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• Neural Networks (NNs) can be seen as a black box 

Motivation

Lots of data

Black Box
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• Neural Networks (NNs) are seen as a black box 
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In Out?

In Out?

In Out?

Cow

Camel

Polar bear

Not always reliable



Physics-enhanced Machine Learning
UKACM-SEMNI Autumn School Data-Centric Engineering in Computational Mechanics

Motivation

• Need robust and fast solvers 

Simulator Physics Cost

Traditional (CFD, FEM)

Game engines (Havok, Unreal) 

Deep learning (NNs)
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Motivation

• Need robust and fast solvers 

Simulator Physics Cost

Traditional (CFD, FEM)

Game engines (Havok, Unreal) 

Deep learning (NNs)

Incorporate physics consistency to Deep Learning!
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Motivation

NN

In Out

TINNs

In Out

Physics Informed
Neural Networks

Thermodynamics Informed
Neural Networks

• Inductive biases: set of assumptions to improve generalization [1]

[1] Battaglia, P. et al. (2018) Relational inductive biases, deep learning, and graph networks. 

Neural Networks

PINNs
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Introduction to NN

• Artificial neuron

• Activation functions

p a

RELU Hyperbolic tangentLeaky RELU
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Introduction to NN

• Artificial neuron

• Multilayer Perceptron
(MLP)

p a
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Introduction to NN

• Many different architectures

https://towardsdatascience.com/the-mostly-complete-chart-
of-neural-networks-explained-3fb6f2367464
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Introduction to NN

• Neural Networks (NNs) provide great versatility

= …( , , , , + + + + + )

(x,t) (U,p)

p a

• For example, NNs can give us physical results for input 
coordinates:
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Introduction to NN
• Training Process:

• Iterative process (number of epochs) until a minimum error (loss 
function) is reached. 

• Loss function depends on the problem or application to be 
performed.

• Optimization problem:
Given

• Data
• net architecture
• loss definition

calculate all weights and biases that minimizes the loss

• Backpropagation computes the gradient in the weight space of a 
NN, with respect to the loss function.

• Automatic differentiation is used to calculate the derivatives.
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• Based only in data:
• Black box
• Data: pairs of ,
• Data loss: =
• Many data pairs are needed
• Data must be very good

Supervised Learning: Learning from data

p a
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• Black box

Supervised Learning: Learning from data
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• Include physics information

• Force PDE fulfilment in the loss term

Physics-informed neural networks: PINNs

In Out
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• Include physics information

• Force PDE fulfilment in the loss term

• Deep Learning is differentiable by default. The order of derivation of the 
activation functions has to be enough to solve the PDE.

• Don’t use RELU

• Self-supervised: 
no need explicit data
(collocation points+PDE)

• Semi-supervised:
also experiental data

Physics-informed neural networks: PINNs

Figure: Physics-informed neural for the solution of the Navier-Stokes 
equations. Source: Wikipedia

In Out
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Physics-informed neural networks: PINNs
• Loss can be composed of:

• =
• Pairs of ,
• Experimental datapoints (sensors) or simulated datapoints,
(real data-virtual data)

•
• Check if the PDE system is satisfied

• , 
• Check if initial and boundary conditions are satisfied

• Total loss= weighted sum of these partial losses
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Physics-informed neural networks: PINN
• Advantages: we like to work with our preferred behavior model

• Very simple way to add physics to the net
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Physics-informed neural networks: PINN
• Advantages:

• Very simple way to add physics to the net

• Don’t need real data or only few points (sensors)

• Choose the collocation points
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Physics-informed neural networks: PINN
• Advantages:

• Very simple way to add physics to the net

• Don’t need real data or only few points (sensors)

• Choose the collocation points

• Can be used for Forward simulation and for Inverse problems
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Physics-informed neural networks: PINN

• Disadvantages:

• Difficult to train (loss composed of real and virtual data)

virtual data
PDE

real data
nosiy
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Physics-informed neural networks: PINN

• Disadvantages:

• Difficult to train (loss composed of real and virtual data)

• Tunning hyperparameters

= 1 = 10 = 10
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Physics-informed neural networks: PINN

• Disadvantages:

• Difficult to train (loss composed of real and virtual data)

• Tunning hyperparameters

• Inference is not guaranteed (Tip: Generate more collocation points)
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Physics-informed neural networks: PINN

• Disadvantages:

• Difficult to train (loss composed of real and virtual data)

• Tunning hyperparameters

• Inference is not guarantee

• Self supervised can return trivial solution to homogeneous PDE
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Physics-informed neural networks: PINN

• Few recommendations:

• Balance the loss terms
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Physics-informed neural networks: PINN

• Few recommendations:

• Balance the loss terms

• Non dimensionalization
• Not traditional input normalization
• Ensure the target output vary within a reasonable value
• Transform the problem in an equivalent dimensionless problem
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Physics-informed neural networks: PINN

• Few recommendations:

• Balance the loss terms

• Non dimensionalization
• Not traditional input normalization
• Ensure the target output vary within a reasonable value
• Transform the problem in an equivalent dimensionless problem

• Add specific information to the problem
• Frequency domain
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