
Introduction to
Optimisation using

Metaheuristics

Prof Ender Özcan

School on Advanced Topics in
Computational Mechanics

Outline

 Preliminaries
 Search spaces, search paradigms, search

methods

 Metaheuristics (Design issues)
 A classification of metaheuristics, main

components: representation, evaluation function,
neighbourhoods, escaping from local optima,
termination criteria

 Tabu Search

 Evolutionary/Genetic Algorithms
2

Optimisation Problems

Optimisation
problems are

ubiquitous

Sustainable
Energy

Engineering
Design

Additive
Manufacturing

3

 Optimisation
problems appear in
various forms
across industry,
leisure and the
public sector

 Majority of them are
computationally
hard to solve (NP
hard)

Optimisation

 Solving an optimisation problem requires
search for optimum

 Fundamental problem of optimisation is to
arrive at the best possible solution (optimal –
Xopt=argmin) in any given set of
circumstances.

 In most cases optimal is unattainable 4

maximise/minimise
subject to |
where is a vector of variables < , ,…, >, i=1..m

Search in
Continuous vs Discrete Space
 Find the optimum

setting for the angle of
the wings of a race car
providing the best
performance

 Find the tour (visiting
sequence) with the
optimum (minimum)
travelling distance,
given 81 cities.

5

19.0 Degrees

…

-8.0 Degrees

.0

Search for an Optimal Solution

6

Permutation
flowshop scheduling:
10 jobs and 7 machines

TSP:
pr1002

http://www.cs.stir.ac.uk/~goc/papers/joh-2017-global.pdf
http://www.cs.stir.ac.uk/~goc/papers/flowshop-LON-cec2017.pdf

RNA
Sequencing:
3 nucleotides

Search Paradigms I

 Single point (trajectory) based search vs.
Multi-point (population) based search

 Constructive
 Search on partial candidate solutions

vs.

 Perturbative
 Search on complete solutions

<2>  <2, 1>  <2, 1, 4>  <2, 1, 4, 3> (26)

<2, 4, 1, 3> (32) <1, 4, 2, 3> (32)  <1, 2, 4, 3> (28)  <1, 2, 3, 4> (26)

7

Search Paradigms II

deterministic ←→ stochastic

systematic ←→ local search

sequential ←→ parallel

single objective ←→ multi-objective

8
[See http://www.cs.ubc.ca/~hoos/SLS-Internal/ch1.pdf pp.23-30]

Optimisation/Search Methods

Optimisation methods can be broadly classified
as:

 Exact/Exhaustive/Systematic Methods
 E.g., Dynamic Programming, Branch&Bound,

Constraint Satisfaction,…

 Inexact/Approximate/Local Search Methods
 E.g., heuristics, metaheuristics, hyper-

heuristics,…

9

Need for (meta)heuristic
optimisation methods

 Travelling salesman problem with N cities

 N=4, 24

 N=5, 120

 N=7, 5 040

 N=10, 3 628 800

 N=81, 5.797 x 10120

 Number of configurations

to search from is N! (combinatorial explosion in the search space)

 Number of particles in the universe is in between 1072 – 1087

 Japanese Fugaku (Since 2020): ~442.01 petaFLOPS (one
thousand million million/quadrillion (1015) floating-point operations
per second) – ~4.16 x 1095 years (from TOP500 project).

10

Metaheuristics

A metaheuristic is a high-level problem
independent algorithmic framework that
provides a set of guidelines or strategies to
develop heuristic optimization algorithms

Local Search Population-based Constructive

11

K. Sörensen and F. Glover. Metaheuristics. In S.I. Gass and M. Fu,
editors, Encyclopedia of Operations Research and Management
Science, pp 960–970. Springer, New York, 2013.

Metaheuristics

 [Kirkpatrick, 1983] Simulated Annealing (SA)

 [Glover, 1986] Tabu Search (TS)

 [Voudouris, 1997] Guided Local Search (GLS)

 [Stutzle, 1999] Iterated Local Search (ILS)

 [Mladenovic, 1999] Variable Neighborhood Search (VNS)

 [Holland, 1975] Genetic Algorithm (GA)

 [Smith, 1980] Genetic Programming (GP)

 [Goldberg, 1989] Genetic and Evolutionary Computation (EC)

 [Moscato, 1989] Memetic Algorithm (MA)

 [Storn & Price1997] Differential Evolution

 [Hansen, 1998] CMA-ES

 [Dorigo, 1992] Ant Colony Optimisation (ACO)

 [Resende, 1995] Greedy Randomized Adaptive Search Procedure

(GRASP)

L
o

c
a

l S
e

ar
c

h
P

o
p

u
la

ti
o

n
-b

a
s

e
d

C
o

n
st

ru
ct

iv
e

Metaheuristic frameworks and
software libraries
 HeuristicLab

 Wagner and M. Affenzeller (2015),
https://dev.heuristiclab.com/trac.fcgi/wiki/

 ECJ
 Luke (2017), https://cs.gmu.edu/˜eclab/projects/ecj/

 FOM
 Parejo et al. (2003), http://www.isa.us.es/fom/

 Opt4J,
 Lukasiewycz et al. (2011), http://opt4j.sourceforge.net/

 jMetal
 Durillo and Nebro (2011), http://jmetal.sourceforge.net/

 JAMES
 De Beukelaer et al. (2017), http://www.jamesframework.org/

 PISA
 Bleuler et al. (2003), http://www.tik.ee.ethz.ch/pisa/ 13

Applications of Metaheuristics
to Real-world Problems

 Biological Sciences and
Bioinformatics

 Computer Science

 Earth Sciences

 Engineering

 Finance and Economics

 Industry and Management

 Logistics

 Machine learning/data science

 Mathematics

 Natural Sciences

 Social Sciences

 Telecommunication, …
14

 Optimal design of laminated
composites

 Topology optimisation of porous
materials

 Solar cell design

 VLSI design

 Optimization of heat
exchangers/chemical reactors

 Engineering of conducting polymers

 Improving biopolymer functions

 Optimal control of fermentation

 Cutting and packing in
manufacturing

 Scheduling and routing, …

Main Components of
Metaheuristics

 Representation (encoding) of candidate
solutions

 Evaluation function (objective function)

 Initialisation (e.g., random)

 Neighbourhood relation (move operators)

 Mechanism for escaping from local optima

 Search process (guideline)

Guideline Encoding Initialisation Operator(s)
Escape
Method

Evaluation
Function 15

Representation

 Binary encoding is the most common
 10110010110010…1011

 E.g.: 0/1 Knapsack problem
Fill the knapsack with as much value in goods as
possible – which items to take?

1 0 0 1 1 pack items {0,3,4} 1 1 1 1 0 pack items {0,1,2,3}

 Given a binary string of length N (representing N
items), search space size is

16

2N

4

3

2

1

0

0 1 2 3 4 0 1 2 3 4

Representation (cont.)

 E.g.: Travelling salesman problem, some
sequencing problems

 Permutation encoding
 1 5 3 2 6 4 7 9 8

 Given N cities (pubs), search space size is


17

N!

A shortest-possible walking tour through the pubs of the
UK (Nottingham):

Other Representation
Schemes

 Integer encoding
 1 9 4 5 5 5 4 12 8 … 10 10 4

 Value Encoding
 1.2324 5.3243 0.4556 2.3293 2.4545

 ATGCTTCGGCAAGACTCAAAAAATA

 <(back), (back), (right), (forward), (left)>

 Nonlinear Encoding


18

(+ x (/ 5 y))

Evaluation
Function

 Also referred to as objective, cost, fitness,
penalty, etc.
 Indicates the quality of a given solution,

distinguishing between better/worse solutions

 Serves as a major link between the algorithm and
the problem being solved
 provides an important feedback for the search process

 Many types: (non)separable, uni/multi-modal,
single/multi-objective, etc.

19

Evaluation Function (cont.)

 Evaluation functions could be computationally
expensive

 Exact vs. approximate
 Common approaches to constructing approximate

models: polynomials, regression, SVMs, etc.

 Constructing a globally valid approximate model
remains difficult, and so beneficial to selectively
use the original evaluation function together with
the approximate model

20

0/1 Knapsack Problem –
Evaluation function

 Fill the knapsack with as much value in goods as
possible (i.e., maximise “profit”) without exceeding the
capacity (as a constraint) – which items to take?

 1 1 0 0 1: $8 (15 kg) feasible solution

 0 1 1 1 1: $15 (8 kg) feasible solution

 1 0 0 1 0: $14 (16 kg) not a feasible solution

 1 1 0 1 0: $16 (18 kg) not a feasible solution
21

0 1

2

3

4

0 1 2 3 4 profit
f(s)

How to Deal with
Infeasible Solutions

 Use a problem domain specific repair operator
 E.g. randomly flip a bit to 0 until the solution in hand

feasible: 1 1 0 1 0: $16 (18 kg) → 1 0 0 1 0: $14 (16 kg) → 1 0 0 0 0 $4 (12 kg)

 Penalise each constraint violation for the infeasible
solutions such that they can’t be better than the worst
feasible solution for a given instance
 Set a fixed (death) penalty value poorer than the worst,

e.g., f (s) = –2:
1 1 0 1 0: $-2 (18 kg), 1 0 0 1 0: $-2 (16 kg)

 Distinguish the level of infeasibility of a solution with the
penalty: e.g., f (s)=min_profit/(2*(total_weight-capacity)):

1 1 0 1 0: $0.167 (18 kg), 1 0 0 1 0: $0.5 (16 kg)
22

Evolutionary Algorithms for Constrained Parameter Optimization Problems Zbigniew Michalewicz and Marc Schoenauer:
https://cs.adelaide.edu.au/~zbyszek/Papers/p30.pdf

maximisation problem

Example Neighbourhood Relation
Binary Representation

 Bit-flip operator: flips a bit in a given solution

 Hamming Distance between two bit strings
(vectors) of equal length is the number of
positions at which the corresponding symbols
differ. E.g., HD(011,010)=1, HD(0101,0010)=3

 If the binary string is of size n, then the
neighbourhood size is

 Example: 1 0 1 0 0 0 1 1 → 0 0 1 0 0 0 1 1

Neighbourhood size: 8, Hamming distance: 1
23

n.

Evaluation Function – Delta
(Incremental) Evaluation

 Key idea: calculate effects of differences
between current search position s and a
neighbour s' on the evaluation function value.

 Evaluation function values often consist of
independent contributions of solution
components; hence, f(s') can be efficiently
calculated from f(s) by differences between s
and s' in terms of solution components.

 Crucial for efficient implementation of
heuristics/metaheuristics/hyper-heuristics

24

Delta Evaluation for 0-1
Knapsack

weight of the object is  and its profit is 
 0 1 0 … 0 0 0… 1 1 → 0 1 0 … 0 1 0… 1 1

25

f(s') =  + 
totalWeight(s’) = T + 

f(s) = 
totalWeight(s) = T

Example Neighbourhood Relation
Integer/Value Representation

 Random neighbourhood/move/perturbation/
assignment operator: a discrete value is
replaced by any other character of the alphabet.

 If the solution is of size n and alphabet is of size
k, then the neighbourhood size is

 Example: 5 7 9 6 4 4 8 3 → 0 7 9 6 4 4 8 3

Neighbourhood size: (10-1)8=72 (alphabet:0..9)

26

(k-1)n.

Example Neighbourhood Relation
Permutation Representation I

 Adjacent pairwise interchange: swap adjacent
entries in the permutation

 If permutation is of size n, then the
neighbourhood size is n-1

 Example: 5 1 4 3 2 → 1 5 4 3 2

 Insertion operator: take an entry in the
permutation and insert it in another position

 Neighbourhood size: n(n-1)

 Example: 5 1 4 3 2 → 1 4 5 3 2
27

Example Neighbourhood Relation
Permutation Representation II

 Exchange operator: arbitrarily selected two
entries are swapped

 Example: 5 4 3 1 2 → 1 4 3 5 2

 Inversion operator: select two arbitrary entries
and invert the sequence in between them

 Example: 1 4 5 3 2 → 1 3 5 4 2

28

Mechanisms for Escaping from
Local Optima I

 Iterate with different solutions, or restart (re-
initialise search whenever a local optimum is
encountered).
 Initialisation could be costly

 E.g., Iterated Local Search, GRASP

 Change the search landscape
 Change the objective function (E.g., Guided Local

Search)

 Use (mix) different neighbourhoods (E.g., Variable
Neighbourhood Search, Hyper-heuristics)

29

Mechanisms for Escaping from
Local Optima II

 Use Memory (e.g., tabu search)

 Accept non-improving moves: allow search
using candidate solutions with equal or worse
evaluation function value than the one in hand
 Could lead to long walks on plateaus (neutral regions)

during the search process, potentially causing cycles
– visiting of the same states

 None of the mechanisms is guaranteed to
always escape effectively from local optima

30

Termination Criteria (Stopping
Conditions) – Examples

 Stop if
 a fixed maximum number of iterations, or moves,

objective function evaluations), or a fixed amount of
CPU time is exceeded.

 consecutive number of iterations since the last
improvement in the best objective function value is
larger than a specified number.

 evidence can be given than an optimum solution has
been obtained. (i.e. optimum objective value is known)

 no feasible solution can be obtained for a fixed
number of steps/time. (a solution is feasible if it
satisfies all constraints in an optimisation problem)

31

Tabu Search

 Proposed independently by Glover and Hansen
in 1986 and formalised in 1989

 Uses history (memory structures) to escape from
local minima, inspired by ideas from artificial
intelligence in the late 1970s.

 Applies hill climbing/local search
 Proceeds according to the assumption that there is no

point in accepting a new (poor) solution unless it is to
avoid a path already investigated

32

Glover F 1986 Future Paths for Integer Programming and Links to Artificial Intelligence. Computers and
Operations Research. Vol. 13, pp. 533-549.

Tabu Search Algorithm

33

s = ();

Repeat

s' = findBestNeighbour(s);

if (notTabuMove(tl, s') or aspirationCriteriaCheck(s'))

s = s' ;

sbest = updateBestSolution(s');

updateTabuList(tl, s');

Until (termination conditions are satisfied)

return sbest

 Neighbourhood: 1-bit
flip

 Tabu tenure: 2
 Current iteration (ci) is

1207
 Current solution is

 Current tabu list
content: <1,3> (tail)
 This means that 1st bit was

flipped two steps ago,
while 3rd bit (c) was flipped
in the immediately previous
step.

 Consider all 1-bit flip
neighbours which are
not in the tabu list







 ᇱ

 Update tabu list: <3,4>
(tail)

An Iteration of Tabu Search for
a Minimisation Problem

Practical Considerations

 Appropriate choice of tabu tenure critical for performance

 Tabu tenure: the length of time/number of steps t for
which a move is forbidden
 t too low- risk of cycling

 t too high - may restrict the search too much

 t =7 has often been found sufficient to prevent cycling



 number of tabu moves: 5 – 9

 If a tabu move is smaller than the aspiration level then we
accept the move (use of aspiration criteria to override
tabu status)

35

nt 

Evolutionary Algorithms –
Evolutionary is Revolutionary

 Nature as a Problem Solver: 4.55 Billion
years of evolution can’t be wrong.

 Beauty-of-nature argument: Complexity
achieved in short time in nature.

 Can we solve complex problems as
quickly and reliably on a computer?

36

Evolutionary Algorithms (EAs):
Terminology
 EAs are population-based metaheuristics.

 EAs simulate natural evolution (Darwinian Evolution) of
individual structures at the genetic level using the idea of
survival of the fittest via processes of selection, mutation,
and reproduction (recombination)

 An individual (chromosome) represents a candidate
solution for the problem at hand. (e.g., <2 1 3 4>)

 A collection of individuals currently “alive”, called population
(set of individuals/chromosomes) is evolved from one
generation (iteration) to another depending on the fitness of
individuals in a given environment, indicating how fit an
individual is, (how close it is to the optimal solution) – objective
value. (e.g., f(<2 1 3 4>)= 28)

 Hope: Last generation will contain the (near-)optimal solution37

Types of Evolutionary
Algorithms (EAs) and History

 Genetic Algorithms (evolves (bit) strings)  Turing 1948, Nils Aall
Barricelli 1954, Bremermann 1962, Holland 1975
 Memetic Algorithms  Moscato 1989

 Evolutionary Programming (evolves parameters of a program with a
fixed structure)  Fogel, Owens, Walsh 1965

 Evolution Strategies (vectors of real numbers)  Rechenberg 1965

 Genetic Programming (evolves computer programs in tree form) 
Koza 1992
 Grammatical Evolution (evolves solutions wrt a specified grammar) 

Ryan, Collins and O'Neill 1998

 Gene Expression Programming (computer programs of different sizes
are encoded in linear chromosomes of fixed length)  Ferreira 2001

 Differential Evolution (real valued optimisation)  Storn and Price
1997

…
38

A Generic Genetic Algorithm

 First Generation: Create the initial population of
solutions (set of individuals) randomly and evaluate
them.

 Next Generations: Repeat the following steps until
termination

 Select the fittest individuals for reproduction. (parents)

 Create new solutions (offspring, children) – through
crossover and mutation operations.

 Evaluate the fitness of each new solution

 Replace the least-fit solutions of the population with
new solutions.

39

Initialisation –
Binary Encoding

40

i Chromosome
.

1:
2:
3:
4:

 Assume population size is 4

 The individual/chromosome
length is 6 (since we have 6
literals: abcdef)

 So, create 4 individuals with 6
genes within their
chromosomes, where each
allele at a locus is determined
randomly (by throwing a
random number in [0,1)).

Fitness
3
3
2
1

Parent Selection

 Usually 2 parents (individuals/candidate
solutions) are selected using the same method,
which will go under the crossover operation 
e.g., roulette wheel selection, tournament
selection, rank selection, truncation selection,
Boltzmann selection, etc.

 Tournament selection runs a number of
"tournaments" among randomly chosen
individuals (of tour size) selecting the one with
best fitness at the end

41

Example –
Tournament Selection

 Throw a random number
between 1 and 4 (population
size) for 3 times:
 [3, 1, 2]

 Tournament selection
chooses 3 individuals: #1, #2
and #3 at random, then
individual#3 with the fitness
of 2 is returned as the first
parent

42

i Chromosome Fitness
1 3
2 3
3 2
4 1

tour size = 3, first parent

Example –
Tournament Selection

 Throw a random number
between 1 and 4 (population
size) for 3 times:
 [4, 1, 3]

 Tournament selection
chooses 3 individuals: #1, #3
and #4 at random, then
individual#4 with the fitness
of 1 is returned as the
second parent

43

i Chromosome Fitness
1 3
2 3
3 2
4 1

tour size = 3, second parent

Crossover
 Selected pairs/mates (parents) are recombined to form

new individuals (candidate solutions/children/offspring) –
exchange of genetic material

 Crossover is applied with a crossover probability pc
which in general is chosen close to 1.0

One Point Crossover (1PTX)

44

Randomly determined crossover point

2. Exchange the
genetic material

1. Throw a random number in [1..6]

Random number: 2

new solutions/children/offspring

Other Crossover Operators

 2 Point Crossover (2PTX)

 K-point Crossover

 Uniform Crossover (UX)
 The uniform crossover considers each bit in the

parent strings for exchange with a probability of 0.5.

45

0 0 1 0 1

1 1 1 0 0

0 1 1 0 0

1 0 1 0 1

Random
Number

0.23 0.76 0.15 0.34 0.91 0.48

1

0

1

0

Mutation
 Any offspring might be exposed to mutation
 Loop through all the alleles of all the individuals one by

one, and if that allele is selected for mutation with a given
probability pm, you can either change it by a small amount
or replace it with a new value
 For binary representation mutation corresponds to flipping a

selected gene value (01, 10)

 Mutation provides diversity and allows GA to explore
different regions of the search space (escaping)

 Mutation rate is typically chosen to be very small (0.001,
0.001). Choosing pm as (1/chromosome length) implies on
average a single gene will be mutated for an individual.

46

Example – Mutation

 A loop is performed
on each individual
 If a random value in [0,1)

is < pm =0.2 (1/5), then
the allele value is
flipped, otherwise kept
same.

47

1 0 1 1 0

Random numbers:
<0.23 0.76 0.41 0.14 0.91 0.68 0.47 0.19 0.28 0.94 0.78 0.03 …>

0

0 0 1 1 11

0

01

0.23 0.76 0.41 0.14 0.91 0.68

0.47 0.19 0.28 0.94 0.78 0.03

Replacement –
Steady-State GA

 Two offspring replace two individuals from the old
generation.

 Method#1: two offspring replace two parents
 Method#2: two offspring replace worst two of the

population
 Method#3: best two of (parents and offspring) replace

two parents (elitism)
 Method#4: best two of (parents and offspring) replace

worst two of the population (strong elitism)

48

Replacement – Transgenerational
GA Replacement (with elitism)

49

Selecting the
best 4
individuals
among both
old population
and offspring

Form the new
generation by

Offspring

i Chromosome Fitness
1 3
2 3
3 2
4 1

Old Population

i Chromosome Fitness
1 3
2 3
3 0
4 0 i Chromosome Fitness

1 2
2 1
3 0
4 0

New Population/
Generation

Metaheuristics

 [Kirkpatrick, 1983] Simulated Annealing (SA)

 [Glover, 1986] Tabu Search (TS)

 [Voudouris, 1997] Guided Local Search (GLS)

 [Stutzle, 1999] Iterated Local Search (ILS)

 [Mladenovic, 1999] Variable Neighborhood Search (VNS)

 [Holland, 1975] Genetic Algorithm (GA)

 [Smith, 1980] Genetic Programming (GP)

 [Goldberg, 1989] Genetic and Evolutionary Computation (EC)

 [Moscato, 1989] Memetic Algorithm (MA)

 [Storn & Price1997] Differential Evolution

 [Hansen, 1998] CMA-ES

 [Dorigo, 1992] Ant Colony Optimisation (ACO)

 [Resende, 1995] Greedy Randomized Adaptive Search Procedure

(GRASP)

L
o

c
a

l S
e

ar
c

h
P

o
p

u
la

ti
o

n
-b

a
s

e
d

C
o

n
st

ru
ct

iv
e

Metaheuristics

 SA T0 (initial temperature),  (cooling rate)

 TS Tabu list size

 GLS  (intensification control), a (coefficient)

 ILS mutation strength

 VNS kmin, kmax (smallest, largest neighbourhood size)

 GA

 GP population size, mutation probability

 EC

 MA

 DE scale factor, crossover rate, population size

 CMA-ES population size, number of parents

 ACO weight of pheromone, evaporation rate

 GRASP restricted candidate list parameter

51

L
o

c
a

l S
e

ar
c

h
P

o
p

u
la

ti
o

n
-b

a
s

e
d

C
o

n
st

ru
ct

iv
e

Examples of Parameters

Parameter Setting

 Parameter tuning: Finding the best initial settings for a
set of parameters before the search process starts (off-
line). E.g., fixing the mutation strength in ILS, mutation
probability in genetic algorithms, etc.
 The initial parameter setting influences the performance of a

metaheuristic

 Parameter control: Managing the settings of
parameters during the search process (online) (dynamic,
adaptive, self-adaptive). E.g., changing the mutation
strength in ILS, changing the mutation probability in
genetic algorithms during the search process
 Controlling parameter setting could yield a system which is not

sensitive to its initial setting 52

Parameter Tuning Methods

 Traditional approaches
 Use of an arbitrary setting

 Trial&error with settings based on intuition

 Use of theoretical studies

 A mixture of above

 Sequential tuning: fix parameter values
successively

 Design of experiments (E.g., Taguchi method)

 Meta-optimisation: use a metaheuristic to obtain
“optimal” parameter settings

53

(Automated)
Parameter Tuning Methods

 Sampling methods
 Efficient Global Optimisation (1998), Calibra (2006),…

 Screening methods
 I/F-Race (2002) [download: http://iridia.ulb.ac.be/irace/],...

 Meta-optimisation
 meta-GA (1986), linear GP (2005), Relevance Estimation and

Value Calibration of Parameters (2006), ParamILS (2007)
[download:http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/], Gender-based GA
(2009),…

 Model-based
 Sequential Parameter Optimization (2005) [download: https://cran.r-

project.org/web/packages/SPOT/index.html], Sequential Kriging Optimisation (2006),
Sequential Model-Based Algorithm Configuration (2010),…

54

The Art of Searching

 Effective search techniques provide a mechanism to
balance exploration and exploitation
 Exploitation aims to greedily increase solution quality or

probability, e.g., by exploiting the evaluation function

 Exploration aims to prevent stagnation of search process
getting trapped at a local optimum

 Aim is to design search algorithms/metaheuristics that can
 escape local optima

 balance exploration and exploitation

 make the search independent from the initial configuration

55

Summary

 There are various search paradigms and metaheuristics
provide guidelines for heuristic optimisation based on those
search paradigms

 There are three main classes of metaheuristics: local search
metaheuristics, population based metaheuristics and
constructive metaheuristics

 Move acceptance is a crucial component of local search
metaheuristics
 Simulated Annealing would be a good initial choice for solving an

unseen problem

 Each component of a metaheuristic influences its
performance: careful implementation and analysis required

56

Summary II

 Many (meta)heuristic optimisation/search algorithms come
with parameters which often require an initial setting (tuning)
 Parameter tuning is possible, however it is time consuming.

 There is a range of different techniques varying from
manual/semi-automated experimental design methods to
automated tuning, such as, Taguchi method, I-race.

 Parameter control as an alternative to parameter tuning changes
parameter values during the run of the algorithm

 There is no guidance indicating which method is the best,
however many studies show that parameter tuning/control often
does improve the performance of an algorithm as compared to
the variant where it is not used

57

Metaphors and New Nature
Inspired Metaheuristics

 “It is not acceptable to use a metaphor to promote an
algorithm as interesting or novel just because the metaphor
is interesting or novel for the author.” [3]

 The Journal of Heuristics fully endorses Sörensen’s view
that metaphor-based “novel” methods should not be
published if they cannot demonstrate a contribution to their
field. [Policies on Heuristic Search]

77

[1] Dennis Weyland. A rigorous analysis of the harmony search algorithm:
How the research community can be misled by a “novel” methodology, Int J
Appl Metaheuristic Comput, 1 (2) (2010), pp. 50-60. [PDF1] [PDF2]
[2] Metaheuristics – the metaphor exposed, K. Sörensen (2013) [PDF]
[3] Camacho-Villalón, C.L., Dorigo, M. & Stützle, T. The intelligent water
drops algorithm: why it cannot be considered a novel algorithm. Swarm
Intell 13, 173–192 (2019). [PDF]

Resources

1. Search methodologies: introductory tutorials in optimization and decision
support techniques - Edmund Burke, Graham Kendall c2014 [copy found
over the internet in PDF]

2. Stochastic local search: foundations and applications - Holger H. Hoos,
Thomas Stützle 2005 [Public access to an old version]

3. Metaheuristics: From Design to Implementation, El-Ghazali Talbi, DOI:
10.1002/9780470496916, John Wiley, ISBN: 9780470278581 [PDF from
ResearchGate] (this version is publically available now)

4. J. Swan, S. Adraensen, C. G. Johnson, A. Kheiri, F. Krawiec, J.J. Merelo, L.
L. Minku, E. Özcan, G. L. Pappa, P. García-Sánchez, K. Sörensen, S. Voss,
M. Wagner, D. R. White, Metaheuristics “In the Large”, European Journal
of Operational Research, Vol. 297, Issue 2, pp. 393-406, 2022,
DOI:10.1016/j.ejor.2021.05.042 (available online [PDF]), to appear.
[PDF]

5. J. H. Drake, A. Kheiri, E. Özcan, and E. K. Burke, Recent Advances in
Selection Hyper-heuristics, European Journal of Operational Research, vol.
285, no. 2, pp. 405-428, 2020, DOI:10.1016/j.ejor.2019.07.073 (invited
review) (Open Access - available online [PDF]).

79

Q&A

Thank you.

Prof Ender Özcan
ender.ozcan@nottingham.ac.uk

University of Nottingham, School of Computer Science
Jubilee Campus, Wollaton Road, Nottingham

NG8 1BB, UK
http://www.cs.nott.ac.uk/~pszeo

