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Introduction – a cursory overview

FEM

More versatile
Domain method
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BEM

Computationally more 
demanding

Simple meshing

Solution accuracy
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Infinite domain problems
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Elements are only used on the two internal 
boundaries in this wave problem
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Introduction – prelude to the theoretical 
development

For the purposes of this lecture we will start by stating 
the reciprocal theorem from a structural mechanics 
viewpoint.
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The notes contain a fuller description with greater 
mathematical rigour. The reciprocal theorem is 
developed from a weighted residual expression.

We will confine ourselves to the collocation BEM. 
There is a popular Galerkin form of BEM too.
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Reciprocal theorem
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Real load case:

Tractions: t
Displacements: u
Body forces: b

Complementary load case:

Tractions: t*
Displacements: u*
Body forces: b*

Surface ΓΓΓΓ

Volume ΩΩΩΩ

Surface ΓΓΓΓ

Volume ΩΩΩΩ
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Reciprocal theorem

Form statements of work done by force x displacement

i i i ii ii i

force x displacement
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Integrate surface tractions over the surface Γ

Integrate body forces over the volume Ω

∫ t*u dΓΓΓΓ + ∫ b*u dΩΩΩΩ = ∫ u*t dΓΓΓΓ + ∫ u*b dΩΩΩΩ

ΓΓΓΓ ΓΓΓΓΩΩΩΩ ΩΩΩΩ
i i i ii ii i

This is the reciprocal theorem due to Maxwell and Betti.
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Fundamental solutions

Reciprocal theorem statement:
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In order to reduce to boundary-only, we need to eliminate 
the two volume integrals.

We will simplify the development for this lecture by 
stipulating no body forces in the real load case, i.e. 
bi = 0

We will address the volume integral on the LHS by 
appropriate choice of a complementary load case
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Complementary load case *:  Dirac delta function point 
load in one of the coordinate 
directions at some point ξ
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Point ξ
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Fundamental solutions

Properties of Dirac 
delta function: ∆(x – ξ)
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Fundamental solutions

So the displacement field in the complementary load case, 
u*, is the solution to the equilibrium equation:
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Fundamental solutions

So the displacement field in the complementary load case, 
u*, is the solution to the equilibrium equation:

It turns out that the solution is:
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It turns out that the solution is:

where

(2D)

(3D)
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Fundamental solutions

So the displacement field in the complementary load case, 
u*, is the solution to the equilibrium equation:

It turns out that the solution is:

+ξ

r
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It turns out that the solution is:

where

(2D)

(3D)
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Fundamental solutions

Displacement fundamental solutions:

(2D)

(3D)
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Differentiate and apply Hooke’s Law to arrive at the 
corresponding traction fundamental solutions:

(2D)

(3D)
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Fundamental solutions

Physical significance:

Fundamental solutions provide the displacement and 
traction fields, in an infinite material, due to a Dirac point 
force at ξ.
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These solutions are due to Kelvin.
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Boundary integral equation

Use of the Dirac delta function as the complementary load 
case has given us a set of fundamental solutions from 
which we can easily find u* and t*.

The choice of the Dirac delta function also removes the 
remaining volume integral in the reciprocal theorem 
statement:
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statement:
0 if bi = 0
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Boundary integral equation

Treatment of the two volume integrals leaves simply:

The last step in making this a boundary-only expression is 

(∗)
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The last step in making this a boundary-only expression is 
to move ξξξξ to the boundary, i.e. ξ ∈ Γ.

This causes complications because, when ξ ∈ Γ, r passes 
through zero on the boundary causing both boundary 
integrals to contain singular functions. 
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The integrals containing Uik are only weakly singular. The 

integrals in 2D, for example, have a logarithmic singularity 
and can be quickly evaluated using the logarithmic form of 
Gauss-Legendre quadrature.
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There are other schemes – mostly involving coordinate 
transformation – for evaluating weakly singular integrals.
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The strongly singular integrals containing Tik may be taken 

in the Cauchy principal value sense (limit as radius ρ→0) 
causing the introduction of a multiplier cik.
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We will now see 
how this arises…
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These integrals may be split into three parts:
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For convenience we write the last term as:

So cik = δik + αik
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θ

Also define θ coordinate:
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On Γε :

θ

+ 
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Substituting these into the various Tik terms allows the 

integrals to be calculated analytically, yielding αik and then cik
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Worked example: αααα
11

on a smooth boundary

Substituting the functions of r and n into T11 gives
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θθ = θ1

θ = θ1+π
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Worked example: αααα
11

on a smooth boundary
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So                              c11 = δ11 + α11 = 0.5



ACME School

4th April 2011

Introduction

Reciprocal 

theorem

Fundamental 

solutions

Generally the ‘free term’ or ‘jump term’ cik(ξ) is determined 

by the angle β subtended by the material at ξ.

Boundary integral equation

cik =    δik

ξξξξ
ξξξξ

ξξξξ

β
2π
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ξξξξ

cik = 0.5 δik cik = 0.75 δik cik = 0.25 δik

But…. much easier to use the row-sum method

Still need to compute
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Boundary integral equation
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Analytical solution is possible only for the very simplest 
problems. We will proceed by discretisation, leading to the 
Boundary Element Method itself.
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Boundary element method

We discretise the boundary 
into elements.

solutions

Boundary Integral 

Equation

Boundary Element 

Method

Re-analysis and 

Interactivity

Demonstration

Enrichment

This provides:

Convenient small portions of the boundary to 
perform numerical integration accurately

Nodal points and local interpolation to define an 
approximate solution, exactly like finite elements

A set of node points on which to place ξ in turn to 
provide a square system of linear equations
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Boundary element method

Boundary elements share many essential characteristics 
with finite elements:
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Discrete form of the boundary integral equation:

Express u and t in their interpolated forms over element m
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Remove vectors of nodal displacements and tractions from 
the integrals:
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Boundary element method

Transform boundary integrals to local coordinate system:
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Evaluate this equation for ξ at, say, node 1 and Dirac force 
in x-direction:
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Boundary element method

Embed the free term c into the others….
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…by defining for notational simplicity
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Evaluating the h and g terms for ξ at each node in turn gives

u1
1

u2
1

u1
2

t1
1

t2
1

t1
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.

.

..

. .
.
..
.

=

Matrix of h

coefficients

Matrix of g

coefficients

Unknown displacements Unknown tractions

u1

u2
m

t1

t2
m

Now we are ready to talk 

about the row-sum method
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For each row, prescribe either the displacement or traction 
as a boundary condition, and column-swap to bring all 
remaining unknowns to LHS…

u1
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.

.

..

. .
.
..
.

=

Matrix of h and g

coefficients

Unknown disp’s & trac’s Boundary conditions

u1

t2
m

t1

u2
m

Matrix of h and g

coefficients
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Boundary element method

The whole right hand side is now known and can be 
multiplied out leaving

This can be solved either directly or iteratively. 

Choice of solver is limited by asymmetry of A.solutions

Boundary Integral 

Equation

Boundary Element 

Method

Re-analysis and 

Interactivity

Demonstration

Enrichment

Choice of solver is limited by asymmetry of A.
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Boundary element method

Now move ξ off the boundary and into the material. We can 
solve for the displacements at this internal point using the 
equation (∗) we developed part way through the derivation
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Stress components at the internal point can be found from a 
derivative of this equation.
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Re-analysis and interactivity

One aspect of the BEM we are pursuing in Durham is re-
analysis leading to an interactivity to design analysis.

A typical problem in elasticity….
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…and its matrix A
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Make a design change….

Re-analysis and interactivity

One aspect of the BEM we are pursuing here in Durham is 
re-analysis leading to an interactivity to design analysis.

…only a few nodes move…
solutions
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…and its matrix A

…and some rows and columns 
change, but most of the matrix is 
the same as the last one.
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Surface fits for rapid approximation of integrals

Element length L
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We precondition a GMRES scheme with an approximate 
complete LU decomposition.

First analysis: LU-decomposition (save L and U)

Re-analysis: Use the full LU-decomposition of the original

system as a preconditioner for iterative solution

of the perturbed system.

Iterative re-solution
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of the perturbed system.

Preconditioner

Perturbation Type

Move Point Move circle
External

Fillet Resize

Internal 
Fillet 

Resize 1

Internal 
Fillet 

Resize 2

None 30 – 50 31 – 49 36 – 48 34 – 50 37 – 53

Diagonal 39 – 53 36 – 47 36 – 44 43 – 47 44 – 50

Full LU 2 – 17 2 – 9 3 – 9 3 – 13 3 – 11

Number of iterations to convergence
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Enriched approximation space

The shape functions form a Partition of Unity

We use this property to enrich using arbitrary functions

∑
=

=
3

1

1)(
j

jN ξ
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∑
=

=
3

1

)()()(
j

jN ξψξψξ

If we know functions ψ that populate the particular problem 
solution space we can include them in our approximation 
and obtain improved results .... Melenk & Babuška.
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Enriched dual BEM for fracture mechanics

We can base an enrichment on the first order terms of the 
Williams expansion for displacement components around a 
crack tip

θρ
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Remark: this is the same approximation space as used in 
the XFEM (Moës, Dolbow, Belytschko) but in a BEM sense.
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Results – mode I problem

Edge crack in finite plate
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PU-BEM enriched basis for wave problems

The PUM multiple plane wave expansion for potential on an 

element  
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3-noded boundary element 
J = 3

12 waves at the node
M = 12
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Conclusions

BEM has been presented for elastostatics 
problems

Body forces and non-linearity can be handled 
by further treatment not discussed heresolutions

Boundary Integral 

Equation

Boundary Element 

Method

Re-analysis and 

Interactivity

Demonstration

Enrichment

Attractive for various classes of problem

Re-analysis leads to interactivity in stress 
analysis

by further treatment not discussed here

Enrichment of the approximation space can 
yield improved accuracy


