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Optimisation Problems

Optimisation 
problems are 

ubiquitous

Sustainable 
Energy

Engineering 
Design

Additive 
Manufacturing
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 Optimisation 
problems appear in 
various forms 
across industry, 
leisure and the 
public sector

 Majority of them are 
computationally 
hard to solve (NP 
hard)



Optimisation

 Solving an optimisation problem requires 
search for optimum

 Fundamental problem of optimisation is to 
arrive at the best possible solution (optimal –
Xopt=argmin ) in any given set of 
circumstances. 

 In most cases optimal is unattainable 4

maximise/minimise 
subject to |
where is a vector of variables < , ,…, >, i=1..m 



Search in 
Continuous vs Discrete Space
 Find the optimum

setting for the angle of 
the wings of a race car 
providing the best 
performance 

 Find the tour (visiting 
sequence) with the 
optimum (minimum) 
travelling distance, 
given 81 cities.
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Search for an Optimal Solution

6

Permutation 
flowshop scheduling:
10 jobs and 7 machines

TSP:
pr1002

http://www.cs.stir.ac.uk/~goc/papers/joh-2017-global.pdf
http://www.cs.stir.ac.uk/~goc/papers/flowshop-LON-cec2017.pdf

RNA
Sequencing:
3 nucleotides 



Search Paradigms I

 Single point (trajectory) based search vs. 
Multi-point (population) based search

 Constructive 
 Search on partial candidate solutions

vs.

 Perturbative
 Search on complete solutions

<2>  <2, 1>  <2, 1, 4>  <2, 1, 4, 3> (26) 

<2, 4, 1, 3> (32) <1, 4, 2, 3> (32)  <1, 2, 4, 3> (28)  <1, 2, 3, 4> (26)  
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Search Paradigms II

deterministic ←→ stochastic

systematic ←→ local search

sequential ←→ parallel

single objective ←→ multi-objective  

8
[See http://www.cs.ubc.ca/~hoos/SLS-Internal/ch1.pdf pp.23-30]



Optimisation/Search Methods

Optimisation methods can be broadly classified 
as:

 Exact/Exhaustive/Systematic Methods
 E.g., Dynamic Programming, Branch&Bound, 

Constraint Satisfaction,…

 Inexact/Approximate/Local Search Methods
 E.g., heuristics, metaheuristics, hyper-

heuristics,…
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Need for (meta)heuristic 
optimisation methods

 Travelling salesman problem with N cities

 N=4,     24

 N=5,     120

 N=7,     5 040

 N=10,   3 628 800

 N=81,   5.797 x 10120

 Number of configurations

to search from is N! (combinatorial explosion in the search space)

 Number of particles in the universe  is in between 1072 – 1087

 Japanese Fugaku (Since 2020):  ~442.01 petaFLOPS (one 
thousand million million/quadrillion (1015) floating-point operations 
per second) – ~4.16 x 1095 years (from TOP500 project).
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Metaheuristics

A metaheuristic is a high-level problem 
independent algorithmic framework that  
provides a set of guidelines or strategies to 
develop heuristic optimization algorithms

Local Search   Population-based    Constructive

11

K. Sörensen and F. Glover. Metaheuristics. In S.I. Gass and M. Fu, 
editors, Encyclopedia of Operations Research and Management 
Science, pp 960–970. Springer, New York, 2013.



Metaheuristics

 [Kirkpatrick, 1983] Simulated Annealing (SA)

 [Glover, 1986] Tabu Search (TS)

 [Voudouris, 1997] Guided Local Search (GLS)

 [Stutzle, 1999] Iterated Local Search (ILS)

 [Mladenovic, 1999] Variable Neighborhood Search (VNS)

 [Holland,  1975] Genetic Algorithm (GA)

 [Smith, 1980] Genetic Programming (GP)

 [Goldberg, 1989] Genetic and Evolutionary Computation (EC)

 [Moscato, 1989] Memetic Algorithm (MA)

 [Storn & Price1997] Differential Evolution

 [Hansen, 1998] CMA-ES

 [Dorigo, 1992] Ant Colony Optimisation (ACO)

 [Resende, 1995] Greedy Randomized Adaptive Search Procedure 

(GRASP)
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Metaheuristic frameworks and 
software libraries
 HeuristicLab

 Wagner and M. Affenzeller (2015), 
https://dev.heuristiclab.com/trac.fcgi/wiki/

 ECJ
 Luke (2017), https://cs.gmu.edu/˜eclab/projects/ecj/

 FOM
 Parejo et al. (2003), http://www.isa.us.es/fom/

 Opt4J, 
 Lukasiewycz et al. (2011), http://opt4j.sourceforge.net/

 jMetal
 Durillo and Nebro (2011), http://jmetal.sourceforge.net/

 JAMES 
 De Beukelaer et al. (2017), http://www.jamesframework.org/

 PISA 
 Bleuler et al. (2003), http://www.tik.ee.ethz.ch/pisa/ 13



Applications of Metaheuristics 
to Real-world Problems

 Biological Sciences and 
Bioinformatics

 Computer Science 

 Earth Sciences

 Engineering

 Finance and Economics

 Industry and Management

 Logistics

 Machine learning/data science

 Mathematics 

 Natural Sciences

 Social Sciences

 Telecommunication, …
14

 Optimal design of laminated 
composites 

 Topology optimisation of porous 
materials

 Solar cell design

 VLSI design

 Optimization of heat 
exchangers/chemical reactors

 Engineering of conducting polymers

 Improving biopolymer functions

 Optimal control of  fermentation

 Cutting and packing in 
manufacturing

 Scheduling and routing, …



Main Components of 
Metaheuristics

 Representation (encoding) of candidate 
solutions

 Evaluation function (objective function)

 Initialisation (e.g., random)

 Neighbourhood relation (move operators)

 Mechanism for escaping from local optima

 Search process (guideline)

Guideline Encoding Initialisation Operator(s)
Escape
Method

Evaluation
Function 15



Representation

 Binary encoding is the most common
 10110010110010…1011

 E.g.: 0/1 Knapsack problem
Fill the knapsack with as much value in goods as 
possible – which items to take?

1 0 0 1 1 pack items {0,3,4}   1 1 1 1 0 pack items {0,1,2,3}

 Given a binary string of length N (representing N
items), search space size is

16

2N

4

3

2

1

0

0 1 2 3 4 0 1 2 3 4



Representation (cont.)

 E.g.: Travelling salesman problem, some 
sequencing problems

 Permutation encoding 
 1 5 3 2 6 4 7 9 8

 Given N cities (pubs), search space size is


17

N!

A shortest-possible walking tour through the pubs of the 
UK (Nottingham):



Other Representation 
Schemes

 Integer encoding 
 1 9 4 5 5 5 4 12 8 … 10 10 4

 Value Encoding
 1.2324 5.3243 0.4556 2.3293 2.4545

 ATGCTTCGGCAAGACTCAAAAAATA

 <(back), (back), (right), (forward), (left)>

 Nonlinear Encoding


18

( + x ( / 5 y ) )



Evaluation 
Function

 Also referred to as objective, cost, fitness, 
penalty, etc.
 Indicates the quality of a given solution,    

distinguishing between better/worse solutions

 Serves as a major link between the algorithm and 
the problem being solved
 provides an important feedback for the search process

 Many types: (non)separable, uni/multi-modal, 
single/multi-objective, etc.

19



Evaluation Function (cont.)

 Evaluation functions could be computationally 
expensive

 Exact vs. approximate 
 Common approaches to constructing approximate 

models: polynomials, regression, SVMs, etc.

 Constructing a globally valid approximate model 
remains difficult, and so beneficial to selectively 
use the original evaluation function together with 
the approximate model

20



0/1 Knapsack Problem –
Evaluation function

 Fill the knapsack with as much value in goods as 
possible (i.e., maximise “profit”) without exceeding the 
capacity (as a constraint) – which items to take?

 1 1 0 0 1: $8   (15 kg) feasible solution  

 0 1 1 1 1: $15 (8 kg) feasible solution 

 1 0 0 1 0: $14 (16 kg) not a feasible solution

 1 1 0 1 0: $16 (18 kg) not a feasible solution
21
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How to Deal with 
Infeasible Solutions

 Use a problem domain specific repair operator 
 E.g. randomly flip a bit to 0 until the solution in hand 

feasible: 1 1 0 1 0: $16 (18 kg) → 1 0 0 1 0: $14 (16 kg) → 1 0 0 0 0 $4 (12 kg)

 Penalise each constraint violation for the infeasible 
solutions such that they can’t be better than the worst 
feasible solution for a given instance
 Set a fixed (death) penalty value poorer than the worst, 

e.g., f (s) = –2:                       
1 1 0 1 0: $-2 (18 kg), 1 0 0 1 0: $-2 (16 kg)  

 Distinguish the level of infeasibility of a solution with the 
penalty: e.g., f (s)=min_profit/(2*(total_weight-capacity)):  

1 1 0 1 0: $0.167 (18 kg),  1 0 0 1 0: $0.5 (16 kg) 
22

Evolutionary Algorithms for Constrained Parameter Optimization Problems Zbigniew Michalewicz and Marc Schoenauer: 
https://cs.adelaide.edu.au/~zbyszek/Papers/p30.pdf

maximisation problem



Example Neighbourhood Relation 
Binary Representation

 Bit-flip operator: flips a bit in a given solution

 Hamming Distance between two bit strings 
(vectors) of equal length is the number of 
positions at which the corresponding symbols 
differ. E.g., HD(011,010)=1, HD(0101,0010)=3

 If the binary string is of size n, then the 
neighbourhood size is

 Example:  1 0 1 0 0 0 1 1 → 0 0 1 0 0 0 1 1

Neighbourhood size: 8, Hamming distance: 1
23

n.



Evaluation Function – Delta 
(Incremental) Evaluation

 Key idea: calculate effects of differences 
between current search position s and a
neighbour s' on the evaluation function value.

 Evaluation function values often consist of 
independent contributions of solution 
components; hence, f(s') can be efficiently 
calculated from f(s) by differences between s
and s' in terms of solution components.

 Crucial for efficient implementation of 
heuristics/metaheuristics/hyper-heuristics

24



Delta Evaluation for 0-1 
Knapsack

weight of the object is  and its profit is 
 0 1 0 … 0 0 0… 1 1   →   0 1 0 … 0 1 0… 1 1 

25

f(s') =  + 
totalWeight(s’) = T + 

f(s) = 
totalWeight(s) = T



Example Neighbourhood Relation 
Integer/Value Representation

 Random neighbourhood/move/perturbation/ 
assignment operator: a discrete value is 
replaced by any other character of the alphabet. 

 If the solution is of size n and alphabet is of size
k, then the neighbourhood size is

 Example: 5 7 9 6 4 4 8 3 → 0 7 9 6 4 4 8 3

Neighbourhood size: (10-1)8=72 (alphabet:0..9)

26

(k-1)n.



Example Neighbourhood Relation
Permutation Representation I

 Adjacent pairwise interchange: swap adjacent 
entries in the permutation

 If permutation is of size n, then the 
neighbourhood size is n-1

 Example: 5 1 4 3 2 → 1 5 4 3 2

 Insertion operator: take an entry in the 
permutation and insert it in another position

 Neighbourhood size: n(n-1)

 Example: 5 1 4 3 2 → 1 4 5 3 2
27



Example Neighbourhood Relation
Permutation Representation II

 Exchange operator: arbitrarily selected two 
entries are swapped

 Example: 5 4 3 1 2 → 1 4 3 5 2

 Inversion operator: select two arbitrary entries 
and invert the sequence in between them

 Example: 1 4 5 3 2 → 1 3 5 4 2

28



Mechanisms for Escaping from 
Local Optima I

 Iterate with different solutions, or restart (re-
initialise search whenever a local optimum is 
encountered). 
 Initialisation could be costly

 E.g., Iterated Local Search, GRASP

 Change the search landscape
 Change the objective function (E.g., Guided Local 

Search)

 Use (mix) different neighbourhoods (E.g., Variable 
Neighbourhood Search, Hyper-heuristics)

29



Mechanisms for Escaping from 
Local Optima II

 Use Memory (e.g., tabu search)

 Accept non-improving moves: allow search 
using candidate solutions with equal or worse 
evaluation function value than the one in hand
 Could lead to long walks on plateaus (neutral regions) 

during the search process, potentially causing cycles 
– visiting of the same states

 None of the mechanisms is guaranteed to 
always escape effectively from local optima

30



Termination Criteria (Stopping 
Conditions) – Examples 

 Stop if
 a fixed maximum number of iterations, or moves, 

objective function evaluations), or a fixed amount of 
CPU time is exceeded.

 consecutive number of iterations since the last 
improvement in the best objective function value is 
larger than a specified number. 

 evidence can be given than an optimum solution has 
been obtained. (i.e. optimum objective value is known)

 no feasible solution can be obtained for a fixed 
number of steps/time. (a solution is feasible if it 
satisfies all constraints in an optimisation problem)

31



Tabu Search

 Proposed independently by Glover and Hansen 
in 1986 and formalised in 1989

 Uses history (memory structures) to escape from 
local minima, inspired by ideas from artificial 
intelligence in the late 1970s.

 Applies hill climbing/local search
 Proceeds according to the assumption that there is no 

point in accepting a new (poor) solution unless it is to 
avoid a path already investigated

32

Glover F 1986 Future Paths for Integer Programming and Links to Artificial Intelligence. Computers and 
Operations Research. Vol. 13, pp. 533-549. 



Tabu Search Algorithm

33

s = (); 

Repeat

s' = findBestNeighbour(s);

if (notTabuMove(tl, s') or aspirationCriteriaCheck(s'))

s = s' ;

sbest = updateBestSolution(s');

updateTabuList(tl, s');

Until (termination conditions are satisfied) 

return sbest



 Neighbourhood: 1-bit 
flip

 Tabu tenure: 2
 Current iteration (ci) is 

1207
 Current solution is     

 Current tabu list 
content: <1,3> (tail) 
 This means that 1st bit was 

flipped two steps ago, 
while 3rd bit (c) was flipped 
in the immediately previous 
step.

 Consider all 1-bit flip 
neighbours which are 
not in the tabu list







 ᇱ

 Update tabu list: <3,4> 
(tail)

An Iteration of Tabu Search for 
a Minimisation Problem



Practical Considerations

 Appropriate choice of tabu tenure critical for performance

 Tabu tenure: the length of time/number of steps t for 
which a move is forbidden
 t too low- risk of cycling

 t too high - may restrict the search too much

 t =7 has often been found sufficient to prevent cycling



 number of tabu moves: 5 – 9 

 If a tabu move is smaller than the aspiration level then we 
accept the move (use of aspiration criteria to override 
tabu status)

35
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Evolutionary Algorithms –
Evolutionary is Revolutionary

 Nature as a Problem Solver: 4.55 Billion 
years of evolution can’t be wrong.

 Beauty-of-nature argument: Complexity 
achieved in short time in nature. 

 Can we solve complex problems as 
quickly and reliably on a computer?

36



Evolutionary Algorithms (EAs): 
Terminology 
 EAs are population-based metaheuristics.

 EAs simulate natural evolution (Darwinian Evolution) of 
individual structures at the genetic level using the idea of 
survival of the fittest via processes of selection, mutation, 
and reproduction (recombination)

 An individual (chromosome) represents a candidate       
solution for the problem at hand. (e.g., <2 1 3 4>)

 A collection of individuals currently “alive”, called population
(set of individuals/chromosomes) is evolved from one 
generation (iteration) to another depending on the fitness of 
individuals in a given environment, indicating how fit an 
individual is, (how close it is to the optimal solution) – objective 
value. (e.g., f(<2 1 3 4>)= 28 )

 Hope: Last generation will contain the (near-)optimal solution37



Types of Evolutionary 
Algorithms (EAs) and History

 Genetic Algorithms (evolves (bit) strings)  Turing 1948, Nils Aall
Barricelli 1954, Bremermann 1962, Holland 1975 
 Memetic Algorithms  Moscato 1989

 Evolutionary Programming (evolves parameters of a program with a 
fixed structure)  Fogel, Owens, Walsh 1965

 Evolution Strategies (vectors of real numbers)  Rechenberg 1965

 Genetic Programming (evolves computer programs in tree form) 
Koza 1992
 Grammatical Evolution (evolves solutions wrt a specified grammar) 

Ryan, Collins and O'Neill 1998

 Gene Expression Programming (computer programs of different sizes 
are encoded in linear chromosomes of fixed length)  Ferreira 2001

 Differential Evolution (real valued optimisation)  Storn and Price 
1997

…
38



A Generic Genetic Algorithm

 First Generation: Create the initial population of 
solutions (set of individuals) randomly and evaluate 
them. 

 Next Generations: Repeat the following steps until 
termination

 Select the fittest individuals for reproduction. (parents)

 Create new solutions (offspring, children) – through 
crossover and mutation operations.

 Evaluate the fitness of each new solution

 Replace the least-fit solutions of the population with 
new solutions.

39



Initialisation –
Binary Encoding

40

i Chromosome
.

1:
2:
3:
4:

 Assume population size is 4

 The individual/chromosome 
length is 6 (since we have 6 
literals: abcdef)

 So, create 4 individuals with 6 
genes within their 
chromosomes, where each 
allele at  a locus is determined 
randomly (by throwing a 
random number in [0,1)).

Fitness
3
3
2
1



Parent Selection

 Usually 2 parents (individuals/candidate 
solutions) are selected using the same method, 
which will go under the crossover operation 
e.g., roulette wheel selection, tournament 
selection, rank selection, truncation selection, 
Boltzmann selection, etc.

 Tournament selection runs a number of 
"tournaments" among  randomly chosen 
individuals (of tour size) selecting the one with 
best fitness at the end

41



Example –
Tournament Selection

 Throw a random number 
between 1 and 4 (population 
size) for 3 times:
 [3, 1, 2]

 Tournament selection 
chooses 3 individuals: #1, #2 
and #3 at random, then 
individual#3 with the fitness 
of 2 is returned as the first 
parent

42

i Chromosome Fitness
1 3 
2 3 
3 2 
4 1 

tour size = 3, first parent



Example –
Tournament Selection

 Throw a random number 
between 1 and 4 (population 
size) for 3 times:
 [4, 1, 3]

 Tournament selection 
chooses 3 individuals: #1, #3 
and #4 at random, then 
individual#4 with the fitness 
of 1 is returned as the 
second parent

43

i Chromosome Fitness
1 3 
2 3 
3 2 
4 1 

tour size = 3, second parent



Crossover
 Selected pairs/mates (parents) are recombined to form 

new individuals (candidate solutions/children/offspring) –
exchange of genetic material

 Crossover is applied with a crossover probability pc
which in general is chosen close to 1.0

One Point Crossover (1PTX)

44

Randomly determined crossover point

2. Exchange the 
genetic material

1. Throw a random number in [1..6]

Random number: 2

new solutions/children/offspring



Other Crossover Operators

 2 Point Crossover (2PTX)

 K-point Crossover

 Uniform Crossover (UX)
 The uniform crossover considers each bit in the 

parent strings for exchange with a probability of 0.5.

45

0 0 1 0 1

1 1 1 0 0

0 1 1 0 0

1 0 1 0 1

Random 
Number

0.23    0.76    0.15    0.34   0.91   0.48

1

0

1

0



Mutation
 Any offspring might be exposed to mutation 
 Loop through all the alleles of all the individuals one by 

one, and if that allele is selected for mutation with a given 
probability pm, you can either change it by a small amount 
or replace it with a new value
 For binary representation mutation corresponds to flipping a 

selected gene value (01, 10)

 Mutation provides diversity and allows GA to explore 
different regions of the search space (escaping)

 Mutation rate is typically chosen to be very small (0.001, 
0.001). Choosing pm as (1/chromosome length) implies on 
average a single gene will be mutated for an individual.

46



Example – Mutation 

 A loop is performed 
on each individual 
 If a random value in [0,1) 

is < pm =0.2 (1/5), then 
the allele value is 
flipped, otherwise kept 
same.  

47

1 0 1 1 0

Random numbers:
<0.23    0.76    0.41    0.14   0.91   0.68  0.47    0.19    0.28    0.94   0.78    0.03 …>

0

0 0 1 1 11

0

01

0.23 0.76 0.41 0.14 0.91 0.68

0.47 0.19 0.28 0.94 0.78 0.03



Replacement –
Steady-State GA 

 Two offspring replace two individuals from the old 
generation. 

 Method#1: two offspring replace two parents 
 Method#2: two offspring replace worst two of the 

population 
 Method#3: best two of (parents and offspring) replace 

two parents (elitism)
 Method#4: best two of (parents and offspring) replace 

worst two of the population (strong elitism)

48



Replacement – Transgenerational 
GA Replacement (with elitism)

49

Selecting the 
best 4 
individuals 
among both 
old population 
and offspring

Form the new 
generation by

Offspring

i Chromosome Fitness
1 3 
2 3 
3 2 
4 1 

Old Population

i Chromosome Fitness
1 3 
2 3 
3 0 
4 0 i Chromosome Fitness

1 2 
2 1 
3 0 
4 0 

New Population/ 
Generation



Metaheuristics

 [Kirkpatrick, 1983] Simulated Annealing (SA)

 [Glover, 1986] Tabu Search (TS)

 [Voudouris, 1997] Guided Local Search (GLS)

 [Stutzle, 1999] Iterated Local Search (ILS)

 [Mladenovic, 1999] Variable Neighborhood Search (VNS)

 [Holland,  1975] Genetic Algorithm (GA)

 [Smith, 1980] Genetic Programming (GP)

 [Goldberg, 1989] Genetic and Evolutionary Computation (EC)

 [Moscato, 1989] Memetic Algorithm (MA)

 [Storn & Price1997] Differential Evolution

 [Hansen, 1998] CMA-ES

 [Dorigo, 1992] Ant Colony Optimisation (ACO)

 [Resende, 1995] Greedy Randomized Adaptive Search Procedure 

(GRASP)
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Metaheuristics

 SA T0 (initial temperature),  (cooling rate)

 TS Tabu list size

 GLS  (intensification control), a (coefficient)

 ILS mutation strength

 VNS kmin, kmax (smallest, largest neighbourhood size)

 GA 

 GP population size, mutation probability

 EC

 MA

 DE scale factor, crossover rate, population size

 CMA-ES population size, number of parents

 ACO weight of pheromone, evaporation rate

 GRASP restricted candidate list parameter

51
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Examples of Parameters



Parameter Setting

 Parameter tuning: Finding the best initial settings for a 
set of parameters before the search process starts (off-
line). E.g., fixing the mutation strength in ILS, mutation 
probability in genetic algorithms, etc.
 The initial parameter setting influences the performance of a 

metaheuristic

 Parameter control: Managing the settings of 
parameters during the search process (online) (dynamic, 
adaptive, self-adaptive). E.g., changing the mutation 
strength in ILS, changing the mutation probability in 
genetic algorithms during the search process
 Controlling parameter setting could yield a system which is not 

sensitive to its initial setting 52



Parameter Tuning Methods

 Traditional approaches
 Use of an arbitrary setting

 Trial&error with settings based on intuition

 Use of theoretical studies 

 A mixture of above

 Sequential tuning: fix parameter values 
successively

 Design of experiments (E.g., Taguchi method)

 Meta-optimisation: use a metaheuristic to obtain 
“optimal” parameter settings

53



(Automated) 
Parameter Tuning Methods

 Sampling methods 
 Efficient Global Optimisation (1998), Calibra (2006),…

 Screening methods
 I/F-Race (2002) [download: http://iridia.ulb.ac.be/irace/],...

 Meta-optimisation
 meta-GA (1986), linear GP (2005), Relevance Estimation and 

Value Calibration of Parameters (2006), ParamILS (2007) 
[download:http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/ ], Gender-based GA 
(2009),… 

 Model-based
 Sequential Parameter Optimization (2005) [download: https://cran.r-

project.org/web/packages/SPOT/index.html], Sequential Kriging Optimisation (2006), 
Sequential Model-Based Algorithm Configuration (2010),…

54



The Art of Searching

 Effective search techniques provide a mechanism to 
balance exploration and exploitation
 Exploitation aims to greedily increase solution quality or 

probability, e.g., by exploiting the evaluation function

 Exploration aims to prevent stagnation of search process 
getting trapped at a local optimum

 Aim is to design search algorithms/metaheuristics that can
 escape local optima

 balance exploration and exploitation

 make the search independent from the initial configuration

55



Summary

 There are various search paradigms and metaheuristics 
provide guidelines for heuristic optimisation based on those 
search paradigms

 There are three main classes of metaheuristics: local search 
metaheuristics, population based metaheuristics and 
constructive metaheuristics

 Move acceptance is a crucial component of local search 
metaheuristics 
 Simulated Annealing would be a good initial choice for solving an 

unseen problem

 Each component of a metaheuristic influences its 
performance: careful implementation and analysis required

56



Summary II

 Many (meta)heuristic optimisation/search algorithms come 
with parameters which often require an initial setting (tuning)
 Parameter tuning is possible, however it is time consuming.

 There is a range of different techniques varying from 
manual/semi-automated experimental design methods to 
automated tuning, such as, Taguchi method, I-race.

 Parameter control as an alternative to parameter tuning changes 
parameter values during the run of the algorithm 

 There is no guidance indicating which method is the best, 
however many studies show that parameter tuning/control often 
does improve the performance of an algorithm as compared to 
the variant where it is not used

57



Metaphors and New Nature 
Inspired Metaheuristics

 “It is not acceptable to use a metaphor to promote an 
algorithm as interesting or novel just because the metaphor 
is interesting or novel for the author.” [3]

 The Journal of Heuristics fully endorses Sörensen’s view 
that metaphor-based “novel” methods should not be 
published if they cannot demonstrate a contribution to their 
field. [Policies on Heuristic Search]

77

[1] Dennis Weyland. A rigorous analysis of the harmony search algorithm: 
How the research community can be misled by a “novel” methodology, Int J 
Appl Metaheuristic Comput, 1 (2) (2010), pp. 50-60. [PDF1] [PDF2]
[2] Metaheuristics – the metaphor exposed, K. Sörensen (2013) [PDF]
[3] Camacho-Villalón, C.L., Dorigo, M. & Stützle, T. The intelligent water
drops algorithm: why it cannot be considered a novel algorithm. Swarm 
Intell 13, 173–192 (2019). [PDF]



Resources

1. Search methodologies: introductory tutorials in optimization and decision 
support techniques - Edmund Burke, Graham Kendall c2014 [copy found 
over the internet in PDF]

2. Stochastic local search: foundations and applications - Holger H. Hoos, 
Thomas Stützle 2005 [Public access to an old version]

3. Metaheuristics: From Design to Implementation, El-Ghazali Talbi, DOI: 
10.1002/9780470496916, John Wiley, ISBN: 9780470278581 [PDF from 
ResearchGate] (this version is publically available now)

4. J. Swan, S. Adraensen, C. G. Johnson, A. Kheiri, F. Krawiec, J.J. Merelo, L. 
L. Minku, E. Özcan, G. L. Pappa, P. García-Sánchez, K. Sörensen, S. Voss, 
M. Wagner, D. R. White, Metaheuristics “In the Large”, European Journal 
of Operational Research, Vol. 297, Issue 2, pp. 393-406, 2022, 
DOI:10.1016/j.ejor.2021.05.042 (available online [PDF]), to appear. 
[PDF]

5. J. H. Drake, A. Kheiri, E. Özcan, and E. K. Burke, Recent Advances in 
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