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Motivation: world models

“Scientists […] need to build AI that doesn’t just operate by matching 
patterns but can also reason about the physical world”. [1] 

“It’s about modeling the world…” [2] 

“… to create machines that can learn internal models of how the 
world works […], plan how to accomplish complex tasks, and readily 
adapt to unfamiliar situations.” [3] 

[1]. Matthew Hutson, Nature Index, November 17th 2023. 
[2]. Lake, B. M., Ullman, T. D., Tenenbaum, J. B., & Gershman, S. J. (2017). Building machines that learn and think like people. Behavioral and brain sciences, 40, e253. 
[3] LeCun, Y. (2022). A path towards autonomous machine intelligence version 0.9. 2, 2022-06-27. Open Review, 62.

Badias, Alberto, et al. “Morph-DSLAM: Model order reduction for physics-
based deformable SLAM.” IEEE Transactions on Pattern Analysis and 
Machine Intelligence 44.11 (2021): 7764-7777.
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Cognitive digital twins

What the camera sees

What the the AI “thinks”

AR information to the user
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Our approach to cognitive twins
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Physics-enhanced machine learning

• Encompasses Scientific ML, Informed ML, Physics-enhanced AI, … 

• Provides a framework for guiding high-consequence decision making in 
engineering applications 

• Hybrid physics-data models integrating  

advanced computational models 

multi-fidelity data 

domain knowledge; prior knowledge  

first principles and appropriate biases

Physics-Enhanced Machine Learning: a position paper for dynamical systems investigations. Alice Cicirello. Arxiv: 2405.05987, 2024.



Thermodynamics-informed Neural Networks

E. Cueto

The importance of inductive biases

Loss landscape 

Weak bias 
Strong bias 

Physics  

+ 

Domain
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Taxonomy of biases
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1. Statistical mechanics of machine learning
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The problem of learning physics from data

•Learn a dynamical system from data 

•State vector:  

•Time interval:  

• Initial conditions: 

𝒛 = (𝑧1, 𝑧2, …)

𝑡 ∈ (0,𝑇 ]
𝒛(𝑡 = 0) = 𝒛0

𝒛 = 𝑑𝒛
𝑑𝑡

= 𝐹(𝒛, 𝑡)

𝒛0
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Biases: conservative systems
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Biases: conservative systems
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Biases: dissipative systems

• Introduction of a new potential: entropy, S

• Metriplectic (metric+symplectic) formulation 

• Bracket structure
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GENERIC (Öttinger & Grmela)
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Structure-preserving neural networks

• Hernández, Q., Badías, A., González, D., Chinesta, F., & Cueto, E. (2021). Structure-preserving neural networks. Journal of Computational 
Physics, 426, 109950. SOFT

• Lee, K., Trask, N., & Stinis, P. (2021). Machine learning structure preserving brackets for forecasting irreversible processes. Advances in Neural 
Information Processing Systems, 34, 5696-5707. HARD

• Zhang, Z., Shin, Y., & Em Karniadakis, G. (2022). GFINNs: GENERIC formalism informed neural networks for deterministic and stochastic 
dynamical systems. Philosophical Transactions of the Royal Society A, 380(2229), 20210207. HARD
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Structure-preserving ROMs

Unveil the intrinsic 
dimensionality of the 

manifold—L1 
autoencoder

Structure-
preserving time 

integration
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Results

Hernandez, Q., Badias, A., Gonzalez, D., Chinesta, F., & Cueto, E. (2021). Deep learning of thermodynamics-aware reduced-order models from data. 
Computer Methods in Applied Mechanics and Engineering, 379, 113763.
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Take-home message

Hernández, Q., Badías, A., González, D., Chinesta, F., & Cueto, E. (2021). Structure-preserving neural networks. Journal of Computational Physics, 426, 109950.
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2. Previously unseen geometry/BCs
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Geometric bias: Graph Neural Networks

• Graph construction

Physical System 𝒢 = (𝒱, ℰ, 𝒖)

𝒛 = (𝒒, 𝒑, 𝝈, 𝑃, 𝑇, …)
𝒛𝑖

𝒛𝑗
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• Graph construction

Physical System 𝒢 = (𝒱, ℰ, 𝒖)

𝒛𝑖
𝒛𝑗 𝒆𝑖𝑗

𝒆𝑖𝑗 = (𝒒𝑖 − 𝒒𝑗, |𝒒𝑖 − 𝒒𝑗 |)
Translation 

Equivariant

Geometric bias
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• Graph construction

Physical System 𝒢 = (𝒱, ℰ, 𝒖)

𝒛𝑖
𝒛𝑗 𝒆𝑖𝑗

𝒗𝑖 = (𝒑, 𝝈, 𝑃, 𝑇, …)
𝒗𝑖

𝒗𝑗

Geometric bias
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Geometric bias

• Graph construction

Physical System 𝒢 = (𝒱, ℰ, 𝒖)

𝒛𝑖
𝒛𝑗 𝒆𝑖𝑗

𝒗𝑖

𝒗𝑗

𝒖 = (𝑔, 𝜈, 𝑅𝑒, …)𝑇
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Geometric bias

• Encode – Process – Decode

𝒆𝑖𝑗

𝒗𝑖

𝒗𝑗

[Battaglia, 2018] 
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Geometric bias

• Encode – Process – Decode 
1. Encoder: , 𝜀𝑣 𝜀𝑒

𝒙𝑖 = 𝜀𝑣(𝒗𝑖)

𝒙𝑖𝑗 = 𝜀𝑒(𝒆𝑖𝑗)
𝒙𝑖𝑗

𝒙𝑖

𝒙𝑗

[Battaglia, 2018] 
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Geometric bias

• Encode – Process – Decode  
1. Encoder: , 

2. Update Edges: 

𝜀𝑣 𝜀𝑒
𝜋𝑒

𝒙′𝑖𝑗

𝒙𝑖

𝒙𝑗

𝒙′𝑖𝑗 = 𝜋𝑒(𝒙𝑖𝑗, 𝒙𝑖, 𝒙𝑗, 𝒖)
[Battaglia, 2018] 
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Geometric bias

• Encode – Process – Decode  
1. Encoder: , 

2. Update Edges: 
3. Message Passing

𝜀𝑣 𝜀𝑒
𝜋𝑒

𝒙′𝑖𝑗

𝒙𝑖

𝒙𝑗

𝒎𝑖 = ∑
𝑗∈𝒩𝑖

𝒙′𝑖𝑗
[Battaglia, 2018] 

Permutation 

Equivariant
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Geometric bias

• Encode – Process – Decode  
1. Encoder: , 

2. Update Edges: 
3. Message Passing 
4. Update Vertices: 

𝜀𝑣 𝜀𝑒
𝜋𝑒

𝜋𝑣
𝒙′𝑖𝑗

𝒙′𝑖

𝒙′𝑗

𝒙′𝑖 = 𝜋𝑣(𝒎𝑖, 𝒙𝑖, 𝒖)[Battaglia, 2018] 
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Geometric bias

• Encode – Process – Decode   
1. Encoder: , 

2. Update Edges: 
3. Message Passing 
4. Update Vertices: 

5. Decoder: 

𝜀𝑣 𝜀𝑒
𝜋𝑒

𝜋𝑣
𝛿

𝒙′𝑖𝑗

𝒚𝑖

𝒚𝑗

𝒚𝑖 = 𝛿(𝒙′𝑖)
[Battaglia, 2018] 
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Method Physics Geometry

✓
✓

✓ ✓

Experiments

• Ablation study

[Hernández, 2021] 

[Hernández, 2022] 

[Pfaff, 2021] 

SPNN

GNN

TIGNN
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Experiments

• Bending viscoelastic beam 

• State Space: 

• Dataset: 52 load positions

𝒮 = {𝒛 = (𝒒, 𝒗, 𝝈)}

𝒒 𝒗 𝝈



Thermodynamics of learning physical phenomena 

Elías Cueto

Experiments

• Bending viscoelastic beam 

• State Space: 
• Dataset: 52 load positions

𝒮 = {𝒛 = (𝒒, 𝒗, 𝝈)}
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Experiments: previously unseen meshes
• Flow past a cylinder 

• State Space: 
• Dataset: 30 geometries + 

𝒮 = {𝒛 = (𝒗, 𝑃)}
𝒗

𝒗 𝑃
Hernandez, Quercus, et al. "Thermodynamics-informed Graph Neural Networks." IEEE Transactions on Artificial Intelligence (2022).
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Are GNNs learning the physics?

Training: Test:

Tierz, Alicia, et al. "Graph neural networks informed locally by thermodynamics." arXiv preprint arXiv:2405.13093 (2024).
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Are GNNs learning the physics?
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Fluids: previously unseen container geometry

Tierz, Alicia, et al. "Graph neural networks informed locally by thermodynamics." arXiv preprint arXiv:2405.13093 (2024).
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Digital human twins
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Ground truth vs. prediction

•Previously unseen anatomies
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Digital human twins

‖uGT − u‖2 = 2.37 · 10−3.
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3. Previously unseen constitutive models
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Changes in constitutive equations

• We train our model with a Newtonian model (glycerine)

• Then, we face it against a (possibly non-Newtonian) 

different fluid

• Employ RL to let the system learn from observation

• Partial data regime: the camera only sees the free 

surface!
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Perception + reasoning

Moya, Beatriz, et al. "Physics perception in sloshing scenes with guaranteed thermodynamic consistency." 
IEEE Transactions on Pattern Analysis and Machine Intelligence 45.2 (2022): 2136-2150.
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Thermodynamics-informed continuous learning
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Thermodynamics-informed continuous learning
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Thermodynamics-informed continuous learning

Moya, Beatriz, et al. "Computational Sensing, Understanding, and Reasoning: An Artificial 
Intelligence Approach to Physics-Informed World Modeling." Archives of Computational Methods 
in Engineering 31.4 (2024): 1897-1914.
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Thermodynamics-informed continuous learning

Moya, Beatriz, et al. "Computational Sensing, Understanding, and Reasoning: An Artificial 
Intelligence Approach to Physics-Informed World Modeling." Archives of Computational Methods 
in Engineering 31.4 (2024): 1897-1914.
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Perception & reasoning
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Conclusions

• Thermodynamics as inductive bias 

• Robustness, accuracy in o.o.d. testing 

• Thermodynamics-informed GNNs as a promising choice 

• Size matters!
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