

The Boundary Element Method in Elastostatics

Jon Trevelyan

Durham University

School of Engineering & Computing Sciences

Introduction

Reciprocal theorem

Fundamental solutions

Boundary Integral Equation

Boundary Element Method

Re-analysis and Interactivity

Demonstration

Enrichment

Overview

Introduction

Reciprocal theorem

Fundamental solutions

- Boundary integral equation
- Boundary element method
- Re-analysis and interactivity
- Enrichment of approximation space

Introduction

Reciprocal theorem

Fundamental solutions

Boundary Integral Equation

Boundary Element Method

Re-analysis and Interactivity

Demonstration

Enrichment

Introduction – a cursory overview

FEM

More versatile Domain method

BEM

Computationally more demanding Simple meshing Solution accuracy

Introduction

Reciprocal theorem

Fundamental solutions

Boundary Integral Equation

Boundary Element Method

Re-analysis and Interactivity

Demonstration

Enrichment

Infinite domain problems

Elements are only used on the two internal boundaries in this wave problem

Introduction

Reciprocal theorem

Fundamental solutions

Boundary Integral Equation

Boundary Element Method

Re-analysis and Interactivity

Demonstration

Enrichment

Introduction – prelude to the theoretical development

For the purposes of this lecture we will start by stating the reciprocal theorem from a structural mechanics viewpoint.

The notes contain a fuller description with greater mathematical rigour. The reciprocal theorem is developed from a weighted residual expression.

We will confine ourselves to the collocation BEM. There is a popular Galerkin form of BEM too.

Introduction

Reciprocal theorem

Fundamental solutions

Boundary Integral Equation

Boundary Element Method

Re-analysis and Interactivity

Demonstration

Enrichment

Reciprocal theorem

Real load case:

Tractions: *t*_i Displacements: *u*_i Body forces: *b*_i Complementary load case: Tractions: t_i^* Displacements: u_i^* Body forces: b_i^*

Introduction

Reciprocal theorem

Fundamental solutions

Equation

Method

Boundary Integral

Boundary Element

Reciprocal theorem

Form statements of work done by force x displacement force x displacement

$$\int_{\Gamma} \mathbf{t}_{i}^{*} \mathbf{u}_{i} d\Gamma + \int_{\Omega} \mathbf{b}_{i}^{*} \mathbf{u}_{i} d\Omega = \int_{\Gamma} \mathbf{u}_{i}^{*} \mathbf{t}_{i} d\Gamma + \int_{\Omega} \mathbf{u}_{i}^{*} \mathbf{b}_{i} d\Omega$$

Integrate surface tractions over the surface Γ

Integrate body forces over the volume $\boldsymbol{\Omega}$

This is the *reciprocal theorem* due to Maxwell and Betti.

Demonstration

Re-analysis and Interactivity

Introduction

Reciprocal theorem

Fundamental solutions

Boundary Integral Equation

Boundary Element Method

Re-analysis and Interactivity

Demonstration

Enrichment

Fundamental solutions

Reciprocal theorem statement:

$$\int_{\Gamma} t_i^* u_i d\Gamma + \int_{\Omega} b_i^* u_i d\Omega = \int_{\Gamma} u_i^* t_i d\Gamma + \int_{\Omega} u_i^* b_i d\Omega$$

In order to reduce to boundary-only, we need to eliminate the two volume integrals.

- We will simplify the development for this lecture by stipulating no body forces in the real load case, i.e. $b_i = 0$
- We will address the volume integral on the LHS by appropriate choice of a complementary load case

Fundamental solutions

Complementary load case *: Dirac delta function point load in one of the coordinate directions at some point ξ

Introduction

Reciprocal theorem

Fundamental solutions

Boundary Integral Equation

Boundary Element Method

Re-analysis and Interactivity

Demonstration

ACME School 4th April 2011

Fundamental solutions

 $\int^{b} g(x)\Delta(x-\xi) \, dx = g(\xi), \qquad a < \xi < b$

Properties of Dirac delta function:

Fundamental solutions

Introduction

Reciprocal theorem

Boundary Integral Equation

Boundary Element Method

Re-analysis and Interactivity

Demonstration

Fundamental solutions

So the displacement field in the complementary load case, u^* , is the solution to the equilibrium equation:

$$\sigma_{ij,j} + \Delta \left(x - \xi \right) e_i(x) = 0$$

Introduction

Reciprocal theorem

Fundamental solutions

Boundary Integral Equation

Boundary Element Method

Re-analysis and Interactivity

Demonstration

Introduction

Reciprocal

Fundamental solutions

Boundary Integral

theorem

Equation

Fundamental solutions

So the displacement field in the complementary load case, u^* , is the solution to the equilibrium equation:

$$\sigma_{ij,j} + \Delta \left(x - \xi \right) e_i(x) = 0$$

It turns out that the solution is:

(

 $u_i^* = U_{ik}e_k$

where

$$U_{ik} = \frac{1}{8\pi\mu (1-\nu)} \left[(3-4\nu) \ln\left(\frac{1}{r}\right) \delta_{ik} + r_{,i}r_{,k} \right]$$
(2D)

$$U_{ik} = \frac{1}{16\pi\mu \left(1 - \nu\right)r} \left[(3 - 4\nu)\delta_{ik} + r_{,i}r_{,k} \right]$$
(3D)

Boundary Element Method

Re-analysis and Interactivity

Demonstration

Introduction

Reciprocal theorem

Fundamental solutions

Boundary Integral Equation

Boundary Element Method

Re-analysis and Interactivity

Demonstration

Enrichment

Fundamental soluti

So the displacement field u^* , is the solution to the e

$$\sigma_{ij,j} + \Delta$$

It turns out that the solution

 $u_i^* = U_{ik}e_k$

where

$$U_{ik} = \frac{1}{8\pi\mu \left(1-\nu\right)} \left[\left(3-4\nu\right) \ln\left(\frac{1}{r}\right) \delta_{ik} + r_{,i}r_{,k} \right]$$
(2D)

$$U_{ik} = \frac{1}{16\pi\mu \left(1 - \nu\right)r} \left[(3 - 4\nu)\delta_{ik} + r_{,i}r_{,k} \right]$$
(3D)

Fundamental solutions

Displacement fundamental solutions:

$$U_{ik} = \frac{1}{8\pi\mu (1-\nu)} \left[(3-4\nu) \ln\left(\frac{1}{r}\right) \delta_{ik} + r_{,i}r_{,k} \right]$$
(2D)

$$U_{ik} = \frac{1}{16\pi\mu \left(1 - \nu\right)r} \left[(3 - 4\nu)\delta_{ik} + r_{,i}r_{,k} \right]$$
(3D)

Differentiate and apply Hooke's Law to arrive at the corresponding traction fundamental solutions:

$$T_{ik} = \frac{-1}{4\pi (1-\nu) r} r_{,n} \left[(1-2\nu) \delta_{ik} + 2r_{,i}r_{,k} \right] + \frac{1-2\nu}{4\pi (1-\nu) r} \left(r_{,k}n_i - r_{,i}n_k \right)$$
(2D)

$$T_{ik} = \frac{-1}{8\pi (1-\nu) r^2} r_{,n} \left[(1-2\nu) \delta_{ik} + 3r_{,i} r_{,k} \right] + \frac{1-2\nu}{8\pi (1-\nu) r^2} \left(r_{,k} n_i - r_{,i} n_k \right)$$
(3D)

Introduction

Reciprocal theorem

Fundamental solutions

Boundary Integral Equation

Boundary Element Method

Re-analysis and Interactivity

Demonstration

Introduction

Reciprocal theorem

Fundamental solutions

Physical significance:

Fundamental solutions provide the displacement and traction fields, in an infinite material, due to a Dirac point force at ξ .

These solutions are due to Kelvin.

Fundamental solutions

Boundary Integral Equation

Boundary Element Method

Re-analysis and Interactivity

Demonstration

Introduction

Reciprocal theorem

Fundamental solutions

Boundary Integral Equation

Boundary Element Method

Re-analysis and Interactivity

Demonstration

Enrichment

Boundary integral equation

Use of the Dirac delta function as the complementary load case has given us a set of fundamental solutions from which we can easily find u^* and t^* .

The choice of the Dirac delta function also removes the remaining volume integral in the reciprocal theorem statement:

$$\int_{\Gamma} t_i^* u_i d\Gamma + \int_{\Omega} b_i^* u_i d\Omega = \int_{\Gamma} u_i^* t_i d\Gamma + \int_{\Omega} u_i^* b_i d\Omega$$
$$\int_{\Omega} b_i^* u_i d\Omega = \int_{\Omega} \Delta \left(x - \xi \right) e_i u_i d\Omega = u_i \left(\xi \right) e_i$$

Introduction

Reciprocal theorem

Fundamental solutions

Boundary Integral Equation

Boundary Element Method

Re-analysis and Interactivity

Demonstration

Enrichment

Boundary integral equation

Treatment of the two volume integrals leaves simply:

$$u_{k}\left(\xi\right) + \int_{\Gamma} T_{ik} u_{i} d\Gamma = \int_{\Gamma} U_{ik} t_{i} d\Gamma \qquad (*)$$

The last step in making this a boundary-only expression is to *move* ξ *to the boundary*, i.e. $\xi \in \Gamma$.

This causes complications because, when $\xi \in \Gamma$, *r* passes through zero on the boundary causing both boundary integrals to *contain singular functions*.

Introduction

Reciprocal theorem

Fundamental solutions

Boundary Integral Equation

Boundary Element Method

Re-analysis and Interactivity

Demonstration

Enrichment

Boundary integral equation

The integrals containing U_{ik} are only weakly singular. The integrals in 2D, for example, have a logarithmic singularity and can be quickly evaluated using the logarithmic form of Gauss-Legendre quadrature.

$$\int_{-1}^{1} \ln\left(\frac{1}{x}\right) f(x) \, dx \simeq \sum_{i=1}^{N} f(x_i) \, w_i$$

There are other schemes – mostly involving coordinate transformation – for evaluating weakly singular integrals.

Introduction

Reciprocal theorem

Fundamental solutions

Boundary Integral Equation

Boundary Element Method

Re-analysis and Interactivity

Demonstration

Enrichment

Boundary integral equation

 Γ_{ϵ}^{+}

 $\Gamma - \Gamma_{z}$

The strongly singular integrals containing T_{ik} may be taken in the *Cauchy principal value sense* (limit as radius $\rho \rightarrow 0$) causing the introduction of a multiplier c_{ik} .

$$c_{ik}\left(\xi\right)u_{k}\left(\xi\right) + \int_{\Gamma}T_{ik}u_{i}d\Gamma = \int_{\Gamma}U_{ik}t_{i}d\Gamma$$

Introduction

Reciprocal theorem

Fundamental solutions

Boundary Integral Equation

Boundary Element Method

Re-analysis and Interactivity

Demonstration

Enrichment

Boundary integral equation

These integrals may be split into three parts:

Introduction

Reciprocal theorem

Fundamental solutions

Boundary Integral Equation

Boundary Element Method

Re-analysis and Interactivity

Demonstration

Enrichment

Boundary integral equation

For convenience we write the last term as:

$$u_{i}(\xi)\lim_{\rho\to 0}\left\{\int_{\Gamma_{\varepsilon}^{+}}T_{ik}d\Gamma\right\} = \alpha_{ik}\left(\xi\right)u_{i}\left(\xi\right)$$

So $c_{ik} = \delta_{ik} + \alpha_{ik}$

Also define θ coordinate:

Introduction

Reciprocal theorem

Fundamental solutions

Boundary Integral Equation

Boundary Element Method

Re-analysis and Interactivity

Demonstration

Enrichment

On Γ_{ε}^{+} : $r = \rho \cos \theta e_{1} + \rho \sin \theta e_{2}$ $d\Gamma_{\varepsilon}^{+} = \rho d\theta$ $r_{,n} = 1$ $r_{,1} = \cos \theta$ $r_{,2} = \sin \theta$ $n_{1} = \cos \theta$ $n_{2} = \sin \theta$

Boundary integral equation

Substituting these into the various T_{ik} terms allows the integrals to be calculated analytically, yielding α_{ik} and then c_{ik}

Introduction

Reciprocal theorem

Fundamental solutions

Boundary Integral Equation

Boundary Element Method

Re-analysis and Interactivity

Demonstration

Enrichment

Boundary integral equation

Worked example: α_{11} on a smooth boundary

Substituting the functions of *r* and *n* into T_{11} gives

$$\alpha_{11}\left(\xi\right) = \int_{\Gamma_{\varepsilon}^{+}} \left[\frac{-1}{4\pi\left(1-\nu\right)\rho}\left(1-2\nu+2\cos^{2}\theta\right)\right] d\Gamma_{\varepsilon}^{+}$$
$$\alpha_{11}\left(\xi\right) = \frac{-1}{4\pi\left(1-\nu\right)}\int_{0}^{\theta_{1}+\pi}\left(1-2\nu+2\cos^{2}\theta\right) d\theta$$

Introduction

Reciprocal theorem

Fundamental solutions

Boundary Integral Equation

Boundary Element Method

Re-analysis and Interactivity

Demonstration

So

Enrichment

Boundary integral equation

Worked example: α_{11} on a smooth boundary

$$\alpha_{11}\left(\xi\right) = \frac{-1}{4\pi\left(1-\nu\right)} \left[\left(1-2\nu\right)\theta + \left(\theta+\cos\theta\sin\theta\right)\right]_{\theta_{1}}^{\theta_{1}+\pi}$$

$$\alpha_{11}(\xi) = \frac{-1}{4\pi (1-\nu)} \left\{ (2-2\nu) \pi + \cos \left(\theta_1 + \pi\right) \sin \left(\theta_1 + \pi\right) - \cos \theta_1 \sin \theta_1 \right\}$$

$$\alpha_{11}(\xi) = \frac{-1}{4\pi (1-\nu)} \left\{ (2-2\nu) \pi + \sin \theta_1 \cos \theta_1 - \cos \theta_1 \sin \theta_1 \right\}$$

$$\alpha_{11}\left(\xi\right) = -\frac{1}{2}$$

$$c_{11} = \delta_{11} + \alpha_{11} = 0.5$$

Introduction

Reciprocal theorem

Fundamental solutions

Boundary Integral Equation

Boundary Element Method

Re-analysis and Interactivity

Demonstration

Enrichment

Boundary integral equation

Generally the 'free term' or 'jump term' $c_{ik}(\xi)$ is determined by the angle β subtended by the material at ξ .

But.... much easier to use the row-sum method

Boundary integral equation

Boundary integral equation

Introduction

Reciprocal theorem

Fundamental solutions

Boundary Integral Equation

Boundary Element Method

Re-analysis and Interactivity

Demonstration

Enrichment

$$c_{ik}\left(\xi\right)u_{k}\left(\xi\right) + \int_{\Gamma}T_{ik}u_{i}d\Gamma = \int_{\Gamma}U_{ik}t_{i}d\Gamma$$

Analytical solution is possible only for the very simplest problems. We will proceed by discretisation, leading to the **Boundary Element Method** itself.

Boundary element method

We discretise the boundary into elements.

Introduction

Reciprocal theorem

Fundamental solutions

Boundary Integral Equation

Boundary Element Method

Re-analysis and Interactivity

Demonstration

Enrichment

This provides:

- Nodal points and local interpolation to define an approximate solution, exactly like finite elements
- Convenient small portions of the boundary to perform numerical integration accurately
- A set of node points on which to place ξ in turn to provide a square system of linear equations

Introduction

Reciprocal theorem

Fundamental solutions

Boundary Integral Equation

Boundary Element Method

Re-analysis and Interactivity

Demonstration

Enrichment

Boundary element method

Boundary elements share many essential characteristics with finite elements:

η = 0 $\eta = 1$ $\eta = -1$ $N_1(\eta) = \frac{\eta}{2}(\eta - 1)$ $N_2(\eta) = (1 - \eta)(1 + \eta)$ $N_3(\eta) = \frac{\eta}{2}(\eta + 1)$ $u_{i}(\eta) = \sum_{j=1}^{\circ} N_{j}(\eta) u_{i}^{jm}$

Introduction

Reciprocal theorem

Fundamental solutions

Boundary Integral Equation

Boundary Element Method

Re-analysis and Interactivity

Demonstration

Enrichment

Boundary element method

Discrete form of the boundary integral equation:

$$c_{ik}\left(\xi\right)u_{k}\left(\xi\right) + \sum_{m=1}^{M}\int_{\Gamma_{m}}T_{ik}u_{i}d\Gamma = \sum_{m=1}^{M}\int_{\Gamma_{m}}U_{ik}t_{i}d\Gamma$$

Express *u* and *t* in their interpolated forms over element *m* $c_{ik}(\xi) u_k(\xi) + \sum_{m=1}^{M} \int_{\Gamma_m} T_{ik} N_p u_i^{pm} d\Gamma = \sum_{m=1}^{M} \int_{\Gamma_m} U_{ik} N_p t_i^{pm} d\Gamma$

Remove vectors of *nodal* displacements and tractions from the integrals:

$$c_{ik}\left(\xi\right)u_{k}\left(\xi\right) + \sum_{m=1}^{M}\int_{\Gamma_{m}}T_{ik}N_{p}d\Gamma \ u_{i}^{pm} = \sum_{m=1}^{M}\int_{\Gamma_{m}}U_{ik}N_{p}d\Gamma \ t_{i}^{pm}$$

Introduction

Reciprocal theorem

Fundamental solutions

Boundary Integral Equation

Boundary Element Method

Re-analysis and Interactivity

Demonstration

Enrichment

Boundary element method

$$c_{ik}\left(\xi\right)u_{k}\left(\xi\right) + \sum_{m=1}^{M}\int_{\Gamma_{m}}T_{ik}N_{p}d\Gamma \ u_{i}^{pm} = \sum_{m=1}^{M}\int_{\Gamma_{m}}U_{ik}N_{p}d\Gamma \ t_{i}^{pm}$$

Transform boundary integrals to local coordinate system:

$$c_{ik}\left(\xi\right)u_{k}\left(\xi\right) + \sum_{m=1}^{M} \int_{-1}^{1} T_{ik}N_{p}J\left(\eta\right)d\eta \ u_{i}^{pm} = \sum_{m=1}^{M} \int_{-1}^{1} U_{ik}N_{p}J\left(\eta\right)d\eta \ t_{i}^{pm}$$

Evaluate this equation for ξ at, say, node 1 and Dirac force in *x*-direction:

$$c_{11}(1)u_1^1 + \hat{h}_{1,1}u_1^1 + \hat{h}_{1,2}u_2^1 + \hat{h}_{1,3}u_1^2 + \hat{h}_{1,4}u_2^2 + \hat{h}_{1,5}u_1^3 + \dots$$

= $g_{1,1}t_1^1 + g_{1,2}t_2^1 + g_{1,3}t_1^2 + g_{1,4}t_2^2 + g_{1,5}t_1^3 + \dots$

Introduction

Reciprocal theorem

Fundamental solutions

Boundary Integral Equation

Boundary Element Method

Re-analysis and Interactivity

Demonstration

Enrichment

Boundary element method

$$c_{11}(1)u_1^1 + \hat{h}_{1,1}u_1^1 + \hat{h}_{1,2}u_2^1 + \hat{h}_{1,3}u_1^2 + \hat{h}_{1,4}u_2^2 + \hat{h}_{1,5}u_1^3 + \dots$$

= $g_{1,1}t_1^1 + g_{1,2}t_2^1 + g_{1,3}t_1^2 + g_{1,4}t_2^2 + g_{1,5}t_1^3 + \dots$

Embed the free term *c* into the others....

$$h_{1,1}u_1^1 + h_{1,2}u_2^1 + h_{1,3}u_1^2 + h_{1,4}u_2^2 + h_{1,5}u_1^3 + \dots$$

= $g_{1,1}t_1^1 + g_{1,2}t_2^1 + g_{1,3}t_1^2 + g_{1,4}t_2^2 + g_{1,5}t_1^3 + \dots$

... by defining for notational simplicity

 $h_{i,j} = \hat{h}_{i,j} + \delta_{ij} c_{ij} \left(\xi\right)$

Boundary element method

Evaluating the h and g terms for ξ at each node in turn gives

Introduction

Reciprocal theorem

Fundamental solutions

Boundary Integral Equation

Boundary Element Method

Re-analysis and Interactivity

Demonstration

Enrichment

Hu = Gt

Introduction

Reciprocal theorem

Fundamental solutions

Boundary Integral Equation

Boundary Element Method

Re-analysis and Interactivity

Demonstration

Enrichment

Boundary element method

For each row, prescribe either the displacement or traction as a boundary condition, and column-swap to bring all remaining unknowns to LHS...

Introduction

Reciprocal theorem

Fundamental solutions

Boundary Integral Equation

Boundary Element Method

Re-analysis and Interactivity

Demonstration

Enrichment

Boundary element method

The whole right hand side is now known and can be multiplied out leaving

 $A\underline{x} = \underline{b}$

This can be solved either directly or iteratively.

Choice of solver is limited by asymmetry of *A*.

Introduction

Reciprocal theorem

Fundamental solutions

Boundary Integral Equation

Boundary Element Method

Re-analysis and Interactivity

Demonstration

Enrichment

Boundary element method

Now move ξ off the boundary and into the material. We can solve for the displacements at this internal point using the equation (*) we developed part way through the derivation

$$u_{k}\left(\xi\right) + \int_{\Gamma} T_{ik} u_{i} d\Gamma = \int_{\Gamma} U_{ik} t_{i} d\Gamma$$

Stress components at the internal point can be found from a derivative of this equation.

Introduction

Reciprocal theorem

Fundamental solutions

Boundary Integral Equation

Boundary Element Method

Re-analysis and Interactivity

Demonstration

Enrichment

Re-analysis and interactivity

One aspect of the BEM we are pursuing in Durham is reanalysis leading to an interactivity to design analysis.

Introduction

Reciprocal theorem

Fundamental solutions

Boundary Integral Equation

Boundary Element Method

Re-analysis and Interactivity

Demonstration

Enrichment

Re-analysis and interactivity

 \bigcirc

One aspect of the BEM we are pursuing here in Durham is re-analysis leading to an interactivity to design analysis.

Make a design change.... ...only a few nodes move...

...and some rows and columns change, but most of the matrix is the same as the last one.

Introduction

Reciprocal theorem

Fundamental solutions

Boundary Integral Equation

Boundary Element Method

Re-analysis and Interactivity

Demonstration

Enrichment

Surface fits for rapid approximation of integrals

$$U_{001} = \left[2.166 \left(1 + \cos \left(2\theta \right) \right) - 8.996 \ln \left(\frac{r_m}{L} \right) \right] \times 10^{-7}$$

Introduction

Reciprocal theorem

Fundamental solutions

Boundary Integral Equation

Boundary Element Method

Re-analysis and Interactivity

Demonstration

Enrichment

Iterative re-solution

We precondition a GMRES scheme with an approximate complete LU decomposition.

First analysis: LU-decomposition (save L and U) *Re-analysis*: Use the full LU-decomposition of the original system as a preconditioner for iterative solution of the perturbed system.

	Perturbation Type				
Preconditioner	Move Point	Move circle	External Fillet Resize	Internal Fillet Resize 1	Internal Fillet Resize 2
None	30 – 50	31 – 49	36 – 48	34 – 50	37 – 53
Diagonal	39 – 53	36 – 47	36 – 44	43 – 47	44 – 50
Full LU	2 – 17	2 – 9	3 – 9	3 – 13	3 – 11
Number of iterations to convergence					

Introduction

Reciprocal theorem

Fundamental solutions

Boundary Integral Equation

Boundary Element Method

Re-analysis and Interactivity

Demonstration

Enrichment

Demonstration

Introduction

Reciprocal theorem

Fundamental solutions

Boundary Integral Equation

Boundary Element Method

Re-analysis and Interactivity

Demonstration

Enrichment

Enriched approximation space

The shape functions form a Partition of Unity

 $\sum_{j=1}^{3} N_{j}(\xi) = 1$

We use this property to enrich using arbitrary functions

$$\sum_{j=1}^{3} N_j(\xi) \psi(\xi) = \psi(\xi)$$

If we know functions ψ that populate the particular problem solution space we can include them in our approximation and obtain improved results Melenk & Babuška.

Introduction

Reciprocal theorem

Fundamental solutions

Boundary Integral Equation

Boundary Element Method

Re-analysis and Interactivity

Demonstration

Enrichment

Enriched dual BEM for fracture mechanics

We can base an enrichment on the first order terms of the Williams expansion for displacement components around a crack tip

$$u_{j}^{n}(\xi) = \sum_{a=1}^{M} N_{a}(\xi) u_{j}^{na} + \sum_{a=1}^{M} \sum_{l=1}^{L} N_{a}(\xi) \psi_{l}^{U}(\xi) A_{jl}^{na}$$
$$\psi^{U}(\rho, \theta) = \left\{ \sqrt{\rho} \cos\left(\frac{\theta}{2}\right), \sqrt{\rho} \sin\left(\frac{\theta}{2}\right), \sqrt{\rho} \sin\left(\frac{\theta}{2}\right), \sqrt{\rho} \sin\left(\frac{\theta}{2}\right) \sin(\theta), \sqrt{\rho} \cos\left(\frac{\theta}{2}\right) \sin(\theta) \right\}^{\mathrm{T}}$$

Remark: this is the same approximation space as used in the XFEM (Moës, Dolbow, Belytschko) but in a BEM sense.

Results – mode I problem

ACME School 4th April 2011

Introduction

Reciprocal theorem

Fundamental solutions

Boundary Integral Equation

Boundary Element Method

Re-analysis and Interactivity

Demonstration

Introduction

Reciprocal theorem

Fundamental solutions

Boundary Integral Equation

Boundary Element Method

Re-analysis and Interactivity

Demonstration

Enrichment

PU-BEM enriched basis for wave problems

The PUM multiple plane wave expansion for potential on an element

Introduction

Reciprocal theorem

Fundamental solutions

Boundary Integral Equation

Boundary Element Method

Re-analysis and Interactivity

Demonstration

Enrichment

Conclusions

- BEM has been presented for elastostatics problems
- Body forces and non-linearity can be handled by further treatment not discussed here
- Attractive for various classes of problem
- Re-analysis leads to interactivity in stress analysis
- Enrichment of the approximation space can yield improved accuracy