarithmic strains

By performing the deviatoric/volumetric split of the elastic logarithmic strain
we obtain:

εe = εe
d + εe

v I , (4.45)

where
εe

d ≡ εe − 1
3
tr[εe]I ,
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and the volumetric logarithmic elastic strain is given by

εe
v ≡ tr[εe] = ln Je ,

with
Je ≡ det F

e
.

Due to the properties of the logarithmic strain measure, analogously to the
infinitesimal theory, a traceless εe (εe

v = 0) corresponds to a finite volume
preserving elastic deformation, i.e., a deformation with det F

e
=1.

4.4.3 A general isotropic large strain plasticity model

A rather general class of isotropic hyperelastic-based finite strain elasto-plastic
constitutive models, formulated in the spatial configuration, is described below.
The model is defined by the following assumptions.

Stress response. Hyperelastic relationship

The existence of a quadratic strain energy function ψe(εe) is assumed in the
form of a scalar symmetric function of its stretches λe

(i) (i) (i = 1, 2, 3). In
fact, it is generally accepted that a sufficiently general constitutive model with
possibly wide range of applications, including metal plasticity, may be defined
by employing the so-called Hencky strain energy function ψe(εe), which is given
by:

ψe(λe
1, λ

e
2, λ

e
3) = G

[

(lnλe
1)

2 + (lnλe
2)

2 + (lnλe
3)

2]

+ 1
2

(

K + 2
3
G
)

ln (Je)2 ,
(4.46)

where G and K are positive material constants and Je = λe
1 λ

e
2 λ

e
3. The above

strain-energy renders the following hyperelastic constitutive relationship be-
tween the Kirchhoff stress and the Eulerian logarithmic strain:

τ = ρ̄
∂ψ

∂εe
= De : εe (4.47)

which has the same format as the infinitesimal linear elastic stress-strain rela-
tion. In Equation (4.47), De denotes the fourth-order isotropic constant elastic
tensor.

The plastic flow rule

The evolution of the plastic deformation gradient – the plastic flow – is defined
by the following constitutive equation for the rotated plastic stretching:

d̃ p = γ̇
∂Ψ

∂τ
, (4.48)
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where Ψ(τ,A) is the plastic flow potential , expressed as a function of the
Kirchhoff stress and the thermodynamical force set, A. Equation (4.48) is
complemented by postulating a null plastic spin:

w p = 0 . (4.49)

The two equations above completely define the evolution of F
p
. Indeed, the

definition (4.43) of d̃ p together with the constitutive laws (4.48) and (4.49) are
equivalent to the following evolution law for the plastic deformation gradient:

Ḟ
p

= γ̇ (Re)T ∂Ψ

∂τ
Re F

p
. (4.50)

The elastic deformation gradient evolution equation corresponding to the above
plastic flow equation within the multiplicative kinematics framework is given
by

Ḟ
e
(F

e
)−1 = Ḟ (F )−1 − γ̇

∂Ψ

∂τ
. (4.51)

The evolution law for the internal variables assumes the standard format:

α̇ = −γ̇ ∂Ψ
∂A

. (4.52)

In the above, the plastic multiplier , γ̇, is required to satisfy the standard
complementarity relation:

Φ ≤ 0 γ̇ ≥ 0 γ̇Φ = 0 . (4.53)

with Φ(τ,A) denoting the yield function, expressed in terms of the Kirchhoff
stress and the set A of conjugate thermodynamical forces.

The overall finite strain elasto-plastic constitutive model is completely de-
fined by equations (4.47)– (4.53). The model is summarized in Box 4.3.

Finite strain extension to infinitesimal theories

Expression (4.47) as well as the adopted plastic flow rule (4.48) are completely
analogous to their small strain counterparts. In the small strain limit, εe and
d̃p reduce, respectively, to the infinitesimal elastic strain tensor and plastic
strain rate. Thus, the present approach allows a natural extension, to the finite
strain range, of general isotropic infinitesimal models. Finite strain extensions
obtained as such preserve some very important properties of the original small
strain model (de Souza Neto et al. , 2005a):

- Volume preserving plastic deformations;

- Finite plastic incompressibility;

- Associativity and maximum plastic dissipation.
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Box 4.3: General isotropic finite strain multiplicative elasto-plastic model

(i) Multiplicative decomposition of the deformation gradient

F = F
e
F

p

(ii) Isotropic hyperelastic law

τ = ρ̄
∂ψ(εe,α)

∂εe

(iii) Evolution equations for F
p

and internal variable set α

˙F
p
(F

p
)−1 = γ̇ (Re)T ∂Ψ

∂τ
Re

α̇ = −γ̇ ∂Ψ

∂A

(iv) Loading/unloading criterion

Φ ≤ 0 γ̇ ≥ 0 γ̇Φ = 0

4.4.4 The general elastic predictor/return mapping algorithm

In any numerical scheme employed for the analysis of elasto-plastic problems
it eventually becomes necessary to integrate the constitutive equations of the
model. In this section, we show that an integration algorithm can be derived for
the general finite multiplicative plasticity model based on analogous concepts
of the elastic predictor/return mapping algorithms of the infinitesimal theory.

The incremental finite plasticity problem

The problem to be addressed, is that of updating the known state variables as-
sociated with a converged configuration at tn into their corresponding updated
values on the updated configuration at tn+1 in a manner consistent with the
constitutive equations of Box 4.3. In this process, the incremental displace-
ments, ∆u, defining the geometry update are assumed given.

In the present context, given F
e
n and the set αn of internal variables at the

beginning of the interval [tn, tn+1] and given the prescribed incremental defor-
mation gradient, F ∆, for this interval, solve the following system of algebraic
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equations

F
e
n+1 = F ∆F

e
n Re T

n+1 exp
[

−∆γ ∂Ψ
∂τ

∣

∣

n+1

]

Re
n+1

αn+1 = αn + ∆γHn+1

(4.54)

for the unknowns F
e
n+1, αn+1 and ∆γ, subjected to the constraints

∆γ > 0 Φ(τn+1,An+1) ≤ 0 ∆γ Φ(τn+1,An+1) = 0 (4.55)

with

τn+1 =
∂ψ

∂εe

∣

∣

∣

∣

n+1

An+1 =
∂ψ

∂α

∣

∣

∣

∣

n+1

(4.56)

and the kinematic relations

εe
n+1 = ln V e

n+1

V e
n+1 =

[

F
e
n+1(F

e
n+1)

T
]

1
2

Re
n+1 =

[

V e
n+1

]−1
F

e
n+1.

(4.57)

After the solution of the above problem, the updated plastic strain can be
promptly determined from the multiplicative elasto-plastic split as

F
p
n+1 = (F

e
n+1)

−1 F n+1. (4.58)

The elastic predictor/return mapping scheme

The operator split methodology results in an algorithm which consists of two
basic steps: the elastic predictor , where the problem is assumed to be purely
elastic between times tn and tn+1 (no plastic flow or internal variable evolu-
tion), followed by a plastic corrector , where a discrete system of equations
comprising the elasticity law, plastic flow, internal variables evolution and the
loading/unloading criterion is solved with the results of the elastic predictor
stage – the elastic trial state – as initial conditions. The general algorithm
comprises the following steps:

(i) The elastic predictor step, obtained by solving (4.54) with ∆γ = 0, gives
the elastic trial state

F
e trial
n+1 = F ∆F

e
n

αtrial
n+1 = αn.

(4.59)

where F
e
n is the elastic deformation gradient at tn and F ∆ denotes the

incremental deformation gradient :

F ∆ ≡ F n+1(F n)−1 = I + ∇xn[∆u] , (4.60)
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with ∆u denoting the incremental displacement field between times tn
and tn+1. The corresponding elastic trial Kirchhoff stress and thermody-
namical forces are given by the potential relations:

τ trial
n+1 = ρ̄

∂ψ

∂εe

∣

∣

∣

∣

trial

n+1

Atrial
n+1 = ρ̄

∂ψ

∂α

∣

∣

∣

∣

trial

n+1

. (4.61)

(ii) If the pair
{

τ trial
n+1 ,A

trial
n+1

}

, is plastically admissible, i.e, if

Φ(τtrial
n+1,A

trial
n+1)≤0 . (4.62)

then the process is purely elastic within the interval [tn, tn+1]. The state
is then updated as

(·)n+1 = (·)trial
n+1 .

(iii) Otherwise, plastic yielding occurs and we solve the return mapping equa-
tions

F
e
n+1 = F

e trial
n+1 Re T

n+1 exp
[

−∆γ ∂Ψ
∂τ

∣

∣

n+1

]

Re
n+1

αn+1 = αtrial
n + ∆γHn+1

Φ(τn+1,An+1) = 0,

(4.63)

for F
e
n+1, αn+1 and ∆γ, which gives the numerical approximation to the

state variables at time station tn+1.

Logarithmic strains and the infinitesimal format return mapping

It is possible to simplify the return mapping equation (4.63)1 by re-writing
it in terms of the logarithmic elastic strain measure (rather than the elastic
deformation gradient). The post-multiplication of both sides of (4.63)1 by
Re T

n+1 results in:

V e
n+1 = F

e trial
n+1 Re T

n+1 exp
[

−∆γ ∂Ψ
∂τ

∣

∣

n+1

]

, (4.64)

or, equivalently,

V e
n+1 exp

[

∆γ ∂Ψ
∂τ

∣

∣

n+1

]

= F
e trial
n+1 Re T

n+1 . (4.65)

Then, a further post-multiplication of each side by its transpose, gives:

V e
n+1 exp

[

2 ∆γ ∂Ψ
∂τ

∣

∣

n+1

]

V e
n+1 = (V e trial

n+1 )2 . (4.66)

Due to the assumed elastic isotropy, V e and τ commute. Then by rearranging
the terms and taking the square root of both sides of expression (4.66) we
obtain:

V e
n+1 = V e trial

n+1 exp
[

−∆γ ∂Ψ
∂τ

∣

∣

n+1

]

. (4.67)
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Finally, by taking the tensor logarithm of both sides of (4.67), we obtain the
much simpler formula in terms of logarithmic Eulerian strain tensors:

εe
n+1 = εe trial

n+1 − ∆γ
∂Ψ

∂τ

∣

∣

∣

∣

n+1

, (4.68)

which has the same format as the update formula for the elastic strains of
the standard implicit return mapping algorithms of the infinitesimal theory.
For the elastic rotation, the above algorithm results in the following update
formula:

Re
n+1 = Re trial

n+1 . (4.69)

To see this, note that by comparing (4.64) to (4.67), we find:

V e trial
n+1 = F

e trial
n+1 Re T

n+1 = V e trial
n+1 R e trial

n+1 Re T
n+1 , (4.70)

which leads to (4.69).

Computational implementation of the general algorithm

Since the elastic law is defined here in terms of the spatial elastic logarithmic
strain, in the actual computational implementation of the above elastic pre-
dictor/return mapping procedure we shall take εe as the kinematic variable to
be stored in the computer memory. Therefore, after retrieving the elastic log-
arithmic strain εe

n at tn the elastic trial left Cauchy-Green tensor is computed
by

b e
n = exp[2 εe

n] .

The following kinematic operations required for integration of the large strain
elasto-plastic constitutive equations are summarized in Box 4.4.

Remark 4.2 The operations carried out in Box 4.4 are related exclusively to
the kinematics of finite strains. Due to the use of logarithmic strains to describe
elasticity along with the implicit exponential approximation to the plastic flow
rule, the essential material related stress updating procedure preserves the small
strain format. It corresponds to the general elastic predictor/return mapping
algorithm for infinitesimal plasticity. In computational terms, it means that all
small strain elasto-plastic integration subroutines can be re-used in the finite
strain range without modification.

4.4.5 The incremental boundary value problem

The introduction of algorithmic constitutive function, σ̂, for the stress tensor

σ̂(αn,F n+1) = τ̂ (αn,F n+1)/det[F n+1] (4.71)
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Box 4.4: General integration algorithm for multiplicative finite strain
elasto-plasticity

(i) Given incr.displ. ∆u, update the deformation gradient

F ∆ := I + ∇n[∆u] F n+1 := F ∆ F n

(ii) Compute the elastic trial state

b e
n := exp[2 εe

n]

b e trial
n+1 := F ∆ be

n (F ∆)T

εe trial
n+1 := ln[V e trial

n+1 ] = 1
2
ln[b e trial

n+1 ]

αtrial
n+1 := αn

(iii) Use the small strain algorithm to evaluate τn+1, εe
n+1 and

αn+1

τn+1 = τ̃ (αn, ε
e trial
n+1 ) .

(iv) Update the Cauchy stress

σn+1 := det[F n+1]
−1 τn+1

in the weak form of the equilibrium, stated in its spatial version in Section
3.5.1 (page 38), results in the incremental boundary value problem stated as
follows:

Given the set αn of internal variables at time tn, and given the body forces
fn+1 and surface traction tn+1 fields at tn+1, find a kinematically admissible
configuration ϕn+1(B) ∈ Kn+1 such that the the virtual work equation
∫

ϕn+1(B)

[σ̂(αn,F n+1) : ∇xη − fn+1 · η] dv −
∫

ϕn+1(∂B)

tn+1 · η da = 0, (4.72)

is satisfied for any η ∈ V, where ϕn+1 is the deformation map at tn+1. The set
Kn+1 is defined as

Kn+1 = {u : B → U |u = ūn+1 on ∂Bu} (4.73)

where ūn+1 is the prescribed boundary displacement at tn+1.

It is important to remark that the weak form of the equilibrium, stated
above, is restricted to quasi-static conditions, where inertia effects are ignored.
Furthermore, due to the introduction of σ̂, the constitutive relations are sat-
isfied only approximately.
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The consistent spatial tangent modulus

In Appendix B, the exact linearization of the boundary value problem was
carried out in the context of element technology. Here, the main concern is to
derive a closed formula for the spatial tangent modulus a which takes part in
the directional derivative of the internal work functional:

DGint (u, η) [d] =

∫

ϕ(B)

∇x η : a : ∇x ddv (4.74)

with cartesian derivatives given by

aijkl =
1

J

∂τij

∂Fkq
Flq − σil δjk , (4.75)

where J = det F . The term ∂τij/∂Fkq taking part in (4.75) is the only term
that depends on the particular constitutive model adopted. For the present
model, in the small strain integration algorithm, the updated Kirchhoff stress,
τn+1, is obtained as a function of internal variable set αn, at tn, and the elastic
trial logarithmic strain [step (iii) of Box 4.4] of the form:

τn+1 = τ̃ (αn, ε
e trial
n+1 ) . (4.76)

In the algorithm εe trial
n+1 is computed as a function of b e trial

n+1 which, in turn, is
a function of F

p
n and F n+1. The global operator split algorithm, defines an

implicit function τ̂ , for the updated Kirchhoff stress, that can be generally
expressed as:

τ̂ (αn,F n+1) = τ̃ (αn, ε
e trial
n+1 (b e trial

n+1 (F
p
n ,F n+1))) . (4.77)

In order to obtain the aforementioned derivative ∂τij/∂Fkq, we apply the chain
rule to (4.77) and obtain

∂τ̂

∂F n+1

=
∂τ̃

∂εe trial
n+1

:
∂εe trial

n+1

∂b e trial
n+1

:
∂b e trial

n+1

∂F n+1

. (4.78)

Substitution of this expression into (4.75) results, after straightforward ma-
nipulations, in the following closed formula for the components of the spatial
tangent modulus consistent with the present operator split algorithm:

aijkl =
1

2 J
[ D : L : B ]ijkl − σil δjk , (4.79)

where D is the small strain elastic or elasto-plastic consistent tangent operator :

D =
∂τ̃

∂εe trial
n+1

. (4.80)
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The fourth order tensor L is defined as:

L =
∂ ln[b e trial

n+1 ]

∂b e trial
n+1

, (4.81)

i.e., it is the derivative of the tensor logarithm function at b e trial
n+1 , which is a

member of the class of isotropic tensor functions described in Appendix A.
The fourth order tensor B is defined by the cartesian components:

Bijkl = δik (be trial
n+1 )jl + δjk (be trial

n+1 )il . (4.82)

Remark 4.3 It should be noted that D is the only material related contribu-
tion to the spatial modulus a. All other terms taking part in its assemblage in
(4.79) are related purely to the geometry of finite deformations and are com-
pletely independent of the particular material model adopted. The operator
D has exactly the same functional format as the tangent consistent with the
corresponding implicit integration algorithms for infinitesimal plasticity.

4.5 Implicit quasi-static finite element solution strategy

The weak form of the momentum balance, the principle of virtual work, rep-
resents the starting point of displacement based finite element solution proce-
dures (Hughes, 1987; Bathe, 1996; Zienkiewicz & Taylor, 2000). The standard
finite element discretization, as described in Section 4.3.1, leads to a discrete
version of the virtual work. This is obtained by inserting (4.29) into the weak
form (4.72). The problem is then reduced to the following. Find the nodal dis-
placement vector un+1 at time tn+1 such that the following non-linear algebraic
system:

r(un+1) ≡ f int(un+1) − f ext
n+1 = 0 (4.83)

is satisfied, where f int(un+1) and f ext
n+1 are, respectively, internal and external

global force vectors resulting from the assemblage of the element vectors:

f int
(e) =

∫

ϕ(B(e))

BT σ̂ (F (un+1),αn) dv (4.84)

f ext
(e) =

∫

ϕ(B(e))

NTfn+1 dv +

∫

∂ϕ(B(e))

NT tn+1 da (4.85)

with B and N being, respectively, the standard discrete symmetric gradient
operator and the interpolation matrix of the element (e) in the configuration
defined by displacement un+1 and σ̂ is the vector containing the Cauchy stress
components delivered by the algorithmic function.
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4.5.1 The Newton-Raphson scheme. Linearization

An effective and efficient way to find a solution un+1 to the above non-linear
system is to use the standard Newton-Raphson iterative procedure, obtained
from the exact linearization of (4.83). During a typical Newton-Raphson iter-
ation (k), the following linear system is solved for the iterative displacement
∆u(k):

K(u
(k)
n+1)[∆u(k)] = −r (u

(k)
n+1) (4.86)

and the new guess for the solution un+1 is updated as:

u
(k+1)
n+1 = u

(k)
n+1 + ∆u(k) (4.87)

The tangent stiffness K is defined by the directional derivative formula:

K(u)[∆u] =
d

d ε

∣

∣

∣

∣

ε =0

r (u + ε∆u) (4.88)

If the external loads are assumed independent of u, then the element tangent
stiffness is given by the formula:

K (e) =

∫

ϕ(B(e))

GTaG dv (4.89)

where G is the standard discrete spatial gradient operator and a denotes the
matrix form of the spatial elasticity tensor a given, in Cartesian components,
by:

a ijkl =
1

J

∂τij
∂Fkm

Flm − σil δjk (4.90)

Note that, since the Kirchhoff stress tensor is the outcome of the algorithmic
function (4.77), its derivative appearing in the expression above is, in fact, the
derivative

∂τ̂

∂F

∣

∣

∣

∣

(F
(k)
n+1, αn)

(4.91)

of the incremental (rather than the actual) constitutive functional. It is worth
mentioning here that whenever more complex integration algorithms and/or
material models (particularly in the finite strain range) are involved, consistent
tangent operators may not be easily derived. Issues associated with consistent
linearization aspects in finite multiplicative plasticity are discussed in detail
by Simo & Miehe (1992) and Cuitiño & Ortiz (1992). As already mentioned
in Section 1.1.4, consistent linearization is regarded as a crucial aspect of the
formulations presented. The asymptotically quadratic rates of convergence
more than justify the importance of this issue.



Chapter 5

Damage constitutive modelling

and failure in ductile metals

THE gradual internal deterioration at the microscopic level which may,
eventually, lead to the occurrence of macroscopic failure in ductile met-

als, undergoing plastic deformations, has been subjected to a detail study over
the last two decades. In metal forming operations – our main area of in-
terest – finite bulk deformations are almost invariably accompanied by large
inelastic strains. As experimentally verified for many ductile polycrystalline
metals, initially throughout metallographic observations (Hancock & Macken-
zie, 1976; Le Roy et al. , 1981; Thomason, 1990), the nucleation and growth of
voids and microcracks which accompany large plastic flow causes considerable
reduction of stiffness, strength and is highly influenced by the triaxiality of
the stress state (Lemaitre, 1984, 1985a). Close to material failure, the energy
dissipation associated with such mechanisms has a dominant effect. A proper
modelling of this phenomena at the mesoscale would strengthen the prediction
of ductile failure in real life components and structures (i.e., the macroscale).
Undoubtedly, the ability of the designer to anticipate mechanical breakdown
is of crucial importance and accidental failure may have catastrophic effects,
with consequences, far beyond purely economical issues.

The present chapter is devoted to computational continuum damage me-
chanics. Our intention here is to provide an introduction to this promising
ramification of computational solid mechanics, which has been gaining wide-
spread acceptance over the last three decades. This chapter is organised as
follows. In Section 5.2 a brief historical review of Continuum damage mechan-
ics is given and particular emphasis is given to the phenomenon of ductile
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plastic damage. The description of Lemaitre’s elasto-plastic damage theory
(Lemaitre, 1996), is undertaken in Section 5.3. The two following sections of
this chapter, Sections 5.4 and 5.5, describe, respectively, a rate independent
model for damage growth, which includes crack closure effects and a rate de-
pendent version. In each of those sections, the computational implementation
of the corresponding constitutive models is described in detail.

5.1 Introduction

In order to understand the material behaviour close to failure and improve
the accuracy of inelastic constitutive relations, several approaches and theo-
ries have been proposed. The overall goal of one recent strategy is to con-
struct well-defined, reliable connections between material microstructure and
the macroscopic response of structural metals. The material structure is a
collection of many features, such as chemical composition, atomic structure of
the crystal lattice, precipitates and defects, dislocation structures within indi-
vidual grains and subgrains, grain size and grain boundary deformations (see
Section 2.1). With few exceptions, these features evolve during deformation
and with time. Successful modelling of their role could suggest interventions
on the micro-level, that would generate desirable behavior modifications on the
macroscale. Such efforts involve modelling on many different size scales, and
while much insight has been gained within the respective scales, connections
between scales, especially those close to the opposite ends of the spectrum,
remain often elusive and prevails an active area of research. This approach is
strongly supported by the developments of experimental devices, like the high-
resolution electron microscope, which allows the examination of defects at the
atomic scale and the macroscopic response they engender [see Ortiz (1996) and
Miehe et al. (1999), and references therein, for reviews of the computational
approaches employed in this rapidly expanding field].

On the other hand, with the growing knowledge of the mechanisms of pro-
gressive internal damage that cause failure in a wide range of materials, it
is becoming possible to formulate continuum constitutive models capable of
accounting for the evolution of internal deterioration, in the analysis of large
scale problems. It is often argued that the ultimate task of engineering research
is to supply a rational predictive tool applicable in design. Such interest in
the development of continuum theories for ductile damage may be attributed
in part to the increasing industrial requirement for models capable of simulat-
ing the behaviour of metals under conditions in which internal damage plays
a significant role. Therefore, a model intended to represent such phenomena
should be simple enough to allow efficient numerical treatment and easy ex-
perimental verification of material parameters. At the same time its simplicity
should not eliminate the essential features of the mechanical behaviour within
the intended range of application.
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5.2 Continuum damage mechanics

Since the pioneering work by Kachanov (1958), a considerable body of the
literature on applied mechanics has been devoted to the formulation of consti-
tutive models to describe internal degradation of solids within the framework
of continuum mechanics. After over three decades of uninterrupted develop-
ment, significant progress has been achieved and Continuum damage mechan-
ics (CDM) has emerged as an alternative approach by introducing new state
variables into the material constitutive model.

The material behaviour is modelled by constitutive equations taking into
account its progressive deterioration. Such models are based on the assump-
tion that the progressive internal deterioration observed prior to the onset of a
macro-crack can be effectively represented by one or more internal variables of
scalar, vectorial or tensorial nature. Such variable(s) named the damage vari-
able(s) can be seen as phenomenological, averaged counterparts of microscopic
measures of defects within a representative volume element (RVE). Their evo-
lution must be defined by thermodynamically consistent constitutive relations,
usually represented by a set of differential equations in time. In this context,
we shall refer to as a Continuum Damage Mechanics Model any continuum
constitutive model which features special internal variables representing, di-
rectly or indirectly, the density and/or distribution of the microscopic defects
that characterise damage. The ultimate phase of the damage evolution is de-
tected by a local criterion and corresponds to the failure of the RVE, and hence
to a macro-crack initiation.

5.2.1 Original development. A brief review

Using the method of local state and internal variables, several continuum dam-
age models, either phenomenological or micromechanically based, have been
developed. The modern damage formulation can be traced back to the late
fifties when Kachanov (1958), based on the concept the effective resisting sur-
face, developed a model for creep rupture. A physical significance for the
damage variable was given later by Rabotnov (1963) who proposed the reduc-
tion of the cross-sectional area due to microcracking as a suitable measure of
the state of internal damage. A generalization of the basic definition assumes
that the damage variable, D, physically represents the corrected area of cracks
and cavities per unit surface cut by a plane perpendicular to a normal vector,
n, as

D =
S − S̃

S
(5.1)

where S is the overall area of the element defined by its normal n, S̃ is the
effective resisting area and SD is the total area of micro-cracks and cavities, as
depicted in Figure 5.1. Rigorous formulation naturally leads to the definition of
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Figure 5.1: Damaged element.

a damage tensor, as proposed either by Chaboche (1984) or Murakami (1987)
who have shown how large plastic flow is responsible for inducing anisotropy.
In this case, the experimental identification of damage parameters becomes a
very difficult and complicated task with very few examples in the published
literature. However, assuming isotropic damage in many cases is not too far
from reality, as a result of the random shapes and distribution of the included
particles and precipitates that trigger damage initiation and growth. In this
case, the damage variable, D, can assume values between D=0 corresponding
to the virgin material and D = 1 representing the total loss of load bearing
capacity. In order to describe the strain rate increase which characterises
tertiary creep, Kachanov has replaced the observed uniaxial stress σ with the
effective stress:

σ̃ =
σ

1 −D
(5.2)

in the standard Norton’s Law for creep.

Despite its origin in the description of creep rupture, CDM was shown to
provide an effective tool to describe the phenomenon of degradation in other
areas of solid mechanics. Several different formulations for a variety of materi-
als and processes have also been presented, such as elastic-brittle (Murakami,
1988, 1997), brittle (Krajčinović & Fonseka, 1981; Fonseka & Krajčinović,
1981; Krajčinović, 1983), creep (Leckie & Hayhurst, 1974; Chaboche, 1978,
1981; Murakami & Ohno, 1981; Chaboche, 1984; Krajčinović & Selvaraj, 1984;
Chaboche, 1988; Saanouni et al. , 1989; Murakami, 1990), fatigue (Janson,
1978; Chaboche, 1988) and creep-fatigue (Lemaitre, 1987; Chaboche, 1988)
amongst others. Further discussion on these models is provided by Lemaitre
(1990) and Lemaitre (1996).

Remark 5.1 Due to the diversity of forms in which internal damage manifests
itself at the microscopic level, the definition of adequate damage variables is
certainly not an easy task. During the development of CDM, briefly reviewed
above, variables of different mathematical nature (scalars, vectors, tensors)
possessing different physical meaning (reduction of load bearing area, loss of
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stiffness, distribution of voids) have been employed in the description of damage
under various circumstances.

Current methods of experimental identification of damage, comprising di-
rect as well as indirect techniques, are described in detail by Lemaitre & Du-
failly (1987). Such techniques range from the direct observation of microscopic
pictures to the measurement of the degradation of the elastic moduli by means
of ultrasonic emissions and micro-hardness tests. The potentialities and limi-
tations of both micromechanical and phenomenological approaches to damage
mechanics are discussed by Basista et al. (1992).

5.2.2 Ductile Plastic Damage

With applications to metal forming processes in mind, a detail study of differ-
ent constitutive models proposed in the literature to describe the phenomenon
of ductile plastic damage has been undertaken. Damage and plasticity are un-
doubtedly coupled, as the presence of internal deterioration introduces local
stress concentrations which may in turn drive plastic deformation. Therefore,
the evolution law of damage should reflect the nucleation and growth of voids
and microcracks which accompany large plastic flow. In the nucleation phase,
experimental evidence reveals that there is no noticeable effect on the mechan-
ical properties, therefore a damage threshold is usually introduced to reflect
this fact (Lemaitre, 1996).

Within the theory of elastoplasticity, Gurson (1977) has proposed a model
for ductile damage where the (scalar) damage variable is obtained from the
consideration of microscopic spherical voids embedded in an elasto-perfectly
plastic matrix. Gurson’s void theory was shown to be particularly suitable
for the representation of the behaviour of porous materials. To improve this
model, a mechanism of damage nucleation, whereby voids are nucleated de-
pending on the strain history was latter incorporated. In this context, some
nucleation laws have been proposed by Tvergaard (1982) and Tvergaard &
Needleman (1984) whereby voids may nucleate in the absence of damage. Fur-
ther acceleration in voids growth, intended to produce more realist response,
can be relatively easily incorporated by introducing a modification into Gur-
son’s macroscopic yield criterion as suggested by Tvergaard (1981, 1982) and
Needleman & Tvergaard (1984). More recently, a number of finite element
unit cell based micromechanical studies have been performed in order to cor-
relate voids evolution and interaction with the resulting macroscale material
yield function. Among others, Tvergaard & Niordoson (2004) investigated the
role of smaller size voids in a ductile damage material. Schacht et al. (2003),
used the 3D voided unit cell based approach to investigate the role and the
effects associated with the crystallographic orientation of the matrix material,
finding a substantial dependency of the growth and coalescence phase with the
anisotropy of the material surrounding the voids.
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A scalar damage variable was also considered by Lemaitre (1983) in the
definition of a purely phenomenological model for ductile isotropic damage
in metals. By appealing to the hypothesis of strain equivalence Lemaitre as-
sumes that ”the strain associated with a damage state under the applied stress
is equivalent to the strain associated with its undamaged state under the effec-
tive stress”, this author postulates the following elastic constitutive law for a
damaged material:

σ̃ = Ẽ ε , (5.3)

or, equivalently,
σ = E ε , (5.4)

where Ẽ and
E = (1 −D)Ẽ (5.5)

are the Young’s moduli of the virgin (undamaged) and damaged materials,
respectively. As a consequence, the standard definition of damage in terms
of reduction of the (neither well defined nor easily measurable) load carrying
area is replaced in Lemaitre’s model by the reduction of the Young’s modulus
in the ideally isotropic case. The damage variable (5.1) is then redefined as:

D =
E − Ẽ

E
. (5.6)

This theory was further elaborated by Lemaitre (1985a,b) and ageing effects
were later incorporated by Marquis & Lemaitre (1988). More recently, the
original isotropic model has been extended by Lemaitre et al. (2000) to ac-
count for the anisotropy of damage as well for partial closure of microcracks
under compressive stresses. The damage variable in this case is a second or-
der tensor whose evolution is linked to the principal directions of the plastic
strain rate. Whitin the initial framework proposed by Lemaitre, several dam-
age models, based on the use of special expressions for the damage dissipation
potential, have been derived by different authors (Tai & Yang, 1986; Tai, 1990;
Chandrakanth & Pandey, 1993). Also in the context of elastoplasticity Simo &
Ju (1987) proposed a framework for the development of (generally anisotropic)
strain and stress based damage models. In this case, the equivalence concept
was extended by introducing the hypothesis of stress equivalence, in the formu-
lation of models in stress and strain spaces. Recently, Brunig (2003) proposed
an anisotropic CDM model using the porosity as a definition for the damage
variable.

Remark 5.2 As pointed out in Section 3.4.1 (see page 36), the appropriate
definition of internal variables associated with a specific phenomenon is one
of the most important factors determining the success or failure of the contin-
uum model intended for its description. In this work, the final objective is the
analysis of large scale problems for engineering design purposes. Therefore, a



Ch. 5 Damage constitutive modelling 70

phenomenological approach is chosen together with a scalar damage variable to
represent the internal degradation of ductile metals. The loss of microscopic
information resulting from this approach is compensated for by the gain in
analytical, experimental and computational control of the model.

Computational aspects have been addressed by several authors, within the
so-called local approach, and some of these contributions are mentioned below.
Simo & Ju (1987) used the operator split methodology to derive algorithms for
the numerical integration of the elastoplastic-damage equations of evolution.
Doghri (1995), Johansson et al. (1999) and Lee & Fenves (2001) have nu-
merically implemented damage kinetic equations, in a small strain format.
De Souza Neto et al. (1994) presented a comprehensive finite-element for-
mulation and error assessment for elastoplastic damage at finite strains, in
which isotropic and kinematic hardening and Lemaitre’s damage model were
accounted for. Steinmann et al. (1994) formulate Lemaitre’s and Gurson’s
isotropic damage models in the framework of finite multiplicative elastoplas-
ticity, where issues on numerical implementation of the models were specially
emphasised.

Remark 5.3 By recognizing that the gradient effect is important when the
characteristic dimension of the plastic deformation or damage is of the same
order as the material intrinsic length scale, a number of so-called non-local
theories have been proposed. The aforementioned local formulations lead to nu-
merical stability problems, where the results are not independent of the adopted
mesh. This dependency of the mesh manifests itself both relative to the mesh
size and to the mesh orientation. As localization of deformations occurs in very
small areas, which are usually much smaller than the typical element size, this
mesh size imposes the size of the numerically obtained localization areas. Also,
the mesh direction has an influence on the direction of the localized zones (de
Borst & Pamin, 1996). In the literature, further details of this behaviour that
include diagnostic and remedies, have been addressed in several works (Stein
et al. , 1995; Peerlings et al. , 1996; Jirasek, 1998; Kuhl & Ramm, 1999;
Nedjar, 2001; Geers et al. , 2001; de Borst, 2001), for instance.

5.3 Lemaitre’s elasto-plastic damage theory

The constitutive equations for small strain elasto-plasticity coupled with dam-
age described in this section have been proposed by Lemaitre (1983, 1984,
1985a,b). Based on the concept of effective stress and the hypothesis of strain
equivalence Lemaitre’s model includes evolution of internal damage as well as
non-linear isotropic and kinematic hardening in the description of the behav-
iour of ductile metals.
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5.3.1 Original model

The description of Lemaitre’s ductile damage model is presented in the follow-
ing.

State variables

The starting point of the theory is the assumption that the free energy is a
function of the set {εe, ε̄ p,X, D} of state variables, i.e.,

ψ = ψ(εe, ε̄ p,X, D) , (5.7)

where εe is the elastic strain tensor and ε̄ p and D are the scalar internal vari-
ables associated, respectively, with isotropic hardening and isotropic damage.
The second order tensor X is the internal variable related to kinematic hard-
ening . Table 5.1 depicts the respective associated variables. The choice of
internal variables depends on the physical phenomena under consideration.

Table 5.1: Internal variables.

Internal Variables Associated Variables

Isotropic hardening ε̄ p Radius of the yield surface R

Kinematic hardening X Backstress β

Isotropic damage D Strain energy release rate Y

The continuum damage variable D, as discussed in Section 5.2.1, can be
interpreted as an indirect measure of density of microvoids and microcracks
(Leckie & Onat, 1981). In the present theory, such microscopic defects are
assumed isotropically distributed and, as we shall see below, will be phenom-
enologically reflected in the degradation of the elastic modulus. A critical value
for Dc , for the damage variable, is an experimentally determined parameter
that defines the initiation of macrocracking (Lemaitre & Chaboche, 1990).

Under the hypothesis of decoupling between elasticity-damage and plastic
hardening, the specific free energy is assumed to be given by the sum:

ψ = ψed(εe, D) + ψp(ε̄ p,X) , (5.8)

where ψed and ψp are, respectively, the elastic-damage and plastic contribution
to the free energy.

The elastic-damage potential

In Lemaitre’s theory the following form is postulated for the elastic-damage
potential:

ρ̄ ψed(εe, D) = 1
2
εe : (1 −D)De : εe , (5.9)



Ch. 5 Damage constitutive modelling 72

where De is the standard isotropic elasticity tensor. For this particular poten-
tial, the elasticity law is given by:

σ = ρ̄
∂ψed

∂εe
= (1 −D)De : εe . (5.10)

Equivalently, the above damaged elastic law can be written as:

σ̃ = De : εe , (5.11)

where σ̃ is the effective stress tensor that generalises the uniaxial effective
stress of (5.2):

σ̃ ≡ 1

1 −D
σ . (5.12)

The thermodynamical force conjugate to the damage internal variable is
given by:

Y ≡ ρ̄
∂ψed

∂D
= −1

2
εe : De : εe , (5.13)

or, using the inverse of the elastic stress/strain law,

Y =
−1

2(1 −D)2
σ : [De]−1 : σ

=
−1

2E(1 −D)2

[

(1 + ν) σ : σ − ν (trσ)2
]

=
−q2

2E(1 −D)2

[

2

3
(1 + ν) + 3(1 − 2ν)

(

p

q

)2
]

=
−q2

6G (1 −D)2
− p2

2K (1 −D)2
,

(5.14)

where E and ν are, respectively, the Young’s modulus and Poisson ratio asso-
ciated with G and K. In the above, p is the hydrostatic stress and q is the von
Mises effective stress. Commonly known as the damage energy release rate, −Y
corresponds to the variation of internal energy density due to damage growth
at constant stress. It is the continuum damage analogue of the J integral used
in fracture mechanics (Rice, 1968). The product −Y Ḋ represents the power
dissipated by the process of internal deterioration (mainly as decohesion of
interatomic bonds).

Remark 5.4 Stress-strain rule (5.10) has an important experimental conse-
quence. With the elasticity-damage coupling introduced via the hypothesis of
strain equivalence (stated in Section 5.2.1), the effective elastic modulus of the
material, which can be measured from experiments, is given by:

D̃ = (1 −D)De , (5.15)
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where the damage variable assumes values within the interval [0, 1]. In the
absence of damage (D = 0), the effective modulus equals the modulus De of the
virgin material. For a completely damaged state (D = 1), D̃ = 0 , correspond-
ing to a total loss of stiffness and load bearing capacity of the material. The
identification of a generic damaged state, with D ∈ [0, 1], is then restricted
to the measurement of the degradation of the current effective elastic modulus
with respect to the virgin state (D = 0) as described by Lemaitre (1985a) and
Lemaitre & Chaboche (1990).

Isotropic and kinematic hardening forces

The plastic contribution ψp(ε̄ p,X) to the free energy is chosen as a sum of an
isotropic and a kinematic hardening-related term:

ρ̄ ψp(ε̄ p,X) = ρ̄ ψI(ε̄ p) +
a

2
X : X , (5.16)

where a is a material constant and the isotropic hardening contribution, ψI(ε̄ p),
is an arbitrary function of the single argument ε̄ p. The thermodynamical force
associated to isotropic hardening is, then, defined as:

R ≡ ρ̄
∂ψp(ε̄ p,X)

∂ε̄ p
= ρ̄

∂ψI(ε̄ p)

∂ε̄ p
= R(ε̄ p) . (5.17)

From (5.16), it follows that the thermodynamic force associated with kinematic
hardening – the backstress tensor , β – is given by:

β ≡ ρ̄
∂ψ

∂X
= aX. (5.18)

The flow potential. Internal variables evolution

The evolution equation for internal variables can be derived by assuming the
existence of a flow potential, Ψ, given by:

Ψ = Φ +
b

2a
β : β +

r

(1 −D)(s+ 1)

(−Y
r

)s+1

, (5.19)

where a, b, r and s are material constants and Φ is the yield function of von
Mises type:

Φ(σ, R,β, D) =

√

3 J2(s − β)

1 −D
− [σy0 +R(ε̄ p)] , (5.20)

where the material parameter σy0 is the initial uniaxial yield stress. The dam-
age evolution constants r and s can be identified by integrating the damage
evolution law for particular cases of (constant) stress triaxiality rate as de-
scribed in Section 7.4 of Lemaitre & Chaboche (1990). The constants a and b,
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associated with kinematic hardening, are obtained from cyclic loading exper-
iments (Lemaitre & Chaboche, 1990). The convexity of the flow potential Ψ
with respect to the thermodynamical forces for positive constants a, b, r and
s ensures that the dissipation inequality is satisfied ‘a priori’ by the present
constitutive model. According to the hypothesis of generalised normality, the
plastic flow is given by

ε̇p = γ̇
∂Ψ

∂σ
= γ̇N, (5.21)

where N represents the flow vector

N ≡
√

3
2

s−β

(1−D)‖s−β‖
. (5.22)

The evolution law of the internal variables is

˙̄ε p = γ̇
∂Ψ

∂R
= γ̇

β̇ = γ̇
∂Ψ

∂X
= γ̇ (aN − bβ)

Ḋ = γ̇
∂Ψ

∂Y
= γ̇

1

1 −D

(−Y
r

)s

(5.23)

where γ̇ is the plastic multiplier, which satisfies the standard complementary
law of rate-independent plasticity:

γ̇ ≥ 0, Φ ≤ 0, γ̇ Φ = 0 . (5.24)

The constitutive equations of Lemaitre’s ductile damage model are conve-
niently grouped in Box 5.1.

Damage threshold

At low values of accumulated plastic strain, ε̄p, which is related at microscopic
level with the nucleation phase, the elastic modulus degradation can be hardly
detected in experiments. Thus, we can assume that damage growth starts only
at a critical value, denoted ε̄p

D. This critical value will be called the damage
threshold and depends upon the loading, the fatigue limit and the ultimate
stress (Lemaitre, 1996). Notwithstanding, in this work, for simplicity reasons,
it is assumed that the threshold for damage evolution is a material property
and can be included in the model by redefining the damage evolution law as:

Ḋ = γ̇
H(ε̄p − ε̄p

D)

1 −D

(−Y
r

)s

, (5.25)

where H here denotes the heavyside step function defined as:

H(a) ≡
{

1 if a ≥ 0

0 if a < 0
for any scalar a. (5.26)
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Box 5.1: Lemaitre’s standard ductile damage model

(i) Elasto-plastic split of the strain tensor

ε = εe + εp

(ii) Coupled elastic-damage law

σ = (1 −D)De : εe

(iii) Yield function

Φ =

√
3 J2(s−β)

1−D
− [σy0 +R ]

where R = R (ε̄ p).

(iv) Plastic flow and evolution equations for ε̄ p, β and D

ε̇p = γ̇N

˙̄ε p = γ̇

β̇ = γ̇ (aN − bβ)

Ḋ = γ̇ 1
1−D

(

−Y
r

)s

with Y given by (5.14) and the flow vector:

N ≡
√

3
2

s−β

(1−D)‖s−β‖

(v) Loading/unloading criterion

Φ ≤ 0 γ̇ ≥ 0 Φ γ̇ = 0

If such a threshold is adopted, then the evolution law for ε̄p has to be
defined for the model to be complete. From its definition we have:

˙̄εp =
√

2
3
‖ε̇p‖ . (5.27)

By taking the plastic flow rule for the present model into consideration, the
above equation results in the following evolution law for the accumulated plas-
tic strain:

˙̄εp =
γ̇

1 −D
. (5.28)
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Computational aspects

The numerical integration of Lemaitre’s constitutive equations by means of a
return mapping-type scheme has been originally proposed by Benallal et al.
(1988) in the infinitesimal strain context and later exploited by several au-

thors (de Souza Neto et al., 1994; Steinmann et al. , 1994) with finite strain
extensions of the model. A particularly efficient integration algorithm for a
simplified version of the Lemaitre ductile damage model, that excludes kine-
matic hardening, has been recently proposed by de Souza Neto (2002). In
this version, the return mapping stage requires the solution of only one scalar
non-linear equation.

5.3.2 Improved model

Even though the model presented in the preceding section of this chapter is able
to predict damage growth with reasonable accuracy over simple strain paths,
increasing deviations from experimental observations should be expected as
strain paths become more complex. In fact, this is true not only for damage
models but for inelastic models of continua in general and, at present, it can be
said that constitutive refinement in inelasticity remains largely an open issue
(de Souza Neto et al., 2005a).

One important feature of the original model is the fact that the state of
stress triaxiality has a strong influence on the rate of damage growth. This
experimentally observed phenomenon is accounted for through the definition
of the damage energy release rate, Y , rewritten here:

Y =
−q2

2E(1 −D)2

[

2

3
(1 + ν) + 3(1 − 2ν)

(

p

q

)2
]

, (5.29)

which takes part in the damage evolution equation, Ḋ:

Ḋ = γ̇
H(ε̄p − ε̄p

D)

1 −D

(−Y
r

)s

. (5.30)

The inclusion of the hydrostatic component of σ in the definition of Y implies
that Ḋ increases (decreases) with increasing (decreasing) triaxiality ratio. This
is in sharp contrast with the standard von Mises plasticity model where only
the stress deviator has an influence on the dissipative mechanisms.

However, one important aspect of damage growth is not considered by
evolution law (5.30) and (5.29): the clear distinction between rates of damage
growth observed for states of stress with identical triaxiality but stresses of
opposite sign (tension and compression). Such a distinction stems from the fact
that, under a compressive state, voids and micro-cracks that would grow under
tension, will partially close and increase the load bearing area and stiffness,
reducing (possibly dramatically) the damage growth rate.
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This phenomenon can be crucially important in the simulation of forming
operations, particularly under extreme strains (Andrade Pires et al. , 2004c).
It is often the case that, in such operations, the solid (or parts of it) undergoes
extreme compressive straining followed by extension or vice-versa. Under such
conditions, it is obvious that the conventional model represented by (5.30)
and (5.29) will not produce accurate predictions. To remedy the problem, we
shall report here a refinement of the original theory, as introduced by Ladèveze
(1983) and Ladevèze & Lemaitre (1984). The improved model is described in
the following.

Crack closure effect, unilateral conditions

According to Lemaitre’s elasto-plastic damage theory, the microscopic defects
are assumed to be isotropically distributed, and described by a scalar damage
variable. However, no distinction is made regarding the damage behaviour
under tensile and compressive stress states. In order to introduce this feature,
let us start by considering the uniaxial stress state case. For the original
Lemaitre model discussed in Section 5.3.1, a material with damage D, has
effective Young’s modulus:

Ẽ = (1 −D)E , (5.31)

where E is the Young’s modulus of the virgin (undamaged) material. The
uniaxial stress-strain constitutive equation for the damaged material is given
by:

σ1 = (1 −D)E ε or σ̃1 =
σ1

(1 −D)
. (5.32)

When the stress normal to the crack is compressive, even though the cross
section still contains physical cracks, the ability of the material to carry load
increases. The crucial point in the definition of the crack closure model is
the assumption that the above relationship is valid only under tensile stresses
(σ1≥0). Under compressive stresses (σ1<0), the uniaxial stress-strain relation
is assumed to take the form:

σ1 = (1 − hD)E ε or σ̃1 =
σ1

(1 − hD)
, (5.33)

where h is an experimentally determined coeficient which satisfies:

0 ≤ h ≤ 1 . (5.34)

This coefficient characterizes the closure of microcracks and micro-cavities and
depends upon the density and the shape of the defects. It is material depen-
dent and, as a first approximation for simplicity, h is considered as constant.
The effect of damage itself on closure is neglected. A value h ≈ 0.2 is typi-
cally observed in many experiments (Lemaitre, 1996). Note that for h = 1,
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the behaviour of the original damage model, without crack closure effects is
recovered, whereas the other extreme value, h=0, represents full crack closure
with Ẽ=E under compression. Any other value of h describes a partial crack
closure effect.
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Figure 5.2: Uniaxial elastic model with damage and partial crack closure effect

In Figure 5.2, the effect of crack closure is schematically depicted by the
uniaxial stress-strain diagram, for a general elastic material with different be-
haviour under tensile and compressive stresses. In particular, the compressive
yield stress,

∣

∣σ−
y0

∣

∣, is higher than the tensile one,
∣

∣σ+
y0

∣

∣. It is possible to notice
(see Figure 5.2) that the damage attained under tensile stress is manifested
by the change of the elastic modulus after unloading, (1−D)E. Under a com-
pressive stress the material can heal, which enables the increase of the elastic
modulus, now given by (1−hD)E.

Tensile/compressive split of the stress tensor

As we have seen in the above, it is relatively easy to establish a piece-wise
linear damaged elastic model capable of accounting for crack closure effects
in the uniaxial case. The extension of such a simple model to the general
three-dimensional situation, however, is not trivial.

In the present model, such a distinction is made on the basis of a ten-
sile/compressive split of the stress tensor. That is, any stress tensor σ can be
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written as:

σ =
3
∑

i=1

σi ei ⊗ ei , (5.35)

where σi are the principal stresses and {e1, e2, e3} is an orthonormal basis of
vectors along the principal directions. The matrix representation of σ in this
basis, reads:

[σ] =











σ1 0 0

0 σ2 0

0 0 σ3











. (5.36)

The tensile/compressive split of the stress tensor consists in splitting σ

additively as:
σ = σ+ + σ− , (5.37)

where σ+ and σ− are, respectively, the tensile and compressive component of
σ defined as:

σ+ =
3
∑

i=1

〈σi〉 ei ⊗ ei (5.38)

and

σ− = −
3
∑

i=1

〈−σi〉 ei ⊗ ei . (5.39)

The symbol 〈 〉 represents the Macauley bracket , that is, for any scalar, a,

〈a〉 =







a if a ≥ 0

0 if a < 0 ,
(5.40)

and the matrix representation of σ+ and σ− in principal stress basis reads:

[σ+] ≡











〈σ1〉 0 0

0 〈σ2〉 0

0 0 〈σ3〉











(5.41)

and

[σ−] ≡ −











〈−σ1〉 0 0

0 〈−σ2〉 0

0 0 〈−σ3〉











. (5.42)

Note that, under uniaxial stresses, i.e., when only one of the principal stresses
is non-zero, the above tensile/compressive split reduces to

σi = σ+ + σ− , (5.43)
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where
σ+ = 〈σi〉 and σ− = −〈−σi〉 . (5.44)

The three-dimensional damaged elasticity law

The definition of the multi-dimensional damaged elastic model with crack clo-
sure effects is obtained by modifying the standard three-dimensional linear
stress-strain law. To do this, let us first recall the standard three-dimensional
linear elastic stress-strain law (5.10) [page 72] of Lemaitre’s damage model. Its
inverse relation reads:

ε =
1

1 −D
D−1 : σ

=
1

1 −D

[

1 + ν

2E
σ − ν

2E
(trσ) I

]

.

(5.45)

The three-dimensional generalisation of the damaged elastic model with the
inclusion of the tensile/compressive split of the stress tensor is obtained by
modifying the above rule as follows:

ε =
1 + ν

2E

(

σ+

1 −D
+

σ−

1 − hD

)

− ν

2E

( 〈trσ〉
1 −D

− 〈−tr σ〉
1 − hD

)

. (5.46)

As remarked by de Souza Neto et al. (2005a), the stress-strain relation
(5.46) remains isotropic (ε and σ share the same principal directions) but, is
no longer linear. More precisely, the stress-strain relation is piece-wise linear
with derivative discontinuities occurring when any of the principal stresses
and/or the hydrostatic pressure vanishes.

The computational implementation of the above model within an implicit
finite element environment has also been undertaken by the same authors
(de Souza Neto et al., 2005a). This solution is obtained by means of the
Newton-Raphson algorithm where, due to definition of σ+ and σ−, it turns
out convenient to re-write (5.46) in terms of principal stresses and strains.
The basic ingredients of the implementation (stress updating procedure and
the computation of the tangent operator associated) are discussed in detail.

Crack closure effects in damage evolution

The above model describes the effect of crack closure in damaged elastic ma-
terials that remain elastic, without evolution of damage. Crack closure effects
can also have a strong influence on damage evolution. It is a well known fact
that many materials have considerably higher strength in compression than
in tension. The consideration of such an effect may be crucial under complex
loading conditions and is relevant to many practical applications.
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An alternative to describe this phenomenon is provided by the damage evo-
lution law proposed by Ladevèze & Lemaitre (1984) [described by (Lemaitre,
1996) in more detail]. Their approach consists in modifying the damage energy
release rate (5.14) of the original Lemaitre ductile damage model by including
the tensile/compressive split of the stress tensor. Thus the original expression
(5.14) is replaced with:

Y =
−1

2E(1 −D)2

[

(1 + ν) σ+ : σ+ − ν 〈trσ〉2
]

− h

2E(1 − hD)2

[

(1 + ν) σ− : σ− − ν 〈−tr σ〉2
]

,

(5.47)

and the elasto-plastic damage evolution equation keeps the same format as in
the original model:

Ḋ = γ̇
1

1 −D

(−Y
r

)s

. (5.48)

The complete fully coupled elasto-plastic model for ductile damage is obtained
by considering the above damage evolution equation together with the dam-
aged isotropic elasticity law with crack closure effects (discussed in the previous
section) and the standard plasticity equations of the original Lemaitre model.
The constitutive equations of Lemaitre’s improved ductile damage model are
conveniently grouped in Box 5.2.

To the author’s knowledge, the computational implementation of the above
improved model has not been addressed. This is probably due to the fact that,
if the fully coupled model is adopted, an increased degree of complexity will
be introduced when compared with the original Lemaitre model, described in
Section 5.3.1. Due to the non-linearity of the constitutive equations for both
the elastic and plastic domains, the numerical integration by means of a return
mapping-scheme would result in the solution of a large number of equations.

Remark 5.5 The stress updating algorithm - which is applied at each Gauss
integration point of the finite element mesh - makes simulations with this im-
proved model substantially more expensive. The computational burden that
results from this large number of equations is particularly noticeable in explicit
transient dynamic finite element analysis, where the cost of Gauss point level
operations has a greater impact on the overall computation time. Although
to a lesser extent, the computational cost of implicit quasi-static finite elem-
ent analysis is also increased when the solution of large systems of non-linear
equations is required by the stress updating scheme. In order to reduce the
computational cost and include the effect of crack closure on the material be-
haviour, the following model is proposed.
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Box 5.2: Lemaitre’s improved ductile damage model

(i) Elasto-plastic split of the strain tensor

ε = εe + εp

(ii) Coupled elastic-damage law

εe = 1+ν
2E

(

σ+

1−D
+ σ−

1−hD

)

− ν
2E

(

〈tr σ〉
1−D

− 〈−tr σ〉
1−hD

)

(iii) Yield function

Φ =

√
3 J2(s−β)

1−D
− [σy0 +R ]

where R = R (ε̄ p).

(iv) Plastic flow and evolution equations for ε̄ p, β and D

ε̇p = γ̇N

˙̄ε p = γ̇

β̇ = γ̇ (aN − bβ)

Ḋ = γ̇ 1
1−D

(

−Y
r

)s

with Y given by (5.47) and the flow vector:

N ≡
√

3
2

s−β

(1−D)‖s−β‖

(v) Loading/unloading criterion

Φ ≤ 0 γ̇ ≥ 0 Φ γ̇ = 0

5.4 Elasto-plastic damage model with crack closure

The constitutive model proposed in this section, to describe the mechanism
of internal damaging, was inspired in the model described in Section 5.3.2. In
this model, elasticity and damage are assumed to be decoupled. This can be
justified given the fact that the elastic strain remains truly infinitesimal in the
family of processes addressed in this work. Also, by removing kinematic hard-
ening from Lemaitre’s improved ductile damage theory, we obtain a simplified
version of the model whose numerical implementation assumes a simpler form.
The use of such a simplified theory can be justified whenever the effects of
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kinematic hardening are not relevant, i.e., in any process where reverse plastic
loading does not occur or has little influence on the overall evolution of damage
and plastic flow.

Remark 5.6 In the constitutive framework proposed by Lemaitre (see Section
5.3), the damage variable affects internal variables, such as strain, the yield
condition and the standard complementary conditions as a result of the substi-
tution of the stress tensor with the effective one.

5.4.1 The constitutive model

The description of an elasto-plastic damage model, which includes the effect
of crack closure in the damage evolution law, is presented in the following.

State variables

The free energy, is assumed to be a function of the set {εe, ε̄ p} of state vari-
ables, i.e.,

ψ = ψ(εe, ε̄ p) , (5.49)

where εe is the elastic strain tensor and ε̄ p is the scalar internal variable
associated, with isotropic hardening .

The free energy potential

Here, elasticity as well as the possibility of additional isotropic hardening or
softening due to straining of the material are introduced and the free energy
potential is assumed to be given by:

ψ = ψ(εe, ε̄ p) = ψe(εe) + ψp(ε̄ p) . (5.50)

The elastic contribution ψe is taken as the standard quadratic strain-energy
function:

ρ̄ ψe(εe) = 1
2

εe : De : εe , (5.51)

yielding the standard linear elastic relation:

σ = ρ̄
∂ψ

∂εe
= De : εe . (5.52)

As in Lemaitre’s model, the isotropic hardening contribution is left as an ar-
bitrary function of a single argument, so that the thermodynamic force R
associated with ε̄ p is given by:

R = ρ̄
∂ψ

∂ε̄ p
= ρ̄

∂ψp

∂ε̄ p
= R(ε̄ p) . (5.53)



Ch. 5 Damage constitutive modelling 84

Remark 5.7 Note that, in contrast to Lemaitre’s ductile damage model, the
effect of internal damage on the elastic behaviour of the material is ignored
in the present model. That is, the elasticity tensor is not a function of the
damage variable.

The flow potential. Internal variables evolution

The evolution equation for internal variables can be derived again by assuming
the existence of a flow potential, Ψ, given by:

Ψ = Φ +
r

(1 −D)(s+ 1)

(−Y
r

)s+1

, (5.54)

where r and s are material constants and Φ is the yield function. At this
point, it is important to remark that one of the underlying hypotheses in
Lemaitre’s formulation is that damage affects elastic strains only, therefore
the substitution of the effective stress in the yield condition is questionable.
As a matter of fact, the plastic flow response experimentally measured is the
result of the concurrant action of both hardening and damage effects that
cannot be separated in a test. In other words, it is not possible to measure
directly the plastic flow curve for a material without damage.

Therefore, the effect of damage upon the plastic behaviour is accounted for
by rewriting the yield function Φ in the following form:

Φ(σ, R,D) =
√

3 J2(s) − (1 −D) [σy0 +R(ε̄ p)] . (5.55)

Here, the material parameter σy0 is the initial uniaxial yield stress of an un-
damaged and unstrained (or virgin) material, and R is the isotropic hardening
thermodynamical force, assumed to be a function of a scalar hardening inter-
nal variable, ε̄ p and D is the damage variable. It should be noted that (5.55)
accounts for two competing effects: damaging, which shrinks (isotropically)
the elastic domain (defined as the subset of stress space for which Φ ≤ 0) as
D grows; and hardening, which expands the elastic domain (also isotropically)
with the growth of R.

Remark 5.8 As for Lemaitre’s model the damage variable in the present case
ranges between 0 and 1, with D= 0 corresponding to the sound (undamaged)
material and D=1 to the fully damaged state with complete loss of load car-
rying capacity. Note that damage growth induces softening, i.e., shrinkage of
the yield surface defined by

Φ = 0 .

For D = 0 the yield surface reduces to that of the (pressure insensitive) von
Mises model. In the presence of damage, i.e., for D 6= 0 the yield surface
shrinks and its size reduces to zero for D=1.
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According to the above definitions, the evolution law for the plastic flow
rule of a damaged material should follow the standard associative plasticity
theory without coupling with damage:

ε̇ p = γ̇
∂Ψ

∂σ
= γ̇

√

3
2

s

‖s‖ . (5.56)

The evolution laws for the hardening internal variable, ˙̄ε p, and damage, D,
are given by

˙̄ε p = γ̇
∂Ψ

∂R
= γ̇

Ḋ = γ̇
∂Ψ

∂Y
= γ̇

1

1 −D

(−Y
r

)s (5.57)

where the coupling between effective accumulated plastic strain rate, ˙̄ε p, and
the damage rate, Ḋ, is shown in Equation (5.57) throughout the definition of
the plastic multiplier, γ̇. The plastic multiplier , γ̇, in (5.56–5.57) satisfies the
standard complementarity law of rate-independent plasticity:

γ̇ ≥ 0, Φ ≤ 0, γ̇ Φ = 0 . (5.58)

Damage threshold

In addition, the evolution of the damage internal variable is redefined to include
a threshold for damage evolution as:

Ḋ =











0 if ε̄ p ≤ ε̄ p
D

γ̇

1 −D

(−Y
r

)s

if ε̄ p > ε̄ p
D ,

(5.59)

where r, s and ε̄ p
D are material constants. The constant ε̄ p

D is the so-called
damage threshold, i.e., the value of accumulated plastic strain below which no
damage evolution is observed. The quantity, Y , introduced in Equation (5.47),
and rewritten here,

Y =
−1

2E(1 −D)2

[

(1 + ν) σ+ : σ+ − ν 〈trσ〉2
]

− h

2E(1 − hD)2

[

(1 + ν) σ− : σ− − ν 〈−tr σ〉2
]

,

(5.60)

is the damage energy release rate, with E and ν denoting, respectively, the
Young’s modulus and the Poisson’s ratio of the undamaged material.

The constitutive equations of the overall elasto-plastic damage model are
conveniently summarized in Box 5.3.
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Box 5.3: Proposed ductile damage model (isotropic hardening only)

(i) Elasto-plastic split of the strain tensor

ε = εe + εp

(ii) Elastic law (uncoupled from damage)

σ = De : εe

(iii) Yield function

Φ =
√

3 J2(s) − (1 −D) [σy0 +R(ε̄ p)]

(iv) Plastic flow and evolution equations for ε̄ p and D

ε̇p = γ̇
√

3
2

s
‖s‖

˙̄ε p = γ̇

Ḋ = γ̇ 1
1−D

(

−Y
r

)s

with Y given by

Y = − 1
2E(1−D)2 [(1+ν) σ+:σ+−ν 〈tr σ〉2]

− h
2E(1−hD)2 [(1+ν) σ−:σ−−ν 〈−tr σ〉2]

(v) Loading/unloading criterion

Φ ≤ 0 γ̇ ≥ 0 Φ γ̇ = 0

It is important to remark here, that the choice of the accumulated plas-
tic strain as the isotropic hardening internal variable is at variance with the
original model proposed by Lemaitre (1984). In the present case, the original
potential structure of the model is lost. However, this choice can be justi-
fied on experimental grounds since the measurement of accumulated plastic
strain can be carried out experimentally in a straightforward manner allowing
the determination of hardening and damage parameters from relatively sim-
ple micro-hardness measurements [refer to Arnold et al. (2002)]. A direct
consequence of this assumption, is the fact that, the hardening and damage
parameters calibrated for this model will, in general, be different from the ones
employed in Lemaitre’s theory.
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An extension of that procedure, based on a finite element-based semi-
inverse method, is currently under investigation. The method requires only
relatively simple micro-hardness measurements in a tensile specimen and a
severely compressed billet. The fine tuning of h is obtained by matching ex-
perimental measurements with results of the finite element simulation of the
upsetting of the billet.

5.4.2 Integration algorithm

This section proceeds to describe an algorithm for the numerical integration
of, the above described, elasto-plastic damage constitutive equations, including
the effect of crack closure. Algorithms based on the so-called operator split
concept, resulting in the standard elastic predictor/plastic corrector format,
are widely used in computational plasticity [refer to Simo & Hughes (1998)
for details of the procedure]. Here we shall focus only on the particularisation
of the fully implicit elastic predictor/return mapping method to the above
proposed model.

Let us consider what happens to a typical Gauss point of the finite element
mesh within a (pseudo-) time interval [tn, tn+1]. Given the incremental strain:

∆ε = εn+1 − εn , (5.61)

and the values σn, εp
n, ε̄ p

n and Dn at tn, the numerical integration algorithm
should obtain the updated values at the end of the interval, σn+1, ε

p
n+1, ε̄

p
n+1,

and Dn+1 in a manner consistent with the constitutive equations of the model.

The elastic trial step

The first step in the algorithm is the evaluation of the elastic trial state where
the increment is assumed purely elastic with no evolution of internal variables
(internal variables frozen at tn). The elastic trial strain and trial accumulated
plastic strain are given by:

εe trial = εe
n + ∆ε; ε̄ p trial = ε̄ p

n . (5.62)

The corresponding elastic trial stress tensor is computed:

σtrial = D : εe trial , (5.63)

where D is the standard isotropic elasticity tensor. Equivalently, in terms of
stress deviator and hydrostatic pressure, we have:

strial = 2G ee trial, ptrial = K ve trial , (5.64)

where
ee trial = ee

n + ∆e, ve trial = ve
n + ∆v . (5.65)
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The material constants G and K are, respectively, the shear and bulk moduli,
s and p stand for the deviatoric and hydrostatic stresses. The strain deviator
and the volumetric strain are denoted, respectively, by e and v. The trial yield
stress is simply

σtrial
y = σy(Rn). (5.66)

The next step of the algorithm is to check whether σtrial lies inside or
outside of the trial yield surface. With variables ε̄ p and D frozen at time tn
we compute:

Φtrial := qtrial − (1 −Dn)σy(Rn)

=
√

3
2
‖strial‖ − (1 −Dn) [σy0 +R(ε̄ p

n )] .
(5.67)

If Φtrial ≤ 0, the process is indeed elastic within the interval and the elastic
trial state coincides with the updated state at tn+1. In other words, there is
no plastic flow or damage evolution within the interval and

εe
n+1 = εe trial ; σn+1 = σtrial ; ε̄ p

n+1 = ε̄ p trial ;

σy n+1 = σtrial
y ; Dn+1 = D trial .

(5.68)

Otherwise, it is necessary to apply the plastic corrector (or return mapping
algorithm) whose step-by-step derivation is described in the following.

The plastic corrector step (or return mapping algorithm)

Following a straightforward specialisation of standard return mapping proce-
dures (Simo & Hughes, 1998) for the present constitutive equations, leads to
the numerical integration the evolution equations for εe, ε̄ p

n and D having
the trial state as the initial condition. The discrete counterparts of equations
(5.56-5.59) read:

εe
n+1 = εe trial − ∆γ

√

3
2

sn+1

‖sn+1‖

ε̄ p
n+1 = ε̄ p

n + ∆γ

Dn+1 =







0 if ε̄ p
n+1 ≤ ε̄ p

D

Dn + ∆γ
1−Dn+1

(

−Yn+1

r

)s

if ε̄ p
n+1 > ε̄ p

D .

(5.69)

The above equations must be complemented by the so-called consistency
condition that guarantees that the stress state at the end of a plastic step lies
on the updated yield surface:

Φn+1 = qn+1 − (1 −Dn+1)σy(Rn+1) = 0. (5.70)
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The previous set of discrete evolution equations needs to be solved for the
unknowns εe

n+1, ∆γ, ε̄ p
n+1 and Dn+1. After the solution of the above system,

the plastic strain tensor can be updated according to the following formula:

ε
p
n+1 = εp

n − ∆γ
√

3
2

sn+1

‖sn+1‖
(5.71)

As we shall see in what follows, analogously to what happens to the classical
von Mises model, the above system can be reduced by means of simple algebraic
substitutions to a single non-linear equation having the incremental plastic
multiplier, ∆γ, as a variable.

To start with let us consider the deviatoric/volumetric split of (5.69)1. Since
the plastic flow vector that multiplies ∆γ on the right hand side of (5.69)1 is
purely deviatoric, we have:

ee
n+1 = ee trial − ∆γ

√

3
2

sn+1

‖sn+1‖
ve

n+1 = ve trial .

(5.72)

Expressions (5.72) together with the elastic law (5.63) gives the following up-
dating relation for the stress deviator and hydrostatic pressure:

sn+1 = strial − ∆γ 2G
√

3
2

sn+1

‖sn+1‖

pn+1 = ptrial .
(5.73)

The return mapping affects only the deviatoric stress component. The hydro-
static stress, pn+1, remains unchanged and can, therefore, be eliminated from
the system of equations. Further, simple inspection of (5.73)1 shows that sn+1

is a scalar multiple of strial so that, trivially, we have the identity:

sn+1

‖sn+1‖
=

strial

‖strial‖ , (5.74)

This indicates that the flow vectors at the trial and updated states coincide,
which allows us to re-write (5.73)1 as:

sn+1 =

(

1 −
√

3
2

∆γ 2G

‖strial‖

)

strial =

(

1 − ∆γ 3G

qtrial

)

strial (5.75)

where qtrial is the elastic trial von Mises equivalent stress:

qtrial = q(strial) =
√

3
2
‖strial‖ . (5.76)

From equation (5.75) and the definition of the von Mises equivalent stress,
results the following update formula for q:

qn+1 = qtrial − 3G∆γ . (5.77)
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With the substitution of the above formula together with (5.69)2 into the
consistency equation (5.70), we obtain the following scalar non-linear equation
for the incremental plastic multiplier ∆γ:

Φn+1 = qtrial − 3G∆γ − (1 −Dn+1)σy(Rn+1) = 0, (5.78)

or, equivalently,

Dn+1 = D(∆γ) ≡ 1 −

√

3
2
‖strial‖ − 3G∆γ

σy0 +R(ε̄ p
n + ∆γ)

, (5.79)

which expresses Dn+1 as an explicit function of ∆γ.

One-equation return mapping We carry on here to show how the system
(5.69) can be reduced leading to a computationally more efficient return map-
ping algorithm. By introducing the damage explicit function (5.79) into the
discretised damage evolution equation (5.69)3, the return mapping algorithm
is reduced to the solution of a single equation for the unknown ∆γ:

F (∆γ) ≡







D(∆γ) = 0 if ε̄ p
n+1 ≤ ε̄ p

D

D(∆γ) −Dn − ∆γ
1−D(∆γ)

(

−Y (∆γ)
r

)s

= 0 if ε̄ p
n+1 > ε̄ p

D .
(5.80)

In (5.80)2, the dependency of Y on ∆γ originates from its dependency on the
updated values of D and σ [clearly shown in definition (5.60)]. The updated
stress tensor, σn+1, whose tensile and compressive components take part in
the calculation of Yn+1, is obtained as:

σn+1 = sn+1 + pn+1 I , (5.81)

where I is the second order identity tensor and sn+1 is obtained from the
standard implicit von Mises return mapping as a function of ∆γ according to
update formula (5.75):

sn+1 =

(

1 − ∆γ 3G

qtrial

)

strial; pn+1 = ptrial . (5.82)

Equation (5.80) is then solved by the Newton-Raphson method and, once a
solution ∆γ is found, the state variables are updated as follows:

sn+1 =
(

1 − ∆γ 3G
qtrial

)

strial , pn+1 = ptrial ,

σn+1 = sn+1 + pn+1 I ,

ε e
n+1 = [De]−1 : σn+1 = 1

2G
sn+1 + 1

3K
pn+1 I ,

ε̄ p
n+1 = ε̄ p

n + ∆γ ,

Dn+1 = 1 −
√

3
2
‖strial‖−3G ∆γ

σy0+R(ε̄ p
n +∆γ)

.

(5.83)
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If required, the plastic strain tensor is updated by means of (5.71).

For convenience, the resulting algorithm for numerical integration of the
elasto-plastic damage model with crack closure effects is listed in Box 5.4 in
pseudo-code format.

Remark 5.9 (elasto-plastic solution) The one equation return mapping
(5.80) rigorously recovers the standard von Mises elasto-plastic model (rate-
independent) when the damage exponent, s→ 0 and the damage denominator,
r → ∞. Evidently, in this case, the algorithm of Box 5.4 reproduces the
conventional rate-independent elastoplastic numerical solution.

Explicit implementation

The numerical integration of the proposed elasto-plastic damage model, whose
constitutive equations are summarized in Box 5.3., has also been carried out
within an explicit time integration scheme. In this case, due to the incremen-
tal nature of explicit schemes, the elastic predictor stage requires the following
straightforward modification in the computation of the elastic trial stress ten-
sor:

σtrial = σn + D : ∆ε, (5.84)

where D is the standard isotropic elasticity tensor and ∆ε the incremental
strain. Equivalently, in terms of the deviatoric/hydrostatic split of σ, we have

strial = sn + 2G∆e ptrial = pn +K ∆v. (5.85)

The rest of the algorithm can be carried out without modification, as listed in
Box 5.4 in pseudo-code format.

Remark 5.10 The efficiency of numerical integration schemes for integration
of the constitutive equations has a direct impact on the overall efficiency of the
finite element framework. In this context, the use of more complex constitutive
models can potentially incur a dramatic increase in analysis time. Here, the
reduction of the return mapping to the solution of a single scalar equation is
of crucial importance for the efficiency of the overall scheme and allows the
introduction of crack closure effects in damage evolution with little impact on
the overall analysis costs. It is also important to emphasise that this reduction
would not be possible had damage with crack closure effects been considered
also in the elastic law [as originally proposed by Lemaitre (1996)]. The con-
sideration of such coupling under the present circumstances would result in a
prohibitive increase in computational costs with little or no improvement in the
predictive capability of the model.
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Box 5.4: Elastic predictor/return mapping algorithm for the elasto-
plastic damage model with crack closure effect. Integration over [tn, tn+1].

(i) Elastic predictor. Given the incremental strain, ∆ε, and the state
variables at tn, compute elastic trial stresses:

εe trial = εe
n + ∆ε; ε̄ p trial = ε̄ p

n ;

strial = 2G etrial; ptrial = K vtrial;

Dtrial = Dn; qtrial =
√

3
2
‖strial‖,

(ii) Plastic consistency check. First compute:

Φtrial = qtrial − (1 −Dn) [σy0 +R(ε̄ p
n )] ,

and then check:

– IF Φtrial ≤ εtol THEN the process is elastic,

Update (·)n+1 = (·)trial and EXIT

– ELSE GOTO (iii)

(iii) Return mapping . Find ∆γ such that:

F (∆γ) ≡







D(∆γ) = 0 if ε̄ p
n+1 ≤ ε̄ p

D

D(∆γ)−Dn−
∆γ

1−D(∆γ)

(

−Y (∆γ)
r

)s

= 0 if ε̄ p
n+1 > ε̄ p

D

with D(∆γ) defined by (5.79) and Y (∆γ) defined through (5.60),
(5.79) (5.81) and (5.82).

(iv) Update the variables:

sn+1 =
(

1 − ∆γ 3G
qtrial

)

strial; pn+1 = ptrial ;

σn+1 = sn+1 + pn+1 I ; ε̄ p
n+1 = ε̄ p

n + ∆γ ;

ε e
n+1 = 1

2G
sn+1 + 1

3K
pn+1 I ; Dn+1 = D(∆γ).

(v) EXIT

Accuracy and stability

Iso-error maps have long been accepted as an effective and reliable (if not the
only) tool for assessing the accuracy of constitutive integration algorithms un-
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der realistic finite time/strain steps (Krieg & Krieg, 1977; Ortiz & Popov, 1985;
Simo & Taylor, 1985). This section presents some iso-error maps obtained for
the above described algorithm. The maps have been generated in the standard
fashion. Using the three-dimensional implementation of the model, we start
from a stress point at time tn, σn, lying on the yield surface (refer to Figure
5.3) and apply a sequence of strain increments (within the interval [tn, tn+1]),

σn T

N
∆σ

trial

∆σN

∆σT

σtrial

Figure 5.3: Isoerror map. Trial stress increment directions.

corresponding to linear combinations of trial stress increments of the form

∆σtrial =
∆σT

q
T +

∆σN

q
N, (5.86)

where N and T are, respectively, the unit normal and tangent vectors to the
yield surface and q is the von Mises equivalent stress. For each increment of
trial stress, we obtain a numerical solution, σnum

n+1, with the above described
algorithm in one step. In addition, a solution assumed to be ‘exact’, σexact

n+1 , is
obtained with the same algorithm by dividing the corresponding strain (and
time) increment into 1000 sub-increments of equal size. For each point in which
a numerical and ‘exact’ solution is obtained, the error is computed as:

ERROR =
‖σexact

n+1 − σnum
n+1‖

‖σexact
n+1 ‖ × 100 .

The resulting iso-error map is the contour plot of the error field. A study of the
finite step accuracy properties of the integration algorithm for the plane stress-
projected implementation of Lemaitre’s original model (see Section 5.3.1) has
been carried out by de Souza Neto et al. (1994). The main conclusions are
that the accuracy of the algorithm deteriorates as damage increases and the
bowl of convergence of the local Newton algorithm shrinks. Also, at highly
damaged states, the choice of an appropriate initial guess becomes crucial.

The material properties adopted in the present analysis, are listed in Ta-
ble 5.1. These parameters were taken from Vaz Jr. & Owen (2001) for an
aluminium alloy, except the value of the damage denominator, r. The value
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Table 5.1: Material data for aluminium alloy.

Description Symbol Value

Elastic Modulus E 69004 [MN/m2]

Poisson’s ratio ν 0.3

Initial yield stress σy0 80.559 [MPa]

Hardening curve σy(ε̄
p) 589 · (10−4 + ε̄ p)0.216

Damage data (exponent) s 1.0

Damage data (denominator) r 2.8 [MPa]

of this material constant has been calibrated by performing several numeri-
cal tests with a single axisymmetric finite element, such that critical value of
damage (D = 1) is attained, for the same applied displacement. The error
maps obtained with isotropic hardening are shown in Figure 5.4. As dam-
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Figure 5.4: Iso-error maps for: (a) D = 0%, ε̄ p = 0; (b) D = 15%, ε̄ p = 0.348; (c)
D = 40%, ε̄ p = 0.625; (d) D = 65%, ε̄ p = 0.779.
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age increases the error maps obtained at different stages of damage evolution
clearly show that the accuracy of the algorithm deteriorates. The integration
error initially, Figure 5.4 (a), attains a higher value in the region where the
increments on the tangential direction, T, are greater combined with small
increments on the normal direction, N. As the initial damage is increased
[see Figures 5.4 (b)–(d)], the location of the highest error moves toward the
region where the increments on the tangential direction are smaller. In such
circumstances, either the overall increment should be smaller or a substepping
procedure should be included in the return mapping algorithm.

All the error maps, depicted in Figure 5.4, have been obtained with the
crack closure constant set to zero. In spite of this fact, the integration error
maps (not shown here) obtained for any value of the crack closure effect, 0 ≤
h ≤ 1, are virtually the same as for the cases reported in Figures 5.4 (a)–(c).
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Figure 5.5: Iso-error maps for D = 65% and ε̄ p = 0.779. (a) h = 0.7; (b) h = 0.9;
(c) h = 0.95; (d) h = 1.
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When the initial value of damage is already significant, D = 65%, the error
map is clearly affected by the effect of crack closure. In Figure 5.5 several
error maps are shown for different values of h. It can be observed that for
values of h close to unity, it is not possible to obtain a converged solution, for
large increments in both tangential and normal directions. With the aim of
overcoming this problem, a different initial guess was used as suggested by de
Souza Neto et al. (1994):

∆γ(0) =
qtrial − (1 −Dn) σy(Rn)

3G
, (5.87)

which corresponds to the perfectly plastic solution for the increment with
frozen (damaged) yield surface at tn. Although the number of iterations nec-
essary to attain convergence was reduced, the Newton-Raphson scheme with
the above initial guess also failed to converge at highly damaged states.

5.4.3 The tangent operator

If a full Newton-Raphson scheme is to be used in conjunction with the implicit
finite element implementation of the present model, the tangent operator con-
sistent with the above integration scheme is required in the assembly of the
tangent stiffness matrix. In the elastic case, i.e., when the stress is inside the
elastic domain (Φ < 0) or if it is on the yield surface (Φ = 0) and elastic
unloading is assumed to occur, the elastic consistent tangent at tn+1 is simply
the standard elasticity operator

D̂ = De = 2G
[

I − 1
3
I ⊗ I

]

+K I ⊗ I (5.88)

where I, is the fourth order identity tensor. In the elasto-plastic damage case,
i.e., when it is assumed that plastic flow occurs within the step (Φ > 0), the
tangent operator is called the elasto-plastic damage consistent tangent and is
denoted by D̂

ep
. Thus, the consistent tangent operator

D̂
ep ≡ dσ̂

dεn+1
(5.89)

is simply the derivative of the implicit function σ̂ for the updated stress de-
fined by the return mapping procedure (Section 5.4.2). It follows the standard
procedure for differentiation of implicit functions. The issue of consistent tan-
gent operators and their derivation is thoroughly discussed elsewhere (Simo
& Taylor, 1985; Simo & Hughes, 1998). In the present case it is possible to

obtain a closed form expression for D̂
ep

. Its derivation is relatively lengthy
but follows only standard application of consistent linearisation concepts. The
details of derivation will be omitted here and we shall limit ourselves to show
only its final expression which is given by:

Dep = a1

[

I − 1
3
I ⊗ I

]

+ a2 s̄n+1 ⊗ s̄n+1 + a3 s̄n+1 ⊗ I +K I ⊗ I , (5.90)
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where s̄n+1 is the normalised stress deviator:

s̄n+1 =
sn+1

‖sn+1‖
, (5.91)

and the scalars a1, a2, a3, are given by:

a1 = 2G
(

1 − ∆γ 3G
qtrial

)

a2 = 6G2
[

∆γ
qtrial + ∂F

∂ (qtrial)
/ ∂F

∂ (∆γ)

]

a3 = 2G
√

2
3
K
[

∂F
∂ (ptrial)

/ ∂F
∂ (∆γ)

]

.

(5.92)

In the definition of constants a2 and a3, the scalars ∂F/∂ (∆γ), ∂F/∂ (qtrial)
and ∂F/∂ (ptrial), correspond to the derivatives of the return mapping residual
function defined by (5.80):

∂F
∂ (∆γ)

= ∂D
∂ (∆γ)

+ 1
1−Dn+1

(

−Yn+1

r

)s

{[

− ∂D
∂ (∆γ)

/(1−Dn+1) − s ∂Y
∂ (∆γ)

/Yn+1

]

∆γ − 1
}

∂F
∂ (qtrial)

= ∂D
∂ (qtrial)

− ∆γ ∂D

∂ (qtrial)
/(1−Dn+1)2

(

−Yn+1

r

)s

− s∆γ
r (1−Dn+1)

(

−Yn+1

r

)s−1
∂Y

∂ (qtrial)

∂F
∂ (ptrial)

= s∆γ
r (1−Dn+1)

(

−Yn+1

r

)s
∂Y

∂ (ptrial)
.

(5.93)

where the scalars ∂Y /∂ (∆γ), ∂Y /∂ (qtrial) and ∂Y /∂ (ptrial), represent the
derivatives of the energy release rate function, defined by (5.60):

∂Y
∂ (∆γ)

= −
∂D

∂ (∆γ)

E (1−Dn+1)3
b+ +

2G
√

3
2

E (1−Dn+1)2
C+ : s̄n+1 −

h2 ∂D
∂ (∆γ)

E (1−h Dn+1)3
b−

+
2G

√
3
2

h

E (1−h Dn+1)2
C− : s̄n+1

∂Y
∂ (qtrial)

= −
∂D

∂ (qtrial)

E (1−Dn+1)3
b+ −

√
2
3

E (1−Dn+1)2
C+ : s̄n+1 −

h2 ∂D

∂ (qtrial)

E (1−h Dn+1)3
b−

+

√
2
3

h

E (1−h Dn+1)2
C− : s̄n+1

∂Y
∂ (ptrial)

= − 1
E (1−Dn+1)2

C+ : I − h
E (1−h Dn+1)2

C− : I

(5.94)
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furthermore, the scalars b+ and b− and the second order tensors C+ and C−

introduced in (5.94), are given by

b+ = (1 + ν) σ+ : σ+ − ν 〈tr σ〉2

b− = (1 + ν) σ− : σ− − ν 〈−tr σ〉2

C+ = (1 + ν) ∂σ+

∂σ : σ+ − ν 〈trσ〉 I

C− = (1 + ν) ∂σ−

∂σ : σ− − ν 〈−tr σ〉 I

(5.95)

Here, one should note that, the tensors C+ and C− defined in (5.95)3 and
(5.95)4, respectively, contain the terms:

∂σ+

∂σ
, and

∂σ−

∂σ
.

To compute such derivatives, we first note that (5.38) and (5.39) define σ+

and σ− as isotropic tensor-valued functions of σ. Such functions are particular
cases of the families of functions discussed by Chadwick & Ogden (1971) and
Carlson & Hoger (1986) and their derivatives are promptly available in closed
form [see Appendix A].

To complete the definition of (5.93) it is necessary to define the scalars
∂D/∂ (∆γ) and ∂D/∂ (qtrial), which are the outcome of the derivation of the
damage function, defined by (5.79):

∂D
∂ (∆γ)

= 3G
σy(Rn+1)

+ H(1−Dn+1)
σy(Rn+1)

∂D
∂ (qtrial)

= − 1
σy(Rn+1)

(5.96)

In the above, H denotes the updated slope of the hardening curve at tn+1:

H =
dσy

dR

∣

∣

∣

∣

Rn+1

. (5.97)

Remark 5.11 It is important to note that, as in Lemaitre’s model, the result-
ing elasto-plastic tangent operator Dep is generally unsymmetric so that, within
the context of finite element computations, an unsymmetric solver is required
in the global Newton-Raphson scheme.

5.4.4 Numerical Examples

This section presents two examples aiming to illustrate basic aspects of the
proposed one-equation integration algorithm described previously.
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Tensile test

The simulation of crack initiation in a cylindrical pre-notched bar subjected
to monotonic axial stretching, is used to illustrate the numerical performance
of the proposed algorithm within an implicit quasi-static finite element envi-
ronment. Tensile tests have been extensively used in both experimental and
numerical analysis of ductile fracturing. On a microscope scale, nucleation,
growth and coalescence of micro-voids are found to be the main mechanisms
which cause fracture. This problem has been used by some authors (Benallal
et al. , 1991; Cescotto & Zhu, 1995; Vaz Jr. & Owen, 2001; de Souza Neto,
2002) to assess the performance of different numerical formulations derived to
model ductile plastic damage evolution. The geometry of the problem, bound-
ary conditions and the finite element mesh adopted are given in Figure 5.6.
A relatively fine discretisation is used in the region surrounding the smaller

Figure 5.6: Axisymmetric notched bar. Geometry, boundary conditions and finite
element mesh.

cross-section, in order to capture the necking pattern and damage evolution.
The material properties adopted in the present analysis and other relevant
simulation parameters are summarized in Table 5.1 [page 94]. The additional
parameter h introduced in the model, does not have any influence, since the
stress state is mainly tension. The loading consists of a prescribed vertical dis-
placement, u = 0.6[mm], (with free horizontal displacement) of the constrained
edge. A total number of 329 four-noded axisymmetric F-bar quadrilaterals (de
Souza Neto et al. , 1996) has been used in the discretisation amounting to a
total of 367 nodes. The evolution of the damage variable field obtained in the
finite element analysis is illustrated in the contour plots shown in Figure 5.7.

It can be seen that during the early stages of the loading process, maximum
damage is detected near the root of the notch. As the specimen is progressively
stretched, the maximum damage area moves gradually toward the centre of the
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(a) u = 0.21 [mm] (b) u = 0.36 [mm]

Please Wait.. Please Wait..

(c) u = 0.45 [mm] (d) u = 0.6 [mm]

Please Wait.. Please Wait..

Figure 5.7: Axisymmetric notched bar. Damage contour plots.

specimen and localises there. At the final stage with u = 0.6 [mm] damage
is highly localised around the centre. It is implied, therefore, that fracture
initiation should be expected in that area. This prediction is in agreement
with experimental observations by Hancock & Mackenzie (1976) and Cescotto
& Zhu (1995) who show that for certain notched specimen configurations frac-
turing initiates at the centre of the specimen and propagates radially toward
the notch.

The simulation results obtained using the present framework, are in close
agreement, with the ones obtained by Vaz Jr. & Owen (2001), using an explicit
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time integration scheme but in conjunction with the standard Lemaitre fully
coupled model (Lemaitre, 1983, 1985a) combined with the four node axisym-
metric element with hourglass control proposed by Belytschko et al. (1984). In
view of the use of the tangent operator described in the above section, conver-
gence rates to equilibrium are quadratic. This is illustrated in Table 5.2 where
the convergence of the relative residual of out-of-balance forces throughout the
equilibrium Newton-Raphson iterations is shown for a typical load increment.

Table 5.2: Cylindrical notched bar. Convergence table.

Iteration number Relative residual (%)

1 0.477462E+01

2 0.264637E+00

3 0.124162E−03

4 0.269092E−09

The evolution of the damage variable at the centre of the specimen is de-
picted in Figure 5.8(a) where the value of D computed at that point is plotted
against the prescribed edge deflection. Prediction of ductile fracture onset in
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Figure 5.8: Cylindrical notched bar. (a) Damage variable evolution at the centre of
the specimen, (b) Total damage work.

damaged materials usually adopts the damage variable itself as indicator by
assuming that failure takes place when the damage variable attains a criti-
cal value, D = Dcr. Recent comparative analysis suggest that damage-based
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measures are more reliable in predicting the correct site of fracture initiation
(Vaz Jr. & Owen, 2001) and the use of fracture criteria based on total damage
work, generally defined as:

IωD
=

∫ t

0

(−Y )Ḋ dt =

∫

(−Y ) dD, (5.98)

offers a promising alternative, due to the high gradient exhibited by the indi-
cator near the critical failure zone. It is possible to perceive [see Figure 5.8(b)]
that the total damage work exhibits a better performance than the damage
variable [see Figure 5.7(d)] due to the localised behaviour exhibited by the
indicator near the critical zone.

Backward extrusion

In many forming processes the material is subjected to very high local strains
that can lead to the nucleation and growth of micro-cracks with subsequent
failure of the workpiece. Therefore, the prediction of damage in industrial
forming processes can be of great interest for the optimisation of the design in
order to avoid or restrict the initiation of defects induced by plastic deforma-
tion. The purpose of this example is to numerically assess the performance of
the constitutive model proposed, which includes crack closure effects in dam-
age evolution, in highly strained situations typically arising in back extrusion
problems. The initial geometry of the problem is shown in Figure 5.9. The
material is compressed by the tool on the right hand side and flows through-
out the space between tool and die. An axisymmetric model of the problem

Material Tool

Die

Figure 5.9: Backward extrusion. Problem geometry (dimensions in [mm]).

is adopted in the simulation. The tool and die are assumed to be rigid bodies
and the frictional contact condition at the tool/workpiece interface is mod-
elled by the standard Coulomb friction law. In order to prevent unwanted
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phenomena on the surface of the workpiece and to reduce the extrusion force,
the tool and die are well lubricated. Therefore, the friction coefficient is re-
duced to a low value of m = 0.08. The contact impenetrability constraint
is enforced by the classical penalty method. The selection of an appropriate
penalty coefficient, in this context, is known to be essential for the successful
application of the method. On one hand, if the penalty coefficient is too small
large penetrations will occur, on the other hand, large penalty coefficients may
compromise the stability of the solution. The normal and tangential penalty
values employed in this simulation are, respectively, Pn = 2×105 [N/mm] and
Pt = 1 × 105 [N/mm]. A prescribed total displacement of u = 24.8 [mm] is
applied to the tool.

The material used in this example is a 16 Mn Cr 5 steel. The identifica-
tion of the material properties, including the damage evolution parameters,
was undertaken by Arnold et al. (2002). The procedure used by these au-
thors is based on micro-hardness measurements to identify ductile damage.
In this application adaptive remeshing becomes an essential component of
the finite element analysis. If remeshing is not included, many elements will
be severely distorted producing unacceptably inaccurate solutions. The corre-
sponding material properties and other simulation parameters employed in the
adaptive process are listed in Table 5.3. The basic components of the adaptive

Table 5.3: Material data for 16 Mn Cr 5 steel. Lemaitre’s model parameters.

Description Symbol Value

Specific mass ρ 7850 [kg/m3]

Elastic Modulus E 180 000 [MN/m2]

Poisson’s ratio ν 0.3

Initial yield stress σy0 256 [MPa]

Yield stress σy(ε̄
p) σy0

+ 255 · [1 − exp (−ε̄ p/0.066)]+

5282 · [1 − exp (−ε̄ p/24.1)] [MPa]

Friction m 0.08

Damage data (exponent) s 1.0

Damage data (denominator) r 11 [MPa]

Plastic threshold ε̄ p
D 0.3

Error checking 200 time steps

Target error η 5 %

Maximum element size hmax 1.0 [mm]

Minimum element size hmin 0.1 [mm]

procedure 1 employed in this simulation comprise (i) a criterion for mesh re-

1Further details on adaptive remeshing for history dependent problems in solid mechanics,
including error estimation and transfer operators, are presented in Chapter 7.
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finement based on the rate of plastic work (Perić et al. , 1994); (ii) a transfer
operator that maps the primary unknowns using the shape functions from the
nodes of the old mesh, to the nodes of the new mesh. The internal history
dependent variables, including the damage variable, are mapped directly be-
tween gauss points of an old and new mesh by a weighted least-squares method
using 8 sampling points; and (iii) an unstructured meshing approach based on
the Delaunay triangulation is adopted.

Damage evolution without crack closure effects: Considering the na-
ture of the process, the material is expected to undergo very large strains par-
ticularly around the neighborhood of the punch. The evolution of the damage
variable field obtained in the numerical simulation is illustrated by the contour
plots shown in Figure 5.10. Throughout the simulation of the process several
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Figure 5.10: Standard model. Damage contour plots.
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mesh adaptions were performed promoting a good aspect ratio of the finite
element mesh and assuring a good quality of the solution. It can be seen that
during the early stages of the loading process, maximum damage is detected
near the edge of the punch [Figure 5.10 (a)]. As the material is progressively
compressed, the damaged area develops through the material surrounding the
corner of the punch [Figure 5.10(b)]. At this stage of the process, the maxi-
mum damage value attained is already extremely high. This result indicates
that the microscopic deterioration of a representative volume element (RVE)
modelled by the damage variable at macro-scale is close to failure, and hence to
a macro-crack initiation. In the latter stages of the simulation [Figure 5.10(c)
and (d)] the damaged area spreads almost over the entire contact zone between
the punch and material, attaining values, in some places, close to unity.

The numerical prediction of material degradation, based on the damage
model without crack closure effects, is not in agreement with experimental
evidence, which shows that only a relatively small damage accumulation results
from the process. The reason for the erroneous prediction obtained with the
model without crack closure effects lies in the law (5.30) and (5.29) which imply
fast damage growth rates under states of high stress triaxiality, regardless of
the sign (tension or compression) of the dominating stresses.

Inclusion of crack closure effects in the damage evolution: The lack
of accuracy of the above prediction is addressed here by adopting the damage
model with crack closure effects described in Section 5.4. The additional ma-
terial constant, h (the crack closure parameter) is chosen as h = 0.01. This
choice implies a substantial reduction in damaging rates under compressive
dominant stress. Figure 5.11 shows the spatial evolution of the damage vari-
able field obtained by finite element analysis, for various stages of the process.
It can be seen that throughout the extrusion, the maximum damage is ob-
served at the surface of the workpiece that is in contact with the tool. The
critical area is located near the corner of the punch, where the material is sub-
mitted to complex strain paths. This result is in agreement with experimental
evidence, that suggests that defects are observed in this region.

We remark that, the damage evolution observed in Figure 5.11, is substan-
tially different from the evolution obtained by the model without crack closure
effects (see Figure 5.10). The numerical value of the damage variable remains
below D ≤ 0.3, throughout the simulation. The material at the centre of the
workpiece does not suffer any damage and only beyond a critical radius near
the external surface does the damage variable increase substantially. In order
to obtain extruded workpieces of good quality, it is necessary to reduce the
ductile damage within the material.
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5.5 Elasto-viscoplastic damage model with crack clo-
sure

The elasto-plastic damage model presented in Section 5.4 of this chapter is
classified as rate-independent or time-independent. That is, the material re-
sponse is regarded as independent of the rate of application of the load and/or
the time scale of the problems considered. However, the experimental behav-
iour of real materials suggests that the amount of microcracking(damage) at
a particular strain level exhibits rate sensitivity to the applied rate of loading.
That is, the stress response always depend on the time scale considered and/or
the rate of loading. The extent of such dependence may or may not be signif-
icant according to the physical conditions of the problem. Rate-dependence
effects are described by means of so-called visco-plasticity (or rate-dependent
plasticity) models, to which the present section is devoted.

5.5.1 The constitutive model

A generic von Mises type power law elasto-viscoplastic damage model with
crack closure effects and isotropic strain hardening can be defined by the fol-
lowing set of constitutive equations:

1. Linear elastic relation between the stress tensor, σ, and the elastic strain,
εe:

σ = D : εe (5.99)

where D is the standard isotropic elasticity fourth order tensor and the
symbol : denotes double contraction.

2. Additive split of the total strain rate, ε̇, into an elastic contribution, ε̇e,
and an inelastic contribution, ε̇p:

ε̇ = ε̇e + ε̇p (5.100)

3. An associative plastic flow rule:

ε̇p = γ̇
∂Φ

∂σ
. (5.101)

where γ̇ is the plastic multiplier whose expression is defined later.

4. In the above, Φ is the yield function where the effect of damage on the
viscoplastic behaviour can be accounted for rewriting the yield function
Φ in the following form:

Φ(σ, R,D) ≡ q − (1 −D) σy =
√

3 J2(s) − (1 −D) σy, (5.102)
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where s ≡ σ− 1
3
(trσ) I, with I the identity tensor, is the stress deviator,

and
σy = σy(ε̄

p) (5.103)

is the stress-like variable associated with isotropic hardening. In the
present case (isotropic strain hardening), σy is an experimentally deter-
mined function of the equivalent plastic strain, ε̄p, whose evolution is
defined by the rate equation:

˙̄εp =
√

2
3
‖ε̇p‖ . (5.104)

5. An evolution law for the damage internal variable, governed by the rela-
tion (5.59), rewritten here

Ḋ =











0 if ε̄ p ≤ ε̄ p
D

γ̇

1 −D

(−Y
r

)s

if ε̄ p > ε̄ p
D ,

(5.105)

where r, s and ε̄ p
D are material constants. The quantity, Y is the damage

energy release rate [see Equation (5.60)], given by

Y =
−1

2E(1 −D)2

[

(1 + ν) σ+ : σ+ − ν 〈tr σ〉2
]

− h

2E(1 − hD)2

[

(1 + ν) σ− : σ− − ν 〈−tr σ〉2
]

.

(5.106)

The viscoplasticity power law coupled with damage The viscoplas-
ticity model is completely characterised with the definition of a constitutive
law for γ̇. Several possibilities exist in the definition of γ̇. In the present thesis
our attention will be focussed on the power-type law discussed by Perić (1993),
which is here coupled with damage:

γ̇ =











1

µ

[

(

q

(1 −D) σy

)1/ǫ

− 1

]

if Φ(σ, R,D) > 0

0 if Φ(σ, R,D) ≤ 0 ,

(5.107)

where the strictly positive material constants µ and ǫ are, respectively, the
viscosity and rate-sensitivity parameters. According to the above law, the
function Φ defines an elastic domain, i.e., a region of stress space where the
material behaves as purely elastic with no plastic flow (γ̇ = 0 ⇒ ε̇p = 0).

Remark 5.12 One important aspect of the visco-plastic model defined by (5.99)–
(5.107) is that the standard rate-independent von Mises elasto-plastic model is
rigorously recovered as a limiting case [refer to Perić (1993)] when µ→ 0 (no
viscosity) and/or ǫ→ 0 (no rate-sensitivity). At such limits, σyp(ε̄

p) is identi-
fied with the usual hardening curve obtained from uniaxial tensile experiments
for the rate-independent von Mises model.
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5.5.2 Integration algorithm

In this section the derivation of an integration algorithm for the elasto-visco-
plastic damage constitutive model, described in the previous section is carried
out in detail. Operator split algorithms are particularly suitable for numerical
integration of constitutive equations and are widely used in the context of
elasto-plasticity and also elasto-viscoplasticity (Simo & Taylor, 1985; Ortiz &
Simo, 1986; Simo & Govindjee, 1991; Perić, 1993; Crisfield, 1997).

Let us consider a typical time step over the time interval [tn, tn+1], where
the time and strain increments are defined in the usual way as

∆t = tn+1 + tn, ∆ε ≡ εn+1 − εn . (5.108)

In addition all variables of the problem, given by the set {σn, ε
e
n, ε

p
n, ε̄

p
n, Dn},

are assumed to be known at tn. The operator split algorithm should obtain the
updated set {σn+1, ε

e
n+1, ε

p
n+1, ε̄

p
n+1, Dn+1} of variables at tn+1 consistently with

the evolution equations of the model. The algorithm comprises the standard
elastic predictor and the visco-plastic return mapping which, for the present
model, has the following format.

Elastic predictor

The material is assumed to behave purely elastically within the time interval
[tn, tn+1]. An elastic trial state is then obtained as:

εe trial = εe
n + ∆ε , εp trial = εp

n ,

σtrial = D : εe trial , ε̄p trial = ε̄p
n ,

σtrial
y = σy n , Dtrial = Dn .

(5.109)

If Φtrial ≤ 0, then the process is indeed elastic within the interval and no
viscoplastic flow takes place within the considered time step. In this case, the
variables at tn+1 are assigned the values of the trial variables. Otherwise, we
apply the viscoplastic corrector algorithm described in the following.

Visco-plastic corrector (or return mapping algorithm)

At this stage, we solve the evolution equations of the model with the elastic
trial state as the initial condition. With the adoption of a backward Euler dis-
cretisation, the viscoplastic corrector is given by the following set of algebraic
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equations:

σn+1 = σtrial − ∆γ D :
∂Φ

∂σ

∣

∣

∣

∣

n+1

ε̄p
n+1 = ε̄p

n + ∆γ

Dn+1 =







0 if ε̄ p
n+1 ≤ ε̄ p

D

Dn + ∆γ
1−Dn+1

(

−Yn+1

r

)s

if ε̄ p
n+1 > ε̄ p

D ,

(5.110)

where the incremental multiplier , ∆γ, is given by:

∆γ =
∆t

µ

{

[

q(σn+1)

(1 −Dn+1) σy(Rn+1)

]1/ǫ

− 1

}

, (5.111)

with ∆t denoting the time increment within the considered interval. After
solving (5.110), we can update:

ε
p
n+1 = εp

n + ∆γ
∂Φ

∂σ

∣

∣

∣

∣

n+1

εe
n+1 = εe trial − ∆γ

∂Φ

∂σ

∣

∣

∣

∣

n+1

. (5.112)

The visco-plastic corrector can be more efficiently implemented by reducing
(5.110) to a single non-linear equation for the incremental multiplier ∆γ.

Single-equation corrector The situation here is completely analogous to
that of the elasto-plastic damage (rate-independent) model described in Sec-
tion 5.4.2 (page 88). For the sake of completeness, the main steps leading to
the system reduction are repeated here. Firstly, we observe that the plastic
flow vector:

∂Φ

∂σ
=
√

3
2

s

‖s‖ (5.113)

is deviatoric. The stress update equation (5.110)1 can then be split as:

sn+1 = strial − ∆γ 2G
√

3
2

sn+1

‖sn+1‖

pn+1 = ptrial ,
(5.114)

where p denotes the hydrostatic pressure and G is the shear modulus. Further,
simple inspection of (5.114)1 shows that sn+1 is a scalar multiple of strial so
that, trivially, we have the identity:

sn+1

‖sn+1‖
=

strial

‖strial‖ , (5.115)
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which allows us to re-write (5.114)1 as:

sn+1 =

(

1 −
√

3
2

∆γ 2G

‖strial‖

)

strial =

(

1 − ∆γ 3G

qtrial

)

strial (5.116)

where qtrial is the elastic trial von Mises equivalent stress:

qtrial = q(strial) =
√

3
2
‖strial‖ . (5.117)

Equation (5.116) results in the following update formula for q:

qn+1 = qtrial − 3G∆γ . (5.118)

With the substitution of the above formula together with (5.110)2 into (5.111)
we obtain the following scalar algebraic equation for the incremental multiplier,
∆γ:

∆γ − ∆t

µ

{

[

qtrial − 3G∆γ

(1 −Dn+1) σy(Rn+1)

]1/ǫ

− 1

}

= 0 , (5.119)

or, equivalently, after a straightforward rearrangement,

Dn+1 = D(∆γ) ≡ 1 −

√

3
2
‖strial‖ − 3G∆γ

σy0 +R(ε̄ p
n + ∆γ)

(

∆t

µ∆γ + ∆t

)ǫ

, (5.120)

which expresses Dn+1 as an explicit function of ∆γ. Finally, by introducing
the damage explicit function (5.120) into the discretised damage evolution
equation (5.110)3, the viscoplastic corrector is reduced to the solution of a
single algebraic equation for the incremental multiplier, ∆γ:

G(∆γ) ≡







D(∆γ) = 0 if ε̄ p
n+1 ≤ ε̄ p

D

D(∆γ) −Dn − ∆γ
1−D(∆γ)

(

−Y (∆γ)
r

)s

= 0 if ε̄ p
n+1 > ε̄ p

D .
(5.121)

The single-equation viscoplastic corrector comprises the solution of the above
equation for ∆γ, followed by the straightforward update of the relevant vari-
ables:

sn+1 =
(

1 − ∆γ 3G
qtrial

)

strial , pn+1 = ptrial ,

σn+1 = sn+1 + pn+1 I ,

ε e
n+1 = [De]−1 : σn+1 = 1

2G
sn+1 + 1

3K
pn+1 I ,

ε̄ p
n+1 = ε̄ p

n + ∆γ ,

Dn+1 = 1 −
√

3
2
‖strial‖−3G ∆γ

σy0+R(ε̄ p
n +∆γ)

(

∆t
µ ∆γ+∆t

)ǫ

.

(5.122)
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Box 5.5: Elastic predictor/visco-plastic return mapping integration al-
gorithm for the elasto-viscoplastic damage model with crack closure effect
(over time interval [tn, tn+1]).

(i) Elastic predictor. Given ∆ε, ∆t and the state variables at tn,
compute the elastic trial state:

εe trial = εe
n + ∆ε; etrial = dev[εe trial]; vtrial = tr[εe trial]

ε̄ p trial = ε̄ p
n ; Dtrial = Dn

strial = 2G etrial; ptrial = K vtrial

qtrial =
√

3
2
‖strial‖,

(ii) Check for viscoplastic flow. First compute:

Φtrial = qtrial − (1 −Dn) [σy0 +R(ε̄ p
n )] ,

IF Φtrial ≤ εtol THEN (elastic step)

Update (·)n+1 = (·)trial and EXIT

ELSE GOTO (iii)

(iii) Visco-plastic corrector . Solve the return mapping equation

G(∆γ) ≡







D(∆γ) = 0 if ε̄ p
n+1 ≤ ε̄ p

D

D(∆γ)−Dn−
∆γ

1−D(∆γ)

(

−Y (∆γ)
r

)s

= 0 if ε̄ p
n+1 > ε̄ p

D

with D(∆γ) defined by (5.120) and Y (∆γ) defined through
(5.60), (5.120) (5.81) and (5.82).

(iv) Update the variables:

sn+1 =
(

1 − ∆γ 3G
qtrial

)

strial; pn+1 = ptrial ;

σn+1 = sn+1 + pn+1 I ; ε̄ p
n+1 = ε̄ p

n + ∆γ ;

ε e
n+1 = 1

2G
sn+1 + 1

3K
pn+1 I ; Dn+1 = D(∆γ).

(v) EXIT

The solution of the equation for ∆γ is, as usual, undertaken by the Newton-
Raphson iterative scheme. The overall algorithm for the numerical integration
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of the elasto-viscoplastic damage model, which includes the effect of crack
closure, is summarised in Box 5.5 in pseudo-code format.

Remark 5.13 (rate-independent limit) Note that, as one should expect,
equation (5.121) rigorously recovers its elasto-plastic damage (rate-independent)
counterpart (5.80) [refer to page 90] when µ → 0 (no viscosity), ǫ → 0 (no
rate-sensitivity) or ∆t → ∞ (infinitely slow straining). Obviously, in such
cases, the algorithm of Box 5.5 reproduces the rate-independent elastoplastic
numerical solution.

Remark 5.14 (computational implementation aspects) In the computer
implementation of the model (as shown in Box 5.5), it is important to specify
the damage function D(∆γ), as expressed in equation (5.120). The reason for
this lies in the fact that, for low rate-sensitivity, i.e., small values of ǫ, the
Newton-Raphson scheme for solution of (5.119) becomes unstable as its con-
vergence bowl is sharply reduced with decreasing ǫ. The reduction of the con-
vergence bowl stems from the fact that large exponents 1/ǫ can easily produce
numbers which are computationally intractable. This fact has been recognised
by Perić et al. (1993) in the context of a more general visco-plastic algorithm.
In equation (5.120), on the other hand, the term to the power ǫ on the left hand
side can only assume values within the interval [0, 1] and causes no numerical
problems within practical ranges of material constants.

Iso-error maps

To illustrate the accuracy of the above integration algorithm in practical situ-
ations, this section presents some isoerror maps, produced with material con-
stants covering a range of high rate-sensitivity to rate-independency. The maps
have been generated in the standard fashion as described in Section 5.4.2 [re-
fer to Figure 5.3, page 93]. Using the three-dimensional implementation of
the model, we start from a stress point at time tn, with σn lying on the yield
surface, and apply a sequence of strain increments, corresponding to linear
combinations of trial stress increments in the direction normal and tangential
[directions of the unit tensors N and T of Figure 5.3, respectively] to the von
Mises circle in the deviatoric plane.

The material properties adopted for the present analysis are exactly the
same as the rate-independent case and are listed in Table 5.1 [page 94]. To
preserve the constant rate of total strain ∆ε/∆t for the iso-error map under
consideration, the time increment ∆t is appropriately scaled. Figure 5.12 shows
iso-error maps obtained at low and high strain rates with the non-dimensional
rate

µ ‖ε̇‖
set respectively to 1 and 1000. For each non-dimensional rate, three values
of rate-sensitivity parameter,ǫ, have been used: 100, 10−1 and 0. For ǫ = 0
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Figure 5.12: Iso-error maps for D = 0% and ε̄ p = 0: (a)1 µ ‖ε̇‖ = 1, ǫ = 100;
(a)2 µ ‖ε̇‖ = 1, ǫ = 10−1; (a)3 µ ‖ε̇‖ = 1, ǫ = 0; (b)1 µ ‖ε̇‖ = 103, ǫ = 100; (b)2
µ ‖ε̇‖ = 103, ǫ = 10−1 and (b)3 µ ‖ε̇‖ = 103, ǫ = 0.
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virtually identical maps are obtained for the two rates [see Figure 5.12 (a)3 and
5.12 (b)3] and the algorithm recovers the rate-independent solution depicted in
Figure 5.4 (a). In Figure 5.13 the error map of the algorithm is depicted at a
different stage of damage evolution.
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Figure 5.13: Iso-error maps for D = 15% and ε̄ p = 0.348: (a)1 µ ‖ε̇‖ = 1, ǫ = 100;
(a)2 µ ‖ε̇‖ = 1, ǫ = 10−1; (b)1 µ ‖ε̇‖ = 103, ǫ = 100; and (b)2 µ ‖ε̇‖ = 103, ǫ = 10−1.

Again, the iso-error maps are obtained at low and high strain rates with
the non-dimensional rate, µ ‖ε̇‖, set respectively to 1 and 1000. For each
non-dimensional rate, two values of rate-sensitivity parameter, ǫ, have been
used: 100 and 10−1. Once more for ǫ = 0, the algorithm reproduces the
rate-independent solution shown in Figure 5.4 (b). By comparing Figures 5.12
and 5.13, the dependency of the algorithm accuracy on the state of internal
damage is made clear. The more damaged the material is, the more restricted
an increment of trial stress must be to maintain the integration error within
a prescribed limit. In other words, the accuracy of the algorithm deteriorates
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as damage increases. It is also possible to conclude that, in general, increasing
(decreasing) rate-sensitivity and/or increasing (decreasing) strain rates tend
to produce decreasing (increasing) integration errors. The largest errors are
expected in the rate-independent limit.

5.5.3 Consistent tangent operator

To obtain the consistent tangent operator for the case of a strain-driven prob-
lem, all variables of the problem are considered as functions of the strain ε.
The exact linearization of the algorithm described in Box 5.5 is performed by
a systematic application of the concept of directional derivative.

In the elastic case, the elastic consistent tangent at tn+1, is simply the
standard elasticity operator

D̂ = De = 2G
[

I − 1
3
I ⊗ I

]

+K I ⊗ I (5.123)

where I, is the fourth order identity tensor.
In the elasto-viscoplastic damage case, i.e., when it is assumed that vis-

coplastic flow occurs within the step, the tangent operator is called the elasto-
viscoplastic damage consistent tangent and is denoted by D̂

vp
. For the present

model it is possible to obtain a closed form expression for the tangent operator.
The details of derivation, which is rather lengthy, will be omitted here and we
shall limit ourselves to show only its final expression which is given by:

Dvp = a1

[

I − 1
3
I ⊗ I

]

+ a2 s̄n+1 ⊗ s̄n+1 + a3 s̄n+1 ⊗ I +K I ⊗ I , (5.124)

where s̄n+1 is the normalised stress deviator:

s̄n+1 =
sn+1

‖sn+1‖
, (5.125)

and the scalars a1, a2, a3, are given by:

a1 = 2G
(

1 − ∆γ 3G
qtrial

)

a2 = 6G2
[

∆γ
qtrial + ∂G

∂ (qtrial)
/ ∂G

∂ (∆γ)

]

a3 = 2G
√

2
3
K
[

∂G
∂ (ptrial)

/ ∂G
∂ (∆γ)

]

.

(5.126)

In the definition of constants a2 and a3, the scalars ∂G/∂ (∆γ), ∂G/∂ (qtrial)
and ∂G/∂ (ptrial), correspond to the derivatives of the return mapping residual
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function defined by (5.121):

∂G
∂ (∆γ)

= ∂D
∂ (∆γ)

+ 1
1−Dn+1

(

−Yn+1

r

)s

{[

− ∂D
∂ (∆γ)

/(1−Dn+1) − s ∂Y
∂ (∆γ)

/Yn+1

]

∆γ − 1
}

∂G
∂ (qtrial)

= ∂D
∂ (qtrial)

− ∆γ ∂D

∂ (qtrial)
/(1−Dn+1)2

(

−Yn+1

r

)s

− s∆γ
r (1−Dn+1)

(

−Yn+1

r

)s−1
∂Y

∂ (qtrial)

∂G
∂ (ptrial)

= s ∆γ
r (1−Dn+1)

(

−Yn+1

r

)s
∂Y

∂ (ptrial)
.

(5.127)

where the scalars ∂Y /∂ (∆γ), ∂Y /∂ (qtrial) and ∂Y /∂ (ptrial), represent the
derivatives of the energy release rate function already outlined in expressions
(5.94) and also (5.95).

Finally, the scalars ∂D/∂ (∆γ) and ∂D/∂ (qtrial), which are the outcome of
the derivation of the damage function (5.120) are defined by

∂D
∂ (∆γ)

=
(

∆t
µ ∆γ+∆t

)ǫ [
3G

σy(Rn+1)
+ H(qtrial−3G∆γ)

σy(Rn+1)2
+ µǫ

µ ∆γ+∆t

(

qtrial−3G∆γ
σy(Rn+1)

)]

∂D
∂ (qtrial)

= − 1
σy(Rn+1)

(

∆t
µ ∆γ+∆t

)ǫ

(5.128)
In the above, H denotes the derivative of the hardening function evaluated at
Rn+1.

5.6 Concluding remarks

The prediction of damage growth and fracture initiation in finitely deforming
ductile solids has been addressed in this chapter. With the coupling between
damaging and material behaviour accounted for within the framework of Con-
tinuum Damage Mechanics, the material presented is of particular relevance
to the simulation of industrial forming operations characterised by the pres-
ence of extreme deformations and strains, often resulting in localised material
deterioration and possible fracture nucleation and growth.

In particular, the need for consideration of micro-crack closure effects in
the damage evolution was specially emphasised. The introduction of the cou-
pled constitutive equations did not affect appreciably the performance of the
models, enabling the efficient simulation of the effects of material deterioration
in large scale computations. This was due to the fact that the return mapping
integration algorithm was reduced to a non-linear single equation. A closed
formula for the tangent operator consistent with the integration algorithm has
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also been presented. The formula is useful for those seeking ductile damage
simulation within an implicit finite element framework.

An assessment of the accuracy and stability of the elastic predictor-plastic
corrector algorithm for integration of the constitutive equations has been car-
ried out relying on the analysis of iso-error maps. Numerical simulations have
illustrated the performance the algorithms in the presence of combined ten-
sile/compressive stress states, which may have important consequences in fail-
ure analysis of metal forming processes. Finally, it is remarked that the ex-
tension to the finite strain range can be promptly obtained by means of the
framework described in Chapter 4.



Chapter 6

Finite element technology for

finite nearly isochoric

deformation

ONE of the most challenging tasks in finite element research is the deve-
lopment of low order elements for the solution of solid mechanics prob-

lems involving nearly-incompressible materials. As the incompressible limit is
approached, elements with low order shape functions are known to perform
poorly, showing the typical volumetric locking behaviour which, in many cir-
cumstances, completely invalidates the finite element solution. Problems of
practical engineering interest for which incompressibility plays a crucial role
include the analysis of rubbery solids, typically modelled as incompressible
hyperelastic materials, as well as elastoplastic simulations under plastic domi-
nant deformations and the assumption of isochoric plastic flow, such as in metal
plasticity models. In such situations, spurious locking , i.e., overstiff solutions,
frequently occur as a consequence of the inability of low order interpolation
polynomials to adequately represent general volume preserving displacement
fields. The problem can be remedied by simply adopting elements of suffi-
ciently high order.

However, low order elements are often preferred due to their inherent sim-
plicity. This is particularly true in large scale simulations where a number of
complex interacting phenomena, such as frictional contact, high strains and
progressive material fracturing, may be present. In many cases, the compu-
tational treatment of the problem, which may require the incorporation of
adaptive mesh refinement techniques, is far simpler when lower order elements
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are adopted.

The present chapter is concerned with special finite element techniques for
the analysis of large deformations of nearly incompressible solids. The material
presented here is divided into five sections. In Section 6.1 a brief review of the
numerical treatment of incompressibility for low order elements is presented.
The description of the so-called F-bar methodology for finite strain analysis
of nearly incompressible solids, is undertaken in Section 6.2. The next section
of this chapter, Section 6.3, presents an assessment of the performance of
formulations based on the volumetric nodal averaging concept proposed by
Bonet & Burton (1998) in the context of explicit dynamics. In Section 6.4
we introduce a new methodology which extends the so-called F-bar procedure
(de Souza Neto et al. , 1996) so as to accommodate the use of two- and three-
dimensional simplex finite elements. The computational implementation of
the new simplex finite elements within an implicit quasi-static and explicit
dynamic finite element environment is described in detail.

6.1 Introduction

In order to allow the use of low order elements near the incompressible limit
under finite strains, different approaches have been proposed in the compu-
tational literature. Within the context of the geometrically linear theory, the
class of assumed enhanced strain (EAS) methods described by Simo & Rifai
(1990), which incorporates popular procedures such as the classical incom-
patible modes formulation (Taylor et al. , 1976) and B-bar methods (Hughes,
1980), is well established and is employed with success in a number of existing
commercial finite element codes.

Under infinitesimal kinematics, the use of underintegrated standard finite
elements can provide simple and satisfactory solutions near the incompress-
ible limit. In the geometrically non-linear regime, however, the enforcement
of incompressibility is substantially more demanding and the development of
robust and efficient low order finite elements is by no means trivial. To tackle
such a problem, different approaches have been proposed in the computational
literature. Among others, the class of mixed variational methods developed
by Simo et al. (1985), the mixed u/p formulation proposed by Sussman &
Bathe (1987), the geometrically non-linear extension of the B-bar methodol-
ogy adopted by Moran et al. (1990), the family of enhanced elements of Simo
& Armero (1992), the co-rotational incompatible modes of Crisfield & Moita
(1996) and the geometrically non-linear selective reduced integration scheme
of Doll et al. (2000) are possible alternatives.

Such formulations have produced families of elements for finite near- incom-
pressibility whose lowest order members are the bi-linear (4-noded) quadrilate-
ral in 2-D and the tri-linear (8-noded) hexahedron in 3-D. In some situations,
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however, the use of even lower order elements – the simplex (3-noded) triangle
in 2-D and (4-noded) tetrahedron in 3-D – is far more desirable. A typical ex-
ample is the three-dimensional analysis of bodies with complex geometry. The
lack of robustness of currently available hexahedral mesh generators may im-
pose severe limitations on the use of such elements in this context. The ideal
alternative then would be the development of simplex elements with added
special techniques to handle finite nearly isochoric deformations. Some meth-
ods to adapt simplex elements to this class of problems have been recently
proposed. Among others, the elements proposed by Zienkiewicz et al. (1998),
Bonet & Burton (1998) and Bonet et al. (2001) in the context of explicit
dynamics and the mixed-enhanced 4-noded tetrahedron developed by Taylor
(2000) for implicit computations are pertinent approaches.

One aspect that should be observed here is that, in addition to handling in-
compressibility, robust formulations should also be able to cope with the extra
requirements that different problems may present. For instance, in applica-
tions such as the prediction of failure in metal forming processes, the ability to
capture strain localisation phenomena becomes crucial; in problems involving
extremely large strains, frequently encountered in the analysis of rubbery ma-
terials and metal forming simulations, it is not unusual that a solution can be
obtained only if adaptive mesh refinement is employed. Thus, since a single
formulation is normally not sufficiently robust to produce an optimal perfor-
mance under a very wide range of conditions, the design of low order finite
elements for large strain analysis of quasi-incompressible materials remains an
open issue.

6.2 F-bar methodology

This section describes the development of a 4-node quadrilateral and a 8-node
hexahedron for finite strain analysis of nearly incompressible solids. The el-
ements, termed F-bar elements, are based on the concept of multiplicative
isochoric/volumetric split in conjunction with the replacement of the compat-
ible deformation gradient field with an assumed modified counterpart.

The basic idea behind the F-bar (De Souza Neto et al., 1996) procedure
is simple: an F-bar element is obtained from the corresponding standard
(displacement-based) finite element by simply adopting a suitably modified
deformation gradient in the computation of the stress tensor. To avoid in-
compressibility locking , the modified deformation gradient is constructed such
that the incompressibility constraint can be enforced in an approximate aver-
age (not point-wise) sense throughout the element.
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6.2.1 Stress computation

Consider an ordinary displacement-based 4-node quadrilateral and an 8-node
hexahedron, with local coordinates denoted ξ, as illustrated in Figure 6.1.
Typically, the numerical integration of the element internal force vector re-

ξ
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ξ
i

= FFiso vFF( )
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0=ξ0

0

0

0

Figure 6.1: The F-bar 4-node quadrilateral and 8-node hexahedron.

quires the computation of the stresses at a prescribed number of gauss points
and, for geometrically non-linear problems, the stresses are obtained from the
deformation gradient by means of constitutive functionals. For elastic materi-
als, the Cauchy stress is a given function of the current deformation gradient,
F for Gauss point i (with coordinate ξi, indicated in Figure 6.1) at tn+1:

σ = σ̂(F ).

For inelastic materials, within the context of an incremental finite element
procedure, the Cauchy stress is generally defined by an incremental constitutive
function resulting from a suitable algorithm for numerical integration of the
constitutive equations of the model. A typical example of such is the return
mapping-based stress updating algorithm adopted in finite elasto-plasticity
presented in Chapter 4. Within the typical time interval [tn, tn+1], the stress σ

at tn+1 is a function of the deformation gradient, F , at tn+1 and the known set
αn of internal state variables at tn. This relation can be symbolically expressed
as:

σ = σ̂(F ,αn), (6.1)

where σ̂ here denotes the (generally implicit) incremental constitutive function
defined by the underlying numerical integration algorithm. For conventional
(or standard) finite elements, the deformation gradient F is computed directly
from the standard interpolation (bi-linear for the quadrilateral and tri-linear
for the hexahedron) of the displacement field at the integration point i.
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The isochoric/volumetric split of the deformation gradient

Central to the developments presented below is the concept of multiplicative
split of the deformation gradient, F , into an isochoric (volume preserving)
and a volumetric (purely dilatational) contribution. This concept has been
introduced in Section 3.1.3 [page 24]. It has been exploited by many authors
[Hughes et al. (1975), Simo et al. (1985), Moran et al. (1990) and Simo
& Taylor (1991)] in the treatment of the incompressibility constraint in finite
deformation problems. Essentially, F is split according to:

F = F iso F v , (6.2)

where
F iso = (det F )−1/3 F and F v = (det F )1/3 I (6.3)

denote, respectively, the isochoric and volumetric components of F .

6.2.2 The modified F-bar deformation gradient

The key idea of the F-bar method is to simply replace the conventional F

with a modified counterpart, which we will denote F̄ (the F-bar deforma-
tion gradient), in (6.1) in order to circumvent the spurious volumetric locking
exhibited by standard low order elements near the incompressible limit. To
construct the F-bar deformation gradient the isochoric/volumetric split (6.3) is
firstly applied to the conventional deformation gradient F at the Gauss point
of interest as well as to the deformation gradient F 0 that results from the
conventional displacement interpolation at the centroid of the element, ξ = ξ0

(Figure 6.1 illustrates the procedure for the 4-noded quadrilateral and 8-noded
hexahedron):

F = F iso F v ,

F 0 = (F 0)iso (F 0)v .
(6.4)

The F-bar deformation gradient is then defined as the product of the isochoric
component of F with the volumetric component of F 0, i.e., we compute:

F̄ = F iso (F 0)v =

(

det F 0

det F

)1/3

F . (6.5)

Having defined the modified deformation gradient, the F-bar 4- and 8-noded
elements are obtained by simply replacing F with F̄ in (6.1). That is, for the
present elements, the Cauchy stress at each Gauss point is computed as:

σn+1 = σ̂(αn, F̄ ) . (6.6)
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Remark 6.1 By construction of F̄ , the isochoric/volumetric split of the mod-
ified deformation gradient gives:







F̄ iso = (det F )−1/3 F = F iso

F̄ v = (det F 0)
1/3 I = (F 0)v

(6.7)

i.e., the isochoric component of F̄ coincides with the current (integration
point) isochoric deformation gradient (as obtained from the conventional in-
terpolation functions) while its volumetric part corresponds to the dilatation
at the centroid of the element. In view of (6.6), this implies that, for materi-
als whose deviatoric and volumetric constitutive responses are decoupled, the
present formulation results in constant pressure throughout one element.

The constitutive (near-)incompressibility constraint in this case is enforced
only at the centroid of the element and not point-wise as in the conventional
displacement-based finite element method. The constraint relaxation result-
ing from the above procedure has been shown (de Souza Neto et al., 1996)
to effectively overcome volumetric locking and produces excellent results in
practical large strain hyperelasticity and plasticity problems. The resulting
formulation can be used regardless of the material model adopted. In addi-
tion, the strain driven format of the algorithms for integration of the inelastic
constitutive equations of the purely kinematic formulation is maintained. It
has a particularly simple structure so that existing codes that support the
conventional 4-node displacement based quadrilateral (or 8-node hexahedron,
if 3-D analysis is sought) can be easily adapted to incorporate these elements.

Remark 6.2 The basic difference between the F-bar method and the geomet-
rically non-linear B-bar extension (Hughes et al. , 1975; Moran et al. , 1990)
is the following. While in the F-bar method the conventional deformation gra-
dient is replaced with its modified counterpart in the computation of the stress

tensor, the non-linear B-bar procedure introduces this replacement in the cor-
responding internal potential energy functional, before the internal force vector
is obtained from the first variation of the energy functional.

6.3 Nodal average volume technique

The purpose of this section is to assess the performance of formulations based
on the volumetric nodal averaging concept proposed by Bonet & Burton (1998)
in the context of explicit dynamics. This investigation is motivated by the
appearance of spurious pressure fluctuations in the original explicit tetrahedral
nodal average pressure (ANP) formulation. This fact, prevents the successful
use of the technique in situations where an accurate prediction of hydrostatic
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pressure is required. Such situations arise typically when strongly pressure-
dependent constitutive equations, such as the ductile damage models reported
in Chapter 5, are used.

Therefore, an implicit version of the original formulation is derived here
by re-casting the original idea in terms of average nodal volume change ra-
tio within the framework of the F-bar method proposed by de Souza Neto et
al. (1996). In this context, an average nodal volume F-bar triangle for im-
plicit plane strain and axisymmetric analysis of nearly incompressible solids is
obtained.

6.3.1 The average nodal volume change ratio

Crucial to the derivation of the present element is the definition of the average
nodal volume change ratio introduced by Bonet & Burton (1998). Let us con-
sider a typical mesh of 3-noded triangular elements in its initial configuration
and let a be an arbitrary node of the mesh. We define A as the set of all
elements sharing node a. The initial volume, Va, of all elements sharing node
a can then be written as:

Va =
∑

e∈A

V (e) , (6.8)

where V (e) denotes the volume of the generic element e in its initial configu-
ration. The nodal initial volume assigned to node a is then defined as:

V̄a ≡ 1
3
Va =

∑

e∈A

1
3
V (e) , (6.9)

that is, each element sharing a generic node of a mesh contributes with one
third of its volume to the nodal average volume assigned to that node. These
definitions are entirely analogous to the well-known mass-lumping procedure
used in dynamic analysis.

Similar quantities can be defined in the deformed configuration of the finite
element mesh. With v(e) denoting the deformed volume of the generic element
e, we define va as the total deformed volume of all elements sharing node a:

va ≡
∑

e∈A

v(e) , (6.10)

and v̄a as the nodal deformed volume associated with node a:

v̄a ≡ 1
3
va =

∑

e∈A

1
3
v(e) . (6.11)

With the above nodal volumes at hand, we can now define the nodal volume
change ratio for node a as:

J̄a ≡ v̄a

V̄a

=
va

Va

. (6.12)



Ch. 6 Finite element technology 126

Within an arbitrary element e, with nodes i, j and k, the average nodal volume
change ratio is defined as:

J̄ (e) ≡ 1

3

(

J̄i + J̄j + J̄k

)

=
1

3

(

vi

Vi

+
vj

Vj

+
vk

Vk

)

. (6.13)

6.3.2 F-bar based average nodal volume triangle

The original average nodal pressure triangle of Bonet & Burton (1998) was
derived in the context of explicit dynamics by replacing the volume change ra-
tio obtained from the standard isoparametric displacement interpolation with
the above defined average nodal volume ratio in the elastic potential energy
functional. The corresponding finite element internal force vector was then
obtained by taking the first variation of the energy functional. When used in
conjunction with a volumetric strain-energy function quadratic in the volume
change ratio (Bonet & Burton, 1998), the procedure results in an average nodal
pressure formulation.

Here, based on the same definition of average nodal volume change ratio,
we derive an implicit version of the original element by means of the F-bar
methodology proposed by de Souza Neto et al. (1996). This is described in
the following.

The average nodal volume F-bar triangle

Here, the assumed modified deformation gradient, F̄
(e)

, for a generic element
e, is defined as:

F̄
(e)

=

(

J̄ (e)

J (e)

)

1
3

F
(e)
, (6.14)

where F
(e)

is the deformation gradient obtained from the standard isopara-
metric interpolation of the displacement field within element e and

J (e) ≡ det F
(e)
. (6.15)

The above definition implies that the volumetric component of the modified
deformation gradient coincides with the average nodal volume change ratio:

det F̄
(e)

= J̄ (e) , (6.16)

whereas the isochoric component, F̄
(e)

iso , of F̄
(e)

coincides with the isochoric
component of the standard deformation gradient:

F̄
(e)

iso ≡
(

det F̄
(e)
)− 1

3

F̄
(e)

= F
(e)
iso ≡

(

det F
(e)
)− 1

3
F

(e)
. (6.17)

The internal force of the F-bar-based average nodal volume linear triangle
is calculated by simply adopting definition (6.14) in the computation of the
Cauchy stress tensor according to (6.1).
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The tangent stiffness matrix

The use of the exact tangent stiffness in the global Newton equilibrium iter-
ations is highly desirable in view of the quadratic rates of convergence of the
full Newton method. The high rates of convergence achieved result usually in
higher overall efficiency of the finite element analysis procedure. A closed form
expression for the exact tangent stiffness for the present element can be derived
by consistently linearising the discrete equilibrium equations. The linearisa-
tion procedure in the present case is quite lengthy. Thus, we limit ourselves
here to showing only its final expression.

Before presenting the formula, however, it is important to note that the
modified deformation gradient used in the computation of the Cauchy stress
for an average nodal volume element e depends on the displacement field of
element e as well as, quite unconventionally, on the displacement fields of
all elements neighbouring element e. This implies that the element internal
force vector for an element e in the present case is a function of the nodal
displacements of element e and all its neighbouring elements. This gives rise
to the following contributions of element e to the global stiffness matrix:

- The tangent relation between the internal force vector of element e and
the degrees of freedom of element e itself. This contribution will be
denoted Kee. Its assembly into the global stiffness follows the same
procedure of conventional finite elements;

- The tangent relationships between the internal force vector of element
e and the degrees of freedom of each element s neighbouring e. These
contributions will be denoted Kes. We remark that their assembly into
the global stiffness requires modifications in the standard procedure used
for conventional elements.

Considering a typical element e with nodes i, j and k and neighbouring ele-
ments s, the exact expressions for the tangent stiffnesses can be written as:

Kee =

∫

ϕ(Ω(e))

GT
e aGe dv+

[

v(e) (ViVj + VjVk + ViVk)

3 J̄ (e) ViVjVk

− 1

]
∫

ϕ(Ω(e))

GT
e qGe dv ,

(6.18)

Kes =
Nes v

(s)

3 J̄ (e) ViVjVk

∫

ϕ(Ω(e))

GT
e qGs dv , (6.19)

where matrices Ge and Gs are the discrete (full) spatial gradient operators
of elements e and s, respectively, and Nes is the number of nodes common to
elements e and s. Matrix a is the finite element (matrix) representation of the
fourth order spatial elasticity tensor :

aijkl =
1

det F
Fjp Ftq Aipkq , (6.20)
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with Aipkq denoting the Cartesian components of the first elasticity tensor
(Marsden & Hughes, 1983) defined as:

Aipkq =
∂Pip

∂Fkq

. (6.21)

In the above expression, Pip are the components of the first Piola-Kirchhoff
stress tensor:

P = (detF ) σF
−T
. (6.22)

Matrix q is the finite element (matrix) representation of the tensor:

q = 1
3
a : (I ⊗ I ) − 2

3
(σ ⊗ I ) . (6.23)

All quantities in the above expressions are computed at F = F̄ . We remark
here that the resulting stiffness matrix is generally unsymmetric regardless of
the underlying material model.

Axisymmetric problems

To illustrate the simplicity of the extra stiffness term, the explicit form of the
matrices involved in its computation is shown here for the axisymmetric case.
Since the evaluation of the discrete gradient is standard, only the terms re-
quired for computation of q are presented below. Adopting the usual finite
element convention, in which the matrix format indices {1, 2, 3, 4, 5} corre-
spond to the fourth order counterparts {11, 21, 12, 22, 33}, the matrix form of
the term a : (I ⊗ I) that takes part in the definition (6.23) of q is given by:

[a : (I⊗I)] =























a11+a14+a15 0 0 a11+a14+a15 a11+ a14+a15

a21+a24+a25 0 0 a21+a24+a25 a21+ a24+a25

a31+a34+a35 0 0 a31+a34+a35 a31+ a34+a35

a41+a44+a45 0 0 a41+a44+a45 a41+ a44+a45

a51+a54+a55 0 0 a51+a54+a55 a51+ a54+a55























(6.24)

where aij are the components of the spatial tangent modulus matrix a. The
matrix form of the remaining term σ ⊗ I appearing in (6.23) is simply given
by:

[σ ⊗ I ] =





















σ11 0 0 σ11 σ11

σ12 0 0 σ12 σ12

σ12 0 0 σ12 σ12

σ22 0 0 σ22 σ22

σ33 0 0 σ33 σ33





















(6.25)
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In the expressions above, the matrix index 5 (or tensorial index 33) repre-
sents the circumferential direction, other indices correspond to the in-plane
components.

Plane strain problems

Under plane strain, to ensure that the modified F-bar deformation gradient
represents a plane deformation, we re-define (de Souza Neto et al., 1996):

F̄
(e)

=







F̄
(e)

plane

0

0

0 0 1






, (6.26)

where F̄
(e)

plane is the assumed modified counterpart of the in-plane component ,

F
(e)

plane, of the deformation gradient of element e , defined by:

F̄
(e)

plane =

(

J̄ (e)

J (e)

)

1
2

F
(e)
plane . (6.27)

In this case, in the calculation of the tangent stiffnesses, the tensor q of ex-
pression (6.23) is re-defined as:

q = 1
2
a : (I ⊗ I ) − 1

2
(σ ⊗ I ) . (6.28)

The explicit form of the matrices [a : (I ⊗ I)] and [σ ⊗ I], in this case, is
obtained from expressions (6.24) and (6.25) by simply deleting all components
related to the circumferential direction. That is, we have:

[a : (I⊗I)] =

















a11+a14 0 0 a11+a14

a21+a24 0 0 a21+a24

a31+a34 0 0 a31+a34

a41+a44 0 0 a41+a44

















(6.29)

and

[σ ⊗ I ] =

















σ11 0 0 σ11

σ12 0 0 σ12

σ12 0 0 σ12

σ22 0 0 σ22

















(6.30)
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6.3.3 Numerical assessment

The performance of the nodal average volume linear triangle for implicit finite
element analysis is assessed in this section by means of numerical examples.
It should be noted that the hyperelastic simulations are dealt with within
the context of finite elasticity set on the spatial configuration as described by
de Souza Neto et al. (1995). In the elastoplastic problems, the framework
for treatment of finite multiplicative plasticity based on logarithmic strains
described by Perić et al. (1992) is adopted.

Cook’s membrane

This example is frequently used to assess the convergence properties of finite
elements near the incompressible limit under a mixture of shear and bending
strains [Simo & Rifai (1990), de Souza Neto et al. (1996), Korelc & Wrig-
gers (1996) and Glaser & Armero (1997)]. The problem consists of a tapered
and swept panel of unit thickness, illustrated in Figure 6.2(a), with fully con-
strained displacements on its left vertical edge and subjected to a distrib-
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Figure 6.2: Cook’s membrane. (a) Geometry and boundary conditions; and (b)
Solution convergence with mesh refinement.

uted shearing load, F = 6.25 (per unit length), applied to the opposite edge
(amounting to a total vertical resultant force of intensity 100). Plane strain
condition is assumed and a regularised neo-Hookean material with shear mod-
ulus µ = 80.1938 and bulk modulus k = 40.0942 × 104 is adopted. Note that
near incompressibility is achieved with the high ratio k/µ, of order 104. Sev-
eral meshes are considered, so that the convergence of the solution with mesh
refinement can be assessed. A mesh of four elements per side is depicted in
Figure 6.2 (a). The results are shown in Figure 6.2(b) where the final vertical
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displacement obtained at the upper right corner of the panel [point A of Figure
6.2(a)] is plotted against the number of elements per side. Solutions obtained
with the standard isoparametric three-noded triangle and the 4-noded F-bar
quadrilateral (de Souza Neto et al. , 1996) are also plotted for comparison.

The convergence of the nodal average volumetric strain element is slightly
slower than that of the 4-noded F-bar quadrilateral, but produces quite rea-
sonable solutions with relatively coarse meshes. Note that the conventional
isoparametric linear triangle exhibits severe locking in this case, producing a
markedly over-stiff response, even with very fine meshes. The present results
indicate that the nodal averaging procedure has considerably relaxed the volu-
metric over-constraint. In order to fully assess the performance of the present
element in this benchmarking problem, we plot in Figure 6.3, the distributions
of hydrostatic stress:

p ≡ 1
3
tr σ ,

obtained at the load level F = 100 with the 8 × 8 element meshes of average
nodal volume strain triangles and 4-node F-bar quadrilaterals.

(a) (b)

Figure 6.3: Cook’s membrane. Hydrostatic pressure distributions at F = 100 on
deformed meshes.(a) 4-noded F-bar quadrilateral; (b)Average nodal volume triangle.

The plots show that the average nodal volume element produces significant
checkerboard -type pressure fluctuations. In spite of the considerable constraint
relaxation resulting from the nodal averaging of volumetric strains, the spu-
rious pressure modes detected in the present example point to limitations on
the range of applicability of the present element.

Indentation of a rubber block

The problem here consists of the plane strain analysis of a rubber block of
rectangular cross-section indented by a frictionless rigid indenter also of rec-
tangular cross-section. This example has been considered by Crisfield et al.
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(1995) to investigate a range of lower-order element formulations for elastic
and elasto-plastic large strain problems under high compressive strains. The
geometry of the problem as well as the boundary conditions are shown in
Figure 6.4(a).

(a) (b)

(c) (d)

Figure 6.4: Indentation of a rubber block. (a) Problem definition; Deformed meshes
at 25% compression; (b) Standard isoparametric 3-noded triangle; (c) Average nodal
volume triangle; (d) 4-noded F-bar quadrilateral.

A regularised Mooney-Rivlin material model is adopted to describe the
behaviour of the rubber block. The corresponding strain-energy function is
given by:

ψ = C1 (I∗1 − 3) + C2 (I∗2 − 3) + 1
2
k (ln J)2 ,

where I∗1 and I∗2 are the first and second principal invariants of the isochoric
component of the Cauchy-Green strain tensor [refer, for instance, to Ogden
(1984)] and J denotes the volumetric change ratio. The constants C1, C2 and
k are chosen as:

C1 = 1.5; C2 = 0.5; k = 105.

Again, a high value of the bulk modulus k is used to enforce (near-) incompre-
ssibility. The loading programme here consists of the incremental prescription
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of the vertical displacement [suggested by the arrows in Figure 6.4(a)] under
the area in contact with the rigid plate. The horizontal displacements are
left free in that area. A total displacement corresponding to 25% compression
under the plate is prescribed.

The final deformed mesh obtained with a (coarse) mesh of 128 standard
isoparametric 3-noded triangles is shown in Figure 6.4(b). The severe volu-
metric locking in this case is clearly illustrated by the unreasonable deformed
shape predicted. Figure 6.4 (c) shows the deformed mesh obtained with av-
erage nodal volume triangles. It is clear that volumetric locking has been
substantially alleviated by the nodal averaging volume technique allowing the
prediction of a reasonable deformed shape with a rather coarse mesh. For
comparison, the result of a similar simulation with 4-noded F-bar quadrilat-
erals, which also predict a reasonable deformed shape with a coarse mesh, is
presented in Figure 6.4(d).

Double notched specimen

This example considers the plane strain simulation of the stretching of a double
notched elastoplastic specimen. This classical test was introduced by Nagte-
gaal et al. (1974) in the infinitesimal strain context and illustrates the need
for appropriate treatment of the incompressibility constraint to allow an accu-
rate prediction of limit loads. Here, we consider the geometrically non-linear
version of this problem to assess the performance of the average nodal volume
element. The geometry of the problem is illustrated in Figure 6.5(a). Only one
symmetric quarter of the specimen, discretised by the mesh of 300 elements
shown in Figure 6.5(a), is used in the simulation. The material is modelled
within the context of hyperelastic-based multiplicative plasticity and is as-
sumed elastic-perfectly plastic with von Mises yield surface and Prandtl-Reuss
flow rule. The yield stress is assumed:

σy = 0.45 [GPa] .

The elastic behavior is defined by a Hencky (logarithmic strain-based) model
with Young’s modulus E = 206.9 [GPa] and Poisson ratio ν = 0.29. This
corresponds to the shear and bulk moduli:

µ = 80.1938 [GPa], k = 164.21 [GPa] .

We remark that even though perfectly plastic response is assumed, no analyti-
cal solution for the limit load is available in the finite strain regime. A vertical
displacement is applied to the top nodes of the mesh up to a total displacement
u = 0.3 [mm]. The simulation is carried out here using the average nodal vol-
ume triangular element as well as the 4-noded F-bar quadrilateral (de Souza
Neto et al. , 1996) and the standard isoparametric 3-noded triangle. The to-
tal edge reactions per unit thickness obtained for each computation is plotted
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Figure 6.5: Stretching of a double notched elastoplastic specimen. (a) Geometry
and finite element discretisation; and (b) Reaction-displacement diagram.

versus the prescribed displacement in Figure 6.5(b). It is apparent from these
results that the standard linear isoparametric element does not exhibit a limit
load, in sharp contrast with the response exhibited by the present element.
The force-displacement curve predicted by the present formulation is in close
agreement with the one obtained with the F-bar quadrilateral.

Plane strain localisation

The present example assesses the performance of the nodal average volume
triangle in strain localisation problems under plane strain condition. Owing
to spurious locking, conventional linear triangles are unable to capture such
phenomena. The problem here consists of the simulation of the stretching of a
rectangular bar, with geometry shown in Figure 6.6. As in the previous exam-
ple, the material of the bar is described by a hyperelastic-based multiplicative
finite plasticity model with a von Mises yield surface and Prandtl-Reuss flow
rule. Here, isotropic strain hardening is assumed with the following harden-
ing/softening law:

σy(R) = σ0 + (σ∞ − σ0)[1 − exp(−δR)] + HR,

with constants:

σ0 = 0.45 [GPa], σ∞ = 0.715 [GPa], δ = 16.93, H = −0.012924 [GPa].
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Figure 6.6: Plane strain localisation. Initial geometry and finite element mesh
(dimensions in [mm]).

In the above law, σy denotes the uniaxial yield stress and R the accumulated
plastic strain. The elastic constants are the same as in the previous example.
This problem can be regarded a severe benchmark test and has been employed
by many authors (Tvergaard et al. , 1981; Simo & Armero, 1992; de Souza Neto
et al. , 1996) to assess the performance of finite elements under large isochoric
plastic strains. Due to symmetry, only one quarter of the bar is discretised by
the mesh shown in Figure 6.6 with appropriate boundary conditions imposed
along the symmetry lines. To trigger strain localisation, we introduce an initial
geometric imperfection in the form of a 1.8% width reduction at the transversal
symmetry line. The width is then interpolated linearly along the half-length
of the bar and achieves its nominal value (without reduction) at the leftmost
boundary. The reaction force on the constrained edge of the bar obtained in
the finite element simulation is plotted in Figure 6.7 versus the prescribed edge
displacement. The reaction-displacement diagrams obtained with the standard
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Figure 6.7: Plane strain localisation. Force-displacement diagrams.

isoparametric linear triangle and the 4-noded F-bar quadrilateral (de Souza
Neto et al. , 1996) (whose performance in the present example is regarded as
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excellent) are also plotted for comparison. The global softening behaviour that
characterises the strain localisation is clearly captured by the present element,
whose curve is practically indistinguishable from that obtained with the F-
bar quadrilateral. Note that the standard isoparametric triangle locks in the
present case and the corresponding edge reactions remain high at the later
stages of loading.

The deformed mesh obtained at u = 4.5 [mm] with the present element
is shown in Figure 6.8. For comparison, the deformed mesh obtained with
the F-bar quadrilateral is also shown. Clearly, the present element is able
to capture the shear band that characterises strain localisation in the present
problem. The deformed mesh is in very close agreement with that predicted by
the F-bar quadrilateral. To fully assess the performance of the present elem-
ent, the discrete (non-smoothed) hydrostatic pressure distributions obtained
in both cases are also shown. While the F-bar quadrilateral predicts a rela-
tively smooth pressure field, the average nodal volume element shows spurious
checkerboard-type pressure oscillations, particularly in the localisation zone.

(a) (b)

Figure 6.8: Plane strain localisation. Discrete pressure distribution [GPa] at u =
4.5 [mm]: (a) 4-noded F-bar quadrilateral;(b) Present average nodal volume triangle.

In conclusion, the nodal averaging procedure has substantially alleviated
the volumetric locking tendency of the triangular element. This is made ev-
ident by the global softening behaviour and shear band formation captured
by the present element. However, the observed pressure fluctuations will im-
pose restrictions on the use of the present element under large isochoric plastic
strains.

Necking of a cylindrical bar

This example tests the axisymmetric version of the nodal average volume tri-
angle. It consists of the simulation of the necking of a cylindrical metal bar,
with diameter of 12.826 [mm] and length of 53.334 [mm], in a tensile test. This
problem has been used by some authors (Simo & Armero, 1992; de Souza Neto
et al. , 1996) to assess the performance of specially treated axisymmetric and
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three-dimensional elements in large strain localisation problems under plastic
incompressibility. The material model adopted to describe the bar is the same
as in the previous example. All material constants are identical except for the
hardening modulus, H , which is here taken as:

H = 0.12924 [GPa].

Only one quarter of the longitudinal cross-section of the bar is discretised with
the appropriate boundary conditions being imposed on the symmetry lines.
Figure 6.9 shows the initial configuration of the finite element mesh used. A
geometric imperfection of 1.8% radius reduction is introduced at the centre of
the bar and linearly extended to the leftmost boundary to trigger the necking.
A vertical displacement u = 7.0[mm] is imposed incrementally at the leftmost

Figure 6.9: Axisymmetric necking. Initial finite element mesh.

boundary of the bar. The reaction forces on the constrained edge of the bar
obtained in the simulation is plotted in Figure 6.10 against the corresponding
imposed edge displacement. The results obtained with the 4-noded F-bar
quadrilateral are also plotted for comparison. The reactions obtained with
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Figure 6.10: Axisymmetric necking. Force-displacement curves.
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the present element are in very close agreement with those obtained with the
4-noded F-bar quadrilateral. We remark that, in this case, the conventional
3-noded triangle locks and does not capture the necking phenomenon. The
corresponding reaction-displacement curve (not shown here) does not represent
the softening branch that follows the onset of localisation at approximately
u = 3 [mm].

The final deformed mesh obtained with the present element is shown in
Figure 6.11 together with the deformed mesh obtained with the 4-noded F-bar
quadrilateral (de Souza Neto et al. , 1996). For both elements, the (non-
smoothed) hydrostatic pressure distribution is also shown for comparison.
Clearly both elements are capable of capturing the strain localisation in this

(a)

(b)

Figure 6.11: Axisymmetric necking. Deformed meshes and discrete pressure distri-
bution [GPa] at u = 7.0 [mm].(a) 4-noded F-bar quadrilateral; (b) Present average
nodal volume element.

case and produce similar deformed shapes. The nodal average volume elem-
ent exhibits a greater cross-section reduction in the necking zone. However,
this element presents significant checkerboard-type pressure fluctuations. This
shows that the pathology identified in the previous plane strain examples is
also present in the axisymmetric version of the average nodal volume element.

6.3.4 Closing remarks

A thorough assessment of the volumetric nodal average concept (Bonet & Bur-
ton, 1998) has been presented. The assessment has been carried out based on
an implict version of the formulation obtained within the framework of the
F-bar methodology (de Souza Neto et al. , 1996). In this context, a linear
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triangle for implicit plane strain and axisymmetric analysis of nearly incom-
pressible solids has been devised. A comprehensive set of numerical examples
has been presented. The examples have shown that the nodal averaging tech-
nique substantially reduces the locking tendency of the linear triangle and
produces quite reasonable predictions of deformed shapes as well as reaction
forces, including limit loads and strain localisation patterns in elasto-plastic
analysis, near the incompressible limit.

However, in spite of the substantial reduction in locking tendency, the ex-
amples have also shown that the element can produce considerable checker-
board – type hydrostatic pressure fluctuations. This fact, which appears not to
have been noticed in the literature, prevents the successful use of the average
nodal volume technique in situations where an accurate prediction of hydro-
static pressure is required. Nevertheless, the use of the average nodal volume
formulation can be recommended, with caution, in applications (typically en-
countered in metal forming simulation) where only final deformed shapes and,
possibly, reaction forces are of interest to the analyst.

6.4 F-bar patch method

The purpose of this section is to introduce a new methodology which extends
the so-called F-bar procedure (de Souza Neto et al. , 1996) so as to accom-
modate simplex elements. The underlying idea is simple: It relies essentially
on the relaxation of the excessive volumetric constraint typical of low order
elements by enforcing the incompressibility constraint over a patch of simplex
elements. This idea has some conceptual similarities with the procedures pro-
posed by Guo et al. (2000) and Thoutireddy et al. (2002) who developed
composite triangular and tetrahedral elements.

6.4.1 The proposed F-bar-patch method

Unfortunately, the original F-bar procedure described in Section 6.2 cannot
be applied directly to linear simplex elements (linear triangles in 2-D and
linear tetrahedra in 3-D). The reason for this is that the deformation gradient
computed from the displacement field of a linear simplex element is constant
within the element so that:

F = F0 .

In view of definition (6.5), this implies that, for such elements, the modified

gradient, F̄ , coincides with the standard deformation gradient, F . Obviously,
in this case, the adoption of the original F-bar methodology would have no
effect in relaxing the excessive constraints associated with material incompre-
ssibility. An alternative then could be to redefine the F-bar gradient in a
manner that will allow sufficient relaxation of incompressibility constraints.
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This is the basic principle behind the new elements proposed in this section
and is described in the following.

6.4.2 The modified F-bar deformation gradient defined for a patch
of elements

The key idea to allow the use of simplex elements with the F-bar methodology
is rather simple. Instead of working within an individual element, we now con-
sider a patch of simplex elements. A typical patch is illustrated in Figure 6.12
(drawn in solid lines). Let P denote the set of elements forming a pre-defined

e

pre-defined patch
of simplex elements

typical mesh of
simplex elements

Figure 6.12: Definition of a patch of simplex elements.

patch. For each element e ∈ P , the modified deformation gradient, F̄e, is
defined as:

F̄e =

[

vpatch

Vpatch (detFe)

]
1
3

Fe , (6.31)

where Fe is the deformation gradient obtained from the standard linear dis-
placement interpolation within element e and vpatch and Vpatch denote, respec-
tively, the deformed and reference (undeformed) volume of patch P :

vpatch =
∑

i∈P

vi , Vpatch =
∑

i∈P

Vi. (6.32)

In the above, vi and Vi are, respectively, the deformed and reference (unde-
formed) volume of the generic element i of patch P.

Remark 6.3 The above definition implies that the determinant of the modified
deformation gradient is identical for all elements e of patch P and is given by:

J̄e ≡ detF̄e =
vpatch

Vpatch
, (6.33)
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that is, detF̄e is the ratio between the current (deformed) and the undeformed
volume of the pre-defined patch P of elements. Thus, the use of the above
defined F̄ in the calculation of the stress components for an incompressible
constitutive model will require that the patch P of elements preserves its vol-
ume, even though individual elements of the patch may suffer volume changes

during deformation. This is in contrast to conventional linear isoparametric
elements where the incompressibility constraint is enforced within each element
of a mesh. Clearly, the use of the above defined assumed modified deforma-
tion gradient will reduce the number of constraints associated with material
incompressibility within the patch of simplex elements.

Finally, the application of the new methodology to a problem defined by
an arbitrary mesh of simplex elements requires that the mesh be split into a
number of non-overlapping patches of elements. Within a patch, the modified
deformation gradient to be used in the stress computation is calculated for
each element according to (6.31). It is important to emphasise here that, as
in the original F-bar method, the actual constitutive function (or incremental
constitutive function in the case of dissipative materials) for the stress tensor
is the same as we would use were the analysis to be carried out with conven-
tional isoparametric elements. That is, the standard strain-driven format of
the associated constitutive functions is preserved in the present formulation.
In computational terms, it means that conventional stress updating routines
already in use with standard isoparametric elements can be used in the present
context without modification.

Remark 6.4 Following the comments made in Remark 6.3, the more elements
in each patch, the greater the constraint relaxation achieved. In defining such
patches it is then crucial to consider that excessive constraint relaxation (too
many elements in the patch) may lead to well-known spurious zero-energy
mechanisms. On the other hand, insufficient constraint relaxation (too few
elements in the patch) may result in incompressibility locking. Patches with
appropriate number of elements for two- and three-dimensional analysis have
been determined by the author by means of extensive numerical experiments.
The examples presented in Section 6.4.6 adopt patches found by the authors
to produce sufficient constraint relaxation to avoid locking without allowing for
spurious mechanisms.

6.4.3 Plane strain problems

As in the original F-bar procedure (de Souza Neto et al. , 1996), in the plane
strain case, the modified deformation gradient of expression (6.31) is re-defined
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as:

F̄e =







F̄
plane

e

0

0

0 0 1






, (6.34)

where F̄
plane

e is the assumed modified counterpart of the in-plane component ,

F
plane

e , of the deformation gradient at element e ∈ P, defined by:

F̄
plane

e =





apatch

Apatch

(

detF
plane

e

)





1
2

F
plane

e , (6.35)

with apatch and Apatch denoting, respectively, the area of patch P in its current
and deformed configurations:

apatch =
∑

i∈P

ai , Apatch =
∑

i∈P

Ai . (6.36)

In the above expression, ai and Ai denote, respectively, the area of element i
in its current and deformed configurations. This re-definition of F̄ is needed
to ensure that the assumed modified deformation gradient represents a state
of plane strain. If definition (6.31) were adopted instead, the resulting for-
mulation would have generally non-vanishing out-of-plane strains. This would
require an axisymmetric-type stress updating procedure, making the plane
strain element implementation rather cumbersome within a conventional finite
element code. It should be noted, also, that the above definition and defi-
nition (6.31) give identical results under uniform states of strain within the
element. For generic states in practical applications, numerical experiments
show a maximum stress component relative difference of order 0.15% between
the two possible approaches (converging to identical results with mesh refine-
ment).

6.4.4 Element tangent stiffness matrix

A crucial component needed in the implicit implementation of the proposed
class of elements is the element tangent stiffness. The use of the exact tangent
stiffness in the Newton iterative scheme to solve the non-linear equilibrium
equations ensures quadratic rates of asymptotic convergence which normally
result in higher code efficiency. For a conventional displacement-based finite
element e (and also for an F-bar element following the original formulation
discussed in Section 6.2) the tangent stiffness matrix is defined as the derivative
of the element internal force vector, f int

e , with respect to the element vector of
nodal displacements, ue:

Ke =
∂f int

e

∂ue
. (6.37)
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Trivially, the tangent stiffness Ke of an element with ndof degrees of freedom
in this case is a square matrix of dimension ndof × ndof . Its general form, in
spatial (deformed configuration) representation, can be expressed as:

Ke =

∫

ϕ(Ωe)

GT
e a Ge dv (6.38)

where ϕ (Ωe) denotes the deformed domain of element e, Ge is the standard
discrete spatial gradient operator of element e and a is the matrix form of the
fourth order spatial elasticity tensor :

aijkl =
1

det F
Fjp Ftq Aipkq , (6.39)

with Aipkq denoting the cartesian components of the first elasticity tensor
(Marsden & Hughes, 1983) defined as:

Aipkq =
∂Pip

∂Fkq
. (6.40)

In the above expression, Pip are the components of the first Piola-Kirchhoff
stress tensor:

P = (detF ) σF
−T
. (6.41)

The tangent stiffness of an F-bar-Patch element

In sharp contrast to the above conventional case, the internal force vector of an
F-bar-Patch element depends not only on the degrees of freedom of the element
itself, but also on the degrees of freedom of all other elements belonging to its
patch. Such a dependency stems from the use of the modified deformation
gradient defined by (6.31) in the computation of the stress tensor components
used to assemble the force vector. Note in (6.31) that volumetric changes in
any element of a patch (produced by variations of any nodal displacements in
a patch of elements) affects the F-bar gradient for all elements of the patch
which, in turn, changes the stress state and the internal force vector of all
elements of the patch. As a result, the tangent stiffness in the present case has
a non-conventional structure. Let us then consider an F-bar-Patch element e,
belonging to a patch P. The internal force vector of element e depends on the
vector:

ue

of nodal displacements of element e, as well as on the vectors:

us , s ∈ P ; s 6= e ,

of nodal displacements of the other elements of the patch. The application of
a lengthy but standard exact linearisation procedure (the main steps of which
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are shown in the Appendix B) to the internal force vector of element e gives
rise to the following element tangent stiffnesses:

Kee =

∫

ϕ(Ωe)

GT
e a Ge dv +

(

ve

vpatch
− 1

)
∫

ϕ(Ωe)

GT
e q Ge dv (6.42)

Kes =
ve

vpatch

∫

ϕ(Ωe)

GT
e q Gs dv , s ∈ P ; s 6= e , (6.43)

where a is the matrix form of the fourth order spatial elasticity tensor now
evaluated at F = F̄ , Gi denotes the conventional discrete (full) gradient oper-
ator of a generic element i and q is the matrix form of the fourth order tensor
defined by:

q = 1
3
a : (I ⊗ I ) − 2

3
(σ ⊗ I ) , (6.44)

also computed at F = F̄ (the matrix form of q suitable for computational
implementation is shown in Section 6.3.2). Expression (6.44) is valid for the
three-dimensional and axisymmetric cases. In plane strain, due to the re-
definition (6.35) of the assumed modified deformation gradient, q is given by:

q = 1
2
a : (I ⊗ I ) − 1

2
(σ ⊗ I ) . (6.45)

We remark that both Kee and Kes are generally unsymmetric, regardless of
the material model adopted.

Remark 6.5 (The structure of the tangent stiffness) The stiffness con-
tribution given in (6.42) represents the tangent relation between the internal
force components and nodal displacements of element e. Its rows and columns
are associated with the degrees of freedom of element e only – as in conventional
isoparametric elements – and its formula is very similar to that of the stiffness
of the original F-bar element (de Souza Neto et al. , 1996). The additional
contributions (6.43), on the other hand, are the tangent relations between the
internal force components of element e and nodal displacements of the other
elements s of the patch. Their rows are associated with the degrees of freedom
of element e and and their columns are associated with the degrees of freedom
of the other elements s of the patch. The global tangent stiffness required in the
solution of the equilibrium problem is obtained by adding, for each element e of
the mesh, the contributions of Kee and Kes (s ∈ P; s 6= e) to the appropriate
global stiffness matrix position.

Remark 6.6 As in the original F-bar method (de Souza Neto et al. , 1996),
the general lack of symmetry of the element stiffness in the present case stems
from the fact that the assumed modified deformation gradient has been intro-
duced only in the computation of the stress in the assembly of the element
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internal force vector. This is in contrast with variationally-based methods,
such as that of Hughes et al. (1975); Moran et al. (1990), where an assumed
modified deformation gradient is introduced in the corresponding potential en-
ergy functional instead. At this point, we should remark that numerical tests
reported by Srikanth & Zabaras (2001) with the original F-bar quadrilateral
show a superior coarse mesh performance of this element over a variationally-
based counterpart, justifying its use despite the potential lack of symmetry. In
addition, it should be noted that lack of symmetry is almost invariably present
in realistic large scale industrial problems which, typically, involve frictional
contact and/or non-associative plasticity models. Under such conditions, the
additional lack of symmetry resulting from the present technique will not have
a significant effect on the overall computational costs. The extra computational
effort required will be related mostly to the increase in stiffness bandwidth (as
compared to conventional isoparametric simplex elements) due to the cross
contributions Kes. Note that the global tangent stiffness, in the present case,
remains structurally symmetric.

6.4.5 Computational implementation aspects

The most important aspects of the computational implementation of a finite
element within an implicit code are: (i) The computation of the element in-
ternal force vector, and; (ii) The computation of the element tangent stiffness
matrix. Practical aspects of the calculation of the internal force vector and
tangent stiffness for the class of elements proposed are discussed below.

Internal force vector

As far as the internal force vector is concerned, the implementation of the
methodology proposed here is relatively straightforward. The computation
of the internal force vector for the new elements requires only simple mod-
ifications to the conventional displacement-based simplex element routines.
Essentially, it requires the calculation of the modified deformation gradient
according to (6.31) [or (6.35) in plane strain]. This is obtained by simply
scaling the conventional deformation gradient by a factor involving the (un-
deformed and deformed) volumes/areas of the elements of the corresponding
patch. For convenience, an algorithm for computation of the internal force
vector of an F-bar-Patch simplex element is listed in Box 6.1 in pseudo-code
format.

Tangent stiffness

Due to its unconventional structure, the computation of the tangent stiffness
for F-bar-Patch elements requires some more substantial changes to existing
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Box 6.1: Internal force vector computation for a generic simplex F-bar-

Patch element, e ∈ P .

(i) Compute the volume of patch P to which element e belongs:

vpatch =
∑

i∈P

vi

(ii) Evaluate J̄ = detF̄ =
vpatch

Vpatch

(iii) Set the Gauss integration weight w and compute the element
jacobian determinant j

(iv) For element e:

• compute the standard gradient matrix G

• F := I + Gu (standard deformation gradient)

• F̄ :=

(

detF̄

detF

)
1
3

F (modified deformation gradient)

• σ := σ̂(αn, F̄ ) (call stress update routine)

• compute the standard B matrix

• f int
(e) := w j BTσ (element internal force vector)

(vi) RETURN

finite element codes which already support standard simplex displacement-
based elements. The calculation of Kee given by (6.42) is simple. Note that
the first term on the right hand side of (6.42) has the same format as the
stiffness of conventional elements. Its computation is straightforward. The
second term on the right hand side of (6.42) is also simple. The basic extra
requirement here is the calculation of matrix q according to (6.44) [or (6.45)
under plane strain]. Computation of the matrices Kes is also straightforward.
However, since their rows are associated with degrees of freedom of element e
and their columns with degrees of freedom of the other elements s of the patch,
the addition of their contributions to the global stiffness requires appropriate
changes in the conventional routines for global stiffness assembly. The overall
procedure is summarised in Box 6.2 in pseudo-code format.

Remark 6.7 The methodology just outlined, implicitly assumes that the geom-



Ch. 6 Finite element technology 147

Box 6.2: Stiffness matrix computation for one F-bar-Patch element.

(i) Compute the volume of patch P to which element e belongs:

vpatch =
∑

i∈P

vi

(ii) Evaluate J̄ = detF̄ =
vpatch

Vpatch

(iii) Set the Gauss integration weight w and compute the element
jacobian determinant j

(iv) For the element e:

• compute the standard gradient matrix Ge

• F := I + Geu (standard deformation gradient)

• F̄ :=

(

detF̄

detF

)
1
3

F (modified deformation gradient)

• a := â(F̄ ) (tangent modulus computation routine)

• Kee := w jGT
e aGe

• compute q := 1
3
a : (I ⊗ I) − 2

3
(σ ⊗ I) at F = F̄

• Kee := Kee + w j

(

ve

vpatch

− 1

)

GT
e qGe

(v) For elements s ∈ P, s 6= e (all elements of the patch, except
element e):

• compute the standard gradient matrix Gs

• Kes := w j

(

vs

vpatch

)

GT
e qGs

(vi) Add contributions Kee and all Kes to the global stiffness matrix

(vii) RETURN

etry of the problem, defined by a finite element mesh of simplex elements, is
split into a number of non-overlapping patches. Additionally, it requires that
information regarding the elements that compose each patch is promptly avail-
able. Therefore, whenever the mesh that represents the problem at hand is
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created (or regenerated), the algorithm is compelled to create (or update) the
list of elements that belong to each patch to preserve the integrity of the overall
implementation.

6.4.6 Numerical examples

The performance of the proposed F-bar-Patch methodology is assessed in this
section by means of numerical examples. Some of the examples presented are
well accepted benchmark tests and have been extensively used in the literature
to assess finite element techniques for incompressible/nearly-incompressible
problems. The examples comprise simulations with hyperelastic as well as
hyperelastic-based multiplicative elasto-plastic underlying material models.

Cook’s membrane

This example is frequently used to assess the convergence properties of finite
elements near the incompressible limit under a mixture of shear and bending
strains (Simo & Rifai, 1990; de Souza Neto et al. , 1996; Korelc & Wriggers,
1996; Glaser & Armero, 1997). The geometry, boundary conditions and ma-
terial properties have already been described in Section 6.3.3.

The proposed method is tested here with patches of two three-noded tri-
angular elements. Several meshes are considered, so that the convergence of
the solution with mesh refinement can be assessed. For all meshes considered
the total load is applied in 5 increments. The results are shown in Figure 6.13
where the final vertical displacement obtained at the upper right corner of the
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Figure 6.13: Cook’s membrane. Solution convergence with mesh refinement.

panel (point A of Figure 6.2) is plotted against the number of elements per
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side. Solutions obtained with the standard isoparametric three-noded element
and the 4-noded F-bar quadrilateral (de Souza Neto et al. , 1996) are also plot-
ted for comparison. For convenience, the results are also presented in tabular
form in Table 6.1. This should be useful to researchers working in element
development wishing to have the present problem as a benchmark.

Table 6.1: Cook’s membrane. Solution convergence with mesh refinement.

No. of elements Vertical displacement at point A

per side Standard triangle F-bar-Patch triangle F-bar quadrilateral

2 3.00905 4.06054 4.84713

4 3.35032 5.75040 6.17328

8 3.59242 6.50343 6.67370

16 3.86886 6.77039 6.83357

32 4.38168 6.86695 6.89150

The behavior of the proposed method is similar to that of the F-bar quadri-
laterals which produce good solutions without the need for an excessively large
number of elements. In this case, conventional isoparametric linear triangles
present severe locking. This is illustrated by the over-stiff response shown in
Figure 6.13. Convergence with mesh refinement is extremely slow in this case.
The adoption of the new procedure with patches of only two elements effec-
tively overcame the locking response that characterises the conventional linear
triangle in this case. In order to fully assess the performance of the present

(a) (b)

Figure 6.14: Cook’s membrane. Hydrostatic pressure distributions at F = 100 on
deformed meshes. (a) 4-noded F-bar quadrilateral; (b) 3-noded F-bar-Patch triangle
with patches of 2 elements.

element in this benchmarking problem, we plot in Figure 6.14 the distributions
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of hydrostatic stress:
p = 1

3
trσ ,

obtained at the load level F = 100 with meshes of 3-noded F-bar-Patch tri-
angles and 4-node F-bar quadrilaterals (both with 8 elements per side). The
plots show that the results produced by the present element are in very good
agreement with those produced by the F-bar quadrilateral. The pressure
distribution is quite smooth and, in particular, does not present the typical
checkerboard-type fluctuations associated with locking elements.

Finally, as expected, the use of the exact tangent stiffness obtained from the
consistent linearisation of the problem results in a quadratic rate of asymptotic
convergence of the Newton-Raphson iterations employed in the solution of the
finite element equilibrium equations. This is confirmed in Table 6.2 which
shows the evolution of the Euclidean norm of the residual (normalised out-of-

Table 6.2: Cook’s membrane. Evolution of residual Euclidean norm.

iteration number relative residual (%)

1 0.116740E+05

2 0.298047E+02

3 0.156810E+02

4 0.717017E−02

5 0.854556E−06

balance forces) over the iterations of a typical load increment with the present
element.

Indentation of a rubber block

The problem here consists of the plane strain analysis of a rubber block of
rectangular cross-section indented by a frictionless rigid indenter also of rec-
tangular cross-section. The geometry, boundary conditions and material prop-
erties have already been described in Section 6.3.3. The final deformed mesh
obtained with a (coarse) mesh of 64 standard isoparametric 3-noded trian-
gles was already shown in Figure 6.4(b)[page 132]. Figure 6.15(a) shows the
deformed configuration obtained for the same mesh with the proposed F-bar-
Patch technique. As in the previous example, patches of two 3-noded triangles
have been used.

It is clear that volumetric locking tendency of the conventional 3-noded
triangle has been alleviated by the present technique allowing the prediction
of a reasonable deformed shape with a rather coarse mesh. We remark that,
in addition, the deformed shapes obtained with the present technique do not
show the spurious hourglass patterns which have been associated with early
enhanced assumed strain elements under high compressive strains (Wriggers &
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(a) (b)

Figure 6.15: Indentation of a rubber block. (a) F-bar-Patch 3-noded triangle with
patches of two elements; (b) 4-noded F-bar quadrilateral.

Reese, 1996). For comparison, the result of a similar simulation with 4-noded
F-bar quadrilaterals (and a 32 element mesh), which also predict a reasonable
coarse mesh deformed shape, is presented in Figure 6.15(b).

Rubber cylinder pressed between two plates

The numerical simulation of the compression of a rubber cylinder pressed be-
tween two frictionless rigid plates is carried out in this example. This problem
was analysed in detail by Sussman & Bathe (1987) who made a careful com-
parison with existing analytical and experimental results within the context of
the u/p formulation. Simo & Taylor (1991) and de Souza Neto et al. (1996)
also employed the same example to illustrate, respectively, the performance of
a mixed low order formulation in conjunction with an augmented Lagrangian
procedure and the F-bar technique near the incompressible limit. The geome-
try of the problem and boundary conditions are illustrated in Figure 6.16(a).

(a) (b)

Figure 6.16: Rubber cylinder. (a) Geometry and boundary conditions; and (b)
Initial finite element mesh.

Following Sussman & Bathe (1987) the cylinder made out of rubber is
idealised using a regularised Mooney-Rivlin description (as in the previous
example), with C1 = 0.293 [MPa], C2 = 0.177 [MPa] and bulk modulus k =
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1410 [MPa]. Again, a high bulk modulus (as compared to the constants C1 and
C2) enforces (near-)incompressibility. Plane strain state is assumed and, for
symmetry reasons, only one quarter of the cylinder cross section is modelled.
The symmetric quarter is initially discretised with a mesh of 48 quadrilaterals.
To employ the present formulation, each quadrilateral of the original mesh
is split into a patch of two F-bar-Patch triangles, resulting in the mesh of 96
triangles shown in Figure 6.16(b). The contact constraint is enforced by means
of the classical penalty method (Perić & Owen, 1992). The final deformed
configuration obtained with a prescribed displacement u = 250 [mm] of the
plate is depicted in Figure 6.17(a).

(a)

(b)

Figure 6.17: Rubber cylinder. Deformed mesh at u=250 [mm].(a) F-bar-Patch

method with patches of 2 linear triangles; (b) F-bar bi-linear quadrilateral.

The deformed mesh of the symmetric cross-section quarter has been mir-
rored into the remaining three quadrants. Again, for comparison, the result
obtained with the F-bar quadrilateral is shown in Figure 6.17(b). There is a
good qualitative agreement between the two deformed meshes. The reaction
forces per unit thickness on the plate, for the Mooney-Rivlin model, are plot-
ted in Figure 6.18 against the plate deflection. The curves are plotted up to
u = 200 [mm]. Also shown in Figure 6.18 is a force-deflection curve obtained
using the regularised 3-term Ogden material model with the constants given in
Table 6.3 (and same bulk modulus adopted with the Mooney-Rivlin material).

Table 6.3: Rubber cylinder. Material constants for Ogden model.

µi [MPa] αi

0.746 1.748

-0.306 -1.656

6.609x10−5 7.671

These coefficients were chosen to fit the same experimental data as the
Mooney-Rivlin model. For both constitutive models there is an excellent agree-
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Figure 6.18: Rubber cylinder. Force-deflection curves.

ment between the reactions predicted by the present element and the 4-noded
F-bar quadrilateral.

Elastomeric bead compression

The simulation of the compression of an elastomeric axisymmetric bead is
carried out in this example. In reference (de Souza Neto et al. , 1996), this
problem has been used to study the performance of the axisymmetric version of
the 4-node quadrilateral F-bar element and the axisymmetric enhanced elem-
ent Q1/E5 under high compressive strains. Here we use this example to assess
the performance of the axisymmetric F-bar-Patch linear triangle. The bead –
a circular ring with trapezoidal cross section – is schematically represented in
Figure 6.19. The bead provides sealing when the plate, which contacts its top

Figure 6.19: Elastomeric bead compression. Initial geometry and boundary condi-
tions (dimensions in [mm]).
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surface, is pressed downwards. In the finite element simulation, the bottom
surface of the ring seal is assumed clamped to a flat rigid base and both plate
and base are idealised as rigid bodies with frictionless contact condition on the
boundaries. The bead is modelled as a regularised neo-Hookean material with
shear modulus µ=5 [MPa] and bulk modulus k=1000 [MPa]. A mesh of 520
quadrilateral elements is first generated and then each quadrilateral is split
into a patch of 2 F-bar-Patch triangles, making up a total of 1040 triangles.
Figure 6.20 (a) shows the mesh in its initial configuration. The compression of

(a) Initial configuration (b) u = 0.09 [mm]

Please Wait.. Please Wait..

(c) u = 0.17 [mm] (d) u = 0.25 [mm]

Please Wait.. Please Wait..

Figure 6.20: Elastomeric bead compression. Finite element discretization on the
initial configuration and deformed meshes obtained with the present element.

the bead is simulated here with both the axisymmetric version of the 3-node
triangle proposed and the 4-noded axisymmetric F-bar quadrilateral. A total
vertical displacement u =0.25[mm] is applied to the plate. This corresponds to
a 45% compression of the bead. Deformed meshes obtained at different stages
of the compression process are depicted in Figure 6.20.

At the early stage shown in Figure 6.20(b), the lateral surfaces of the bead
make contact only with the top of the plate. The contact constraint is enforced
with the penalty method. Here a nodal penalty approach is adopted with
penalty factor pN = 3×105 [N/mm]. At the later stages of Figure 6.20(c) and
(d), contact also occurs with the rigid base. The reaction-displacement curve
obtained is plotted in Figure 6.21.

There is an an excellent agreement between the reactions predicted by
the F-bar-Patch axisymmetric triangle and the 4-noded F-bar axisymmetric
quadrilateral. For comparison, the deformed meshes obtained with the original
F-bar quadrilateral element are shown in Figure 6.22. These are in very good
agreement with the deformed meshes shown in Figure 6.20 for the present
element.
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Figure 6.21: Elastomeric bead compression. Displacement-reaction diagram.

(a) u = 0.09 [mm] (b) u = 0.25 [mm]

Please Wait.. Please Wait..

Figure 6.22: Elastomeric bead compression. Deformed meshes obtained with the
F-bar bi-linear axisymmetric element.

Stretching of a double notched specimen

This example considers the plane strain simulation of the stretching of a double
notched elastoplastic specimen. The geometry, boundary conditions and ma-
terial properties have already been described in Section 6.3.3. The geometry
of the problem is illustrated in Figure 6.5(a) [page 134]. Only one symmetric
quarter of the specimen, discretised by the 150 element mesh shown in Figure
6.5(a), is also used in the simulation. Again, patches of 2 F-bar-Patch trian-
gles are used (each patch making up one square in this case). The loading
programme consists of prescribing the vertical displacement of the top nodes
of the mesh [indicated by the arrows in Figure 6.5(a)] incrementally up to a
total displacement u = 0.3 [mm]. The total edge reactions per unit thickness
obtained in the simulation is plotted versus the prescribed displacement in
Figure 6.23.

The results obtained with the standard isoparametric linear triangle as
well as the 4-noded F-bar quadrilateral are also plotted for comparison. It
is apparent from these results that the displacement formulation does not
exhibit a limit load. This is in sharp contrast with the response exhibited by
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Figure 6.23: Stretching of a double notched specimen. Reaction-displacement dia-
gram (reactions in [KN ]).

the present element and the F-bar quadrilateral which, clearly, capture a limit
load. The reaction-displacement curve predicted by the present formulation is
very close to the one obtained with the F-bar quadrilateral.

Unconstrained elastoplastic test

The purpose of this test is to give an insight into the adequacy of a finite
element to capture strain localisation phenomena in large strain elasto-plastic
problems under plane strain. It has been used by Simo & Armero (1992) to

(a) (b)
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Figure 6.24: Unconstrained elastoplastic test. (a) Geometry and boundary condi-
tions; (b) Force-displacement curve.

study the performance of the enhanced strain element Q1/E4 and in reference
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(de Souza Neto et al. , 1996) to assess the 4-noded F-bar quadrilateral. Here,
this benchmarking test is carried out for the proposed 3-noded F-bar-Patch
element. The results are compared to similar computations with the 4-noded
F-bar element. The problem is schematically represented in Figure 6.24(a).
In its original form (Simo & Armero, 1992; de Souza Neto et al. , 1996) a
single 4-noded quadrilateral element is used. Here, a patch of 2 F-bar-Patch
triangles, as shown in Figure 6.24(a), is tested. The kinematic constraints are
also indicated in Figure 6.24(a). The loading consists of a prescribed horizontal
displacement, u, applied to the top node. The material model adopted is
identical to the one of the previous example except that the perfect plasticity
assumption is replaced here with an isotropic hardening/softening law where
the yield stress is given as a function of the equivalent plastic strain, R, as:

σy(R) = σ0 + (σ∞ − σ0)[1 − exp(−δR)] + HR,

with constants:

σ0 = 0.45 [GPa], σ∞ = 0.715 [GPa], δ = 16.93, H = −0.012924 [GPa].

The corresponding force per unit thickness, P , obtained in the numerical sim-
ulation is plotted in Figure 6.24(b). It can be seen that both the proposed
element and the F-bar quadrilateral, are able to capture the global softening
that characterises strain localisation. This indicates a possible suitability of
the F-bar-Patch triangle for localisation problems. The results obtained with
the standard 3-node triangle are also plotted and show that, for this element,
no softening occurs. The deformed configurations, at u=10.5 [mm], of each
of these elements discussed are depicted in Figure 6.25. The final deformed

(a) Present element (b) F-bar quadrilateral

(c) Standard element

Figure 6.25: Unconstrained elastoplastic test. Final configurations at u=10.5 [mm].
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configuration obtained with the patch of 2 F-bar-Patch triangles is very similar
to that of the F-bar quadrilateral. In contrast, severe locking is exhibited by
the standard triangle as a consequence of the element-wise enforcement of the
plastic incompressibility constraint.

Plane strain localisation

This example illustrates the performance of the proposed 3-noded F-bar-Patch
triangle in a full plane strain elasto-plastic boundary value problem involving
strain localisation. The geometry, boundary conditions and material proper-
ties have already been described in Section 6.3.3 [page 134]. It simulates the
occurrence of shear bands during the finite stretching of an elastoplastic rec-
tangular bar. The bar is schematically illustrated in Figure 6.6 [page 135]. In
references (Tvergaard et al. , 1981; Simo & Armero, 1992; de Souza Neto et al.
, 1996), meshes of 4-noded quadrilaterals have been used. Here, the adopted
mesh has been obtained by splitting each quadrilateral of the mesh of reference
(de Souza Neto et al. , 1996) into a patch of 2 F-bar-Patch triangles.

The present element exhibited an excellent performance in capturing strain
localisation in this problem. This can be seen in Figure 6.26, where deformed
meshes for two stages of the simulation are presented. The figure shows in

(a) (b)

F-bar
Quadrilateral:

F-bar-Patch:

Figure 6.26: Plane strain localisation. Deformed configurations at two stages of
imposed displacement: (a) u = 4.0 [mm]; (b) u = 4.9 [mm].

detail the deformed meshes in the central region of the bar obtained with the
proposed F-bar-Patch method and the F-bar quadrilateral (whose behaviour is
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regarded as excellent for such problems). In the initial stage of the deformation
process, the specimen is maintained in an essentially homogeneous state of
deformation. Subsequently, when the reaction load at the constrained edges
reaches its peak value, a diffuse necking starts to develop, as seen in Figure
6.26(a). Finally, at a further stage depicted in Figure 6.26(b), the deformation
mode changes to a pattern involving shear bands forming 45 degrees with
the axial direction of loading. The distribution of effective plastic strain in
the shear band zone during the different stages of the deformation process is
depicted in Figure 6.27. The development of localised plastic strains within
the characteristic shear bands can be clearly seen.

(a) (b)

Figure 6.27: Plane strain localisation. Effective plastic strain distribution in the
necking region at different stages: (a) u = 4.0 [mm]; (b) u = 4.5 [mm].

The reaction force obtained on the constrained edge is plotted in the dia-
gram of Figure 6.28 against the prescribed edge displacement. The results ob-
tained with the F-bar quadrilateral and the conventional isoparametric linear
triangle are also plotted. The reactions obtained with the present formulation
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Figure 6.28: Plane strain localisation. Force-displacement diagrams.
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follow very closely those obtained with the F-bar quadrilateral. The substantial
decrease in the reaction forces occurring near u = 3.0 [mm] corresponds to the
onset of shear band formation. For the conventional triangle, localisation does
not occur and the reaction force remains high even at the later stages of load-
ing. Figure 6.29 shows the discrete (non-smoothed) distribution of hydrostatic
pressure obtained with the proposed element and the F-bar quadrilateral. The
pressure distribution obtained with the present scheme is similar to that ob-
tained by the F-bar quadrilateral. In particular, it is quite smooth and, very
importantly, does not exhibit the checkerboard pattern typically associated
with volumetric locking.

(a) (b)

Figure 6.29: Plane strain localisation. Discrete pressure distribution for u =
4.5 [mm]: (a) F-bar quadrilateral; (b) F-bar-Patch triangle.

Necking of a cylindrical bar

This example is concerned with the simulation of the necking of a cylindri-
cal metal bar, with diameter of 12.826 [mm] and length of 53.334 [mm], in a
tensile test. This problem has been used to assess the nodal average volume
technique in Section 6.3.3 [page 136] and is a well known benchmark (Simo
& Armero, 1992; de Souza Neto et al. , 1996) to investigate the performance
of the specially treated axisymmetric and three-dimensional elements in large
strain localisation problems under plastic incompressibility. The material is
assumed to be elastoplastic, modelled by J2-flow theory with the isotropic
hardening/softening given by:

σy(R) = σ0 + (σ∞ − σ0)[1 − exp(−δR)] + HR,

with constants

σ0 = 0.45, σ∞ = 0.715, δ = 16.93, H = 0.12924.

The resulting law is strictly hardening (without softening).
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Axisymmetric analysis The problem is firstly analysed using the 2-D
axisymmetric model. Therefore, only one quarter of the longitudinal cross-
section of the bar is discretised with the appropriate boundary conditions be-
ing imposed on the symmetry lines. A geometric imperfection of 1.8% radius
reduction is introduced at the centre of the bar and linearly extended to the
leftmost boundary to trigger the necking. In order to improve the necking
patterns at high levels of deformation the finite element mesh has 16 uniform
divisions through the bar radius, while 24 divisions in the axial direction are
approximately obtained by geometric progression from the center to the left-
most boundary of the bar. The mesh of 48x32 3-node axisymmetric elements,
with initial geometry shown in Figure 6.30, is used.

Figure 6.30: Necking of a cylindrical bar. Initial finite element mesh for axisymmet-
ric analysis.

A vertical displacement u = 7.0 [mm] is imposed incrementally at the left-
most boundary of the bar. The final deformed mesh, in which the development
of necking in the central zone can be clearly seen, is plotted in Figure 6.31(b).
For comparison, the deformed mesh obtained with the 4-noded F-bar quadrila-

(a) (b)

Figure 6.31: Necking of a cylindrical bar. Axisymmetric analysis. Deformed mesh
with imposed displacement u = 7.0 [mm] (a) F-bar bi-linear quadrilateral; (b) F-bar-

Patch method with patches of 2 linear triangles.

teral is plotted alongside in Figure 6.31(b). The deformed geometries obtained
with both elements are in very close agreement. The hydrostatic pressure dis-
tribution obtained with the axisymmetric version of the proposed element is
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also in close agreement with the pattern obtained with the F-bar quadrilate-
ral. This can be observed in Figure 6.32, where the discrete (non-smoothed)
pressure contour plot obtained with both elements is shown.

(a)

(b)

Figure 6.32: Necking of a cylindrical bar. Axisymmetric analysis. Discrete pressure
distribution for u = 7.0 [mm]: (a) F-bar quadrilateral; (b) F-bar-Patch triangle.

Figure 6.33 shows that the reaction-displacement curve obtained with the
present element is also in close agreement with the result obtained with the
F-bar quadrilateral.
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Figure 6.33: Necking of a cylindrical bar. Axisymmetric analysis. Force-
displacement curves.

Three-dimensional analysis In order to assess the performance of the
F-bar-Patch 4-noded tetrahedron, a three-dimensional analysis of the neck-
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ing problem is carried out here. To permit a direct comparison with existing
hexahedral elements each of the example problems uses a regular block of six
tetrahedral elements to form a dodecahedron. This topology has appropriate
symmetry between opposing faces which permits use of simple block genera-
tion routines to generate conforming meshes. Two different meshes, of 5760
and 14400 three-dimensional elements, shown in Figure 6.34 are used to dis-
cretize the symmetric octant of the specimen, with the appropriate boundary
conditions imposed at the symmetry planes.

(a) (b)

Please Wait.. Please Wait..

Figure 6.34: Three-dimensional necking of a cylindrical bar. (a) Initial mesh with
5760 elements; (b) Initial mesh with 14400 elements.

The final deformed configurations (corresponding to u=7.0 [mm]) obtained
for both meshes are shown in Figure 6.35. It can be seen that the two meshes

(a) (b)

Please Wait.. Please Wait..

Figure 6.35: Three-dimensional necking of a cylindrical bar. Deformed configura-
tions at u=7.0 [mm].(a) Mesh with 5760 elements; (b) Mesh with 14400 elements.

are able to predict correctly the necking phenomenon. This illustrates the
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suitability of the proposed F-bar-Patch for problems involving strain localiza-
tion. We remark that the final shape resulting from the simulation with 14400
four-node tetrahedra is virtually identical to that predicted by the simulation
where 768 axisymmetric three-noded triangular F-bar-Patch elements (with
patches of 2 elements) has been employed. The force-displacement curves ob-
tained for the 3-D simulations are plotted in Figure 6.36 along with the results
of the axisymmetric analysis. The results for the finer 3-D mesh are almost
undistinguishable from those obtained from the axisymmetric simulation.
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Figure 6.36: Axisymmetric and 3-D necking. Force-displacement diagrams.

This same problem is used to investigate the F-bar-Patch method with each
patch composed of eight linear tetrahedra. In this case, an unstructured mesh
generator is used. The following procedure is applied. An initial finite element
mesh of ten noded tetrahedra is initially generated. Once this step is completed
each element is split into 8 linear tetrahedral elements. The initial and final
deformed configurations (corresponding to u=7.0 [mm]) obtained using this
strategy are shown in Figure 6.37. In order to improve the computational
necking pattern at high levels of deformation the finite element mesh is very
fine in the necking region with a total of 15000 four-noded tetrahedral elements.

We remark that the final shape resulting from the simulation with 14400
four-node tetrahedra with each patch composed of six linear tetrahedra [see
Figure 6.35(b)] is virtually identical to that predicted by the simulation with
15000 four-node tetrahedra with each patch composed of eight linear tetrahe-
dra [see Figure 6.35(b)]. The force-displacement curves obtained for the 3-D
simulations are plotted in Figure 6.38 along with the results of the 3-D version
of the standard tetrahedral element. The results for the 3-D simulations of
the F-bar-Patch method with each patch composed of eight linear tetrahedra
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(a) (b)

Please Wait.. Please Wait..

Figure 6.37: Three-dimensional necking of a cylindrical bar. (a) Initial configuration;
(b) Deformed configuration at u=7.0 [mm].

are almost undistinguishable from those obtained with each patch composed
of six linear tetrahedra. It is important to note that with a mesh of 15000
four-node standard displacement tetrahedra elements, the occurrence of se-
vere locking has been observed. This is clearly illustrated in Figure 6.38 by
the high reaction force observed at the late stages of loading.
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Figure 6.38: Axisymmetric and 3-D necking. Force-displacement diagrams.

This result indicates that the proposed methodology circumvents the vol-
umetric locking response that characterises conventional linear simplex ele-
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ments. This new method using each patch composed of eight linear tetrahedra
allows the use of an unstructured mesh generator. This type of mesh generator
is currently very robust and is able to handle complex geometry.

Upsetting of a cylindrical billet

The purpose of this example is to assess numerically the performance of the
three-dimensional F-bar-Patch under investigation in highly strained situations
arising in compression problems. The three-dimensional simulation described
below corresponds to the upsetting of a cylindrical elastoplastic billet. The
billet, with radius 9 [mm] and height 30 [mm] is compressed between two
flat tools (assumed rigid) subjected to sticking contact on the interface. A J2

elastoplastic material is assumed, but a linear hardening rule is adopted:

σy(R) = σyo + HR,

with σyo = 0.45 and the hardening modulus H=0.7 [MPa]. The Young’s
modulus and Poisson ratio are, respectively, E=200.0 [GPa] and ν=0.3, cor-
responding to:

µ = 76.92 [GPa], k = 166.67 [GPa].

The initial tool/workpiece configuration is schematically illustrated in Figure
6.39(a). Due to obvious symmetry considerations, only a quarter of the speci-
men needs to be considered.

(a) (b)

Please Wait..

Figure 6.39: Upsetting of a cylindrical billet. (a) Initial tool/workpiece configura-
tion; (b) Initial mesh.

The initial finite element mesh, shown in Figure 6.39(b), consists of a total
of 2880 elements. The contact condition that takes place at high compressive
strains between the planes defined by the upper and lower base and the lateral
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surface of the specimen is enforced via a conventional nodal penalty formula-
tion. We note that the isochoric character of the plastic flow together with
the very large plastic deformations result in a nearly incompressible response
of the specimen. Figure 6.40 depicts the solution obtained with the proposed
element.

(a) 20 % compression (b) 35 % compression

Please Wait.. Please Wait..

(c) 50 % compression (d) 70 % compression

Please Wait.. Please Wait..

Figure 6.40: Upsetting of a cylindrical billet. Deformed configurations at different
reductions for the proposed element.

The results demonstrate that a good performance should be expected from
this element in highly strained compressive situations. In Figure 6.41 the
reaction force versus the cylinder reduction is plotted for the proposed three-
dimensional element and the F-bar hexahedron. Inspection of this result re-
veals an overall agreement between the reactions obtained by the two ele-
ments. Nevertheless, a slight difference becomes noticeable when the contact
constraint is enforced between the exterior elements and the top rigid surface.

For comparison, the deformed meshes obtained with the original F-bar
hexahedron, in the latter stages of compression, are shown in Figure 6.42.
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Figure 6.41: Upsetting of a cylindrical billet. Load versus reduction curves obtained
with different elements.

There is a good qualitative agreement with the deformed meshes shown in
Figure 6.40(c) and (d) for the present element.

(a) (b)

Please Wait.. Please Wait..

Figure 6.42: Upsetting of a cylindrical billet. Deformed configurations at different
reductions for the F-bar hexahedron. (a) deformed mesh at 50% compression; and
(b) deformed mesh at 70% compression.

6.4.7 Explicit implementation

Despite the recent remarkable advance of implicit solution techniques, contact
detection in a multi-fracture environment constitutes a major obstacle to use
of implicit schemes to simulate problems such as metal cutting operations. In
the simulation of fracturing of ductile materials where crack advance is typi-
cally preceded by nearly isochoric strains, conventional simplex elements are
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known to produce unacceptably inaccurate solutions due to the phenomenon
of volumetric locking. Therefore, we adapt the above concepts for use within
an explicit transient dynamic finite element environment. In the context of
metal plasticity – our main area of interest – plastic flow is typically isochoric
and the hydrostatic stress is a function of the total volumetric strain. This ob-
servation allows the derivation of a straightforward procedure whereby, before
the stress update is carried out, say, with the Green-Naghdi based algorithm
of Box 4.2, the volumetric component of the incremental strain is re-computed
in a simple manner following the F-bar-Patch concept. The implementation
of the procedure requires nothing more than a simple pre-processing operation
on ∆ε before the application of the conventional stress updating algorithm.

We start by assuming a hydrostatic pressure constitutive equation of the
form:

p = K (J̄ − 1) , (6.46)

where J̄ is the volumetric ratio of the patch P of simplex elements. Now,
considering the typical time interval [tn, tn+1], we perform all operations of
items (i)–(iii) of Box 4.2, without modification. The pre-processing is then
carried out just before the small strain algorithm is called, from item (vi) of
Box 4.2. The extra operations are as follows:

1. Retrieve the hydrostatic pressure of time tn (beginning of the current
step):

pn := 1
3
trσn (6.47)

2. Retrieve the modified volumetric ratio J̄ at tn using constitutive law
(6.46):

J̄n :=
pn

K
+ 1 (6.48)

3. Compute the incremental modified volumetric ratio, J̄∆, according to:

J̄∆ :=

∑

k∈P v
k
n+1

∑

k∈P v
k
n

, (6.49)

where vk
n and vk

n+1 are the deformed volumes of element k, respectively,
at times tn and tn+1.

4. Compute the current total modified volumetric ratio, J̄n+1:

J̄n+1 := J̄nJ̄∆ . (6.50)

Note that J̄n+1 represents the ratio between the undeformed and de-
formed (at tn+1) volume of the patch P.
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5. Compute the modified incremental strain, ∆ε̄, according to the expres-
sion:

∆ε̄ := ∆ε + [(J̄n+1 − J̄n) − tr∆ε] I . (6.51)

Finally, the above modified incremental strain is passed on to the procedure
of Box 4.2 where the stress updating (integration of constitutive equations) is
carried out without modification. Note that, following the procedure of Box
4.2, the hydrostatic component of the update stress tensor will satisfy:

pn+1 = pn +K tr∆ε̄ = pn +K (J̄n+1 − J̄n) = K (J̄n+1 − 1) . (6.52)

The hydrostatic pressure is identical for all elements k ∈ P.

6.4.8 Numerical examples

The performance of the proposed F-bar-Patch methodology for an explicit
transient dynamic finite element environment is assessed in this section by
means of two numerical examples. The first example evaluates the performance
of the technique under extremely large deformation and the second investigates
the element behaviour when combined with a pressure sensitive constitutive
model.

Impact of a cylinder against a rigid wall

The first example studied is that of an impact with a rigid surface of a cylindri-
cal copper bar moving with a relatively high speed. This well known example is
a classical benchmark (Zhu & Cescotto, 1995; Zienkiewicz et al. , 1998; Bonet
& Burton, 1998) usually employed to calibrate numerical algorithms. Here, it
is used to illustrate the performance of the element formulation, proposed in
Section 6.4.7, under extremely large deformation.

The bar of initial length of 32.4 [mm] and initial radius of 3.2 [mm] impacts
a rigid, frictionless wall at 227 [m/s]. The material is elasto-plastic (von Mises
yield surface with linear isotropic hardening) and the properties of the copper
are defined in Table 6.4.

Table 6.4: Copper bar material properties.

Description Symbol Value

Specific mass ρ 8930 [kg/m3]

Elastic Modulus E 117 [GPa]

Poisson’s ratio ν 0.35

Initial yield stress σY 0 400 [MPa]

Hardening modulus H 100 [MPa]
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The deformation of the projectile has to be computed up to a time of
t=80 [µs], at which almost all the kinetic energy has been transformed into
plastic deformation.

Axisymmetric analysis The problem is firstly analysed using the 2-D
axisymmetric model. Therefore, only one half of the bar is discretised with
the appropriate boundary conditions being imposed on the symmetry line.
The finite element mesh employed has 6 uniform divisions through the bar
radius, with 72 divisions in the axial direction. The initial and final deformed
shapes obtained using different formulations are shown in Figure 6.43. The

(a)

Please Wait..

(b)

Please Wait..

(c)

Please Wait..

(d)

Please Wait..

Figure 6.43: Impact of a bar (2-D axi-symmetric): (a) initial shape with the finite
element discretization; (b) standard element; (c) F-bar-Patch triangle; (d) quadrila-
teral (Belytschko & Bindeman, 1991).
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problem was initially analysed using the standard triangle and then with the
new F-bar-Patch formulation. Deformed shapes for both cases are shown in
Figure 6.43(b),(c). Comparing these results with those obtained with the
quadrilateral element (Belytschko & Bindeman, 1991), volumetric locking is
clearly observed for the standard element. In contrast, the deformed shape
obtained with the new triangle compares very well with those obtained from
the quadrilateral element.

Three-dimensional analysis In order to assess the performance of the
F-bar-Patch 4-noded tetrahedron, a three-dimensional analysis of the impact
problem is carried out here. The final deformed shapes obtained using different
element formulations are shown in Figure 6.44. The cylindrical bar has been
discretized with 972 hexahedral elements and 5932 tetrahedral elements.

(a) (b) (c)

Please Wait.. Please Wait.. Please Wait..

Figure 6.44: Impact of a bar: (a) standard element; (b) F-bar-Patch tetrahedron;
(c) hexahedron (Belytschko & Bindeman, 1991).

Again, by comparing these results, volumetric locking is clearly observed for
the standard element. In contrast, the deformed shape obtained with the new
tetrahedron compare well with those obtained from the hexahedron element.

Tensile test

The classical tensile test of an axisymmetric notched specimen, is used to
illustrate the performance of the element formulation when combined with a
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pressure sensitive constitutive model. The geometry, boundary conditions and
material properties have already been described in Section 5.4.4 [page 99]. The
initial finite element mesh used, for two-dimensional and three-dimensional
cases, is depicted in Figure 6.45. A relatively fine discretisation is used in the
region surrounding the smaller cross-section, in order to capture the necking
pattern and damage evolution.

(a) Two dimensions (b) Three dimensions

Please Wait..

Figure 6.45: Axisymmetric notched bar.Initial finite element mesh.

Axisymmetric analysis The problem is firstly analysed using the 2-D ax-
isymmetric model. So, only one quarter of the longitudinal cross section of
the notched specimen is discretised [see Figure 6.45 (a)] with the appropriate
boundary conditions being imposed on the symmetry lines. The loading con-
sists of a prescribed vertical displacement (with free horizontal displacement) of
the constrained edge. A total number of 724 three-noded axisymmetric trian-
gles has been used in the discretisation amounting to a total of 403 nodes. The
analysis undertaken here, employs the damage algorithm proposed in Chapter
5. The evolution of the damage variable field obtained in the finite element
analysis is illustrated in the contour plots shown in Figure 6.46.

It can be seen that during the early stages of the loading process, maximum
damage is detected near the root of the notch. As the specimen is progressively
stretched, the maximum damage area moves gradually toward the centre of the
specimen and localises there. At the final stage with u = 0.6 [mm] damage is
highly localised around the centre.The simulation results obtained using the
present framework, are in close agreement, with the ones obtained in Section
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(a) u = 0.21 [mm] (b) u = 0.36 [mm]
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Figure 6.46: Axisymmetric notched bar. Damage contour plots.

5.4.4 [page 99] but using an implicit time integration scheme. In this example,
the standard three-noded displacement based isoparametric triangle promotes
a completely erroneous prediction (not shown here) of the failure location. The
severe volumetric locking that characterises this element completely invalidates
the finite element solution.

Three-dimensional analysis In order to assess the performance of the
proposed 4-node tetrahedron, a three-dimensional analysis of the above pro-
blem is carried out here. Patches of 8 tetrahedra are used. Such a choice
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is motivated by the fact that 8-element patches can be easily generated by
unstructured tetrahedral mesh generators regardless of the complexity of the
geometry considered. Only one symmetric octant of the bar is discretised (see
Figure 6.45 (b)) with the appropriate boundary conditions being imposed on
the symmetry planes. A total number of 17,216 four-noded tetrahedra have
been used in the discretisation amounting to a total of 3,718 nodes. The evo-
lution of the damage variable field obtained in the finite element analysis is
illustrated in the contour plots shown in Figure 6.47.

(a) u = 0.21 [mm] (b) u = 0.36 [mm]
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Figure 6.47: Three-dimensional notched bar. Damage contour plots.
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It can be concluded that the evolution of the damage field observed in
the three-dimensional simulation, conforms with the axisymmetric pattern de-
scribed previously. The damage contour at the final stage of the loading [see
Figure 6.47(d)] localises around the centre of the specimen, with a very sharp
gradient. This result indicates that the 4-node tetrahedron proposed here,
circumvents the volumetric locking that characterises conventional linear sim-
plex elements. In addition, the new elements have shown no signs of spurious
mechanisms. As mentioned before, this new method allows the use of an
unstructured mesh generator, which is currently very robust and is able to
handle complex geometry. In a similar situation, the average nodal pressure
element (Bonet & Burton, 1998) produces considerable checkerboard-type hy-
drostatic pressure fluctuations. Such fluctuations, in conjunction with strongly
pressure-dependent constitutive equations (such as the damage law adopted
here) invalidate the finite element solution.

6.5 Concluding remarks

A thorough assessment of the volumetric nodal average concept (Bonet &
Burton, 1998) has been presented. The assessment has been carried out based
on an implict version of the formulation obtained within the framework of the
F-bar methodology (de Souza Neto et al. , 1996). In this context, a linear trian-
gle for implicit plane strain and axisymmetric analysis of nearly incompressible
solids has been devised. A comprehensive set of numerical has been presented.
The examples have shown that the nodal averaging technique substantially re-
duces the locking tendency of the linear triangle and produces quite reasonable
predictions of deformed shapes as well as reaction forces. However, the exam-
ples have also shown that the element can produce considerable checkerboard –
type hydrostatic pressure fluctuations. This fact, prevents the successful use of
the average nodal volume technique in situations where an accurate prediction
of hydrostatic pressure is required.

A new methodology which allows the use of two- and three-dimensional
simplex finite elements in the large strain analysis of nearly incompressible
solids has been proposed. The technique is an extension of the F-bar method
of reference (de Souza Neto et al. , 1996). It relies essentially on the re-
laxation of the excessive volumetric constraint typical of low order elements
through the enforcement of the incompressibility constraint over a patch of
simplex elements. An important aspect of the present method is that (as the
original F-bar procedure) it preserves the displacement-based format of the
corresponding finite element equations as well as the strain-driven format of
standard algorithms for integration of dissipative constitutive equations and
can be used regardless of the material model adopted.

As far as the computational implementation of the new elements is con-
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cerned, the calculation of the corresponding element internal force vector is
relatively straightforward and its incorporation into existing finite element
codes requires only simple changes to the relevant routines of isoparametric
simplex elements. However, the corresponding tangent stiffness – required in
the implicit implementation of the technique – possesses a rather unconven-
tional format. Its incorporation into an existing code requires more substantial
changes, particularly in the global stiffness assembly operations. The uncon-
ventional stiffness format stems from the fact that the internal force vector of
a particular element depends on the nodal displacements of all elements of its
patch.

A comprehensive set of numerical examples, including some well known
benchmark tests, have shown that the proposed technique has effectively over-
come the volumetric locking that characterises conventional simplex elements.
In addition, the new elements have shown no signs of spurious mechanisms.
The examples involved hyperelastic as well as elasto-plastic problems, includ-
ing strain localisation.



Chapter 7

Adaptive remeshing for history

dependent problems in solid

mechanics

THE numerical simulation of finite strain plasticity problems presents a
higher degree of complexity compared to its elastic structural counter-

parts. Due to the nature of the strains that characterise a large number of
industrially relevant solid mechanics problems, it is frequently the case that
a mesh of high quality in the initial configuration of the workpiece, with op-
timal element aspect ratio throughout, degenerates to such an extent during
the simulation that the numerical procedure may fail to produce any results of
practical interest. In addition to acceptable element aspect ratio, mesh quality
implies sufficient refinement in areas where the relevant fields present steeper
gradients. These areas are the portions of the workpiece where most of the ac-
tion localises, i.e., where the relevant dissipative mechanisms are most active.
Such areas are not known in advance and, in addition, their location within
the domain may vary as the simulation proceeds.

In this context, the introduction of an effective adaptive mesh refinement
procedure, capable of ensuring that high quality meshes are used over the
entire process simulation, is crucial. The ideal mesh should be fine enough to
capture the solution accurately, but at the same time be as coarse as can be
allowed, to limit computational effort and permit the practical use of a finite
element framework within an industrial environment.

The present chapter focuses on some issues relevant for adaptive solutions of
large deformations of elasto-(visco)plastic solids at finite strains, which ensure
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a successive improvement of the numerical solution. A detailed description
of the basic ingredients of the adaptive remeshing strategy adopted in this
thesis is also included. In particular Section 7.3 discusses some options for
error indicators while Section 7.6 further discusses some aspects of transfer
operators occurring in large deformation problems. The main objective is
to develop an adaptive strategy, relevant for practical large-scale simulations,
which reflects the dynamic nature of the physical phenomena. This strategy
should be able to capture the progression of plastic deformation, damage and
also to produce efficiently refined meshes in regions of possible material failure.

7.1 Introduction

Let u denote the exact solution and let uh be the discrete finite element
solution. It is possible to define the error in the displacement field by

eu = u − uh. (7.1)

In the same way, the error in the stress field can be defined as

eσ = σ − σh. (7.2)

Over the last years, a considerable body of research has been focused on the
development of adaptive strategies that provide a finite element discretization
which is accurate and reliable. Adaptive techniques rely on indicators and/or
estimators which are able to predict the error given by (7.1) or (7.2). These
quantities reveal the error of the finite element solution (e.g. Johnson (1987)
and references therein). Based on the error field distribution, a new refined
mesh can be constructed which yields a better approximate solution.

Currently, the formal structure of adaptive finite element methods for linear
elliptic problems is well understood and it is possible to provide a theoretical
unifying framework, which encompasses most of the existing procedures. Such
analysis has been presented by Verfürth (1996), for instance. The maturity
reached in the theory of linear elliptic partial differential equations (Evans,
1999) and their finite element approximation has instigated the understanding
of the mechanism of error propagation. This has lead to a solid foundation
upon which effective and reliable techniques of error estimation and adaptive
refinement may be established. Although certain issues still remain unresolved,
it may be said that nowadays, adaptive strategies for linear problems can be
routinely performed within finite element computations. Among numerous
contributions, the work by Babuška & Rheinboldt (1978), Zienkiewicz & Zhu
(1987), and surveys by Johnson & Hansbo (1992), Oden et al. (1989), and
Zienkiewicz & Taylor (2000) illustrate the basic ideas and numerical strategies.

Even though some advances have been recorded for certain classes of non-
linear problems, the current position of adaptive approaches for history de-
pendent nonlinear problems in solid mechanics is not so well established. In
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particular, the understanding of the mechanisms of error propagation, which
also depend on time, and the correlated transfer operation can be considered
to be on its early stages of development. This is reflected in the scarcity of
studies dedicated to the matter and of originality of the approaches, which
usually try to adapt ideas developed for linear problems. Relevant contribu-
tions are given by Ladèveze et al. (1986), Belytschko et al. (1989), Ortiz &
Quigley IV (1991), Johnson & Hansbo (1992), Lee & Bathe (1994), Perić et al.
(1994, 1996), Gallimard et al. (1996), Barthold et al. (1997) and Wriggers

(2002) amongst others.

The key components, described consecutively in the following sections, re-
quired for the implementation and successes of an adaptive strategy are,

- Entity/Assignment based model definition;

- Indication of the error associated with a given finite element mesh;

- Prediction of the new mesh density;

- Mesh regeneration based upon the density of the new mesh;

- Accurate transfer of material and process data between the old and new
finite element meshes.

7.2 Entity based model description

All the process data (e.g. loads and boundary conditions) of the problem,
must be defined independently of the initially generated finite element mesh
to enable the design of a flexible adaptive strategy. To support this requirement
it is necessary to generate a so-called System Hierarchy.

The system hierarchy will typically consist of control points at the lowest
level; these points are then joined using line entities. In turn, a set of lines
will be joined together to form a surface and finally, for 3D geometries a set
of volumes can be formed from the grouping of adjacent surfaces. These may
be imported via CAD interfaces or defined parametrically within a graphical
pre-processor.

This original model is then utilised throughout the simulation, in conjunc-
tion with the geometry defined by the current deformed state, to transfer the
process data to newly generated meshes.

7.3 A posteriori error estimates

One of the main difficulties associated with the use of the finite element, and
other approximate methods, is related to the accuracy, i.e., closeness of the
approximation to the solution of the original problem. Since the closed form
is not, in general, available the so-called error estimation techniques have been
proposed. In this work, our attention will be focused in a posteriori error
estimates, that is, estimates of a given measure of the error that are constructed
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after the finite element solution has been computed, and they utilize the finite
element solution and the input data of the case under study.

A posteriori error estimates play an important role in two related aspects
of finite element calculations. First, such estimates provide the user of a finite
element code with valuable information about the overall accuracy and relia-
bility of the calculation. Secondly, since most a posteriori error estimates are
computed locally, they also contain significant information about the distribu-
tion of error among individual elements, referred to as error indicators, which
can form the basis of adaptive procedures.

In the solution of history-dependent problems, error estimation is a crucially
important component of any adaptive strategy. The effectiveness of the proce-
dure is directly related to the ability of the adopted error estimation scheme to
predict what parts of the discretised domain have to be refined/de-refined and
what degree of mesh fineness is needed to maintain the solution error within
the prescribed bounds. Therefore, in the next section a brief overview on some
error estimators for non-linear problems is given. The objective is mainly to
illustrate the motivating ideas behind each of the proposed techniques, rather
than attempting to provide a (necessarily incomplete) list of error estimators.

7.3.1 Error estimation for non-linear problems. A brief overview

For history dependent nonlinear problems in solid mechanics, the theory of
error estimation can be considered to be in its early stages of development.
Although it is difficult to make a classification of the techniques of estimation in
the presence of so many sources of nonlinearity, both in time and space, it may
be useful to distinguish between several contributions as follows (Gallimard,
1994):

- Error estimators for problems where the time variable does not appear;

- Error estimators which attempt to estimate also the effects of the time
discretization;

- Error in the constitutive equations;

- Methods based on heuristic considerations leading to the development of
error indicators.

Nonlinear incremental problem These type of estimates, have been de-
veloped by looking at the error associated with the finite element approxima-
tion of the non-linear incremental boundary value problem obtained from a
one-time step discretization of the initial problem.

One of the first approaches to a theoretically justified a posteriori error
estimate for the finite element approximation of plasticity problems was given
in Johnson & Hansbo (1992). These authors analysed the regularized version
of the Hencky problem in small strain perfect plasticity with von Mises yield



Ch. 7 Adaptive remeshing for history dependent problems 182

criterion. This problem has also been considered by Rannacher & Suttmeier
(1998). As a special case, they obtain an a posteriori error estimate of the
energy norm via a duality argument applied to a linearized dual problem. Du-
ality has also been employed to derive a posteriori error estimates for nonlinear
variational problems. The work of Repin & Xanthis (1996) represents an im-
portant contribution in this sense. Further developments were addressed by
Han & Reddy (1999) and Alberty et al. (1999) amongst others.

Analysis of the time discretization error The error estimates pre-
sented above, though based on solid theoretical background, by definition do
not account for the error deriving from the replacement of the rate quantities
appearing in the initial boundary value problem. Furthermore, an inherent
difficulty in obtaining a complete a posteriori error estimation is related to the
different nature of discretization in time and space.

Rannacher & Suttmeier (1999) present a fairly complete analysis for the
mixed-dual formulation of the quasi-static Prandtl-Reuss model. The same
authors also set up a theoretical framework for a posteriori error analysis of
the time discretization error based on duality. To this end, the solution of the
problem is seen as arising from the use of a space-time approximation which
uses discontinuous Galerkin method for the time discretization and standard
finite elements for the discretization in space. A similar approach has also been
adopted by Larsson et al. (2001) in the space-time discretization of viscoplas-
ticity. Following an heuristic argument Barthold et al. (1997) proposed, in the
context of small strain elasto-plasticity, a spatial error estimate based on com-
parative analysis of Prandtl-Reuss elasto-plasticity and Hencky plasticity. The
error indicator was assumed to be dependent on the elastic (free energy func-
tion), plastic (dissipation) components and loading/unloading Kuhn-Tucker
conditions. The time discretization error is also included through the L2 norm
of the numerical integration error in the flow rule calculations.

Error in the constitutive equations A family of error measures with
clear physical meaning and capable of accounting for the effects of time and
space discretization is given by the error in the constitutive equations. The
application of this theory to assess the quality of a finite element solution
consists in building a corresponding admissible solution that reflects the ap-
proximations associated with the finite element solution.

The definition of this error is due to Ladevèze (1985) in the context of the
non-incremental LATIN method applied to the solution of the evolution of
elasto-viscoplastic materials, which follow the conditions of Drucker’s stabil-
ity. This error measure was then further investigated in the work of Coffignal
(1987) and applied by Ladèveze et al. (1986) to evaluate the incremental fi-
nite element solution of the same class of problems. The error measure has
a global character in time and space. Furthermore, due to its definition, it is
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not possible to distinguish the contribution to the error arising from time and
space discretization, thus it cannot be used to drive an adaptive process. To
remedy this, Gallimard (1994) and Gallimard et al. (1996) have applied the
concept of error in the constitutive equations by using only time and space
discretization, respectively. In this way, the authors have obtained error indi-
cators that separate the effects of time and space discretization, respectively,
which can then be used to control the discretization process.

Heuristic error indicators The emergence of supercomputer architec-
tures has allowed large-scale simulations of engineering problems and the in-
corporation of more detailed physics in the numerical model. This has led
to a substantial increase in the complexity of the simulation and has inspired
the development of different error measures. As a result, adaptive strategies
of these problems are often based on heuristic error indicators or adaption
indicators.

The use of this type of error indicators is motivated by the fact that, it is
possible to distinguish the elements and time steps, which contribute mostly to
the global accuracy of the approximation. As a result, they provide an effective
tool for the adaptive strategy in the sense that they may be used as a guide
for a sequence of discrete choices (e.g. to refine or coarsen a given element;
to reduce or increase a given time step). The success of this heuristic strat-
egy is highlighted by the amount of published works employing this approach
when compared to the development of other error estimates. Therefore, the
next section is exclusively dedicated to this type of error indicator where the
main underlying idea is presented together with a brief overview of some error
indicators, that have been successfully employed in practice.

7.3.2 Residual and recovery based error indicators

The work, originally introduced by (Babuška & Rheinboldt, 1978, 1979), to
estimate errors, considers local residuals of the numerical solution. By investi-
gating the residuals occurring in a patch of elements or even in a single element
it becomes possible to estimate the errors which arise locally. The topic gained
momentum when Zienkiewicz & Zhu (1987) introduced error estimates based
on post-processing techniques of the finite element solutions. The advent of
Zienkiewicz and Zhu’s estimator has not only encouraged the application of
adaptive refinement procedures 1 to practical engineering problems, but also
instigated a healthy discussion on the best approach to a posteriori error in-
dicator.

1Basically, there exist two adaptive procedures, namely p and h-adaptive techniques. The
former is achieved by increasing the order of the interpolation polynomial whereas the latter
by reducing the element size.
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Since these early works many players entered the field and today the pro-
cedures available for error estimation are essentially reduced to two strate-
gies: the so-called residual estimators, based on Babuška-type strategy, and
estimators based on recovery that rely on super convergence properties, after
Zienkiewicz and Zhu’s technique.

- Residual estimators: These estimators are based on the local computa-
tion of a suitable norm of the solution over one element or a small patch
of elements [e.g Babuška (1978); Babuška & Rheinboldt (1978); Babuška
et al. (1994a); Padra & Venere (1995)]

- Estimators based on recovery/projection: These estimators are based on
fact that many finite element meshes have superconvergence properties,
which means that there are points where the stresses are approximated
with higher accuracy [e.g. Zienkiewicz & Zhu (1987, 1992b); Perić et al.
(1994); Labbe & Garon (1995); Ramsey & Sbresny (1995); Lee & Lo

(1997); Yazdani et al. (1997)]

Although both the recovery and residual based procedures have proven
their importance, it was relevant to establish which of the particular methods
was most accurate. This assessment was possible with the introduction of
a methodology based on the so-called Babuška patch test. According to this
approach the merit of each error estimator is judged by a robustness index.
After conducting many tests, it was concluded that the robustness index was
optimal for the recovery methods, with the residual methodology giving poorer
results. This work is reported in the book by Babuška & Strouboulis (2001)
and references therein.

Recovery based error indicators

To illustrate the underlying idea of recovery based error indicators, let us start
by writing the energy norm of the error as follows (Zienkiewicz & Taylor, 2000)

|e| =

(
∫

Ω

(σ − σh) : D−1(σ − σh) dΩ

)
1
2

(7.3)

where its relation to strain energy is evident. In the previous equation the value
of the exact stress, σ, is unknown. Therefore, the key idea of this approach
consists in computing the error |e| by replacing, σ, with σ∗, recovered by a
suitable post-processing of the finite element solution, that is

|e| =

(
∫

Ω

(σ∗ − σh) : D−1(σ∗ − σh) dΩ

)
1
2

(7.4)

The quality and reliability of this type of error indicator is however depen-
dent on the accuracy of the recovered solution. The procedures to build σ∗ are,
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generally, referred to as the stress recovery or derivative recovery techniques.
These methods rely on the observation that, under some conditions on the
domain, mesh and regularity of the solution, there exist certain points where
the derivatives of the finite element solution, which are usually one order lower
than that of the finite element solution itself uh, have superior accuracy. This
phenomenon is known as superconvergence (Zienkiewicz & Zhu, 1992b,a). This
so-called superconvergent patch recovery (SPR) method led to very accurate
recovered values which generally converged at a higher rate than the original
solution and which gave a solid basis for error estimation.

One of the first reported works on application of error indicators to metal
forming applications has been presented by Zienkiewicz et al. (1988) for
steady-state extrusion using flow formulation. Application of this error es-
timate was later extended to analyse shear localization (Zienkiewicz et al. ,
1988) and expanded for porous material models (Zienkiewicz et al. , 1990).
Several other applications to nonlinear problems followed a similar approach,
such as the work by Fourment & Huang (1995) and Moal & Massoni (1995).

A posteriori error indicators based on the Zienkiewicz-Zhu adaptive strat-
egy and the energy norm have been appropriately modified by Perić et al.
(1994) to account for the elastoplastic deformation of the conventional and
Cosserat continuum model. A comparative evaluation of various error indi-
cators for isotropic, elasto-plastic and viscoplastic solids undergoing large de-
formations has been carried out by Tetambe et al. (1995). This study shows
that the error computed using several error indicators increases from its initial
value as the deformation continues in the plastic zone for finite strains.

The adaptive procedures for large-deformation finite element analysis of
elastic and elasto-plastic problems implemented by Lee & Bathe (1994), are
based on a pointwise indicator for the error, for both the stresses and the plastic
strain increments. The error in the stress field is obtained by evaluating the
difference between the unaveraged stress, σh, and a smoothed stress, σ∗. An
estimate of the error on plastic strain increment is computed by considering the
L2-norm of the difference between the plastic strain increments obtained using
the trapezoidal rule, which is second order accurate, and the Euler backward
method.

An adaptive refinement strategy for strain localization problems was pro-
posed by Ortiz & Quigley IV (1991) based on the assumption that the min-
imization of interpolation error, is attained when some suitable norm of the
solution is equi-distributed over the elements in the mesh. Therefore, the fi-
nite elements are targeted for refinement when the variation of the solution
over each element is above a prescribed tolerance throughout the mesh. The
application of error indicators, based on minimization of interpolation error,
has been undertaken by Demkowicz et al. (1985) and Radovitzky & Ortiz
(1999), among others. The estimation of the local errors is based on interpo-
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lation error bounds and extraction formulas for highly accurate estimates of
the derivatives of the exact solution which appear in the bound.

It is important to emphasize that many different norms or measures of error
can be used and that for some problems the energy norm is not in fact ’natural’.
A good example of this is given by problems of strain localization in plastic
softening, where very steep gradients can develop. Therefore, for applications
where the physical nature of the problem requires a sharp resolution of high
gradients of the state variables over a small region of the mesh, an extension
of conventional error measures or indicators have proved to be advantageous
(Vaz Jr., 1998; Owen & Vaz Jr., 1999; Perić et al. , 1999). In the next section,
recovery based error indicators are appropriately modified to account for failure
analysis.

7.3.3 Error indicators for failure analysis

In order to effectively model material failure the essential idea is to correlate
the adaptive procedure to the underlying failure mechanism. To achieve this
goal, the error indicator is defined as the rate of fracture indicators based on the
principle that the adaptive procedure should not only capture the progression
of the plastic deformation but also provide refined meshes at regions of possible
material failure (Perić et al. , 1999).

Here, several ductile fracture criteria available in the literature are briefly
reviewed and the suitability of an a posteriori error estimate based on the rate
of these criteria is also discussed.

Ductile fracture criteria Ductile fracture criteria are of an approxima-
tive character, in which microscopic phenomena are described macroscopically
by either experimental analysis or mathematical/physical models. The former
employs an empirical approximation of experimental data, from which a crit-
ical fracture parameter is defined (e.g. Brozzo et al. (1972); Norris et al.
(1978); Atkins (1981)) whereas the latter is often based on restrictive assump-
tions of void geometry, such as spheres (Rice, 1969; Gosh, 1976) and cylinders
(McClintock, 1968), or material description, such as rigid-plastic (Rice, 1969;
Oyane et al. , 1978) and rigid-perfectly-plastic (Tai & Yang, 1987) materials.
A detailed survey of the assumptions and relative merits of different ductile
fracture criteria in metal forming operations (low strain-rate) is presented in
Vaz Jr. (1998).

It has been widely accepted that ductile fracture criteria should reflect the
state of increasing damage of the material, i.e., the process evolution causes
the damage state to increase leading to material fracture. Many authors ac-
knowledge (Cockcroft & Latham, 1968; Hancock & Mackenzie, 1976; Oyane
et al. , 1978; Norris et al. , 1978; Atkins, 1981; Tai & Yang, 1987; Mudry,
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1985; Lemaitre, 1985a) that a ductile fracture criterion must account for:
stress-strain history, hydrostatic stresses and a suitable stress ratio. There-
fore, history-dependent fracture indicators, IΞ, can be represented as

IΞ =

∫

Ξ : d ζ (7.5)

in which ζ represents scalar, vectorial or tensorial quantities upon which the
fracture path is dependent and Ξ expresses a generic experimental/analytical
failure criterion.

Remark 7.1 Numerical analysis of material failure in metal forming processes
using fracture indicators has brought a new insight to the problem by instigating
extensive comparisons between existing fracture criteria. Clift et al. (1990)
pioneered the comparative analysis by comparing numerical and experimen-
tal results for simple upsetting, axisymmetric extrusion and strip compression
and tension. A similar approach was employed by Gouveia et al. (1996), who,
based on the upset test, assess some fracture indicators for billets of differ-
ent geometries. This type of comparison has been continuously undertaken by
several researchers for a variety of materials, geometries and processes.

Error indicator In order to capture the phenomena associated with duc-
tile fracture more efficiently, by heuristic considerations, an a posteriori error
estimate employed in the adaptive procedure can now be derived using the
rate of the fracture indicator IΞ as

İΞ = Ξ : ζ̇ (7.6)

following the procedure originally proposed by Zienkiewicz & Zhu (1987) and
extended by Perić et al. (1994) for small-strain elasto-plasticity.

It is important to remark that, the performance of the error estimate is
directly affected by the criterion on which it is based and will inherit its char-
acteristics (Vaz Jr., 1998). In other words, if the failure criterion is not able
to predict the material degradation, its error indicator will not provide refined
meshes at regions of possible material failure. For instance, the error estimate
based on the rate of plastic work (Perić et al. , 1996) can be associated with the
fracture criterion known as total plastic work (Freudenthal, 1950). Although
it has been one of the first indicators to be used in ductile fracture analysis,
severe criticism has been raised on its reliability to predict ductile fracture in
bulk forming operations (Atkins & Mai, 1985; Gouveia et al. , 1996).

On the other hand, the prediction of ductile fracture onset within the con-
text of Continuum Damage Mechanics (see Chapter 5), usually adopts the
damage variable itself as indicator by assuming that failure takes place when
the damage variable attains a critical value, D = Dcr. Recent comparative
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analysis suggest that damage-based measures are more reliable in predicting
the correct site of fracture initiation (Vaz Jr. & Owen, 2001) and the use of
fracture criteria based on total damage work, generally defined as:

IωD
=

∫ t

0

(−Y )Ḋ dt =

∫

(−Y ) dD, (7.7)

offers a promising alternative, due to the high gradient exhibited by the indi-
cator near the critical failure zone. Therefore, Vaz Jr. (1998) has employed an
error indicator based on the rate of damage work by recognizing the suitabil-
ity of energy measures associated with the damage process to describe ductile
failure.

7.3.4 Error indicator based on damage dissipation

Since our main concern in this thesis is the modelling of progressive damaging,
a successful adaptive strategy should be able to produce meshes that are capa-
ble of predicting correctly the growth of internal damage as well as its possible
localisation leading to fracture initiation. Such a scheme can only be devised
if the underlying physical mechanisms of the problem, described by means of
the elasto-(visco)plastic damage models discussed in Chapter 5 (see Sections
5.4 and 5.5), are accounted for in the definition of the error indicator.

In defining an error indicator suitable for the present context we shall fol-
low the procedure originally proposed by Zienkiewicz & Zhu (1987) for linear
elliptical problems and extended by Perić et al. (1994) for small-strain elasto-
plasticity. The projection technique is adopted due to its simplicity and effi-
ciency demonstrated in both linear elliptic (Babuška et al. , 1994a,b; Zhang &
Zhu, 1995), and elasto-(visco)plastic non-linear problems (Fourment & Huang,
1995; Marusich & Ortiz, 1995; Lee & Lo, 1997; Perić et al. , 1999). Analogous
to the approach of Perić et al. (1994, 1996), who proposed an indicator based
on the plastic dissipation to capture plastic strain localisation, it makes sense
here to adopt a procedure based on the damage dissipation or rate of damage
work :

ωD = (−Y )Ḋ , (7.8)

where −Y is the damage energy release rate defined in expression (5.60) and
rewritten here,

Y =
−1

2E(1 −D)2

[

(1 + ν) σ+ : σ+ − ν 〈tr σ〉2
]

− h

2E(1 − hD)2

[

(1 + ν) σ− : σ− − ν 〈−tr σ〉2
]

.

(7.9)

A similar definition, based on the original Lemaitre damage model described
in Section 5.3 (page 70), without crack closure effects, has been successfully
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adopted by Vaz Jr. & Owen (2001) in the context of strain localisation with
damage.

Let us now consider a generic mesh h and let Ḋh and (−Y )h denote, re-
spectively, the rate of damage and the energy release rate fields predicted by
the finite element solution obtained with the mesh h. A measure of the finite
element solution approximation error within a generic element k, based on
(7.8), can be defined as:

|eωD
|2k ≡

∫

Ωk

[

(−Y ) − (−Y )h
]

(Ḋ − Ḋ
h
) dΩ , (7.10)

where the fields Ḋ and −Y denote, respectively, the (usually unknown) exact
solutions. Analogously, a global error, i.e., an error measure accounting for the
solution over the entire finite element mesh, can be defined as:

|eωD
|2 =

∑

k

|eωD
|2k . (7.11)

The error estimation technique consists of replacing the exact fields −Y and
D with some corresponding post-processed values of higher accuracy obtained
from the available finite element solution. The work reported by Zienkiewicz &
Zhu (1987), has shown that, for linear elliptic problems, the exact stress field,
σ, may be represented more accurately by the smoothed stresses, σ∗, derived
from a suitable projection of approximated stresses σh which satisfies

∫

Ω

Π (σ∗ − σh) dΩ = 0 (7.12)

where Π is the projection matrix, which, in the present analysis, uses the
interpolation functions2.

Here, an extension of this concept is applied to the quantities associated
with the elasto-plastic damaged problem. Accordingly, projected/smoothed
fields Y ∗ and Ḋ∗ are obtained by extrapolating their Gauss point values to
nodes, finding the associated nodal average value and then interpolating the
averages back to the Gauss points. The error indicator based on such pro-
jected/smoothed fields is then defined as:

ε2
ωD,k :=

∫

k

[

(−Y )∗ − (−Y )h
]

(Ḋ
∗ − Ḋ

h
) dΩ (7.13)

and
ε2

ωD
=
∑

k

ε2
ωD,k , (7.14)

2 The reader is referred to Zienkiewicz & Taylor (2000) for other projection techniques.
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where ε2
ωD,k is the error estimated for a generic element k and ε2

ωD
the corre-

sponding global error.

After the evaluation of the error indicator, it is natural to seek methods by
which the mesh can be improved. The simplest process consists in trying to
achieve an equal error distribution between all elements (Li & Bettess, 1995;
Dı́ez & Huerta, 1999), i.e., the ideal mesh requires an equal distribution of
element errors, ηωD,k, which can be defined as (Zienkiewicz & Zhu, 1987):

ηωD ,k =
|eωD

|k
(

ωD + |eωD
|2

m

)1/2
≈ εωD,k
(

ωh
D + ε2

ωD

m

)1/2
, (7.15)

where m is the number of elements in the mesh and ωD and ωh
D are given

respectively by:

ωD =
∑

k

(−Y ) Ḋ (7.16)

and
ωh

D =
∑

k

(−Y )h Ḋh . (7.17)

The above approximation is expected to hold asymptotically, i.e. for suffi-
ciently small mesh size h.

Remark 7.2 The decision to update the finite element mesh for many rele-
vant practical problems, in which the geometric changes are usually large, is
also supplemented by element distortion parameters of a similar form to that
proposed by Dyduch et al. (1992) where corner angle and element slenderness
may also trigger remeshing. The advantage of this approach is the fact that
it is purely based on geometric considerations and it is totally independent of
any constitutive material model employed.

7.4 Prediction of the new mesh density

The mesh refinement procedure is constructed by simply looking at the ele-
ments with the largest error and dividing these to achieve some acceptable
accuracy. The overall objective is to achieve a uniform distribution of local
error (Zienkiewicz & Zhu, 1987). This procedure is subjected to additional
optional constraints, on the minimum and maximum element sizes, to ensure
that the overall cost of the solution remains acceptable.

For the estimator based on damage dissipation, the target error, that is,
the prescribed maximum permissible error, ηk, and the current error, ηωD,k,
defines the error index, ξk, as

ξωD
k =

ηωD,k

ηk
=

εωD,k

ηk

(

ωh
D + ε2

ωD

m

)1/2
. (7.18)
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A new element characteristic size, hnew,k, intended to bring the error within
the prescribed target, is computed by assuming convergence rate of the error
to be O(hp) according to the expression (Zienkiewicz & Zhu, 1987):

hnew,k =
hold,k

(ξωD
k )1/p

, (7.19)

where hold,k is the element size on the mesh h, with which the results have
been obtained, p is the polynomial degree of the shape function (degree one
for the simplex elements discussed in Chapter 6).

7.5 Mesh regeneration

An unstructured meshing approach is used for the mesh generation and sub-
sequent mesh adaptation. The algorithm employed is based on the Delaunay
triangulation technique, which is particularly suited to local mesh regener-
ation, or a Advancing Front procedure. An extension of both schemes to
quadrilateral elements in 2-D is also available.

For three dimensional cases some serious implementation difficulties arise,
particularly for problems whose geometry changes significantly during the load-
ing process. Firstly, for arbitrary three dimensional geometries automatic
methods for mesh generation and subsequent mesh adaptation can only be ac-
complished by an unstructured meshing approach. Consequently, tetrahedral
elements must be employed, as procedures for the generation of good quality
hexahedral meshes for arbitrary geometries in 3D still lack robustness. For
metal forming operations it is particularly important to produce meshes which
are free of sliver (near zero volume) elements, since when finite deformations
are considered such elements can rapidly degenerate under further loading.

In this work, the three-dimensional mesh generation/adaptation employs
an advancing front technique in view of its relatively simple way of controlling
the mesh density and recovering geometric features of deformed surfaces. The
basic steps used in mesh adaptation are outlined below

(1) Set up a background grid to define the mesh density for the new mesh;

(2) Generate a set of initial front facets of the boundary surfaces of the
three-dimensional region to be meshed;

(3) Choose a front facet as a base to generate an element inside the three-
dimensional region, according to mesh density information stored in the
background grid;

(4) Update the front facet database by deleting and/or inserting appropriate
facets;

(5) Repeat steps (3) and (4) until the set of front facets is empty.
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Before each adaptive step, the background grid has to be formed, as out-
lined by step (1) above, to establish the new mesh density. In this work, the
previously deformed mesh is employed as the background grid and the mesh
densities, computed in the analysis phase, are assigned at each node.

The deformed boundary surfaces can only be represented by a set of dis-
cretely defined faces and points (triangulation). If appropriate care is not
taken at the boundaries, performed by step (2) above, remeshing may result
in unacceptable volume changes or even in geometric features such as corners
being lost. To address the issue, a face-defined surface remeshing technique is
adopted whereby a new (curved) surface mesh is generated by an advancing
front method. Here, we adopt a similar approach as Escobar & Montenegro
(1996) and Lohner (1996), to prepare the set of initial front facets.

To ensure that elements are well-shaped, the so-called 2.5 Dimension De-
launay simplexification on curved surface meshes is performed, which implies
that for each triangular element generated, no other mesh node in the result-
ing surface mesh lies inside its circumsphere. This may be obtained by locally
swapping sides of neighbouring triangular elements. A surface mesh smooth-
ing technique may also greatly improve the final mesh quality. The method
consists of repeatedly averaging the position of all interior surface nodes by
their surrounding surface nodes. In average, a total of four or five loops over
the interior surface nodes is required to achieve a mesh of sufficient quality.

Once the three dimensional mesh is generated, according to mesh density
information stored in the background grid, the same mesh smoothing technique
allows the relaxation of interior points of the volume mesh, and results in a
higher quality mesh.

The mesh regeneration scheme implemented is capable of performing the
mesh adaption according to the mesh prediction data. These mesh prediction
data, usually in the form of mesh density variation or mesh refinement indices,
are interpreted from the error data created by some error indicator, as was
discussed in Section 7.3.

7.6 Transfer operations for evolving meshes

Once a new mesh is generated with element sizes defined by (7.19), all variables
of the problem at hand have to be transferred from the old mesh to the new
one, so as to allow the solution scheme to proceed. In this class of problems,
not only nodal displacements or nodal velocities have to be transferred, but
also Gauss point variables, which creates a complex problem of compatibility
and consistency. Therefore, the necessity for reliable and efficient transfer
operators is of fundamental importance.

In general, the transfer procedures currently in use attempt to compute
both the value of the nodal variables and Gauss point variables in the newly
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discretized domain, in terms of the values of the solution relative to the pre-
vious time interval [tn−1, tn]. Though it appears difficult to try to draw a
classification, the fundamental approaches and ideas can be referred to the
following procedures (Orlando, 2002; Orlando & Perić, 2004):

- Variationally consistent transfer;

- Weak enforcement continuity transfer;

- Smoothing transfer.

These transfer processes are briefly presented and particular reference is
given to the specific problem at hand. It is also worth noting that all the
following operations share the same underlying idea of firstly defining a field
for the state variables, which depends on the old mesh. This field is then
transformed, according to the specific procedure, into a new field on the new
mesh which allows the sampling at the new Gauss points.

Variationally consistent transfer This class of transfers has been inves-
tigated by Ortiz and coworkers (Ortiz & Quigley IV, 1991; Camacho & Ortiz,
1997; Radovitzky & Ortiz, 1999). A variationally consistent transfer is a map-
ping procedure where the initial data is obtained from sampling at new Gauss
points the solution of the variational formulation of the incremental boundary
value problem for the time step [tn−1, tn]. For this to happen, the equations
that define the secondary variables, and appearing as data of the problem,
must be expressed in a variational form and consequently an interpolation
for those variables must be prescribed. It is this variational formulation that
provides the data for the fully discrete problem in the case of change of mesh.
This observation, therefore, suggests enforcement of the constitutive incremen-
tal problem in a weak form and not in a pointwise manner, as implied by the
standard displacement formulation.

Weak enforcement continuity transfer This transfer procedure is ob-
tained from a Galerkin type approximation of the variational equation which
imposes, in the weak form, the continuity across time tn of the variables which
appear as data of the incremental boundary value problem. For instance,
Rashid (2002) enforces the continuity of a given field, in a Galerkin sense, by
replacing the infinite dimensional space, with finite dimensional spaces. These
are defined by piecewise constant functions, which represent the assumed dis-
tribution of the internal variables.

Smoothing transfer This procedure represents perhaps the most widely
used remapping algorithm in solid mechanics applications due to its relatively
simple implementation. The main steps can be summarized as:
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- The values of the state variables at the old Gauss points, are first trans-
ferred to the nodes of the old mesh, possibly with some weighting;

- A weighted average is then carried out at each node, and a smooth field,
is consequently constructed;

- Transfer of the nodal values from the old mesh to the new mesh is per-
formed;

- The nodal quantities are projected to the new quadrature points.

Some of the above steps can be by-passed and each of them can be executed
in different ways, delivering a fairly large spectrum of transfer procedures.

In this section general aspects of the smoothing transfer operation, adopted
in this work, for evolving finite element meshes are provided for the case of a
typical elasto-plastic material whose behaviour is described by a set of internal
variables.

7.6.1 Smoothing transfer for implicit and explicit schemes

The efficiency and reliability of re-meshing techniques, for either implicit or
explicit time integration schemes, are intimately related to some important
aspects of the transfer operation. The following interdependent issues have to
be addressed:

(i) consistency with the constitutive equations;

(ii) requirement of equilibrium;

(iii) compatibility of the history-dependent internal variable transfer with the
displacement field on the new mesh;

(iv) compatibility with evolving boundary conditions;

(v) minimisation of the numerical diffusion of transferred state fields.

For implicit time integration schemes, item (ii) plays an important role
in the definition of a transfer strategy. For instance, in Reference (Ortiz &
Quigley IV, 1991) the general expression of the transfer operator is derived
from the weak form of the equilibrium equations. Lee & Bathe (1994) observe
that the transfer of all history-dependent variables causes solution inconsis-
tency on the new mesh. Therefore, the authors proposed to transfer only the
variables representing the plastic internal state and incorporating the compu-
tation of the remaining quantities in the solution procedure.

The consistency problem has also been addressed by Perić et al. (1996), in
which the Newton-Raphson iterative procedure uses the displacements trans-
ferred from the old mesh for the time n+1 as trials for the first iteration. The
above procedures can also guarantee both the compatibility of the history-
dependent variables transfer with the displacement field on the new mesh and
consistency with the constitutive equations. In fact, Lee & Bathe (1994) and
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Perić et al. (1996) defined similar strategies to ensure compatibility with evolv-
ing boundary conditions. In both cases an interpolation procedure over the
contactor nodes and segments in the old mesh is proposed.

Numerical diffusion is a well-known problem caused by discretization errors
of the governing equations. This concept can be extended to transfer oper-
ations by observing the compatibility between the order of the elements and
the interpolation functions. For example, if the element order is higher than
the interpolation functions, or if continuity requirements are not observed, the
quality of the transfer operations is certainly compromised.

Most issues raised above can be directly applied to explicit time integration
schemes, except the requirements of equilibrium, since the algorithm does not
incorporate self-equilibrium of the governing equations.

7.6.2 The transfer operation

In simulation of history dependent material processes between two finite elem-
ent meshes, denoted by h and h + 1, there exist two basic types of variables
to be transferred, i.e., nodal values and quantities associated to the quadra-
ture points. Displacement and velocity are typical examples of the first type,
whereas as the equivalent plastic strain, stress tensor and damage amongst
others, are characteristic of the second type. The basic principles described by
Perić et al. (1996) for implicit schemes were applied to explicit schemes by
Dutko et al. (1997) and constitute the backbone of the present work.

Figures 7.1 and 7.2 summarise, on a conceptual level, a typical transfer
operation for an implicit and explicit time integration scheme, that includes
both the mapping of the Gauss point variables and mapping of the nodal
values.

h h+1

tn hΛn
h+1Λ̃n

(h+1be
n, h+1αn)= T1[hbe

n,hαn]

h+1utrial
n+1 = T2[hun+1]hΛn+1tn+1

h+1Λn+1

Figure 7.1: Transfer operator diagram. Implicit scheme (Perić et al. , 1996).

The transfer operation is somewhat similar for both the implicit and explicit
schemes in that the transfer operators are identical. However, the differing
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h h+1

tn hΛn
h+1Λn

(h+1σn, h+1αn) = T1 [hσn,hαn]

h+1vn+1/2,= T2 [hvn+1/2]

Figure 7.2: Transfer operator diagram. Explicit scheme Dutko et al. (1997).

stress update algorithms require different variables to be transfered to allow
the progress of the solution on the new mesh:

- The implicit algorithm utilises a total Lagrangian formulation, so that
the converged solution state of the current mesh, h, and current time tn,
can be described by a state array as

hΛn := (hun,
hF n,

hτn,
hbe

n,
hαn)

where hun, hF n, hτn, hbe
n, hαn denote values of the displacement, de-

formation gradient, stress tensor, elastic Finger tensor and a vector of
internal variables at time tn for the mesh h;

- The explicit algorithm is incremental, such that the solution state on the
current mesh, h, and current time tn, can be described by a state array
as

hΛn := (hvn+1/2,
hxn,

hσn,
hαn)

where hvn+1/2,
hxn, hσn, hαn denote values of the velocity, updated

coordinates, stress tensor and a vector of internal variables at time tn or
tn+1/2 for the mesh h.

Assuming that the estimated error of the solution hΛn respects the prescribed
criteria, while these are violated by the solution hΛn+1, in this case a new mesh
h + 1 is generated and a new solution h+1Λn+1 needs to be computed.

Implicit time integration scheme: For implicit analysis, the internal
variables h+1αn completely define the history of the material on the new mesh
h + 1 at time tn, noting that the constitutive update is performed with the
backward Euler scheme. This new state

h+1Λ̃n+1 := (•, •, •, h+1be
n,

h+1αn)

where a symbol ˜ denotes a reduced state array, is evaluated using a Gauss
point transfer operation, T1 (see Figure 7.1):

(h+1be
n,

h+1αn) = T1 [ hbe
n,

h αn]. (7.20)

At this stage, it is important to remark that various transfer procedures can
be defined based on the choice of the operator, T1, and on the choice of the
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set, hαn, of state variables. Let us consider firstly the selection of variables for
the set hαn, which consists of the minimum number of variables necessary to
represent the material deformation history. Various numerical examples have
revealed (Perić et al. , 1999) that a robust transfer operator should include the
elastic finger tensor, hbe

n. In Section 7.6.3, two different transfers operators are
presented to map the set of variables hαn from the Gauss points of the old
mesh, h, to that of the new mesh, h + 1.

The choice of the state variables that compose the set, hαn, together with
the transfer operator, T1, have an effect on the accuracy and convergence of
the problem and in preserving the incompressible nature of plastic flow, i.e.
enforcing detF

p
= 1. As remarked by Srikanth & Zabaras (2001) for transfer

operators which compute intermediate values of the state variables at the nodal
points of the two meshes as suggested by Lee & Bathe (1994) and Perić et al.
(1999), special attention would have to be given to ensure detF

p
= 1 (Camacho

& Ortiz, 1997).

Additionally, the converged nodal displacements from time tn+1 are trans-
fered using transfer operator, T2, from the trial displacements of the new mesh

h+1utrial
n+1 = T2[

hun+1]. (7.21)

Metal forming operations also require the transfer of the contact state be-
tween the current mesh, h and new mesh h + 1. A penalty based algorithm
is used to enforce the impenetrability constraint in both implicit and explicit
formulations and the tangential behaviour is modelled via constitutive rela-
tionships formulated using the elasto-plastic theory of friction (Curnier, 1984;
Laursen, 2002; Wriggers, 2002). The tangential contact stress state at time,
tn, on mesh, h, is defined by

hΓn =
[

h (uT )n ,
h (σT )n ,

hαn

]

, (7.22)

where uT , σT , α are the tangential relative displacement, the tangential stress
and internal variables. The tangential displacement is updated incrementally
and the stress update is performed using the backward Euler scheme. There-
fore the new reduced state, h+1Γ̃n is evaluated using a boundary line transfer
operator, T3, as

(h+1(uT )n ,
h+1αn) = T3 [ h (uT )n ,

h αn]. (7.23)

Equilibrium is then sought on the h+1 mesh to provide the converged solution
at time tn+1.

Explicit time integration scheme: For the explicit dynamic case the
discussion is restricted to the quasi-static class of problem. For this case the
loading rate is slow giving rise to small changes in the material state between
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time steps. Consequently, in the explicit transfer strategy the solution is di-
rectly mapped from the state hΛn to h+1Λn in the deformed configuration.
This updated state is evaluated using the Gauss point transfer operator, T1

(see Figure 7.2):
(h+1σn,

h+1αn) = T1 [ hσn,
h αn] (7.24)

and the nodal transfer operator, T2, to compute the velocity on the new mesh,
h + 1:

h+1vn+1/2 = T2[
hvn+1/2]. (7.25)

The contact is handled in a similar way with the state, hΓn, being directly
transferred to the state, h+1Γn

For both the implicit and explicit schemes, some of the variables that take
part in the state array, hΛn, are not included in the reduced state array, hΛ̃n,
but are transferred for post-processing purposes and do not directly determine
the subsequent material response.

Remark 7.3 Although the same operators T1, T2 and T3 have been used, there
are fundamental differences between the transfer strategies proposed by Perić
et al. (1996) for implicit and Dutko et al. (1997) for explicit time integration
schemes. The former takes advantage of a total Lagrangian formulation to
compute the new stresses for the new mesh h+1 at time n+1 thereby reducing
the number of variables necessary to be transferred and ensuring consistency
of the solution. The latter transfers both nodal and Gauss point information
in the same time step due to the fact that explicit schemes do not require
equilibrium at time step n + 1 and time steps are markedly smaller than its
implicit counterpart.

For the case of evolving finite element meshes composed of simplex ele-
ments, the implementation of the general transfer operation is described in
the following sections.

7.6.3 Mapping of internal variables - Transfer operator T1

The transfer operation, T1, performs the mapping of internal variables, between
meshes h and h+1. The internal variables, which are defined at the quadrature
points of the mesh h, are transferred by the operator T1 to the quadrature
points of the new mesh h+ 1 of the body B.

The construction of the transfer operator itself can be done in a variety of
ways. Here, two different local transfer operators are described. The choice for
transfer operators that has been made was guided by the future application
of the methodology to classes of problems where large deformations of inelas-
tic materials at finite strains and complex boundary conditions with possible
frictional contact will be standard operating conditions. Therefore simple, but
generally applicable, transfer operators are adopted.
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Standard transfer operator

The algorithm comprises three distinct steps, i.e., projection of the Gauss point
variables to nodes, transfer of the nodal values from the old to the new mesh
and projection of the corresponding nodal quantities to the new quadrature
points. Figure 7.3 illustrates the operation for constant strain triangles, where
the subscripts N and G indicate nodal and Gauss point variables, respectively.

(a) hΛ̃n,G → hΛ̃
∗

n,N (b) hΛ̃
∗

n,N → h+1Λ̃n,N

Gauss

Point

New 
Mesh

Old Mesh

B B

B

A A

A

AA

A

A

B

B B

Old Mesh

(c) h+1Λ̃n,N → h+1Λ̃n,G

Gauss

Point

New 
Mesh

A A

A A

A A

A Node of the old mesh

Node of the new mesh

Gauss point of the old mesh

Gauss point of the new mesh

Legend:

Figure 7.3: Standard transfer operator, T1, of internal variables.

(1) The Gauss point components of the old mesh hαn,G are projected to
nodes hαn,N using the finite element shape functions. The nodal point
averages are then performed resulting in hα∗

n,N [see Figure 7.3 (a)]

(2) In the second step the nodal components of the state variables hα∗
n,N

will be transferred from the old mesh h to a new mesh h + 1 resulting
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in h+1α∗
n,N . This step of the transfer operation is the most complex one

and can be subdivided as follows:

- Construction of the background triangular mesh. In the first stage,
for every node A of the new mesh h + 1 with known coordinates
h+1xn,A, the so-called background element, hΩ(e), is found in the old
mesh h for which h+1xn,A ∈ hΩ(e).

- Evaluation of the local coordinates. The second stage constitutes
the evaluation of the local coordinates, (hξA,

h ηA), of the node A of
the new mesh within the background element, hΩ(e), by solving

h+1xn,A =
3
∑

b=1

hNb(
hξA,

h ηA) hxn,b (7.26)

where hNb represent the interpolation functions of element hΩ(e).
Since three-noded elements are used for the background mesh, local
coordinates for each node of the new mesh can be obtained by re-
solving the linear system (7.26). However, for higher-order elements
a Newton-Raphson iterative scheme can be used 3.

- Mapping nodal values. In the third stage, the state variables hΛ̃n,B=
hα∗

n,B are mapped from nodes B of the old mesh, h, to nodes A of
the new mesh, h+1, by using the shape functions hNb(

hξA,
h ηA) as

h+1Λ̃n,A =
3
∑

b=1

hNb(
hξA,

h ηA) hΛ̃n,b (7.27)

(3) In the final step, the state variables at the Gauss points of the new mesh
h+1α̃n,G can be easily obtained by employing the shape functions of the
element h+1Ω(e), i.e.

h+1Λ̃n,G =
3
∑

a=1

h+1Na(
h+1ξG,

h+1 ηG) h+1Λ̃n,a (7.28)

in which (h+1ξG,
h+1 ηG) are the Gauss point coordinates.

Moving least square method

The standard transfer operator, described above, was for many years the most
widely used method for smoothing stresses and other relevant variables in finite
element programs. This approach, in many circumstances, introduces unac-
ceptable levels of diffusion of the transferred variables. This is particularly

3This procedure is also known as the inverse isoparametric mapping technique (Lee &
Bathe, 1994).
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true when the mesh contains fine elements neighbouring large elements. Sub-
sequently, Zienkiewicz & Zhu (1992b) suggested a local projection technique
in which stresses or strains can be accurately recovered by fitting polynomi-
als over local patches at superconvergent points in the finite element solution.
This method substantially outperforms the L2 projection methods from the
viewpoint of the accuracy of the projected stresses. However, these local super-
convergent patch projections require the existence of superconvergent points
and they do not perform as well when the gradients are very steep, as near
crack tips or shear bands (Tabbara et al. , 1994).

In the present context, an excessive diffusion often results in a loss of ability
to predict the (usually sharp) localisation of damage that precedes fracture ini-
tiation. A possible improvement upon the above procedure consists in adopting
a variable transfer operation in which the Gauss point values of the old mesh,
hΛ̃n,G, are mapped directly to the Gauss points of the new one, h+1Λ̃n,G, by
means of a weighted least-squares method (Tabbara et al. , 1994; Morançay
et al. , 1997).

To devise such a strategy, let us consider a particular domain discretized
by two consecutive finite element meshes, which result from the adaptive pro-
cedure. In Figure 7.4, for the sake of clarity, we only depict the quadrature
points of both overlapping finite element meshes.

Gauss points of 
   the old mesh

Gauss point of 
the new mesh

2r

Figure 7.4: Transfer operator, T1, based on moving least square method.

The underlying idea of the method is to search for new state variables that
are obtained from the expression

h+1α̃n,G = p
(

h+1xn,G

)

c. (7.29)

Where, h+1xn,G, represents the coordinates of a Gauss point of the new mesh,
h+1α̃n,G, the state variables to be estimated at, h+1xn,G and p (•) is a polyno-
mial basis. For example, a bilinear basis is given by

p = [ 1 x y xy ] (7.30)

Finally, c, is a vector of coefficients, ci, to be determined, which depends on
h+1xn,G. To obtain these new state values it is necessary to minimise the
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function:
nqp
∑

i=1

w
(

hxi
n,G

) [

p
(

hxi
n,G

)

c − hα̃ i
n,G

]2
, (7.31)

where hxi
n,G and hα̃ i

n,G represent the coordinates and the state variables at
the integration points of the old mesh, and w is a weighting function defined
by

w
(

hxi
n,G

)

= cos2

(

π
∥

∥

h+1xn,G − hxi
n,G

∥

∥

2 r(h+1xn,G)

)

. (7.32)

The number, nqp, of old quadrature points is user defined and the more sam-
pling points that are included the more accurate the mapping should be. Con-
sequently, the distance between the Gauss point of the new mesh, h+1xn,G, and
the

(

hxn,G

)

nqp+1
closest neighbour of h+1xn,G in the old mesh automatically

defines the radius, r, included in the definition of the weighting function.

It is clear that this mapping method does not require the extrapolation
of state variables to and from the nodal positions prior to mapping between
the old and new finite element meshes respectively. For each new Gauss point
in the new finite element mesh, h + 1, the algorithm comprises the following
steps:

(1) Identify the coordinates of the quadrature point using the element shape
functions

h+1xn,G =
3
∑

a=1

h+1Na(
h+1ξG,

h+1 ηG) h+1xn,a (7.33)

where hNa represent the interpolation functions of element h+1Ω(e).

(2) Identify the closest number of neighbouring quadrature points from the
old finite element mesh, hxi

n,G . This operation uses an improved KD-tree
based algorithm (de Berg et al. , 2000);

(3) Evaluate the weighting function w,

w
(

hxi
n,G

)

= cos2

(

π
∥

∥

h+1xn,G − hxi
n,G

∥

∥

2 r(h+1xn,G)

)

; (7.34)

(4) Form a second order tensor, A, from the weighting function and polyno-
mial basis terms

A =

nqp
∑

i=1

w
(

hxi
n,G

) [

p
(

hxi
n,G

)]

p
(

hxi
n,G

)

(7.35)

(5) For each state variable to be mapped to the new mesh, h + 1, from the
old mesh, h, the following sequence of operations must be undertaken:
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- Form the vector, b, using the state variables, the weighting function
and the polynomial basis terms

b =

nqp
∑

i=1

hα̃ i
n,G w

(

hxi
n,G

) [

p
(

hxi
n,G

)]

(7.36)

- Solve the following system of algebraic equations having the coeffi-
cient vector c as unknowns

c = A−1 b (7.37)

- Compute the new field value for the quadrature point, h+1α̃n,G, in
analysis using the polynomial basis for the considered quadrature
point and the coefficient vector obtained by expression (7.37),

h+1α̃n,G = p
(

h+1xn,G

)

c. (7.38)

Generally it is inferred that this method is more accurate than the previously
described interpolation method. It has been suggested (Morançay et al. ,
1997) that the use of a moving least square method ensures, in the case of
some elastic-plastic constitutive laws, plastic admissibility of the computed
internal field variables. It is also possible to enforce plastic admissibility by
introducing an additional constraint in the minimization of Equation (7.31).

7.6.4 Mapping of the nodal variables - Transfer operator T2

The transfer operation between meshes h and h + 1 for the nodal values has
been formally defined for implicit schemes, in Equation (7.21) rewritten here,

h+1utrial
n+1 = T2[

hun+1], (7.39)

and for explicit schemes by Equation (7.25):

h+1vn+1/2 = T2[
hvn+1/2]. (7.40)

Since the displacement field and velocity field, are fully prescribed by the
nodal values and the element shape functions of the new mesh h+ 1, the task
of transferring nodal values is performed by repeating the step of mapping of
the nodal values as

h+1Λ̃n,A =
3
∑

b=1

hNb(
hξA,

h ηA) hΛ̃n,b (7.41)

where hNb(
hξA,

h ηA) are the shape functions of the element, and (hξA,
h ηA) are

the local coordinates of the node A of the new mesh within the background
element, which have been previously determined at the second step of the
transfer operator - T1.
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7.6.5 Mapping of the contact variables - Transfer operator T3

The mapping of the contact variables - transfer operator T3, is analogous to
the mapping of the nodal values - transfer operator T2. The reason for this is
that, in this work, all the relevant contact information is stored in the nodes.

The only difference stems from the fact that this transfer operator - T3, is
performed over the contact boundary, Γ, which is a one-dimensional region for
a 2D problem and a bi-dimensional domain for a 3D problem.

Remark 7.4 Details of implementation of the transfer operation given in Sec-
tion 7.6.2 are described for the case of evolving finite element meshes composed
of simplex elements. With minor modifications this procedure is applicable to
other types of finite elements. For the standard transfer operator, in the case
of a mesh composed of quadrilateral or higher order elements we proceed by
simply subdividing these elements into a local mesh of simplex elements. This
extension for the diffuse approximation method is straightforward and does not
require any additional operation.

7.7 Numerical examples

The applicability of the overall adaptive strategy is illustrated in this section
by means of finite element simulations. In the first set of examples, the perfor-
mance of the F-bar-Patch element (proposed in Chapter 6), for adaptive analy-
sis is assessed. The second set of examples is concerned with the ability of the
error measure based on damage dissipation (Section 7.3.4) to provide refined
meshes at regions of possible material failure in small and large scale computa-
tions. It is important to remark that the examples discussed are characterised
by the presence of extremely high strains. These are typical applications where
remeshing becomes an essential component of the finite element analysis and
are ideal to test the performance of the proposed adaptive strategy.

7.7.1 Suitability for adaptive analysis

Whenever a new mesh is chosen, all relevant variables that define the problem
at hand must be appropriately transferred from the old mesh to the new one
so that the solution procedure can continue. Formulations such as enhanced
assumed strain methods (Simo & Armero, 1992; Simo et al. , 1993; Korelc
& Wriggers, 1996; Glaser & Armero, 1997) and incompatible modes elements
(Crisfield et al. , 1995) are based on the enrichment of the element strain field
with the internal deformation modes defined by a set of local internal element
parameters. For such methodologies, the appropriate transfer of internal pa-
rameters between meshes not trivial and seems not to be clear at present. In
contrast, such an issue does not arise in methodologies such as the F-bar pro-
cedure described in Chapter 6 and geometrically non-linear extensions of the



Ch. 7 Adaptive remeshing for history dependent problems 205

classical B-bar method (Moran et al. , 1990). The absence of element internal
parameters makes the incorporation of such methods into adaptive remeshing
environments rather straightforward.

Plane strain spike forming

The suitability of the 3-noded F-bar-Patch triangle for adaptive analysis is
illustrated here in the simulation of plane strain spike forming. In this test,
a rectangular specimen is forged between two rolls and a flat die. The initial
tool/workpiece geometry of the problem is schematically illustrated in Figure
7.5(a) together with the initial mesh discretization, Figure 7.5(b), where only
half of the problem is represented due to symmetry conditions. The initial
workpiece geometry is represented using 92 triangular F-bar-Patch elements.

(a) (b)

Figure 7.5: Adaptive analysis of plane spike forming (dimensions in [mm]). (a)
Geometry, and; (b) Initial finite element mesh.

The deformation pattern of the process is such that the material near the
outside lateral surfaces flows radially, while the portion near the centre of the
top surface is extruded forming a spike. It is possible to distinguish three
different deformation modes during the operation:

(a) the height of the spike is reduced with increasing deformation;

(b) the spike height remains approximately constant;

(c) the spike height increases rapidly with increasing deformation.

Experimental evidence (Rodič et al. , 1992) reveals that during the first stage
described above, the effect of friction on the material flow is almost negligible
while in the third stage it is of prime importance.
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The workpiece material is modelled by an isotropically hardening von Mises
elasto-plastic constitutive model and the rolls are treated as rigid bodies. The
frictional contact condition on the rolls/workpiece interface is modelled by the
standard Coulomb friction law in conjunction with a penalty method to impose
contact impenetrability. The total movement of the rolls is 15[mm], which is
sufficiently large to prevent solution without remeshing. In this industrial
forming process, the workpiece is subjected to extremely high strains. This is
a typical application where remeshing becomes an essential component of the
finite element analysis. If remeshing is not included, many elements will be
severely distorted producing unacceptably inaccurate solutions. The material
properties for 99.7% Aluminium alloy and other simulation parameters are
listed in Table 7.1.

Table 7.1: Material data and simulation parameters.

Description Symbol Value

Elastic Modulus E 125 [GPa]

Poisson’s ratio ν 0.3

Initial yield stress σy0 40 [MPa]

Yield stress σy(ε̄
p) 90 · (ε̄ p)0.52

Friction m 0.2

Target error ηwp 2.2 %

Maximum element size hmax 1.2 [mm]

Minimum element size hmin 0.8 [mm]

Throughout the simulation of the process 35 mesh adaptions were per-
formed, each of which involved a complete new mesh definition. Deformed
meshes obtained after adaptive remeshing are shown in Figure 7.6. Convergence
of the finite element solution is established on the basis of the standard Euclid-
ean norm of the out-of-balance forces with a tolerance of 10−3. The criterion
for mesh refinement is based on the total plastic work (Perić et al. , 1994).
The internal history dependent variables, are mapped directly between gauss
points of an old and new mesh by the weighted least-squares method, described
in Section 7.6.3, using 8 sampling points. The nodal and contact variables
are transfered from the old mesh to the new one using the standard trans-
fer operator and an unstructured meshing approach based on the Delaunay
triangulation is adopted for both initial and subsequent mesh adaptations.

The solution compares well with the experimental predictions (Rodič et al.
, 1992) in terms of the flow pattern and the location of the neutral point i.e.
location where no relative movement occurs on the rolls/workpiece interface,
without the occurrence of spurious locking or hourglassing modes despite the
very large compressive deformations attained.
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(a) u = 6.1 [mm] (b) u = 10.9 [mm]

(c) u = 13.6 [mm] (d) u = 15 [mm]

Figure 7.6: Plane strain spike forming. Evolution of the deformed mesh.

Axisymmetric piercing

The simulation of the axisymmetric piercing of a cylindrical workpiece is pre-
sented to illustrate the suitability of the 3-noded F-bar-Patch triangle com-
bined with appropriate transfer operator for adaptive analysis. The geometry
of the problem is schematically illustrated in Figure 7.7(a). Due to symmetry,
only half of the problem is analysed. The workpiece is initially discretized with
168 triangular F-bar-Patch elements [see Figure 7.7(b)].

The workpiece is assumed to be made of an elasto-plastic material with
linear hardening, while the punch is assumed to be rigid. Frictional contact
between workpiece and tool is defined by a coulomb law in conjunction with
a penalty method to impose contact impenetrability. The movement of the
punch promotes highly localized compressive forces, which deform the work-
piece to such an extent that the use of adaptive remeshing becomes crucial.
The material properties adopted and other simulation parameters are sum-
marized in Table 7.2. In the analysis an error indicator based on the rate of
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(a) (b)

Figure 7.7: Adaptive analysis of axisymmetric piercing (dimensions in [mm]). (a)
Geometry, and; (b) Initial finite element mesh.

plastic work is used (Perić et al. , 1994). Convergence of the finite element
solution is established on the basis of the standard Euclidean norm of the
out-of-balance forces with a tolerance of 10−3. The internal history dependent

Table 7.2: Material data and simulation parameters.

Description Symbol Value

Elastic Modulus E 210 [GPa]

Poisson’s ratio ν 0.3

Initial yield stress σy0 100 [MPa]

Hardening modulus H 900[MPa]

Friction m 0.1

Target error ηwp 2.0 %

Maximum element size hmax 1.6 [mm]

Minimum element size hmin 0.2 [mm]

variables are mapped directly between gauss points of an old and new mesh by
the weighted least-squares method, using 8 sampling points, and the nodal and
contact variables are transfered using the standard transfer operator. An un-
structured meshing approach based on the Delaunay triangulation is adopted
for both initial and subsequent mesh adaptations. Figure 7.8 presents the dis-
tribution of the effective plastic strain for three different compression stages.



Ch. 7 Adaptive remeshing for history dependent problems 209

(a)1 u = 4 [mm] (b)1 u = 4 [mm]

Please Wait.. Please Wait..

(a)2 u = 8 [mm] (b)2 u = 8 [mm]

Please Wait.. Please Wait..

(a)3 u = 12 [mm] (b)3 u = 12 [mm]

Please Wait.. Please Wait..

Figure 7.8: Axisymmetric piercing. Evolution of effective plastic strain for:(a) F-

bar-Patch; (b) F-bar quadrilateral .
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In this example, due to the geometry of the punch the process is charac-
terized by large plastic deformation near the centre of the workpiece and con-
tact interface. As the punch advances, the excess material flows around the
punch which causes a greater increase of plastic deformation. Despite frequent
remeshings convergence was attained without problems. For comparison, the
distribution of the effective plastic strain obtained with the F-bar quadrilate-
ral, exactly in the same circumstances, is also shown [see Figure 7.8(b)]. The
plots show a very good agreement and no hourglassing patterns were observed.

7.7.2 Mesh prediction based on damage dissipation

The examples presented in this section are used to assess the performance of
the numerical algorithms proposed in Chapter 5 (Section 5.4, page 82) and cor-
relate the adaptive procedure to the underlying failure mechanism. Therefore,
the error measure based on damage dissipation (Section 7.3.4) should provide
refined meshes at regions of possible material failure.

Upsetting of a tapered specimen

The upsetting test of axisymmetric specimens is one of the most commonly
used tests to study bulk metal forming processes because it is able to repro-
duce similar stress/strain states to the ones observed in these processes. This
problem was analysed by Gouveia et al. (1996) where the experimental proce-
dure is described: upsetting of a tapered specimen for a UNS L52905 (Unified
Numbering System ASTM-SAE) lead alloy. The geometry of the problem,
boundary conditions and the finite element mesh adopted are given in the
Figure 7.9. The mesh discretises one symmetric quarter of the problem with

(a) (b)

Figure 7.9: Tapered specimen: (a) problem geometry and (b) initial mesh.
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the appropriate symmetric boundary conditions imposed to the relevant edges.
This test presents interesting results regarding the fracture initiation site. In
general, fracture initiation occurs either at the specimen centre or external
surface near the equator. The simulation was executed until a 65% reduc-
tion was achieved on the total height. The frictional contact condition on the
tool/workpiece interface is modelled by the standard Coulomb friction law in
conjunction with a penalty method to impose contact impenetrability. The
normal and tangential penalty values employed in this simulation are, respec-
tively, Pn = 1.2×107 [N/mm] and Pt = 1×105 [N/mm]. The incipient fracture
at the external surface of the specimen near the equator was detected by Gou-
veia et al. (1996) through an optical microscope inspection. The material
properties adopted are listed in Table 7.3.

Table 7.3: Material data for lead alloy and other simulation parameters.

Description Symbol Value

Specific mass ρ 11340 [kg/m3]

Elastic Modulus E 18000 [MN/m2]

Poisson’s ratio ν 0.4

Initial yield stress σy0 43 [MPa]

Yield stress σy(ε̄
p) 66.656 · (ε̄ p)0.10158

Friction m 0.35

Damage data (exponent) s 1.0

Damage data (denominator) r 1.5 [MPa]

Crack closure parameter h 0.05

Plastic threshold ε̄ p
th 0

Error checking 100 time steps

Target error ηwd 2 %

Target error ηwp 0.5 %

Maximum element size hmax 1.0 [mm]

Minimum element size hmin 0.2 [mm]

The target errors, ηK , for each case have been chosen to provide meshes
able to combine small numbers of elements and the damage parameters r and
s provide low damage at the final stage. This is important to minimize the
effect of the damage variable in the overall material behaviour in order to
compare the error estimates. During the compression of the specimen several
mesh refinements were undertaken and the robustness and reliability of the
adaptive procedure is strongly affected by the choice of error estimator.

Estimate based on the damage dissipation: The evolution of the de-
formed mesh, here controlled by the damage dissipation-based error estimator,
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as well as the damage rate obtained in the finite element analysis are illustrated
in Figure 7.10. The damage evolution (not shown here), conforms to the fol-

(a) reduction of 1%. (b) reduction of 26%.
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Figure 7.10: Tapered specimen: initial evolution of damage rate and deformed mesh.

lowing pattern: in the early stages of the loading process the maximum value
of damage is detected at the external surface near the contact regions because
of the displacement restriction of the contact surfaces. This promotes a high
gradient for the damage rate, Ḋ, observed in Figure 7.10(a) and consequently
a refined mesh is obtained. When a compression of 40% is reached, the damage
is growing simultaneously in the specimen centre and in the exterior surface
near the equator. The reason for the damage growth at the specimen centre
relies on the highly compressive state achieved in the specimen centre. This
damage growth is drastically reduced by the introduction of the crack closure
parameter. Otherwise, the damage would grow at a very fast rate and localise
in the centre of the specimen. The tensile stresses obtained in the exterior
surface near the equator also promote damage evolution. The damage rate
contour depicted in Figure 7.10(b) illustrates this behaviour and the mesh re-
finement in this region. Throughout the upsetting process, the value of damage
increases faster at the exterior surface of the tapered specimen because the ma-
terial flow in the radial direction promotes states with purely tensile principal
stresses. This can be observed in Figure 7.11(a) by the damage rate combined
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with the contour of energy release rate (not shown here), Y , which is extremely
localised over all the exterior surface of the specimen. The mesh refinement
is then obtained at the exterior surface of the specimen. At the final stage,
the damage is localised over the region close to the external surface near the
equator. Although, there is a small gradient of the damage rate in this zone
a fine mesh is predicted in that region [see Figure 7.11(b)]. This result, shows

(a) reduction of 46%. (b) reduction of 65%.
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Figure 7.11: Tapered specimen: final evolution of damage rate and deformed mesh.

that the error estimator was able to capture the damage evolution and produce
refined meshes at regions of material failure. The damage contour and total
damage work at the last stage of the compression can be seen in Figure 7.12.

(a) reduction of 65%. (b) reduction of 65%.
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Figure 7.12: Tapered specimen: (a) damage variable; (b) Total damage work.
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Again, the criterion based on total damage work, correctly predicts the
location of fracture onset and also exhibits a high gradient near the critical
failure zone. Therefore, the use of the damage work release parameter (-Y ) by
the error indicator ensured a proper description of damage progression. It is
important to remark that the robustness and reliability of total damage work
is affected by the choice of damage model upon which it is based. As strain
paths become more complex, particularly when both tensile and compressive
states are present, an erroneous estimate of damage based on the standard
Lemaitre model (Lemaitre, 1983, 1985a), will inhibit the ability of the total
damage work indicator to predict fracture onset.

Estimate based rate of plastic work: The same problem was simulated
using the error estimator based on the rate of plastic work to predict mesh
density during the adaptive procedure. The only difference relies on the nu-
merical value for the target error, ηwp = 0.5%. The strain rate and deformed
mesh obtained in the finite element analysis are at two different stages of the
analysis is illustrated in Figure 7.13. Clearly, the higher density regions do not

(a) reduction of 46%. (b) reduction of 65%.
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Figure 7.13: Tapered specimen: strain rate and deformed mesh using plastic
dissipation-based error estimator.

correspond to the areas of greater damage evolution, making this estimator
inappropriate for the type of problems addressed in this thesis.
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Remark 7.5 In this example the damage parameters r and s employed pro-
moted a low damage at the final stage. If higher values of the damage variable
are attained, the (usually sharp) localisation of damage that precedes fracture
initiation, would improve further the performance of the damage dissipation-
based error estimator

Three-dimensional backward extrusion

A general feature encountered in the finite element simulation of forming opera-
tions, such as forging, extrusion or deep drawing, is that the evolving geometry
is complex and often characterised by intricate contact conditions. The fully
three-dimensional analysis of such problems is by no means trivial and some
serious implementation difficulties arise. Particularly important is the gener-
ation of good quality meshes for arbitrary geometries which are free of sliver
(near zero volume) elements. When finite deformations are considered such
elements can rapidly degenerate under further loading. This together with
the enforcement of the contact constraints, increases the complexity of finite
element simulation to an extent that, sometimes, the solution obtained fails to
provide an accurate description of the material response.

In this example, the computational framework developed in this thesis is
applied to the three-dimensional analysis of a backward extrusion problem. It
incorporates the damage constitutive model developed in Chapter 5, the F-bar-
Patch tetrahedral element proposed in Chapter 6 and the estimator based on
damage dissipation presented in this Chapter. The complete initial geometry
of the problem is shown in Figure 7.14. It is possible to observe that the cross-

A

A

A-A

Material
Tool

Die

Figure 7.14: Backward extrusion: Problem geometry (dimensions in [mm]).

section of the tool at section A-A contains very small radii, which constrain
the material flow between the punch and die. The two-dimensional simulation
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of the problem was undertaken in Chapter 5. We remark that in the two-
dimensional analysis the primary objective was simply to outline the specific
behaviour of the damage variable that increases in different ways under tensile
and compressive regimes. Therefore, the geometry of the tool was simplified
and considered axisymmetric to allow a faster two-dimensional estimate.

The frictional contact condition at the tool/workpiece interface is modelled,
as in the two-dimensional case, by the standard Coulomb friction law in con-
junction with the classical penalty method. The normal and tangential penalty
values employed in the analysis are, respectively, Pn = 4.5 × 105 [N/mm] and
Pt = 2 × 105 [N/mm]. All components of the adaptive procedure employed,
in this example, are the same as in the two-dimensional simulation, except
for the number of sampling points used by the transfer operator which is here
increased to 12. A prescribed total displacement of u = 24.8 [mm] is applied
to the tool. Due to symmetry, only a 1/32 symmetric slice of the geometry
is simulated, with appropriate boundary conditions imposed on the symme-
try planes. The deformed geometry obtained at an intermediate stage of the
simulation is plotted in Figure 7.15 side by side with the real workpiece.

(a) Simulated geometry (b) Real workpiece

Figure 7.15: Three dimensional backward extrusion.

In order to maintain the numerical error within prescribed bounds [see Ta-
ble 4.3, page 103], it was necessary to perform more than a thousand adaptive
remeshings. The solid was discretised, during the analysis, with a total number
of elements that ranged from 4,000 (initial mesh) to 500,000 finite elements (in-
termediate mesh). The criterion employed to predict the mesh density, based
on the damage dissipation, ensured that the finite element mesh maintained
a good aspect ratio and the adaptive scheme was able to produce sufficiently
fine meshes in regions where the gradient of damage rate is high and coars-
ened elsewhere. Figure 7.16 illustrates the evolving finite element mesh for a
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prescribed displacement of u = 12.4 [mm]. Some details of the geometry are
enlarged for ease of visualisation.

Figure 7.16: Finite element mesh for a prescribed displacement of u = 12.4 [mm].

The ideal adaptive scheme should be able to attain a numerical solution
with a high level of accuracy allied to an economical computational cost. The
correlation between the adaptive procedure and the underlying failure mech-
anism enforced by the error estimator, has proved successful. Nevertheless,
whenever a new finite element mesh is generated, it is important to ensure
that the discretised domain boundary preserves important aspects of the orig-
inal geometry. If appropriate care is not taken, some geometric features such
as corners, edges, etc, may be lost. To avoid this, some regions of the evolving
mesh were specified to maintain a small element size, even if the prediction
based on damage dissipation allows a larger size.

The evolution of the damage variable field obtained in the finite element
analysis is illustrated in the contour plots shown in Figure 7.17. It can be
seen that damage starts developing at the interior surface of the workpiece
and the critical area is located at the outside corner of the punch teeth. This
result agrees with experimental observations which show that defects are often
present at the surface. The material that is in contact with the die does not
suffer any damage and only within a critical radius near the internal surface
does the damage field starts to develop.
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(a) u = 6.2 [mm] (b) u = 12.4 [mm]
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Figure 7.17: Three dimensional backward extrusion: damage contour plots.
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We remark that the damage prediction estimated by the improved dam-
age model combined with F-bar-Patch tetrahedra is nearly identical to that
predicted in the simulation with the axisymmetric four-noded quadrilateral
element (Belytschko & Bindeman, 1991) [see Section 5.4.4, page 102]. This
example outlines the assembly of different numerical techniques, to model the
gradual deterioration of ductile metals and predict material failure, demon-
strating the robustness and reliability of the overall framework in relevant
practical problems.

7.8 Concluding remarks

The introduction of an adaptive mesh refinement procedure, capable of ensur-
ing that high quality meshes are used over the entire simulation, has become
an essential tool in the analysis of realistic metal forming problems due to the
large inelastic strains involved. An additional degree of complexity is intro-
duced by the presence of internal deterioration which introduces local stress
concentrations and drives plastic deformation. In particular, close to material
failure, the energy dissipation associated with such mechanisms has a dom-
inant effect. Therefore, two important aspects have been addressed in this
chapter, i.e. error estimates and transfer operators.

Over recent years, several error estimates have been proposed for inelas-
tic problems based not only on mathematical aspects, but also on physical
considerations. The present work focuses on the development of a posteriori
error estimates, based on the Zienkiewicz & Zhu (1987) recovery/projection
technique, for elasto-plastic solids undergoing internal deterioration. The error
estimate is proposed based on the principle that mesh refinement should be
able to capture the portions of the workpiece where most of the action localises,
i.e., where the relevant dissipative mechanisms are most active. Accordingly,
an error estimator based on damage dissipation is suggested for ductile met-
als. In the examples presented, the estimator was able to capture the dynamic
nature of the physical phenomena efficiently.

The transfer operators introduced by Perić et al. (1996) for implicit and
by Dutko et al. (1997) for explicit time integration schemes were extended
to account for the variables associated with damage. The transfer operation
between meshes for the nodal and contact variables is performed directly using
the standard transfer operator. For the internal variables a transfer operation
in which the Gauss point values of the old mesh are mapped directly to the
Gauss points of the new one, by means of a weighted least-squares method, is
employed. This mapping prevents excessive diffusion of the transferred vari-
ables and ensures more efficiently the incompressible nature of plastic flow. To
illustrate the ease with which F-bar-Patch elements can be employed within
the adaptive procedure several numerical simulations were presented.



Chapter 8

Conclusion and Final Remarks

TOPICS related to constitutive modelling and numerical simulation of fail-
ure in finitely straining ductile materials have been discussed in this the-

sis. Attention is focused on the construction of a framework for prediction of
failure. In particular, a model for finite strain elasto-(visco)plastic damage, a
low order finite element for the numerical treatment of incompressibility and
an adaptive mesh refinement strategy for this class of problems, constitute the
building blocks of the overall approach. The theory and computational imple-
mentation of the corresponding models has been described in detail. Emphasis
is given to the efficient numerical implementation of the proposed theories for
large scale problems.

The strategy used for the numerical simulation of the proposed models
is based in both explicit and implicit displacement based finite element pro-
cedures. In the implicit integration, particular attention has been given to
the exact linearisation of the models presented which provide the basis for
the full Newton-Raphson procedure for the iterative solution of the associated
non-linear finite element equations. Although the use of explicit transient dy-
namic solutions for predominantly quasi-static simulations may be arguable,
the reduced computational effort involved in large scale industrial problems
and a simpler treatment of frictional contact (eliminating convergence prob-
lems associated with implicit analysis) justify its use. Furthermore, explicit
integration is particularly advantageous in problems involving fragmentation
(not addressed in this work) where crack initiation and propagation are present
together with complicated contact conditions.

The following sections provide a short summary and the main conclusions
regarding the topics of research considered in this thesis.
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8.1 Summary and conclusions

The aim of this thesis, which is stated in Section 1.1, has been achieved.
Namely, the construction of an efficient framework, to model the gradual
internal deterioration of ductile metals and predict material failure in rele-
vant practical problems. Several computational aspects have been addressed,
leading to the enhancement of existing algorithms and development of new
techniques, amongst which are constitutive modelling, element technology and
adaptive remeshing. In the following, a more detailed list of the achievements
and conclusions of this work is provided.

8.1.1 Damage constitutive modelling

The prediction of damage growth and fracture initiation in finitely deforming
ductile solids is an important factor and a major component in metal forming
processes. Constitutive models based on damage mechanics have not only
provided more consistent formulations to address the problem, but have also
proved to give more reliable prediction of the fracture initiation site due to the
coupled effects of plastic deformation and material degradation.

In Chapter 5, a model for elasto-plastic and elasto-viscoplastic damage were
presented. The models, which in addition to isotropic hardening include the
important effect of crack closure in the damage evolution, have been obtained
by suitably modifying Lemaitre’s fully coupled damage equations (Lemaitre,
1996). Introduction of the coupled constitutive equations did not affect ap-
preciably the performance of the models, enabling efficient simulation of the
effects of material deterioration in large scale computations. This was due
to the fact that the return mapping integration algorithm was reduced to
a non-linear single equation. The accuracy and stability of the material re-
lated stress integration procedure has been carried out relying on the analysis
of iso-error maps. The consistent linearization of the associated incremental
boundary value problem has been carefully considered and a closed formula for
the tangent operator consistent with the integration algorithm has also been
presented.

Numerical simulations have shown the performance of the algorithms in
the presence of combined tensile/compressive stress states, which may have
important consequences in failure analysis of metal forming processes. Finally,
it is remarked that the extension to the finite strain range, for both implicit
and explicit time integration schemes, can be promptly obtained by means of
the framework described in Chapter 4.

8.1.2 Element technology for near incompressibility

Due to their inherent simplicity, standard isoparametric simplex elements (lin-
ear triangles in 2-D and linear tetrahedra in 3-D) are known to provide an
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excellent framework in which complex geometry and contact conditions cou-
pled with remeshing procedures can be dealt with in an effective and efficient
manner. Therefore, in Chapter 6, the numerical treatment of incompressibility
for simplex elements, has been addressed. In Section 6.3, a thorough assess-
ment of the volumetric nodal average concept (Bonet & Burton, 1998) has been
presented. The assessment has been carried out based on an implict version of
the formulation obtained within the framework of the F-bar methodology (de
Souza Neto et al. , 1996). In this context, a linear triangle for implicit plane
strain and axisymmetric analysis of nearly incompressible solids has been de-
vised. A comprehensive set of numerical simulations has been presented. The
examples have shown that the nodal averaging technique substantially reduces
the locking tendency of the linear triangle and produces quite reasonable pre-
dictions of deformed shapes as well as reaction forces. However, the examples
have also shown that the element can produce considerable checkerboard –
type hydrostatic pressure fluctuations. This fact prevents the successful use of
the average nodal volume technique in situations where an accurate prediction
of hydrostatic pressure is required.

In Section 6.4, a new methodology which allows the use of two- and three-
dimensional simplex finite elements in the large strain analysis of nearly incom-
pressible solids has been proposed. The technique is an extension of the F-bar
method (de Souza Neto et al. , 1996). It relies essentially on the relaxation of
the excessive volumetric constraint through the enforcement of the incompre-
ssibility constraint over a patch of simplex elements. An important aspect of
the present method is that it preserves the displacement-based format of the
corresponding finite element equations as well as the strain-driven format of
standard algorithms for integration of dissipative constitutive equations and
can be used regardless of the material model adopted. The computational im-
plementation of the new elements is described in detail for both implicit and
explicit time integration schemes. A comprehensive set of numerical examples,
including some well known benchmark tests, have shown that the proposed
technique has effectively overcome the volumetric locking that characterises
conventional simplex elements. In addition, the new elements have shown no
signs of spurious mechanisms.

8.1.3 Adaptive remeshing for history dependent problems

The introduction of an adaptive mesh refinement procedure, capable of ensur-
ing that high quality meshes are used over the entire simulation, has become
an essential tool in the analysis of realistic metal forming problems due to the
large inelastic strains involved. An additional degree of complexity is intro-
duced by the presence of internal deterioration which introduces local stress
concentrations and drives plastic deformation. Therefore, two important as-
pects have been addressed in Chapter 7, i.e. error estimates and transfer
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operators.

In the present work, the development of a posteriori error estimates was
based on Zienkiewicz & Zhu (1987) recovery/projection technique, for elasto-
plastic solids undergoing internal deterioration. The error estimate is proposed
based on the principle that mesh refinement should be able to capture the
regions of the workpiece where most of the action localises, i.e., where the rel-
evant dissipative mechanisms are most active. In the examples presented, the
estimator was able to capture the dynamic nature of the physical phenomena
efficiently.

The transfer operators introduced by Perić et al. (1996) for implicit and
by Dutko et al. (1997) for explicit time integration schemes were extended to
account for the variables associated with damage. For the internal variables a
transfer operation in which the Gauss point values of the old mesh are mapped
directly to the Gauss points of the new one, by means of a weighted least-
squares method, is employed. This mapping prevents excessive diffusion of the
transferred variables and ensures more efficiently the incompressible nature of
plastic flow. To illustrate the ease with which F-bar-Patch elements can be
employed within the adaptive procedure several numerical simulations were
presented.

8.2 Suggestions for future research

In the context of nonlinear solid mechanics problems considered in this work,
there has been considerable advancement in several topics of finite element
research. In many areas, such techniques have reached a high degree of pre-
dictive capability and are essential instruments to address realistic engineering
problems. Some aspects concerning the continuity of the present study and
general issues regarding future research are briefly discussed below:

- An experimental program should be carried out to validate the damage
constitutive models. The experimental identification of material para-
meters is relatively simple due to the phenomenological nature of such
theories;

- A complete analysis of forming operations requires a fully coupled thermo-
mechanical model to account for the heat conduction within the work-
piece and tool. Furthermore, cyclical conditions are often present in the
process. As a result, an extension of the constitutive models is recom-
mended in order to capture the damage evolution and predict ductile
fracture under such conditions;

- Most numerical simulations, as in the present case, adopt Coulomb’s
friction law. Thus, the development and application of more realistic
models is recommended;
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- Metal cutting operations represent some of the most challenging compu-
tational problems. In this type of processes failure in the form of frac-
turing is the major phenomenon controlling the process. Therefore, it is
suggested to extend the range of applicability of the proposed framework
to operations such as metal cutting.
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de la Viscoplasticité Cyclique avec Endommagement. Tech. rept. 1978–3.
Office National d’Etudes et de Recherches Aérospatiales.
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de Souza Neto, E.A., Perić, D., & Owen, D.R.J. 1995. Finite Elas-
ticity in Spatial Description: Linearization Aspects with 3-D Membrane
Applications. Int. J. Num. Meth. Engng., 38, 3365–3381.
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de Souza Neto, E.A., Perić, D., & Owen, D.R.J. 2005a. Computational
methods for plasticity: theory and application. (in press).

de Souza Neto, E.A., Andrade Pires, F.M., & Owen, D.R.J. 2005b.
F-bar-Based Linear Triangles and Tetahedra for Finite Strain Analysis of
Nearly Incompressible Solids. Part I: Formulation and Benchmarking. Int.
J. Num. Meth. Eng., 62, 353–383.

Demkowicz, L., Devloo, Ph., & Oden, J.T. 1985. On h-type mesh-
refinement strategy based on minimization of interpolation errors. Comp.
Meth. Appl. Mech. Engng., 53, 67–89.

Dieter, G. 1986. Mechanical Metallurgy. McGraw-Hill.

Dı́ez, P., & Huerta, A. 1999. A unified approach to remeshing strategies for
finite element h-adaptivity. Comp. Meth. Appl. Mech. Engng., 176, 215–229.

Doghri, I. 1995. Numerical Implementation and Analysis of a Class of Metal
Plasticity Models Coupled with Ductile Damage. Int. J. Num. Meth. Engng.,
38, 3403–3431.

Doll, S., Hauptmann, R., Schweizerhof, K., & Freischlager, C.
2000. On Volumetric Locking of Low-Order Solid and Solid-Shell Elements
for Finite Elastoviscoplastic Deformations and Selective Reduced Integra-
tion. Engng. Comp. (in press).
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viscoplasticité. Ph.D. thesis, LMT - E.N.S. de Cachan, France.

Gallimard, L., Ladevèze, P., & Pelle, J.P. 1996. Error Estimation and
Adaptivity in Elastoplasticity. Int. J. Num. Meth. Engng., 39, 189–217.

Geers, M.G.D., Engelen, R.A.B., & Ubachs, J.M.R. 2001. On the
numerical modelling of ductile damage with an implicit gradient-enhanced
formulation. Revue Europeene des Elements Finis, 10, 173–191.



Glaser, S., & Armero, F. 1997. On the Formulation of Enhanced Strain
Finite Element Methods in Finite Deformations. Engng. Comp., 14(7), 759–
791.

Gosh, A.K. 1976. A criterion for ductile fracture in sheets under biaxial
loading. Metall. Trans. A, 7, 523–533.

Gouveia, B.P.P.A., Rodrigues, J.M.C., & Martins, P.A.F. 1996.
Fracture predicting in bulk metal forming. Int. J. Mech. Sci., 38, 361–372.

Guo, Y., Ortiz, M., Belytschko, T., & Repetto, E.A. 2000. Trian-
gular composite finite elements. Int. J. Num. Meth. Engng., 47, 287–316.

Gurson, A.L. 1977. Continuum Theory of Ductile Rupture by Void Nucle-
ation and Growth – Part I: Yield Criteria and Flow Rule for Porous Media.
J. Engng. Mat. Techn., 99, 2–15.

Gurtin, M.E. 1981. An Introduction to Continuum Mechanics. Academic
Press.

Han, W., & Reddy, B.D. 1999. Plasticity: Mathematical Theory and Nu-

merical Analysis. 2nd edn. Springer Verlag.

Hancock, J.W., & Mackenzie, A.C. 1976. On the Mechanism of Ductile
Fracture in High-Strength Steels Subjected to Multi-Axial Stress-States. J.
Mech. Phys. Solids, 24, 147–169.

Hibbitt, H.D., Marcal, P.V., & Rice, J.R. 1970. A Finite Element
Formulation for Problems of Large Strain and Large Displacement. Int. J.
Solids Struct., 6, 1069–1086.

Hilber, H.M., & Hughes, T.J.R. 1978. Collocation, Dissipation and Over-
shoot for Time Integration Schemes in Structural Dynamics. Earthquake
Engng. Struct. Dyn., 6, 99–118.

Hill, R. 1950. The Mathematical Theory of Plasticity. London: Oxford Univ.
Press.

Hoff, C., & Taylor, R.L. 1990. Higher Derivative Explicit One Step
Algorithm for Non-Linear Dynamic Problems: Part 1: Design and Theory.
Int. J. Num. Meth. Engng., 29, 275–290.

Holzapfel, G.A. 2000. Nonlinear Solid Mechanics. A Continuum Approach
for Engineering. London: John Wiley & Sons.



Hughes, T.J., Taylor, R.L., & Sackman, J.L. 1975 (July). Finite Elem-
ent Formulation and Solution of Contact-Impact Problems in Continuum
Mechanics – III. Tech. rept. UC SESM 75-7. Dept. of Civil Eng., University
of California, Berkeley.

Hughes, T.J.R. 1980. Generalization of Selective Integration Procedures to
Anisotropic and Nonlinear Media. Int. J. Num. Meth. Engng., 15, 1413–
1418.

Hughes, T.J.R. 1984. Numerical Implementation of Constiitutive Models:
Rate-Independent Deviatoric Plasticity. Pages 29–63 of: et al., Nemat-
Nasser (ed), Theoretical Foundations for Large-Scale Computations for
Nonlinear Material Behavior. Dordrecht, The Netherlands: Martinus Ni-
jhoff.

Hughes, T.J.R. 1987. The Finite Element Method. Linear Static and Dy-
namic Finite Element Analysis. Englewood Cliffs, New Jersey: Prentice-
Hall.

Hughes, T.J.R., & Pister, K. 1978. Consistent Linearization in Mechanics
of Solids and Structures. Comp. Struct., 8, 391–397.

Hughes, T.J.R., & Winget, J. 1980. Finite Rotation Effects in Numerical
Integration of Rate Constitutive Equations Arising in Large-Deformation
Analysis. Int. J. Num. Meth. Engng., 15, 1862–1867.

Janson, J. 1978. A Continuous Damage Approach to the Fatigue Process.
Engng. Fract. Mech., 10, 651–657.

Jirasek, M. 1998. Nonlocal models for damage and fracture: comparison of
approaches. Int. J. Solids Structures, 35, 4133–4145.

Johansson, M., Mahnken, R., & Runesson, K. 1999. Efficient integra-
tion technique for generalized viscoplasticity coupled with damage. Int. J.
Num. Meth. Engng., 44, 1727–1747.

Johnson, C. 1987. Numerical solution of Partial Differential Equations by
the Finite Element Method. Cambridge Univ. Press.

Johnson, C., & Hansbo, P. 1992. Adaptive Finite Element Methods in
Computational Mechanics. Comp. Meth. Appl. Mech. Engng., 101, 143–
181.

Kachanov, L.M. 1958. Time of the Rupture Process under Creep Condition.
Izv. Akad. Nauk. SSSR, Otd. Tekhn. Nauk., 8, 26–31.



Kestin, J., & Bataille, J. 1977. Irreversible Thermodynamics of Continua
and Internal Variables. Pages 39–67 of: Proceedings of the Int. Symp. on
Continuum Models of Discrete Systems. Univ. of Waterloo Press.
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Orlando, A., & Perić, D. 2004. Analysis of transfer procedures in elasto-
plasticity based on the error in the constitutive equations: Theory and nu-
merical illustration. Int. J. Num. Meth. Engng., 60, 1595–1631.

Ortiz, M. 1996. Computational micromechanics. Comp. Mech., 18(5), 321–
338.

Ortiz, M., & Popov, E.P. 1985. Accuracy and Stability of Integration
Algorithms for Elastoplastic Constitutive Relations. Int. J. Num. Meth.
Engng., 21, 1561–1576.

Ortiz, M., & Quigley IV, J.J. 1991. Adaptive Mesh Refinement in Strain
Localization Problems. Comp. Meth. Appl. Mech. Engng., 90, 781–804.

Ortiz, M., & Simo, J.C. 1986. An Analysis of a New Class of Integration
Algorithms for Elastoplastic Constitutive Relations. Int. J. Num. Meth.
Engng., 23, 353–366.

Owen, D.R.J., & Hinton, E. 1980. Finite Elements in Plasticity: Theory
and Practice. Swansea: Pineridge Press.

Owen, D.R.J., & Vaz Jr., M. 1999. Computational Techniques Applied
to High-Speed Machining Under Adiabatic Strain Localization Conditions.
Comp. Meth. Appl. Mech. Engng., 171, 445–461.

Owen, D.R.J., Feng, Y.T., de Souza Neto, E.A., Cottrell, M.G.,
Wang, F., & Andrade Pires, F.M. 2002. The Modelling of Multi-
Fracturing Solids and Particulate Media. In: Mang, H.A., Rammerstor-
fer, F.G, & Eberhardsteiner, J. (eds), Proceedings of the Fifth World
Congress on Computational Mechanics (WCCM V). Vienna University of
Technology, Austria.

Owen, D.R.J., de Souza Neto, E.A., Andrade Pires, F.M., & Feng,
Y.T. 2003. Continuum/Discrete Representations of Fracturing Solids. In:
7th U.S National Congress on Computational Mechanics - CD-ROM Con-
ference Proceedings Albuquerque, New Mexico, 27th -31st July. ISBN: 0-
9743254-0-6, http://www.esc.sandia.gov/usnccm.html.



Owen, D.R.J., Andrade Pires, F.M., Feng, Y.T., de Souza Neto,
E.A., & Cottrell, M.G. 2004a. Continuous/Discrete Representation of
Fracturing Solids. J. Appl. Mech. ASME. (submitted for publication).

Owen, D.R.J., Andrade Pires, F.M., de Souza Neto, E.A., & Feng,
Y.T. 2004b. Continuum/discrete strategies for the modelling of fracturing
solids. In: Multi-physics and Multi-scale Computer Models in Non-linear
Analysis and Optimal Design of Engineering Structures Under Extreme Con-
ditions, 13th - 17th June. http://arw-bled2004.scix.net.

Owen, D.R.J., Feng, Y.T., de Souza Neto, E.A., Cottrell, M.G.,
Wang, F., Andrade Pires, F.M., & Yu, J. 2004c. The Modelling of
Multi-Fracturing Solids and Particulate Media. Int. J. Num. Meth. Eng.,
60(1), 317–339.

Oyane, M., Shima, S., & Tabata, T. 1978. Considerations of basic equa-
tions, and their application in the forming of metal powders and porous
metals. J. Mech. Work. Tech., 1, 325–341.

Padra, C., & Venere, M.J. 1995. On adaptivity for diffusion problems
using triangular elements. Engng. Comp., 12, 75–84.

Peerlings, R.H.J., de Borst, R., Brekelmans, W.A.M., & de Vree,
J.H.P. 1996. Gradient enhanced damage for quasi-brittle materials. Int. J.
Num. Meth. Eng., 39, 3391–3403.
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Appendix A

Isotropic functions of a

symmetric tensor

T his appendix presents, for the sake of completeness, some important defin-
itions, properties and expressions involving a class of isotropic real tensor

functions of one symmetric tensor. Isotropic tensor-valued functions of one
tensor play an important role in continuum mechanics. Well known examples
are the square root,

√
X, and the logarithm, ln[X], of a real symmetric second

order tensor, X. Such functions and their properties are exploited in various
parts of this thesis in connection with the definition of elasto-plastic dam-
age and elasto-viscoplastic damage constitutive models as well as with their
computer implementation.

In the context of computational continuum mechanics, one is frequently
faced with the need for evaluation of functions of this type. Also, in the non-
linear context, function derivatives are frequently required in connection with
the linearisation of the underlying problem.

The methodology presented here has been proposed by de Souza Neto et al.
(2004). By exploiting the eigenprojection-based spectral representation of such
functions, eigenprojection-based closed formulae for the function derivatives
are obtained. Closed form expressions for the derivative of functions of this
class, employing the eigenprojection-based representation, have been derived
by Carlson & Hoger (1986). Complete algorithms using compact expressions
for computation of functions of the above class (and their derivatives) – valid
at invertible arguments only – have been proposed by Miehe (1993).
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A.1 Isotropic tensor-valued functions

A symmetric tensor-valued function of a symmetric tensor

Y (X) : L ⊂ I → I (A.1)

is said to be isotropic if

QY (X)QT = Y (QXQT ) (A.2)

for all rotations Q.

The following important property holds for any isotropic function defined
as above. If Y is isotropic, then Y (X) and X are coaxial and Y (X) and X

commute
Y (X)X = XY (X) (A.3)

The remainder of this appendix focuses exclusively on the principal values
representation of isotropic tensor functions and many of the formulae presented
are used in the computation of function values as well as function derivatives.
The principal values representation is established in the following section.

A.2 Spectral decomposition

Given a tensor T, a non-zero vector u is said to be an eigenvector of T asso-
ciated with the eigenvalue (or principal value) w if

Tu = wu. (A.4)

The space of all vectors u satisfying the above equation is called the charac-
teristic space of T corresponding to w. The following properties hold:

(i) The eigenvalues of a positive definite tensor are strictly positive.
(ii) The characteristic spaces of a symmetric tensor are mutually orthogonal.

A.2.1 Spectral theorem

Let X be a symmetric tensor. Then X admits the representation

X =

n
∑

i=1

xi ei ⊗ ei (A.5)

where {xi} are the eigenvalues of X and {ei} is an orthonormal basis of the
corresponding unit eigenvectors. Relative to the basis {ei}, X has the following
diagonal matrix representation

[X ] =











x1 0 · · · 0
0 x2 · · · 0
...

...
. . .

...
0 0 · · · xn











. (A.6)
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The direction of an eigenvector ei is called a principal axis or principal direction
of X.

A.2.2 Eigenprojections

Alternatively, with p ≤ n defined as the number of distinct eigenvalues of X,
one may write:

X =

p
∑

i=1

xi Ei . (A.7)

where the symmetric tensors Ei are called the eigenprojections of X. Each
eigenprojection Ei is the orthogonal projection operator on the characteristic
space of X associated with xi. The eigenprojections have the property

I =

p
∑

i=1

Ei , (A.8)

and, if p = n (no repeated eigenvalues), then

Ei = ei ⊗ ei (A.9)

for i = 1, ..., n, with no summation implied on i. Also, the eigenprojections
satisfy:

Ei : Ej = δij i, j = 1, ..., p , (A.10)

where ‘:’ denotes the double contraction (internal product) between two tensors
and δij is the Krönecker delta. In closed form, Ei are given by the expression:

Ei =



































p
∏

j=1

j 6= i

1

xi − xj

(X − xj I) if p > 1

I if p=1

(A.11)

A.2.3 Characteristic equation. Principal invariants

Every eigenvalue xi of a symmetric tensor, X, satisfies the characteristic equa-
tion:

det(X − xi I ) = 0 . (A.12)

Two-dimensional space

In two-dimensional space, expression (A.12) reduces to the quadratic equa-
tions:

x2
i − I1 xi + I2 = 0 i = 1, 2 , (A.13)
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where I1 and I2 are the principal invariants of X:

I1 = tr[X] = x1 + x2

I2 = det[X] = x1 x2 ,
(A.14)

Solution of the quadratic equation (A.13) provides the exact formula for
the eigenvalues xi of X:

x1 =
I1 +

√

I2
1 − 4 I2

2
and x2 =

I1 −
√

I2
1 − 4 I2

2
(A.15)

If x1 6= x2, (A.11)1 results in the following closed formula for computation
of the eigenprojections of X in 2-D:

Eα =
1

2 xα − I1
[X + (xα − I1)I ] . (A.16)

On the other hand, if x1 =x2, then (A.11)2 applies.

Three-dimensional space

In three-dimensional space, the characteristic equation of a symmetric second
order tensor reads:

x3
i − I1 x

2
i + I2 xi − I3 = 0 , (A.17)

where the principal invariants are now I1, I2 and I3, defined as:

I1 = tr[X] = x1 + x2 + x3

I2 = 1
2
{(trX)2 − tr[X2]} = x1 x2 + x2 x3 + x1 x3

I3 = det[X] = x1 x2 x3 .

(A.18)

The eigenvalues xi correspond to the solution of the characteristic equation
which, in three dimensions, is the cubic equation (A.17). Since X is real
by assumption, its eigenvalues xi are real and the solution of (A.17) is given
exactly by the following expressions:

x1 = −2
√
Q cos

[

θ
3

]

+
I1
3

x2 = −2
√
Q cos

[

θ+2π
3

]

+
I1
3

x3 = −2
√
Q cos

[

θ−2π
3

]

+
I1
3
,

(A.19)

where Q and θ are defined as:

Q =
I2
1 − 3 I2

9
(A.20)
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and

θ = cos−1

[

R√
Q3

]

, (A.21)

with

R =
−2 I3

1 + 9 I1 I2 − 27 I3
54

. (A.22)

If xi is not repeated, the following closed formula for the eigenprojection
Ei in 3-D is obtained from (A.11):

Ei =
xi

2 x3
i − I1 x2

i + I3

[

X2 − (I1 − xi) X +
I3
xi

I

]

. (A.23)

If xj is repeated (with multiplicity 2) and xi 6= xj , then Ei is given by the
above expression and Ej is given simply by:

Ej = I − Ei . (A.24)

If x1 =x2 =x3, then (A.11)2 applies.

A.3 A class of isotropic tensor functions

Let us consider now that y is a function of a single argument 1. Given y :R → R, a class of isotropic tensor functions of a symmetric tensor can be
constructed as:

Y (X) ≡
p
∑

i=1

y(xi) Ei , (A.25)

Functions expressed as such define an important class of isotropic tensor-
valued functions of one tensor. The families of strain measures defined by
(3.33) [page 26] and (3.36), for instance, are members of this class. The tensor
logarithmic:

Y(X) = ln[X ] ,

is a particularly important member of this class of functions. Is this case, the
function y, in 3-D, reads:

y(xi) ≡ ln xi .

Functions such as, for instance, the tensor square root and the tensor expo-
nential can also be expressed in the format (A.25) by setting y(xi)≡

√
xi and

y(xi)≡exp(xi), respectively.

1For further discussions on general tensor-valued functions of one real symmetric tensor,
the reader is referred to (Chadwick & Ogden, 1971; Miehe & Lambrecht, 2001; de Souza
Neto, 2004)
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A.3.1 Two dimensions

After closed form evaluation of xi and Ei of Section A.2.3, for the two-
dimensional space, the following expression is used to compute Y (X):

Y (X) =



















2
∑

i=1

y(xi) Ei if x1 6=x2

y(x1) I if x1 =x2

(A.26)

The derivative of Y(X) in two dimensions is found to be given by:

D(X) =



































y(x1)−y(x2)
x1−x2

[I − E1 ⊗ E1 − E2 ⊗ E2] +

2
∑

α=1

y′(xα) Eα ⊗ Eα

if x1 6=x2

y′(x1) I if x1 =x2

(A.27)
where I is the fourth order tensor defined by the cartesian components:

Iijkl = 1
2
(δikδjl + δilδjk) , (A.28)

i.e., it is an identity operator in the space of symmetric second order tensors:

I : S = S ∀ S ∈ Sym . (A.29)

A.3.2 Three dimensions

The eigenvalues and eigenprojection tensors of X are firstly evaluated following
the equations of Section A.2.3, for the three-dimensional case. With those at
hand, the function Y (X) is computed as

Y (X) =



































3
∑

i=1

y(xi) Ei if x1 6=x2 6=x3

y(xa) Ea + y(xb) (I − Ea) if xa 6=xb =xc

y(x1) I if x1 =x2 =x3

(A.30)

where the subscripts (a, b, c) are cyclic permutations of (1, 2, 3).
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The computation of the derivative, D(X), follows the expressions

D(X) =































































































3
∑

a=1

{

y(xa)
(xa−xb)(xa−xc)

[

dX
2

dX
− (xb+xc) I

− [(xa − xb) + (xa − xc)] Ea⊗Ea

− (xb−xc) (Eb⊗Eb − Ec⊗Ec)

]

+ y′(xa) Ea⊗Ea

}

if x1 6=x2 6=x3

s1
dX

2

dX
− s2 I − s3 X ⊗ X + s4 X ⊗ I + s5 I ⊗ X − s6 I ⊗ I

if xa 6=xb =xc

y′(x1) I if x1 =x2 =x3

(A.31)
where dX2/dX denotes the derivative of the square of a tensor. Its cartesian
components are given by:

[

dX2

dX

]

ijkl

=
1

2
(δikXlj + δilXkj + δjlXik + δkjXil) . (A.32)

The scalars s1, s2,..., s6 have been defined as:

s1 = y(xa)−y(xc)
(xa−xc)2

− y′(xc)
xa−xc

s2 = 2xc
y(xa)−y(xc)

(xa−xc)2
− xa+xc

xa−xc
y′(xc)

s3 = 2 y(xa)−y(xc)
(xa−xc)3

− y′(xa)+y′(xc)
(xa−xc)2

s4 = s5 = xc s3

s6 = x2
c s3

(A.33)

As remarked by De Souza Neto et al. (2004), the closed expressions (A.27)
and (A.31) for the function derivative are equivalent to those derived by Carl-
son & Hoger (1986). Their equivalence can be established by considering the
standard identity for the directional derivative of the square of a tensor in a
generic direction T :

dX2

dX
[T ] = XT + TX ,

together with the identity:

(Ei ⊗ Ei) T = Ei TEi ,

demonstrated in Carlson & Hoger (1986), and the closed formulae (A.11) for
Ei.



Appendix B

Linearisation of the internal

virtual work

I n this appendix we present the derivation of the linearised version of the
virtual work equations. Linearisation of the virtual work gives rise to the

tangent moduli which take part in the assemblage of the tangent stiffness ma-
trix - a crucial component of the implicit finite element solution procedure
described in Chapter 4. In particular, we show the basic steps in the lineari-
sation of the virtual work equation leading to the element tangent stiffness
expressions (6.42) and (6.43).

B.1 The virtual work equation

Let B be a body which occupies an open region of R3 with a regular bound-
ary ∂B in its initial configuration. The deformation ϕ : B → R3 maps the
initial configuration of B onto its current configuration ϕ(B). We consider B
subjected to body forces in its interior and surface tractions prescribed on the
portion Γσ of the boundary ∂B. On the remaining part Γu of the boundary,
the deformation is prescribed by the function ū, i.e., the set of kinematically
admissible displacements of B is defined by:

C =
{

u : B → R3, sufficiently smooth |u = ū on Γu

}

Limited to the quasi-static case, the principle of virtual work (here stated in
its spatial version) establishes that B is in equilibrium if and only if its Cauchy
stress field satisfies:

G (u, η) := Gint (u, η) −
∫

ϕ(B)

b · η dv −
∫

ϕ(Γσ)

t · η da = 0 ∀η ∈ V (B.1)
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where b and t are respectively the body force and surface traction fields referred
to the current configuration and the internal virtual work is defined as:

Gint (u, η) =

∫

ϕ(B)

σ : ∇x η − b · ηdv (B.2)

where ∇x(·) denotes the gradient of (·) with respect to the current configuration
ϕ(B). The space of virtual displacements, V , is defined as:

V =
{

η : ϕ(B) → R3, sufficiently smooth |η = 0 on ϕ(Γu)
}

.

In the present context, the dependence of the functional G on u stems only
from the internal virtual work through the constitutive dependence of σ on
F [σ = σ(F )] and the functional dependence of F on the field u. The fun-
damental quasi-static boundary problem is stated as: ’Find a kinematically
admissible displacement field, u ∈ C, such that B is in equilibrium’.

B.2 Virtual work linearisation

The linearisation of the above boundary value problem with respect to the
unknown u about an arbitrary argument u∗ consists in finding the field d

such that:
L(d, η) ≡ Gint(u∗, η) + DG int(u∗, η)[d ] = 0

where L is the linearised virtual work functional and

DG int(u∗, η)[d] =
d

d ε

∣

∣

∣

∣

ε= 0

G int(u∗ + ǫd, η) (B.3)

is the directional derivative of the internal virtual work functional at u∗ in the
direction of d.

In order to derive a spatial formula for the linearised virtual work func-
tional, from which the spatial tangent stiffness can be obtained, we proceed
as follows. Firstly we map (B.2) to the material configuration. Then, we lin-
earise the material form and map the linearised expression back to the spatial
configuration.

B.2.1 Map internal virtual work to the material configuration

Let us start by observing the following relation for the first Piola-Kirchoff
stress:

P ≡
(

detF
)

σ F
−T

=
(

detF
)

σ̂(F̄ ) F
−T

=

(

∑

i∈P vi
∑

j∈P Vj detF

)− 2
3

P̂ (F̄ )

(B.4)
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where we have defined

P̂ (F̄ ) ≡ (detF̄ ) σ̂(F̄ ) F
−T

(B.5)

and the fact that the modified deformation gradient F̄ is used in the compu-
tation of the stress has been taken into account. With the above definition, we
write the following material version of the F-bar-Patch internal virtual work
functional:

Gint
(e) (u,η) =

∫

Ω(e)

(

∑

i∈P vi
∑

j∈P Vj detF

)− 2
3

P̂ (F̄ ) : ∇p ηdv (B.6)

where the dependence of Gint on u comes from the dependence of F̄ on u.

B.2.2 Linearisation in the material configuration

The directional derivative of Gint in a direction d is given by:

DGint
(e)(u, η)[d] =

d

d ε

∣

∣

∣

∣

ε= 0

∫

Ω(e)

[

(
∑

i∈P Vi detF i

)

ǫ
∑

j∈P Vj detF ǫ

]− 2
3

P̂ (F̄ ǫ) : ∇p ηdv (B.7)

Applying the chain rule to the previous expression,

DGint
(e)(u, η)[d] =

∫

Ω(e)

d

d ε

∣

∣

∣

∣

ε =0







[

(
∑

i∈P Vi detF i

)

ǫ
∑

j∈P Vj detF ǫ

]− 2
3







P̂ (F̄ ) : ∇p η dv

+

∫

Ω(e)

(

∑

i∈P Vi detF i
∑

j∈P Vj detF

)− 2
3

d

d ε

∣

∣

∣

∣

ε =0

[

P̂ (F̄ ǫ)
]

: ∇p η dv

(B.8)
Let us consider the derivation needed for the first term of (B.8):

d

d ε

∣

∣

∣

∣

ε =0

[

(
∑

i∈P Vi detF i

)

ǫ
∑

j∈P Vj detF ǫ

]− 2
3

= −2

3

(

J̄

J

)− 5
3

[

∑

i∈P vi(F
−T
i : ∇p d i − F

−T
: ∇p d)

J Vpatch

]

(B.9)

where J , J̄ , vi and Vpatch stand for detF , detF̄ , Vi detF i and
∑

j∈P Vj, re-

spectively. It is also necessary to linearise P̂ (F̄ ),

d

d ε

∣

∣

∣

∣

ε= 0

[

P̂ (F̄ ǫ)
]

=
dP̂ (F̄ ǫ)

dF̄ ǫ

:
dF̄ ǫ

dǫ

∣

∣

∣

∣

∣

ǫ=0

(B.10)



App. B Linearisation of the Virtual Work 257

From the definition of the first elasticity tensor,

dP̂ (F̄ ǫ)

dF̄ ǫ

= A(F̄ ) (B.11)

only the linearisation of F̄ ǫ needs to be carried out. From the definition of F̄ ,

dF̄ ǫ

dǫ

∣

∣

∣

∣

∣

ǫ=0

=
d

d ε

∣

∣

∣

∣

ε= 0







[

(
∑

i∈P Vi detF i

)

ǫ
∑

j∈P Vj detF ǫ

]
1
3







F +

(

∑

i∈P Vi detF i
∑

j∈P Vj detF

)
1
3

dF ǫ

dǫ

(B.12)
Rearranging the terms after substitution in (B.12) of the previous result (B.9)
leads to:

d

d ε

∣

∣

∣

∣

ε= 0

[

P̂ (F̄ ǫ)
]

= A(F̄ ) :

(

J̄

J

)
1
3

∇p d

+ A(F̄ ) :

{

1

3

(

J̄

J

)− 2
3

[

∑

i∈P vi( F
−T
i : ∇p di − F

−T
: ∇p d)

J Vpatch

]

F

}

(B.13)
Then, we obtain the final expression for the directional derivative of Gint

in the material configuration:

DGint
(e) (u, η) [d] =

(

J̄

J

)− 1
3
∫

Ω(e)

∇p η : A(F̄ ) : ∇p ddv

−2

3

(

J̄

J

)− 5
3
∫

Ω(e)

∇p η :

[

∑

i∈P vi(F
−T
i : ∇p di − F

−T
: ∇p d)

J Vpatch

]

P̂ (F̄ ) dv

+
1

3

(

J̄

J

)− 4
3
∫

Ω(e)

∇p η : A(F̄ ) :

[

∑

i∈P vi( F
−T
i : ∇p di − F

−T
: ∇p d)

J Vpatch

]

F dv

(B.14)

B.2.3 Map the linearised expression to the spatial configuration

The next step now is to obtain the spatial version of the expression for the
directional derivative of Gint. By noting that, for an arbitrary second order
tensor M, we have

(M ⊗ F
−T

) : ∇p d = (F
−T

: ∇p d) M = (I : ∇p dF
−1

) M = (M ⊗ I) : ∇x d
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the directional derivative of Gint can be rewritten as

DGint
(e) (u, η) [d] =

(

J̄

J

)− 1
3
∫

Ω(e)

∇p η : A(F̄ ) : ∇p d dv

− 2

3

(

J̄

J

)− 5
3
∫

Ω(e)

∇p η : [P̂ (F̄ ) ⊗ I ] :

[
∑

i∈P vi(∇x di −∇x d)

J Vpatch

]

dv

+
1

3

(

J̄

J

)− 4
3
∫

Ω(e)

∇p η : A(F̄ ) :

[
∑

i∈P vi(F ⊗ I) : (∇x di −∇x d)

J Vpatch

]

dv

(B.15)
The first integral in the sum above (B.15) can be written as:

(

J̄

J

)− 1
3
∫

Ω(e)

∇p η : A(F̄ ) : ∇p ddv =

=

(

J̄

J

)− 1
3
∫

Ω(e)

(∇p η)ij [ A(F̄ )]ijkl (∇p d)kl dv

=

(

J̄

J

)− 1
3
∫

ϕ(Ω(e))
(∇x η)ij F jk [ A(F̄ )]iklm (∇x d)ln F nm

1

J
dv

=

∫

ϕ(Ω(e))
(∇x η)ij

1

J̄
F̄ jk F̄ nm [ A(F̄ )]iklm (∇x d)ln dv

=

∫

ϕ(Ω(e))
(∇x η)ij [ a(F̄ )]ijln (∇x d)ln dv

=

∫

ϕ(Ω(e))
∇x η : a(F̄ ) : ∇x ddv

(B.16)

The spatial version of the second term in the sum (B.15) is to be evaluated
now:

−2

3

(

J̄

J

)− 5
3
∫

Ω(e)

∇p η : [P̂ (F̄ ) ⊗ I ] :

[
∑

i∈P vi(∇x di −∇x d)

J Vpatch

]

dv =

= − 2
3 J Vpatch

(

J̄
J

)− 5
3
∑

i∈P

∫

Ω(e)

(∇p η)kj [P̂ (F̄ )]kj δlm vi(∇x di −∇x d)lm dv
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= − 2
3J Vpatch

(

J
J̄

)
5
3
∑

i∈P

∫

ϕ(Ω(e))
(∇x η)kjF jl [P̂ (F̄ )]kl δmnvi (∇x di −∇x d)mn

dv

J

= − 2
3J Vpatch

(

J
J̄

)

∑

i∈P

∫

ϕ(Ω(e))
(∇x η)kjF̄ jl [P̂ (F̄ )]kl δmnvi (∇x di −∇x d)mn

dv

J̄

= − 2
3 vpatch

∑

i∈P

∫

ϕ(Ω(e))
vi(∇x η)kj

1

J̄
F̄ jl [P̂ (F̄ )]kl δmn (∇x di −∇x d)mn dv

= − 2
3 vpatch

∑

i∈P

∫

ϕ(Ω(e))
vi(∇x η)kj[ σ̂(F̄ )]kj δlm (∇x di −∇x d)lm dv

= − 2
3 vpatch

∑

i∈P

∫

ϕ(Ω(e))
vi(∇x η) : [ σ̂(F̄ ) ⊗ I] : (∇x di −∇x d) dv

(B.17)
For the spatial version of the third term in the sum (B.15), we have:

1

3

(

J

J̄

)
4
3
∫

Ω(e)

∇p η : A(F̄ ) :

[
∑

i∈P vi(F ⊗ I) : (∇x di −∇x d)

J Vpatch

]

dv =

= 1
3 J Vpatch

(

J
J̄

)
4
3
∑

i∈P

∫

Ω(e)

(∇p η)kj[A(F̄ )]kjlm vi F lmδop(∇x di −∇x d)op dv

= 1
3 J Vpatch

(

J
J̄

)
4
3

∑

i∈P

∫

ϕ(Ω(e))
(∇x η)kjF jl[A(F̄ )]klmo vi F moδpq(∇x di −∇x d)pq

dv

J̄

= 1
3 J Vpatch

(

J
J̄

)

∑

i∈P

∫

ϕ(Ω(e))
(∇x η)kjF̄ jl[A(F̄ )]klmo vi F̄ moδpq(∇x di −∇x d)pq

dv

J̄

= 1
3 vpatch

∑

i∈P

∫

ϕ(Ω(e))
vi (∇x η)kj [a(F̄ )]kjmr F̄

−1

ro F̄ mo δpq(∇x di −∇x d)pq dv

= 1
3 vpatch

∑

i∈P

∫

ϕ(Ω(e))
vi (∇x η)kj [a(F̄ )]kjmr δmr δpq(∇x di −∇x d)pq dv

= 1
3 vpatch

∑

i∈P

∫

ϕ(Ω(e))
vi (∇x η) : a(F̄ ) : (I ⊗ I) : (∇x di −∇x d) dv

(B.18)
By using the previous results, it is possible to write the spatial version of the
directional derivative of Gint

(e):

DGint
(e) (u, η) [d] =

∫

ϕ(Ω(e))
∇x η : a(F̄ ) : ∇x ddv
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− 2

3 vpatch

∑

i∈P

∫

ϕ(Ω(e))
vi(∇x η) : [ σ̂(F̄ ) ⊗ I ] : (∇x di −∇x d) dv

+
1

3 vpatch

∑

i∈P

∫

ϕ(Ω(e))
vi (∇x η) : a(F̄ ) : (I ⊗ I) : (∇x di −∇x d) dv

(B.19)

The final expression for the spatial version of the directional derivative of Gint
(e)

can be rewritten as

DGint
(e) (u, η) [d] =

∫

ϕ(Ω(e))
∇x η : a(F̄ ) : ∇x ddv

+

∫

ϕ(Ω(e))
∇x η :

{

1

3
a(F̄ ) : (I ⊗ I) − 2

3
[ σ̂(F̄ ) ⊗ I ]

}

:

(

ve

vpatch
− 1

)

∇x d dv

+

∫

ϕ(Ω(e))
∇x η :

{

1

3
a(F̄ ) : (I ⊗ I) − 2

3
[ σ̂(F̄ ) ⊗ I ]

}

:
∑

s∈P,s 6=e

vs

vpatch
∇x d s dv

(B.20)
Finally, the replacement of the gradient operators, tangent modulus and

other relevant tensors with the corresponding finite element matrices in the
previous expression leads to the tangent stiffness formulae:

Ke = Kee + Kes (B.21)

where the the first term, Kee is given by

Kee =

∫

ϕ(Ωe)

GT
e a Ge dv +

(

ve

vpatch
− 1

)
∫

ϕ(Ωe)

GT
e q Ge dv (B.22)

and the second term in (B.21) is given by

Kes =
ve

vpatch

∫

ϕ(Ωe)

GT
e q Gs dv , s ∈ P ; s 6= e , (B.23)

where a is the matrix form of the fourth order spatial elasticity tensor now
evaluated at F = F̄ , Gi denotes the conventional discrete (full) gradient oper-
ator of a generic element i and q is the matrix form of the fourth order tensor
defined by:

q = 1
3
a : (I ⊗ I ) − 2

3
(σ ⊗ I ) , (B.24)

also computed at F = F̄ .


