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Abstract

Phase-field  modeling  is
emerging as a promising tool
for the treatment of problems
with interfaces. ...
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Who am |?

m PhD (Delft), Postdoc (Austin, Texas)
Assistant/Associate Prof (Eindhoven) (Nottingham)

m Research areas:
Fluid—structure interaction, multi-phase flow, cancer tumour growth,
finite element methods, adaptive methods, approximation of PDEs
machine learning for scientific computation

Who are you? ‘http://menti.com ‘

m “What is your research area?”

m “Have you heard of phase-field modeling (before today)?”


http://menti.com

Motivation: Evolving-interface phenomena

1. Two-phase fluid flow
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Motivation: Evolving-interface phenomena

2. Phase separation |n alloys / phase transition in metals
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2. Phase separation in alloys / phase transition in metals




Motivation: Evolving-interface phenomena

3. Crack propagation

(Borden, Verhoosel, Scott, Hughes, Landis, CMAME 2012 )



Motivation: Evolving-interface phenomena

4. Solidification, melting, crystal growth




Motivation: Evolving-interface phenomena
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5. Biological growth phenomena, e.g. tumors

(Hawkins-Daarud, van der Zee, Oden, IJNMBE 2012 )



Motivation: Phase-field modeling
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Definition: Phase-field model ! (Wikipedia)

A mathematical model for solving interfacial problems.

The phase field takes distinct values in each of the phases, with a
smooth change between both values around the interface.

1 Also referred to as: Diffuse-interface model



Motivation: Phase-field modeling

Sharp interface vs diffuse interface (phase-field model)
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“Pure” phases {-1,1} Diffuse interface (thickness ¢)



Motivation: Phase-field modeling

Sharp interface vs diffuse interface (phase-field model)




Motivation: Phase-field modeling
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Computational Phase-Field Modeling
[@ What are the phase-field models?
I Why do they work?

I How do you solve them numerically?

I Where do they actually come from?




Learning objectives
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Computational Phase-Field Modeling

@ Examples of phase-field models
M@ Main principle: Energy dissipation

I Numerics: Energy-stable methods

¥ Foundations: Thermomechanics and mixture theory




I. Examples of phase-field models

13/43

Navier—Stokes—Cahn—Hilliard (two-phase flow)

Cahn-Larché (phase separation in elastic solids)

Phase-field fracture
The phase-field model of solidification

Diffuse-interface tumor-growth model
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I. Examples of phase-field models
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“Phase’?

m Concentration in a mixture: ¢, c

Example: volume fraction ¢, mass fraction ¢

m State of matter (phase): ¢
Example: gas, liquid, solid
m Order parameter (measure of the degree of order in a system): ¢

Example: crystal lattice configuration




I. Examples of phase-field models
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Viewpoints on phase-field models

m Computational
Regularization of a sharp-interface.
Complex interactions are included; no need to track interfaces.

m Physics / Mechanics
New (!) meso-scale continuum thermo-mechanics models.
m Mathematics
Nonlinear, higher-order, singularly perturbed, parabolic (dissipative) PDEs.




I. Examples of phase-field models
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Two elementary phase-field models

m Cahn—Hilliard equation

m Allen—Cahn equation




Outline
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[@ What are the phase-field models?
I Why do they work?

I How do you solve them numerically?

B Where do they actually come from?




Outline
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[@ What are the phase-field models?
I Why do they work?
Main principle: Energy dissipation

I How do you solve them numerically?

I Where do they actually come from?




Il. Main principle: Energy dissipation

Two elementary phase-field models

m Cahn—Hilliard equation %—i = A(lf'(go) - aAcp)

Short time scales




Il. Main principle: Energy dissipation

Two elementary phase-field models

m Cahn—Hilliard equation

Long time scales (2-D)



Il. Main principle: Energy dissipation
Two elementary phase-field models

m Cahn—Hilliard equation

Long time scales (3-D)



Il. Main principle: Energy dissipation
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in ©

Cahn—Hilliard model | #=:f'(9) —cAp in Q

Onp =0 on 9N}
Onpt =0 on 92

Energy dissipation (Cahn—Hilliard eq.)

d 1 ) & 12 .
ZE@) <0 where  E(0)= [ (f(0)+SIvel)do




Outline
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[@ What are the phase-field models?
I Why do they work?

I How do you solve them numerically?
Numerics: Energy-stable methods

I Where do they actually come from?




I1l. Numerics: Energy-stable methods

Space and time discretization of phase-field models
Weak formulation
Galerkin approximation: System of ODEs

Time-stepping method: Algebraic system

24/43



A. Discretization
Derive the system of ODEs for the space-discretized (Galerkin)

Cahn—Hilliard equation, starting from: Ay A
m the system of 2 second-order equations: {(?t s
p=21f(p)-eAyp
. O _ 1 g/
m or, the fourth-order equation: i A(gf (p) - eAcp)

How would you discretize in time?

B. Energy dissipation

Pick your problem of interest (NSCH, PFF, or AC),
d€

— <0
dt

and show that the total energy dissipates:

(NSCH: Add kinetic energy 1|u[*.)
(PFF: Add elastic energy W(c,e))
(Which boundary conditions did you choose?)



Exercise A
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Derive the system of ODEs for the space-discretized (Galerkin)
Cahn—Hilliard equation, starting from:

m the system of 2 second-order equations:
p=1f'(p) - €Ay

m or, the fourth-order equation: ?)zj A(%f’(p) - FA(,O)

How would you discretize in time?




Exercise B

27/43

Pick your problem of interest (NSCH, PFF, or AC),

d&
and show that the total energy dissipates: T <-D

dt

In other words, what is D? (in general: <=

(Which boundary conditions did you choose?)




I1l. Numerics: Energy-stable methods

Time-discretization (Allen—Cahn equation)

Using a stable scheme (convex-splitting)



I1l. Numerics: Energy-stable methods

Time-discretization (Allen—Cahn equation)

Forward Euler scheme (explicit)



I1l. Numerics: Energy-stable methods

Time-discretization (Allen—Cahn equation)

Forward Euler scheme (explicit)



I1l. Numerics: Energy-stable methods
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Time-discretization (Convex—splitting )

John Cahn (1968) :
“Uphill diffusion in a binary system is the dynamic

hallmark of the [phase separation] mechanism.”




Outline
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I Foundations: Thermomechanics and mixture theory

Questions: | http://menti.com

How long ago did you study Continuum Mechanics?

Did you learn the "Second Law of Thermodynamics" in the context
of Continuum Mechanics?



http://menti.com

IV. Foundations: Thermomechanics ...
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Clifford Truesdell, 1984, p. 31:
“Textbooks by physicists hold up thermodynamics as
perfect and closed. Thermodynamics today is a blend of

statements from most of the founders: Gibbs, Planck,
Boltzmann, even from information theory. Confusion is
nearly universal. Constitutive properties are not delimited,
Jjust pulled out from under the table as needed.”




IV. Foundations: Thermomechanics ...

Marsden & Hughes, 1983, p. 176:

“The second law of thermodynamics is frequently shrouded
in mysterious physical jargon and less than adequate
mathematical treatment. The authors’ education was
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no exception. Our own frustration is consistent with
Truesdell’s (1984, p. 62):
“The difference between mechanics and thermody-

namics is that thermodynamics never grew up.”




IV. Foundations: Thermomechanics ...

The unified, rational approach (> 1960)

(Mathematically precise) laws of physics
Constitutive class (dependence only)

Constitutive restrictions as logical consequences from
the laws and other principles
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IV. Foundations: Thermomechanics ...

34/43
1. The 5 Laws (for a continuous body)

4 pdx =0

dt Jp,

d

< 1;::] bdz f Tnds
dt Ptpv(l P i Py ne
(T=T")




IV. Foundations: Thermomechanics ...

edx +[ )/)|v|2dq / b- vdc+/ Tn-vds
dl‘ Py J

- qg-nds+ [ rdz
0Py Pt
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d q r
ar. d.;z—[ 2. pnds f " e
dt Py g ! OP¢ 0 ndst Py 9(1

2. Constitutive class. Example: (T,¢,q,7) = F(VU,H,VG,...)




IV. Foundations: Thermomechanics ...
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3. Restrictions on the constitutive class
Thermodynamic consistency

Frame-indifference

Well-posedness

]
]
m Equipresence, locality
]
]




IV. Foundations: Thermomechanics ...
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3. Restrictions on the constitutive class

Coleman—Noll procedure (1963)

The Thermodymamics of Elastic Materials with
Heat Conduction and Viscosity

Bascians DCoommay & Warysn Not




IV. Foundations: Thermomechanics ...
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Hilbert’s 6th: Axiomatize all of physics

David Hilbert (1900):
“To treat in the same manner, by means of axioms, those

physical sciences in which mathematics plays an important
part; in the first rank are the theory of probabilities
and mechanics.”




IV. Foundations: ...and mixture theory
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Definition: Mixture

A mixture is a material system made up by two or more different
substances which are mixed together but not combined chemically.

Miscible mixtures <  Immiscible mixtures




IV. Foundations: ...and mixture theory

39/43

Mixture kinematics

Classical continuum



IV. Foundations: ...and mixture theory
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Mixture kinematics

Continuum mixture



IV. Foundations: ...and mixture theory

Derivation of Cahn-Hilliard eq. (binary mixture)
1958 1894 1996
John Cahn Diederik van der Waals Morton Gurtin
(1927-2016) (1837-1923)

\




IV. Foundations: ...and mixture theory
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Derivation of Cahn-Hilliard eq. (binary mixture)

\f .
L4

o ’
) e i
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IV. Foundations: ...and mixture theory
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Derivation of Cahn-Hilliard eq. (Coleman—Noll procedure)

B Mixture assumptions / Balance laws

M Introduce free energy v = e —0n / Dissipation ineq.

 Postulate constitutive class: ¢ = ¢(¢, V), h = h(V )

Infer restrictions (for phase-flux) using 2nd law

Take the canonical choice: 1 = %f(p) + §|Vgp|2 , h=-Vpu




- ______________________________________________________________________________J
Derivation of the Cahn—Hilliard equation

i. Balance law: % =-divh
ot
ii. Free-energy dissipation: % / »dV < W(IV)
v

iii. Constitutive dependence: Y= 1/3(@,0, Vgo), h = ﬂ(Vu)

iv. Infer restrictions:

S [ e ve)av = [ (0,55 + 0000 252 ) av
- [ (0od-divae,d) G2 av+ [ %ou.dnda

—_—
=i =—divh
:fﬁ-VMdV+/ ( phon+ 22 8W,¢ n)
Vv
~ <0 (dissipation) =W(OV) (work)

= h-vu<0

v. Constitutive choice: v="1f(p)+ §|Vgo\2, h=-vu

0
= (;f Ap,  p=1f(p)-elp




Summary and opportunities
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m Main principle: Energy dissipation (Now: Coupled problems!)
m Numerics: Energy stable methods (Now: IGA & SAV I)
m Foundations: Thermomechanics (Now: Unifications!)

[Gomez, van der Zee, 2017]
Computational phase-field modeling, Encyclopedia of Computational Mechanics, 2nd Edition.

[Ten Eikelder, van der Zee, Akkerman, Schillinger, ARXIV 2021]
Unified Analysis of Navier-Stokes Cahn—Hilliard models with non-matching densities
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