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Abstract
Phase-field modeling is

emerging as a promising tool

for the treatment of problems

with interfaces. . . .
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Who am I?
PhD (Delft), Postdoc (Austin, Texas)
Assistant/Associate Prof (Eindhoven) (Nottingham)
Research areas:
Fluid–structure interaction, multi-phase flow, cancer tumour growth,
finite element methods, adaptive methods, approximation of PDEs
machine learning for scientific computation

Who are you? http://menti.com

“What is your research area?”
“Have you heard of phase-field modeling (before today)?”

http://menti.com
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Motivation: Evolving-interface phenomena

1. Two-phase fluid flow
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Motivation: Evolving-interface phenomena

2. Phase separation in alloys / phase transition in metals
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Motivation: Evolving-interface phenomena

2. Phase separation in alloys / phase transition in metals
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Figure 3 A typical grain evolution process obtained from a three-dimensional phase-

field simulation of grain growth assuming isotropic grain boundary energy and isotropic

boundary mobility (146). Twenty-five order parameters were used, and an orientation

reassignment algorithmwas implemented. (a) t� = 250; (b) t� = 1000; (c) t� = 1500;

(d ) t� = 2010, where t� is the time in reduced unit.

constrained thin films (20, 166). It employs an analytical elastic solution derived

for a constrained film with arbitrary eigenstrain distributions. The model is able to

predict simultaneously the effects of substrate constraint and temperature on the

volume fractions of domain variants, domain-wall orientations, domain shapes,

and their temporal evolution during a ferroelectric phase transformation. Figure 4

shows examples of domain structures of a PbTiO3 single crystal film with (001)

orientation, coherent-bonded to a (001) cubic substrate. The three drastically dif-

ferent domain structures result from different substrate constraints ranging from

compressive to tensile. Leo & Johnson proposed a phase-field model to study the

microstructure evolution and long-time coarsening behavior of a thin film attached

to a compliant substrate (21). In particular, they studied the spinodal decomposition

and coarsening of a thin-film binary alloy using the Cahn-Hilliard equation. Suo &
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Motivation: Evolving-interface phenomena

3. Crack propagation

The model parameters are q = 8000 kg/m3, E = 190 GPa, m = 0.3,
Gc ¼ 2:213" 104 J=m2, and k = 0. The corresponding dilatational,
shear, and Rayleigh wave speeds are vd = 5654 m/s, vs = 3022m/ s,

vR = 2803 m/s. The length scale was chosen to be ‘0 = 2.5" 10#3 m
leading to a maximum uniaxial stress of 298MPa (see Section 2.3.1).

To construct the mesh, a C2-continuous cubic T-spline mid-sur-
face was first modeled in Rhino, a commercial CAD software pack-
age, using the T-Splines, Inc., plugin. The initial mid-surface mesh
had a mesh size of h $ 0.01 m. After export, the surface was
thickened with C1-continuous quadratic functions such that there
were eight Bézier elements (eleven functions) through the thick-
ness. To get the final mesh, we used the adaptive refinement
scheme describe in Section 4.4. The refinement was applied to
the mid-surface mesh at each iteration until h $ ‘0/2 in the area
of the crack. A new volume mesh was created from the updated
mid-surface mesh at each iteration. The final mesh is shown in
Fig. 21. This mesh contains 862,100 basis functions.

The simulations were performed using the staggered integra-
tion scheme described in Section 3.3.2 with the momentum equa-
tion being solved explicitly using the HHT-amethod with a = #0.3.
An adaptive time step of Dt = 0.9D tcrit was used (see Section 4.3
for a definition of Dtcrit). To compute Dtcrit, we used the power

.50 m

Sy
mm

etr
y

.075 m initial notch

.01 m  .15
 m

Fig. 20. Geometry and symmetry conditions for the pressure vessel simulation. The
mesh is a three-dimensional thickened T-spline.

Fig. 21. The final mesh for the pressurized cylinder example problem. The
volumetric mesh was constructed by thickening a mid-surface mesh. The refine-
ment was performed using the adaptive refinement scheme describe in Section 4.4
which resulted in a final mesh containing 862,100 basis functions.

Fig. 22. The results of the pressurized cylinder example. The phase-field is shown.

Fig. 23. A post-processed plot of the pressure vessel example at t = 1.76 " 10#3 s.
The displacements have been scaled by a factor of 5 and areas of model where
c < 0.05 have been removed from the plot. Displacement is measured in meters.

92 M.J. Borden et al. / Comput. Methods Appl. Mech. Engrg. 217–220 (2012) 77–95

(Borden, Verhoosel, Scott, Hughes, Landis, CMAME 2012 )



7/43
Motivation: Evolving-interface phenomena

4. Solidification, melting, crystal growth
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Motivation: Evolving-interface phenomena

5. Biological growth phenomena, e.g. tumors

Numerical Examples

Three Dimensional Numerical Examples
Mesh based on a dog’s prostate

Andrea Hawkins-Daarud, Kristoffer G. van der Zee Serge Prudhomme, and J. Tinsley Oden July 9, 2012 26 / 28

(Hawkins-Daarud, van der Zee, Oden, IJNMBE 2012 )
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Motivation: Phase-field modeling

Definition: Phase-field model 1 (Wikipedia)

A mathematical model for solving interfacial problems.

The phase field takes distinct values in each of the phases, with a

smooth change between both values around the interface.

1 Also referred to as: Diffuse-interface model
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Motivation: Phase-field modeling

Sharp interface vs diffuse interface (phase-field model)

1

0

-1
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-1 "

“Pure” phases {-1,1} Diffuse interface thickness "

1

0

-1

1

0

-1 "

“Pure” phases {-1,1} Diffuse interface thickness "
“Pure” phases {-1,1} Diffuse interface (thickness ")
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Motivation: Phase-field modeling

Sharp interface vs diffuse interface (phase-field model)
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Phase-field modeling

Sharp interface vs diffuse interface (phase-field model)
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Phase-field modeling
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Motivation: Phase-field modeling
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Learning objectives

Computational Phase-Field Modeling

I. What are the phase-field models?
II. Why do they work?
III. How do you solve them numerically?
IV. Where do they actually come from?
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Learning objectives

Computational Phase-Field Modeling

I. Examples of phase-field models
II. Main principle: Energy dissipation
III. Numerics: Energy-stable methods
IV. Foundations: Thermomechanics and mixture theory
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I. Examples of phase-field models

1 Navier–Stokes–Cahn–Hilliard (two-phase flow)
2 Cahn–Larché (phase separation in elastic solids)
3 Phase-field fracture
4 The phase-field model of solidification
5 Diffuse-interface tumor-growth model
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I. Examples of phase-field models

1.
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I. Examples of phase-field models

2.
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I. Examples of phase-field models

3.
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I. Examples of phase-field models

4.

17 Jun 2002 9:18 AR AR162-07.tex AR162-07.SGM LaTeX2e(2002/01/18) P1: ILV

SOLIDIFICATION 183

dendritic growth (40, 41) in which the anisotropy of the interfacial energy and/or

the interface kinetics (39) plays a crucial role in determining the steady-state op-

erating state of the dendrite tip. This is illustrated for the low-undercooling limit

in Figure 8 (38). In the high-undercooling limit, the phase-field simulations were

carried out for Ni using as input interfacial properties computed from atomistic

molecular dynamic simulations (42, 43). These phase-field simulations revealed

that the interface dynamics are controlled sensitively by the magnitude of the ki-

netic anisotropy (39) and that dendrites cease to exist above a critical undercooling

if this magnitude is too small.

EFFECTS OF CONVECTION Convective effects on dendritic growth have

been studied by a number of investigators using the phase-field method (25,

31–33, 44–46). Figure 9 gives an example of a two-dimensional simulation of

free dendritic growth into a supercooled melt, where the melt enters at the top

Figure 8 Three-dimensional dendritic growth simulation for a dimensionless super-

cooling of 0.05 and a 2.5% surface tension anisotropy. Snapshots of the structure are

shown at the times corresponding to the arrows, and the diffusion field extends spatially

on a much larger scale. The plot on the right side shows the evolution of the dimension-

less tip velocity vd0/D, tip radius �/d0, and selection parameter ⇥ = 2Dd0/�
2v, where

d0 is the capillary length, and D is the diffusion coefficient. This run took 6 h on 64

processors of the CRAY T3E at NERSC and is at the limit of what is computationally

feasible.
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I. Examples of phase-field models

5.

Numerical Examples

Three Dimensional Numerical Examples
Mesh based on a dog’s prostate

Andrea Hawkins-Daarud, Kristoffer G. van der Zee Serge Prudhomme, and J. Tinsley Oden July 9, 2012 26 / 28
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I. Examples of phase-field models

“Phase”?
Concentration in a mixture: ', c
Example: volume fraction ', mass fraction c

State of matter (phase): �
Example: gas, liquid, solid
Order parameter (measure of the degree of order in a system): �
Example: crystal lattice configuration
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I. Examples of phase-field models

Viewpoints on phase-field models
Computational
Regularization of a sharp-interface.
Complex interactions are included; no need to track interfaces.
Physics / Mechanics
New (!) meso-scale continuum thermo-mechanics models.
Mathematics
Nonlinear, higher-order, singularly perturbed, parabolic (dissipative) PDEs.
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I. Examples of phase-field models

Two elementary phase-field models

Cahn–Hilliard equation @'

@t
=��1

"
f ′(') − "�'�

Allen–Cahn equation @'

@t
= −1

"
f ′(') + "�'
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Outline

I. What are the phase-field models?
II. Why do they work?
III. How do you solve them numerically?
IV. Where do they actually come from?



18/43
Outline

I. What are the phase-field models?
II. Why do they work?

Main principle: Energy dissipation
III. How do you solve them numerically?
IV. Where do they actually come from?
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II. Main principle: Energy dissipation

Two elementary phase-field models

Cahn–Hilliard equation @'

@t
=��1

"
f ′(') − "�'�

Short time scales
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II. Main principle: Energy dissipation

Two elementary phase-field models

Cahn–Hilliard equation @'

@t
=��1

"
f ′(') − "�'�

Long time scales (2-D)



21/43
II. Main principle: Energy dissipation

Two elementary phase-field models

Cahn–Hilliard equation @'

@t
=��1

"
f ′(') − "�'�

Long time scales (3-D)
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II. Main principle: Energy dissipation

Cahn–Hilliard model

���������������������

@'

@t
=�µ in ⌦

µ = 1
"f ′(') − "�' in ⌦

@n' = 0 on @⌦

@nµ = 0 on @⌦

Energy dissipation (Cahn–Hilliard eq.)

d

dt
E(') ≤ 0 where E(') = �

⌦
�1
"
f(') + "

2
�∇'�2�dx
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Outline

I. What are the phase-field models?
II. Why do they work?
III. How do you solve them numerically?

Numerics: Energy-stable methods
IV. Where do they actually come from?
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III. Numerics: Energy-stable methods

Space and time discretization of phase-field models
1 Weak formulation
2 Galerkin approximation: System of ODEs
3 Time-stepping method: Algebraic system
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Exercise
A. Discretization

1 Derive the system of ODEs for the space-discretized (Galerkin)
Cahn–Hilliard equation, starting from:

the system of 2 second-order equations:

���������

@'

@t
=�µ

µ = 1
"f ′(') − ✏�'

or, the fourth-order equation:
@'

@t
=��1"f ′(') − ✏�'�

2 How would you discretize in time?

B. Energy dissipation

Pick your problem of interest (NSCH, PFF, or AC),

and show that the total energy dissipates:
dE
dt
≤ 0

(NSCH: Add kinetic energy 1
2 �u�

2.)
(PFF: Add elastic energy W (c,e))
(Which boundary conditions did you choose?)
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Exercise A

1 Derive the system of ODEs for the space-discretized (Galerkin)
Cahn–Hilliard equation, starting from:

the system of 2 second-order equations:

���������

@'

@t
=�µ

µ = 1
"f ′(') − ✏�'

or, the fourth-order equation:
@'

@t
=��1"f ′(') − ✏�'�

2 How would you discretize in time?
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Exercise B
Pick your problem of interest (NSCH, PFF, or AC),

and show that the total energy dissipates:
dE
dt
≤ −D

In other words, what is D? (in general: dE
dt ≤ − D�

≥0

+W)

(Which boundary conditions did you choose?)
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III. Numerics: Energy-stable methods

Time-discretization (Allen–Cahn equation)

Using a stable scheme (convex-splitting)
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III. Numerics: Energy-stable methods

Time-discretization (Allen–Cahn equation)

Forward Euler scheme (explicit)
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III. Numerics: Energy-stable methods

Time-discretization (Allen–Cahn equation)

Forward Euler scheme (explicit)
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III. Numerics: Energy-stable methods

Time-discretization (Convex–splitting )

John Cahn (1968) :
“Uphill diffusion in a binary system is the dynamic

hallmark of the [phase separation] mechanism.”
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Outline

IV. Foundations: Thermomechanics and mixture theory

Questions: http://menti.com

1 How long ago did you study Continuum Mechanics?
2 Did you learn the "Second Law of Thermodynamics" in the context

of Continuum Mechanics?

http://menti.com
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IV. Foundations: Thermomechanics . . .

Clifford Truesdell, 1984, p. 31:
“Textbooks by physicists hold up thermodynamics as

perfect and closed. Thermodynamics today is a blend of

statements from most of the founders: Gibbs, Planck,

Boltzmann, even from information theory. Confusion is

nearly universal. Constitutive properties are not delimited,

just pulled out from under the table as needed.”
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IV. Foundations: Thermomechanics . . .

Marsden & Hughes, 1983, p. 176:
“The second law of thermodynamics is frequently shrouded

in mysterious physical jargon and less than adequate

mathematical treatment. The authors’ education was

no exception. Our own frustration is consistent with

Truesdell’s (1984, p. 62):

“The difference between mechanics and thermody-
namics is that thermodynamics never grew up.”
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IV. Foundations: Thermomechanics . . .
The unified, rational approach (> 1960)

1 (Mathematically precise) laws of physics
2 Constitutive class (dependence only)
3 Constitutive restrictions as logical consequences from

the laws and other principles
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IV. Foundations: Thermomechanics . . .
1. The 5 Laws (for a continuous body)

1
d

dt �Pt

⇢dx = 0

2
d

dt �Pt

⇢v dx = �Pt

bdx +�
@Pt

Tnds

3 (T = TT)
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IV. Foundations: Thermomechanics . . .

4
d

dt
��Pt

✏dx +�Pt

1
2⇢�v�

2 dx� = �Pt

b ⋅ v dx +�
@Pt

Tn ⋅ v ds

− �
@Pt

q ⋅nds +�Pt

r dx

5
d

dt �Pt

⌘ dx ≥ −�
@Pt

q

✓
⋅nds +�Pt

r

✓
dx

2. Constitutive class. Example: (T, ✏,q, ⌘) = F̂ (∇v, ✓,∇✓, . . .)
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IV. Foundations: Thermomechanics . . .
3. Restrictions on the constitutive class

Thermodynamic consistency
Frame-indifference
Equipresence, locality
Well-posedness
. . .
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IV. Foundations: Thermomechanics . . .
3. Restrictions on the constitutive class

Coleman–Noll procedure (1963)
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IV. Foundations: Thermomechanics . . .
Hilbert’s 6th: Axiomatize all of physics

David Hilbert (1900):
“To treat in the same manner, by means of axioms, those

physical sciences in which mathematics plays an important

part; in the first rank are the theory of probabilities

and mechanics.”
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IV. Foundations: . . . and mixture theory

Definition: Mixture

A mixture is a material system made up by two or more different

substances which are mixed together but not combined chemically.

Miscible mixtures ↔ Immiscible mixtures
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IV. Foundations: . . . and mixture theory

Mixture kinematics

x1

x2

x3

B1

x1

x2

x3

B1

⋮ BN

Classical continuum
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IV. Foundations: . . . and mixture theory

Mixture kinematics

x1

x2

x3

B1

x1

x2

x3

B1

⋮ BN

Continuum mixture
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IV. Foundations: . . . and mixture theory

Derivation of Cahn–Hilliard eq. (binary mixture)
1958 1894 1996

John Cahn Diederik van der Waals Morton Gurtin
(1927–2016) (1837–1923)
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IV. Foundations: . . . and mixture theory

Derivation of Cahn–Hilliard eq. (binary mixture)
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IV. Foundations: . . . and mixture theory

Derivation of Cahn–Hilliard eq. (Coleman–Noll procedure)
i. Mixture assumptions / Balance laws
ii. Introduce free energy  = ✏ − ✓⌘ / Dissipation ineq.
iii. Postulate constitutive class:  =  ̂(',∇'), h = ĥ(∇µ)
iv. Infer restrictions (for phase-flux) using 2nd law
v. Take the canonical choice:  = 1

"f(') + "
2 �∇'�

2 , h = −∇µ
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IV. Foundations: . . . and mixture theoryDerivation of the Cahn–Hilliard equation

i. Balance law:
@'

@t
= −divh

ii. Free-energy dissipation:
d

dt �V
 dV ≤W(@V )

iii. Constitutive dependence:  =  ̂�',∇'�, h = ĥ(∇µ)
iv. Infer restrictions:

d

dt �V
 ̂�',∇'�dV = �

V
�@' ̂

@'
@t
+ @∇' ̂

@∇'
@t
�dV

= �
V
�@' ̂ − div @∇' ̂����������������������������������������������������������������������������������������������������������=∶µ

@'
@t�=−div ĥ

dV +�
@V

@'
@t
@∇' ̂ ⋅ n dA

= �
V
ĥ ⋅ ∇µdV

��������������������������������������������������������������������≤0 (dissipation)
+�

@V
�−µĥ ⋅ n + @'

@t
@∇' ̂ ⋅ n� dA

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������=∶W(@V ) (work)⇒ ĥ ⋅ ∇µ ≤ 0
v. Constitutive choice:  = 1

"
f(') + "

2
�∇'�2, h = −∇µ

⇒ @'

@t
=�µ , µ = 1

"
f ′(') − "�'
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Summary and opportunities

Main principle: Energy dissipation (Now: Coupled problems!)
Numerics: Energy stable methods (Now: IGA & SAV !)
Foundations: Thermomechanics (Now: Unifications!)

[Gomez, van der Zee, 2017]
Computational phase-field modeling, Encyclopedia of Computational Mechanics, 2nd Edition.

[Ten Eikelder, van der Zee, Akkerman, Schillinger, ARXIV 2021]
Unified Analysis of Navier–Stokes Cahn–Hilliard models with non-matching densities
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