
Introduction to
Optimisation using

Metaheuristics

Prof Ender Özcan

School on Advanced Topics in
Computational Mechanics

Outline

 Preliminaries
 Search spaces, search paradigms, search

methods

 Metaheuristics (Design issues)
 A classification of metaheuristics, main

components: representation, evaluation function,
neighbourhoods, escaping from local optima,
termination criteria

 Tabu Search

 Evolutionary/Genetic Algorithms
2

Optimisation Problems

Optimisation
problems are

ubiquitous

Sustainable
Energy

Engineering
Design

Additive
Manufacturing

3

 Optimisation
problems appear in
various forms
across industry,
leisure and the
public sector

 Majority of them are
computationally
hard to solve (NP
hard)

Optimisation

 Solving an optimisation problem requires
search for optimum

 Fundamental problem of optimisation is to
arrive at the best possible solution (optimal –
Xopt=argmin) in any given set of
circumstances.

 In most cases optimal is unattainable 4

maximise/minimise
subject to |
where is a vector of variables < , ,…, >, i=1..m

Search in
Continuous vs Discrete Space
 Find the optimum

setting for the angle of
the wings of a race car
providing the best
performance

 Find the tour (visiting
sequence) with the
optimum (minimum)
travelling distance,
given 81 cities.

5

19.0 Degrees

…

-8.0 Degrees

.0

Search for an Optimal Solution

6

Permutation
flowshop scheduling:
10 jobs and 7 machines

TSP:
pr1002

http://www.cs.stir.ac.uk/~goc/papers/joh-2017-global.pdf
http://www.cs.stir.ac.uk/~goc/papers/flowshop-LON-cec2017.pdf

RNA
Sequencing:
3 nucleotides

Search Paradigms I

 Single point (trajectory) based search vs.
Multi-point (population) based search

 Constructive
 Search on partial candidate solutions

vs.

 Perturbative
 Search on complete solutions

<2> <2, 1> <2, 1, 4> <2, 1, 4, 3> (26)

<2, 4, 1, 3> (32) <1, 4, 2, 3> (32) <1, 2, 4, 3> (28) <1, 2, 3, 4> (26)

7

Search Paradigms II

deterministic ←→ stochastic

systematic ←→ local search

sequential ←→ parallel

single objective ←→ multi-objective

8
[See http://www.cs.ubc.ca/~hoos/SLS-Internal/ch1.pdf pp.23-30]

Optimisation/Search Methods

Optimisation methods can be broadly classified
as:

 Exact/Exhaustive/Systematic Methods
 E.g., Dynamic Programming, Branch&Bound,

Constraint Satisfaction,…

 Inexact/Approximate/Local Search Methods
 E.g., heuristics, metaheuristics, hyper-

heuristics,…

9

Need for (meta)heuristic
optimisation methods

 Travelling salesman problem with N cities

 N=4, 24

 N=5, 120

 N=7, 5 040

 N=10, 3 628 800

 N=81, 5.797 x 10120

 Number of configurations

to search from is N! (combinatorial explosion in the search space)

 Number of particles in the universe is in between 1072 – 1087

 Japanese Fugaku (Since 2020): ~442.01 petaFLOPS (one
thousand million million/quadrillion (1015) floating-point operations
per second) – ~4.16 x 1095 years (from TOP500 project).

10

Metaheuristics

A metaheuristic is a high-level problem
independent algorithmic framework that
provides a set of guidelines or strategies to
develop heuristic optimization algorithms

Local Search Population-based Constructive

11

K. Sörensen and F. Glover. Metaheuristics. In S.I. Gass and M. Fu,
editors, Encyclopedia of Operations Research and Management
Science, pp 960–970. Springer, New York, 2013.

Metaheuristics

 [Kirkpatrick, 1983] Simulated Annealing (SA)

 [Glover, 1986] Tabu Search (TS)

 [Voudouris, 1997] Guided Local Search (GLS)

 [Stutzle, 1999] Iterated Local Search (ILS)

 [Mladenovic, 1999] Variable Neighborhood Search (VNS)

 [Holland, 1975] Genetic Algorithm (GA)

 [Smith, 1980] Genetic Programming (GP)

 [Goldberg, 1989] Genetic and Evolutionary Computation (EC)

 [Moscato, 1989] Memetic Algorithm (MA)

 [Storn & Price1997] Differential Evolution

 [Hansen, 1998] CMA-ES

 [Dorigo, 1992] Ant Colony Optimisation (ACO)

 [Resende, 1995] Greedy Randomized Adaptive Search Procedure

(GRASP)

L
o

c
a

l S
e

ar
c

h
P

o
p

u
la

ti
o

n
-b

a
s

e
d

C
o

n
st

ru
ct

iv
e

Metaheuristic frameworks and
software libraries
 HeuristicLab

 Wagner and M. Affenzeller (2015),
https://dev.heuristiclab.com/trac.fcgi/wiki/

 ECJ
 Luke (2017), https://cs.gmu.edu/˜eclab/projects/ecj/

 FOM
 Parejo et al. (2003), http://www.isa.us.es/fom/

 Opt4J,
 Lukasiewycz et al. (2011), http://opt4j.sourceforge.net/

 jMetal
 Durillo and Nebro (2011), http://jmetal.sourceforge.net/

 JAMES
 De Beukelaer et al. (2017), http://www.jamesframework.org/

 PISA
 Bleuler et al. (2003), http://www.tik.ee.ethz.ch/pisa/ 13

Applications of Metaheuristics
to Real-world Problems

 Biological Sciences and
Bioinformatics

 Computer Science

 Earth Sciences

 Engineering

 Finance and Economics

 Industry and Management

 Logistics

 Machine learning/data science

 Mathematics

 Natural Sciences

 Social Sciences

 Telecommunication, …
14

 Optimal design of laminated
composites

 Topology optimisation of porous
materials

 Solar cell design

 VLSI design

 Optimization of heat
exchangers/chemical reactors

 Engineering of conducting polymers

 Improving biopolymer functions

 Optimal control of fermentation

 Cutting and packing in
manufacturing

 Scheduling and routing, …

Main Components of
Metaheuristics

 Representation (encoding) of candidate
solutions

 Evaluation function (objective function)

 Initialisation (e.g., random)

 Neighbourhood relation (move operators)

 Mechanism for escaping from local optima

 Search process (guideline)

Guideline Encoding Initialisation Operator(s)
Escape
Method

Evaluation
Function 15

Representation

 Binary encoding is the most common
 10110010110010…1011

 E.g.: 0/1 Knapsack problem
Fill the knapsack with as much value in goods as
possible – which items to take?

1 0 0 1 1 pack items {0,3,4} 1 1 1 1 0 pack items {0,1,2,3}

 Given a binary string of length N (representing N
items), search space size is

16

2N

4

3

2

1

0

0 1 2 3 4 0 1 2 3 4

Representation (cont.)

 E.g.: Travelling salesman problem, some
sequencing problems

 Permutation encoding
 1 5 3 2 6 4 7 9 8

 Given N cities (pubs), search space size is

17

N!

A shortest-possible walking tour through the pubs of the
UK (Nottingham):

Other Representation
Schemes

 Integer encoding
 1 9 4 5 5 5 4 12 8 … 10 10 4

 Value Encoding
 1.2324 5.3243 0.4556 2.3293 2.4545

 ATGCTTCGGCAAGACTCAAAAAATA

 <(back), (back), (right), (forward), (left)>

 Nonlinear Encoding

18

(+ x (/ 5 y))

Evaluation
Function

 Also referred to as objective, cost, fitness,
penalty, etc.
 Indicates the quality of a given solution,

distinguishing between better/worse solutions

 Serves as a major link between the algorithm and
the problem being solved
 provides an important feedback for the search process

 Many types: (non)separable, uni/multi-modal,
single/multi-objective, etc.

19

Evaluation Function (cont.)

 Evaluation functions could be computationally
expensive

 Exact vs. approximate
 Common approaches to constructing approximate

models: polynomials, regression, SVMs, etc.

 Constructing a globally valid approximate model
remains difficult, and so beneficial to selectively
use the original evaluation function together with
the approximate model

20

0/1 Knapsack Problem –
Evaluation function

 Fill the knapsack with as much value in goods as
possible (i.e., maximise “profit”) without exceeding the
capacity (as a constraint) – which items to take?

 1 1 0 0 1: $8 (15 kg) feasible solution

 0 1 1 1 1: $15 (8 kg) feasible solution

 1 0 0 1 0: $14 (16 kg) not a feasible solution

 1 1 0 1 0: $16 (18 kg) not a feasible solution
21

0 1

2

3

4

0 1 2 3 4 profit
f(s)

How to Deal with
Infeasible Solutions

 Use a problem domain specific repair operator
 E.g. randomly flip a bit to 0 until the solution in hand

feasible: 1 1 0 1 0: $16 (18 kg) → 1 0 0 1 0: $14 (16 kg) → 1 0 0 0 0 $4 (12 kg)

 Penalise each constraint violation for the infeasible
solutions such that they can’t be better than the worst
feasible solution for a given instance
 Set a fixed (death) penalty value poorer than the worst,

e.g., f (s) = –2:
1 1 0 1 0: $-2 (18 kg), 1 0 0 1 0: $-2 (16 kg)

 Distinguish the level of infeasibility of a solution with the
penalty: e.g., f (s)=min_profit/(2*(total_weight-capacity)):

1 1 0 1 0: $0.167 (18 kg), 1 0 0 1 0: $0.5 (16 kg)
22

Evolutionary Algorithms for Constrained Parameter Optimization Problems Zbigniew Michalewicz and Marc Schoenauer:
https://cs.adelaide.edu.au/~zbyszek/Papers/p30.pdf

maximisation problem

Example Neighbourhood Relation
Binary Representation

 Bit-flip operator: flips a bit in a given solution

 Hamming Distance between two bit strings
(vectors) of equal length is the number of
positions at which the corresponding symbols
differ. E.g., HD(011,010)=1, HD(0101,0010)=3

 If the binary string is of size n, then the
neighbourhood size is

 Example: 1 0 1 0 0 0 1 1 → 0 0 1 0 0 0 1 1

Neighbourhood size: 8, Hamming distance: 1
23

n.

Evaluation Function – Delta
(Incremental) Evaluation

 Key idea: calculate effects of differences
between current search position s and a
neighbour s' on the evaluation function value.

 Evaluation function values often consist of
independent contributions of solution
components; hence, f(s') can be efficiently
calculated from f(s) by differences between s
and s' in terms of solution components.

 Crucial for efficient implementation of
heuristics/metaheuristics/hyper-heuristics

24

Delta Evaluation for 0-1
Knapsack

weight of the object is and its profit is
 0 1 0 … 0 0 0… 1 1 → 0 1 0 … 0 1 0… 1 1

25

f(s') = +
totalWeight(s’) = T +

f(s) =
totalWeight(s) = T

Example Neighbourhood Relation
Integer/Value Representation

 Random neighbourhood/move/perturbation/
assignment operator: a discrete value is
replaced by any other character of the alphabet.

 If the solution is of size n and alphabet is of size
k, then the neighbourhood size is

 Example: 5 7 9 6 4 4 8 3 → 0 7 9 6 4 4 8 3

Neighbourhood size: (10-1)8=72 (alphabet:0..9)

26

(k-1)n.

Example Neighbourhood Relation
Permutation Representation I

 Adjacent pairwise interchange: swap adjacent
entries in the permutation

 If permutation is of size n, then the
neighbourhood size is n-1

 Example: 5 1 4 3 2 → 1 5 4 3 2

 Insertion operator: take an entry in the
permutation and insert it in another position

 Neighbourhood size: n(n-1)

 Example: 5 1 4 3 2 → 1 4 5 3 2
27

Example Neighbourhood Relation
Permutation Representation II

 Exchange operator: arbitrarily selected two
entries are swapped

 Example: 5 4 3 1 2 → 1 4 3 5 2

 Inversion operator: select two arbitrary entries
and invert the sequence in between them

 Example: 1 4 5 3 2 → 1 3 5 4 2

28

Mechanisms for Escaping from
Local Optima I

 Iterate with different solutions, or restart (re-
initialise search whenever a local optimum is
encountered).
 Initialisation could be costly

 E.g., Iterated Local Search, GRASP

 Change the search landscape
 Change the objective function (E.g., Guided Local

Search)

 Use (mix) different neighbourhoods (E.g., Variable
Neighbourhood Search, Hyper-heuristics)

29

Mechanisms for Escaping from
Local Optima II

 Use Memory (e.g., tabu search)

 Accept non-improving moves: allow search
using candidate solutions with equal or worse
evaluation function value than the one in hand
 Could lead to long walks on plateaus (neutral regions)

during the search process, potentially causing cycles
– visiting of the same states

 None of the mechanisms is guaranteed to
always escape effectively from local optima

30

Termination Criteria (Stopping
Conditions) – Examples

 Stop if
 a fixed maximum number of iterations, or moves,

objective function evaluations), or a fixed amount of
CPU time is exceeded.

 consecutive number of iterations since the last
improvement in the best objective function value is
larger than a specified number.

 evidence can be given than an optimum solution has
been obtained. (i.e. optimum objective value is known)

 no feasible solution can be obtained for a fixed
number of steps/time. (a solution is feasible if it
satisfies all constraints in an optimisation problem)

31

Tabu Search

 Proposed independently by Glover and Hansen
in 1986 and formalised in 1989

 Uses history (memory structures) to escape from
local minima, inspired by ideas from artificial
intelligence in the late 1970s.

 Applies hill climbing/local search
 Proceeds according to the assumption that there is no

point in accepting a new (poor) solution unless it is to
avoid a path already investigated

32

Glover F 1986 Future Paths for Integer Programming and Links to Artificial Intelligence. Computers and
Operations Research. Vol. 13, pp. 533-549.

Tabu Search Algorithm

33

s = ();

Repeat

s' = findBestNeighbour(s);

if (notTabuMove(tl, s') or aspirationCriteriaCheck(s'))

s = s' ;

sbest = updateBestSolution(s');

updateTabuList(tl, s');

Until (termination conditions are satisfied)

return sbest

 Neighbourhood: 1-bit
flip

 Tabu tenure: 2
 Current iteration (ci) is

1207
 Current solution is

 Current tabu list
content: <1,3> (tail)
 This means that 1st bit was

flipped two steps ago,
while 3rd bit (c) was flipped
in the immediately previous
step.

 Consider all 1-bit flip
neighbours which are
not in the tabu list

 ᇱ

 Update tabu list: <3,4>
(tail)

An Iteration of Tabu Search for
a Minimisation Problem

Practical Considerations

 Appropriate choice of tabu tenure critical for performance

 Tabu tenure: the length of time/number of steps t for
which a move is forbidden
 t too low- risk of cycling

 t too high - may restrict the search too much

 t =7 has often been found sufficient to prevent cycling

 number of tabu moves: 5 – 9

 If a tabu move is smaller than the aspiration level then we
accept the move (use of aspiration criteria to override
tabu status)

35

nt

Evolutionary Algorithms –
Evolutionary is Revolutionary

 Nature as a Problem Solver: 4.55 Billion
years of evolution can’t be wrong.

 Beauty-of-nature argument: Complexity
achieved in short time in nature.

 Can we solve complex problems as
quickly and reliably on a computer?

36

Evolutionary Algorithms (EAs):
Terminology
 EAs are population-based metaheuristics.

 EAs simulate natural evolution (Darwinian Evolution) of
individual structures at the genetic level using the idea of
survival of the fittest via processes of selection, mutation,
and reproduction (recombination)

 An individual (chromosome) represents a candidate
solution for the problem at hand. (e.g., <2 1 3 4>)

 A collection of individuals currently “alive”, called population
(set of individuals/chromosomes) is evolved from one
generation (iteration) to another depending on the fitness of
individuals in a given environment, indicating how fit an
individual is, (how close it is to the optimal solution) – objective
value. (e.g., f(<2 1 3 4>)= 28)

 Hope: Last generation will contain the (near-)optimal solution37

Types of Evolutionary
Algorithms (EAs) and History

 Genetic Algorithms (evolves (bit) strings) Turing 1948, Nils Aall
Barricelli 1954, Bremermann 1962, Holland 1975
 Memetic Algorithms Moscato 1989

 Evolutionary Programming (evolves parameters of a program with a
fixed structure) Fogel, Owens, Walsh 1965

 Evolution Strategies (vectors of real numbers) Rechenberg 1965

 Genetic Programming (evolves computer programs in tree form)
Koza 1992
 Grammatical Evolution (evolves solutions wrt a specified grammar)

Ryan, Collins and O'Neill 1998

 Gene Expression Programming (computer programs of different sizes
are encoded in linear chromosomes of fixed length) Ferreira 2001

 Differential Evolution (real valued optimisation) Storn and Price
1997

…
38

A Generic Genetic Algorithm

 First Generation: Create the initial population of
solutions (set of individuals) randomly and evaluate
them.

 Next Generations: Repeat the following steps until
termination

 Select the fittest individuals for reproduction. (parents)

 Create new solutions (offspring, children) – through
crossover and mutation operations.

 Evaluate the fitness of each new solution

 Replace the least-fit solutions of the population with
new solutions.

39

Initialisation –
Binary Encoding

40

i Chromosome
.

1:
2:
3:
4:

 Assume population size is 4

 The individual/chromosome
length is 6 (since we have 6
literals: abcdef)

 So, create 4 individuals with 6
genes within their
chromosomes, where each
allele at a locus is determined
randomly (by throwing a
random number in [0,1)).

Fitness
3
3
2
1

Parent Selection

 Usually 2 parents (individuals/candidate
solutions) are selected using the same method,
which will go under the crossover operation
e.g., roulette wheel selection, tournament
selection, rank selection, truncation selection,
Boltzmann selection, etc.

 Tournament selection runs a number of
"tournaments" among randomly chosen
individuals (of tour size) selecting the one with
best fitness at the end

41

Example –
Tournament Selection

 Throw a random number
between 1 and 4 (population
size) for 3 times:
 [3, 1, 2]

 Tournament selection
chooses 3 individuals: #1, #2
and #3 at random, then
individual#3 with the fitness
of 2 is returned as the first
parent

42

i Chromosome Fitness
1 3
2 3
3 2
4 1

tour size = 3, first parent

Example –
Tournament Selection

 Throw a random number
between 1 and 4 (population
size) for 3 times:
 [4, 1, 3]

 Tournament selection
chooses 3 individuals: #1, #3
and #4 at random, then
individual#4 with the fitness
of 1 is returned as the
second parent

43

i Chromosome Fitness
1 3
2 3
3 2
4 1

tour size = 3, second parent

Crossover
 Selected pairs/mates (parents) are recombined to form

new individuals (candidate solutions/children/offspring) –
exchange of genetic material

 Crossover is applied with a crossover probability pc
which in general is chosen close to 1.0

One Point Crossover (1PTX)

44

Randomly determined crossover point

2. Exchange the
genetic material

1. Throw a random number in [1..6]

Random number: 2

new solutions/children/offspring

Other Crossover Operators

 2 Point Crossover (2PTX)

 K-point Crossover

 Uniform Crossover (UX)
 The uniform crossover considers each bit in the

parent strings for exchange with a probability of 0.5.

45

0 0 1 0 1

1 1 1 0 0

0 1 1 0 0

1 0 1 0 1

Random
Number

0.23 0.76 0.15 0.34 0.91 0.48

1

0

1

0

Mutation
 Any offspring might be exposed to mutation
 Loop through all the alleles of all the individuals one by

one, and if that allele is selected for mutation with a given
probability pm, you can either change it by a small amount
or replace it with a new value
 For binary representation mutation corresponds to flipping a

selected gene value (01, 10)

 Mutation provides diversity and allows GA to explore
different regions of the search space (escaping)

 Mutation rate is typically chosen to be very small (0.001,
0.001). Choosing pm as (1/chromosome length) implies on
average a single gene will be mutated for an individual.

46

Example – Mutation

 A loop is performed
on each individual
 If a random value in [0,1)

is < pm =0.2 (1/5), then
the allele value is
flipped, otherwise kept
same.

47

1 0 1 1 0

Random numbers:
<0.23 0.76 0.41 0.14 0.91 0.68 0.47 0.19 0.28 0.94 0.78 0.03 …>

0

0 0 1 1 11

0

01

0.23 0.76 0.41 0.14 0.91 0.68

0.47 0.19 0.28 0.94 0.78 0.03

Replacement –
Steady-State GA

 Two offspring replace two individuals from the old
generation.

 Method#1: two offspring replace two parents
 Method#2: two offspring replace worst two of the

population
 Method#3: best two of (parents and offspring) replace

two parents (elitism)
 Method#4: best two of (parents and offspring) replace

worst two of the population (strong elitism)

48

Replacement – Transgenerational
GA Replacement (with elitism)

49

Selecting the
best 4
individuals
among both
old population
and offspring

Form the new
generation by

Offspring

i Chromosome Fitness
1 3
2 3
3 2
4 1

Old Population

i Chromosome Fitness
1 3
2 3
3 0
4 0 i Chromosome Fitness

1 2
2 1
3 0
4 0

New Population/
Generation

Metaheuristics

 [Kirkpatrick, 1983] Simulated Annealing (SA)

 [Glover, 1986] Tabu Search (TS)

 [Voudouris, 1997] Guided Local Search (GLS)

 [Stutzle, 1999] Iterated Local Search (ILS)

 [Mladenovic, 1999] Variable Neighborhood Search (VNS)

 [Holland, 1975] Genetic Algorithm (GA)

 [Smith, 1980] Genetic Programming (GP)

 [Goldberg, 1989] Genetic and Evolutionary Computation (EC)

 [Moscato, 1989] Memetic Algorithm (MA)

 [Storn & Price1997] Differential Evolution

 [Hansen, 1998] CMA-ES

 [Dorigo, 1992] Ant Colony Optimisation (ACO)

 [Resende, 1995] Greedy Randomized Adaptive Search Procedure

(GRASP)

L
o

c
a

l S
e

ar
c

h
P

o
p

u
la

ti
o

n
-b

a
s

e
d

C
o

n
st

ru
ct

iv
e

Metaheuristics

 SA T0 (initial temperature), (cooling rate)

 TS Tabu list size

 GLS (intensification control), a (coefficient)

 ILS mutation strength

 VNS kmin, kmax (smallest, largest neighbourhood size)

 GA

 GP population size, mutation probability

 EC

 MA

 DE scale factor, crossover rate, population size

 CMA-ES population size, number of parents

 ACO weight of pheromone, evaporation rate

 GRASP restricted candidate list parameter

51

L
o

c
a

l S
e

ar
c

h
P

o
p

u
la

ti
o

n
-b

a
s

e
d

C
o

n
st

ru
ct

iv
e

Examples of Parameters

Parameter Setting

 Parameter tuning: Finding the best initial settings for a
set of parameters before the search process starts (off-
line). E.g., fixing the mutation strength in ILS, mutation
probability in genetic algorithms, etc.
 The initial parameter setting influences the performance of a

metaheuristic

 Parameter control: Managing the settings of
parameters during the search process (online) (dynamic,
adaptive, self-adaptive). E.g., changing the mutation
strength in ILS, changing the mutation probability in
genetic algorithms during the search process
 Controlling parameter setting could yield a system which is not

sensitive to its initial setting 52

Parameter Tuning Methods

 Traditional approaches
 Use of an arbitrary setting

 Trial&error with settings based on intuition

 Use of theoretical studies

 A mixture of above

 Sequential tuning: fix parameter values
successively

 Design of experiments (E.g., Taguchi method)

 Meta-optimisation: use a metaheuristic to obtain
“optimal” parameter settings

53

(Automated)
Parameter Tuning Methods

 Sampling methods
 Efficient Global Optimisation (1998), Calibra (2006),…

 Screening methods
 I/F-Race (2002) [download: http://iridia.ulb.ac.be/irace/],...

 Meta-optimisation
 meta-GA (1986), linear GP (2005), Relevance Estimation and

Value Calibration of Parameters (2006), ParamILS (2007)
[download:http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/], Gender-based GA
(2009),…

 Model-based
 Sequential Parameter Optimization (2005) [download: https://cran.r-

project.org/web/packages/SPOT/index.html], Sequential Kriging Optimisation (2006),
Sequential Model-Based Algorithm Configuration (2010),…

54

The Art of Searching

 Effective search techniques provide a mechanism to
balance exploration and exploitation
 Exploitation aims to greedily increase solution quality or

probability, e.g., by exploiting the evaluation function

 Exploration aims to prevent stagnation of search process
getting trapped at a local optimum

 Aim is to design search algorithms/metaheuristics that can
 escape local optima

 balance exploration and exploitation

 make the search independent from the initial configuration

55

Summary

 There are various search paradigms and metaheuristics
provide guidelines for heuristic optimisation based on those
search paradigms

 There are three main classes of metaheuristics: local search
metaheuristics, population based metaheuristics and
constructive metaheuristics

 Move acceptance is a crucial component of local search
metaheuristics
 Simulated Annealing would be a good initial choice for solving an

unseen problem

 Each component of a metaheuristic influences its
performance: careful implementation and analysis required

56

Summary II

 Many (meta)heuristic optimisation/search algorithms come
with parameters which often require an initial setting (tuning)
 Parameter tuning is possible, however it is time consuming.

 There is a range of different techniques varying from
manual/semi-automated experimental design methods to
automated tuning, such as, Taguchi method, I-race.

 Parameter control as an alternative to parameter tuning changes
parameter values during the run of the algorithm

 There is no guidance indicating which method is the best,
however many studies show that parameter tuning/control often
does improve the performance of an algorithm as compared to
the variant where it is not used

57

Metaphors and New Nature
Inspired Metaheuristics

 “It is not acceptable to use a metaphor to promote an
algorithm as interesting or novel just because the metaphor
is interesting or novel for the author.” [3]

 The Journal of Heuristics fully endorses Sörensen’s view
that metaphor-based “novel” methods should not be
published if they cannot demonstrate a contribution to their
field. [Policies on Heuristic Search]

77

[1] Dennis Weyland. A rigorous analysis of the harmony search algorithm:
How the research community can be misled by a “novel” methodology, Int J
Appl Metaheuristic Comput, 1 (2) (2010), pp. 50-60. [PDF1] [PDF2]
[2] Metaheuristics – the metaphor exposed, K. Sörensen (2013) [PDF]
[3] Camacho-Villalón, C.L., Dorigo, M. & Stützle, T. The intelligent water
drops algorithm: why it cannot be considered a novel algorithm. Swarm
Intell 13, 173–192 (2019). [PDF]

Resources

1. Search methodologies: introductory tutorials in optimization and decision
support techniques - Edmund Burke, Graham Kendall c2014 [copy found
over the internet in PDF]

2. Stochastic local search: foundations and applications - Holger H. Hoos,
Thomas Stützle 2005 [Public access to an old version]

3. Metaheuristics: From Design to Implementation, El-Ghazali Talbi, DOI:
10.1002/9780470496916, John Wiley, ISBN: 9780470278581 [PDF from
ResearchGate] (this version is publically available now)

4. J. Swan, S. Adraensen, C. G. Johnson, A. Kheiri, F. Krawiec, J.J. Merelo, L.
L. Minku, E. Özcan, G. L. Pappa, P. García-Sánchez, K. Sörensen, S. Voss,
M. Wagner, D. R. White, Metaheuristics “In the Large”, European Journal
of Operational Research, Vol. 297, Issue 2, pp. 393-406, 2022,
DOI:10.1016/j.ejor.2021.05.042 (available online [PDF]), to appear.
[PDF]

5. J. H. Drake, A. Kheiri, E. Özcan, and E. K. Burke, Recent Advances in
Selection Hyper-heuristics, European Journal of Operational Research, vol.
285, no. 2, pp. 405-428, 2020, DOI:10.1016/j.ejor.2019.07.073 (invited
review) (Open Access - available online [PDF]).

79

Q&A

Thank you.

Prof Ender Özcan
ender.ozcan@nottingham.ac.uk

University of Nottingham, School of Computer Science
Jubilee Campus, Wollaton Road, Nottingham

NG8 1BB, UK
http://www.cs.nott.ac.uk/~pszeo

