Introduction to
Optimisation using
Metaheuristics

Prof Ender Ozcan

School on Advanced Topics in gorppqta:;ona;
. . ptimisation
Computational Mechanics

Learning Lab

3 The University of
UK{HICHE ﬂ'. Nottingham

Ve

2 O 2 2 }f’ UNITED KINGDOM « CHINA - MALAYSIA
AP



"";\ |
| |
M-

e Preliminaries

Search spaces, search paradigms, search
methods

o Metaheuristics (Design issues)

A classification of metaheuristics, main
components: representation, evaluation function,
neighbourhoods, escaping from local optima,
termination criteria

Tabu Search
Evolutionary/Genetic Algorithms



Optimisation Problems g

o Optimisation
problems appear in PRI sustainable
various forms
across industry,

leisure and the Engineering
: Design

public sector

o Majority of them are
computationally = |Additive
Manufacturing
hard to solve (NP
hard)



Optimisation gt

maximise/minimise z = f(X),
subject to g;(X)<b;, (=12
where X is a vector of variables < x;, x,,..., x,,>, i=1l..m

e Solving an optimisation problem requires
search for optimum

e Fundamental problem of optimisation is to

arrive at the best possible solution (optimal —
Xopt=argmin z) in any given set of
circumstances.

e |In most cases optimal is unattainable i



Search In

Continuous vs Discrete Space

e Find the optimum
setting for the angle of
the wings of a race car
providing the best
performance

e Find the tour (visiting
sequence) with the
optimum (minimum)
travelling distance,
given 81 cities.

0 8.0 Degrees



Search for an Optimal Solution

RNA
2. Sequencing:
.4, 3 nucleotides

..:.‘
. %
~

- .
» ‘.’.u'

2 ]

B.0x10° 1.0x10"

Probability

Generations

o Serine Codon
. Mon-serine

. http://www.cs.stir.ac.uk/~goc/papers/joh-2017-global.pdf

http://www.cs.stir.ac.uk/~goc/papers/flowshop- ON-cec2017.pdf
6




Search Paradigms | S

S~
e Single point (trajectory) based search vs.
Multi-point (population) based search
o Constructive N Oj“‘% )
Search on partial candidate solutions _
<2> > <2,1>><2,1,4> > <2,1, 4, 3> (26) city4® @ eIy

VS.

e Perturbative

Search on complete solutions
<2,4,1,3>(32)> <1, 4, 2,3> (32) > <1, 2,4, 3> (28) — <1, 2, 3, 4> (26)

7



Search Paradigms li

deterministic «——|stochastic

systematic «——|local search

sequential «—— parallel

single objective «—— multi-objective

[See pp.23-30]




Optimisation/Search Methods 7

n.
--Ww

Optimisation methods can be broadly classified
as:

o Exact/Exhaustive/Systematic Methods

E.g., Dynamic Programming, Branch&Bound,
Constraint Satisfaction,...

e |Inexact/Approximate/Local Search Methods

E.g., heuristics, metaheuristics, hyper-
heuristics,...




Need for (meta)heuristic
optimisation methods P

o Travelling salesman problem with N cities

o N=4, 24 -

° =5, 120 R

e N=7, 5040

° N=10, 3628 800 ", WSS e
o N=81, 5.797 x 10120 S T

e Number of configurations
to search from is N! (combinatorial explosion in the search space)
o Number of particles in the universe is in between 1072 — 108/

o Japanese Fugaku (Since 2020): ~442.01 petaFLOPS (one
thousand million million/quadrillion (10'°) floating-point operations
per second) — ~4.16 x 10% years (from project).

10



Metaheuristics

A metaheuristic is a high-level problem
independent algorithmic framework that

provides a set of guidelines or strategies to
develop heuristic optimization algorithms

Local Search Population-based Constructive

K. Sorensen and F. Glover. Metaheuristics. In S.l. Gass and M. Fu,
editors, Encyclopedia of Operations Research and Management
Science, pp 960-970. Springer, New York, 2013.

11



Local Search

Population-based

Constructive

Metaheuristics

e [Kirkpatrick, 1983]
o [Glover, 1986]

e [Voudouris, 1997]
o [Stutzle, 1999]

e [Mladenovic, 1999]
e [Holland, 1975]

e [Smith, 1980]

o [Goldberg, 1989]

e [Moscato, 1989]

e [Storn & Price1997]
e [Hansen, 1998]

e [Dorigo, 1992]

e [Resende, 1995]

Simulated Annealing (SA) Ragan s
Tabu Search (TS)

Guided Local Search (GLS)

lterated Local Search (ILS)

Variable Neighborhood Search (VNS)

Genetic Algorithm (GA)

Genetic Programming (GP)

Genetic and Evolutionary Computation (EC)
Memetic Algorithm (MA)

Differential Evolution

CMA-ES

Ant Colony Optimisation (ACO)

Greedy Randomized Adaptive Search Procedure
(GRASP)



Metaheuristic frameworks and
software libraries

e HeuristicLab

Wagner and M. Affenzeller (2015),
https://dev.heuristiclab.com/trac.fcgi/wiki/

o ECJ
Luke (2017), https://cs.gmu.edu/"eclab/projects/ecj/
e FOM
Parejo et al. (2003), http://www.isa.us.es/fom/
e Opt4d,
Lukasiewycz et al. (2011), http://optdj.sourceforge.net/
e jMetal
Durillo and Nebro (2011), http://jmetal.sourceforge.net/
o JAMES
De Beukelaer et al. (2017), http://www.jamesframework.org/
o PISA
Bleuler et al. (2003), http://www.tik.ee.ethz.ch/pisa/ 13




Applications of Metaheuristics

to Real-world Problems brereel®

e Biological Sciences and
Bioinformatics

e Computer Science

e Earth Sciences

e Engineering

e Finance and Economics

e Industry and Management
e Logistics

e Machine learning/data science
e Mathematics

e Natural Sciences

e Social Sciences

e Telecommunication, ...

Optimal design of laminated
composites

Topology optimisation of porous
materials

Solar cell design

VLSI design

Optimization of heat
exchangers/chemical reactors

Engineering of conducting polymers
Improving biopolymer functions
Optimal control of fermentation
Cutting and packing in
manufacturing

Scheduling and routing, ... y



Main Components of
Metaheuristics o

Representation (encoding) of candidate
solutions

Evaluation function (objective function)
Initialisation (e.g., random)
Neighbourhood relation (move operators)
Mechanism for escaping from local optima
Search process (guideline)

Escape Evaluation

Guideline Encoding Initialisation Operator(s) Method Function 1
5



Representation

o Binary encoding is the most common & . [

15 K Q\

10110010110010...1011 A ~

2 1

o E.g.: 0/1 Knapsack problem 3

Fill the knapsack with as much value in goods as
possible — which items to take?

10011 packitems {0,3,4} 11110 pack items {0,1,2,3}

e Given a binary string of length N (representing N
items), search space size is 2V

16



Representation (cont.)

e E.g.: Travelling salesman problem, some
Seq u e nC| ng prObIe mS G;f}({)\lr;?tsi;—gﬁas;iile walking to'u\r through the pgb§ of the

= u y [\\16 5 \\VK\
o Permutation encoding ﬁfx; -
NS T ':& e
1532647938 piR
-

e Given N cities (pubs), search space size is
N!

17



Other Representation
Schemes

e Integer encoding
1945554128...10104

e Value Encoding
1.2324 5.3243 0.4556 2.3293 2.4545
ATGCTTCGGCAAGACTCAAAAAATA
<(back), (back), (right), (forward), (left)>

e Nonlinear Encoding

c oD (+x(/5y))

18



Evaluation
Function

« Representation (encoding) of candidate

solutions

e Evaluation function

e Initialisation (e.g., random)
¢ Neighbourhood relation (move operators)

. e
« Search process (guideline) [ EQ‘
e Mechanism for escaping from local optima h""'"'"""w

e Also referred to as objective, cost, fithess,

penalty, etc.

Indicates the quality of a given solution,
distinguishing between better/worse solutions

e Serves as a major link between the algorithm and

the problem being solved

provides an important feedback for the search process
e Many types: (non)separable, uni/multi-modal,

single/multi-objective, etc.

19



Evaluation Function (cont.) oy

o Evaluation functions could be computationally
expensive

e Exact vs. approximate

Common approaches to constructing approximate
models: polynomials, regression, SVMs, etc.

Constructing a globally valid approximate model
remains difficult, and so beneficial to selectively
use the original evaluation function together with
the approximate model

20



0/1 Knapsack Problem —
Evaluation function e

o Fill the knapsack with as much value in goods as
possible (i.e., maximise “profit”) without exceeding the
capacity (as a constraint) — which items to take?

e 11001:%8 (15kg) —— feasible solution
e 01111:%515(8kg) — feasible solution
e 10010:$14 (16 kg) —— not a feasible solution
e 11010:%$46 (18 kg) —— not a feasible solution

21




maximisation problem

1
‘e ? o

How to Deal with
Infeasible Solutions .. §%™

=3
o Use a problem domain specific repair operator

E.g. randomly flip a bit to 0 until the solution in hand

feasible: 11010:$16 (18 kg) — 1001 0:$44 (16 kg) — 1000 0 $4 (12 kg)

e Penalise each constraint violation for the infeasible
solutions such that they can’t be better than the worst

feasible solution for a given instance

Set a fixed (death) penalty value poorer than the worst,

e.g., f’(s) = -2:

11010:$-2(18kg), 100 10: $-2 (16 kg)

Distinguish the level of infeasibility of a solution with the
penalty: e.qg., f7(s)=min_profit/(2*(total weight-capacity)):

11010:$0.167 (18 kg), 100 1 0: $0.5 (16 kg)

22
Evolutionary Algorithms for Constrained Parameter Optimization Problems Zbigniew Michalewicz and Marc Schoenauer:



Example Neighbourhood Relation
Binary Representation

o Bit-flip operator: flips a bit in a given solution

- Hamming Distance between two bit strings
(vectors) of equal length is the number of
positions at which the corresponding symbols
differ. E.g., HD(011,010)=1, HD(0101,0010)=3

- If the binary string is of size n, then the
neighbourhood size is n.

- Example: 10100011 —->0010001 1
Neighbourhood size: 8, Hamming distance: 1

23




Evaluation Function — Delta ?E%
(Incremental) Evaluation o

o Key idea: calculate effects of differences
between current search position s and a
neighbour s’ on the evaluation function value.

e Evaluation function values often consist of
independent contributions of solution
components; hence, f{(s’) can be efficiently
calculated from £{s) by differences between s
and s' in terms of solution components.

e Crucial for efficient implementation of
heuristics/metaheuristics/hyper-heuristics

24



Delta Evaluation for 0-1
Knapsack i

weight of the object is € and its profitis A
©«010...000...11 —- 010...010...11

As) =X AS)=Z+A
totalWeight(s) = T totalWeight(s’) = T + ¢

25



Example Neighbourhood Relation
Integer/Value Representation

)
Vil

e, 4
e T

e Random neighbourhood/move/perturbation/
assignment operator: a discrete value is
replaced by any other character of the alphabet.

- |f the solution is of size n and alphabet is of size
k, then the neighbourhood size is (k-1)n.

- Example: 57964483 —->07964483
Neighbourhood size: (10-1)8=72 (alphabet:0..9)

26



Example Neighbourhood Relation
Permutation Representation |

e Adjacent pairwise interchange: swap adjacent
entries in the permutation

- |f permutation is of size n, then the
neighbourhood size is n-1

- Example: 51432 515432

e Insertion operator: take an entry in the
permutation and insert it in another position

- Neighbourhood size: n(n-1)
- Example: 51432514532

27



Example Neighbourhood Relation
Permutation Representation I

e Exchange operator: arbitrarily selected two
entries are swapped

- Example: 54312514352

e |Inversion operator: select two arbitrary entries
and invert the sequence in between them

- Example: 14532513542

28



Mechanisms for Escaping from| |§
Local Optima | s -

o lterate with different solutions, or restart (re-
initialise search whenever a local optimum is
encountered).

Initialisation could be costly
E.g., lterated Local Search, GRASP

e Change the search landscape

Change the objective function (E.g., Guided Local
Search)

Use (mix) different neighbourhoods (E.g., Variable
Neighbourhood Search, Hyper-heuristics)

29



Mechanisms for Escaping from| |§
Local Optima Il Pz

o Use Memory (e.g., tabu search)

e Accept non-improving moves: allow search
using candidate solutions with equal or worse
evaluation function value than the one in hand

Could lead to long walks on plateaus (neutral regions)
during the search process, potentially causing cycles
— visiting of the same states

e None of the mechanisms is guaranteed to
always escape effectively from local optima

30



Termination Criteria (Stopping
Conditions) — Examples P -

o Stop if

a fixed maximum number of iterations, or moves,
objective function evaluations), or a fixed amount of
CPU time is exceeded.

consecutive number of iterations since the last
improvement in the best objective function value is
larger than a specified number.

evidence can be given than an optimum solution has
been obtained. (i.e. optimum objective value is known)

no feasible solution can be obtained for a fixed
number of steps/time. (a solution is feasible if it
satisfies all constraints in an optimisation problem)

31



Tabu Search e

Proposed independently by Glover and Hansen
in 1986 and formalised in 1989

Uses history (memory structures) to escape from
local minima, inspired by ideas from artificial
intelligence in the late 1970s.

Applies hill climbing/local search

Proceeds according to the assumption that there is no
point in accepting a new (poor) solution unless it is to
avoid a path already investigated

Glover F 1986 Future Paths for Integer Programming and Links to Artificial Intelligence. Computers and
Operations Research. Vol. 13, pp. 533-549.

32



Tabu Search Algorithm

S = generatelnitialSolution();
Repeat
s' = findBestNeighbour(s);
if (notTabuMove(t/, s') or aspirationCriteriaCheck(s'))
S=8§;
Spest = UpdateBestSolution(s');
updateTabulList(t/, s');
Until (termination conditions are satisfied)
return s,

33



An lteration of Tabu Search for | |¥
a Minimisation Problem ==

e Neighbourhood: 1-bit o Consider all 1-bit flip
flip neighbours which are
e Tabu tenure: 2 not in the tabu list
e Current iteration (ci) is — f(801100) X tabu
1207 — f(121100) = 17
e Current solution is — f(100100) X tabu
s =101100; f(s) = 43 — £(101000) =9
e Current tabu list - f(1011m0) = 51
content: <1,3> (tail) - f(10110M) = 61
This means that 1st bit was - s« 101000
flipped two steps ago, o Update tabu list: <3,4>

while 3" bit (c) was flipped (tail)
In the immediately previous
step.



Practical Considerations el

e Appropriate choice of tabu tenure critical for performance
o Tabu tenure: the length of time/number of steps ¢ for

which a move is forbidden
t too low- risk of cycling /' :: /
t too high - may restrict the search too much
t =7 has often been found sufficient to prevent cycling

t=+n

number of tabu moves: 5 -9

o If a tabu move is smaller than the aspiration level then we

accept the move (use of aspiration criteria to override
tabu status)

35



Evolutionary Algorithms —
Evolutionary is Revolutionary

e Nature as a Problem Solver: 4.55 Billion
years of evolution can’t be wrong.

o Beauty-of-nature argument: Complexity
achieved in short time In nature.

e Can we solve complex problems as
quickly and reliably on a computer?

36



Evolutionary Algorithms (EAs):| |§
Terminology g

e EAs are population-based metaheuristics.

o EAs simulate natural evolution (Darwinian Evolution) of
individual structures at the genetic level using the idea of
survival of the fittest via processes of selection, mutation,

city2

and reproduction (recombination) .o

city1 @

11

o An individual (chromosome) represents a candidate . ° ..
solution for the problem at hand. (e.g., <2 1 3 4>)

e A collection of individuals currently “alive”, called population
(set of individuals/chromosomes) is evolved from one
generation (iteration) to another depending on the fitness of
individuals in a given environment, indicating how fit an
individual is, (how close it is to the optimal solution) — objective
value. (e.g., (<213 4>)=28)

o Hope: Last generation will contain the (near-)optimal solutions




Types of Evolutionary
Algorithms (EAs) and History | = =

Genetic Algorithms (evolves (bit) strings) = Turing 1948, Nils Aall
Barricelli 1954, Bremermann 1962, Holland 1975

Memetic Algorithms = Moscato 1989

o Evolutionary Programming (evolves parameters of a program with a
fixed structure) = Fogel, Owens, Walsh 1965

o Evolution Strategies (vectors of real numbers) = Rechenberg 1965

e Genetic Programming (evolves computer programs in tree form) =
Koza 1992

Grammatical Evolution (evolves solutions wrt a specified grammar) =
Ryan, Collins and O'Neill 1998

Gene Expression Programming (computer programs of different sizes
are encoded in linear chromosomes of fixed length) = Ferreira 2001

o Differential Evolution (real valued optimisation) = Storn and Price
1997

38



A Generic Genetic Algorithm | . =

o First Generation: Create the initial population of
solutions (set of individuals) randomly and evaluate
them.

e Next Generations: Repeat the following steps until
termination

Select the fittest individuals for reproduction. (parents)

Create new solutions (offspring, children) — through
crossover and mutation operations.

Evaluate the fitness of each new solution

Replace the least-fit solutions of the population with
new solutions.

39



Initialisation —
Binary Encoding -

e Assume population size is 4
e The individual/chromosome

i_ Chromosome Fitness /o044 is 6 (since we have 6
;: (1)18288 g literals: abcdef)

: e So, create 4 individuals with 6
> 001100 & enes within their
4 101110 1 J

chromosomes, where each
allele at a locus is determined
randomly (by throwing a
random number in [0,1)).

40



Parent Selection b

Usually 2 parents (individuals/candidate
solutions) are selected using the same method,
which will go under the crossover operation =
e.d., roulette wheel selection, fournament
selection, rank selection, truncation selection,
Boltzmann selection, etc.

Tournament selection runs a number of
"tournaments” among randomly chosen
individuals (of tour size) selecting the one with
best fitness at the end

41



Example —

Tournament Selection p——
tour size = 3, first parent -

e Throw a random number
between 1 and 4 (population
size) for 3 times:

[3, 1, 2]

i Chromosome Fithess _

1 110000 3 = e Tournament selection

2 010100 3 pu— T .

= SR chooses 3 individuals: #1, #2
4 101110 1 and #3 at random, then

individual#3 with the fithess
of 2 is returned as the first
parent

42



Example — Jr 4
Tournament Selection .
tour size = 3, second parent |

e Throw a random number
between 1 and 4 (population
size) for 3 times:

[4,1, 3]

i Chromosome Fithess _

1 110000 3 — e TJTournament selection

2 010100 3 . = ]

; T B B — chooses 3 individuals: #1, #3
4 101110 1 == and #4 at random, then

individual#4 with the fithess
of 1 is returned as the
second parent

43



Crossover et

o Selected pairs/mates (parents) are recombined to form
new individuals (candidate solutions/children/offspring) —
exchange of genetic material

o Crossover is applied with a crossover probability p,
which in general is chosen close to 1.0

One Point Crossover (1PTX)

Random number: 2 Randomly determined crossover point

new solutions/children/offspring

00&100 101100

2. Exchange the
genetic material

10?110 001110

1. Throw a rahdom number in [1..6] 44



Other Crossover Operators

» 2 Point Crossover (2PTX) vt —

e K-point Crossover Childre ———

e Uniform Crossover (UX) | |

The uniform crossover considers each bit in the
parent strings for exchange with a probability of 0.5.

0/0(1]0]1]1 OfL|(1]0]0]1

A

Random

0.23 |10.76 [ 0.15]1 0.34 [ 0.91 |0.48
Number

45



Mutation et

Any offspring might be exposed to mutation

Loop through all the alleles of all the individuals one by
one, and if that allele is selected for mutation with a given
probability p,,, you can either change it by a small amount
or replace it with a new value
For binary representation mutation corresponds to flipping a
selected gene value (0—1, 1-0)
Mutation provides diversity and allows GA to explore
different regions of the search space (escaping)

Mutation rate is typically chosen to be very small (0.001,
0.001). Choosing p,, as (1/chromosome length) implies on
average a single gene will be mutated for an individual.

46



Example — Mutation e

Random numbers:
<0.23 0.76 041 014 091 068 047 019 028 094 0.78 0.03...>

2 o ok oo s @A 100D I performed
Tol1loToTo on each individual
If a random value in [0,1)
s < p,, =0.2 (1/5), then

09’7 0@9 0@8 Og/; 0%8 oﬂo3 the allele value is
- flipped, otherwise kept

O|1 (1 |1|1]]1
same.

47



Replacement —
Steady-State GA e

e Two offspring replace two individuals from the old
generation.

Method#1: two offspring replace two parents
Method#2: two offspring replace worst two of the
population

Method#3: best two of (parents and offspring) replace
two parents (elitism)

Method#4: best two of (parents and offspring) replace
worst two of the population (strong elitism)

48



Replacement — Transgenerational | |}
GA Replacement (with elitism) iz

St
Form the new i Chromosome Fitness
generation by é (}gé’%gg %
i Chromosome Fitness Seelsfj-“ng the 4 011111 0
: 01110 1 individuals Ofispring
2 é(l)i(l)(l)(l) 8 among bOth ; Chrom?fgorgg Fitr|3ess
olddpofpf)ulqtlon 5 o
New Population/ anda ofispring 3 SR 2

Generation .
Old Population

49



Local Search

Population-based

Constructive

Metaheuristics

e [Kirkpatrick, 1983]
o [Glover, 1986]

e [Voudouris, 1997]
o [Stutzle, 1999]

e [Mladenovic, 1999]
e [Holland, 1975]

e [Smith, 1980]

o [Goldberg, 1989]

e [Moscato, 1989]

e [Storn & Price1997]
e [Hansen, 1998]

e [Dorigo, 1992]

e [Resende, 1995]

Simulated Annealing (SA) Ragan s
Tabu Search (TS)

Guided Local Search (GLS)

lterated Local Search (ILS)

Variable Neighborhood Search (VNS)

Genetic Algorithm (GA)

Genetic Programming (GP)

Genetic and Evolutionary Computation (EC)
Memetic Algorithm (MA)

Differential Evolution

CMA-ES

Ant Colony Optimisation (ACO)

Greedy Randomized Adaptive Search Procedure
(GRASP)



Local Search

Population-based

Constructive

e MA
o DE

e CMA-ES
e ACO

o GRASP

Metaheuristics

e SA

o TS

o GLS
o ILS

e VNS
o GA
o GP

Examples of Parameters =

T, (initial temperature), « (cooling rate)
Tabu list size

A (intensification control), a (coefficient)
mutation strength

K.in Koy (Sallest, largest neighbourhood size)

m

population size, mutation probability

scale factor, crossover rate, population size
population size, number of parents

weight of pheromone, evaporation rate
restricted candidate list parameter

51



Parameter Setting S

Parameter tuning: Finding the best initial settings for a
set of parameters before the search process starts (off-
line). E.g., fixing the mutation strength in ILS, mutation
probability in genetic algorithms, etc.
The initial parameter setting influences the performance of a
metaheuristic
Parameter control: Managing the settings of
parameters during the search process (online) (dynamic,
adaptive, self-adaptive). E.g., changing the mutation
strength in ILS, changing the mutation probability in
genetic algorithms during the search process

Controlling parameter setting could yield a system which is not
sensitive to its initial setting 52



Parameter Tuning Methods S

e Traditional approaches
Use of an arbitrary setting
Trial&error with settings based on intuition
Use of theoretical studies
A mixture of above

e Sequential tuning: fix parameter values
successively

e Design of experiments (E.g., Taguchi method)

o Meta-optimisation: use a metaheuristic to obtain
“optimal” parameter settings

53



(Automated)
Parameter Tuning Methods i

e Sampling methods
Efficient Global Optimisation (1998), Calibra (20006),...

e Screening methods
|/F-Race (2002) [download: |

e Meta-optimisation
meta-GA (1986), linear GP (2005), Relevance Estimation and
Value Calibration of Parameters (2006), ParamILS (2007)

[download: 1, Gender-based GA
(2009),...

e Model-based

Sequential Parameter Optimization (2005) [download:
1, Sequential Kriging Optimisation (20006),
Sequential Model-Based Algorithm Configuration (2010),...

54



The Art of Searching g

o Effective search techniques provide a mechanism to
balance exploration and exploitation

Exploitation aims to greedily increase solution quality or
probability, e.g., by exploiting the evaluation function

Exploration aims to prevent stagnation of search process
getting trapped at a local optimum

e Aim is to design search algorithms/metaheuristics that can
escape local optima
balance exploration and exploitation
make the search independent from the initial configuration

55



Summary -

e There are various search paradigms and metaheuristics
provide guidelines for heuristic optimisation based on those
search paradigms

e There are three main classes of metaheuristics: local search
metaheuristics, population based metaheuristics and
constructive metaheuristics

e Move acceptance is a crucial component of local search
metaheuristics

Simulated Annealing would be a good initial choice for solving an
unseen problem

o Each component of a metaheuristic influences its
performance: careful implementation and analysis required

56



Summary lI L

o Many (meta)heuristic optimisation/search algorithms come
with parameters which often require an initial setting (tuning)

Parameter tuning is possible, however it is time consuming.

There is a range of different techniques varying from
manual/semi-automated experimental design methods to
automated tuning, such as, Taguchi method, I-race.

Parameter control as an alternative to parameter tuning changes
parameter values during the run of the algorithm

There is no guidance indicating which method is the best,
however many studies show that parameter tuning/control often
does improve the performance of an algorithm as compared to
the variant where it is not used

57



Metaphors and New Nature
Inspired Metaheuristics Pz

e “ltis not acceptable to use a metaphor to promote an
algorithm as interesting or novel just because the metaphor
IS interesting or novel for the author.” [3]

e The Journal of Heuristics fully endorses Sorensen’s view
that metaphor-based “novel” methods should not be
published if they cannot demonstrate a contribution to their
field. [ ]

[1] Dennis Weyland. A rigorous analysis of the harmony search algorithm:
How the research community can be misled by a “novel” methodology, Int J
Appl Metaheuristic Comput, 1 (2) (2010), pp. 50-60. [ ][ ]

[2] Metaheuristics — the metaphor exposed, K. Sorensen (2013) [ ]

[3] Camacho-Villalon, C.L., Dorigo, M. & Stiitzle, T. The intelligent water
drops algorithm: why it cannot be considered a novel algorithm. Swarm
Intell 13, 173-192 (2019). | ] 77



Resources

|

Search methodologies: introductory tutorials in optimization and decision
support techniques - Edmund Burke, Graham Kendall c2014 [

]

Stochastic local search: foundations and applications - Holger H. Hoos,
Thomas Stutzle 2005 [ ]

Metaheuristics: From Design to Implementation, El-Ghazali Talbi, DOI:
10.1002/9780470496916, John Wiley, ISBN: 9780470278581 |
] (this version is publically available now)

J. Swan, S. Adraensen, C. G. Johnson, A. Kheiri, F. Krawiec, ].]J. Merelo, L.
L. Minku, E. Ozcan, G. L. Pappa, P. Garcia-Sénchez, K. Sérensen, S. Voss,
M. Wagner, D. R. White, Metaheuristics “In the Large”, European Journal
of Operational Research, Vol. 297, Issue 2, pp. 393-406, 2022,
DOI:10.1016/j.ejor.2021.05.042 (available online [ 1), to appear.

[PDF]

J. H. Drake, A. Kheiri, E. Ozcan, and E. K. Burke, Recent Advances in
Selection Hyper-heuristics, European Journal of Operational Research, vol.
285, no. 2, pp. 405-428, 2020, DOI:10.1016/j.ejor.2019.07.073 (invited

review) (Open Access - available online [ 1). .



Q&A

Thank you.

Prof Ender Ozcan

ender.ozcan@nottingham.ac.uk




