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Optimisation Problems

Optimisation 
problems are 

ubiquitous

Sustainable 
Energy

Engineering 
Design

Additive 
Manufacturing
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 Optimisation 
problems appear in 
various forms 
across industry, 
leisure and the 
public sector

 Majority of them are 
computationally 
hard to solve (NP 
hard)



Optimisation

 Solving an optimisation problem requires 
search for optimum

 Fundamental problem of optimisation is to 
arrive at the best possible solution (optimal –
Xopt=argmin ) in any given set of 
circumstances. 

 In most cases optimal is unattainable 4

maximise/minimise 
subject to |
where is a vector of variables < , ,…, >, i=1..m 



Search in 
Continuous vs Discrete Space
 Find the optimum

setting for the angle of 
the wings of a race car 
providing the best 
performance 

 Find the tour (visiting 
sequence) with the 
optimum (minimum) 
travelling distance, 
given 81 cities.
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Search for an Optimal Solution

6

Permutation 
flowshop scheduling:
10 jobs and 7 machines

TSP:
pr1002

http://www.cs.stir.ac.uk/~goc/papers/joh-2017-global.pdf
http://www.cs.stir.ac.uk/~goc/papers/flowshop-LON-cec2017.pdf

RNA
Sequencing:
3 nucleotides 



Search Paradigms I

 Single point (trajectory) based search vs. 
Multi-point (population) based search

 Constructive 
 Search on partial candidate solutions

vs.

 Perturbative
 Search on complete solutions

<2>  <2, 1>  <2, 1, 4>  <2, 1, 4, 3> (26) 

<2, 4, 1, 3> (32) <1, 4, 2, 3> (32)  <1, 2, 4, 3> (28)  <1, 2, 3, 4> (26)  
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Search Paradigms II

deterministic ←→ stochastic

systematic ←→ local search

sequential ←→ parallel

single objective ←→ multi-objective  

8
[See http://www.cs.ubc.ca/~hoos/SLS-Internal/ch1.pdf pp.23-30]



Optimisation/Search Methods

Optimisation methods can be broadly classified 
as:

 Exact/Exhaustive/Systematic Methods
 E.g., Dynamic Programming, Branch&Bound, 

Constraint Satisfaction,…

 Inexact/Approximate/Local Search Methods
 E.g., heuristics, metaheuristics, hyper-

heuristics,…
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Need for (meta)heuristic 
optimisation methods

 Travelling salesman problem with N cities

 N=4,     24

 N=5,     120

 N=7,     5 040

 N=10,   3 628 800

 N=81,   5.797 x 10120

 Number of configurations

to search from is N! (combinatorial explosion in the search space)

 Number of particles in the universe  is in between 1072 – 1087

 Japanese Fugaku (Since 2020):  ~442.01 petaFLOPS (one 
thousand million million/quadrillion (1015) floating-point operations 
per second) – ~4.16 x 1095 years (from TOP500 project).

10



Metaheuristics

A metaheuristic is a high-level problem 
independent algorithmic framework that  
provides a set of guidelines or strategies to 
develop heuristic optimization algorithms

Local Search   Population-based    Constructive

11

K. Sörensen and F. Glover. Metaheuristics. In S.I. Gass and M. Fu, 
editors, Encyclopedia of Operations Research and Management 
Science, pp 960–970. Springer, New York, 2013.



Metaheuristics

 [Kirkpatrick, 1983] Simulated Annealing (SA)

 [Glover, 1986] Tabu Search (TS)

 [Voudouris, 1997] Guided Local Search (GLS)

 [Stutzle, 1999] Iterated Local Search (ILS)

 [Mladenovic, 1999] Variable Neighborhood Search (VNS)

 [Holland,  1975] Genetic Algorithm (GA)

 [Smith, 1980] Genetic Programming (GP)

 [Goldberg, 1989] Genetic and Evolutionary Computation (EC)

 [Moscato, 1989] Memetic Algorithm (MA)

 [Storn & Price1997] Differential Evolution

 [Hansen, 1998] CMA-ES

 [Dorigo, 1992] Ant Colony Optimisation (ACO)

 [Resende, 1995] Greedy Randomized Adaptive Search Procedure 

(GRASP)
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Metaheuristic frameworks and 
software libraries
 HeuristicLab

 Wagner and M. Affenzeller (2015), 
https://dev.heuristiclab.com/trac.fcgi/wiki/

 ECJ
 Luke (2017), https://cs.gmu.edu/˜eclab/projects/ecj/

 FOM
 Parejo et al. (2003), http://www.isa.us.es/fom/

 Opt4J, 
 Lukasiewycz et al. (2011), http://opt4j.sourceforge.net/

 jMetal
 Durillo and Nebro (2011), http://jmetal.sourceforge.net/

 JAMES 
 De Beukelaer et al. (2017), http://www.jamesframework.org/

 PISA 
 Bleuler et al. (2003), http://www.tik.ee.ethz.ch/pisa/ 13



Applications of Metaheuristics 
to Real-world Problems

 Biological Sciences and 
Bioinformatics

 Computer Science 

 Earth Sciences

 Engineering

 Finance and Economics

 Industry and Management

 Logistics

 Machine learning/data science

 Mathematics 

 Natural Sciences

 Social Sciences

 Telecommunication, …
14

 Optimal design of laminated 
composites 

 Topology optimisation of porous 
materials

 Solar cell design

 VLSI design

 Optimization of heat 
exchangers/chemical reactors

 Engineering of conducting polymers

 Improving biopolymer functions

 Optimal control of  fermentation

 Cutting and packing in 
manufacturing

 Scheduling and routing, …



Main Components of 
Metaheuristics

 Representation (encoding) of candidate 
solutions

 Evaluation function (objective function)

 Initialisation (e.g., random)

 Neighbourhood relation (move operators)

 Mechanism for escaping from local optima

 Search process (guideline)

Guideline Encoding Initialisation Operator(s)
Escape
Method

Evaluation
Function 15



Representation

 Binary encoding is the most common
 10110010110010…1011

 E.g.: 0/1 Knapsack problem
Fill the knapsack with as much value in goods as 
possible – which items to take?

1 0 0 1 1 pack items {0,3,4}   1 1 1 1 0 pack items {0,1,2,3}

 Given a binary string of length N (representing N
items), search space size is

16

2N

4

3

2

1

0

0 1 2 3 4 0 1 2 3 4



Representation (cont.)

 E.g.: Travelling salesman problem, some 
sequencing problems

 Permutation encoding 
 1 5 3 2 6 4 7 9 8

 Given N cities (pubs), search space size is


17

N!

A shortest-possible walking tour through the pubs of the 
UK (Nottingham):



Other Representation 
Schemes

 Integer encoding 
 1 9 4 5 5 5 4 12 8 … 10 10 4

 Value Encoding
 1.2324 5.3243 0.4556 2.3293 2.4545

 ATGCTTCGGCAAGACTCAAAAAATA

 <(back), (back), (right), (forward), (left)>

 Nonlinear Encoding


18

( + x ( / 5 y ) )



Evaluation 
Function

 Also referred to as objective, cost, fitness, 
penalty, etc.
 Indicates the quality of a given solution,    

distinguishing between better/worse solutions

 Serves as a major link between the algorithm and 
the problem being solved
 provides an important feedback for the search process

 Many types: (non)separable, uni/multi-modal, 
single/multi-objective, etc.

19



Evaluation Function (cont.)

 Evaluation functions could be computationally 
expensive

 Exact vs. approximate 
 Common approaches to constructing approximate 

models: polynomials, regression, SVMs, etc.

 Constructing a globally valid approximate model 
remains difficult, and so beneficial to selectively 
use the original evaluation function together with 
the approximate model

20



0/1 Knapsack Problem –
Evaluation function

 Fill the knapsack with as much value in goods as 
possible (i.e., maximise “profit”) without exceeding the 
capacity (as a constraint) – which items to take?

 1 1 0 0 1: $8   (15 kg) feasible solution  

 0 1 1 1 1: $15 (8 kg) feasible solution 

 1 0 0 1 0: $14 (16 kg) not a feasible solution

 1 1 0 1 0: $16 (18 kg) not a feasible solution
21

0 1

2

3

4

0 1 2 3 4 profit
f(s)



How to Deal with 
Infeasible Solutions

 Use a problem domain specific repair operator 
 E.g. randomly flip a bit to 0 until the solution in hand 

feasible: 1 1 0 1 0: $16 (18 kg) → 1 0 0 1 0: $14 (16 kg) → 1 0 0 0 0 $4 (12 kg)

 Penalise each constraint violation for the infeasible 
solutions such that they can’t be better than the worst 
feasible solution for a given instance
 Set a fixed (death) penalty value poorer than the worst, 

e.g., f (s) = –2:                       
1 1 0 1 0: $-2 (18 kg), 1 0 0 1 0: $-2 (16 kg)  

 Distinguish the level of infeasibility of a solution with the 
penalty: e.g., f (s)=min_profit/(2*(total_weight-capacity)):  

1 1 0 1 0: $0.167 (18 kg),  1 0 0 1 0: $0.5 (16 kg) 
22

Evolutionary Algorithms for Constrained Parameter Optimization Problems Zbigniew Michalewicz and Marc Schoenauer: 
https://cs.adelaide.edu.au/~zbyszek/Papers/p30.pdf

maximisation problem



Example Neighbourhood Relation 
Binary Representation

 Bit-flip operator: flips a bit in a given solution

 Hamming Distance between two bit strings 
(vectors) of equal length is the number of 
positions at which the corresponding symbols 
differ. E.g., HD(011,010)=1, HD(0101,0010)=3

 If the binary string is of size n, then the 
neighbourhood size is

 Example:  1 0 1 0 0 0 1 1 → 0 0 1 0 0 0 1 1

Neighbourhood size: 8, Hamming distance: 1
23

n.



Evaluation Function – Delta 
(Incremental) Evaluation

 Key idea: calculate effects of differences 
between current search position s and a
neighbour s' on the evaluation function value.

 Evaluation function values often consist of 
independent contributions of solution 
components; hence, f(s') can be efficiently 
calculated from f(s) by differences between s
and s' in terms of solution components.

 Crucial for efficient implementation of 
heuristics/metaheuristics/hyper-heuristics

24



Delta Evaluation for 0-1 
Knapsack

weight of the object is  and its profit is 
 0 1 0 … 0 0 0… 1 1   →   0 1 0 … 0 1 0… 1 1 

25

f(s') =  + 
totalWeight(s’) = T + 

f(s) = 
totalWeight(s) = T



Example Neighbourhood Relation 
Integer/Value Representation

 Random neighbourhood/move/perturbation/ 
assignment operator: a discrete value is 
replaced by any other character of the alphabet. 

 If the solution is of size n and alphabet is of size
k, then the neighbourhood size is

 Example: 5 7 9 6 4 4 8 3 → 0 7 9 6 4 4 8 3

Neighbourhood size: (10-1)8=72 (alphabet:0..9)

26

(k-1)n.



Example Neighbourhood Relation
Permutation Representation I

 Adjacent pairwise interchange: swap adjacent 
entries in the permutation

 If permutation is of size n, then the 
neighbourhood size is n-1

 Example: 5 1 4 3 2 → 1 5 4 3 2

 Insertion operator: take an entry in the 
permutation and insert it in another position

 Neighbourhood size: n(n-1)

 Example: 5 1 4 3 2 → 1 4 5 3 2
27



Example Neighbourhood Relation
Permutation Representation II

 Exchange operator: arbitrarily selected two 
entries are swapped

 Example: 5 4 3 1 2 → 1 4 3 5 2

 Inversion operator: select two arbitrary entries 
and invert the sequence in between them

 Example: 1 4 5 3 2 → 1 3 5 4 2

28



Mechanisms for Escaping from 
Local Optima I

 Iterate with different solutions, or restart (re-
initialise search whenever a local optimum is 
encountered). 
 Initialisation could be costly

 E.g., Iterated Local Search, GRASP

 Change the search landscape
 Change the objective function (E.g., Guided Local 

Search)

 Use (mix) different neighbourhoods (E.g., Variable 
Neighbourhood Search, Hyper-heuristics)

29



Mechanisms for Escaping from 
Local Optima II

 Use Memory (e.g., tabu search)

 Accept non-improving moves: allow search 
using candidate solutions with equal or worse 
evaluation function value than the one in hand
 Could lead to long walks on plateaus (neutral regions) 

during the search process, potentially causing cycles 
– visiting of the same states

 None of the mechanisms is guaranteed to 
always escape effectively from local optima

30



Termination Criteria (Stopping 
Conditions) – Examples 

 Stop if
 a fixed maximum number of iterations, or moves, 

objective function evaluations), or a fixed amount of 
CPU time is exceeded.

 consecutive number of iterations since the last 
improvement in the best objective function value is 
larger than a specified number. 

 evidence can be given than an optimum solution has 
been obtained. (i.e. optimum objective value is known)

 no feasible solution can be obtained for a fixed 
number of steps/time. (a solution is feasible if it 
satisfies all constraints in an optimisation problem)

31



Tabu Search

 Proposed independently by Glover and Hansen 
in 1986 and formalised in 1989

 Uses history (memory structures) to escape from 
local minima, inspired by ideas from artificial 
intelligence in the late 1970s.

 Applies hill climbing/local search
 Proceeds according to the assumption that there is no 

point in accepting a new (poor) solution unless it is to 
avoid a path already investigated

32

Glover F 1986 Future Paths for Integer Programming and Links to Artificial Intelligence. Computers and 
Operations Research. Vol. 13, pp. 533-549. 



Tabu Search Algorithm

33

s = (); 

Repeat

s' = findBestNeighbour(s);

if (notTabuMove(tl, s') or aspirationCriteriaCheck(s'))

s = s' ;

sbest = updateBestSolution(s');

updateTabuList(tl, s');

Until (termination conditions are satisfied) 

return sbest



 Neighbourhood: 1-bit 
flip

 Tabu tenure: 2
 Current iteration (ci) is 

1207
 Current solution is     

 Current tabu list 
content: <1,3> (tail) 
 This means that 1st bit was 

flipped two steps ago, 
while 3rd bit (c) was flipped 
in the immediately previous 
step.

 Consider all 1-bit flip 
neighbours which are 
not in the tabu list







 ᇱ

 Update tabu list: <3,4> 
(tail)

An Iteration of Tabu Search for 
a Minimisation Problem



Practical Considerations

 Appropriate choice of tabu tenure critical for performance

 Tabu tenure: the length of time/number of steps t for 
which a move is forbidden
 t too low- risk of cycling

 t too high - may restrict the search too much

 t =7 has often been found sufficient to prevent cycling



 number of tabu moves: 5 – 9 

 If a tabu move is smaller than the aspiration level then we 
accept the move (use of aspiration criteria to override 
tabu status)

35
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Evolutionary Algorithms –
Evolutionary is Revolutionary

 Nature as a Problem Solver: 4.55 Billion 
years of evolution can’t be wrong.

 Beauty-of-nature argument: Complexity 
achieved in short time in nature. 

 Can we solve complex problems as 
quickly and reliably on a computer?

36



Evolutionary Algorithms (EAs): 
Terminology 
 EAs are population-based metaheuristics.

 EAs simulate natural evolution (Darwinian Evolution) of 
individual structures at the genetic level using the idea of 
survival of the fittest via processes of selection, mutation, 
and reproduction (recombination)

 An individual (chromosome) represents a candidate       
solution for the problem at hand. (e.g., <2 1 3 4>)

 A collection of individuals currently “alive”, called population
(set of individuals/chromosomes) is evolved from one 
generation (iteration) to another depending on the fitness of 
individuals in a given environment, indicating how fit an 
individual is, (how close it is to the optimal solution) – objective 
value. (e.g., f(<2 1 3 4>)= 28 )

 Hope: Last generation will contain the (near-)optimal solution37



Types of Evolutionary 
Algorithms (EAs) and History

 Genetic Algorithms (evolves (bit) strings)  Turing 1948, Nils Aall
Barricelli 1954, Bremermann 1962, Holland 1975 
 Memetic Algorithms  Moscato 1989

 Evolutionary Programming (evolves parameters of a program with a 
fixed structure)  Fogel, Owens, Walsh 1965

 Evolution Strategies (vectors of real numbers)  Rechenberg 1965

 Genetic Programming (evolves computer programs in tree form) 
Koza 1992
 Grammatical Evolution (evolves solutions wrt a specified grammar) 

Ryan, Collins and O'Neill 1998

 Gene Expression Programming (computer programs of different sizes 
are encoded in linear chromosomes of fixed length)  Ferreira 2001

 Differential Evolution (real valued optimisation)  Storn and Price 
1997

…
38



A Generic Genetic Algorithm

 First Generation: Create the initial population of 
solutions (set of individuals) randomly and evaluate 
them. 

 Next Generations: Repeat the following steps until 
termination

 Select the fittest individuals for reproduction. (parents)

 Create new solutions (offspring, children) – through 
crossover and mutation operations.

 Evaluate the fitness of each new solution

 Replace the least-fit solutions of the population with 
new solutions.

39



Initialisation –
Binary Encoding

40

i Chromosome
.

1:
2:
3:
4:

 Assume population size is 4

 The individual/chromosome 
length is 6 (since we have 6 
literals: abcdef)

 So, create 4 individuals with 6 
genes within their 
chromosomes, where each 
allele at  a locus is determined 
randomly (by throwing a 
random number in [0,1)).

Fitness
3
3
2
1



Parent Selection

 Usually 2 parents (individuals/candidate 
solutions) are selected using the same method, 
which will go under the crossover operation 
e.g., roulette wheel selection, tournament 
selection, rank selection, truncation selection, 
Boltzmann selection, etc.

 Tournament selection runs a number of 
"tournaments" among  randomly chosen 
individuals (of tour size) selecting the one with 
best fitness at the end

41



Example –
Tournament Selection

 Throw a random number 
between 1 and 4 (population 
size) for 3 times:
 [3, 1, 2]

 Tournament selection 
chooses 3 individuals: #1, #2 
and #3 at random, then 
individual#3 with the fitness 
of 2 is returned as the first 
parent

42

i Chromosome Fitness
1 3 
2 3 
3 2 
4 1 

tour size = 3, first parent



Example –
Tournament Selection

 Throw a random number 
between 1 and 4 (population 
size) for 3 times:
 [4, 1, 3]

 Tournament selection 
chooses 3 individuals: #1, #3 
and #4 at random, then 
individual#4 with the fitness 
of 1 is returned as the 
second parent

43

i Chromosome Fitness
1 3 
2 3 
3 2 
4 1 

tour size = 3, second parent



Crossover
 Selected pairs/mates (parents) are recombined to form 

new individuals (candidate solutions/children/offspring) –
exchange of genetic material

 Crossover is applied with a crossover probability pc
which in general is chosen close to 1.0

One Point Crossover (1PTX)

44

Randomly determined crossover point

2. Exchange the 
genetic material

1. Throw a random number in [1..6]

Random number: 2

new solutions/children/offspring



Other Crossover Operators

 2 Point Crossover (2PTX)

 K-point Crossover

 Uniform Crossover (UX)
 The uniform crossover considers each bit in the 

parent strings for exchange with a probability of 0.5.

45

0 0 1 0 1

1 1 1 0 0

0 1 1 0 0

1 0 1 0 1

Random 
Number

0.23    0.76    0.15    0.34   0.91   0.48

1

0

1

0



Mutation
 Any offspring might be exposed to mutation 
 Loop through all the alleles of all the individuals one by 

one, and if that allele is selected for mutation with a given 
probability pm, you can either change it by a small amount 
or replace it with a new value
 For binary representation mutation corresponds to flipping a 

selected gene value (01, 10)

 Mutation provides diversity and allows GA to explore 
different regions of the search space (escaping)

 Mutation rate is typically chosen to be very small (0.001, 
0.001). Choosing pm as (1/chromosome length) implies on 
average a single gene will be mutated for an individual.

46



Example – Mutation 

 A loop is performed 
on each individual 
 If a random value in [0,1) 

is < pm =0.2 (1/5), then 
the allele value is 
flipped, otherwise kept 
same.  

47

1 0 1 1 0

Random numbers:
<0.23    0.76    0.41    0.14   0.91   0.68  0.47    0.19    0.28    0.94   0.78    0.03 …>

0

0 0 1 1 11

0

01

0.23 0.76 0.41 0.14 0.91 0.68

0.47 0.19 0.28 0.94 0.78 0.03



Replacement –
Steady-State GA 

 Two offspring replace two individuals from the old 
generation. 

 Method#1: two offspring replace two parents 
 Method#2: two offspring replace worst two of the 

population 
 Method#3: best two of (parents and offspring) replace 

two parents (elitism)
 Method#4: best two of (parents and offspring) replace 

worst two of the population (strong elitism)

48



Replacement – Transgenerational 
GA Replacement (with elitism)

49

Selecting the 
best 4 
individuals 
among both 
old population 
and offspring

Form the new 
generation by

Offspring

i Chromosome Fitness
1 3 
2 3 
3 2 
4 1 

Old Population

i Chromosome Fitness
1 3 
2 3 
3 0 
4 0 i Chromosome Fitness

1 2 
2 1 
3 0 
4 0 

New Population/ 
Generation



Metaheuristics

 [Kirkpatrick, 1983] Simulated Annealing (SA)

 [Glover, 1986] Tabu Search (TS)

 [Voudouris, 1997] Guided Local Search (GLS)

 [Stutzle, 1999] Iterated Local Search (ILS)

 [Mladenovic, 1999] Variable Neighborhood Search (VNS)

 [Holland,  1975] Genetic Algorithm (GA)

 [Smith, 1980] Genetic Programming (GP)

 [Goldberg, 1989] Genetic and Evolutionary Computation (EC)

 [Moscato, 1989] Memetic Algorithm (MA)

 [Storn & Price1997] Differential Evolution

 [Hansen, 1998] CMA-ES

 [Dorigo, 1992] Ant Colony Optimisation (ACO)

 [Resende, 1995] Greedy Randomized Adaptive Search Procedure 

(GRASP)
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Metaheuristics

 SA T0 (initial temperature),  (cooling rate)

 TS Tabu list size

 GLS  (intensification control), a (coefficient)

 ILS mutation strength

 VNS kmin, kmax (smallest, largest neighbourhood size)

 GA 

 GP population size, mutation probability

 EC

 MA

 DE scale factor, crossover rate, population size

 CMA-ES population size, number of parents

 ACO weight of pheromone, evaporation rate

 GRASP restricted candidate list parameter

51
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Examples of Parameters



Parameter Setting

 Parameter tuning: Finding the best initial settings for a 
set of parameters before the search process starts (off-
line). E.g., fixing the mutation strength in ILS, mutation 
probability in genetic algorithms, etc.
 The initial parameter setting influences the performance of a 

metaheuristic

 Parameter control: Managing the settings of 
parameters during the search process (online) (dynamic, 
adaptive, self-adaptive). E.g., changing the mutation 
strength in ILS, changing the mutation probability in 
genetic algorithms during the search process
 Controlling parameter setting could yield a system which is not 

sensitive to its initial setting 52



Parameter Tuning Methods

 Traditional approaches
 Use of an arbitrary setting

 Trial&error with settings based on intuition

 Use of theoretical studies 

 A mixture of above

 Sequential tuning: fix parameter values 
successively

 Design of experiments (E.g., Taguchi method)

 Meta-optimisation: use a metaheuristic to obtain 
“optimal” parameter settings

53



(Automated) 
Parameter Tuning Methods

 Sampling methods 
 Efficient Global Optimisation (1998), Calibra (2006),…

 Screening methods
 I/F-Race (2002) [download: http://iridia.ulb.ac.be/irace/],...

 Meta-optimisation
 meta-GA (1986), linear GP (2005), Relevance Estimation and 

Value Calibration of Parameters (2006), ParamILS (2007) 
[download:http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/ ], Gender-based GA 
(2009),… 

 Model-based
 Sequential Parameter Optimization (2005) [download: https://cran.r-

project.org/web/packages/SPOT/index.html], Sequential Kriging Optimisation (2006), 
Sequential Model-Based Algorithm Configuration (2010),…
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The Art of Searching

 Effective search techniques provide a mechanism to 
balance exploration and exploitation
 Exploitation aims to greedily increase solution quality or 

probability, e.g., by exploiting the evaluation function

 Exploration aims to prevent stagnation of search process 
getting trapped at a local optimum

 Aim is to design search algorithms/metaheuristics that can
 escape local optima

 balance exploration and exploitation

 make the search independent from the initial configuration
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Summary

 There are various search paradigms and metaheuristics 
provide guidelines for heuristic optimisation based on those 
search paradigms

 There are three main classes of metaheuristics: local search 
metaheuristics, population based metaheuristics and 
constructive metaheuristics

 Move acceptance is a crucial component of local search 
metaheuristics 
 Simulated Annealing would be a good initial choice for solving an 

unseen problem

 Each component of a metaheuristic influences its 
performance: careful implementation and analysis required
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Summary II

 Many (meta)heuristic optimisation/search algorithms come 
with parameters which often require an initial setting (tuning)
 Parameter tuning is possible, however it is time consuming.

 There is a range of different techniques varying from 
manual/semi-automated experimental design methods to 
automated tuning, such as, Taguchi method, I-race.

 Parameter control as an alternative to parameter tuning changes 
parameter values during the run of the algorithm 

 There is no guidance indicating which method is the best, 
however many studies show that parameter tuning/control often 
does improve the performance of an algorithm as compared to 
the variant where it is not used
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Metaphors and New Nature 
Inspired Metaheuristics

 “It is not acceptable to use a metaphor to promote an 
algorithm as interesting or novel just because the metaphor 
is interesting or novel for the author.” [3]

 The Journal of Heuristics fully endorses Sörensen’s view 
that metaphor-based “novel” methods should not be 
published if they cannot demonstrate a contribution to their 
field. [Policies on Heuristic Search]
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